]> err.no Git - linux-2.6/blob - fs/buffer.c
[PATCH] ext3: Fix unmapped buffers in transaction's lists
[linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118         if (uptodate) {
119                 set_buffer_uptodate(bh);
120         } else {
121                 /* This happens, due to failed READA attempts. */
122                 clear_buffer_uptodate(bh);
123         }
124         unlock_buffer(bh);
125         put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130         char b[BDEVNAME_SIZE];
131
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136                         buffer_io_error(bh);
137                         printk(KERN_WARNING "lost page write due to "
138                                         "I/O error on %s\n",
139                                        bdevname(bh->b_bdev, b));
140                 }
141                 set_buffer_write_io_error(bh);
142                 clear_buffer_uptodate(bh);
143         }
144         unlock_buffer(bh);
145         put_bh(bh);
146 }
147
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154         int ret = 0;
155
156         if (bdev) {
157                 int err;
158
159                 ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
160                 err = filemap_fdatawait(bdev->bd_inode->i_mapping);
161                 if (!ret)
162                         ret = err;
163         }
164         return ret;
165 }
166 EXPORT_SYMBOL(sync_blockdev);
167
168 /*
169  * Write out and wait upon all dirty data associated with this
170  * superblock.  Filesystem data as well as the underlying block
171  * device.  Takes the superblock lock.
172  */
173 int fsync_super(struct super_block *sb)
174 {
175         sync_inodes_sb(sb, 0);
176         DQUOT_SYNC(sb);
177         lock_super(sb);
178         if (sb->s_dirt && sb->s_op->write_super)
179                 sb->s_op->write_super(sb);
180         unlock_super(sb);
181         if (sb->s_op->sync_fs)
182                 sb->s_op->sync_fs(sb, 1);
183         sync_blockdev(sb->s_bdev);
184         sync_inodes_sb(sb, 1);
185
186         return sync_blockdev(sb->s_bdev);
187 }
188
189 /*
190  * Write out and wait upon all dirty data associated with this
191  * device.   Filesystem data as well as the underlying block
192  * device.  Takes the superblock lock.
193  */
194 int fsync_bdev(struct block_device *bdev)
195 {
196         struct super_block *sb = get_super(bdev);
197         if (sb) {
198                 int res = fsync_super(sb);
199                 drop_super(sb);
200                 return res;
201         }
202         return sync_blockdev(bdev);
203 }
204
205 /**
206  * freeze_bdev  --  lock a filesystem and force it into a consistent state
207  * @bdev:       blockdevice to lock
208  *
209  * This takes the block device bd_mount_sem to make sure no new mounts
210  * happen on bdev until thaw_bdev() is called.
211  * If a superblock is found on this device, we take the s_umount semaphore
212  * on it to make sure nobody unmounts until the snapshot creation is done.
213  */
214 struct super_block *freeze_bdev(struct block_device *bdev)
215 {
216         struct super_block *sb;
217
218         down(&bdev->bd_mount_sem);
219         sb = get_super(bdev);
220         if (sb && !(sb->s_flags & MS_RDONLY)) {
221                 sb->s_frozen = SB_FREEZE_WRITE;
222                 smp_wmb();
223
224                 sync_inodes_sb(sb, 0);
225                 DQUOT_SYNC(sb);
226
227                 lock_super(sb);
228                 if (sb->s_dirt && sb->s_op->write_super)
229                         sb->s_op->write_super(sb);
230                 unlock_super(sb);
231
232                 if (sb->s_op->sync_fs)
233                         sb->s_op->sync_fs(sb, 1);
234
235                 sync_blockdev(sb->s_bdev);
236                 sync_inodes_sb(sb, 1);
237
238                 sb->s_frozen = SB_FREEZE_TRANS;
239                 smp_wmb();
240
241                 sync_blockdev(sb->s_bdev);
242
243                 if (sb->s_op->write_super_lockfs)
244                         sb->s_op->write_super_lockfs(sb);
245         }
246
247         sync_blockdev(bdev);
248         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
249 }
250 EXPORT_SYMBOL(freeze_bdev);
251
252 /**
253  * thaw_bdev  -- unlock filesystem
254  * @bdev:       blockdevice to unlock
255  * @sb:         associated superblock
256  *
257  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
258  */
259 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
260 {
261         if (sb) {
262                 BUG_ON(sb->s_bdev != bdev);
263
264                 if (sb->s_op->unlockfs)
265                         sb->s_op->unlockfs(sb);
266                 sb->s_frozen = SB_UNFROZEN;
267                 smp_wmb();
268                 wake_up(&sb->s_wait_unfrozen);
269                 drop_super(sb);
270         }
271
272         up(&bdev->bd_mount_sem);
273 }
274 EXPORT_SYMBOL(thaw_bdev);
275
276 /*
277  * sync everything.  Start out by waking pdflush, because that writes back
278  * all queues in parallel.
279  */
280 static void do_sync(unsigned long wait)
281 {
282         wakeup_pdflush(0);
283         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
284         DQUOT_SYNC(NULL);
285         sync_supers();          /* Write the superblocks */
286         sync_filesystems(0);    /* Start syncing the filesystems */
287         sync_filesystems(wait); /* Waitingly sync the filesystems */
288         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
289         if (!wait)
290                 printk("Emergency Sync complete\n");
291         if (unlikely(laptop_mode))
292                 laptop_sync_completion();
293 }
294
295 asmlinkage long sys_sync(void)
296 {
297         do_sync(1);
298         return 0;
299 }
300
301 void emergency_sync(void)
302 {
303         pdflush_operation(do_sync, 0);
304 }
305
306 /*
307  * Generic function to fsync a file.
308  *
309  * filp may be NULL if called via the msync of a vma.
310  */
311  
312 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
313 {
314         struct inode * inode = dentry->d_inode;
315         struct super_block * sb;
316         int ret, err;
317
318         /* sync the inode to buffers */
319         ret = write_inode_now(inode, 0);
320
321         /* sync the superblock to buffers */
322         sb = inode->i_sb;
323         lock_super(sb);
324         if (sb->s_op->write_super)
325                 sb->s_op->write_super(sb);
326         unlock_super(sb);
327
328         /* .. finally sync the buffers to disk */
329         err = sync_blockdev(sb->s_bdev);
330         if (!ret)
331                 ret = err;
332         return ret;
333 }
334
335 static long do_fsync(unsigned int fd, int datasync)
336 {
337         struct file * file;
338         struct address_space *mapping;
339         int ret, err;
340
341         ret = -EBADF;
342         file = fget(fd);
343         if (!file)
344                 goto out;
345
346         ret = -EINVAL;
347         if (!file->f_op || !file->f_op->fsync) {
348                 /* Why?  We can still call filemap_fdatawrite */
349                 goto out_putf;
350         }
351
352         mapping = file->f_mapping;
353
354         current->flags |= PF_SYNCWRITE;
355         ret = filemap_fdatawrite(mapping);
356
357         /*
358          * We need to protect against concurrent writers,
359          * which could cause livelocks in fsync_buffers_list
360          */
361         down(&mapping->host->i_sem);
362         err = file->f_op->fsync(file, file->f_dentry, datasync);
363         if (!ret)
364                 ret = err;
365         up(&mapping->host->i_sem);
366         err = filemap_fdatawait(mapping);
367         if (!ret)
368                 ret = err;
369         current->flags &= ~PF_SYNCWRITE;
370
371 out_putf:
372         fput(file);
373 out:
374         return ret;
375 }
376
377 asmlinkage long sys_fsync(unsigned int fd)
378 {
379         return do_fsync(fd, 0);
380 }
381
382 asmlinkage long sys_fdatasync(unsigned int fd)
383 {
384         return do_fsync(fd, 1);
385 }
386
387 /*
388  * Various filesystems appear to want __find_get_block to be non-blocking.
389  * But it's the page lock which protects the buffers.  To get around this,
390  * we get exclusion from try_to_free_buffers with the blockdev mapping's
391  * private_lock.
392  *
393  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
394  * may be quite high.  This code could TryLock the page, and if that
395  * succeeds, there is no need to take private_lock. (But if
396  * private_lock is contended then so is mapping->tree_lock).
397  */
398 static struct buffer_head *
399 __find_get_block_slow(struct block_device *bdev, sector_t block, int unused)
400 {
401         struct inode *bd_inode = bdev->bd_inode;
402         struct address_space *bd_mapping = bd_inode->i_mapping;
403         struct buffer_head *ret = NULL;
404         pgoff_t index;
405         struct buffer_head *bh;
406         struct buffer_head *head;
407         struct page *page;
408         int all_mapped = 1;
409
410         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
411         page = find_get_page(bd_mapping, index);
412         if (!page)
413                 goto out;
414
415         spin_lock(&bd_mapping->private_lock);
416         if (!page_has_buffers(page))
417                 goto out_unlock;
418         head = page_buffers(page);
419         bh = head;
420         do {
421                 if (bh->b_blocknr == block) {
422                         ret = bh;
423                         get_bh(bh);
424                         goto out_unlock;
425                 }
426                 if (!buffer_mapped(bh))
427                         all_mapped = 0;
428                 bh = bh->b_this_page;
429         } while (bh != head);
430
431         /* we might be here because some of the buffers on this page are
432          * not mapped.  This is due to various races between
433          * file io on the block device and getblk.  It gets dealt with
434          * elsewhere, don't buffer_error if we had some unmapped buffers
435          */
436         if (all_mapped) {
437                 printk("__find_get_block_slow() failed. "
438                         "block=%llu, b_blocknr=%llu\n",
439                         (unsigned long long)block, (unsigned long long)bh->b_blocknr);
440                 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
441                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
442         }
443 out_unlock:
444         spin_unlock(&bd_mapping->private_lock);
445         page_cache_release(page);
446 out:
447         return ret;
448 }
449
450 /* If invalidate_buffers() will trash dirty buffers, it means some kind
451    of fs corruption is going on. Trashing dirty data always imply losing
452    information that was supposed to be just stored on the physical layer
453    by the user.
454
455    Thus invalidate_buffers in general usage is not allwowed to trash
456    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
457    be preserved.  These buffers are simply skipped.
458   
459    We also skip buffers which are still in use.  For example this can
460    happen if a userspace program is reading the block device.
461
462    NOTE: In the case where the user removed a removable-media-disk even if
463    there's still dirty data not synced on disk (due a bug in the device driver
464    or due an error of the user), by not destroying the dirty buffers we could
465    generate corruption also on the next media inserted, thus a parameter is
466    necessary to handle this case in the most safe way possible (trying
467    to not corrupt also the new disk inserted with the data belonging to
468    the old now corrupted disk). Also for the ramdisk the natural thing
469    to do in order to release the ramdisk memory is to destroy dirty buffers.
470
471    These are two special cases. Normal usage imply the device driver
472    to issue a sync on the device (without waiting I/O completion) and
473    then an invalidate_buffers call that doesn't trash dirty buffers.
474
475    For handling cache coherency with the blkdev pagecache the 'update' case
476    is been introduced. It is needed to re-read from disk any pinned
477    buffer. NOTE: re-reading from disk is destructive so we can do it only
478    when we assume nobody is changing the buffercache under our I/O and when
479    we think the disk contains more recent information than the buffercache.
480    The update == 1 pass marks the buffers we need to update, the update == 2
481    pass does the actual I/O. */
482 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
483 {
484         invalidate_bh_lrus();
485         /*
486          * FIXME: what about destroy_dirty_buffers?
487          * We really want to use invalidate_inode_pages2() for
488          * that, but not until that's cleaned up.
489          */
490         invalidate_inode_pages(bdev->bd_inode->i_mapping);
491 }
492
493 /*
494  * Kick pdflush then try to free up some ZONE_NORMAL memory.
495  */
496 static void free_more_memory(void)
497 {
498         struct zone **zones;
499         pg_data_t *pgdat;
500
501         wakeup_pdflush(1024);
502         yield();
503
504         for_each_pgdat(pgdat) {
505                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
506                 if (*zones)
507                         try_to_free_pages(zones, GFP_NOFS);
508         }
509 }
510
511 /*
512  * I/O completion handler for block_read_full_page() - pages
513  * which come unlocked at the end of I/O.
