4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2007
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <asm/div64.h>
37 #include "cifsproto.h"
38 #include "cifs_unicode.h"
39 #include "cifs_debug.h"
40 #include "cifs_fs_sb.h"
42 static inline struct cifsFileInfo *cifs_init_private(
43 struct cifsFileInfo *private_data, struct inode *inode,
44 struct file *file, __u16 netfid)
46 memset(private_data, 0, sizeof(struct cifsFileInfo));
47 private_data->netfid = netfid;
48 private_data->pid = current->tgid;
49 init_MUTEX(&private_data->fh_sem);
50 mutex_init(&private_data->lock_mutex);
51 INIT_LIST_HEAD(&private_data->llist);
52 private_data->pfile = file; /* needed for writepage */
53 private_data->pInode = inode;
54 private_data->invalidHandle = false;
55 private_data->closePend = false;
56 /* we have to track num writers to the inode, since writepages
57 does not tell us which handle the write is for so there can
58 be a close (overlapping with write) of the filehandle that
59 cifs_writepages chose to use */
60 atomic_set(&private_data->wrtPending, 0);
65 static inline int cifs_convert_flags(unsigned int flags)
67 if ((flags & O_ACCMODE) == O_RDONLY)
69 else if ((flags & O_ACCMODE) == O_WRONLY)
71 else if ((flags & O_ACCMODE) == O_RDWR) {
72 /* GENERIC_ALL is too much permission to request
73 can cause unnecessary access denied on create */
74 /* return GENERIC_ALL; */
75 return (GENERIC_READ | GENERIC_WRITE);
78 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
79 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
85 static inline int cifs_get_disposition(unsigned int flags)
87 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
89 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
90 return FILE_OVERWRITE_IF;
91 else if ((flags & O_CREAT) == O_CREAT)
93 else if ((flags & O_TRUNC) == O_TRUNC)
94 return FILE_OVERWRITE;
99 /* all arguments to this function must be checked for validity in caller */
100 static inline int cifs_open_inode_helper(struct inode *inode, struct file *file,
101 struct cifsInodeInfo *pCifsInode, struct cifsFileInfo *pCifsFile,
102 struct cifsTconInfo *pTcon, int *oplock, FILE_ALL_INFO *buf,
103 char *full_path, int xid)
105 struct timespec temp;
108 /* want handles we can use to read with first
109 in the list so we do not have to walk the
110 list to search for one in prepare_write */
111 if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
112 list_add_tail(&pCifsFile->flist,
113 &pCifsInode->openFileList);
115 list_add(&pCifsFile->flist,
116 &pCifsInode->openFileList);
118 write_unlock(&GlobalSMBSeslock);
119 if (pCifsInode->clientCanCacheRead) {
120 /* we have the inode open somewhere else
121 no need to discard cache data */
122 goto client_can_cache;
125 /* BB need same check in cifs_create too? */
126 /* if not oplocked, invalidate inode pages if mtime or file
128 temp = cifs_NTtimeToUnix(le64_to_cpu(buf->LastWriteTime));
129 if (timespec_equal(&file->f_path.dentry->d_inode->i_mtime, &temp) &&
130 (file->f_path.dentry->d_inode->i_size ==
131 (loff_t)le64_to_cpu(buf->EndOfFile))) {
132 cFYI(1, ("inode unchanged on server"));
134 if (file->f_path.dentry->d_inode->i_mapping) {
135 /* BB no need to lock inode until after invalidate
136 since namei code should already have it locked? */
137 rc = filemap_write_and_wait(file->f_path.dentry->d_inode->i_mapping);
139 CIFS_I(file->f_path.dentry->d_inode)->write_behind_rc = rc;
141 cFYI(1, ("invalidating remote inode since open detected it "
143 invalidate_remote_inode(file->f_path.dentry->d_inode);
148 rc = cifs_get_inode_info_unix(&file->f_path.dentry->d_inode,
149 full_path, inode->i_sb, xid);
151 rc = cifs_get_inode_info(&file->f_path.dentry->d_inode,
152 full_path, buf, inode->i_sb, xid, NULL);
154 if ((*oplock & 0xF) == OPLOCK_EXCLUSIVE) {
155 pCifsInode->clientCanCacheAll = true;
156 pCifsInode->clientCanCacheRead = true;
157 cFYI(1, ("Exclusive Oplock granted on inode %p",
158 file->f_path.dentry->d_inode));
159 } else if ((*oplock & 0xF) == OPLOCK_READ)
160 pCifsInode->clientCanCacheRead = true;
165 int cifs_open(struct inode *inode, struct file *file)
169 struct cifs_sb_info *cifs_sb;
170 struct cifsTconInfo *pTcon;
171 struct cifsFileInfo *pCifsFile;
172 struct cifsInodeInfo *pCifsInode;
173 struct list_head *tmp;
174 char *full_path = NULL;
178 FILE_ALL_INFO *buf = NULL;
182 cifs_sb = CIFS_SB(inode->i_sb);
183 pTcon = cifs_sb->tcon;
185 if (file->f_flags & O_CREAT) {
186 /* search inode for this file and fill in file->private_data */
187 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
188 read_lock(&GlobalSMBSeslock);
189 list_for_each(tmp, &pCifsInode->openFileList) {
190 pCifsFile = list_entry(tmp, struct cifsFileInfo,
192 if ((pCifsFile->pfile == NULL) &&
193 (pCifsFile->pid == current->tgid)) {
194 /* mode set in cifs_create */
196 /* needed for writepage */
197 pCifsFile->pfile = file;
199 file->private_data = pCifsFile;
203 read_unlock(&GlobalSMBSeslock);
204 if (file->private_data != NULL) {
209 if (file->f_flags & O_EXCL)
210 cERROR(1, ("could not find file instance for "
211 "new file %p", file));
215 full_path = build_path_from_dentry(file->f_path.dentry);
216 if (full_path == NULL) {
221 cFYI(1, ("inode = 0x%p file flags are 0x%x for %s",
222 inode, file->f_flags, full_path));
223 desiredAccess = cifs_convert_flags(file->f_flags);
225 /*********************************************************************
226 * open flag mapping table:
228 * POSIX Flag CIFS Disposition
229 * ---------- ----------------
230 * O_CREAT FILE_OPEN_IF
231 * O_CREAT | O_EXCL FILE_CREATE
232 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
233 * O_TRUNC FILE_OVERWRITE
234 * none of the above FILE_OPEN
236 * Note that there is not a direct match between disposition
237 * FILE_SUPERSEDE (ie create whether or not file exists although
238 * O_CREAT | O_TRUNC is similar but truncates the existing
239 * file rather than creating a new file as FILE_SUPERSEDE does
240 * (which uses the attributes / metadata passed in on open call)
242 *? O_SYNC is a reasonable match to CIFS writethrough flag
243 *? and the read write flags match reasonably. O_LARGEFILE
244 *? is irrelevant because largefile support is always used
245 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
246 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
247 *********************************************************************/
