4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
60 #include <linux/kmod.h>
64 /* for /sbin/loader handling in search_binary_handler() */
65 #include <linux/a.out.h>
69 char core_pattern[CORENAME_MAX_SIZE] = "core";
70 int suid_dumpable = 0;
72 /* The maximal length of core_pattern is also specified in sysctl.c */
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
77 int register_binfmt(struct linux_binfmt * fmt)
81 write_lock(&binfmt_lock);
82 list_add(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
87 EXPORT_SYMBOL(register_binfmt);
89 void unregister_binfmt(struct linux_binfmt * fmt)
91 write_lock(&binfmt_lock);
93 write_unlock(&binfmt_lock);
96 EXPORT_SYMBOL(unregister_binfmt);
98 static inline void put_binfmt(struct linux_binfmt * fmt)
100 module_put(fmt->module);
104 * Note that a shared library must be both readable and executable due to
107 * Also note that we take the address to load from from the file itself.
109 asmlinkage long sys_uselib(const char __user * library)
115 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
120 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
123 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
127 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
128 error = PTR_ERR(file);
134 struct linux_binfmt * fmt;
136 read_lock(&binfmt_lock);
137 list_for_each_entry(fmt, &formats, lh) {
138 if (!fmt->load_shlib)
140 if (!try_module_get(fmt->module))
142 read_unlock(&binfmt_lock);
143 error = fmt->load_shlib(file);
144 read_lock(&binfmt_lock);
146 if (error != -ENOEXEC)
149 read_unlock(&binfmt_lock);
155 release_open_intent(&nd);
162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
168 #ifdef CONFIG_STACK_GROWSUP
170 ret = expand_stack_downwards(bprm->vma, pos);
175 ret = get_user_pages(current, bprm->mm, pos,
176 1, write, 1, &page, NULL);
181 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
185 * We've historically supported up to 32 pages (ARG_MAX)
186 * of argument strings even with small stacks
192 * Limit to 1/4-th the stack size for the argv+env strings.
194 * - the remaining binfmt code will not run out of stack space,
195 * - the program will have a reasonable amount of stack left
198 rlim = current->signal->rlim;
199 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
208 static void put_arg_page(struct page *page)
213 static void free_arg_page(struct linux_binprm *bprm, int i)
217 static void free_arg_pages(struct linux_binprm *bprm)
221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
224 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
227 static int __bprm_mm_init(struct linux_binprm *bprm)
230 struct vm_area_struct *vma = NULL;
231 struct mm_struct *mm = bprm->mm;
233 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
237 down_write(&mm->mmap_sem);
241 * Place the stack at the largest stack address the architecture
242 * supports. Later, we'll move this to an appropriate place. We don't
243 * use STACK_TOP because that can depend on attributes which aren't
246 vma->vm_end = STACK_TOP_MAX;
247 vma->vm_start = vma->vm_end - PAGE_SIZE;
249 vma->vm_flags = VM_STACK_FLAGS;
250 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
251 err = insert_vm_struct(mm, vma);
253 up_write(&mm->mmap_sem);
257 mm->stack_vm = mm->total_vm = 1;
258 up_write(&mm->mmap_sem);
260 bprm->p = vma->vm_end - sizeof(void *);
267 kmem_cache_free(vm_area_cachep, vma);
273 static bool valid_arg_len(struct linux_binprm *bprm, long len)
275 return len <= MAX_ARG_STRLEN;
280 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
285 page = bprm->page[pos / PAGE_SIZE];
286 if (!page && write) {
287 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
290 bprm->page[pos / PAGE_SIZE] = page;
296 static void put_arg_page(struct page *page)
300 static void free_arg_page(struct linux_binprm *bprm, int i)
303 __free_page(bprm->page[i]);
304 bprm->page[i] = NULL;
308 static void free_arg_pages(struct linux_binprm *bprm)
312 for (i = 0; i < MAX_ARG_PAGES; i++)
313 free_arg_page(bprm, i);
316 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 static int __bprm_mm_init(struct linux_binprm *bprm)
323 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
327 static bool valid_arg_len(struct linux_binprm *bprm, long len)
329 return len <= bprm->p;
332 #endif /* CONFIG_MMU */
335 * Create a new mm_struct and populate it with a temporary stack
336 * vm_area_struct. We don't have enough context at this point to set the stack
337 * flags, permissions, and offset, so we use temporary values. We'll update
338 * them later in setup_arg_pages().