514  */
515 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
516 {
517         unsigned long flags;
518         struct buffer_head *first;
519         struct buffer_head *tmp;
520         struct page *page;
521         int page_uptodate = 1;
522
523         BUG_ON(!buffer_async_read(bh));
524
525         page = bh->b_page;
526         if (uptodate) {
527                 set_buffer_uptodate(bh);
528         } else {
529                 clear_buffer_uptodate(bh);
530                 if (printk_ratelimit())
531                         buffer_io_error(bh);
532                 SetPageError(page);
533         }
534
535         /*
536          * Be _very_ careful from here on. Bad things can happen if
537          * two buffer heads end IO at almost the same time and both
538          * decide that the page is now completely done.
539          */
540         first = page_buffers(page);
541         local_irq_save(flags);
542         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
543         clear_buffer_async_read(bh);
544         unlock_buffer(bh);
545         tmp = bh;
546         do {
547                 if (!buffer_uptodate(tmp))
548                         page_uptodate = 0;
549                 if (buffer_async_read(tmp)) {
550                         BUG_ON(!buffer_locked(tmp));
551                         goto still_busy;
552                 }
553                 tmp = tmp->b_this_page;
554         } while (tmp != bh);
555         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
556         local_irq_restore(flags);
557
558         /*
559          * If none of the buffers had errors and they are all
560          * uptodate then we can set the page uptodate.
561          */
562         if (page_uptodate && !PageError(page))
563                 SetPageUptodate(page);
564         unlock_page(page);
565         return;
566
567 still_busy:
568         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
569         local_irq_restore(flags);
570         return;
571 }
572
573 /*
574  * Completion handler for block_write_full_page() - pages which are unlocked
575  * during I/O, and which have PageWriteback cleared upon I/O completion.
576  */
577 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
578 {
579         char b[BDEVNAME_SIZE];
580         unsigned long flags;
581         struct buffer_head *first;
582         struct buffer_head *tmp;
583         struct page *page;
584
585         BUG_ON(!buffer_async_write(bh));
586
587         page = bh->b_page;
588         if (uptodate) {
589                 set_buffer_uptodate(bh);
590         } else {
591                 if (printk_ratelimit()) {
592                         buffer_io_error(bh);
593                         printk(KERN_WARNING "lost page write due to "
594                                         "I/O error on %s\n",
595                                bdevname(bh->b_bdev, b));
596                 }
597                 set_bit(AS_EIO, &page->mapping->flags);
598                 clear_buffer_uptodate(bh);
599                 SetPageError(page);
600         }
601
602         first = page_buffers(page);
603         local_irq_save(flags);
604         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
605
606         clear_buffer_async_write(bh);
607         unlock_buffer(bh);
608         tmp = bh->b_this_page;
609         while (tmp != bh) {
610                 if (buffer_async_write(tmp)) {
611                         BUG_ON(!buffer_locked(tmp));
612                         goto still_busy;
613                 }
614                 tmp = tmp->b_this_page;
615         }
616         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
617         local_irq_restore(flags);
618         end_page_writeback(page);
619         return;
620
621 still_busy:
622         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
623         local_irq_restore(flags);
624         return;
625 }
626
627 /*
628  * If a page's buffers are under async readin (end_buffer_async_read
629  * completion) then there is a possibility that another thread of
630  * control could lock one of the buffers after it has completed
631  * but while some of the other buffers have not completed.  This
632  * locked buffer would confuse end_buffer_async_read() into not unlocking
633  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
634  * that this buffer is not under async I/O.
635  *
636  * The page comes unlocked when it has no locked buffer_async buffers
637  * left.
638  *
639  * PageLocked prevents anyone starting new async I/O reads any of
640  * the buffers.
641  *
642  * PageWriteback is used to prevent simultaneous writeout of the same
643  * page.
644  *
645  * PageLocked prevents anyone from starting writeback of a page which is
646  * under read I/O (PageWriteback is only ever set against a locked page).
647  */
648 static void mark_buffer_async_read(struct buffer_head *bh)
649 {
650         bh->b_end_io = end_buffer_async_read;
651         set_buffer_async_read(bh);
652 }
653
654 void mark_buffer_async_write(struct buffer_head *bh)
655 {
656         bh->b_end_io = end_buffer_async_write;
657         set_buffer_async_write(bh);
658 }
659 EXPORT_SYMBOL(mark_buffer_async_write);
660
661
662 /*
663  * fs/buffer.c contains helper functions for buffer-backed address space's
664  * fsync functions.  A common requirement for buffer-based filesystems is
665  * that certain data from the backing blockdev needs to be written out for
666  * a successful fsync().  For example, ext2 indirect blocks need to be
667  * written back and waited upon before fsync() returns.
668  *
669  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
670  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
671  * management of a list of dependent buffers at ->i_mapping->private_list.
672  *
673  * Locking is a little subtle: try_to_free_buffers() will remove buffers
674  * from their controlling inode's queue when they are being freed.  But
675  * try_to_free_buffers() will be operating against the *blockdev* mapping
676  * at the time, not against the S_ISREG file which depends on those buffers.
677  * So the locking for private_list is via the private_lock in the address_space
678  * which backs the buffers.  Which is different from the address_space 
679  * against which the buffers are listed.  So for a particular address_space,
680  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
681  * mapping->private_list will always be protected by the backing blockdev's
682  * ->private_lock.
683  *
684  * Which introduces a requirement: all buffers on an address_space's
685  * ->private_list must be from the same address_space: the blockdev's.
686  *
687  * address_spaces which do not place buffers at ->private_list via these
688  * utility functions are free to use private_lock and private_list for
689  * whatever they want.  The only requirement is that list_empty(private_list)
690  * be true at clear_inode() time.
691  *
692  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
693  * filesystems should do that.  invalidate_inode_buffers() should just go
694  * BUG_ON(!list_empty).
695  *
696  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
697  * take an address_space, not an inode.  And it should be called
698  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
699  * queued up.
700  *
701  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
702  * list if it is already on a list.  Because if the buffer is on a list,
703  * it *must* already be on the right one.  If not, the filesystem is being
704  * silly.  This will save a ton of locking.  But first we have to ensure
705  * that buffers are taken *off* the old inode's list when they are freed
706  * (presumably in truncate).  That requires careful auditing of all
707  * filesystems (do it inside bforget()).  It could also be done by bringing
708  * b_inode back.
709  */
710
711 /*
712  * The buffer's backing address_space's private_lock must be held
713  */
714 static inline void __remove_assoc_queue(struct buffer_head *bh)
715 {
716         list_del_init(&bh->b_assoc_buffers);
717 }
718
719 int inode_has_buffers(struct inode *inode)
720 {
721         return !list_empty(&inode->i_data.private_list);
722 }
723
724 /*
725  * osync is designed to support O_SYNC io.  It waits synchronously for
726  * all already-submitted IO to complete, but does not queue any new
727  * writes to the disk.
728  *
729  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
730  * you dirty the buffers, and then use osync_inode_buffers to wait for
731  * completion.  Any other dirty buffers which are not yet queued for
732  * write will not be flushed to disk by the osync.
733  */
734 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736         struct buffer_head *bh;
737         struct list_head *p;
738         int err = 0;
739
740         spin_lock(lock);
741 repeat:
742         list_for_each_prev(p, list) {
743                 bh = BH_ENTRY(p);
744                 if (buffer_locked(bh)) {
745                         get_bh(bh);
746                         spin_unlock(lock);
747                         wait_on_buffer(bh);
748                         if (!buffer_uptodate(bh))
749                                 err = -EIO;
750                         brelse(bh);
751                         spin_lock(lock);
752                         goto repeat;
753                 }
754         }
755         spin_unlock(lock);
756         return err;
757 }
758
759 /**
760  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
761  *                        buffers
762  * @mapping: the mapping which wants those buffers written
763  *
764  * Starts I/O against the buffers at mapping->private_list, and waits upon
765  * that I/O.
766  *
767  * Basically, this is a convenience function for fsync().
768  * @mapping is a file or directory which needs those buffers to be written for
769  * a successful fsync().
770  */
771 int sync_mapping_buffers(struct address_space *mapping)
772 {
773         struct address_space *buffer_mapping = mapping->assoc_mapping;
774
775         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
776                 return 0;
777
778         return fsync_buffers_list(&buffer_mapping->private_lock,
779                                         &mapping->private_list);
780 }
781 EXPORT_SYMBOL(sync_mapping_buffers);
782
783 /*
784  * Called when we've recently written block `bblock', and it is known that
785  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
786  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
787  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
788  */
789 void write_boundary_block(struct block_device *bdev,
790                         sector_t bblock, unsigned blocksize)
791 {
792         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
793         if (bh) {
794                 if (buffer_dirty(bh))
795                         ll_rw_block(WRITE, 1, &bh);
796                 put_bh(bh);
797         }
798 }
799
800 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
801 {
802         struct address_space *mapping = inode->i_mapping;
803         struct address_space *buffer_mapping = bh->b_page->mapping;
804
805         mark_buffer_dirty(bh);
806         if (!mapping->assoc_mapping) {
807                 mapping->assoc_mapping = buffer_mapping;
808         } else {
809                 if (mapping->assoc_mapping != buffer_mapping)
810                         BUG();
811         }
812         if (list_empty(&bh->b_assoc_buffers)) {
813                 spin_lock(&buffer_mapping->private_lock);
814                 list_move_tail(&bh->b_assoc_buffers,
815                                 &mapping->private_list);
816                 spin_unlock(&buffer_mapping->private_lock);
817         }
818 }
819 EXPORT_SYMBOL(mark_buffer_dirty_inode);
820
821 /*
822  * Add a page to the dirty page list.
823  *
824  * It is a sad fact of life that this function is called from several places
825  * deeply under spinlocking.  It may not sleep.
826  *
827  * If the page has buffers, the uptodate buffers are set dirty, to preserve
828  * dirty-state coherency between the page and the buffers.  It the page does
829  * not have buffers then when they are later attached they will all be set
830  * dirty.
831  *
832  * The buffers are dirtied before the page is dirtied.  There's a small race
833  * window in which a writepage caller may see the page cleanness but not the
834  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
835  * before the buffers, a concurrent writepage caller could clear the page dirty
836  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
837  * page on the dirty page list.
838  *
839  * We use private_lock to lock against try_to_free_buffers while using the
840  * page's buffer list.  Also use this to protect against clean buffers being
841  * added to the page after it was set dirty.
842  *
843  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
844  * address_space though.
845  */
846 int __set_page_dirty_buffers(struct page *page)
847 {
848         struct address_space * const mapping = page->mapping;
849
850         spin_lock(&mapping->private_lock);
851         if (page_has_buffers(page)) {
852                 struct buffer_head *head = page_buffers(page);
853                 struct buffer_head *bh = head;
854
855                 do {
856                         set_buffer_dirty(bh);
857                         bh = bh->b_this_page;
858                 } while (bh != head);
859         }
860         spin_unlock(&mapping->private_lock);
861
862         if (!TestSetPageDirty(page)) {
863                 write_lock_irq(&mapping->tree_lock);
864                 if (page->mapping) {    /* Race with truncate? */
865                         if (mapping_cap_account_dirty(mapping))
866                                 inc_page_state(nr_dirty);
867                         radix_tree_tag_set(&mapping->page_tree,
868                                                 page_index(page),
869                                                 PAGECACHE_TAG_DIRTY);
870                 }
871                 write_unlock_irq(&mapping->tree_lock);
872                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
873         }
874         
875         return 0;
876 }
877 EXPORT_SYMBOL(__set_page_dirty_buffers);
878
879 /*
880  * Write out and wait upon a list of buffers.
881  *
882  * We have conflicting pressures: we want to make sure that all
883  * initially dirty buffers get waited on, but that any subsequently
884  * dirtied buffers don't.  After all, we don't want fsync to last
885  * forever if somebody is actively writing to the file.
886  *
887  * Do this in two main stages: first we copy dirty buffers to a
888  * temporary inode list, queueing the writes as we go.  Then we clean
889  * up, waiting for those writes to complete.
890  * 
891  * During this second stage, any subsequent updates to the file may end
892  * up refiling the buffer on the original inode's dirty list again, so
893  * there is a chance we will end up with a buffer queued for write but
894  * not yet completed on that list.  So, as a final cleanup we go through
895  * the osync code to catch these locked, dirty buffers without requeuing
896  * any newly dirty buffers for write.