249 disposition = cifs_get_disposition(file->f_flags);
256 /* BB pass O_SYNC flag through on file attributes .. BB */
258 /* Also refresh inode by passing in file_info buf returned by SMBOpen
259 and calling get_inode_info with returned buf (at least helps
260 non-Unix server case) */
262 /* BB we can not do this if this is the second open of a file
263 and the first handle has writebehind data, we might be
264 able to simply do a filemap_fdatawrite/filemap_fdatawait first */
265 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
271 if (cifs_sb->tcon->ses->capabilities & CAP_NT_SMBS)
272 rc = CIFSSMBOpen(xid, pTcon, full_path, disposition,
273 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
274 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
275 & CIFS_MOUNT_MAP_SPECIAL_CHR);
277 rc = -EIO; /* no NT SMB support fall into legacy open below */
280 /* Old server, try legacy style OpenX */
281 rc = SMBLegacyOpen(xid, pTcon, full_path, disposition,
282 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
283 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
284 & CIFS_MOUNT_MAP_SPECIAL_CHR);
287 cFYI(1, ("cifs_open returned 0x%x", rc));
291 kmalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
292 if (file->private_data == NULL) {
296 pCifsFile = cifs_init_private(file->private_data, inode, file, netfid);
297 write_lock(&GlobalSMBSeslock);
298 list_add(&pCifsFile->tlist, &pTcon->openFileList);
300 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
302 rc = cifs_open_inode_helper(inode, file, pCifsInode,
304 &oplock, buf, full_path, xid);
306 write_unlock(&GlobalSMBSeslock);
309 if (oplock & CIFS_CREATE_ACTION) {
310 /* time to set mode which we can not set earlier due to
311 problems creating new read-only files */
312 if (pTcon->unix_ext) {
313 struct cifs_unix_set_info_args args = {
314 .mode = inode->i_mode,
317 .ctime = NO_CHANGE_64,
318 .atime = NO_CHANGE_64,
319 .mtime = NO_CHANGE_64,
322 CIFSSMBUnixSetInfo(xid, pTcon, full_path, &args,
324 cifs_sb->mnt_cifs_flags &
325 CIFS_MOUNT_MAP_SPECIAL_CHR);
336 /* Try to reacquire byte range locks that were released when session */
337 /* to server was lost */
338 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
342 /* BB list all locks open on this file and relock */
347 static int cifs_reopen_file(struct file *file, bool can_flush)
351 struct cifs_sb_info *cifs_sb;
352 struct cifsTconInfo *pTcon;
353 struct cifsFileInfo *pCifsFile;
354 struct cifsInodeInfo *pCifsInode;
356 char *full_path = NULL;
358 int disposition = FILE_OPEN;
361 if (file->private_data)
362 pCifsFile = (struct cifsFileInfo *)file->private_data;
367 down(&pCifsFile->fh_sem);
368 if (!pCifsFile->invalidHandle) {
369 up(&pCifsFile->fh_sem);
374 if (file->f_path.dentry == NULL) {
375 cERROR(1, ("no valid name if dentry freed"));
378 goto reopen_error_exit;
381 inode = file->f_path.dentry->d_inode;
383 cERROR(1, ("inode not valid"));
386 goto reopen_error_exit;
389 cifs_sb = CIFS_SB(inode->i_sb);
390 pTcon = cifs_sb->tcon;
392 /* can not grab rename sem here because various ops, including
393 those that already have the rename sem can end up causing writepage
394 to get called and if the server was down that means we end up here,
395 and we can never tell if the caller already has the rename_sem */
396 full_path = build_path_from_dentry(file->f_path.dentry);
397 if (full_path == NULL) {
400 up(&pCifsFile->fh_sem);
405 cFYI(1, ("inode = 0x%p file flags 0x%x for %s",
406 inode, file->f_flags, full_path));
407 desiredAccess = cifs_convert_flags(file->f_flags);
414 /* Can not refresh inode by passing in file_info buf to be returned
415 by SMBOpen and then calling get_inode_info with returned buf
416 since file might have write behind data that needs to be flushed
417 and server version of file size can be stale. If we knew for sure
418 that inode was not dirty locally we could do this */
420 rc = CIFSSMBOpen(xid, pTcon, full_path, disposition, desiredAccess,
421 CREATE_NOT_DIR, &netfid, &oplock, NULL,
422 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
423 CIFS_MOUNT_MAP_SPECIAL_CHR);
425 up(&pCifsFile->fh_sem);
426 cFYI(1, ("cifs_open returned 0x%x", rc));
427 cFYI(1, ("oplock: %d", oplock));
429 pCifsFile->netfid = netfid;
430 pCifsFile->invalidHandle = false;
431 up(&pCifsFile->fh_sem);
432 pCifsInode = CIFS_I(inode);
435 rc = filemap_write_and_wait(inode->i_mapping);
437 CIFS_I(inode)->write_behind_rc = rc;
438 /* temporarily disable caching while we
439 go to server to get inode info */
440 pCifsInode->clientCanCacheAll = false;
441 pCifsInode->clientCanCacheRead = false;
443 rc = cifs_get_inode_info_unix(&inode,
444 full_path, inode->i_sb, xid);
446 rc = cifs_get_inode_info(&inode,
447 full_path, NULL, inode->i_sb,
449 } /* else we are writing out data to server already
450 and could deadlock if we tried to flush data, and
451 since we do not know if we have data that would
452 invalidate the current end of file on the server
453 we can not go to the server to get the new inod
455 if ((oplock & 0xF) == OPLOCK_EXCLUSIVE) {
456 pCifsInode->clientCanCacheAll = true;
457 pCifsInode->clientCanCacheRead = true;
458 cFYI(1, ("Exclusive Oplock granted on inode %p",
459 file->f_path.dentry->d_inode));
460 } else if ((oplock & 0xF) == OPLOCK_READ) {
461 pCifsInode->clientCanCacheRead = true;
462 pCifsInode->clientCanCacheAll = false;
464 pCifsInode->clientCanCacheRead = false;
465 pCifsInode->clientCanCacheAll = false;
467 cifs_relock_file(pCifsFile);
476 int cifs_close(struct inode *inode, struct file *file)
480 struct cifs_sb_info *cifs_sb;
481 struct cifsTconInfo *pTcon;
482 struct cifsFileInfo *pSMBFile =
483 (struct cifsFileInfo *)file->private_data;
487 cifs_sb = CIFS_SB(inode->i_sb);
488 pTcon = cifs_sb->tcon;
490 struct cifsLockInfo *li, *tmp;
492 pSMBFile->closePend = true;
494 /* no sense reconnecting to close a file that is
496 if (pTcon->tidStatus != CifsNeedReconnect) {
498 while ((atomic_read(&pSMBFile->wrtPending) != 0)
499 && (timeout <= 2048)) {
500 /* Give write a better chance to get to
501 server ahead of the close. We do not
502 want to add a wait_q here as it would
503 increase the memory utilization as
504 the struct would be in each open file,
505 but this should give enough time to
508 ("close delay, write pending"));
512 if (atomic_read(&pSMBFile->wrtPending))
514 ("close with pending writes"));
515 rc = CIFSSMBClose(xid, pTcon,
520 /* Delete any outstanding lock records.