340 int bprm_mm_init(struct linux_binprm *bprm)
343 struct mm_struct *mm = NULL;
345 bprm->mm = mm = mm_alloc();
350 err = init_new_context(current, mm);
354 err = __bprm_mm_init(bprm);
370 * count() counts the number of strings in array ARGV.
372 static int count(char __user * __user * argv, int max)
380 if (get_user(p, argv))
394 * 'copy_strings()' copies argument/environment strings from the old
395 * processes's memory to the new process's stack. The call to get_user_pages()
396 * ensures the destination page is created and not swapped out.
398 static int copy_strings(int argc, char __user * __user * argv,
399 struct linux_binprm *bprm)
401 struct page *kmapped_page = NULL;
403 unsigned long kpos = 0;
411 if (get_user(str, argv+argc) ||
412 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
417 if (!valid_arg_len(bprm, len)) {
422 /* We're going to work our way backwords. */
428 int offset, bytes_to_copy;
430 offset = pos % PAGE_SIZE;
434 bytes_to_copy = offset;
435 if (bytes_to_copy > len)
438 offset -= bytes_to_copy;
439 pos -= bytes_to_copy;
440 str -= bytes_to_copy;
441 len -= bytes_to_copy;
443 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
446 page = get_arg_page(bprm, pos, 1);
453 flush_kernel_dcache_page(kmapped_page);
454 kunmap(kmapped_page);
455 put_arg_page(kmapped_page);
458 kaddr = kmap(kmapped_page);
459 kpos = pos & PAGE_MASK;
460 flush_arg_page(bprm, kpos, kmapped_page);
462 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
471 flush_kernel_dcache_page(kmapped_page);
472 kunmap(kmapped_page);
473 put_arg_page(kmapped_page);
479 * Like copy_strings, but get argv and its values from kernel memory.
481 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
484 mm_segment_t oldfs = get_fs();
486 r = copy_strings(argc, (char __user * __user *)argv, bprm);
490 EXPORT_SYMBOL(copy_strings_kernel);
495 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
496 * the binfmt code determines where the new stack should reside, we shift it to
497 * its final location. The process proceeds as follows:
499 * 1) Use shift to calculate the new vma endpoints.
500 * 2) Extend vma to cover both the old and new ranges. This ensures the
501 * arguments passed to subsequent functions are consistent.
502 * 3) Move vma's page tables to the new range.
503 * 4) Free up any cleared pgd range.
504 * 5) Shrink the vma to cover only the new range.
506 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
508 struct mm_struct *mm = vma->vm_mm;
509 unsigned long old_start = vma->vm_start;
510 unsigned long old_end = vma->vm_end;
511 unsigned long length = old_end - old_start;
512 unsigned long new_start = old_start - shift;
513 unsigned long new_end = old_end - shift;
514 struct mmu_gather *tlb;
516 BUG_ON(new_start > new_end);
519 * ensure there are no vmas between where we want to go
522 if (vma != find_vma(mm, new_start))
526 * cover the whole range: [new_start, old_end)
528 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
531 * move the page tables downwards, on failure we rely on
532 * process cleanup to remove whatever mess we made.
534 if (length != move_page_tables(vma, old_start,
535 vma, new_start, length))
539 tlb = tlb_gather_mmu(mm, 0);
540 if (new_end > old_start) {
542 * when the old and new regions overlap clear from new_end.
544 free_pgd_range(&tlb, new_end, old_end, new_end,
545 vma->vm_next ? vma->vm_next->vm_start : 0);
548 * otherwise, clean from old_start; this is done to not touch
549 * the address space in [new_end, old_start) some architectures
550 * have constraints on va-space that make this illegal (IA64) -
551 * for the others its just a little faster.
553 free_pgd_range(&tlb, old_start, old_end, new_end,
554 vma->vm_next ? vma->vm_next->vm_start : 0);
556 tlb_finish_mmu(tlb, new_end, old_end);
559 * shrink the vma to just the new range.
561 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
566 #define EXTRA_STACK_VM_PAGES 20 /* random */
569 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
570 * the stack is optionally relocated, and some extra space is added.