897  */
898 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
899 {
900         struct buffer_head *bh;
901         struct list_head tmp;
902         int err = 0, err2;
903
904         INIT_LIST_HEAD(&tmp);
905
906         spin_lock(lock);
907         while (!list_empty(list)) {
908                 bh = BH_ENTRY(list->next);
909                 list_del_init(&bh->b_assoc_buffers);
910                 if (buffer_dirty(bh) || buffer_locked(bh)) {
911                         list_add(&bh->b_assoc_buffers, &tmp);
912                         if (buffer_dirty(bh)) {
913                                 get_bh(bh);
914                                 spin_unlock(lock);
915                                 /*
916                                  * Ensure any pending I/O completes so that
917                                  * ll_rw_block() actually writes the current
918                                  * contents - it is a noop if I/O is still in
919                                  * flight on potentially older contents.
920                                  */
921                                 ll_rw_block(SWRITE, 1, &bh);
922                                 brelse(bh);
923                                 spin_lock(lock);
924                         }
925                 }
926         }
927
928         while (!list_empty(&tmp)) {
929                 bh = BH_ENTRY(tmp.prev);
930                 __remove_assoc_queue(bh);
931                 get_bh(bh);
932                 spin_unlock(lock);
933                 wait_on_buffer(bh);
934                 if (!buffer_uptodate(bh))
935                         err = -EIO;
936                 brelse(bh);
937                 spin_lock(lock);
938         }
939         
940         spin_unlock(lock);
941         err2 = osync_buffers_list(lock, list);
942         if (err)
943                 return err;
944         else
945                 return err2;
946 }
947
948 /*
949  * Invalidate any and all dirty buffers on a given inode.  We are
950  * probably unmounting the fs, but that doesn't mean we have already
951  * done a sync().  Just drop the buffers from the inode list.
952  *
953  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
954  * assumes that all the buffers are against the blockdev.  Not true
955  * for reiserfs.
956  */
957 void invalidate_inode_buffers(struct inode *inode)
958 {
959         if (inode_has_buffers(inode)) {
960                 struct address_space *mapping = &inode->i_data;
961                 struct list_head *list = &mapping->private_list;
962                 struct address_space *buffer_mapping = mapping->assoc_mapping;
963
964                 spin_lock(&buffer_mapping->private_lock);
965                 while (!list_empty(list))
966                         __remove_assoc_queue(BH_ENTRY(list->next));
967                 spin_unlock(&buffer_mapping->private_lock);
968         }
969 }
970
971 /*
972  * Remove any clean buffers from the inode's buffer list.  This is called
973  * when we're trying to free the inode itself.  Those buffers can pin it.
974  *
975  * Returns true if all buffers were removed.
976  */
977 int remove_inode_buffers(struct inode *inode)
978 {
979         int ret = 1;
980
981         if (inode_has_buffers(inode)) {
982                 struct address_space *mapping = &inode->i_data;
983                 struct list_head *list = &mapping->private_list;
984                 struct address_space *buffer_mapping = mapping->assoc_mapping;
985
986                 spin_lock(&buffer_mapping->private_lock);
987                 while (!list_empty(list)) {
988                         struct buffer_head *bh = BH_ENTRY(list->next);
989                         if (buffer_dirty(bh)) {
990                                 ret = 0;
991                                 break;
992                         }
993                         __remove_assoc_queue(bh);
994                 }
995                 spin_unlock(&buffer_mapping->private_lock);
996         }
997         return ret;
998 }
999
1000 /*
1001  * Create the appropriate buffers when given a page for data area and
1002  * the size of each buffer.. Use the bh->b_this_page linked list to
1003  * follow the buffers created.  Return NULL if unable to create more
1004  * buffers.
1005  *
1006  * The retry flag is used to differentiate async IO (paging, swapping)
1007  * which may not fail from ordinary buffer allocations.
1008  */
1009 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1010                 int retry)
1011 {
1012         struct buffer_head *bh, *head;
1013         long offset;
1014
1015 try_again:
1016         head = NULL;
1017         offset = PAGE_SIZE;
1018         while ((offset -= size) >= 0) {
1019                 bh = alloc_buffer_head(GFP_NOFS);
1020                 if (!bh)
1021                         goto no_grow;
1022
1023                 bh->b_bdev = NULL;
1024                 bh->b_this_page = head;
1025                 bh->b_blocknr = -1;
1026                 head = bh;
1027
1028                 bh->b_state = 0;
1029                 atomic_set(&bh->b_count, 0);
1030                 bh->b_size = size;
1031
1032                 /* Link the buffer to its page */
1033                 set_bh_page(bh, page, offset);
1034
1035                 bh->b_end_io = NULL;
1036         }
1037         return head;
1038 /*
1039  * In case anything failed, we just free everything we got.
1040  */
1041 no_grow:
1042         if (head) {
1043                 do {
1044                         bh = head;
1045                         head = head->b_this_page;
1046                         free_buffer_head(bh);
1047                 } while (head);
1048         }
1049
1050         /*
1051          * Return failure for non-async IO requests.  Async IO requests
1052          * are not allowed to fail, so we have to wait until buffer heads
1053          * become available.  But we don't want tasks sleeping with 
1054          * partially complete buffers, so all were released above.
1055          */
1056         if (!retry)
1057                 return NULL;
1058
1059         /* We're _really_ low on memory. Now we just
1060          * wait for old buffer heads to become free due to
1061          * finishing IO.  Since this is an async request and
1062          * the reserve list is empty, we're sure there are 
1063          * async buffer heads in use.
1064          */
1065         free_more_memory();
1066         goto try_again;
1067 }
1068 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1069
1070 static inline void
1071 link_dev_buffers(struct page *page, struct buffer_head *head)
1072 {
1073         struct buffer_head *bh, *tail;
1074
1075         bh = head;
1076         do {
1077                 tail = bh;
1078                 bh = bh->b_this_page;
1079         } while (bh);
1080         tail->b_this_page = head;
1081         attach_page_buffers(page, head);
1082 }
1083
1084 /*
1085  * Initialise the state of a blockdev page's buffers.
1086  */ 
1087 static void
1088 init_page_buffers(struct page *page, struct block_device *bdev,
1089                         sector_t block, int size)
1090 {
1091         struct buffer_head *head = page_buffers(page);
1092         struct buffer_head *bh = head;
1093         int uptodate = PageUptodate(page);
1094
1095         do {
1096                 if (!buffer_mapped(bh)) {
1097                         init_buffer(bh, NULL, NULL);
1098                         bh->b_bdev = bdev;
1099                         bh->b_blocknr = block;
1100                         if (uptodate)
1101                                 set_buffer_uptodate(bh);
1102                         set_buffer_mapped(bh);
1103                 }
1104                 block++;
1105                 bh = bh->b_this_page;
1106         } while (bh != head);
1107 }
1108
1109 /*
1110  * Create the page-cache page that contains the requested block.
1111  *
1112  * This is user purely for blockdev mappings.
1113  */
1114 static struct page *
1115 grow_dev_page(struct block_device *bdev, sector_t block,
1116                 pgoff_t index, int size)
1117 {
1118         struct inode *inode = bdev->bd_inode;
1119         struct page *page;
1120         struct buffer_head *bh;
1121
1122         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1123         if (!page)
1124                 return NULL;
1125
1126         if (!PageLocked(page))
1127                 BUG();
1128
1129         if (page_has_buffers(page)) {
1130                 bh = page_buffers(page);
1131                 if (bh->b_size == size) {
1132                         init_page_buffers(page, bdev, block, size);
1133                         return page;
1134                 }
1135                 if (!try_to_free_buffers(page))
1136                         goto failed;
1137         }
1138
1139         /*
1140          * Allocate some buffers for this page
1141          */
1142         bh = alloc_page_buffers(page, size, 0);
1143         if (!bh)
1144                 goto failed;
1145
1146         /*
1147          * Link the page to the buffers and initialise them.  Take the
1148          * lock to be atomic wrt __find_get_block(), which does not
1149          * run under the page lock.
1150          */
1151         spin_lock(&inode->i_mapping->private_lock);
1152         link_dev_buffers(page, bh);
1153         init_page_buffers(page, bdev, block, size);
1154         spin_unlock(&inode->i_mapping->private_lock);
1155         return page;
1156
1157 failed:
1158         BUG();
1159         unlock_page(page);
1160         page_cache_release(page);
1161         return NULL;
1162 }
1163
1164 /*
1165  * Create buffers for the specified block device block's page.  If
1166  * that page was dirty, the buffers are set dirty also.
1167  *
1168  * Except that's a bug.  Attaching dirty buffers to a dirty
1169  * blockdev's page can result in filesystem corruption, because
1170  * some of those buffers may be aliases of filesystem data.
1171  * grow_dev_page() will go BUG() if this happens.
1172  */
1173 static inline int
1174 grow_buffers(struct block_device *bdev, sector_t block, int size)
1175 {
1176         struct page *page;
1177         pgoff_t index;
1178         int sizebits;
1179
1180         sizebits = -1;
1181         do {
1182                 sizebits++;
1183         } while ((size << sizebits) < PAGE_SIZE);
1184
1185         index = block >> sizebits;
1186         block = index << sizebits;
1187
1188         /* Create a page with the proper size buffers.. */
1189         page = grow_dev_page(bdev, block, index, size);
1190         if (!page)
1191                 return 0;
1192         unlock_page(page);
1193         page_cache_release(page);
1194         return 1;
1195 }
1196
1197 static struct buffer_head *
1198 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1199 {
1200         /* Size must be multiple of hard sectorsize */
1201         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1202                         (size < 512 || size > PAGE_SIZE))) {
1203                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1204                                         size);
1205                 printk(KERN_ERR "hardsect size: %d\n",
1206                                         bdev_hardsect_size(bdev));
1207
1208                 dump_stack();
1209                 return NULL;
1210         }
1211
1212         for (;;) {
1213                 struct buffer_head * bh;
1214
1215                 bh = __find_get_block(bdev, block, size);
1216                 if (bh)
1217                         return bh;
1218
1219                 if (!grow_buffers(bdev, block, size))
1220                         free_more_memory();
1221         }
1222 }
1223
1224 /*
1225  * The relationship between dirty buffers and dirty pages:
1226  *
1227  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1228  * the page is tagged dirty in its radix tree.
1229  *
1230  * At all times, the dirtiness of the buffers represents the dirtiness of
1231  * subsections of the page.  If the page has buffers, the page dirty bit is
1232  * merely a hint about the true dirty state.
1233  *
1234  * When a page is set dirty in its entirety, all its buffers are marked dirty
1235  * (if the page has buffers).
1236  *
1237  * When a buffer is marked dirty, its page is dirtied, but the page's other
1238  * buffers are not.
1239  *
1240  * Also.  When blockdev buffers are explicitly read with bread(), they
1241  * individually become uptodate.  But their backing page remains not
1242  * uptodate - even if all of its buffers are uptodate.  A subsequent
1243  * block_read_full_page() against that page will discover all the uptodate
1244  * buffers, will set the page uptodate and will perform no I/O.
1245  */
1246
1247 /**
1248  * mark_buffer_dirty - mark a buffer_head as needing writeout
1249  * @bh: the buffer_head to mark dirty
1250  *
1251  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1252  * backing page dirty, then tag the page as dirty in its address_space's radix
1253  * tree and then attach the address_space's inode to its superblock's dirty
1254  * inode list.
1255  *
1256  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1257  * mapping->tree_lock and the global inode_lock.
1258  */
1259 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1260 {
1261         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1262                 __set_page_dirty_nobuffers(bh->b_page);
1263 }
1264
1265 /*
1266  * Decrement a buffer_head's reference count.  If all buffers against a page
1267  * have zero reference count, are clean and unlocked, and if the page is clean
1268  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1269  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1270  * a page but it ends up not being freed, and buffers may later be reattached).
1271  */
1272 void __brelse(struct buffer_head * buf)
1273 {
1274         if (atomic_read(&buf->b_count)) {
1275                 put_bh(buf);
1276                 return;
1277         }
1278         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1279         WARN_ON(1);
1280 }
1281
1282 /*
1283  * bforget() is like brelse(), except it discards any
1284  * potentially dirty data.