521 We'll lose them when the file is closed anyway. */
522 mutex_lock(&pSMBFile->lock_mutex);
523 list_for_each_entry_safe(li, tmp, &pSMBFile->llist, llist) {
524 list_del(&li->llist);
527 mutex_unlock(&pSMBFile->lock_mutex);
529 write_lock(&GlobalSMBSeslock);
530 list_del(&pSMBFile->flist);
531 list_del(&pSMBFile->tlist);
532 write_unlock(&GlobalSMBSeslock);
534 /* We waited above to give the SMBWrite a chance to issue
535 on the wire (so we do not get SMBWrite returning EBADF
536 if writepages is racing with close. Note that writepages
537 does not specify a file handle, so it is possible for a file
538 to be opened twice, and the application close the "wrong"
539 file handle - in these cases we delay long enough to allow
540 the SMBWrite to get on the wire before the SMB Close.
541 We allow total wait here over 45 seconds, more than
542 oplock break time, and more than enough to allow any write
543 to complete on the server, or to time out on the client */
544 while ((atomic_read(&pSMBFile->wrtPending) != 0)
545 && (timeout <= 50000)) {
546 cERROR(1, ("writes pending, delay free of handle"));
550 kfree(file->private_data);
551 file->private_data = NULL;
555 read_lock(&GlobalSMBSeslock);
556 if (list_empty(&(CIFS_I(inode)->openFileList))) {
557 cFYI(1, ("closing last open instance for inode %p", inode));
558 /* if the file is not open we do not know if we can cache info
559 on this inode, much less write behind and read ahead */
560 CIFS_I(inode)->clientCanCacheRead = false;
561 CIFS_I(inode)->clientCanCacheAll = false;
563 read_unlock(&GlobalSMBSeslock);
564 if ((rc == 0) && CIFS_I(inode)->write_behind_rc)
565 rc = CIFS_I(inode)->write_behind_rc;
570 int cifs_closedir(struct inode *inode, struct file *file)
574 struct cifsFileInfo *pCFileStruct =
575 (struct cifsFileInfo *)file->private_data;
578 cFYI(1, ("Closedir inode = 0x%p", inode));
583 struct cifsTconInfo *pTcon;
584 struct cifs_sb_info *cifs_sb =
585 CIFS_SB(file->f_path.dentry->d_sb);
587 pTcon = cifs_sb->tcon;
589 cFYI(1, ("Freeing private data in close dir"));
590 if (!pCFileStruct->srch_inf.endOfSearch &&
591 !pCFileStruct->invalidHandle) {
592 pCFileStruct->invalidHandle = true;
593 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
594 cFYI(1, ("Closing uncompleted readdir with rc %d",
596 /* not much we can do if it fails anyway, ignore rc */
599 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
601 cFYI(1, ("closedir free smb buf in srch struct"));
602 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
603 if (pCFileStruct->srch_inf.smallBuf)
604 cifs_small_buf_release(ptmp);
606 cifs_buf_release(ptmp);
608 kfree(file->private_data);
609 file->private_data = NULL;
611 /* BB can we lock the filestruct while this is going on? */
616 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
617 __u64 offset, __u8 lockType)
619 struct cifsLockInfo *li =
620 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
626 mutex_lock(&fid->lock_mutex);
627 list_add(&li->llist, &fid->llist);
628 mutex_unlock(&fid->lock_mutex);
632 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
638 bool wait_flag = false;
639 struct cifs_sb_info *cifs_sb;
640 struct cifsTconInfo *pTcon;
642 __u8 lockType = LOCKING_ANDX_LARGE_FILES;
645 length = 1 + pfLock->fl_end - pfLock->fl_start;
649 cFYI(1, ("Lock parm: 0x%x flockflags: "
650 "0x%x flocktype: 0x%x start: %lld end: %lld",
651 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
654 if (pfLock->fl_flags & FL_POSIX)
656 if (pfLock->fl_flags & FL_FLOCK)
658 if (pfLock->fl_flags & FL_SLEEP) {
659 cFYI(1, ("Blocking lock"));
662 if (pfLock->fl_flags & FL_ACCESS)
663 cFYI(1, ("Process suspended by mandatory locking - "
664 "not implemented yet"));
665 if (pfLock->fl_flags & FL_LEASE)
666 cFYI(1, ("Lease on file - not implemented yet"));
667 if (pfLock->fl_flags &
668 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
669 cFYI(1, ("Unknown lock flags 0x%x", pfLock->fl_flags));
671 if (pfLock->fl_type == F_WRLCK) {
672 cFYI(1, ("F_WRLCK "));
674 } else if (pfLock->fl_type == F_UNLCK) {
675 cFYI(1, ("F_UNLCK"));
677 /* Check if unlock includes more than
679 } else if (pfLock->fl_type == F_RDLCK) {
680 cFYI(1, ("F_RDLCK"));
681 lockType |= LOCKING_ANDX_SHARED_LOCK;
683 } else if (pfLock->fl_type == F_EXLCK) {
684 cFYI(1, ("F_EXLCK"));
686 } else if (pfLock->fl_type == F_SHLCK) {
687 cFYI(1, ("F_SHLCK"));
688 lockType |= LOCKING_ANDX_SHARED_LOCK;
691 cFYI(1, ("Unknown type of lock"));
693 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
694 pTcon = cifs_sb->tcon;
696 if (file->private_data == NULL) {
700 netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
702 posix_locking = (cifs_sb->tcon->ses->capabilities & CAP_UNIX) &&
703 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(cifs_sb->tcon->fsUnixInfo.Capability));
705 /* BB add code here to normalize offset and length to
706 account for negative length which we can not accept over the
711 if (lockType & LOCKING_ANDX_SHARED_LOCK)
712 posix_lock_type = CIFS_RDLCK;
714 posix_lock_type = CIFS_WRLCK;
715 rc = CIFSSMBPosixLock(xid, pTcon, netfid, 1 /* get */,
717 posix_lock_type, wait_flag);
722 /* BB we could chain these into one lock request BB */
723 rc = CIFSSMBLock(xid, pTcon, netfid, length, pfLock->fl_start,
724 0, 1, lockType, 0 /* wait flag */ );
726 rc = CIFSSMBLock(xid, pTcon, netfid, length,
727 pfLock->fl_start, 1 /* numUnlock */ ,
728 0 /* numLock */ , lockType,
730 pfLock->fl_type = F_UNLCK;
732 cERROR(1, ("Error unlocking previously locked "
733 "range %d during test of lock", rc));
737 /* if rc == ERR_SHARING_VIOLATION ? */
738 rc = 0; /* do not change lock type to unlock
739 since range in use */
746 if (!numLock && !numUnlock) {
747 /* if no lock or unlock then nothing
748 to do since we do not know what it is */
755 if (lockType & LOCKING_ANDX_SHARED_LOCK)
756 posix_lock_type = CIFS_RDLCK;
