]> err.no Git - linux-2.6/blob - fs/buffer.c
12bdb27911271202174ba43abcc789ed7eefccf0
[linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43
44 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
45 static void invalidate_bh_lrus(void);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79         clear_buffer_locked(bh);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97         ClearPagePrivate(page);
98         page->private = 0;
99         page_cache_release(page);
100 }
101
102 static void buffer_io_error(struct buffer_head *bh)
103 {
104         char b[BDEVNAME_SIZE];
105
106         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
107                         bdevname(bh->b_bdev, b),
108                         (unsigned long long)bh->b_blocknr);
109 }
110
111 /*
112  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
113  * unlock the buffer. This is what ll_rw_block uses too.
114  */
115 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
116 {
117         if (uptodate) {
118                 set_buffer_uptodate(bh);
119         } else {
120                 /* This happens, due to failed READA attempts. */
121                 clear_buffer_uptodate(bh);
122         }
123         unlock_buffer(bh);
124         put_bh(bh);
125 }
126
127 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
128 {
129         char b[BDEVNAME_SIZE];
130
131         if (uptodate) {
132                 set_buffer_uptodate(bh);
133         } else {
134                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
135                         buffer_io_error(bh);
136                         printk(KERN_WARNING "lost page write due to "
137                                         "I/O error on %s\n",
138                                        bdevname(bh->b_bdev, b));
139                 }
140                 set_buffer_write_io_error(bh);
141                 clear_buffer_uptodate(bh);
142         }
143         unlock_buffer(bh);
144         put_bh(bh);
145 }
146
147 /*
148  * Write out and wait upon all the dirty data associated with a block
149  * device via its mapping.  Does not take the superblock lock.
150  */
151 int sync_blockdev(struct block_device *bdev)
152 {
153         int ret = 0;
154
155         if (bdev) {
156                 int err;
157
158                 ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
159                 err = filemap_fdatawait(bdev->bd_inode->i_mapping);
160                 if (!ret)
161                         ret = err;
162         }
163         return ret;
164 }
165 EXPORT_SYMBOL(sync_blockdev);
166
167 /*
168  * Write out and wait upon all dirty data associated with this
169  * superblock.  Filesystem data as well as the underlying block
170  * device.  Takes the superblock lock.
171  */
172 int fsync_super(struct super_block *sb)
173 {
174         sync_inodes_sb(sb, 0);
175         DQUOT_SYNC(sb);
176         lock_super(sb);
177         if (sb->s_dirt && sb->s_op->write_super)
178                 sb->s_op->write_super(sb);
179         unlock_super(sb);
180         if (sb->s_op->sync_fs)
181                 sb->s_op->sync_fs(sb, 1);
182         sync_blockdev(sb->s_bdev);
183         sync_inodes_sb(sb, 1);
184
185         return sync_blockdev(sb->s_bdev);
186 }
187
188 /*
189  * Write out and wait upon all dirty data associated with this
190  * device.   Filesystem data as well as the underlying block
191  * device.  Takes the superblock lock.
192  */
193 int fsync_bdev(struct block_device *bdev)
194 {
195         struct super_block *sb = get_super(bdev);
196         if (sb) {
197                 int res = fsync_super(sb);
198                 drop_super(sb);
199                 return res;
200         }
201         return sync_blockdev(bdev);
202 }
203
204 /**
205  * freeze_bdev  --  lock a filesystem and force it into a consistent state
206  * @bdev:       blockdevice to lock
207  *
208  * This takes the block device bd_mount_sem to make sure no new mounts
209  * happen on bdev until thaw_bdev() is called.
210  * If a superblock is found on this device, we take the s_umount semaphore
211  * on it to make sure nobody unmounts until the snapshot creation is done.
212  */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215         struct super_block *sb;
216
217         down(&bdev->bd_mount_sem);
218         sb = get_super(bdev);
219         if (sb && !(sb->s_flags & MS_RDONLY)) {
220                 sb->s_frozen = SB_FREEZE_WRITE;
221                 smp_wmb();
222
223                 sync_inodes_sb(sb, 0);
224                 DQUOT_SYNC(sb);
225
226                 lock_super(sb);
227                 if (sb->s_dirt && sb->s_op->write_super)
228                         sb->s_op->write_super(sb);
229                 unlock_super(sb);
230
231                 if (sb->s_op->sync_fs)
232                         sb->s_op->sync_fs(sb, 1);
233
234                 sync_blockdev(sb->s_bdev);
235                 sync_inodes_sb(sb, 1);
236
237                 sb->s_frozen = SB_FREEZE_TRANS;
238                 smp_wmb();
239
240                 sync_blockdev(sb->s_bdev);
241
242                 if (sb->s_op->write_super_lockfs)
243                         sb->s_op->write_super_lockfs(sb);
244         }
245
246         sync_blockdev(bdev);
247         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
248 }
249 EXPORT_SYMBOL(freeze_bdev);
250
251 /**
252  * thaw_bdev  -- unlock filesystem
253  * @bdev:       blockdevice to unlock
254  * @sb:         associated superblock
255  *
256  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
257  */
258 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
259 {
260         if (sb) {
261                 BUG_ON(sb->s_bdev != bdev);
262
263                 if (sb->s_op->unlockfs)
264                         sb->s_op->unlockfs(sb);
265                 sb->s_frozen = SB_UNFROZEN;
266                 smp_wmb();
267                 wake_up(&sb->s_wait_unfrozen);
268                 drop_super(sb);
269         }
270
271         up(&bdev->bd_mount_sem);
272 }
273 EXPORT_SYMBOL(thaw_bdev);
274
275 /*
276  * sync everything.  Start out by waking pdflush, because that writes back
277  * all queues in parallel.
278  */
279 static void do_sync(unsigned long wait)
280 {
281         wakeup_bdflush(0);
282         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
283         DQUOT_SYNC(NULL);
284         sync_supers();          /* Write the superblocks */
285         sync_filesystems(0);    /* Start syncing the filesystems */
286         sync_filesystems(wait); /* Waitingly sync the filesystems */
287         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
288         if (!wait)
289                 printk("Emergency Sync complete\n");
290         if (unlikely(laptop_mode))
291                 laptop_sync_completion();
292 }
293
294 asmlinkage long sys_sync(void)
295 {
296         do_sync(1);
297         return 0;
298 }
299
300 void emergency_sync(void)
301 {
302         pdflush_operation(do_sync, 0);
303 }
304
305 /*
306  * Generic function to fsync a file.
307  *
308  * filp may be NULL if called via the msync of a vma.
309  */
310  
311 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
312 {
313         struct inode * inode = dentry->d_inode;
314         struct super_block * sb;
315         int ret, err;
316
317         /* sync the inode to buffers */
318         ret = write_inode_now(inode, 0);
319
320         /* sync the superblock to buffers */
321         sb = inode->i_sb;
322         lock_super(sb);
323         if (sb->s_op->write_super)
324                 sb->s_op->write_super(sb);
325         unlock_super(sb);
326
327         /* .. finally sync the buffers to disk */
328         err = sync_blockdev(sb->s_bdev);
329         if (!ret)
330                 ret = err;
331         return ret;
332 }
333
334 static long do_fsync(unsigned int fd, int datasync)
335 {
336         struct file * file;
337         struct address_space *mapping;
338         int ret, err;
339
340         ret = -EBADF;
341         file = fget(fd);
342         if (!file)
343                 goto out;
344
345         ret = -EINVAL;
346         if (!file->f_op || !file->f_op->fsync) {
347                 /* Why?  We can still call filemap_fdatawrite */
348                 goto out_putf;
349         }
350
351         mapping = file->f_mapping;
352
353         current->flags |= PF_SYNCWRITE;
354         ret = filemap_fdatawrite(mapping);
355
356         /*
357          * We need to protect against concurrent writers,
358          * which could cause livelocks in fsync_buffers_list
359          */
360         down(&mapping->host->i_sem);
361         err = file->f_op->fsync(file, file->f_dentry, datasync);
362         if (!ret)
363                 ret = err;
364         up(&mapping->host->i_sem);
365         err = filemap_fdatawait(mapping);
366         if (!ret)
367                 ret = err;
368         current->flags &= ~PF_SYNCWRITE;
369
370 out_putf:
371         fput(file);
372 out:
373         return ret;
374 }
375
376 asmlinkage long sys_fsync(unsigned int fd)
377 {
378         return do_fsync(fd, 0);
379 }
380
381 asmlinkage long sys_fdatasync(unsigned int fd)
382 {
383         return do_fsync(fd, 1);
384 }
385
386 /*
387  * Various filesystems appear to want __find_get_block to be non-blocking.
388  * But it's the page lock which protects the buffers.  To get around this,
389  * we get exclusion from try_to_free_buffers with the blockdev mapping's
390  * private_lock.
391  *
392  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
393  * may be quite high.  This code could TryLock the page, and if that
394  * succeeds, there is no need to take private_lock. (But if
395  * private_lock is contended then so is mapping->tree_lock).
396  */
397 static struct buffer_head *
398 __find_get_block_slow(struct block_device *bdev, sector_t block, int unused)
399 {
400         struct inode *bd_inode = bdev->bd_inode;
401         struct address_space *bd_mapping = bd_inode->i_mapping;
402         struct buffer_head *ret = NULL;
403         pgoff_t index;
404         struct buffer_head *bh;
405         struct buffer_head *head;
406         struct page *page;
407         int all_mapped = 1;
408
409         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
410         page = find_get_page(bd_mapping, index);
411         if (!page)
412                 goto out;
413
414         spin_lock(&bd_mapping->private_lock);
415         if (!page_has_buffers(page))
416                 goto out_unlock;
417         head = page_buffers(page);
418         bh = head;
419         do {
420                 if (bh->b_blocknr == block) {
421                         ret = bh;
422                         get_bh(bh);
423                         goto out_unlock;
424                 }
425                 if (!buffer_mapped(bh))
426                         all_mapped = 0;
427                 bh = bh->b_this_page;
428         } while (bh != head);
429
430         /* we might be here because some of the buffers on this page are
431          * not mapped.  This is due to various races between
432          * file io on the block device and getblk.  It gets dealt with
433          * elsewhere, don't buffer_error if we had some unmapped buffers
434          */
435         if (all_mapped) {
436                 printk("__find_get_block_slow() failed. "
437                         "block=%llu, b_blocknr=%llu\n",
438                         (unsigned long long)block, (unsigned long long)bh->b_blocknr);
439                 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
440                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
441         }
442 out_unlock:
443         spin_unlock(&bd_mapping->private_lock);
444         page_cache_release(page);
445 out:
446         return ret;
447 }
448
449 /* If invalidate_buffers() will trash dirty buffers, it means some kind
450    of fs corruption is going on. Trashing dirty data always imply losing
451    information that was supposed to be just stored on the physical layer
452    by the user.
453
454    Thus invalidate_buffers in general usage is not allwowed to trash
455    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
456    be preserved.  These buffers are simply skipped.
457   
458    We also skip buffers which are still in use.  For example this can
459    happen if a userspace program is reading the block device.
460
461    NOTE: In the case where the user removed a removable-media-disk even if
462    there's still dirty data not synced on disk (due a bug in the device driver
463    or due an error of the user), by not destroying the dirty buffers we could
464    generate corruption also on the next media inserted, thus a parameter is
465    necessary to handle this case in the most safe way possible (trying
466    to not corrupt also the new disk inserted with the data belonging to
467    the old now corrupted disk). Also for the ramdisk the natural thing
468    to do in order to release the ramdisk memory is to destroy dirty buffers.
469
470    These are two special cases. Normal usage imply the device driver
471    to issue a sync on the device (without waiting I/O completion) and
472    then an invalidate_buffers call that doesn't trash dirty buffers.
473
474    For handling cache coherency with the blkdev pagecache the 'update' case
475    is been introduced. It is needed to re-read from disk any pinned
476    buffer. NOTE: re-reading from disk is destructive so we can do it only
477    when we assume nobody is changing the buffercache under our I/O and when
478    we think the disk contains more recent information than the buffercache.
479    The update == 1 pass marks the buffers we need to update, the update == 2
480    pass does the actual I/O. */
481 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
482 {
483         invalidate_bh_lrus();
484         /*
485          * FIXME: what about destroy_dirty_buffers?
486          * We really want to use invalidate_inode_pages2() for
487          * that, but not until that's cleaned up.