1285  */
1286 void __bforget(struct buffer_head *bh)
1287 {
1288         clear_buffer_dirty(bh);
1289         if (!list_empty(&bh->b_assoc_buffers)) {
1290                 struct address_space *buffer_mapping = bh->b_page->mapping;
1291
1292                 spin_lock(&buffer_mapping->private_lock);
1293                 list_del_init(&bh->b_assoc_buffers);
1294                 spin_unlock(&buffer_mapping->private_lock);
1295         }
1296         __brelse(bh);
1297 }
1298
1299 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1300 {
1301         lock_buffer(bh);
1302         if (buffer_uptodate(bh)) {
1303                 unlock_buffer(bh);
1304                 return bh;
1305         } else {
1306                 get_bh(bh);
1307                 bh->b_end_io = end_buffer_read_sync;
1308                 submit_bh(READ, bh);
1309                 wait_on_buffer(bh);
1310                 if (buffer_uptodate(bh))
1311                         return bh;
1312         }
1313         brelse(bh);
1314         return NULL;
1315 }
1316
1317 /*
1318  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1319  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1320  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1321  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1322  * CPU's LRUs at the same time.
1323  *
1324  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1325  * sb_find_get_block().
1326  *
1327  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1328  * a local interrupt disable for that.
1329  */
1330
1331 #define BH_LRU_SIZE     8
1332
1333 struct bh_lru {
1334         struct buffer_head *bhs[BH_LRU_SIZE];
1335 };
1336
1337 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1338
1339 #ifdef CONFIG_SMP
1340 #define bh_lru_lock()   local_irq_disable()
1341 #define bh_lru_unlock() local_irq_enable()
1342 #else
1343 #define bh_lru_lock()   preempt_disable()
1344 #define bh_lru_unlock() preempt_enable()
1345 #endif
1346
1347 static inline void check_irqs_on(void)
1348 {
1349 #ifdef irqs_disabled
1350         BUG_ON(irqs_disabled());
1351 #endif
1352 }
1353
1354 /*
1355  * The LRU management algorithm is dopey-but-simple.  Sorry.
1356  */
1357 static void bh_lru_install(struct buffer_head *bh)
1358 {
1359         struct buffer_head *evictee = NULL;
1360         struct bh_lru *lru;
1361
1362         check_irqs_on();
1363         bh_lru_lock();
1364         lru = &__get_cpu_var(bh_lrus);
1365         if (lru->bhs[0] != bh) {
1366                 struct buffer_head *bhs[BH_LRU_SIZE];
1367                 int in;
1368                 int out = 0;
1369
1370                 get_bh(bh);
1371                 bhs[out++] = bh;
1372                 for (in = 0; in < BH_LRU_SIZE; in++) {
1373                         struct buffer_head *bh2 = lru->bhs[in];
1374
1375                         if (bh2 == bh) {
1376                                 __brelse(bh2);
1377                         } else {
1378                                 if (out >= BH_LRU_SIZE) {
1379                                         BUG_ON(evictee != NULL);
1380                                         evictee = bh2;
1381                                 } else {
1382                                         bhs[out++] = bh2;
1383                                 }
1384                         }
1385                 }
1386                 while (out < BH_LRU_SIZE)
1387                         bhs[out++] = NULL;
1388                 memcpy(lru->bhs, bhs, sizeof(bhs));
1389         }
1390         bh_lru_unlock();
1391
1392         if (evictee)
1393                 __brelse(evictee);
1394 }
1395
1396 /*
1397  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1398  */
1399 static inline struct buffer_head *
1400 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1401 {
1402         struct buffer_head *ret = NULL;
1403         struct bh_lru *lru;
1404         int i;
1405
1406         check_irqs_on();
1407         bh_lru_lock();
1408         lru = &__get_cpu_var(bh_lrus);
1409         for (i = 0; i < BH_LRU_SIZE; i++) {
1410                 struct buffer_head *bh = lru->bhs[i];
1411
1412                 if (bh && bh->b_bdev == bdev &&
1413                                 bh->b_blocknr == block && bh->b_size == size) {
1414                         if (i) {
1415                                 while (i) {
1416                                         lru->bhs[i] = lru->bhs[i - 1];
1417                                         i--;
1418                                 }
1419                                 lru->bhs[0] = bh;
1420                         }
1421                         get_bh(bh);
1422                         ret = bh;
1423                         break;
1424                 }
1425         }
1426         bh_lru_unlock();
1427         return ret;
1428 }
1429
1430 /*
1431  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1432  * it in the LRU and mark it as accessed.  If it is not present then return
1433  * NULL
1434  */
1435 struct buffer_head *
1436 __find_get_block(struct block_device *bdev, sector_t block, int size)
1437 {
1438         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1439
1440         if (bh == NULL) {
1441                 bh = __find_get_block_slow(bdev, block, size);
1442                 if (bh)
1443                         bh_lru_install(bh);
1444         }
1445         if (bh)
1446                 touch_buffer(bh);
1447         return bh;
1448 }
1449 EXPORT_SYMBOL(__find_get_block);
1450
1451 /*
1452  * __getblk will locate (and, if necessary, create) the buffer_head
1453  * which corresponds to the passed block_device, block and size. The
1454  * returned buffer has its reference count incremented.
1455  *
1456  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1457  * illegal block number, __getblk() will happily return a buffer_head
1458  * which represents the non-existent block.  Very weird.
1459  *
1460  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1461  * attempt is failing.  FIXME, perhaps?
1462  */
1463 struct buffer_head *
1464 __getblk(struct block_device *bdev, sector_t block, int size)
1465 {
1466         struct buffer_head *bh = __find_get_block(bdev, block, size);
1467
1468         might_sleep();
1469         if (bh == NULL)
1470                 bh = __getblk_slow(bdev, block, size);
1471         return bh;
1472 }
1473 EXPORT_SYMBOL(__getblk);
1474
1475 /*
1476  * Do async read-ahead on a buffer..
1477  */
1478 void __breadahead(struct block_device *bdev, sector_t block, int size)
1479 {
1480         struct buffer_head *bh = __getblk(bdev, block, size);
1481         ll_rw_block(READA, 1, &bh);
1482         brelse(bh);
1483 }
1484 EXPORT_SYMBOL(__breadahead);
1485
1486 /**
1487  *  __bread() - reads a specified block and returns the bh
1488  *  @bdev: the block_device to read from
1489  *  @block: number of block
1490  *  @size: size (in bytes) to read
1491  * 
1492  *  Reads a specified block, and returns buffer head that contains it.
1493  *  It returns NULL if the block was unreadable.
1494  */
1495 struct buffer_head *
1496 __bread(struct block_device *bdev, sector_t block, int size)
1497 {
1498         struct buffer_head *bh = __getblk(bdev, block, size);
1499
1500         if (!buffer_uptodate(bh))
1501                 bh = __bread_slow(bh);
1502         return bh;
1503 }
1504 EXPORT_SYMBOL(__bread);
1505
1506 /*
1507  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1508  * This doesn't race because it runs in each cpu either in irq
1509  * or with preempt disabled.
1510  */
1511 static void invalidate_bh_lru(void *arg)
1512 {
1513         struct bh_lru *b = &get_cpu_var(bh_lrus);
1514         int i;
1515
1516         for (i = 0; i < BH_LRU_SIZE; i++) {
1517                 brelse(b->bhs[i]);
1518                 b->bhs[i] = NULL;
1519         }
1520         put_cpu_var(bh_lrus);
1521 }
1522         
1523 static void invalidate_bh_lrus(void)
1524 {
1525         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1526 }
1527
1528 void set_bh_page(struct buffer_head *bh,
1529                 struct page *page, unsigned long offset)
1530 {
1531         bh->b_page = page;
1532         if (offset >= PAGE_SIZE)
1533                 BUG();
1534         if (PageHighMem(page))
1535                 /*
1536                  * This catches illegal uses and preserves the offset:
1537                  */
1538                 bh->b_data = (char *)(0 + offset);
1539         else
1540                 bh->b_data = page_address(page) + offset;
1541 }
1542 EXPORT_SYMBOL(set_bh_page);
1543
1544 /*
1545  * Called when truncating a buffer on a page completely.
1546  */
1547 static inline void discard_buffer(struct buffer_head * bh)
1548 {
1549         lock_buffer(bh);
1550         clear_buffer_dirty(bh);
1551         bh->b_bdev = NULL;
1552         clear_buffer_mapped(bh);
1553         clear_buffer_req(bh);
1554         clear_buffer_new(bh);
1555         clear_buffer_delay(bh);
1556         unlock_buffer(bh);
1557 }
1558
1559 /**
1560  * try_to_release_page() - release old fs-specific metadata on a page
1561  *
1562  * @page: the page which the kernel is trying to free
1563  * @gfp_mask: memory allocation flags (and I/O mode)
1564  *
1565  * The address_space is to try to release any data against the page
1566  * (presumably at page->private).  If the release was successful, return `1'.
1567  * Otherwise return zero.
1568  *
1569  * The @gfp_mask argument specifies whether I/O may be performed to release
1570  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1571  *
1572  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1573  */
1574 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1575 {
1576         struct address_space * const mapping = page->mapping;
1577
1578         BUG_ON(!PageLocked(page));
1579         if (PageWriteback(page))
1580                 return 0;
1581         
1582         if (mapping && mapping->a_ops->releasepage)
1583                 return mapping->a_ops->releasepage(page, gfp_mask);
1584         return try_to_free_buffers(page);
1585 }
1586 EXPORT_SYMBOL(try_to_release_page);
1587
1588 /**
1589  * block_invalidatepage - invalidate part of all of a buffer-backed page
1590  *
1591  * @page: the page which is affected
1592  * @offset: the index of the truncation point
1593  *
1594  * block_invalidatepage() is called when all or part of the page has become
1595  * invalidatedby a truncate operation.
1596  *
1597  * block_invalidatepage() does not have to release all buffers, but it must
1598  * ensure that no dirty buffer is left outside @offset and that no I/O
1599  * is underway against any of the blocks which are outside the truncation
1600  * point.  Because the caller is about to free (and possibly reuse) those
1601  * blocks on-disk.
1602  */
1603 int block_invalidatepage(struct page *page, unsigned long offset)
1604 {
1605         struct buffer_head *head, *bh, *next;
1606         unsigned int curr_off = 0;
1607         int ret = 1;
1608
1609         BUG_ON(!PageLocked(page));
1610         if (!page_has_buffers(page))
1611                 goto out;
1612
1613         head = page_buffers(page);
1614         bh = head;
1615         do {
1616                 unsigned int next_off = curr_off + bh->b_size;
1617                 next = bh->b_this_page;
1618
1619                 /*
1620                  * is this block fully invalidated?
1621                  */
1622                 if (offset <= curr_off)
1623                         discard_buffer(bh);
1624                 curr_off = next_off;
1625                 bh = next;
1626         } while (bh != head);
1627
1628         /*
1629          * We release buffers only if the entire page is being invalidated.
1630          * The get_block cached value has been unconditionally invalidated,
1631          * so real IO is not possible anymore.
1632          */
1633         if (offset == 0)
1634                 ret = try_to_release_page(page, 0);
1635 out:
1636         return ret;
1637 }
1638 EXPORT_SYMBOL(block_invalidatepage);
1639
1640 int do_invalidatepage(struct page *page, unsigned long offset)
1641 {
1642         int (*invalidatepage)(struct page *, unsigned long);
1643         invalidatepage = page->mapping->a_ops->invalidatepage;
1644         if (invalidatepage == NULL)
1645                 invalidatepage = block_invalidatepage;
1646         return (*invalidatepage)(page, offset);
1647 }
1648
1649 /*
1650  * We attach and possibly dirty the buffers atomically wrt
1651  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1652  * is already excluded via the page lock.