758 posix_lock_type = CIFS_WRLCK;
761 posix_lock_type = CIFS_UNLCK;
763 rc = CIFSSMBPosixLock(xid, pTcon, netfid, 0 /* set */,
765 posix_lock_type, wait_flag);
767 struct cifsFileInfo *fid =
768 (struct cifsFileInfo *)file->private_data;
771 rc = CIFSSMBLock(xid, pTcon, netfid, length,
773 0, numLock, lockType, wait_flag);
776 /* For Windows locks we must store them. */
777 rc = store_file_lock(fid, length,
778 pfLock->fl_start, lockType);
780 } else if (numUnlock) {
781 /* For each stored lock that this unlock overlaps
782 completely, unlock it. */
784 struct cifsLockInfo *li, *tmp;
787 mutex_lock(&fid->lock_mutex);
788 list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
789 if (pfLock->fl_start <= li->offset &&
790 (pfLock->fl_start + length) >=
791 (li->offset + li->length)) {
792 stored_rc = CIFSSMBLock(xid, pTcon,
794 li->length, li->offset,
795 1, 0, li->type, false);
799 list_del(&li->llist);
803 mutex_unlock(&fid->lock_mutex);
807 if (pfLock->fl_flags & FL_POSIX)
808 posix_lock_file_wait(file, pfLock);
813 ssize_t cifs_user_write(struct file *file, const char __user *write_data,
814 size_t write_size, loff_t *poffset)
817 unsigned int bytes_written = 0;
818 unsigned int total_written;
819 struct cifs_sb_info *cifs_sb;
820 struct cifsTconInfo *pTcon;
822 struct cifsFileInfo *open_file;
824 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
826 pTcon = cifs_sb->tcon;
829 (" write %d bytes to offset %lld of %s", write_size,
830 *poffset, file->f_path.dentry->d_name.name)); */
832 if (file->private_data == NULL)
834 open_file = (struct cifsFileInfo *) file->private_data;
838 if (*poffset > file->f_path.dentry->d_inode->i_size)
839 long_op = CIFS_VLONG_OP; /* writes past EOF take long time */
841 long_op = CIFS_LONG_OP;
843 for (total_written = 0; write_size > total_written;
844 total_written += bytes_written) {
846 while (rc == -EAGAIN) {
847 if (file->private_data == NULL) {
848 /* file has been closed on us */
850 /* if we have gotten here we have written some data
851 and blocked, and the file has been freed on us while
852 we blocked so return what we managed to write */
853 return total_written;
855 if (open_file->closePend) {
858 return total_written;
862 if (open_file->invalidHandle) {
863 /* we could deadlock if we called
864 filemap_fdatawait from here so tell
865 reopen_file not to flush data to server
867 rc = cifs_reopen_file(file, false);
872 rc = CIFSSMBWrite(xid, pTcon,
874 min_t(const int, cifs_sb->wsize,
875 write_size - total_written),
876 *poffset, &bytes_written,
877 NULL, write_data + total_written, long_op);
879 if (rc || (bytes_written == 0)) {
887 *poffset += bytes_written;
888 long_op = CIFS_STD_OP; /* subsequent writes fast -
889 15 seconds is plenty */
892 cifs_stats_bytes_written(pTcon, total_written);
894 /* since the write may have blocked check these pointers again */
895 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
896 struct inode *inode = file->f_path.dentry->d_inode;
897 /* Do not update local mtime - server will set its actual value on write
898 * inode->i_ctime = inode->i_mtime =
899 * current_fs_time(inode->i_sb);*/
900 if (total_written > 0) {
901 spin_lock(&inode->i_lock);
902 if (*poffset > file->f_path.dentry->d_inode->i_size)
903 i_size_write(file->f_path.dentry->d_inode,
905 spin_unlock(&inode->i_lock);
907 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
910 return total_written;
913 static ssize_t cifs_write(struct file *file, const char *write_data,
914 size_t write_size, loff_t *poffset)
917 unsigned int bytes_written = 0;
918 unsigned int total_written;
919 struct cifs_sb_info *cifs_sb;
920 struct cifsTconInfo *pTcon;
922 struct cifsFileInfo *open_file;
924 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
926 pTcon = cifs_sb->tcon;
928 cFYI(1, ("write %zd bytes to offset %lld of %s", write_size,
929 *poffset, file->f_path.dentry->d_name.name));
931 if (file->private_data == NULL)
933 open_file = (struct cifsFileInfo *)file->private_data;
937 if (*poffset > file->f_path.dentry->d_inode->i_size)
938 long_op = CIFS_VLONG_OP; /* writes past EOF can be slow */
940 long_op = CIFS_LONG_OP;
942 for (total_written = 0; write_size > total_written;
943 total_written += bytes_written) {
945 while (rc == -EAGAIN) {
946 if (file->private_data == NULL) {
947 /* file has been closed on us */
949 /* if we have gotten here we have written some data
950 and blocked, and the file has been freed on us
951 while we blocked so return what we managed to
953 return total_written;
955 if (open_file->closePend) {
958 return total_written;
962 if (open_file->invalidHandle) {
963 /* we could deadlock if we called
964 filemap_fdatawait from here so tell
965 reopen_file not to flush data to
967 rc = cifs_reopen_file(file, false);
971 if (experimEnabled || (pTcon->ses->server &&
972 ((pTcon->ses->server->secMode &
973 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
978 len = min((size_t)cifs_sb->wsize,
979 write_size - total_written);
980 /* iov[0] is reserved for smb header */
981 iov[1].iov_base = (char *)write_data +
983 iov[1].iov_len = len;
984 rc = CIFSSMBWrite2(xid, pTcon,
985 open_file->netfid, len,
986 *poffset, &bytes_written,
989 rc = CIFSSMBWrite(xid, pTcon,
991 min_t(const int, cifs_sb->wsize,
992 write_size - total_written),
993 *poffset, &bytes_written,
994 write_data + total_written,
997 if (rc || (bytes_written == 0)) {
1005 *poffset += bytes_written;
1006 long_op = CIFS_STD_OP; /* subsequent writes fast -
1007 15 seconds is plenty */
1010 cifs_stats_bytes_written(pTcon, total_written);
1012 /* since the write may have blocked check these pointers again */
1013 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
1014 /*BB We could make this contingent on superblock ATIME flag too */
1015 /* file->f_path.dentry->d_inode->i_ctime =
1016 file->f_path.dentry->d_inode->i_mtime = CURRENT_TIME;*/