572 int setup_arg_pages(struct linux_binprm *bprm,
573 unsigned long stack_top,
574 int executable_stack)
577 unsigned long stack_shift;
578 struct mm_struct *mm = current->mm;
579 struct vm_area_struct *vma = bprm->vma;
580 struct vm_area_struct *prev = NULL;
581 unsigned long vm_flags;
582 unsigned long stack_base;
584 #ifdef CONFIG_STACK_GROWSUP
585 /* Limit stack size to 1GB */
586 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
587 if (stack_base > (1 << 30))
588 stack_base = 1 << 30;
590 /* Make sure we didn't let the argument array grow too large. */
591 if (vma->vm_end - vma->vm_start > stack_base)
594 stack_base = PAGE_ALIGN(stack_top - stack_base);
596 stack_shift = vma->vm_start - stack_base;
597 mm->arg_start = bprm->p - stack_shift;
598 bprm->p = vma->vm_end - stack_shift;
600 stack_top = arch_align_stack(stack_top);
601 stack_top = PAGE_ALIGN(stack_top);
602 stack_shift = vma->vm_end - stack_top;
604 bprm->p -= stack_shift;
605 mm->arg_start = bprm->p;
609 bprm->loader -= stack_shift;
610 bprm->exec -= stack_shift;
612 down_write(&mm->mmap_sem);
613 vm_flags = vma->vm_flags;
616 * Adjust stack execute permissions; explicitly enable for
617 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
618 * (arch default) otherwise.
620 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
622 else if (executable_stack == EXSTACK_DISABLE_X)
623 vm_flags &= ~VM_EXEC;
624 vm_flags |= mm->def_flags;
626 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
632 /* Move stack pages down in memory. */
634 ret = shift_arg_pages(vma, stack_shift);
636 up_write(&mm->mmap_sem);
641 #ifdef CONFIG_STACK_GROWSUP
642 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
644 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
646 ret = expand_stack(vma, stack_base);
651 up_write(&mm->mmap_sem);
654 EXPORT_SYMBOL(setup_arg_pages);
656 #endif /* CONFIG_MMU */
658 struct file *open_exec(const char *name)
664 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
668 struct inode *inode = nd.path.dentry->d_inode;
669 file = ERR_PTR(-EACCES);
670 if (S_ISREG(inode->i_mode)) {
671 int err = vfs_permission(&nd, MAY_EXEC);
674 file = nameidata_to_filp(&nd,
675 O_RDONLY|O_LARGEFILE);
677 err = deny_write_access(file);
687 release_open_intent(&nd);
693 EXPORT_SYMBOL(open_exec);
695 int kernel_read(struct file *file, unsigned long offset,
696 char *addr, unsigned long count)
704 /* The cast to a user pointer is valid due to the set_fs() */
705 result = vfs_read(file, (void __user *)addr, count, &pos);
710 EXPORT_SYMBOL(kernel_read);
712 static int exec_mmap(struct mm_struct *mm)
714 struct task_struct *tsk;
715 struct mm_struct * old_mm, *active_mm;
717 /* Notify parent that we're no longer interested in the old VM */
719 old_mm = current->mm;
720 mm_release(tsk, old_mm);
724 * Make sure that if there is a core dump in progress
725 * for the old mm, we get out and die instead of going
726 * through with the exec. We must hold mmap_sem around
727 * checking core_waiters and changing tsk->mm. The
728 * core-inducing thread will increment core_waiters for
729 * each thread whose ->mm == old_mm.
731 down_read(&old_mm->mmap_sem);
732 if (unlikely(old_mm->core_waiters)) {
733 up_read(&old_mm->mmap_sem);
738 active_mm = tsk->active_mm;
741 activate_mm(active_mm, mm);
743 mm_update_next_owner(old_mm);
744 arch_pick_mmap_layout(mm);
746 up_read(&old_mm->mmap_sem);
747 BUG_ON(active_mm != old_mm);
756 * This function makes sure the current process has its own signal table,
757 * so that flush_signal_handlers can later reset the handlers without
758 * disturbing other processes. (Other processes might share the signal
759 * table via the CLONE_SIGHAND option to clone().)