1653  */
1654 void create_empty_buffers(struct page *page,
1655                         unsigned long blocksize, unsigned long b_state)
1656 {
1657         struct buffer_head *bh, *head, *tail;
1658
1659         head = alloc_page_buffers(page, blocksize, 1);
1660         bh = head;
1661         do {
1662                 bh->b_state |= b_state;
1663                 tail = bh;
1664                 bh = bh->b_this_page;
1665         } while (bh);
1666         tail->b_this_page = head;
1667
1668         spin_lock(&page->mapping->private_lock);
1669         if (PageUptodate(page) || PageDirty(page)) {
1670                 bh = head;
1671                 do {
1672                         if (PageDirty(page))
1673                                 set_buffer_dirty(bh);
1674                         if (PageUptodate(page))
1675                                 set_buffer_uptodate(bh);
1676                         bh = bh->b_this_page;
1677                 } while (bh != head);
1678         }
1679         attach_page_buffers(page, head);
1680         spin_unlock(&page->mapping->private_lock);
1681 }
1682 EXPORT_SYMBOL(create_empty_buffers);
1683
1684 /*
1685  * We are taking a block for data and we don't want any output from any
1686  * buffer-cache aliases starting from return from that function and
1687  * until the moment when something will explicitly mark the buffer
1688  * dirty (hopefully that will not happen until we will free that block ;-)
1689  * We don't even need to mark it not-uptodate - nobody can expect
1690  * anything from a newly allocated buffer anyway. We used to used
1691  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1692  * don't want to mark the alias unmapped, for example - it would confuse
1693  * anyone who might pick it with bread() afterwards...
1694  *
1695  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1696  * be writeout I/O going on against recently-freed buffers.  We don't
1697  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1698  * only if we really need to.  That happens here.
1699  */
1700 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1701 {
1702         struct buffer_head *old_bh;
1703
1704         might_sleep();
1705
1706         old_bh = __find_get_block_slow(bdev, block, 0);
1707         if (old_bh) {
1708                 clear_buffer_dirty(old_bh);
1709                 wait_on_buffer(old_bh);
1710                 clear_buffer_req(old_bh);
1711                 __brelse(old_bh);
1712         }
1713 }
1714 EXPORT_SYMBOL(unmap_underlying_metadata);
1715
1716 /*
1717  * NOTE! All mapped/uptodate combinations are valid:
1718  *
1719  *      Mapped  Uptodate        Meaning
1720  *
1721  *      No      No              "unknown" - must do get_block()
1722  *      No      Yes             "hole" - zero-filled
1723  *      Yes     No              "allocated" - allocated on disk, not read in
1724  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1725  *
1726  * "Dirty" is valid only with the last case (mapped+uptodate).
1727  */
1728
1729 /*
1730  * While block_write_full_page is writing back the dirty buffers under
1731  * the page lock, whoever dirtied the buffers may decide to clean them
1732  * again at any time.  We handle that by only looking at the buffer
1733  * state inside lock_buffer().
1734  *
1735  * If block_write_full_page() is called for regular writeback
1736  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1737  * locked buffer.   This only can happen if someone has written the buffer
1738  * directly, with submit_bh().  At the address_space level PageWriteback
1739  * prevents this contention from occurring.
1740  */
1741 static int __block_write_full_page(struct inode *inode, struct page *page,
1742                         get_block_t *get_block, struct writeback_control *wbc)
1743 {
1744         int err;
1745         sector_t block;
1746         sector_t last_block;
1747         struct buffer_head *bh, *head;
1748         int nr_underway = 0;
1749
1750         BUG_ON(!PageLocked(page));
1751
1752         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1753
1754         if (!page_has_buffers(page)) {
1755                 create_empty_buffers(page, 1 << inode->i_blkbits,
1756                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1757         }
1758
1759         /*
1760          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1761          * here, and the (potentially unmapped) buffers may become dirty at
1762          * any time.  If a buffer becomes dirty here after we've inspected it
1763          * then we just miss that fact, and the page stays dirty.
1764          *
1765          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1766          * handle that here by just cleaning them.
1767          */
1768
1769         block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1770         head = page_buffers(page);
1771         bh = head;
1772
1773         /*
1774          * Get all the dirty buffers mapped to disk addresses and
1775          * handle any aliases from the underlying blockdev's mapping.
1776          */
1777         do {
1778                 if (block > last_block) {
1779                         /*
1780                          * mapped buffers outside i_size will occur, because
1781                          * this page can be outside i_size when there is a
1782                          * truncate in progress.
1783                          */
1784                         /*
1785                          * The buffer was zeroed by block_write_full_page()
1786                          */
1787                         clear_buffer_dirty(bh);
1788                         set_buffer_uptodate(bh);
1789                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1790                         err = get_block(inode, block, bh, 1);
1791                         if (err)
1792                                 goto recover;
1793                         if (buffer_new(bh)) {
1794                                 /* blockdev mappings never come here */
1795                                 clear_buffer_new(bh);
1796                                 unmap_underlying_metadata(bh->b_bdev,
1797                                                         bh->b_blocknr);
1798                         }
1799                 }
1800                 bh = bh->b_this_page;
1801                 block++;
1802         } while (bh != head);
1803
1804         do {
1805                 if (!buffer_mapped(bh))
1806                         continue;
1807                 /*
1808                  * If it's a fully non-blocking write attempt and we cannot
1809                  * lock the buffer then redirty the page.  Note that this can
1810                  * potentially cause a busy-wait loop from pdflush and kswapd
1811                  * activity, but those code paths have their own higher-level
1812                  * throttling.
1813                  */
1814                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1815                         lock_buffer(bh);
1816                 } else if (test_set_buffer_locked(bh)) {
1817                         redirty_page_for_writepage(wbc, page);
1818                         continue;
1819                 }
1820                 if (test_clear_buffer_dirty(bh)) {
1821                         mark_buffer_async_write(bh);
1822                 } else {
1823                         unlock_buffer(bh);
1824                 }
1825         } while ((bh = bh->b_this_page) != head);
1826
1827         /*
1828          * The page and its buffers are protected by PageWriteback(), so we can
1829          * drop the bh refcounts early.
1830          */
1831         BUG_ON(PageWriteback(page));
1832         set_page_writeback(page);
1833
1834         do {
1835                 struct buffer_head *next = bh->b_this_page;
1836                 if (buffer_async_write(bh)) {
1837                         submit_bh(WRITE, bh);
1838                         nr_underway++;
1839                 }
1840                 bh = next;
1841         } while (bh != head);
1842         unlock_page(page);
1843
1844         err = 0;
1845 done:
1846         if (nr_underway == 0) {
1847                 /*
1848                  * The page was marked dirty, but the buffers were
1849                  * clean.  Someone wrote them back by hand with
1850                  * ll_rw_block/submit_bh.  A rare case.
1851                  */
1852                 int uptodate = 1;
1853                 do {
1854                         if (!buffer_uptodate(bh)) {
1855                                 uptodate = 0;
1856                                 break;
1857                         }
1858                         bh = bh->b_this_page;
1859                 } while (bh != head);
1860                 if (uptodate)
1861                         SetPageUptodate(page);
1862                 end_page_writeback(page);
1863                 /*
1864                  * The page and buffer_heads can be released at any time from
1865                  * here on.
1866                  */
1867                 wbc->pages_skipped++;   /* We didn't write this page */
1868         }
1869         return err;
1870
1871 recover:
1872         /*
1873          * ENOSPC, or some other error.  We may already have added some
1874          * blocks to the file, so we need to write these out to avoid
1875          * exposing stale data.
1876          * The page is currently locked and not marked for writeback
1877          */
1878         bh = head;
1879         /* Recovery: lock and submit the mapped buffers */
1880         do {
1881                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1882                         lock_buffer(bh);
1883                         mark_buffer_async_write(bh);
1884                 } else {
1885                         /*
1886                          * The buffer may have been set dirty during
1887                          * attachment to a dirty page.
1888                          */
1889                         clear_buffer_dirty(bh);
1890                 }
1891         } while ((bh = bh->b_this_page) != head);
1892         SetPageError(page);
1893         BUG_ON(PageWriteback(page));
1894         set_page_writeback(page);
1895         unlock_page(page);
1896         do {
1897                 struct buffer_head *next = bh->b_this_page;
1898                 if (buffer_async_write(bh)) {
1899                         clear_buffer_dirty(bh);
1900                         submit_bh(WRITE, bh);
1901                         nr_underway++;
1902                 }
1903                 bh = next;
1904         } while (bh != head);
1905         goto done;
1906 }
1907
1908 static int __block_prepare_write(struct inode *inode, struct page *page,
1909                 unsigned from, unsigned to, get_block_t *get_block)
1910 {
1911         unsigned block_start, block_end;
1912         sector_t block;
1913         int err = 0;
1914         unsigned blocksize, bbits;
1915         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1916
1917         BUG_ON(!PageLocked(page));
1918         BUG_ON(from > PAGE_CACHE_SIZE);
1919         BUG_ON(to > PAGE_CACHE_SIZE);
1920         BUG_ON(from > to);
1921
1922         blocksize = 1 << inode->i_blkbits;
1923         if (!page_has_buffers(page))
1924                 create_empty_buffers(page, blocksize, 0);
1925         head = page_buffers(page);
1926
1927         bbits = inode->i_blkbits;
1928         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1929
1930         for(bh = head, block_start = 0; bh != head || !block_start;
1931             block++, block_start=block_end, bh = bh->b_this_page) {
1932                 block_end = block_start + blocksize;
1933                 if (block_end <= from || block_start >= to) {
1934                         if (PageUptodate(page)) {
1935                                 if (!buffer_uptodate(bh))
1936                                         set_buffer_uptodate(bh);
1937                         }
1938                         continue;
1939                 }
1940                 if (buffer_new(bh))
1941                         clear_buffer_new(bh);
1942                 if (!buffer_mapped(bh)) {
1943                         err = get_block(inode, block, bh, 1);
1944                         if (err)
1945                                 break;
1946                         if (buffer_new(bh)) {
1947                                 unmap_underlying_metadata(bh->b_bdev,
1948                                                         bh->b_blocknr);
1949                                 if (PageUptodate(page)) {
1950                                         set_buffer_uptodate(bh);
1951                                         continue;
1952                                 }
1953                                 if (block_end > to || block_start < from) {
1954                                         void *kaddr;
1955
1956                                         kaddr = kmap_atomic(page, KM_USER0);
1957                                         if (block_end > to)
1958                                                 memset(kaddr+to, 0,
1959                                                         block_end-to);
1960                                         if (block_start < from)
1961                                                 memset(kaddr+block_start,
1962                                                         0, from-block_start);
1963                                         flush_dcache_page(page);
1964                                         kunmap_atomic(kaddr, KM_USER0);
1965                                 }
1966                                 continue;
1967                         }
1968                 }
1969                 if (PageUptodate(page)) {
1970                         if (!buffer_uptodate(bh))
1971                                 set_buffer_uptodate(bh);
1972                         continue; 
1973                 }
1974                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1975                      (block_start < from || block_end > to)) {
1976                         ll_rw_block(READ, 1, &bh);
1977                         *wait_bh++=bh;
1978                 }
1979         }
1980         /*
1981          * If we issued read requests - let them complete.
1982          */
1983         while(wait_bh > wait) {
1984                 wait_on_buffer(*--wait_bh);
1985                 if (!buffer_uptodate(*wait_bh))
1986                         err = -EIO;
1987         }
1988         if (!err) {
1989                 bh = head;
1990                 do {
1991                         if (buffer_new(bh))
1992                                 clear_buffer_new(bh);
1993                 } while ((bh = bh->b_this_page) != head);
1994                 return 0;
1995         }
1996         /* Error case: */
1997         /*
1998          * Zero out any newly allocated blocks to avoid exposing stale
1999          * data.  If BH_New is set, we know that the block was newly
2000          * allocated in the above loop.
2001          */
2002         bh = head;
2003         block_start = 0;
2004         do {
2005                 block_end = block_start+blocksize;
2006                 if (block_end <= from)
2007                         goto next_bh;
2008                 if (block_start >= to)
2009                         break;
2010                 if (buffer_new(bh)) {
2011                         void *kaddr;
2012
2013                         clear_buffer_new(bh);
2014                         kaddr = kmap_atomic(page, KM_USER0);
2015                         memset(kaddr+block_start, 0, bh->b_size);
2016                         kunmap_atomic(kaddr, KM_USER0);
2017                         set_buffer_uptodate(bh);
2018                         mark_buffer_dirty(bh);
2019                 }
2020 next_bh:
2021                 block_start = block_end;
2022                 bh = bh->b_this_page;
2023         } while (bh != head);
2024         return err;
2025 }
2026
2027 static int __block_commit_write(struct inode *inode, struct page *page,
2028                 unsigned from, unsigned to)
2029 {
2030         unsigned block_start, block_end;
2031         int partial = 0;
2032         unsigned blocksize;
2033         struct buffer_head *bh, *head;
2034
2035         blocksize = 1 << inode->i_blkbits;
2036
2037         for(bh = head = page_buffers(page), block_start = 0;
2038             bh != head || !block_start;
2039             block_start=block_end, bh = bh->b_this_page) {
2040                 block_end = block_start + blocksize;
2041                 if (block_end <= from || block_start >= to) {
2042                         if (!buffer_uptodate(bh))
2043                                 partial = 1;
2044                 } else {
2045                         set_buffer_uptodate(bh);
2046                         mark_buffer_dirty(bh);
2047                 }
2048         }
2049
2050         /*
2051          * If this is a partial write which happened to make all buffers
2052          * uptodate then we can optimize away a bogus readpage() for
2053          * the next read(). Here we 'discover' whether the page went
2054          * uptodate as a result of this (potentially partial) write.