1017 if (total_written > 0) {
1018 spin_lock(&file->f_path.dentry->d_inode->i_lock);
1019 if (*poffset > file->f_path.dentry->d_inode->i_size)
1020 i_size_write(file->f_path.dentry->d_inode,
1022 spin_unlock(&file->f_path.dentry->d_inode->i_lock);
1024 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
1027 return total_written;
1030 #ifdef CONFIG_CIFS_EXPERIMENTAL
1031 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode)
1033 struct cifsFileInfo *open_file = NULL;
1035 read_lock(&GlobalSMBSeslock);
1036 /* we could simply get the first_list_entry since write-only entries
1037 are always at the end of the list but since the first entry might
1038 have a close pending, we go through the whole list */
1039 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1040 if (open_file->closePend)
1042 if (open_file->pfile && ((open_file->pfile->f_flags & O_RDWR) ||
1043 (open_file->pfile->f_flags & O_RDONLY))) {
1044 if (!open_file->invalidHandle) {
1045 /* found a good file */
1046 /* lock it so it will not be closed on us */
1047 atomic_inc(&open_file->wrtPending);
1048 read_unlock(&GlobalSMBSeslock);
1050 } /* else might as well continue, and look for
1051 another, or simply have the caller reopen it
1052 again rather than trying to fix this handle */
1053 } else /* write only file */
1054 break; /* write only files are last so must be done */
1056 read_unlock(&GlobalSMBSeslock);
1061 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode)
1063 struct cifsFileInfo *open_file;
1066 /* Having a null inode here (because mapping->host was set to zero by
1067 the VFS or MM) should not happen but we had reports of on oops (due to
1068 it being zero) during stress testcases so we need to check for it */
1070 if (cifs_inode == NULL) {
1071 cERROR(1, ("Null inode passed to cifs_writeable_file"));
1076 read_lock(&GlobalSMBSeslock);
1078 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1079 if (open_file->closePend)
1081 if (open_file->pfile &&
1082 ((open_file->pfile->f_flags & O_RDWR) ||
1083 (open_file->pfile->f_flags & O_WRONLY))) {
1084 atomic_inc(&open_file->wrtPending);
1086 if (!open_file->invalidHandle) {
1087 /* found a good writable file */
1088 read_unlock(&GlobalSMBSeslock);
1092 read_unlock(&GlobalSMBSeslock);
1093 /* Had to unlock since following call can block */
1094 rc = cifs_reopen_file(open_file->pfile, false);
1096 if (!open_file->closePend)
1098 else { /* start over in case this was deleted */
1099 /* since the list could be modified */
1100 read_lock(&GlobalSMBSeslock);
1101 atomic_dec(&open_file->wrtPending);
1102 goto refind_writable;
1106 /* if it fails, try another handle if possible -
1107 (we can not do this if closePending since
1108 loop could be modified - in which case we
1109 have to start at the beginning of the list
1110 again. Note that it would be bad
1111 to hold up writepages here (rather than
1112 in caller) with continuous retries */
1113 cFYI(1, ("wp failed on reopen file"));
1114 read_lock(&GlobalSMBSeslock);
1115 /* can not use this handle, no write
1116 pending on this one after all */
1117 atomic_dec(&open_file->wrtPending);
1119 if (open_file->closePend) /* list could have changed */
1120 goto refind_writable;
1121 /* else we simply continue to the next entry. Thus
1122 we do not loop on reopen errors. If we
1123 can not reopen the file, for example if we
1124 reconnected to a server with another client
1125 racing to delete or lock the file we would not
1126 make progress if we restarted before the beginning
1127 of the loop here. */
1130 read_unlock(&GlobalSMBSeslock);
1134 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1136 struct address_space *mapping = page->mapping;
1137 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1140 int bytes_written = 0;
1141 struct cifs_sb_info *cifs_sb;
1142 struct cifsTconInfo *pTcon;
1143 struct inode *inode;
1144 struct cifsFileInfo *open_file;
1146 if (!mapping || !mapping->host)
1149 inode = page->mapping->host;
1150 cifs_sb = CIFS_SB(inode->i_sb);
1151 pTcon = cifs_sb->tcon;
1153 offset += (loff_t)from;
1154 write_data = kmap(page);
1157 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1162 /* racing with truncate? */
1163 if (offset > mapping->host->i_size) {
1165 return 0; /* don't care */
1168 /* check to make sure that we are not extending the file */
1169 if (mapping->host->i_size - offset < (loff_t)to)
1170 to = (unsigned)(mapping->host->i_size - offset);
1172 open_file = find_writable_file(CIFS_I(mapping->host));
1174 bytes_written = cifs_write(open_file->pfile, write_data,
1176 atomic_dec(&open_file->wrtPending);
1177 /* Does mm or vfs already set times? */
1178 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1179 if ((bytes_written > 0) && (offset))
1181 else if (bytes_written < 0)
1184 cFYI(1, ("No writeable filehandles for inode"));
1192 static int cifs_writepages(struct address_space *mapping,
1193 struct writeback_control *wbc)
1195 struct backing_dev_info *bdi = mapping->backing_dev_info;
1196 unsigned int bytes_to_write;
1197 unsigned int bytes_written;
1198 struct cifs_sb_info *cifs_sb;
1202 int range_whole = 0;
1209 struct cifsFileInfo *open_file;
1211 struct pagevec pvec;
1216 cifs_sb = CIFS_SB(mapping->host->i_sb);
1219 * If wsize is smaller that the page cache size, default to writing
1220 * one page at a time via cifs_writepage
1222 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1223 return generic_writepages(mapping, wbc);
1225 if ((cifs_sb->tcon->ses) && (cifs_sb->tcon->ses->server))
1226 if (cifs_sb->tcon->ses->server->secMode &
1227 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
1228 if (!experimEnabled)
1229 return generic_writepages(mapping, wbc);
1231 iov = kmalloc(32 * sizeof(struct kvec), GFP_KERNEL);
1233 return generic_writepages(mapping, wbc);
1237 * BB: Is this meaningful for a non-block-device file system?