761 static int de_thread(struct task_struct *tsk)
763 struct signal_struct *sig = tsk->signal;
764 struct sighand_struct *oldsighand = tsk->sighand;
765 spinlock_t *lock = &oldsighand->siglock;
766 struct task_struct *leader = NULL;
769 if (thread_group_empty(tsk))
770 goto no_thread_group;
773 * Kill all other threads in the thread group.
776 if (signal_group_exit(sig)) {
778 * Another group action in progress, just
779 * return so that the signal is processed.
781 spin_unlock_irq(lock);
784 sig->group_exit_task = tsk;
785 zap_other_threads(tsk);
787 /* Account for the thread group leader hanging around: */
788 count = thread_group_leader(tsk) ? 1 : 2;
789 sig->notify_count = count;
790 while (atomic_read(&sig->count) > count) {
791 __set_current_state(TASK_UNINTERRUPTIBLE);
792 spin_unlock_irq(lock);
796 spin_unlock_irq(lock);
799 * At this point all other threads have exited, all we have to
800 * do is to wait for the thread group leader to become inactive,
801 * and to assume its PID:
803 if (!thread_group_leader(tsk)) {
804 leader = tsk->group_leader;
806 sig->notify_count = -1; /* for exit_notify() */
808 write_lock_irq(&tasklist_lock);
809 if (likely(leader->exit_state))
811 __set_current_state(TASK_UNINTERRUPTIBLE);
812 write_unlock_irq(&tasklist_lock);
816 if (unlikely(task_child_reaper(tsk) == leader))
817 task_active_pid_ns(tsk)->child_reaper = tsk;
819 * The only record we have of the real-time age of a
820 * process, regardless of execs it's done, is start_time.
821 * All the past CPU time is accumulated in signal_struct
822 * from sister threads now dead. But in this non-leader
823 * exec, nothing survives from the original leader thread,
824 * whose birth marks the true age of this process now.
825 * When we take on its identity by switching to its PID, we
826 * also take its birthdate (always earlier than our own).
828 tsk->start_time = leader->start_time;
830 BUG_ON(!same_thread_group(leader, tsk));
831 BUG_ON(has_group_leader_pid(tsk));
833 * An exec() starts a new thread group with the
834 * TGID of the previous thread group. Rehash the
835 * two threads with a switched PID, and release
836 * the former thread group leader:
839 /* Become a process group leader with the old leader's pid.
840 * The old leader becomes a thread of the this thread group.
841 * Note: The old leader also uses this pid until release_task
842 * is called. Odd but simple and correct.
844 detach_pid(tsk, PIDTYPE_PID);
845 tsk->pid = leader->pid;
846 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
847 transfer_pid(leader, tsk, PIDTYPE_PGID);
848 transfer_pid(leader, tsk, PIDTYPE_SID);
849 list_replace_rcu(&leader->tasks, &tsk->tasks);
851 tsk->group_leader = tsk;
852 leader->group_leader = tsk;
854 tsk->exit_signal = SIGCHLD;
856 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
857 leader->exit_state = EXIT_DEAD;
859 write_unlock_irq(&tasklist_lock);
862 sig->group_exit_task = NULL;
863 sig->notify_count = 0;
867 flush_itimer_signals();
869 release_task(leader);
871 if (atomic_read(&oldsighand->count) != 1) {
872 struct sighand_struct *newsighand;
874 * This ->sighand is shared with the CLONE_SIGHAND
875 * but not CLONE_THREAD task, switch to the new one.
877 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
881 atomic_set(&newsighand->count, 1);
882 memcpy(newsighand->action, oldsighand->action,
883 sizeof(newsighand->action));
885 write_lock_irq(&tasklist_lock);
886 spin_lock(&oldsighand->siglock);
887 rcu_assign_pointer(tsk->sighand, newsighand);
888 spin_unlock(&oldsighand->siglock);
889 write_unlock_irq(&tasklist_lock);
891 __cleanup_sighand(oldsighand);
894 BUG_ON(!thread_group_leader(tsk));
899 * These functions flushes out all traces of the currently running executable
900 * so that a new one can be started
902 static void flush_old_files(struct files_struct * files)
907 spin_lock(&files->file_lock);
909 unsigned long set, i;
913 fdt = files_fdtable(files);
914 if (i >= fdt->max_fds)
916 set = fdt->close_on_exec->fds_bits[j];
919 fdt->close_on_exec->fds_bits[j] = 0;
920 spin_unlock(&files->file_lock);
921 for ( ; set ; i++,set >>= 1) {
926 spin_lock(&files->file_lock);
929 spin_unlock(&files->file_lock);
932 char *get_task_comm(char *buf, struct task_struct *tsk)
934 /* buf must be at least sizeof(tsk->comm) in size */
936 strncpy(buf, tsk->comm, sizeof(tsk->comm));
941 void set_task_comm(struct task_struct *tsk, char *buf)
944 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
948 int flush_old_exec(struct linux_binprm * bprm)
952 char tcomm[sizeof(current->comm)];
955 * Make sure we have a private signal table and that
956 * we are unassociated from the previous thread group.