488          */
489         invalidate_inode_pages(bdev->bd_inode->i_mapping);
490 }
491
492 /*
493  * Kick pdflush then try to free up some ZONE_NORMAL memory.
494  */
495 static void free_more_memory(void)
496 {
497         struct zone **zones;
498         pg_data_t *pgdat;
499
500         wakeup_bdflush(1024);
501         yield();
502
503         for_each_pgdat(pgdat) {
504                 zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones;
505                 if (*zones)
506                         try_to_free_pages(zones, GFP_NOFS);
507         }
508 }
509
510 /*
511  * I/O completion handler for block_read_full_page() - pages
512  * which come unlocked at the end of I/O.
513  */
514 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
515 {
516         static DEFINE_SPINLOCK(page_uptodate_lock);
517         unsigned long flags;
518         struct buffer_head *tmp;
519         struct page *page;
520         int page_uptodate = 1;
521
522         BUG_ON(!buffer_async_read(bh));
523
524         page = bh->b_page;
525         if (uptodate) {
526                 set_buffer_uptodate(bh);
527         } else {
528                 clear_buffer_uptodate(bh);
529                 if (printk_ratelimit())
530                         buffer_io_error(bh);
531                 SetPageError(page);
532         }
533
534         /*
535          * Be _very_ careful from here on. Bad things can happen if
536          * two buffer heads end IO at almost the same time and both
537          * decide that the page is now completely done.
538          */
539         spin_lock_irqsave(&page_uptodate_lock, flags);
540         clear_buffer_async_read(bh);
541         unlock_buffer(bh);
542         tmp = bh;
543         do {
544                 if (!buffer_uptodate(tmp))
545                         page_uptodate = 0;
546                 if (buffer_async_read(tmp)) {
547                         BUG_ON(!buffer_locked(tmp));
548                         goto still_busy;
549                 }
550                 tmp = tmp->b_this_page;
551         } while (tmp != bh);
552         spin_unlock_irqrestore(&page_uptodate_lock, flags);
553
554         /*
555          * If none of the buffers had errors and they are all
556          * uptodate then we can set the page uptodate.
557          */
558         if (page_uptodate && !PageError(page))
559                 SetPageUptodate(page);
560         unlock_page(page);
561         return;
562
563 still_busy:
564         spin_unlock_irqrestore(&page_uptodate_lock, flags);
565         return;
566 }
567
568 /*
569  * Completion handler for block_write_full_page() - pages which are unlocked
570  * during I/O, and which have PageWriteback cleared upon I/O completion.
571  */
572 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
573 {
574         char b[BDEVNAME_SIZE];
575         static DEFINE_SPINLOCK(page_uptodate_lock);
576         unsigned long flags;
577         struct buffer_head *tmp;
578         struct page *page;
579
580         BUG_ON(!buffer_async_write(bh));
581
582         page = bh->b_page;
583         if (uptodate) {
584                 set_buffer_uptodate(bh);
585         } else {
586                 if (printk_ratelimit()) {
587                         buffer_io_error(bh);
588                         printk(KERN_WARNING "lost page write due to "
589                                         "I/O error on %s\n",
590                                bdevname(bh->b_bdev, b));
591                 }
592                 set_bit(AS_EIO, &page->mapping->flags);
593                 clear_buffer_uptodate(bh);
594                 SetPageError(page);
595         }
596
597         spin_lock_irqsave(&page_uptodate_lock, flags);
598         clear_buffer_async_write(bh);
599         unlock_buffer(bh);
600         tmp = bh->b_this_page;
601         while (tmp != bh) {
602                 if (buffer_async_write(tmp)) {
603                         BUG_ON(!buffer_locked(tmp));
604                         goto still_busy;
605                 }
606                 tmp = tmp->b_this_page;
607         }
608         spin_unlock_irqrestore(&page_uptodate_lock, flags);
609         end_page_writeback(page);
610         return;
611
612 still_busy:
613         spin_unlock_irqrestore(&page_uptodate_lock, flags);
614         return;
615 }
616
617 /*
618  * If a page's buffers are under async readin (end_buffer_async_read
619  * completion) then there is a possibility that another thread of
620  * control could lock one of the buffers after it has completed
621  * but while some of the other buffers have not completed.  This
622  * locked buffer would confuse end_buffer_async_read() into not unlocking
623  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
624  * that this buffer is not under async I/O.
625  *
626  * The page comes unlocked when it has no locked buffer_async buffers
627  * left.
628  *
629  * PageLocked prevents anyone starting new async I/O reads any of
630  * the buffers.
631  *
632  * PageWriteback is used to prevent simultaneous writeout of the same
633  * page.
634  *
635  * PageLocked prevents anyone from starting writeback of a page which is
636  * under read I/O (PageWriteback is only ever set against a locked page).
637  */
638 static void mark_buffer_async_read(struct buffer_head *bh)
639 {
640         bh->b_end_io = end_buffer_async_read;
641         set_buffer_async_read(bh);
642 }
643
644 void mark_buffer_async_write(struct buffer_head *bh)
645 {
646         bh->b_end_io = end_buffer_async_write;
647         set_buffer_async_write(bh);
648 }
649 EXPORT_SYMBOL(mark_buffer_async_write);
650
651
652 /*
653  * fs/buffer.c contains helper functions for buffer-backed address space's
654  * fsync functions.  A common requirement for buffer-based filesystems is
655  * that certain data from the backing blockdev needs to be written out for
656  * a successful fsync().  For example, ext2 indirect blocks need to be
657  * written back and waited upon before fsync() returns.
658  *
659  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
660  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
661  * management of a list of dependent buffers at ->i_mapping->private_list.
662  *
663  * Locking is a little subtle: try_to_free_buffers() will remove buffers
664  * from their controlling inode's queue when they are being freed.  But
665  * try_to_free_buffers() will be operating against the *blockdev* mapping
666  * at the time, not against the S_ISREG file which depends on those buffers.
667  * So the locking for private_list is via the private_lock in the address_space
668  * which backs the buffers.  Which is different from the address_space 
669  * against which the buffers are listed.  So for a particular address_space,
670  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
671  * mapping->private_list will always be protected by the backing blockdev's
672  * ->private_lock.
673  *
674  * Which introduces a requirement: all buffers on an address_space's
675  * ->private_list must be from the same address_space: the blockdev's.
676  *
677  * address_spaces which do not place buffers at ->private_list via these
678  * utility functions are free to use private_lock and private_list for
679  * whatever they want.  The only requirement is that list_empty(private_list)
680  * be true at clear_inode() time.
681  *
682  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
683  * filesystems should do that.  invalidate_inode_buffers() should just go
684  * BUG_ON(!list_empty).
685  *
686  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
687  * take an address_space, not an inode.  And it should be called
688  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
689  * queued up.
690  *
691  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
692  * list if it is already on a list.  Because if the buffer is on a list,
693  * it *must* already be on the right one.  If not, the filesystem is being
694  * silly.  This will save a ton of locking.  But first we have to ensure
695  * that buffers are taken *off* the old inode's list when they are freed
696  * (presumably in truncate).  That requires careful auditing of all
697  * filesystems (do it inside bforget()).  It could also be done by bringing
698  * b_inode back.
699  */
700
701 /*
702  * The buffer's backing address_space's private_lock must be held
703  */
704 static inline void __remove_assoc_queue(struct buffer_head *bh)
705 {
706         list_del_init(&bh->b_assoc_buffers);
707 }
708
709 int inode_has_buffers(struct inode *inode)
710 {
711         return !list_empty(&inode->i_data.private_list);
712 }
713
714 /*
715  * osync is designed to support O_SYNC io.  It waits synchronously for
716  * all already-submitted IO to complete, but does not queue any new
717  * writes to the disk.
718  *
719  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
720  * you dirty the buffers, and then use osync_inode_buffers to wait for
721  * completion.  Any other dirty buffers which are not yet queued for
722  * write will not be flushed to disk by the osync.
723  */
724 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
725 {
726         struct buffer_head *bh;
727         struct list_head *p;
728         int err = 0;
729
730         spin_lock(lock);
731 repeat:
732         list_for_each_prev(p, list) {
733                 bh = BH_ENTRY(p);
734                 if (buffer_locked(bh)) {
735                         get_bh(bh);
736                         spin_unlock(lock);
737                         wait_on_buffer(bh);
738                         if (!buffer_uptodate(bh))
739                                 err = -EIO;
740                         brelse(bh);
741                         spin_lock(lock);
742                         goto repeat;
743                 }
744         }
745         spin_unlock(lock);
746         return err;
747 }
748
749 /**
750  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
751  *                        buffers
752  * @mapping: the mapping which wants those buffers written
753  *
754  * Starts I/O against the buffers at mapping->private_list, and waits upon
755  * that I/O.
756  *
757  * Basically, this is a convenience function for fsync().
758  * @mapping is a file or directory which needs those buffers to be written for
759  * a successful fsync().
760  */
761 int sync_mapping_buffers(struct address_space *mapping)
762 {
763         struct address_space *buffer_mapping = mapping->assoc_mapping;
764
765         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
766                 return 0;
767
768         return fsync_buffers_list(&buffer_mapping->private_lock,
769                                         &mapping->private_list);
770 }
771 EXPORT_SYMBOL(sync_mapping_buffers);
772
773 /*
774  * Called when we've recently written block `bblock', and it is known that
775  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
776  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
777  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
778  */
779 void write_boundary_block(struct block_device *bdev,
780                         sector_t bblock, unsigned blocksize)
781 {
782         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
783         if (bh) {
784                 if (buffer_dirty(bh))
785                         ll_rw_block(WRITE, 1, &bh);
786                 put_bh(bh);
787         }
788 }
789
790 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
791 {
792         struct address_space *mapping = inode->i_mapping;
793         struct address_space *buffer_mapping = bh->b_page->mapping;
794
795         mark_buffer_dirty(bh);
796         if (!mapping->assoc_mapping) {
797                 mapping->assoc_mapping = buffer_mapping;
798         } else {
799                 if (mapping->assoc_mapping != buffer_mapping)
800                         BUG();
801         }
802         if (list_empty(&bh->b_assoc_buffers)) {
803                 spin_lock(&buffer_mapping->private_lock);
804                 list_move_tail(&bh->b_assoc_buffers,
805                                 &mapping->private_list);
806                 spin_unlock(&buffer_mapping->private_lock);
807         }
808 }
809 EXPORT_SYMBOL(mark_buffer_dirty_inode);
810
811 /*
812  * Add a page to the dirty page list.
813  *
814  * It is a sad fact of life that this function is called from several places
815  * deeply under spinlocking.  It may not sleep.
816  *
817  * If the page has buffers, the uptodate buffers are set dirty, to preserve
818  * dirty-state coherency between the page and the buffers.  It the page does
819  * not have buffers then when they are later attached they will all be set
820  * dirty.
821  *
822  * The buffers are dirtied before the page is dirtied.  There's a small race
823  * window in which a writepage caller may see the page cleanness but not the
824  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
825  * before the buffers, a concurrent writepage caller could clear the page dirty
826  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
827  * page on the dirty page list.
828  *
829  * We use private_lock to lock against try_to_free_buffers while using the
830  * page's buffer list.  Also use this to protect against clean buffers being
831  * added to the page after it was set dirty.
832  *
833  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
834  * address_space though.
835  */
836 int __set_page_dirty_buffers(struct page *page)
837 {
838         struct address_space * const mapping = page->mapping;
839
840         spin_lock(&mapping->private_lock);
841         if (page_has_buffers(page)) {
842                 struct buffer_head *head = page_buffers(page);
843                 struct buffer_head *bh = head;
844
845                 do {
846                         set_buffer_dirty(bh);
847                         bh = bh->b_this_page;
848                 } while (bh != head);
849         }
850         spin_unlock(&mapping->private_lock);
851
852         if (!TestSetPageDirty(page)) {
853                 write_lock_irq(&mapping->tree_lock);
854                 if (page->mapping) {    /* Race with truncate? */
855                         if (mapping_cap_account_dirty(mapping))
856                                 inc_page_state(nr_dirty);
857                         radix_tree_tag_set(&mapping->page_tree,
858                                                 page_index(page),
859                                                 PAGECACHE_TAG_DIRTY);
860                 }
861                 write_unlock_irq(&mapping->tree_lock);
862                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
863         }
864         
865         return 0;
866 }
867 EXPORT_SYMBOL(__set_page_dirty_buffers);
868
869 /*
870  * Write out and wait upon a list of buffers.