1238 * If it is, we should test it again after we do I/O
1240 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1241 wbc->encountered_congestion = 1;
1248 pagevec_init(&pvec, 0);
1249 if (wbc->range_cyclic) {
1250 index = mapping->writeback_index; /* Start from prev offset */
1253 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1254 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1255 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1260 while (!done && (index <= end) &&
1261 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1262 PAGECACHE_TAG_DIRTY,
1263 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1))) {
1272 for (i = 0; i < nr_pages; i++) {
1273 page = pvec.pages[i];
1275 * At this point we hold neither mapping->tree_lock nor
1276 * lock on the page itself: the page may be truncated or
1277 * invalidated (changing page->mapping to NULL), or even
1278 * swizzled back from swapper_space to tmpfs file
1284 else if (!trylock_page(page))
1287 if (unlikely(page->mapping != mapping)) {
1292 if (!wbc->range_cyclic && page->index > end) {
1298 if (next && (page->index != next)) {
1299 /* Not next consecutive page */
1304 if (wbc->sync_mode != WB_SYNC_NONE)
1305 wait_on_page_writeback(page);
1307 if (PageWriteback(page) ||
1308 !clear_page_dirty_for_io(page)) {
1314 * This actually clears the dirty bit in the radix tree.
1315 * See cifs_writepage() for more commentary.
1317 set_page_writeback(page);
1319 if (page_offset(page) >= mapping->host->i_size) {
1322 end_page_writeback(page);
1327 * BB can we get rid of this? pages are held by pvec
1329 page_cache_get(page);
1331 len = min(mapping->host->i_size - page_offset(page),
1332 (loff_t)PAGE_CACHE_SIZE);
1334 /* reserve iov[0] for the smb header */
1336 iov[n_iov].iov_base = kmap(page);
1337 iov[n_iov].iov_len = len;
1338 bytes_to_write += len;
1342 offset = page_offset(page);
1344 next = page->index + 1;
1345 if (bytes_to_write + PAGE_CACHE_SIZE > cifs_sb->wsize)
1349 /* Search for a writable handle every time we call
1350 * CIFSSMBWrite2. We can't rely on the last handle
1351 * we used to still be valid
1353 open_file = find_writable_file(CIFS_I(mapping->host));
1355 cERROR(1, ("No writable handles for inode"));
1358 rc = CIFSSMBWrite2(xid, cifs_sb->tcon,
1360 bytes_to_write, offset,
1361 &bytes_written, iov, n_iov,
1363 atomic_dec(&open_file->wrtPending);
1364 if (rc || bytes_written < bytes_to_write) {
1365 cERROR(1, ("Write2 ret %d, wrote %d",
1366 rc, bytes_written));
1367 /* BB what if continued retry is
1368 requested via mount flags? */
1370 set_bit(AS_ENOSPC, &mapping->flags);
1372 set_bit(AS_EIO, &mapping->flags);
1374 cifs_stats_bytes_written(cifs_sb->tcon,
1378 for (i = 0; i < n_iov; i++) {
1379 page = pvec.pages[first + i];
1380 /* Should we also set page error on
1381 success rc but too little data written? */
1382 /* BB investigate retry logic on temporary
1383 server crash cases and how recovery works
1384 when page marked as error */
1389 end_page_writeback(page);
1390 page_cache_release(page);
1392 if ((wbc->nr_to_write -= n_iov) <= 0)
1396 pagevec_release(&pvec);
1398 if (!scanned && !done) {
1400 * We hit the last page and there is more work to be done: wrap
1401 * back to the start of the file
1407 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1408 mapping->writeback_index = index;
1415 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1421 /* BB add check for wbc flags */
1422 page_cache_get(page);
1423 if (!PageUptodate(page))
1424 cFYI(1, ("ppw - page not up to date"));
1427 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1429 * A writepage() implementation always needs to do either this,
1430 * or re-dirty the page with "redirty_page_for_writepage()" in
1431 * the case of a failure.
1433 * Just unlocking the page will cause the radix tree tag-bits
1434 * to fail to update with the state of the page correctly.
1436 set_page_writeback(page);
1437 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1438 SetPageUptodate(page); /* BB add check for error and Clearuptodate? */
1440 end_page_writeback(page);
1441 page_cache_release(page);
1446 static int cifs_commit_write(struct file *file, struct page *page,
1447 unsigned offset, unsigned to)
1451 struct inode *inode = page->mapping->host;
1452 loff_t position = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1456 cFYI(1, ("commit write for page %p up to position %lld for %d",
1457 page, position, to));
1458 spin_lock(&inode->i_lock);
1459 if (position > inode->i_size)
1460 i_size_write(inode, position);
1462 spin_unlock(&inode->i_lock);
1463 if (!PageUptodate(page)) {
1464 position = ((loff_t)page->index << PAGE_CACHE_SHIFT) + offset;
1465 /* can not rely on (or let) writepage write this data */
1467 cFYI(1, ("Illegal offsets, can not copy from %d to %d",
1472 /* this is probably better than directly calling
1473 partialpage_write since in this function the file handle is
1474 known which we might as well leverage */
1475 /* BB check if anything else missing out of ppw
1476 such as updating last write time */
1477 page_data = kmap(page);
1478 rc = cifs_write(file, page_data + offset, to-offset,
1482 /* else if (rc < 0) should we set writebehind rc? */
1485 set_page_dirty(page);
1492 int cifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1496 struct inode *inode = file->f_path.dentry->d_inode;
1500 cFYI(1, ("Sync file - name: %s datasync: 0x%x",
1501 dentry->d_name.name, datasync));
1503 rc = filemap_write_and_wait(inode->i_mapping);
1505 rc = CIFS_I(inode)->write_behind_rc;
1506 CIFS_I(inode)->write_behind_rc = 0;
1512 /* static void cifs_sync_page(struct page *page)
1514 struct address_space *mapping;
1515 struct inode *inode;
1516 unsigned long index = page->index;
1517 unsigned int rpages = 0;
1520 cFYI(1, ("sync page %p",page));
1521 mapping = page->mapping;
1524 inode = mapping->host;
1528 /* fill in rpages then
1529 result = cifs_pagein_inode(inode, index, rpages); */ /* BB finish */
1531 /* cFYI(1, ("rpages is %d for sync page of Index %ld", rpages, index));
1541 * As file closes, flush all cached write data for this inode checking
1542 * for write behind errors.