958 retval = de_thread(current);
962 set_mm_exe_file(bprm->mm, bprm->file);
965 * Release all of the old mmap stuff
967 retval = exec_mmap(bprm->mm);
971 bprm->mm = NULL; /* We're using it now */
973 /* This is the point of no return */
974 current->sas_ss_sp = current->sas_ss_size = 0;
976 if (current->euid == current->uid && current->egid == current->gid)
977 set_dumpable(current->mm, 1);
979 set_dumpable(current->mm, suid_dumpable);
981 name = bprm->filename;
983 /* Copies the binary name from after last slash */
984 for (i=0; (ch = *(name++)) != '\0';) {
986 i = 0; /* overwrite what we wrote */
988 if (i < (sizeof(tcomm) - 1))
992 set_task_comm(current, tcomm);
994 current->flags &= ~PF_RANDOMIZE;
997 /* Set the new mm task size. We have to do that late because it may
998 * depend on TIF_32BIT which is only updated in flush_thread() on
999 * some architectures like powerpc
1001 current->mm->task_size = TASK_SIZE;
1003 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1005 set_dumpable(current->mm, suid_dumpable);
1006 current->pdeath_signal = 0;
1007 } else if (file_permission(bprm->file, MAY_READ) ||
1008 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1010 set_dumpable(current->mm, suid_dumpable);
1013 /* An exec changes our domain. We are no longer part of the thread
1016 current->self_exec_id++;
1018 flush_signal_handlers(current, 0);
1019 flush_old_files(current->files);
1027 EXPORT_SYMBOL(flush_old_exec);
1030 * Fill the binprm structure from the inode.
1031 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1033 int prepare_binprm(struct linux_binprm *bprm)
1036 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1039 mode = inode->i_mode;
1040 if (bprm->file->f_op == NULL)
1043 bprm->e_uid = current->euid;
1044 bprm->e_gid = current->egid;
1046 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1048 if (mode & S_ISUID) {
1049 current->personality &= ~PER_CLEAR_ON_SETID;
1050 bprm->e_uid = inode->i_uid;
1055 * If setgid is set but no group execute bit then this
1056 * is a candidate for mandatory locking, not a setgid
1059 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1060 current->personality &= ~PER_CLEAR_ON_SETID;
1061 bprm->e_gid = inode->i_gid;
1065 /* fill in binprm security blob */
1066 retval = security_bprm_set(bprm);
1070 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1071 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1074 EXPORT_SYMBOL(prepare_binprm);
1076 static int unsafe_exec(struct task_struct *p)
1079 if (p->ptrace & PT_PTRACED) {
1080 if (p->ptrace & PT_PTRACE_CAP)
1081 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1083 unsafe |= LSM_UNSAFE_PTRACE;
1085 if (atomic_read(&p->fs->count) > 1 ||
1086 atomic_read(&p->files->count) > 1 ||
1087 atomic_read(&p->sighand->count) > 1)
1088 unsafe |= LSM_UNSAFE_SHARE;
1093 void compute_creds(struct linux_binprm *bprm)
1097 if (bprm->e_uid != current->uid) {
1099 current->pdeath_signal = 0;
1104 unsafe = unsafe_exec(current);
1105 security_bprm_apply_creds(bprm, unsafe);
1106 task_unlock(current);
1107 security_bprm_post_apply_creds(bprm);
1109 EXPORT_SYMBOL(compute_creds);
1112 * Arguments are '\0' separated strings found at the location bprm->p
1113 * points to; chop off the first by relocating brpm->p to right after
1114 * the first '\0' encountered.