2055          */
2056         if (!partial)
2057                 SetPageUptodate(page);
2058         return 0;
2059 }
2060
2061 /*
2062  * Generic "read page" function for block devices that have the normal
2063  * get_block functionality. This is most of the block device filesystems.
2064  * Reads the page asynchronously --- the unlock_buffer() and
2065  * set/clear_buffer_uptodate() functions propagate buffer state into the
2066  * page struct once IO has completed.
2067  */
2068 int block_read_full_page(struct page *page, get_block_t *get_block)
2069 {
2070         struct inode *inode = page->mapping->host;
2071         sector_t iblock, lblock;
2072         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2073         unsigned int blocksize;
2074         int nr, i;
2075         int fully_mapped = 1;
2076
2077         BUG_ON(!PageLocked(page));
2078         blocksize = 1 << inode->i_blkbits;
2079         if (!page_has_buffers(page))
2080                 create_empty_buffers(page, blocksize, 0);
2081         head = page_buffers(page);
2082
2083         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2084         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2085         bh = head;
2086         nr = 0;
2087         i = 0;
2088
2089         do {
2090                 if (buffer_uptodate(bh))
2091                         continue;
2092
2093                 if (!buffer_mapped(bh)) {
2094                         int err = 0;
2095
2096                         fully_mapped = 0;
2097                         if (iblock < lblock) {
2098                                 err = get_block(inode, iblock, bh, 0);
2099                                 if (err)
2100                                         SetPageError(page);
2101                         }
2102                         if (!buffer_mapped(bh)) {
2103                                 void *kaddr = kmap_atomic(page, KM_USER0);
2104                                 memset(kaddr + i * blocksize, 0, blocksize);
2105                                 flush_dcache_page(page);
2106                                 kunmap_atomic(kaddr, KM_USER0);
2107                                 if (!err)
2108                                         set_buffer_uptodate(bh);
2109                                 continue;
2110                         }
2111                         /*
2112                          * get_block() might have updated the buffer
2113                          * synchronously
2114                          */
2115                         if (buffer_uptodate(bh))
2116                                 continue;
2117                 }
2118                 arr[nr++] = bh;
2119         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2120
2121         if (fully_mapped)
2122                 SetPageMappedToDisk(page);
2123
2124         if (!nr) {
2125                 /*
2126                  * All buffers are uptodate - we can set the page uptodate
2127                  * as well. But not if get_block() returned an error.
2128                  */
2129                 if (!PageError(page))
2130                         SetPageUptodate(page);
2131                 unlock_page(page);
2132                 return 0;
2133         }
2134
2135         /* Stage two: lock the buffers */
2136         for (i = 0; i < nr; i++) {
2137                 bh = arr[i];
2138                 lock_buffer(bh);
2139                 mark_buffer_async_read(bh);
2140         }
2141
2142         /*
2143          * Stage 3: start the IO.  Check for uptodateness
2144          * inside the buffer lock in case another process reading
2145          * the underlying blockdev brought it uptodate (the sct fix).
2146          */
2147         for (i = 0; i < nr; i++) {
2148                 bh = arr[i];
2149                 if (buffer_uptodate(bh))
2150                         end_buffer_async_read(bh, 1);
2151                 else
2152                         submit_bh(READ, bh);
2153         }
2154         return 0;
2155 }
2156
2157 /* utility function for filesystems that need to do work on expanding
2158  * truncates.  Uses prepare/commit_write to allow the filesystem to
2159  * deal with the hole.  
2160  */
2161 int generic_cont_expand(struct inode *inode, loff_t size)
2162 {
2163         struct address_space *mapping = inode->i_mapping;
2164         struct page *page;
2165         unsigned long index, offset, limit;
2166         int err;
2167
2168         err = -EFBIG;
2169         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2170         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2171                 send_sig(SIGXFSZ, current, 0);
2172                 goto out;
2173         }
2174         if (size > inode->i_sb->s_maxbytes)
2175                 goto out;
2176
2177         offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
2178
2179         /* ugh.  in prepare/commit_write, if from==to==start of block, we 
2180         ** skip the prepare.  make sure we never send an offset for the start
2181         ** of a block
2182         */
2183         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2184                 offset++;
2185         }
2186         index = size >> PAGE_CACHE_SHIFT;
2187         err = -ENOMEM;
2188         page = grab_cache_page(mapping, index);
2189         if (!page)
2190                 goto out;
2191         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2192         if (!err) {
2193                 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2194         }
2195         unlock_page(page);
2196         page_cache_release(page);
2197         if (err > 0)
2198                 err = 0;
2199 out:
2200         return err;
2201 }
2202
2203 /*
2204  * For moronic filesystems that do not allow holes in file.
2205  * We may have to extend the file.
2206  */
2207
2208 int cont_prepare_write(struct page *page, unsigned offset,
2209                 unsigned to, get_block_t *get_block, loff_t *bytes)
2210 {
2211         struct address_space *mapping = page->mapping;
2212         struct inode *inode = mapping->host;
2213         struct page *new_page;
2214         pgoff_t pgpos;
2215         long status;
2216         unsigned zerofrom;
2217         unsigned blocksize = 1 << inode->i_blkbits;
2218         void *kaddr;
2219
2220         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2221                 status = -ENOMEM;
2222                 new_page = grab_cache_page(mapping, pgpos);
2223                 if (!new_page)
2224                         goto out;
2225                 /* we might sleep */
2226                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2227                         unlock_page(new_page);
2228                         page_cache_release(new_page);
2229                         continue;
2230                 }
2231                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2232                 if (zerofrom & (blocksize-1)) {
2233                         *bytes |= (blocksize-1);
2234                         (*bytes)++;
2235                 }
2236                 status = __block_prepare_write(inode, new_page, zerofrom,
2237                                                 PAGE_CACHE_SIZE, get_block);
2238                 if (status)
2239                         goto out_unmap;
2240                 kaddr = kmap_atomic(new_page, KM_USER0);
2241                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2242                 flush_dcache_page(new_page);
2243                 kunmap_atomic(kaddr, KM_USER0);
2244                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2245                 unlock_page(new_page);
2246                 page_cache_release(new_page);
2247         }
2248
2249         if (page->index < pgpos) {
2250                 /* completely inside the area */
2251                 zerofrom = offset;
2252         } else {
2253                 /* page covers the boundary, find the boundary offset */
2254                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2255
2256                 /* if we will expand the thing last block will be filled */
2257                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2258                         *bytes |= (blocksize-1);
2259                         (*bytes)++;
2260                 }
2261
2262                 /* starting below the boundary? Nothing to zero out */
2263                 if (offset <= zerofrom)
2264                         zerofrom = offset;
2265         }
2266         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2267         if (status)
2268                 goto out1;
2269         if (zerofrom < offset) {
2270                 kaddr = kmap_atomic(page, KM_USER0);
2271                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2272                 flush_dcache_page(page);
2273                 kunmap_atomic(kaddr, KM_USER0);
2274                 __block_commit_write(inode, page, zerofrom, offset);
2275         }
2276         return 0;
2277 out1:
2278         ClearPageUptodate(page);
2279         return status;
2280
2281 out_unmap:
2282         ClearPageUptodate(new_page);
2283         unlock_page(new_page);
2284         page_cache_release(new_page);
2285 out:
2286         return status;
2287 }
2288
2289 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2290                         get_block_t *get_block)
2291 {
2292         struct inode *inode = page->mapping->host;
2293         int err = __block_prepare_write(inode, page, from, to, get_block);
2294         if (err)
2295                 ClearPageUptodate(page);
2296         return err;
2297 }
2298
2299 int block_commit_write(struct page *page, unsigned from, unsigned to)
2300 {
2301         struct inode *inode = page->mapping->host;
2302         __block_commit_write(inode,page,from,to);
2303         return 0;
2304 }
2305
2306 int generic_commit_write(struct file *file, struct page *page,
2307                 unsigned from, unsigned to)
2308 {
2309         struct inode *inode = page->mapping->host;
2310         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2311         __block_commit_write(inode,page,from,to);
2312         /*
2313          * No need to use i_size_read() here, the i_size
2314          * cannot change under us because we hold i_sem.
2315          */
2316         if (pos > inode->i_size) {
2317                 i_size_write(inode, pos);
2318                 mark_inode_dirty(inode);
2319         }
2320         return 0;
2321 }
2322
2323
2324 /*
2325  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2326  * immediately, while under the page lock.  So it needs a special end_io
2327  * handler which does not touch the bh after unlocking it.
2328  *
2329  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2330  * a race there is benign: unlock_buffer() only use the bh's address for
2331  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2332  * itself.
2333  */
2334 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2335 {
2336         if (uptodate) {
2337                 set_buffer_uptodate(bh);
2338         } else {
2339                 /* This happens, due to failed READA attempts. */
2340                 clear_buffer_uptodate(bh);
2341         }
2342         unlock_buffer(bh);
2343 }
2344
2345 /*
2346  * On entry, the page is fully not uptodate.
2347  * On exit the page is fully uptodate in the areas outside (from,to)
2348  */
2349 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2350                         get_block_t *get_block)
2351 {
2352         struct inode *inode = page->mapping->host;
2353         const unsigned blkbits = inode->i_blkbits;
2354         const unsigned blocksize = 1 << blkbits;
2355         struct buffer_head map_bh;
2356         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2357         unsigned block_in_page;
2358         unsigned block_start;
2359         sector_t block_in_file;
2360         char *kaddr;
2361         int nr_reads = 0;
2362         int i;
2363         int ret = 0;
2364         int is_mapped_to_disk = 1;
2365         int dirtied_it = 0;
2366
2367         if (PageMappedToDisk(page))
2368                 return 0;
2369
2370         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2371         map_bh.b_page = page;
2372
2373         /*
2374          * We loop across all blocks in the page, whether or not they are
2375          * part of the affected region.  This is so we can discover if the
2376          * page is fully mapped-to-disk.
2377          */
2378         for (block_start = 0, block_in_page = 0;
2379                   block_start < PAGE_CACHE_SIZE;
2380                   block_in_page++, block_start += blocksize) {
2381                 unsigned block_end = block_start + blocksize;
2382                 int create;
2383
2384                 map_bh.b_state = 0;
2385                 create = 1;
2386                 if (block_start >= to)
2387                         create = 0;
2388                 ret = get_block(inode, block_in_file + block_in_page,
2389                                         &map_bh, create);
2390                 if (ret)
2391                         goto failed;
2392                 if (!buffer_mapped(&map_bh))
2393                         is_mapped_to_disk = 0;
2394                 if (buffer_new(&map_bh))
2395                         unmap_underlying_metadata(map_bh.b_bdev,
2396                                                         map_bh.b_blocknr);
2397                 if (PageUptodate(page))
2398                         continue;
2399                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2400                         kaddr = kmap_atomic(page, KM_USER0);
2401                         if (block_start < from) {
2402                                 memset(kaddr+block_start, 0, from-block_start);
2403                                 dirtied_it = 1;
2404                         }
2405                         if (block_end > to) {
2406                                 memset(kaddr + to, 0, block_end - to);
2407                                 dirtied_it = 1;
2408                         }
2409                         flush_dcache_page(page);
2410                         kunmap_atomic(kaddr, KM_USER0);
2411                         continue;
2412                 }
2413                 if (buffer_uptodate(&map_bh))
2414                         continue;       /* reiserfs does this */
2415                 if (block_start < from || block_end > to) {
2416                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2417
2418                         if (!bh) {
2419                                 ret = -ENOMEM;
2420                                 goto failed;
2421                         }
2422                         bh->b_state = map_bh.b_state;
2423                         atomic_set(&bh->b_count, 0);
2424                         bh->b_this_page = NULL;
2425                         bh->b_page = page;
2426                         bh->b_blocknr = map_bh.b_blocknr;
2427                         bh->b_size = blocksize;
2428                         bh->b_data = (char *)(long)block_start;
2429                         bh->b_bdev = map_bh.b_bdev;
2430                         bh->b_private = NULL;
2431                         read_bh[nr_reads++] = bh;
2432                 }
2433         }
2434
2435         if (nr_reads) {
2436                 struct buffer_head *bh;
2437
2438                 /*
2439                  * The page is locked, so these buffers are protected from
2440                  * any VM or truncate activity.  Hence we don't need to care
2441                  * for the buffer_head refcounts.