1544 int cifs_flush(struct file *file, fl_owner_t id)
1546 struct inode *inode = file->f_path.dentry->d_inode;
1549 /* Rather than do the steps manually:
1550 lock the inode for writing
1551 loop through pages looking for write behind data (dirty pages)
1552 coalesce into contiguous 16K (or smaller) chunks to write to server
1553 send to server (prefer in parallel)
1554 deal with writebehind errors
1555 unlock inode for writing
1556 filemapfdatawrite appears easier for the time being */
1558 rc = filemap_fdatawrite(inode->i_mapping);
1559 /* reset wb rc if we were able to write out dirty pages */
1561 rc = CIFS_I(inode)->write_behind_rc;
1562 CIFS_I(inode)->write_behind_rc = 0;
1565 cFYI(1, ("Flush inode %p file %p rc %d", inode, file, rc));
1570 ssize_t cifs_user_read(struct file *file, char __user *read_data,
1571 size_t read_size, loff_t *poffset)
1574 unsigned int bytes_read = 0;
1575 unsigned int total_read = 0;
1576 unsigned int current_read_size;
1577 struct cifs_sb_info *cifs_sb;
1578 struct cifsTconInfo *pTcon;
1580 struct cifsFileInfo *open_file;
1581 char *smb_read_data;
1582 char __user *current_offset;
1583 struct smb_com_read_rsp *pSMBr;
1586 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1587 pTcon = cifs_sb->tcon;
1589 if (file->private_data == NULL) {
1593 open_file = (struct cifsFileInfo *)file->private_data;
1595 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1596 cFYI(1, ("attempting read on write only file instance"));
1598 for (total_read = 0, current_offset = read_data;
1599 read_size > total_read;
1600 total_read += bytes_read, current_offset += bytes_read) {
1601 current_read_size = min_t(const int, read_size - total_read,
1604 smb_read_data = NULL;
1605 while (rc == -EAGAIN) {
1606 int buf_type = CIFS_NO_BUFFER;
1607 if ((open_file->invalidHandle) &&
1608 (!open_file->closePend)) {
1609 rc = cifs_reopen_file(file, true);
1613 rc = CIFSSMBRead(xid, pTcon,
1615 current_read_size, *poffset,
1616 &bytes_read, &smb_read_data,
1618 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1619 if (smb_read_data) {
1620 if (copy_to_user(current_offset,
1622 4 /* RFC1001 length field */ +
1623 le16_to_cpu(pSMBr->DataOffset),
1627 if (buf_type == CIFS_SMALL_BUFFER)
1628 cifs_small_buf_release(smb_read_data);
1629 else if (buf_type == CIFS_LARGE_BUFFER)
1630 cifs_buf_release(smb_read_data);
1631 smb_read_data = NULL;
1634 if (rc || (bytes_read == 0)) {
1642 cifs_stats_bytes_read(pTcon, bytes_read);
1643 *poffset += bytes_read;
1651 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1655 unsigned int bytes_read = 0;
1656 unsigned int total_read;
1657 unsigned int current_read_size;
1658 struct cifs_sb_info *cifs_sb;
1659 struct cifsTconInfo *pTcon;
1661 char *current_offset;
1662 struct cifsFileInfo *open_file;
1663 int buf_type = CIFS_NO_BUFFER;
1666 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1667 pTcon = cifs_sb->tcon;
1669 if (file->private_data == NULL) {
1673 open_file = (struct cifsFileInfo *)file->private_data;
1675 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1676 cFYI(1, ("attempting read on write only file instance"));
1678 for (total_read = 0, current_offset = read_data;
1679 read_size > total_read;
1680 total_read += bytes_read, current_offset += bytes_read) {
1681 current_read_size = min_t(const int, read_size - total_read,
1683 /* For windows me and 9x we do not want to request more
1684 than it negotiated since it will refuse the read then */
1686 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1687 current_read_size = min_t(const int, current_read_size,
1688 pTcon->ses->server->maxBuf - 128);
1691 while (rc == -EAGAIN) {
1692 if ((open_file->invalidHandle) &&
1693 (!open_file->closePend)) {
1694 rc = cifs_reopen_file(file, true);
1698 rc = CIFSSMBRead(xid, pTcon,
1700 current_read_size, *poffset,
1701 &bytes_read, ¤t_offset,
1704 if (rc || (bytes_read == 0)) {
1712 cifs_stats_bytes_read(pTcon, total_read);
1713 *poffset += bytes_read;
1720 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1722 struct dentry *dentry = file->f_path.dentry;
1726 rc = cifs_revalidate(dentry);
1728 cFYI(1, ("Validation prior to mmap failed, error=%d", rc));
1732 rc = generic_file_mmap(file, vma);
1738 static void cifs_copy_cache_pages(struct address_space *mapping,
1739 struct list_head *pages, int bytes_read, char *data,
1740 struct pagevec *plru_pvec)
1745 while (bytes_read > 0) {
1746 if (list_empty(pages))
1749 page = list_entry(pages->prev, struct page, lru);
1750 list_del(&page->lru);
1752 if (add_to_page_cache(page, mapping, page->index,
1754 page_cache_release(page);
1755 cFYI(1, ("Add page cache failed"));
1756 data += PAGE_CACHE_SIZE;
1757 bytes_read -= PAGE_CACHE_SIZE;
1761 target = kmap_atomic(page, KM_USER0);
1763 if (PAGE_CACHE_SIZE > bytes_read) {
1764 memcpy(target, data, bytes_read);
1765 /* zero the tail end of this partial page */
1766 memset(target + bytes_read, 0,
1767 PAGE_CACHE_SIZE - bytes_read);
1770 memcpy(target, data, PAGE_CACHE_SIZE);
1771 bytes_read -= PAGE_CACHE_SIZE;
1773 kunmap_atomic(target, KM_USER0);
1775 flush_dcache_page(page);
1776 SetPageUptodate(page);
1778 if (!pagevec_add(plru_pvec, page))
1779 __pagevec_lru_add(plru_pvec);
1780 data += PAGE_CACHE_SIZE;
1785 static int cifs_readpages(struct file *file, struct address_space *mapping,
1786 struct list_head *page_list, unsigned num_pages)
1792 struct cifs_sb_info *cifs_sb;
1793 struct cifsTconInfo *pTcon;
1794 unsigned int bytes_read = 0;
1795 unsigned int read_size, i;
1796 char *smb_read_data = NULL;
1797 struct smb_com_read_rsp *pSMBr;
1798 struct pagevec lru_pvec;
1799 struct cifsFileInfo *open_file;
1800 int buf_type = CIFS_NO_BUFFER;
1803 if (file->private_data == NULL) {
1807 open_file = (struct cifsFileInfo *)file->private_data;
1808 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1809 pTcon = cifs_sb->tcon;
1811 pagevec_init(&lru_pvec, 0);
1812 cFYI(DBG2, ("rpages: num pages %d", num_pages));
1813 for (i = 0; i < num_pages; ) {
1814 unsigned contig_pages;
1815 struct page *tmp_page;
1816 unsigned long expected_index;
1818 if (list_empty(page_list))
1821 page = list_entry(page_list->prev, struct page, lru);
1822 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1824 /* count adjacent pages that we will read into */
1827 list_entry(page_list->prev, struct page, lru)->index;
1828 list_for_each_entry_reverse(tmp_page, page_list, lru) {
1829 if (tmp_page->index == expected_index) {
1835 if (contig_pages + i > num_pages)
1836 contig_pages = num_pages - i;
1838 /* for reads over a certain size could initiate async
1841 read_size = contig_pages * PAGE_CACHE_SIZE;
1842 /* Read size needs to be in multiples of one page */
1843 read_size = min_t(const unsigned int, read_size,
1844 cifs_sb->rsize & PAGE_CACHE_MASK);
1845 cFYI(DBG2, ("rpages: read size 0x%x contiguous pages %d",
1846 read_size, contig_pages));
1848 while (rc == -EAGAIN) {
1849 if ((open_file->invalidHandle) &&
1850 (!open_file->closePend)) {
1851 rc = cifs_reopen_file(file, true);
1856 rc = CIFSSMBRead(xid, pTcon,
1859 &bytes_read, &smb_read_data,
1861 /* BB more RC checks ? */
1862 if (rc == -EAGAIN) {
1863 if (smb_read_data) {
1864 if (buf_type == CIFS_SMALL_BUFFER)
1865 cifs_small_buf_release(smb_read_data);
1866 else if (buf_type == CIFS_LARGE_BUFFER)
1867 cifs_buf_release(smb_read_data);
1868 smb_read_data = NULL;
1872 if ((rc < 0) || (smb_read_data == NULL)) {
1873 cFYI(1, ("Read error in readpages: %d", rc));
1875 } else if (bytes_read > 0) {
1876 task_io_account_read(bytes_read);
1877 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1878 cifs_copy_cache_pages(mapping, page_list, bytes_read,
1879 smb_read_data + 4 /* RFC1001 hdr */ +
1880 le16_to_cpu(pSMBr->DataOffset), &lru_pvec);
1882 i += bytes_read >> PAGE_CACHE_SHIFT;
1883 cifs_stats_bytes_read(pTcon, bytes_read);
1884 if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
1885 i++; /* account for partial page */
1887 /* server copy of file can have smaller size
1889 /* BB do we need to verify this common case ?