1116 int remove_arg_zero(struct linux_binprm *bprm)
1119 unsigned long offset;
1127 offset = bprm->p & ~PAGE_MASK;
1128 page = get_arg_page(bprm, bprm->p, 0);
1133 kaddr = kmap_atomic(page, KM_USER0);
1135 for (; offset < PAGE_SIZE && kaddr[offset];
1136 offset++, bprm->p++)
1139 kunmap_atomic(kaddr, KM_USER0);
1142 if (offset == PAGE_SIZE)
1143 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1144 } while (offset == PAGE_SIZE);
1153 EXPORT_SYMBOL(remove_arg_zero);
1156 * cycle the list of binary formats handler, until one recognizes the image
1158 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1161 struct linux_binfmt *fmt;
1163 /* handle /sbin/loader.. */
1165 struct exec * eh = (struct exec *) bprm->buf;
1167 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1168 (eh->fh.f_flags & 0x3000) == 0x3000)
1171 unsigned long loader;
1173 allow_write_access(bprm->file);
1177 loader = bprm->vma->vm_end - sizeof(void *);
1179 file = open_exec("/sbin/loader");
1180 retval = PTR_ERR(file);
1184 /* Remember if the application is TASO. */
1185 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1188 bprm->loader = loader;
1189 retval = prepare_binprm(bprm);
1192 /* should call search_binary_handler recursively here,
1193 but it does not matter */
1197 retval = security_bprm_check(bprm);
1201 /* kernel module loader fixup */
1202 /* so we don't try to load run modprobe in kernel space. */
1205 retval = audit_bprm(bprm);
1210 for (try=0; try<2; try++) {
1211 read_lock(&binfmt_lock);
1212 list_for_each_entry(fmt, &formats, lh) {
1213 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1216 if (!try_module_get(fmt->module))
1218 read_unlock(&binfmt_lock);
1219 retval = fn(bprm, regs);
1222 allow_write_access(bprm->file);
1226 current->did_exec = 1;
1227 proc_exec_connector(current);
1230 read_lock(&binfmt_lock);
1232 if (retval != -ENOEXEC || bprm->mm == NULL)
1235 read_unlock(&binfmt_lock);
1239 read_unlock(&binfmt_lock);
1240 if (retval != -ENOEXEC || bprm->mm == NULL) {
1244 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1245 if (printable(bprm->buf[0]) &&
1246 printable(bprm->buf[1]) &&
1247 printable(bprm->buf[2]) &&
1248 printable(bprm->buf[3]))
1249 break; /* -ENOEXEC */
1250 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1257 EXPORT_SYMBOL(search_binary_handler);
1259 void free_bprm(struct linux_binprm *bprm)
1261 free_arg_pages(bprm);
1266 * sys_execve() executes a new program.
1268 int do_execve(char * filename,
1269 char __user *__user *argv,
1270 char __user *__user *envp,
1271 struct pt_regs * regs)
1273 struct linux_binprm *bprm;
1275 struct files_struct *displaced;
1278 retval = unshare_files(&displaced);
1283 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1287 file = open_exec(filename);
1288 retval = PTR_ERR(file);
1295 bprm->filename = filename;
1296 bprm->interp = filename;
1298 retval = bprm_mm_init(bprm);
1302 bprm->argc = count(argv, MAX_ARG_STRINGS);
1303 if ((retval = bprm->argc) < 0)
1306 bprm->envc = count(envp, MAX_ARG_STRINGS);
1307 if ((retval = bprm->envc) < 0)
1310 retval = security_bprm_alloc(bprm);
1314 retval = prepare_binprm(bprm);
1318 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1322 bprm->exec = bprm->p;
1323 retval = copy_strings(bprm->envc, envp, bprm);
1327 retval = copy_strings(bprm->argc, argv, bprm);
1331 retval = search_binary_handler(bprm,regs);
1333 /* execve success */
1334 security_bprm_free(bprm);
1335 acct_update_integrals(current);
1338 put_files_struct(displaced);
1344 security_bprm_free(bprm);
1352 allow_write_access(bprm->file);
1360 reset_files_struct(displaced);
1365 int set_binfmt(struct linux_binfmt *new)
1367 struct linux_binfmt *old = current->binfmt;
1370 if (!try_module_get(new->module))
1373 current->binfmt = new;
1375 module_put(old->module);
1379 EXPORT_SYMBOL(set_binfmt);
1381 /* format_corename will inspect the pattern parameter, and output a
1382 * name into corename, which must have space for at least
1383 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1385 static int format_corename(char *corename, const char *pattern, long signr)