2442                  */
2443                 for (i = 0; i < nr_reads; i++) {
2444                         bh = read_bh[i];
2445                         lock_buffer(bh);
2446                         bh->b_end_io = end_buffer_read_nobh;
2447                         submit_bh(READ, bh);
2448                 }
2449                 for (i = 0; i < nr_reads; i++) {
2450                         bh = read_bh[i];
2451                         wait_on_buffer(bh);
2452                         if (!buffer_uptodate(bh))
2453                                 ret = -EIO;
2454                         free_buffer_head(bh);
2455                         read_bh[i] = NULL;
2456                 }
2457                 if (ret)
2458                         goto failed;
2459         }
2460
2461         if (is_mapped_to_disk)
2462                 SetPageMappedToDisk(page);
2463         SetPageUptodate(page);
2464
2465         /*
2466          * Setting the page dirty here isn't necessary for the prepare_write
2467          * function - commit_write will do that.  But if/when this function is
2468          * used within the pagefault handler to ensure that all mmapped pages
2469          * have backing space in the filesystem, we will need to dirty the page
2470          * if its contents were altered.
2471          */
2472         if (dirtied_it)
2473                 set_page_dirty(page);
2474
2475         return 0;
2476
2477 failed:
2478         for (i = 0; i < nr_reads; i++) {
2479                 if (read_bh[i])
2480                         free_buffer_head(read_bh[i]);
2481         }
2482
2483         /*
2484          * Error recovery is pretty slack.  Clear the page and mark it dirty
2485          * so we'll later zero out any blocks which _were_ allocated.
2486          */
2487         kaddr = kmap_atomic(page, KM_USER0);
2488         memset(kaddr, 0, PAGE_CACHE_SIZE);
2489         kunmap_atomic(kaddr, KM_USER0);
2490         SetPageUptodate(page);
2491         set_page_dirty(page);
2492         return ret;
2493 }
2494 EXPORT_SYMBOL(nobh_prepare_write);
2495
2496 int nobh_commit_write(struct file *file, struct page *page,
2497                 unsigned from, unsigned to)
2498 {
2499         struct inode *inode = page->mapping->host;
2500         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2501
2502         set_page_dirty(page);
2503         if (pos > inode->i_size) {
2504                 i_size_write(inode, pos);
2505                 mark_inode_dirty(inode);
2506         }
2507         return 0;
2508 }
2509 EXPORT_SYMBOL(nobh_commit_write);
2510
2511 /*
2512  * nobh_writepage() - based on block_full_write_page() except
2513  * that it tries to operate without attaching bufferheads to
2514  * the page.
2515  */
2516 int nobh_writepage(struct page *page, get_block_t *get_block,
2517                         struct writeback_control *wbc)
2518 {
2519         struct inode * const inode = page->mapping->host;
2520         loff_t i_size = i_size_read(inode);
2521         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2522         unsigned offset;
2523         void *kaddr;
2524         int ret;
2525
2526         /* Is the page fully inside i_size? */
2527         if (page->index < end_index)
2528                 goto out;
2529
2530         /* Is the page fully outside i_size? (truncate in progress) */
2531         offset = i_size & (PAGE_CACHE_SIZE-1);
2532         if (page->index >= end_index+1 || !offset) {
2533                 /*
2534                  * The page may have dirty, unmapped buffers.  For example,
2535                  * they may have been added in ext3_writepage().  Make them
2536                  * freeable here, so the page does not leak.
2537                  */
2538 #if 0
2539                 /* Not really sure about this  - do we need this ? */
2540                 if (page->mapping->a_ops->invalidatepage)
2541                         page->mapping->a_ops->invalidatepage(page, offset);
2542 #endif
2543                 unlock_page(page);
2544                 return 0; /* don't care */
2545         }
2546
2547         /*
2548          * The page straddles i_size.  It must be zeroed out on each and every
2549          * writepage invocation because it may be mmapped.  "A file is mapped
2550          * in multiples of the page size.  For a file that is not a multiple of
2551          * the  page size, the remaining memory is zeroed when mapped, and
2552          * writes to that region are not written out to the file."
2553          */
2554         kaddr = kmap_atomic(page, KM_USER0);
2555         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2556         flush_dcache_page(page);
2557         kunmap_atomic(kaddr, KM_USER0);
2558 out:
2559         ret = mpage_writepage(page, get_block, wbc);
2560         if (ret == -EAGAIN)
2561                 ret = __block_write_full_page(inode, page, get_block, wbc);
2562         return ret;
2563 }
2564 EXPORT_SYMBOL(nobh_writepage);
2565
2566 /*
2567  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2568  */
2569 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2570 {
2571         struct inode *inode = mapping->host;
2572         unsigned blocksize = 1 << inode->i_blkbits;
2573         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2574         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2575         unsigned to;
2576         struct page *page;
2577         struct address_space_operations *a_ops = mapping->a_ops;
2578         char *kaddr;
2579         int ret = 0;
2580
2581         if ((offset & (blocksize - 1)) == 0)
2582                 goto out;
2583
2584         ret = -ENOMEM;
2585         page = grab_cache_page(mapping, index);
2586         if (!page)
2587                 goto out;
2588
2589         to = (offset + blocksize) & ~(blocksize - 1);
2590         ret = a_ops->prepare_write(NULL, page, offset, to);
2591         if (ret == 0) {
2592                 kaddr = kmap_atomic(page, KM_USER0);
2593                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2594                 flush_dcache_page(page);
2595                 kunmap_atomic(kaddr, KM_USER0);
2596                 set_page_dirty(page);
2597         }
2598         unlock_page(page);
2599         page_cache_release(page);
2600 out:
2601         return ret;
2602 }
2603 EXPORT_SYMBOL(nobh_truncate_page);
2604
2605 int block_truncate_page(struct address_space *mapping,
2606                         loff_t from, get_block_t *get_block)
2607 {
2608         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2609         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2610         unsigned blocksize;
2611         pgoff_t iblock;
2612         unsigned length, pos;
2613         struct inode *inode = mapping->host;
2614         struct page *page;
2615         struct buffer_head *bh;
2616         void *kaddr;
2617         int err;
2618
2619         blocksize = 1 << inode->i_blkbits;
2620         length = offset & (blocksize - 1);
2621
2622         /* Block boundary? Nothing to do */
2623         if (!length)
2624                 return 0;
2625
2626         length = blocksize - length;
2627         iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2628         
2629         page = grab_cache_page(mapping, index);
2630         err = -ENOMEM;
2631         if (!page)
2632                 goto out;
2633
2634         if (!page_has_buffers(page))
2635                 create_empty_buffers(page, blocksize, 0);
2636
2637         /* Find the buffer that contains "offset" */
2638         bh = page_buffers(page);
2639         pos = blocksize;
2640         while (offset >= pos) {
2641                 bh = bh->b_this_page;
2642                 iblock++;
2643                 pos += blocksize;
2644         }
2645
2646         err = 0;
2647         if (!buffer_mapped(bh)) {
2648                 err = get_block(inode, iblock, bh, 0);
2649                 if (err)
2650                         goto unlock;
2651                 /* unmapped? It's a hole - nothing to do */
2652                 if (!buffer_mapped(bh))
2653                         goto unlock;
2654         }
2655
2656         /* Ok, it's mapped. Make sure it's up-to-date */
2657         if (PageUptodate(page))
2658                 set_buffer_uptodate(bh);
2659
2660         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2661                 err = -EIO;
2662                 ll_rw_block(READ, 1, &bh);
2663                 wait_on_buffer(bh);
2664                 /* Uhhuh. Read error. Complain and punt. */
2665                 if (!buffer_uptodate(bh))
2666                         goto unlock;
2667         }
2668
2669         kaddr = kmap_atomic(page, KM_USER0);
2670         memset(kaddr + offset, 0, length);
2671         flush_dcache_page(page);
2672         kunmap_atomic(kaddr, KM_USER0);
2673
2674         mark_buffer_dirty(bh);
2675         err = 0;
2676
2677 unlock:
2678         unlock_page(page);
2679         page_cache_release(page);
2680 out:
2681         return err;
2682 }
2683
2684 /*
2685  * The generic ->writepage function for buffer-backed address_spaces
2686  */
2687 int block_write_full_page(struct page *page, get_block_t *get_block,
2688                         struct writeback_control *wbc)
2689 {
2690         struct inode * const inode = page->mapping->host;
2691         loff_t i_size = i_size_read(inode);
2692         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2693         unsigned offset;
2694         void *kaddr;
2695
2696         /* Is the page fully inside i_size? */
2697         if (page->index < end_index)
2698                 return __block_write_full_page(inode, page, get_block, wbc);
2699
2700         /* Is the page fully outside i_size? (truncate in progress) */
2701         offset = i_size & (PAGE_CACHE_SIZE-1);
2702         if (page->index >= end_index+1 || !offset) {
2703                 /*
2704                  * The page may have dirty, unmapped buffers.  For example,
2705                  * they may have been added in ext3_writepage().  Make them
2706                  * freeable here, so the page does not leak.
2707                  */
2708                 do_invalidatepage(page, 0);
2709                 unlock_page(page);
2710                 return 0; /* don't care */
2711         }
2712
2713         /*
2714          * The page straddles i_size.  It must be zeroed out on each and every
2715          * writepage invokation because it may be mmapped.  "A file is mapped
2716          * in multiples of the page size.  For a file that is not a multiple of
2717          * the  page size, the remaining memory is zeroed when mapped, and
2718          * writes to that region are not written out to the file."
2719          */
2720         kaddr = kmap_atomic(page, KM_USER0);
2721         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2722         flush_dcache_page(page);
2723         kunmap_atomic(kaddr, KM_USER0);
2724         return __block_write_full_page(inode, page, get_block, wbc);
2725 }
2726
2727 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2728                             get_block_t *get_block)
2729 {
2730         struct buffer_head tmp;
2731         struct inode *inode = mapping->host;
2732         tmp.b_state = 0;
2733         tmp.b_blocknr = 0;
2734         get_block(inode, block, &tmp, 0);
2735         return tmp.b_blocknr;
2736 }
2737
2738 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2739 {
2740         struct buffer_head *bh = bio->bi_private;
2741
2742         if (bio->bi_size)
2743                 return 1;
2744
2745         if (err == -EOPNOTSUPP) {
2746                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2747                 set_bit(BH_Eopnotsupp, &bh->b_state);
2748         }
2749
2750         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2751         bio_put(bio);
2752         return 0;
2753 }
2754
2755 int submit_bh(int rw, struct buffer_head * bh)
2756 {
2757         struct bio *bio;
2758         int ret = 0;
2759
2760         BUG_ON(!buffer_locked(bh));
2761         BUG_ON(!buffer_mapped(bh));
2762         BUG_ON(!bh->b_end_io);
2763
2764         if (buffer_ordered(bh) && (rw == WRITE))
2765                 rw = WRITE_BARRIER;
2766
2767         /*
2768          * Only clear out a write error when rewriting, should this
2769          * include WRITE_SYNC as well?