871  *
872  * We have conflicting pressures: we want to make sure that all
873  * initially dirty buffers get waited on, but that any subsequently
874  * dirtied buffers don't.  After all, we don't want fsync to last
875  * forever if somebody is actively writing to the file.
876  *
877  * Do this in two main stages: first we copy dirty buffers to a
878  * temporary inode list, queueing the writes as we go.  Then we clean
879  * up, waiting for those writes to complete.
880  * 
881  * During this second stage, any subsequent updates to the file may end
882  * up refiling the buffer on the original inode's dirty list again, so
883  * there is a chance we will end up with a buffer queued for write but
884  * not yet completed on that list.  So, as a final cleanup we go through
885  * the osync code to catch these locked, dirty buffers without requeuing
886  * any newly dirty buffers for write.
887  */
888 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
889 {
890         struct buffer_head *bh;
891         struct list_head tmp;
892         int err = 0, err2;
893
894         INIT_LIST_HEAD(&tmp);
895
896         spin_lock(lock);
897         while (!list_empty(list)) {
898                 bh = BH_ENTRY(list->next);
899                 list_del_init(&bh->b_assoc_buffers);
900                 if (buffer_dirty(bh) || buffer_locked(bh)) {
901                         list_add(&bh->b_assoc_buffers, &tmp);
902                         if (buffer_dirty(bh)) {
903                                 get_bh(bh);
904                                 spin_unlock(lock);
905                                 /*
906                                  * Ensure any pending I/O completes so that
907                                  * ll_rw_block() actually writes the current
908                                  * contents - it is a noop if I/O is still in
909                                  * flight on potentially older contents.
910                                  */
911                                 wait_on_buffer(bh);
912                                 ll_rw_block(WRITE, 1, &bh);
913                                 brelse(bh);
914                                 spin_lock(lock);
915                         }
916                 }
917         }
918
919         while (!list_empty(&tmp)) {
920                 bh = BH_ENTRY(tmp.prev);
921                 __remove_assoc_queue(bh);
922                 get_bh(bh);
923                 spin_unlock(lock);
924                 wait_on_buffer(bh);
925                 if (!buffer_uptodate(bh))
926                         err = -EIO;
927                 brelse(bh);
928                 spin_lock(lock);
929         }
930         
931         spin_unlock(lock);
932         err2 = osync_buffers_list(lock, list);
933         if (err)
934                 return err;
935         else
936                 return err2;
937 }
938
939 /*
940  * Invalidate any and all dirty buffers on a given inode.  We are
941  * probably unmounting the fs, but that doesn't mean we have already
942  * done a sync().  Just drop the buffers from the inode list.
943  *
944  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
945  * assumes that all the buffers are against the blockdev.  Not true
946  * for reiserfs.
947  */
948 void invalidate_inode_buffers(struct inode *inode)
949 {
950         if (inode_has_buffers(inode)) {
951                 struct address_space *mapping = &inode->i_data;
952                 struct list_head *list = &mapping->private_list;
953                 struct address_space *buffer_mapping = mapping->assoc_mapping;
954
955                 spin_lock(&buffer_mapping->private_lock);
956                 while (!list_empty(list))
957                         __remove_assoc_queue(BH_ENTRY(list->next));
958                 spin_unlock(&buffer_mapping->private_lock);
959         }
960 }
961
962 /*
963  * Remove any clean buffers from the inode's buffer list.  This is called
964  * when we're trying to free the inode itself.  Those buffers can pin it.
965  *
966  * Returns true if all buffers were removed.
967  */
968 int remove_inode_buffers(struct inode *inode)
969 {
970         int ret = 1;
971
972         if (inode_has_buffers(inode)) {
973                 struct address_space *mapping = &inode->i_data;
974                 struct list_head *list = &mapping->private_list;
975                 struct address_space *buffer_mapping = mapping->assoc_mapping;
976
977                 spin_lock(&buffer_mapping->private_lock);
978                 while (!list_empty(list)) {
979                         struct buffer_head *bh = BH_ENTRY(list->next);
980                         if (buffer_dirty(bh)) {
981                                 ret = 0;
982                                 break;
983                         }
984                         __remove_assoc_queue(bh);
985                 }
986                 spin_unlock(&buffer_mapping->private_lock);
987         }
988         return ret;
989 }
990
991 /*
992  * Create the appropriate buffers when given a page for data area and
993  * the size of each buffer.. Use the bh->b_this_page linked list to
994  * follow the buffers created.  Return NULL if unable to create more
995  * buffers.
996  *
997  * The retry flag is used to differentiate async IO (paging, swapping)
998  * which may not fail from ordinary buffer allocations.
999  */
1000 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1001                 int retry)
1002 {
1003         struct buffer_head *bh, *head;
1004         long offset;
1005
1006 try_again:
1007         head = NULL;
1008         offset = PAGE_SIZE;
1009         while ((offset -= size) >= 0) {
1010                 bh = alloc_buffer_head(GFP_NOFS);
1011                 if (!bh)
1012                         goto no_grow;
1013
1014                 bh->b_bdev = NULL;
1015                 bh->b_this_page = head;
1016                 bh->b_blocknr = -1;
1017                 head = bh;
1018
1019                 bh->b_state = 0;
1020                 atomic_set(&bh->b_count, 0);
1021                 bh->b_size = size;
1022
1023                 /* Link the buffer to its page */
1024                 set_bh_page(bh, page, offset);
1025
1026                 bh->b_end_io = NULL;
1027         }
1028         return head;
1029 /*
1030  * In case anything failed, we just free everything we got.
1031  */
1032 no_grow:
1033         if (head) {
1034                 do {
1035                         bh = head;
1036                         head = head->b_this_page;
1037                         free_buffer_head(bh);
1038                 } while (head);
1039         }
1040
1041         /*
1042          * Return failure for non-async IO requests.  Async IO requests
1043          * are not allowed to fail, so we have to wait until buffer heads
1044          * become available.  But we don't want tasks sleeping with 
1045          * partially complete buffers, so all were released above.
1046          */
1047         if (!retry)
1048                 return NULL;
1049
1050         /* We're _really_ low on memory. Now we just
1051          * wait for old buffer heads to become free due to
1052          * finishing IO.  Since this is an async request and
1053          * the reserve list is empty, we're sure there are 
1054          * async buffer heads in use.
1055          */
1056         free_more_memory();
1057         goto try_again;
1058 }
1059 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1060
1061 static inline void
1062 link_dev_buffers(struct page *page, struct buffer_head *head)
1063 {
1064         struct buffer_head *bh, *tail;
1065
1066         bh = head;
1067         do {
1068                 tail = bh;
1069                 bh = bh->b_this_page;
1070         } while (bh);
1071         tail->b_this_page = head;
1072         attach_page_buffers(page, head);
1073 }
1074
1075 /*
1076  * Initialise the state of a blockdev page's buffers.
1077  */ 
1078 static void
1079 init_page_buffers(struct page *page, struct block_device *bdev,
1080                         sector_t block, int size)
1081 {
1082         struct buffer_head *head = page_buffers(page);
1083         struct buffer_head *bh = head;
1084         int uptodate = PageUptodate(page);
1085
1086         do {
1087                 if (!buffer_mapped(bh)) {
1088                         init_buffer(bh, NULL, NULL);
1089                         bh->b_bdev = bdev;
1090                         bh->b_blocknr = block;
1091                         if (uptodate)
1092                                 set_buffer_uptodate(bh);
1093                         set_buffer_mapped(bh);
1094                 }
1095                 block++;
1096                 bh = bh->b_this_page;
1097         } while (bh != head);
1098 }
1099
1100 /*
1101  * Create the page-cache page that contains the requested block.
1102  *
1103  * This is user purely for blockdev mappings.
1104  */
1105 static struct page *
1106 grow_dev_page(struct block_device *bdev, sector_t block,
1107                 pgoff_t index, int size)
1108 {
1109         struct inode *inode = bdev->bd_inode;
1110         struct page *page;
1111         struct buffer_head *bh;
1112
1113         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1114         if (!page)
1115                 return NULL;
1116
1117         if (!PageLocked(page))
1118                 BUG();
1119
1120         if (page_has_buffers(page)) {
1121                 bh = page_buffers(page);
1122                 if (bh->b_size == size) {
1123                         init_page_buffers(page, bdev, block, size);
1124                         return page;
1125                 }
1126                 if (!try_to_free_buffers(page))
1127                         goto failed;
1128         }
1129
1130         /*
1131          * Allocate some buffers for this page
1132          */
1133         bh = alloc_page_buffers(page, size, 0);
1134         if (!bh)
1135                 goto failed;
1136
1137         /*
1138          * Link the page to the buffers and initialise them.  Take the
1139          * lock to be atomic wrt __find_get_block(), which does not
1140          * run under the page lock.
1141          */
1142         spin_lock(&inode->i_mapping->private_lock);
1143         link_dev_buffers(page, bh);
1144         init_page_buffers(page, bdev, block, size);
1145         spin_unlock(&inode->i_mapping->private_lock);
1146         return page;
1147
1148 failed:
1149         BUG();
1150         unlock_page(page);
1151         page_cache_release(page);
1152         return NULL;
1153 }
1154
1155 /*
1156  * Create buffers for the specified block device block's page.  If
1157  * that page was dirty, the buffers are set dirty also.
1158  *
1159  * Except that's a bug.  Attaching dirty buffers to a dirty
1160  * blockdev's page can result in filesystem corruption, because
1161  * some of those buffers may be aliases of filesystem data.
1162  * grow_dev_page() will go BUG() if this happens.
1163  */
1164 static inline int
1165 grow_buffers(struct block_device *bdev, sector_t block, int size)
1166 {
1167         struct page *page;
1168         pgoff_t index;
1169         int sizebits;
1170
1171         sizebits = -1;
1172         do {
1173                 sizebits++;
1174         } while ((size << sizebits) < PAGE_SIZE);
1175
1176         index = block >> sizebits;
1177         block = index << sizebits;
1178
1179         /* Create a page with the proper size buffers.. */
1180         page = grow_dev_page(bdev, block, index, size);
1181         if (!page)
1182                 return 0;
1183         unlock_page(page);
1184         page_cache_release(page);
1185         return 1;
1186 }
1187
1188 static struct buffer_head *
1189 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1190 {
1191         /* Size must be multiple of hard sectorsize */
1192         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1193                         (size < 512 || size > PAGE_SIZE))) {
1194                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1195                                         size);
1196                 printk(KERN_ERR "hardsect size: %d\n",
1197                                         bdev_hardsect_size(bdev));
1198
1199                 dump_stack();
1200                 return NULL;
1201         }
1202
1203         for (;;) {
1204                 struct buffer_head * bh;
1205
1206                 bh = __find_get_block(bdev, block, size);
1207                 if (bh)
1208                         return bh;
1209
1210                 if (!grow_buffers(bdev, block, size))
1211                         free_more_memory();
1212         }
1213 }
1214
1215 /*
1216  * The relationship between dirty buffers and dirty pages:
1217  *
1218  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1219  * the page is tagged dirty in its radix tree.
1220  *
1221  * At all times, the dirtiness of the buffers represents the dirtiness of
1222  * subsections of the page.  If the page has buffers, the page dirty bit is
1223  * merely a hint about the true dirty state.
1224  *
1225  * When a page is set dirty in its entirety, all its buffers are marked dirty
1226  * (if the page has buffers).
1227  *
1228  * When a buffer is marked dirty, its page is dirtied, but the page's other
1229  * buffers are not.
1230  *
1231  * Also.  When blockdev buffers are explicitly read with bread(), they
1232  * individually become uptodate.  But their backing page remains not
1233  * uptodate - even if all of its buffers are uptodate.  A subsequent
1234  * block_read_full_page() against that page will discover all the uptodate
1235  * buffers, will set the page uptodate and will perform no I/O.
1236  */
1237
1238 /**
1239  * mark_buffer_dirty - mark a buffer_head as needing writeout
1240  * @bh: the buffer_head to mark dirty
1241  *
1242  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1243  * backing page dirty, then tag the page as dirty in its address_space's radix
1244  * tree and then attach the address_space's inode to its superblock's dirty
1245  * inode list.
1246  *
1247  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1248  * mapping->tree_lock and the global inode_lock.