1387 const char *pat_ptr = pattern;
1388 char *out_ptr = corename;
1389 char *const out_end = corename + CORENAME_MAX_SIZE;
1391 int pid_in_pattern = 0;
1394 if (*pattern == '|')
1397 /* Repeat as long as we have more pattern to process and more output
1400 if (*pat_ptr != '%') {
1401 if (out_ptr == out_end)
1403 *out_ptr++ = *pat_ptr++;
1405 switch (*++pat_ptr) {
1408 /* Double percent, output one percent */
1410 if (out_ptr == out_end)
1417 rc = snprintf(out_ptr, out_end - out_ptr,
1418 "%d", task_tgid_vnr(current));
1419 if (rc > out_end - out_ptr)
1425 rc = snprintf(out_ptr, out_end - out_ptr,
1426 "%d", current->uid);
1427 if (rc > out_end - out_ptr)
1433 rc = snprintf(out_ptr, out_end - out_ptr,
1434 "%d", current->gid);
1435 if (rc > out_end - out_ptr)
1439 /* signal that caused the coredump */
1441 rc = snprintf(out_ptr, out_end - out_ptr,
1443 if (rc > out_end - out_ptr)
1447 /* UNIX time of coredump */
1450 do_gettimeofday(&tv);
1451 rc = snprintf(out_ptr, out_end - out_ptr,
1453 if (rc > out_end - out_ptr)
1460 down_read(&uts_sem);
1461 rc = snprintf(out_ptr, out_end - out_ptr,
1462 "%s", utsname()->nodename);
1464 if (rc > out_end - out_ptr)
1470 rc = snprintf(out_ptr, out_end - out_ptr,
1471 "%s", current->comm);
1472 if (rc > out_end - out_ptr)
1476 /* core limit size */
1478 rc = snprintf(out_ptr, out_end - out_ptr,
1479 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1480 if (rc > out_end - out_ptr)
1490 /* Backward compatibility with core_uses_pid:
1492 * If core_pattern does not include a %p (as is the default)
1493 * and core_uses_pid is set, then .%pid will be appended to
1494 * the filename. Do not do this for piped commands. */
1495 if (!ispipe && !pid_in_pattern
1496 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) {
1497 rc = snprintf(out_ptr, out_end - out_ptr,
1498 ".%d", task_tgid_vnr(current));
1499 if (rc > out_end - out_ptr)
1508 static void zap_process(struct task_struct *start)
1510 struct task_struct *t;
1512 start->signal->flags = SIGNAL_GROUP_EXIT;
1513 start->signal->group_stop_count = 0;
1517 if (t != current && t->mm) {
1518 t->mm->core_waiters++;
1519 sigaddset(&t->pending.signal, SIGKILL);
1520 signal_wake_up(t, 1);
1522 } while ((t = next_thread(t)) != start);
1525 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1528 struct task_struct *g, *p;
1529 unsigned long flags;
1532 spin_lock_irq(&tsk->sighand->siglock);
1533 if (!signal_group_exit(tsk->signal)) {
1534 tsk->signal->group_exit_code = exit_code;
1538 spin_unlock_irq(&tsk->sighand->siglock);
1542 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1546 for_each_process(g) {
1547 if (g == tsk->group_leader)
1555 * p->sighand can't disappear, but
1556 * may be changed by de_thread()
1558 lock_task_sighand(p, &flags);
1560 unlock_task_sighand(p, &flags);
1564 } while ((p = next_thread(p)) != g);
1568 return mm->core_waiters;
1571 static int coredump_wait(int exit_code)
1573 struct task_struct *tsk = current;
1574 struct mm_struct *mm = tsk->mm;
1575 struct completion startup_done;
1576 struct completion *vfork_done;
1579 init_completion(&mm->core_done);
1580 init_completion(&startup_done);
1581 mm->core_startup_done = &startup_done;
1583 core_waiters = zap_threads(tsk, mm, exit_code);
1584 up_write(&mm->mmap_sem);
1586 if (unlikely(core_waiters < 0))
1590 * Make sure nobody is waiting for us to release the VM,
1591 * otherwise we can deadlock when we wait on each other
1593 vfork_done = tsk->vfork_done;
1595 tsk->vfork_done = NULL;
1596 complete(vfork_done);
1600 wait_for_completion(&startup_done);
1602 BUG_ON(mm->core_waiters);
1603 return core_waiters;
1607 * set_dumpable converts traditional three-value dumpable to two flags and
1608 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1609 * these bits are not changed atomically. So get_dumpable can observe the
1610 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1611 * return either old dumpable or new one by paying attention to the order of
1612 * modifying the bits.