2770          */
2771         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2772                 clear_buffer_write_io_error(bh);
2773
2774         /*
2775          * from here on down, it's all bio -- do the initial mapping,
2776          * submit_bio -> generic_make_request may further map this bio around
2777          */
2778         bio = bio_alloc(GFP_NOIO, 1);
2779
2780         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2781         bio->bi_bdev = bh->b_bdev;
2782         bio->bi_io_vec[0].bv_page = bh->b_page;
2783         bio->bi_io_vec[0].bv_len = bh->b_size;
2784         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2785
2786         bio->bi_vcnt = 1;
2787         bio->bi_idx = 0;
2788         bio->bi_size = bh->b_size;
2789
2790         bio->bi_end_io = end_bio_bh_io_sync;
2791         bio->bi_private = bh;
2792
2793         bio_get(bio);
2794         submit_bio(rw, bio);
2795
2796         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2797                 ret = -EOPNOTSUPP;
2798
2799         bio_put(bio);
2800         return ret;
2801 }
2802
2803 /**
2804  * ll_rw_block: low-level access to block devices (DEPRECATED)
2805  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2806  * @nr: number of &struct buffer_heads in the array
2807  * @bhs: array of pointers to &struct buffer_head
2808  *
2809  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2810  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2811  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2812  * are sent to disk. The fourth %READA option is described in the documentation
2813  * for generic_make_request() which ll_rw_block() calls.
2814  *
2815  * This function drops any buffer that it cannot get a lock on (with the
2816  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2817  * clean when doing a write request, and any buffer that appears to be
2818  * up-to-date when doing read request.  Further it marks as clean buffers that
2819  * are processed for writing (the buffer cache won't assume that they are
2820  * actually clean until the buffer gets unlocked).
2821  *
2822  * ll_rw_block sets b_end_io to simple completion handler that marks
2823  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2824  * any waiters. 
2825  *
2826  * All of the buffers must be for the same device, and must also be a
2827  * multiple of the current approved size for the device.
2828  */
2829 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2830 {
2831         int i;
2832
2833         for (i = 0; i < nr; i++) {
2834                 struct buffer_head *bh = bhs[i];
2835
2836                 if (rw == SWRITE)
2837                         lock_buffer(bh);
2838                 else if (test_set_buffer_locked(bh))
2839                         continue;
2840
2841                 get_bh(bh);
2842                 if (rw == WRITE || rw == SWRITE) {
2843                         if (test_clear_buffer_dirty(bh)) {
2844                                 bh->b_end_io = end_buffer_write_sync;
2845                                 submit_bh(WRITE, bh);
2846                                 continue;
2847                         }
2848                 } else {
2849                         if (!buffer_uptodate(bh)) {
2850                                 bh->b_end_io = end_buffer_read_sync;
2851                                 submit_bh(rw, bh);
2852                                 continue;
2853                         }
2854                 }
2855                 unlock_buffer(bh);
2856                 put_bh(bh);
2857         }
2858 }
2859
2860 /*
2861  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2862  * and then start new I/O and then wait upon it.  The caller must have a ref on
2863  * the buffer_head.
2864  */
2865 int sync_dirty_buffer(struct buffer_head *bh)
2866 {
2867         int ret = 0;
2868
2869         WARN_ON(atomic_read(&bh->b_count) < 1);
2870         lock_buffer(bh);
2871         if (test_clear_buffer_dirty(bh)) {
2872                 get_bh(bh);
2873                 bh->b_end_io = end_buffer_write_sync;
2874                 ret = submit_bh(WRITE, bh);
2875                 wait_on_buffer(bh);
2876                 if (buffer_eopnotsupp(bh)) {
2877                         clear_buffer_eopnotsupp(bh);
2878                         ret = -EOPNOTSUPP;
2879                 }
2880                 if (!ret && !buffer_uptodate(bh))
2881                         ret = -EIO;
2882         } else {
2883                 unlock_buffer(bh);
2884         }
2885         return ret;
2886 }
2887
2888 /*
2889  * try_to_free_buffers() checks if all the buffers on this particular page
2890  * are unused, and releases them if so.
2891  *
2892  * Exclusion against try_to_free_buffers may be obtained by either
2893  * locking the page or by holding its mapping's private_lock.
2894  *
2895  * If the page is dirty but all the buffers are clean then we need to
2896  * be sure to mark the page clean as well.  This is because the page
2897  * may be against a block device, and a later reattachment of buffers
2898  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2899  * filesystem data on the same device.
2900  *
2901  * The same applies to regular filesystem pages: if all the buffers are
2902  * clean then we set the page clean and proceed.  To do that, we require
2903  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2904  * private_lock.
2905  *
2906  * try_to_free_buffers() is non-blocking.
2907  */
2908 static inline int buffer_busy(struct buffer_head *bh)
2909 {
2910         return atomic_read(&bh->b_count) |
2911                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2912 }
2913
2914 static int
2915 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2916 {
2917         struct buffer_head *head = page_buffers(page);
2918         struct buffer_head *bh;
2919
2920         bh = head;
2921         do {
2922                 if (buffer_write_io_error(bh) && page->mapping)
2923                         set_bit(AS_EIO, &page->mapping->flags);
2924                 if (buffer_busy(bh))
2925                         goto failed;
2926                 bh = bh->b_this_page;
2927         } while (bh != head);
2928
2929         do {
2930                 struct buffer_head *next = bh->b_this_page;
2931
2932                 if (!list_empty(&bh->b_assoc_buffers))
2933                         __remove_assoc_queue(bh);
2934                 bh = next;
2935         } while (bh != head);
2936         *buffers_to_free = head;
2937         __clear_page_buffers(page);
2938         return 1;
2939 failed:
2940         return 0;
2941 }
2942
2943 int try_to_free_buffers(struct page *page)
2944 {
2945         struct address_space * const mapping = page->mapping;
2946         struct buffer_head *buffers_to_free = NULL;
2947         int ret = 0;
2948
2949         BUG_ON(!PageLocked(page));
2950         if (PageWriteback(page))
2951                 return 0;
2952
2953         if (mapping == NULL) {          /* can this still happen? */
2954                 ret = drop_buffers(page, &buffers_to_free);
2955                 goto out;
2956         }
2957
2958         spin_lock(&mapping->private_lock);
2959         ret = drop_buffers(page, &buffers_to_free);
2960         if (ret) {
2961                 /*
2962                  * If the filesystem writes its buffers by hand (eg ext3)
2963                  * then we can have clean buffers against a dirty page.  We
2964                  * clean the page here; otherwise later reattachment of buffers
2965                  * could encounter a non-uptodate page, which is unresolvable.
2966                  * This only applies in the rare case where try_to_free_buffers
2967                  * succeeds but the page is not freed.
2968                  */
2969                 clear_page_dirty(page);
2970         }
2971         spin_unlock(&mapping->private_lock);
2972 out:
2973         if (buffers_to_free) {
2974                 struct buffer_head *bh = buffers_to_free;
2975
2976                 do {
2977                         struct buffer_head *next = bh->b_this_page;
2978                         free_buffer_head(bh);
2979                         bh = next;
2980                 } while (bh != buffers_to_free);
2981         }
2982         return ret;
2983 }
2984 EXPORT_SYMBOL(try_to_free_buffers);
2985
2986 int block_sync_page(struct page *page)
2987 {
2988         struct address_space *mapping;
2989
2990         smp_mb();
2991         mapping = page_mapping(page);
2992         if (mapping)
2993                 blk_run_backing_dev(mapping->backing_dev_info, page);
2994         return 0;
2995 }
2996
2997 /*
2998  * There are no bdflush tunables left.  But distributions are
2999  * still running obsolete flush daemons, so we terminate them here.
3000  *
3001  * Use of bdflush() is deprecated and will be removed in a future kernel.
3002  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3003  */
3004 asmlinkage long sys_bdflush(int func, long data)
3005 {
3006         static int msg_count;
3007
3008         if (!capable(CAP_SYS_ADMIN))
3009                 return -EPERM;
3010
3011         if (msg_count < 5) {
3012                 msg_count++;
3013                 printk(KERN_INFO
3014                         "warning: process `%s' used the obsolete bdflush"
3015                         " system call\n", current->comm);
3016                 printk(KERN_INFO "Fix your initscripts?\n");
3017         }
3018
3019         if (func == 1)
3020                 do_exit(0);
3021         return 0;
3022 }
3023
3024 /*
3025  * Buffer-head allocation
3026  */
3027 static kmem_cache_t *bh_cachep;
3028
3029 /*
3030  * Once the number of bh's in the machine exceeds this level, we start
3031  * stripping them in writeback.
3032  */
3033 static int max_buffer_heads;
3034
3035 int buffer_heads_over_limit;
3036
3037 struct bh_accounting {
3038         int nr;                 /* Number of live bh's */
3039         int ratelimit;          /* Limit cacheline bouncing */
3040 };
3041
3042 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3043
3044 static void recalc_bh_state(void)
3045 {
3046         int i;
3047         int tot = 0;
3048
3049         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3050                 return;
3051         __get_cpu_var(bh_accounting).ratelimit = 0;
3052         for_each_cpu(i)
3053                 tot += per_cpu(bh_accounting, i).nr;
3054         buffer_heads_over_limit = (tot > max_buffer_heads);
3055 }
3056         
3057 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3058 {
3059         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3060         if (ret) {
3061                 get_cpu_var(bh_accounting).nr++;
3062                 recalc_bh_state();
3063                 put_cpu_var(bh_accounting);
3064         }
3065         return ret;
3066 }
3067 EXPORT_SYMBOL(alloc_buffer_head);
3068
3069 void free_buffer_head(struct buffer_head *bh)
3070 {
3071         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3072         kmem_cache_free(bh_cachep, bh);
3073         get_cpu_var(bh_accounting).nr--;
3074         recalc_bh_state();
3075         put_cpu_var(bh_accounting);
3076 }
3077 EXPORT_SYMBOL(free_buffer_head);
3078
3079 static void
3080 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3081 {
3082         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3083                             SLAB_CTOR_CONSTRUCTOR) {
3084                 struct buffer_head * bh = (struct buffer_head *)data;
3085
3086                 memset(bh, 0, sizeof(*bh));
3087                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3088         }
3089 }
3090
3091 #ifdef CONFIG_HOTPLUG_CPU
3092 static void buffer_exit_cpu(int cpu)
3093 {
3094         int i;
3095         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3096
3097         for (i = 0; i < BH_LRU_SIZE; i++) {
3098                 brelse(b->bhs[i]);
3099                 b->bhs[i] = NULL;
3100         }
3101 }
3102
3103 static int buffer_cpu_notify(struct notifier_block *self,
3104                               unsigned long action, void *hcpu)
3105 {
3106         if (action == CPU_DEAD)
3107                 buffer_exit_cpu((unsigned long)hcpu);
3108         return NOTIFY_OK;
3109 }
3110 #endif /* CONFIG_HOTPLUG_CPU */
3111
3112 void __init buffer_init(void)
3113 {
3114         int nrpages;
3115
3116         bh_cachep = kmem_cache_create("buffer_head",
3117                         sizeof(struct buffer_head), 0,
3118                         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3119
3120         /*
3121          * Limit the bh occupancy to 10% of ZONE_NORMAL
3122          */
3123         nrpages = (nr_free_buffer_pages() * 10) / 100;
3124         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3125         hotcpu_notifier(buffer_cpu_notify, 0);
3126 }
3127
3128 EXPORT_SYMBOL(__bforget);
3129 EXPORT_SYMBOL(__brelse);
3130 EXPORT_SYMBOL(__wait_on_buffer);
3131 EXPORT_SYMBOL(block_commit_write);
3132 EXPORT_SYMBOL(block_prepare_write);
3133 EXPORT_SYMBOL(block_read_full_page);
3134 EXPORT_SYMBOL(block_sync_page);
3135 EXPORT_SYMBOL(block_truncate_page);
3136 EXPORT_SYMBOL(block_write_full_page);
3137 EXPORT_SYMBOL(cont_prepare_write);
3138 EXPORT_SYMBOL(end_buffer_async_write);
3139 EXPORT_SYMBOL(end_buffer_read_sync);
3140 EXPORT_SYMBOL(end_buffer_write_sync);
3141 EXPORT_SYMBOL(file_fsync);
3142 EXPORT_SYMBOL(fsync_bdev);
3143 EXPORT_SYMBOL(generic_block_bmap);
3144 EXPORT_SYMBOL(generic_commit_write);
3145 EXPORT_SYMBOL(generic_cont_expand);
3146 EXPORT_SYMBOL(init_buffer);
3147 EXPORT_SYMBOL(invalidate_bdev);
3148 EXPORT_SYMBOL(ll_rw_block);
3149 EXPORT_SYMBOL(mark_buffer_dirty);
3150 EXPORT_SYMBOL(submit_bh);
3151 EXPORT_SYMBOL(sync_dirty_buffer);
3152 EXPORT_SYMBOL(unlock_buffer);