1249  */
1250 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1251 {
1252         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1253                 __set_page_dirty_nobuffers(bh->b_page);
1254 }
1255
1256 /*
1257  * Decrement a buffer_head's reference count.  If all buffers against a page
1258  * have zero reference count, are clean and unlocked, and if the page is clean
1259  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1260  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1261  * a page but it ends up not being freed, and buffers may later be reattached).
1262  */
1263 void __brelse(struct buffer_head * buf)
1264 {
1265         if (atomic_read(&buf->b_count)) {
1266                 put_bh(buf);
1267                 return;
1268         }
1269         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1270         WARN_ON(1);
1271 }
1272
1273 /*
1274  * bforget() is like brelse(), except it discards any
1275  * potentially dirty data.
1276  */
1277 void __bforget(struct buffer_head *bh)
1278 {
1279         clear_buffer_dirty(bh);
1280         if (!list_empty(&bh->b_assoc_buffers)) {
1281                 struct address_space *buffer_mapping = bh->b_page->mapping;
1282
1283                 spin_lock(&buffer_mapping->private_lock);
1284                 list_del_init(&bh->b_assoc_buffers);
1285                 spin_unlock(&buffer_mapping->private_lock);
1286         }
1287         __brelse(bh);
1288 }
1289
1290 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1291 {
1292         lock_buffer(bh);
1293         if (buffer_uptodate(bh)) {
1294                 unlock_buffer(bh);
1295                 return bh;
1296         } else {
1297                 get_bh(bh);
1298                 bh->b_end_io = end_buffer_read_sync;
1299                 submit_bh(READ, bh);
1300                 wait_on_buffer(bh);
1301                 if (buffer_uptodate(bh))
1302                         return bh;
1303         }
1304         brelse(bh);
1305         return NULL;
1306 }
1307
1308 /*
1309  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1310  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1311  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1312  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1313  * CPU's LRUs at the same time.
1314  *
1315  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1316  * sb_find_get_block().
1317  *
1318  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1319  * a local interrupt disable for that.
1320  */
1321
1322 #define BH_LRU_SIZE     8
1323
1324 struct bh_lru {
1325         struct buffer_head *bhs[BH_LRU_SIZE];
1326 };
1327
1328 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1329
1330 #ifdef CONFIG_SMP
1331 #define bh_lru_lock()   local_irq_disable()
1332 #define bh_lru_unlock() local_irq_enable()
1333 #else
1334 #define bh_lru_lock()   preempt_disable()
1335 #define bh_lru_unlock() preempt_enable()
1336 #endif
1337
1338 static inline void check_irqs_on(void)
1339 {
1340 #ifdef irqs_disabled
1341         BUG_ON(irqs_disabled());
1342 #endif
1343 }
1344
1345 /*
1346  * The LRU management algorithm is dopey-but-simple.  Sorry.
1347  */
1348 static void bh_lru_install(struct buffer_head *bh)
1349 {
1350         struct buffer_head *evictee = NULL;
1351         struct bh_lru *lru;
1352
1353         check_irqs_on();
1354         bh_lru_lock();
1355         lru = &__get_cpu_var(bh_lrus);
1356         if (lru->bhs[0] != bh) {
1357                 struct buffer_head *bhs[BH_LRU_SIZE];
1358                 int in;
1359                 int out = 0;
1360
1361                 get_bh(bh);
1362                 bhs[out++] = bh;
1363                 for (in = 0; in < BH_LRU_SIZE; in++) {
1364                         struct buffer_head *bh2 = lru->bhs[in];
1365
1366                         if (bh2 == bh) {
1367                                 __brelse(bh2);
1368                         } else {
1369                                 if (out >= BH_LRU_SIZE) {
1370                                         BUG_ON(evictee != NULL);
1371                                         evictee = bh2;
1372                                 } else {
1373                                         bhs[out++] = bh2;
1374                                 }
1375                         }
1376                 }
1377                 while (out < BH_LRU_SIZE)
1378                         bhs[out++] = NULL;
1379                 memcpy(lru->bhs, bhs, sizeof(bhs));
1380         }
1381         bh_lru_unlock();
1382
1383         if (evictee)
1384                 __brelse(evictee);
1385 }
1386
1387 /*
1388  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1389  */
1390 static inline struct buffer_head *
1391 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1392 {
1393         struct buffer_head *ret = NULL;
1394         struct bh_lru *lru;
1395         int i;
1396
1397         check_irqs_on();
1398         bh_lru_lock();
1399         lru = &__get_cpu_var(bh_lrus);
1400         for (i = 0; i < BH_LRU_SIZE; i++) {
1401                 struct buffer_head *bh = lru->bhs[i];
1402
1403                 if (bh && bh->b_bdev == bdev &&
1404                                 bh->b_blocknr == block && bh->b_size == size) {
1405                         if (i) {
1406                                 while (i) {
1407                                         lru->bhs[i] = lru->bhs[i - 1];
1408                                         i--;
1409                                 }
1410                                 lru->bhs[0] = bh;
1411                         }
1412                         get_bh(bh);
1413                         ret = bh;
1414                         break;
1415                 }
1416         }
1417         bh_lru_unlock();
1418         return ret;
1419 }
1420
1421 /*
1422  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1423  * it in the LRU and mark it as accessed.  If it is not present then return
1424  * NULL
1425  */
1426 struct buffer_head *
1427 __find_get_block(struct block_device *bdev, sector_t block, int size)
1428 {
1429         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1430
1431         if (bh == NULL) {
1432                 bh = __find_get_block_slow(bdev, block, size);
1433                 if (bh)
1434                         bh_lru_install(bh);
1435         }
1436         if (bh)
1437                 touch_buffer(bh);
1438         return bh;
1439 }
1440 EXPORT_SYMBOL(__find_get_block);
1441
1442 /*
1443  * __getblk will locate (and, if necessary, create) the buffer_head
1444  * which corresponds to the passed block_device, block and size. The
1445  * returned buffer has its reference count incremented.
1446  *
1447  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1448  * illegal block number, __getblk() will happily return a buffer_head
1449  * which represents the non-existent block.  Very weird.
1450  *
1451  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1452  * attempt is failing.  FIXME, perhaps?
1453  */
1454 struct buffer_head *
1455 __getblk(struct block_device *bdev, sector_t block, int size)
1456 {
1457         struct buffer_head *bh = __find_get_block(bdev, block, size);
1458
1459         might_sleep();
1460         if (bh == NULL)
1461                 bh = __getblk_slow(bdev, block, size);
1462         return bh;
1463 }
1464 EXPORT_SYMBOL(__getblk);
1465
1466 /*
1467  * Do async read-ahead on a buffer..
1468  */
1469 void __breadahead(struct block_device *bdev, sector_t block, int size)
1470 {
1471         struct buffer_head *bh = __getblk(bdev, block, size);
1472         ll_rw_block(READA, 1, &bh);
1473         brelse(bh);
1474 }
1475 EXPORT_SYMBOL(__breadahead);
1476
1477 /**
1478  *  __bread() - reads a specified block and returns the bh
1479  *  @bdev: the block_device to read from
1480  *  @block: number of block
1481  *  @size: size (in bytes) to read
1482  * 
1483  *  Reads a specified block, and returns buffer head that contains it.
1484  *  It returns NULL if the block was unreadable.
1485  */
1486 struct buffer_head *
1487 __bread(struct block_device *bdev, sector_t block, int size)
1488 {
1489         struct buffer_head *bh = __getblk(bdev, block, size);
1490
1491         if (!buffer_uptodate(bh))
1492                 bh = __bread_slow(bh);
1493         return bh;
1494 }
1495 EXPORT_SYMBOL(__bread);
1496
1497 /*
1498  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1499  * This doesn't race because it runs in each cpu either in irq
1500  * or with preempt disabled.
1501  */
1502 static void invalidate_bh_lru(void *arg)
1503 {
1504         struct bh_lru *b = &get_cpu_var(bh_lrus);
1505         int i;
1506
1507         for (i = 0; i < BH_LRU_SIZE; i++) {
1508                 brelse(b->bhs[i]);
1509                 b->bhs[i] = NULL;
1510         }
1511         put_cpu_var(bh_lrus);
1512 }
1513         
1514 static void invalidate_bh_lrus(void)
1515 {
1516         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1517 }
1518
1519 void set_bh_page(struct buffer_head *bh,
1520                 struct page *page, unsigned long offset)
1521 {
1522         bh->b_page = page;
1523         if (offset >= PAGE_SIZE)
1524                 BUG();
1525         if (PageHighMem(page))
1526                 /*
1527                  * This catches illegal uses and preserves the offset:
1528                  */
1529                 bh->b_data = (char *)(0 + offset);
1530         else
1531                 bh->b_data = page_address(page) + offset;
1532 }
1533 EXPORT_SYMBOL(set_bh_page);
1534
1535 /*
1536  * Called when truncating a buffer on a page completely.
1537  */
1538 static inline void discard_buffer(struct buffer_head * bh)
1539 {
1540         lock_buffer(bh);
1541         clear_buffer_dirty(bh);
1542         bh->b_bdev = NULL;
1543         clear_buffer_mapped(bh);
1544         clear_buffer_req(bh);
1545         clear_buffer_new(bh);
1546         clear_buffer_delay(bh);
1547         unlock_buffer(bh);
1548 }
1549
1550 /**
1551  * try_to_release_page() - release old fs-specific metadata on a page
1552  *
1553  * @page: the page which the kernel is trying to free
1554  * @gfp_mask: memory allocation flags (and I/O mode)
1555  *
1556  * The address_space is to try to release any data against the page
1557  * (presumably at page->private).  If the release was successful, return `1'.
1558  * Otherwise return zero.
1559  *
1560  * The @gfp_mask argument specifies whether I/O may be performed to release
1561  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1562  *
1563  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1564  */
1565 int try_to_release_page(struct page *page, int gfp_mask)
1566 {
1567         struct address_space * const mapping = page->mapping;
1568
1569         BUG_ON(!PageLocked(page));
1570         if (PageWriteback(page))
1571                 return 0;
1572         
1573         if (mapping && mapping->a_ops->releasepage)
1574                 return mapping->a_ops->releasepage(page, gfp_mask);
1575         return try_to_free_buffers(page);
1576 }
1577 EXPORT_SYMBOL(try_to_release_page);
1578
1579 /**
1580  * block_invalidatepage - invalidate part of all of a buffer-backed page
1581  *
1582  * @page: the page which is affected
1583  * @offset: the index of the truncation point
1584  *
1585  * block_invalidatepage() is called when all or part of the page has become
1586  * invalidatedby a truncate operation.
1587  *
1588  * block_invalidatepage() does not have to release all buffers, but it must
1589  * ensure that no dirty buffer is left outside @offset and that no I/O
1590  * is underway against any of the blocks which are outside the truncation
1591  * point.  Because the caller is about to free (and possibly reuse) those
1592  * blocks on-disk.
1593  */
1594 int block_invalidatepage(struct page *page, unsigned long offset)
1595 {
1596         struct buffer_head *head, *bh, *next;
1597         unsigned int curr_off = 0;
1598         int ret = 1;
1599
1600         BUG_ON(!PageLocked(page));
1601         if (!page_has_buffers(page))
1602                 goto out;
1603
1604         head = page_buffers(page);
1605         bh = head;
1606         do {
1607                 unsigned int next_off = curr_off + bh->b_size;
1608                 next = bh->b_this_page;
1609
1610                 /*
1611                  * is this block fully invalidated?
1612                  */
1613                 if (offset <= curr_off)
1614                         discard_buffer(bh);
1615                 curr_off = next_off;
1616                 bh = next;
1617         } while (bh != head);
1618
1619         /*
1620          * We release buffers only if the entire page is being invalidated.
1621          * The get_block cached value has been unconditionally invalidated,
1622          * so real IO is not possible anymore.
1623          */
1624         if (offset == 0)
1625                 ret = try_to_release_page(page, 0);
1626 out:
1627         return ret;
1628 }
1629 EXPORT_SYMBOL(block_invalidatepage);
1630
1631 /*
1632  * We attach and possibly dirty the buffers atomically wrt
1633  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1634  * is already excluded via the page lock.