1890 this case is ok - if we are at server EOF
1891 we will hit it on next read */
1896 cFYI(1, ("No bytes read (%d) at offset %lld . "
1897 "Cleaning remaining pages from readahead list",
1898 bytes_read, offset));
1899 /* BB turn off caching and do new lookup on
1900 file size at server? */
1903 if (smb_read_data) {
1904 if (buf_type == CIFS_SMALL_BUFFER)
1905 cifs_small_buf_release(smb_read_data);
1906 else if (buf_type == CIFS_LARGE_BUFFER)
1907 cifs_buf_release(smb_read_data);
1908 smb_read_data = NULL;
1913 pagevec_lru_add(&lru_pvec);
1915 /* need to free smb_read_data buf before exit */
1916 if (smb_read_data) {
1917 if (buf_type == CIFS_SMALL_BUFFER)
1918 cifs_small_buf_release(smb_read_data);
1919 else if (buf_type == CIFS_LARGE_BUFFER)
1920 cifs_buf_release(smb_read_data);
1921 smb_read_data = NULL;
1928 static int cifs_readpage_worker(struct file *file, struct page *page,
1934 page_cache_get(page);
1935 read_data = kmap(page);
1936 /* for reads over a certain size could initiate async read ahead */
1938 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
1943 cFYI(1, ("Bytes read %d", rc));
1945 file->f_path.dentry->d_inode->i_atime =
1946 current_fs_time(file->f_path.dentry->d_inode->i_sb);
1948 if (PAGE_CACHE_SIZE > rc)
1949 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
1951 flush_dcache_page(page);
1952 SetPageUptodate(page);
1957 page_cache_release(page);
1961 static int cifs_readpage(struct file *file, struct page *page)
1963 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1969 if (file->private_data == NULL) {
1974 cFYI(1, ("readpage %p at offset %d 0x%x\n",
1975 page, (int)offset, (int)offset));
1977 rc = cifs_readpage_worker(file, page, &offset);
1985 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
1987 struct cifsFileInfo *open_file;
1989 read_lock(&GlobalSMBSeslock);
1990 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1991 if (open_file->closePend)
1993 if (open_file->pfile &&
1994 ((open_file->pfile->f_flags & O_RDWR) ||
1995 (open_file->pfile->f_flags & O_WRONLY))) {
1996 read_unlock(&GlobalSMBSeslock);
2000 read_unlock(&GlobalSMBSeslock);
2004 /* We do not want to update the file size from server for inodes
2005 open for write - to avoid races with writepage extending
2006 the file - in the future we could consider allowing
2007 refreshing the inode only on increases in the file size
2008 but this is tricky to do without racing with writebehind
2009 page caching in the current Linux kernel design */
2010 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2015 if (is_inode_writable(cifsInode)) {
2016 /* This inode is open for write at least once */
2017 struct cifs_sb_info *cifs_sb;
2019 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2020 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2021 /* since no page cache to corrupt on directio
2022 we can change size safely */
2026 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2034 static int cifs_prepare_write(struct file *file, struct page *page,
2035 unsigned from, unsigned to)
2041 cFYI(1, ("prepare write for page %p from %d to %d", page, from, to));
2042 if (PageUptodate(page))
2045 /* If we are writing a full page it will be up to date,
2046 no need to read from the server */
2047 if ((to == PAGE_CACHE_SIZE) && (from == 0)) {
2048 SetPageUptodate(page);
2052 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2053 i_size = i_size_read(page->mapping->host);
2055 if ((offset >= i_size) ||
2056 ((from == 0) && (offset + to) >= i_size)) {
2058 * We don't need to read data beyond the end of the file.
2059 * zero it, and set the page uptodate
2061 simple_prepare_write(file, page, from, to);
2062 SetPageUptodate(page);
2063 } else if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2064 /* might as well read a page, it is fast enough */
2065 rc = cifs_readpage_worker(file, page, &offset);
2067 /* we could try using another file handle if there is one -
2068 but how would we lock it to prevent close of that handle
2069 racing with this read? In any case
2070 this will be written out by commit_write so is fine */
2073 /* we do not need to pass errors back
2074 e.g. if we do not have read access to the file
2075 because cifs_commit_write will do the right thing. -- shaggy */
2080 const struct address_space_operations cifs_addr_ops = {
2081 .readpage = cifs_readpage,
2082 .readpages = cifs_readpages,
2083 .writepage = cifs_writepage,
2084 .writepages = cifs_writepages,
2085 .prepare_write = cifs_prepare_write,
2086 .commit_write = cifs_commit_write,
2087 .set_page_dirty = __set_page_dirty_nobuffers,
2088 /* .sync_page = cifs_sync_page, */
2093 * cifs_readpages requires the server to support a buffer large enough to
2094 * contain the header plus one complete page of data. Otherwise, we need
2095 * to leave cifs_readpages out of the address space operations.
2097 const struct address_space_operations cifs_addr_ops_smallbuf = {
2098 .readpage = cifs_readpage,
2099 .writepage = cifs_writepage,
2100 .writepages = cifs_writepages,
2101 .prepare_write = cifs_prepare_write,
2102 .commit_write = cifs_commit_write,
2103 .set_page_dirty = __set_page_dirty_nobuffers,
2104 /* .sync_page = cifs_sync_page, */