1614 * dumpable | mm->flags (binary)
1615 * old new | initial interim final
1616 * ---------+-----------------------
1624 * (*) get_dumpable regards interim value of 10 as 11.
1626 void set_dumpable(struct mm_struct *mm, int value)
1630 clear_bit(MMF_DUMPABLE, &mm->flags);
1632 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1635 set_bit(MMF_DUMPABLE, &mm->flags);
1637 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1640 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1642 set_bit(MMF_DUMPABLE, &mm->flags);
1647 int get_dumpable(struct mm_struct *mm)
1651 ret = mm->flags & 0x3;
1652 return (ret >= 2) ? 2 : ret;
1655 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1657 char corename[CORENAME_MAX_SIZE + 1];
1658 struct mm_struct *mm = current->mm;
1659 struct linux_binfmt * binfmt;
1660 struct inode * inode;
1663 int fsuid = current->fsuid;
1666 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1667 char **helper_argv = NULL;
1668 int helper_argc = 0;
1671 audit_core_dumps(signr);
1673 binfmt = current->binfmt;
1674 if (!binfmt || !binfmt->core_dump)
1676 down_write(&mm->mmap_sem);
1678 * If another thread got here first, or we are not dumpable, bail out.
1680 if (mm->core_waiters || !get_dumpable(mm)) {
1681 up_write(&mm->mmap_sem);
1686 * We cannot trust fsuid as being the "true" uid of the
1687 * process nor do we know its entire history. We only know it
1688 * was tainted so we dump it as root in mode 2.
1690 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1691 flag = O_EXCL; /* Stop rewrite attacks */
1692 current->fsuid = 0; /* Dump root private */
1695 retval = coredump_wait(exit_code);
1700 * Clear any false indication of pending signals that might
1701 * be seen by the filesystem code called to write the core file.
1703 clear_thread_flag(TIF_SIGPENDING);
1706 * lock_kernel() because format_corename() is controlled by sysctl, which
1707 * uses lock_kernel()
1710 ispipe = format_corename(corename, core_pattern, signr);
1713 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1714 * to a pipe. Since we're not writing directly to the filesystem
1715 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1716 * created unless the pipe reader choses to write out the core file
1717 * at which point file size limits and permissions will be imposed
1718 * as it does with any other process
1720 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1724 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1725 /* Terminate the string before the first option */
1726 delimit = strchr(corename, ' ');
1729 delimit = strrchr(helper_argv[0], '/');
1733 delimit = helper_argv[0];
1734 if (!strcmp(delimit, current->comm)) {
1735 printk(KERN_NOTICE "Recursive core dump detected, "
1740 core_limit = RLIM_INFINITY;
1742 /* SIGPIPE can happen, but it's just never processed */
1743 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1745 printk(KERN_INFO "Core dump to %s pipe failed\n",
1750 file = filp_open(corename,
1751 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1755 inode = file->f_path.dentry->d_inode;
1756 if (inode->i_nlink > 1)
1757 goto close_fail; /* multiple links - don't dump */
1758 if (!ispipe && d_unhashed(file->f_path.dentry))
1761 /* AK: actually i see no reason to not allow this for named pipes etc.,
1762 but keep the previous behaviour for now. */
1763 if (!ispipe && !S_ISREG(inode->i_mode))
1766 * Dont allow local users get cute and trick others to coredump
1767 * into their pre-created files:
1769 if (inode->i_uid != current->fsuid)
1773 if (!file->f_op->write)
1775 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1778 retval = binfmt->core_dump(signr, regs, file, core_limit);
1781 current->signal->group_exit_code |= 0x80;
1783 filp_close(file, NULL);
1786 argv_free(helper_argv);
1788 current->fsuid = fsuid;
1789 complete_all(&mm->core_done);