1635  */
1636 void create_empty_buffers(struct page *page,
1637                         unsigned long blocksize, unsigned long b_state)
1638 {
1639         struct buffer_head *bh, *head, *tail;
1640
1641         head = alloc_page_buffers(page, blocksize, 1);
1642         bh = head;
1643         do {
1644                 bh->b_state |= b_state;
1645                 tail = bh;
1646                 bh = bh->b_this_page;
1647         } while (bh);
1648         tail->b_this_page = head;
1649
1650         spin_lock(&page->mapping->private_lock);
1651         if (PageUptodate(page) || PageDirty(page)) {
1652                 bh = head;
1653                 do {
1654                         if (PageDirty(page))
1655                                 set_buffer_dirty(bh);
1656                         if (PageUptodate(page))
1657                                 set_buffer_uptodate(bh);
1658                         bh = bh->b_this_page;
1659                 } while (bh != head);
1660         }
1661         attach_page_buffers(page, head);
1662         spin_unlock(&page->mapping->private_lock);
1663 }
1664 EXPORT_SYMBOL(create_empty_buffers);
1665
1666 /*
1667  * We are taking a block for data and we don't want any output from any
1668  * buffer-cache aliases starting from return from that function and
1669  * until the moment when something will explicitly mark the buffer
1670  * dirty (hopefully that will not happen until we will free that block ;-)
1671  * We don't even need to mark it not-uptodate - nobody can expect
1672  * anything from a newly allocated buffer anyway. We used to used
1673  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1674  * don't want to mark the alias unmapped, for example - it would confuse
1675  * anyone who might pick it with bread() afterwards...
1676  *
1677  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1678  * be writeout I/O going on against recently-freed buffers.  We don't
1679  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1680  * only if we really need to.  That happens here.
1681  */
1682 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1683 {
1684         struct buffer_head *old_bh;
1685
1686         might_sleep();
1687
1688         old_bh = __find_get_block_slow(bdev, block, 0);
1689         if (old_bh) {
1690                 clear_buffer_dirty(old_bh);
1691                 wait_on_buffer(old_bh);
1692                 clear_buffer_req(old_bh);
1693                 __brelse(old_bh);
1694         }
1695 }
1696 EXPORT_SYMBOL(unmap_underlying_metadata);
1697
1698 /*
1699  * NOTE! All mapped/uptodate combinations are valid:
1700  *
1701  *      Mapped  Uptodate        Meaning
1702  *
1703  *      No      No              "unknown" - must do get_block()
1704  *      No      Yes             "hole" - zero-filled
1705  *      Yes     No              "allocated" - allocated on disk, not read in
1706  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1707  *
1708  * "Dirty" is valid only with the last case (mapped+uptodate).
1709  */
1710
1711 /*
1712  * While block_write_full_page is writing back the dirty buffers under
1713  * the page lock, whoever dirtied the buffers may decide to clean them
1714  * again at any time.  We handle that by only looking at the buffer
1715  * state inside lock_buffer().
1716  *
1717  * If block_write_full_page() is called for regular writeback
1718  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1719  * locked buffer.   This only can happen if someone has written the buffer
1720  * directly, with submit_bh().  At the address_space level PageWriteback
1721  * prevents this contention from occurring.
1722  */
1723 static int __block_write_full_page(struct inode *inode, struct page *page,
1724                         get_block_t *get_block, struct writeback_control *wbc)
1725 {
1726         int err;
1727         sector_t block;
1728         sector_t last_block;
1729         struct buffer_head *bh, *head;
1730         int nr_underway = 0;
1731
1732         BUG_ON(!PageLocked(page));
1733
1734         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1735
1736         if (!page_has_buffers(page)) {
1737                 create_empty_buffers(page, 1 << inode->i_blkbits,
1738                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1739         }
1740
1741         /*
1742          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1743          * here, and the (potentially unmapped) buffers may become dirty at
1744          * any time.  If a buffer becomes dirty here after we've inspected it
1745          * then we just miss that fact, and the page stays dirty.
1746          *
1747          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1748          * handle that here by just cleaning them.
1749          */
1750
1751         block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1752         head = page_buffers(page);
1753         bh = head;
1754
1755         /*
1756          * Get all the dirty buffers mapped to disk addresses and
1757          * handle any aliases from the underlying blockdev's mapping.
1758          */
1759         do {
1760                 if (block > last_block) {
1761                         /*
1762                          * mapped buffers outside i_size will occur, because
1763                          * this page can be outside i_size when there is a
1764                          * truncate in progress.
1765                          */
1766                         /*
1767                          * The buffer was zeroed by block_write_full_page()
1768                          */
1769                         clear_buffer_dirty(bh);
1770                         set_buffer_uptodate(bh);
1771                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1772                         err = get_block(inode, block, bh, 1);
1773                         if (err)
1774                                 goto recover;
1775                         if (buffer_new(bh)) {
1776                                 /* blockdev mappings never come here */
1777                                 clear_buffer_new(bh);
1778                                 unmap_underlying_metadata(bh->b_bdev,
1779                                                         bh->b_blocknr);
1780                         }
1781                 }
1782                 bh = bh->b_this_page;
1783                 block++;
1784         } while (bh != head);
1785
1786         do {
1787                 if (!buffer_mapped(bh))
1788                         continue;
1789                 /*
1790                  * If it's a fully non-blocking write attempt and we cannot
1791                  * lock the buffer then redirty the page.  Note that this can
1792                  * potentially cause a busy-wait loop from pdflush and kswapd
1793                  * activity, but those code paths have their own higher-level
1794                  * throttling.
1795                  */
1796                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1797                         lock_buffer(bh);
1798                 } else if (test_set_buffer_locked(bh)) {
1799                         redirty_page_for_writepage(wbc, page);
1800                         continue;
1801                 }
1802                 if (test_clear_buffer_dirty(bh)) {
1803                         mark_buffer_async_write(bh);
1804                 } else {
1805                         unlock_buffer(bh);
1806                 }
1807         } while ((bh = bh->b_this_page) != head);
1808
1809         /*
1810          * The page and its buffers are protected by PageWriteback(), so we can
1811          * drop the bh refcounts early.
1812          */
1813         BUG_ON(PageWriteback(page));
1814         set_page_writeback(page);
1815
1816         do {
1817                 struct buffer_head *next = bh->b_this_page;
1818                 if (buffer_async_write(bh)) {
1819                         submit_bh(WRITE, bh);
1820                         nr_underway++;
1821                 }
1822                 bh = next;
1823         } while (bh != head);
1824         unlock_page(page);
1825
1826         err = 0;
1827 done:
1828         if (nr_underway == 0) {
1829                 /*
1830                  * The page was marked dirty, but the buffers were
1831                  * clean.  Someone wrote them back by hand with
1832                  * ll_rw_block/submit_bh.  A rare case.
1833                  */
1834                 int uptodate = 1;
1835                 do {
1836                         if (!buffer_uptodate(bh)) {
1837                                 uptodate = 0;
1838                                 break;
1839                         }
1840                         bh = bh->b_this_page;
1841                 } while (bh != head);
1842                 if (uptodate)
1843                         SetPageUptodate(page);
1844                 end_page_writeback(page);
1845                 /*
1846                  * The page and buffer_heads can be released at any time from
1847                  * here on.
1848                  */
1849                 wbc->pages_skipped++;   /* We didn't write this page */
1850         }
1851         return err;
1852
1853 recover:
1854         /*
1855          * ENOSPC, or some other error.  We may already have added some
1856          * blocks to the file, so we need to write these out to avoid
1857          * exposing stale data.
1858          * The page is currently locked and not marked for writeback
1859          */
1860         bh = head;
1861         /* Recovery: lock and submit the mapped buffers */
1862         do {
1863                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1864                         lock_buffer(bh);
1865                         mark_buffer_async_write(bh);
1866                 } else {
1867                         /*
1868                          * The buffer may have been set dirty during
1869                          * attachment to a dirty page.
1870                          */
1871                         clear_buffer_dirty(bh);
1872                 }
1873         } while ((bh = bh->b_this_page) != head);
1874         SetPageError(page);
1875         BUG_ON(PageWriteback(page));
1876         set_page_writeback(page);
1877         unlock_page(page);
1878         do {
1879                 struct buffer_head *next = bh->b_this_page;
1880                 if (buffer_async_write(bh)) {
1881                         clear_buffer_dirty(bh);
1882                         submit_bh(WRITE, bh);
1883                         nr_underway++;
1884                 }
1885                 bh = next;
1886         } while (bh != head);
1887         goto done;
1888 }
1889
1890 static int __block_prepare_write(struct inode *inode, struct page *page,
1891                 unsigned from, unsigned to, get_block_t *get_block)
1892 {
1893         unsigned block_start, block_end;
1894         sector_t block;
1895         int err = 0;
1896         unsigned blocksize, bbits;
1897         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1898
1899         BUG_ON(!PageLocked(page));
1900         BUG_ON(from > PAGE_CACHE_SIZE);
1901         BUG_ON(to > PAGE_CACHE_SIZE);
1902         BUG_ON(from > to);
1903
1904         blocksize = 1 << inode->i_blkbits;
1905         if (!page_has_buffers(page))
1906                 create_empty_buffers(page, blocksize, 0);
1907         head = page_buffers(page);
1908
1909         bbits = inode->i_blkbits;
1910         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1911
1912         for(bh = head, block_start = 0; bh != head || !block_start;
1913             block++, block_start=block_end, bh = bh->b_this_page) {
1914                 block_end = block_start + blocksize;
1915                 if (block_end <= from || block_start >= to) {
1916                         if (PageUptodate(page)) {
1917                                 if (!buffer_uptodate(bh))
1918                                         set_buffer_uptodate(bh);
1919                         }
1920                         continue;
1921                 }
1922                 if (buffer_new(bh))
1923                         clear_buffer_new(bh);
1924                 if (!buffer_mapped(bh)) {
1925                         err = get_block(inode, block, bh, 1);
1926                         if (err)
1927                                 break;
1928                         if (buffer_new(bh)) {
1929                                 clear_buffer_new(bh);
1930                                 unmap_underlying_metadata(bh->b_bdev,
1931                                                         bh->b_blocknr);
1932                                 if (PageUptodate(page)) {
1933                                         set_buffer_uptodate(bh);
1934                                         continue;
1935                                 }
1936                                 if (block_end > to || block_start < from) {
1937                                         void *kaddr;
1938
1939                                         kaddr = kmap_atomic(page, KM_USER0);
1940                                         if (block_end > to)
1941                                                 memset(kaddr+to, 0,
1942                                                         block_end-to);
1943                                         if (block_start < from)
1944                                                 memset(kaddr+block_start,
1945                                                         0, from-block_start);
1946                                         flush_dcache_page(page);
1947                                         kunmap_atomic(kaddr, KM_USER0);
1948                                 }
1949                                 continue;
1950                         }
1951                 }
1952                 if (PageUptodate(page)) {
1953                         if (!buffer_uptodate(bh))
1954                                 set_buffer_uptodate(bh);
1955                         continue; 
1956                 }
1957                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1958                      (block_start < from || block_end > to)) {
1959                         ll_rw_block(READ, 1, &bh);
1960                         *wait_bh++=bh;
1961                 }
1962         }
1963         /*
1964          * If we issued read requests - let them complete.
1965          */
1966         while(wait_bh > wait) {
1967                 wait_on_buffer(*--wait_bh);
1968                 if (!buffer_uptodate(*wait_bh))
1969                         err = -EIO;
1970         }
1971         if (!err)
1972                 return err;
1973
1974         /* Error case: */
1975         /*
1976          * Zero out any newly allocated blocks to avoid exposing stale
1977          * data.  If BH_New is set, we know that the block was newly
1978          * allocated in the above loop.
1979          */
1980         bh = head;
1981         block_start = 0;
1982         do {
1983                 block_end = block_start+blocksize;
1984                 if (block_end <= from)
1985                         goto next_bh;
1986                 if (block_start >= to)
1987                         break;
1988                 if (buffer_new(bh)) {
1989                         void *kaddr;
1990
1991                         clear_buffer_new(bh);
1992                         kaddr = kmap_atomic(page, KM_USER0);
1993                         memset(kaddr+block_start, 0, bh->b_size);
1994                         kunmap_atomic(kaddr, KM_USER0);
1995                         set_buffer_uptodate(bh);
1996                         mark_buffer_dirty(bh);
1997                 }
1998 next_bh:
1999                 block_start = block_end;
2000                 bh = bh->b_this_page;
2001         } while (bh != head);
2002         return err;
2003 }
2004
2005 static int __block_commit_write(struct inode *inode, struct page *page,
2006                 unsigned from, unsigned to)
2007 {
2008         unsigned block_start, block_end;
2009         int partial = 0;
2010         unsigned blocksize;
2011         struct buffer_head *bh, *head;
2012
2013         blocksize = 1 << inode->i_blkbits;
2014
2015         for(bh = head = page_buffers(page), block_start = 0;
2016             bh != head || !block_start;
2017             block_start=block_end, bh = bh->b_this_page) {
2018                 block_end = block_start + blocksize;
2019                 if (block_end <= from || block_start >= to) {
2020                         if (!buffer_uptodate(bh))
2021                                 partial = 1;
2022                 } else {
2023                         set_buffer_uptodate(bh);
2024                         mark_buffer_dirty(bh);
2025                 }
2026         }
2027
2028         /*
2029          * If this is a partial write which happened to make all buffers
2030          * uptodate then we can optimize away a bogus readpage() for
2031          * the next read(). Here we 'discover' whether the page went
2032          * uptodate as a result of this (potentially partial) write.
2033          */
2034         if (!partial)
2035                 SetPageUptodate(page);
2036         return 0;
2037 }
2038
2039 /*
2040  * Generic "read page" function for block devices that have the normal
2041  * get_block functionality. This is most of the block device filesystems.
2042  * Reads the page asynchronously --- the unlock_buffer() and
2043  * set/clear_buffer_uptodate() functions propagate buffer state into the
2044  * page struct once IO has completed.
2045  */
2046 int block_read_full_page(struct page *page, get_block_t *get_block)
2047 {
2048         struct inode *inode = page->mapping->host;
2049         sector_t iblock, lblock;
2050         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2051         unsigned int blocksize;
2052         int nr, i;
2053         int fully_mapped = 1;
2054
2055         BUG_ON(!PageLocked(page));
2056         blocksize = 1 << inode->i_blkbits;
2057         if (!page_has_buffers(page))
2058                 create_empty_buffers(page, blocksize, 0);
2059         head = page_buffers(page);
2060
2061         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2063         bh = head;
2064         nr = 0;
2065         i = 0;
2066
2067         do {
2068                 if (buffer_uptodate(bh))
2069                         continue;
2070
2071                 if (!buffer_mapped(bh)) {
2072                         int err = 0;
2073
2074                         fully_mapped = 0;
2075                         if (iblock < lblock) {
2076                                 err = get_block(inode, iblock, bh, 0);
2077                                 if (err)
2078                                         SetPageError(page);
2079                         }
2080                         if (!buffer_mapped(bh)) {
2081                                 void *kaddr = kmap_atomic(page, KM_USER0);
2082                                 memset(kaddr + i * blocksize, 0, blocksize);
2083                                 flush_dcache_page(page);
2084                                 kunmap_atomic(kaddr, KM_USER0);
2085                                 if (!err)
2086                                         set_buffer_uptodate(bh);
2087                                 continue;
2088                         }
2089                         /*
2090                          * get_block() might have updated the buffer
2091                          * synchronously
2092                          */
2093                         if (buffer_uptodate(bh))
2094                                 continue;
2095                 }
2096                 arr[nr++] = bh;
2097         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2098
2099         if (fully_mapped)
2100                 SetPageMappedToDisk(page);
2101
2102         if (!nr) {
2103                 /*
2104                  * All buffers are uptodate - we can set the page uptodate
2105                  * as well. But not if get_block() returned an error.
2106                  */
2107                 if (!PageError(page))
2108                         SetPageUptodate(page);
2109                 unlock_page(page);
2110                 return 0;
2111         }
2112
2113         /* Stage two: lock the buffers */
2114         for (i = 0; i < nr; i++) {
2115                 bh = arr[i];
2116                 lock_buffer(bh);
2117                 mark_buffer_async_read(bh);
2118         }
2119
2120         /*
2121          * Stage 3: start the IO.  Check for uptodateness
2122          * inside the buffer lock in case another process reading
2123          * the underlying blockdev brought it uptodate (the sct fix).
2124          */
2125         for (i = 0; i < nr; i++) {
2126                 bh = arr[i];
2127                 if (buffer_uptodate(bh))
2128                         end_buffer_async_read(bh, 1);
2129                 else
2130                         submit_bh(READ, bh);
2131         }
2132         return 0;
2133 }
2134
2135 /* utility function for filesystems that need to do work on expanding
2136  * truncates.  Uses prepare/commit_write to allow the filesystem to
2137  * deal with the hole.  
2138  */
2139 int generic_cont_expand(struct inode *inode, loff_t size)
2140 {
2141         struct address_space *mapping = inode->i_mapping;
2142         struct page *page;
2143         unsigned long index, offset, limit;
2144         int err;
2145
2146         err = -EFBIG;
2147         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2148         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2149                 send_sig(SIGXFSZ, current, 0);
2150                 goto out;
2151         }
2152         if (size > inode->i_sb->s_maxbytes)
2153                 goto out;
2154
2155         offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
2156
2157         /* ugh.  in prepare/commit_write, if from==to==start of block, we 
2158         ** skip the prepare.  make sure we never send an offset for the start
2159         ** of a block
2160         */
2161         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2162                 offset++;
2163         }
2164         index = size >> PAGE_CACHE_SHIFT;
2165         err = -ENOMEM;
2166         page = grab_cache_page(mapping, index);
2167         if (!page)
2168                 goto out;
2169         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2170         if (!err) {
2171                 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2172         }
2173         unlock_page(page);
2174         page_cache_release(page);
2175         if (err > 0)
2176                 err = 0;
2177 out:
2178         return err;
2179 }
2180
2181 /*
2182  * For moronic filesystems that do not allow holes in file.
2183  * We may have to extend the file.
2184  */
2185
2186 int cont_prepare_write(struct page *page, unsigned offset,
2187                 unsigned to, get_block_t *get_block, loff_t *bytes)
2188 {
2189         struct address_space *mapping = page->mapping;
2190         struct inode *inode = mapping->host;
2191         struct page *new_page;
2192         pgoff_t pgpos;
2193         long status;
2194         unsigned zerofrom;
2195         unsigned blocksize = 1 << inode->i_blkbits;
2196         void *kaddr;
2197
2198         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2199                 status = -ENOMEM;
2200                 new_page = grab_cache_page(mapping, pgpos);
2201                 if (!new_page)
2202                         goto out;
2203                 /* we might sleep */
2204                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2205                         unlock_page(new_page);
2206                         page_cache_release(new_page);
2207                         continue;
2208                 }
2209                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2210                 if (zerofrom & (blocksize-1)) {
2211                         *bytes |= (blocksize-1);
2212                         (*bytes)++;
2213                 }
2214                 status = __block_prepare_write(inode, new_page, zerofrom,
2215                                                 PAGE_CACHE_SIZE, get_block);
2216                 if (status)
2217                         goto out_unmap;
2218                 kaddr = kmap_atomic(new_page, KM_USER0);
2219                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2220                 flush_dcache_page(new_page);
2221                 kunmap_atomic(kaddr, KM_USER0);
2222                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2223                 unlock_page(new_page);
2224                 page_cache_release(new_page);
2225         }
2226
2227         if (page->index < pgpos) {
2228                 /* completely inside the area */
2229                 zerofrom = offset;
2230         } else {
2231                 /* page covers the boundary, find the boundary offset */
2232                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2233
2234                 /* if we will expand the thing last block will be filled */
2235                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2236                         *bytes |= (blocksize-1);
2237                         (*bytes)++;
2238                 }
2239
2240                 /* starting below the boundary? Nothing to zero out */
2241                 if (offset <= zerofrom)
2242                         zerofrom = offset;
2243         }
2244         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2245         if (status)
2246                 goto out1;
2247         if (zerofrom < offset) {
2248                 kaddr = kmap_atomic(page, KM_USER0);
2249                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2250                 flush_dcache_page(page);
2251                 kunmap_atomic(kaddr, KM_USER0);
2252                 __block_commit_write(inode, page, zerofrom, offset);
2253         }
2254         return 0;
2255 out1:
2256         ClearPageUptodate(page);
2257         return status;
2258
2259 out_unmap:
2260         ClearPageUptodate(new_page);
2261         unlock_page(new_page);
2262         page_cache_release(new_page);
2263 out:
2264         return status;
2265 }
2266
2267 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2268                         get_block_t *get_block)
2269 {
2270         struct inode *inode = page->mapping->host;
2271         int err = __block_prepare_write(inode, page, from, to, get_block);
2272         if (err)
2273                 ClearPageUptodate(page);
2274         return err;
2275 }
2276
2277 int block_commit_write(struct page *page, unsigned from, unsigned to)
2278 {
2279         struct inode *inode = page->mapping->host;
2280         __block_commit_write(inode,page,from,to);
2281         return 0;
2282 }
2283
2284 int generic_commit_write(struct file *file, struct page *page,
2285                 unsigned from, unsigned to)
2286 {
2287         struct inode *inode = page->mapping->host;
2288         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2289         __block_commit_write(inode,page,from,to);
2290         /*
2291          * No need to use i_size_read() here, the i_size
2292          * cannot change under us because we hold i_sem.
2293          */
2294         if (pos > inode->i_size) {
2295                 i_size_write(inode, pos);
2296                 mark_inode_dirty(inode);
2297         }
2298         return 0;
2299 }
2300
2301
2302 /*
2303  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2304  * immediately, while under the page lock.  So it needs a special end_io
2305  * handler which does not touch the bh after unlocking it.
2306  *
2307  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2308  * a race there is benign: unlock_buffer() only use the bh's address for
2309  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2310  * itself.
2311  */
2312 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2313 {
2314         if (uptodate) {
2315                 set_buffer_uptodate(bh);
2316         } else {
2317                 /* This happens, due to failed READA attempts. */
2318                 clear_buffer_uptodate(bh);
2319         }
2320         unlock_buffer(bh);
2321 }
2322
2323 /*
2324  * On entry, the page is fully not uptodate.
2325  * On exit the page is fully uptodate in the areas outside (from,to)
2326  */
2327 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2328                         get_block_t *get_block)
2329 {
2330         struct inode *inode = page->mapping->host;
2331         const unsigned blkbits = inode->i_blkbits;
2332         const unsigned blocksize = 1 << blkbits;
2333         struct buffer_head map_bh;
2334         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2335         unsigned block_in_page;
2336         unsigned block_start;
2337         sector_t block_in_file;
2338         char *kaddr;
2339         int nr_reads = 0;
2340         int i;
2341         int ret = 0;
2342         int is_mapped_to_disk = 1;
2343         int dirtied_it = 0;
2344
2345         if (PageMappedToDisk(page))
2346                 return 0;
2347
2348         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2349         map_bh.b_page = page;
2350
2351         /*
2352          * We loop across all blocks in the page, whether or not they are
2353          * part of the affected region.  This is so we can discover if the
2354          * page is fully mapped-to-disk.
2355          */
2356         for (block_start = 0, block_in_page = 0;
2357                   block_start < PAGE_CACHE_SIZE;
2358                   block_in_page++, block_start += blocksize) {
2359                 unsigned block_end = block_start + blocksize;
2360                 int create;
2361
2362                 map_bh.b_state = 0;
2363                 create = 1;
2364                 if (block_start >= to)
2365                         create = 0;
2366                 ret = get_block(inode, block_in_file + block_in_page,
2367                                         &map_bh, create);
2368                 if (ret)
2369                         goto failed;
2370                 if (!buffer_mapped(&map_bh))
2371                         is_mapped_to_disk = 0;
2372                 if (buffer_new(&map_bh))
2373                         unmap_underlying_metadata(map_bh.b_bdev,
2374                                                         map_bh.b_blocknr);
2375                 if (PageUptodate(page))
2376                         continue;
2377                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2378                         kaddr = kmap_atomic(page, KM_USER0);
2379                         if (block_start < from) {
2380                                 memset(kaddr+block_start, 0, from-block_start);
2381                                 dirtied_it = 1;
2382                         }
2383                         if (block_end > to) {
2384                                 memset(kaddr + to, 0, block_end - to);
2385                                 dirtied_it = 1;
2386                         }
2387                         flush_dcache_page(page);
2388                         kunmap_atomic(kaddr, KM_USER0);
2389                         continue;
2390                 }
2391                 if (buffer_uptodate(&map_bh))
2392                         continue;       /* reiserfs does this */
2393                 if (block_start < from || block_end > to) {
2394                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2395
2396                         if (!bh) {
2397                                 ret = -ENOMEM;
2398                                 goto failed;
2399                         }
2400                         bh->b_state = map_bh.b_state;
2401                         atomic_set(&bh->b_count, 0);
2402                         bh->b_this_page = NULL;
2403                         bh->b_page = page;
2404                         bh->b_blocknr = map_bh.b_blocknr;
2405                         bh->b_size = blocksize;
2406                         bh->b_data = (char *)(long)block_start;
2407                         bh->b_bdev = map_bh.b_bdev;
2408                         bh->b_private = NULL;
2409                         read_bh[nr_reads++] = bh;
2410                 }
2411         }
2412
2413         if (nr_reads) {
2414                 struct buffer_head *bh;
2415
2416                 /*
2417                  * The page is locked, so these buffers are protected from
2418                  * any VM or truncate activity.  Hence we don't need to care
2419                  * for the buffer_head refcounts.
2420                  */
2421                 for (i = 0; i < nr_reads; i++) {
2422                         bh = read_bh[i];
2423                         lock_buffer(bh);
2424                         bh->b_end_io = end_buffer_read_nobh;
2425                         submit_bh(READ, bh);
2426                 }
2427                 for (i = 0; i < nr_reads; i++) {
2428                         bh = read_bh[i];
2429                         wait_on_buffer(bh);
2430                         if (!buffer_uptodate(bh))
2431                                 ret = -EIO;
2432                         free_buffer_head(bh);
2433                         read_bh[i] = NULL;
2434                 }
2435                 if (ret)
2436                         goto failed;
2437         }
2438
2439         if (is_mapped_to_disk)
2440                 SetPageMappedToDisk(page);
2441         SetPageUptodate(page);
2442
2443         /*
2444          * Setting the page dirty here isn't necessary for the prepare_write
2445          * function - commit_write will do that.  But if/when this function is
2446          * used within the pagefault handler to ensure that all mmapped pages
2447          * have backing space in the filesystem, we will need to dirty the page
2448          * if its contents were altered.
2449          */
2450         if (dirtied_it)
2451                 set_page_dirty(page);
2452
2453         return 0;
2454
2455 failed:
2456         for (i = 0; i < nr_reads; i++) {
2457                 if (read_bh[i])
2458                         free_buffer_head(read_bh[i]);
2459         }
2460
2461         /*
2462          * Error recovery is pretty slack.  Clear the page and mark it dirty
2463          * so we'll later zero out any blocks which _were_ allocated.
2464          */
2465         kaddr = kmap_atomic(page, KM_USER0);
2466         memset(kaddr, 0, PAGE_CACHE_SIZE);
2467         kunmap_atomic(kaddr, KM_USER0);
2468         SetPageUptodate(page);
2469         set_page_dirty(page);
2470         return ret;
2471 }
2472 EXPORT_SYMBOL(nobh_prepare_write);
2473
2474 int nobh_commit_write(struct file *file, struct page *page,
2475                 unsigned from, unsigned to)
2476 {
2477         struct inode *inode = page->mapping->host;
2478         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2479
2480         set_page_dirty(page);
2481         if (pos > inode->i_size) {
2482                 i_size_write(inode, pos);
2483                 mark_inode_dirty(inode);
2484         }
2485         return 0;
2486 }
2487 EXPORT_SYMBOL(nobh_commit_write);
2488
2489 /*
2490  * nobh_writepage() - based on block_full_write_page() except
2491  * that it tries to operate without attaching bufferheads to
2492  * the page.
2493  */
2494 int nobh_writepage(struct page *page, get_block_t *get_block,
2495                         struct writeback_control *wbc)
2496 {
2497         struct inode * const inode = page->mapping->host;
2498         loff_t i_size = i_size_read(inode);
2499         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2500         unsigned offset;
2501         void *kaddr;
2502         int ret;
2503
2504         /* Is the page fully inside i_size? */
2505         if (page->index < end_index)
2506                 goto out;
2507
2508         /* Is the page fully outside i_size? (truncate in progress) */
2509         offset = i_size & (PAGE_CACHE_SIZE-1);
2510         if (page->index >= end_index+1 || !offset) {
2511                 /*
2512                  * The page may have dirty, unmapped buffers.  For example,
2513                  * they may have been added in ext3_writepage().  Make them
2514                  * freeable here, so the page does not leak.
2515                  */
2516 #if 0
2517                 /* Not really sure about this  - do we need this ? */
2518                 if (page->mapping->a_ops->invalidatepage)
2519                         page->mapping->a_ops->invalidatepage(page, offset);
2520 #endif
2521                 unlock_page(page);
2522                 return 0; /* don't care */
2523         }
2524
2525         /*
2526          * The page straddles i_size.  It must be zeroed out on each and every
2527          * writepage invocation because it may be mmapped.  "A file is mapped
2528          * in multiples of the page size.  For a file that is not a multiple of
2529          * the  page size, the remaining memory is zeroed when mapped, and
2530          * writes to that region are not written out to the file."
2531          */
2532         kaddr = kmap_atomic(page, KM_USER0);
2533         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2534         flush_dcache_page(page);
2535         kunmap_atomic(kaddr, KM_USER0);
2536 out:
2537         ret = mpage_writepage(page, get_block, wbc);
2538         if (ret == -EAGAIN)
2539                 ret = __block_write_full_page(inode, page, get_block, wbc);
2540         return ret;
2541 }
2542 EXPORT_SYMBOL(nobh_writepage);
2543
2544 /*
2545  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2546  */
2547 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2548 {
2549         struct inode *inode = mapping->host;
2550         unsigned blocksize = 1 << inode->i_blkbits;
2551         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2552         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2553         unsigned to;
2554         struct page *page;
2555         struct address_space_operations *a_ops = mapping->a_ops;
2556         char *kaddr;
2557         int ret = 0;
2558
2559         if ((offset & (blocksize - 1)) == 0)
2560                 goto out;
2561
2562         ret = -ENOMEM;
2563         page = grab_cache_page(mapping, index);
2564         if (!page)
2565                 goto out;
2566
2567         to = (offset + blocksize) & ~(blocksize - 1);
2568         ret = a_ops->prepare_write(NULL, page, offset, to);
2569         if (ret == 0) {
2570                 kaddr = kmap_atomic(page, KM_USER0);
2571                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2572                 flush_dcache_page(page);
2573                 kunmap_atomic(kaddr, KM_USER0);
2574                 set_page_dirty(page);
2575         }
2576         unlock_page(page);
2577         page_cache_release(page);
2578 out:
2579         return ret;
2580 }
2581 EXPORT_SYMBOL(nobh_truncate_page);
2582
2583 int block_truncate_page(struct address_space *mapping,
2584                         loff_t from, get_block_t *get_block)
2585 {
2586         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2587         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2588         unsigned blocksize;
2589         pgoff_t iblock;
2590         unsigned length, pos;
2591         struct inode *inode = mapping->host;
2592         struct page *page;
2593         struct buffer_head *bh;
2594         void *kaddr;
2595         int err;
2596
2597         blocksize = 1 << inode->i_blkbits;
2598         length = offset & (blocksize - 1);
2599
2600         /* Block boundary? Nothing to do */
2601         if (!length)
2602                 return 0;
2603
2604         length = blocksize - length;
2605         iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2606         
2607         page = grab_cache_page(mapping, index);
2608         err = -ENOMEM;
2609         if (!page)
2610                 goto out;
2611
2612         if (!page_has_buffers(page))
2613                 create_empty_buffers(page, blocksize, 0);
2614
2615         /* Find the buffer that contains "offset" */
2616         bh = page_buffers(page);
2617         pos = blocksize;
2618         while (offset >= pos) {
2619                 bh = bh->b_this_page;
2620                 iblock++;
2621                 pos += blocksize;
2622         }
2623
2624         err = 0;
2625         if (!buffer_mapped(bh)) {
2626                 err = get_block(inode, iblock, bh, 0);
2627                 if (err)
2628                         goto unlock;
2629                 /* unmapped? It's a hole - nothing to do */
2630                 if (!buffer_mapped(bh))
2631                         goto unlock;
2632         }
2633
2634         /* Ok, it's mapped. Make sure it's up-to-date */
2635         if (PageUptodate(page))
2636                 set_buffer_uptodate(bh);
2637
2638         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2639                 err = -EIO;
2640                 ll_rw_block(READ, 1, &bh);
2641                 wait_on_buffer(bh);
2642                 /* Uhhuh. Read error. Complain and punt. */
2643                 if (!buffer_uptodate(bh))
2644                         goto unlock;
2645         }
2646
2647         kaddr = kmap_atomic(page, KM_USER0);
2648         memset(kaddr + offset, 0, length);
2649         flush_dcache_page(page);
2650         kunmap_atomic(kaddr, KM_USER0);
2651
2652         mark_buffer_dirty(bh);
2653         err = 0;
2654
2655 unlock:
2656         unlock_page(page);
2657         page_cache_release(page);
2658 out:
2659         return err;
2660 }
2661
2662 /*
2663  * The generic ->writepage function for buffer-backed address_spaces
2664  */
2665 int block_write_full_page(struct page *page, get_block_t *get_block,
2666                         struct writeback_control *wbc)
2667 {
2668         struct inode * const inode = page->mapping->host;
2669         loff_t i_size = i_size_read(inode);
2670         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2671         unsigned offset;
2672         void *kaddr;
2673
2674         /* Is the page fully inside i_size? */
2675         if (page->index < end_index)
2676                 return __block_write_full_page(inode, page, get_block, wbc);
2677
2678         /* Is the page fully outside i_size? (truncate in progress) */
2679         offset = i_size & (PAGE_CACHE_SIZE-1);
2680         if (page->index >= end_index+1 || !offset) {
2681                 /*
2682                  * The page may have dirty, unmapped buffers.  For example,
2683                  * they may have been added in ext3_writepage().  Make them
2684                  * freeable here, so the page does not leak.
2685                  */
2686                 block_invalidatepage(page, 0);
2687                 unlock_page(page);
2688                 return 0; /* don't care */
2689         }
2690
2691         /*
2692          * The page straddles i_size.  It must be zeroed out on each and every
2693          * writepage invokation because it may be mmapped.  "A file is mapped
2694          * in multiples of the page size.  For a file that is not a multiple of
2695          * the  page size, the remaining memory is zeroed when mapped, and
2696          * writes to that region are not written out to the file."
2697          */
2698         kaddr = kmap_atomic(page, KM_USER0);
2699         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2700         flush_dcache_page(page);
2701         kunmap_atomic(kaddr, KM_USER0);
2702         return __block_write_full_page(inode, page, get_block, wbc);
2703 }
2704
2705 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2706                             get_block_t *get_block)
2707 {
2708         struct buffer_head tmp;
2709         struct inode *inode = mapping->host;
2710         tmp.b_state = 0;
2711         tmp.b_blocknr = 0;
2712         get_block(inode, block, &tmp, 0);
2713         return tmp.b_blocknr;
2714 }
2715
2716 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2717 {
2718         struct buffer_head *bh = bio->bi_private;
2719
2720         if (bio->bi_size)
2721                 return 1;
2722
2723         if (err == -EOPNOTSUPP) {
2724                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2725                 set_bit(BH_Eopnotsupp, &bh->b_state);
2726         }
2727
2728         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2729         bio_put(bio);
2730         return 0;
2731 }
2732
2733 int submit_bh(int rw, struct buffer_head * bh)
2734 {
2735         struct bio *bio;
2736         int ret = 0;
2737
2738         BUG_ON(!buffer_locked(bh));
2739         BUG_ON(!buffer_mapped(bh));
2740         BUG_ON(!bh->b_end_io);
2741
2742         if (buffer_ordered(bh) && (rw == WRITE))
2743                 rw = WRITE_BARRIER;
2744
2745         /*
2746          * Only clear out a write error when rewriting, should this
2747          * include WRITE_SYNC as well?
2748          */
2749         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2750                 clear_buffer_write_io_error(bh);
2751
2752         /*
2753          * from here on down, it's all bio -- do the initial mapping,
2754          * submit_bio -> generic_make_request may further map this bio around
2755          */
2756         bio = bio_alloc(GFP_NOIO, 1);
2757
2758         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2759         bio->bi_bdev = bh->b_bdev;
2760         bio->bi_io_vec[0].bv_page = bh->b_page;
2761         bio->bi_io_vec[0].bv_len = bh->b_size;
2762         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2763
2764         bio->bi_vcnt = 1;
2765         bio->bi_idx = 0;
2766         bio->bi_size = bh->b_size;
2767
2768         bio->bi_end_io = end_bio_bh_io_sync;
2769         bio->bi_private = bh;
2770
2771         bio_get(bio);
2772         submit_bio(rw, bio);
2773
2774         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2775                 ret = -EOPNOTSUPP;
2776
2777         bio_put(bio);
2778         return ret;
2779 }
2780
2781 /**
2782  * ll_rw_block: low-level access to block devices (DEPRECATED)
2783  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2784  * @nr: number of &struct buffer_heads in the array
2785  * @bhs: array of pointers to &struct buffer_head
2786  *
2787  * ll_rw_block() takes an array of pointers to &struct buffer_heads,
2788  * and requests an I/O operation on them, either a %READ or a %WRITE.
2789  * The third %READA option is described in the documentation for
2790  * generic_make_request() which ll_rw_block() calls.
2791  *
2792  * This function drops any buffer that it cannot get a lock on (with the
2793  * BH_Lock state bit), any buffer that appears to be clean when doing a
2794  * write request, and any buffer that appears to be up-to-date when doing
2795  * read request.  Further it marks as clean buffers that are processed for
2796  * writing (the buffer cache won't assume that they are actually clean until
2797  * the buffer gets unlocked).
2798  *
2799  * ll_rw_block sets b_end_io to simple completion handler that marks
2800  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2801  * any waiters. 
2802  *
2803  * All of the buffers must be for the same device, and must also be a
2804  * multiple of the current approved size for the device.
2805  */
2806 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2807 {
2808         int i;
2809
2810         for (i = 0; i < nr; i++) {
2811                 struct buffer_head *bh = bhs[i];
2812
2813                 if (test_set_buffer_locked(bh))
2814                         continue;
2815
2816                 get_bh(bh);
2817                 if (rw == WRITE) {
2818                         if (test_clear_buffer_dirty(bh)) {
2819                                 bh->b_end_io = end_buffer_write_sync;
2820                                 submit_bh(WRITE, bh);
2821                                 continue;
2822                         }
2823                 } else {
2824                         if (!buffer_uptodate(bh)) {
2825                                 bh->b_end_io = end_buffer_read_sync;
2826                                 submit_bh(rw, bh);
2827                                 continue;
2828                         }
2829                 }
2830                 unlock_buffer(bh);
2831                 put_bh(bh);
2832         }
2833 }
2834
2835 /*
2836  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2837  * and then start new I/O and then wait upon it.  The caller must have a ref on
2838  * the buffer_head.
2839  */
2840 int sync_dirty_buffer(struct buffer_head *bh)
2841 {
2842         int ret = 0;
2843
2844         WARN_ON(atomic_read(&bh->b_count) < 1);
2845         lock_buffer(bh);
2846         if (test_clear_buffer_dirty(bh)) {
2847                 get_bh(bh);
2848                 bh->b_end_io = end_buffer_write_sync;
2849                 ret = submit_bh(WRITE, bh);
2850                 wait_on_buffer(bh);
2851                 if (buffer_eopnotsupp(bh)) {
2852                         clear_buffer_eopnotsupp(bh);
2853                         ret = -EOPNOTSUPP;
2854                 }
2855                 if (!ret && !buffer_uptodate(bh))
2856                         ret = -EIO;
2857         } else {
2858                 unlock_buffer(bh);
2859         }
2860         return ret;
2861 }
2862
2863 /*
2864  * try_to_free_buffers() checks if all the buffers on this particular page
2865  * are unused, and releases them if so.
2866  *
2867  * Exclusion against try_to_free_buffers may be obtained by either
2868  * locking the page or by holding its mapping's private_lock.
2869  *
2870  * If the page is dirty but all the buffers are clean then we need to
2871  * be sure to mark the page clean as well.  This is because the page
2872  * may be against a block device, and a later reattachment of buffers
2873  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2874  * filesystem data on the same device.
2875  *
2876  * The same applies to regular filesystem pages: if all the buffers are
2877  * clean then we set the page clean and proceed.  To do that, we require
2878  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2879  * private_lock.
2880  *
2881  * try_to_free_buffers() is non-blocking.
2882  */
2883 static inline int buffer_busy(struct buffer_head *bh)
2884 {
2885         return atomic_read(&bh->b_count) |
2886                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2887 }
2888
2889 static int
2890 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2891 {
2892         struct buffer_head *head = page_buffers(page);
2893         struct buffer_head *bh;
2894
2895         bh = head;
2896         do {
2897                 if (buffer_write_io_error(bh) && page->mapping)
2898                         set_bit(AS_EIO, &page->mapping->flags);
2899                 if (buffer_busy(bh))
2900                         goto failed;
2901                 bh = bh->b_this_page;
2902         } while (bh != head);
2903
2904         do {
2905                 struct buffer_head *next = bh->b_this_page;
2906
2907                 if (!list_empty(&bh->b_assoc_buffers))
2908                         __remove_assoc_queue(bh);
2909                 bh = next;
2910         } while (bh != head);
2911         *buffers_to_free = head;
2912         __clear_page_buffers(page);
2913         return 1;
2914 failed:
2915         return 0;
2916 }
2917
2918 int try_to_free_buffers(struct page *page)
2919 {
2920         struct address_space * const mapping = page->mapping;
2921         struct buffer_head *buffers_to_free = NULL;
2922         int ret = 0;
2923
2924         BUG_ON(!PageLocked(page));
2925         if (PageWriteback(page))
2926                 return 0;
2927
2928         if (mapping == NULL) {          /* can this still happen? */
2929                 ret = drop_buffers(page, &buffers_to_free);
2930                 goto out;
2931         }
2932
2933         spin_lock(&mapping->private_lock);
2934         ret = drop_buffers(page, &buffers_to_free);
2935         if (ret) {
2936                 /*
2937                  * If the filesystem writes its buffers by hand (eg ext3)
2938                  * then we can have clean buffers against a dirty page.  We
2939                  * clean the page here; otherwise later reattachment of buffers
2940                  * could encounter a non-uptodate page, which is unresolvable.
2941                  * This only applies in the rare case where try_to_free_buffers
2942                  * succeeds but the page is not freed.
2943                  */
2944                 clear_page_dirty(page);
2945         }
2946         spin_unlock(&mapping->private_lock);
2947 out:
2948         if (buffers_to_free) {
2949                 struct buffer_head *bh = buffers_to_free;
2950
2951                 do {
2952                         struct buffer_head *next = bh->b_this_page;
2953                         free_buffer_head(bh);
2954                         bh = next;
2955                 } while (bh != buffers_to_free);
2956         }
2957         return ret;
2958 }
2959 EXPORT_SYMBOL(try_to_free_buffers);
2960
2961 int block_sync_page(struct page *page)
2962 {
2963         struct address_space *mapping;
2964
2965         smp_mb();
2966         mapping = page_mapping(page);
2967         if (mapping)
2968                 blk_run_backing_dev(mapping->backing_dev_info, page);
2969         return 0;
2970 }
2971
2972 /*
2973  * There are no bdflush tunables left.  But distributions are
2974  * still running obsolete flush daemons, so we terminate them here.
2975  *
2976  * Use of bdflush() is deprecated and will be removed in a future kernel.
2977  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2978  */
2979 asmlinkage long sys_bdflush(int func, long data)
2980 {
2981         static int msg_count;
2982
2983         if (!capable(CAP_SYS_ADMIN))
2984                 return -EPERM;
2985
2986         if (msg_count < 5) {
2987                 msg_count++;
2988                 printk(KERN_INFO
2989                         "warning: process `%s' used the obsolete bdflush"
2990                         " system call\n", current->comm);
2991                 printk(KERN_INFO "Fix your initscripts?\n");
2992         }
2993
2994         if (func == 1)
2995                 do_exit(0);
2996         return 0;
2997 }
2998
2999 /*
3000  * Buffer-head allocation
3001  */
3002 static kmem_cache_t *bh_cachep;
3003
3004 /*
3005  * Once the number of bh's in the machine exceeds this level, we start
3006  * stripping them in writeback.
3007  */
3008 static int max_buffer_heads;
3009
3010 int buffer_heads_over_limit;
3011
3012 struct bh_accounting {
3013         int nr;                 /* Number of live bh's */
3014         int ratelimit;          /* Limit cacheline bouncing */
3015 };
3016
3017 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3018
3019 static void recalc_bh_state(void)
3020 {
3021         int i;
3022         int tot = 0;
3023
3024         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3025                 return;
3026         __get_cpu_var(bh_accounting).ratelimit = 0;
3027         for_each_cpu(i)
3028                 tot += per_cpu(bh_accounting, i).nr;
3029         buffer_heads_over_limit = (tot > max_buffer_heads);
3030 }
3031         
3032 struct buffer_head *alloc_buffer_head(unsigned int __nocast gfp_flags)
3033 {
3034         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3035         if (ret) {
3036                 preempt_disable();
3037                 __get_cpu_var(bh_accounting).nr++;
3038                 recalc_bh_state();
3039                 preempt_enable();
3040         }
3041         return ret;
3042 }
3043 EXPORT_SYMBOL(alloc_buffer_head);
3044
3045 void free_buffer_head(struct buffer_head *bh)
3046 {
3047         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3048         kmem_cache_free(bh_cachep, bh);
3049         preempt_disable();
3050         __get_cpu_var(bh_accounting).nr--;
3051         recalc_bh_state();
3052         preempt_enable();
3053 }
3054 EXPORT_SYMBOL(free_buffer_head);
3055
3056 static void
3057 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3058 {
3059         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3060                             SLAB_CTOR_CONSTRUCTOR) {
3061                 struct buffer_head * bh = (struct buffer_head *)data;
3062
3063                 memset(bh, 0, sizeof(*bh));
3064                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3065         }
3066 }
3067
3068 #ifdef CONFIG_HOTPLUG_CPU
3069 static void buffer_exit_cpu(int cpu)
3070 {
3071         int i;
3072         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3073
3074         for (i = 0; i < BH_LRU_SIZE; i++) {
3075                 brelse(b->bhs[i]);
3076                 b->bhs[i] = NULL;
3077         }
3078 }
3079
3080 static int buffer_cpu_notify(struct notifier_block *self,
3081                               unsigned long action, void *hcpu)
3082 {
3083         if (action == CPU_DEAD)
3084                 buffer_exit_cpu((unsigned long)hcpu);
3085         return NOTIFY_OK;
3086 }
3087 #endif /* CONFIG_HOTPLUG_CPU */
3088
3089 void __init buffer_init(void)
3090 {
3091         int nrpages;
3092
3093         bh_cachep = kmem_cache_create("buffer_head",
3094                         sizeof(struct buffer_head), 0,
3095                         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3096
3097         /*
3098          * Limit the bh occupancy to 10% of ZONE_NORMAL
3099          */
3100         nrpages = (nr_free_buffer_pages() * 10) / 100;
3101         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3102         hotcpu_notifier(buffer_cpu_notify, 0);
3103 }
3104
3105 EXPORT_SYMBOL(__bforget);
3106 EXPORT_SYMBOL(__brelse);
3107 EXPORT_SYMBOL(__wait_on_buffer);
3108 EXPORT_SYMBOL(block_commit_write);
3109 EXPORT_SYMBOL(block_prepare_write);
3110 EXPORT_SYMBOL(block_read_full_page);
3111 EXPORT_SYMBOL(block_sync_page);
3112 EXPORT_SYMBOL(block_truncate_page);
3113 EXPORT_SYMBOL(block_write_full_page);
3114 EXPORT_SYMBOL(cont_prepare_write);
3115 EXPORT_SYMBOL(end_buffer_async_write);
3116 EXPORT_SYMBOL(end_buffer_read_sync);
3117 EXPORT_SYMBOL(end_buffer_write_sync);
3118 EXPORT_SYMBOL(file_fsync);
3119 EXPORT_SYMBOL(fsync_bdev);
3120 EXPORT_SYMBOL(generic_block_bmap);
3121 EXPORT_SYMBOL(generic_commit_write);
3122 EXPORT_SYMBOL(generic_cont_expand);
3123 EXPORT_SYMBOL(init_buffer);
3124 EXPORT_SYMBOL(invalidate_bdev);
3125 EXPORT_SYMBOL(ll_rw_block);
3126 EXPORT_SYMBOL(mark_buffer_dirty);
3127 EXPORT_SYMBOL(submit_bh);
3128 EXPORT_SYMBOL(sync_dirty_buffer);
3129 EXPORT_SYMBOL(unlock_buffer);