]> err.no Git - linux-2.6/blob - drivers/scsi/scsi_lib.c
revert sg segment size ifdefs
[linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 /*
38  * The maximum number of SG segments that we will put inside a scatterlist
39  * (unless chaining is used). Should ideally fit inside a single page, to
40  * avoid a higher order allocation.
41  */
42 #define SCSI_MAX_SG_SEGMENTS    128
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         return blk_rq_append_bio(q, rq, bio);
267 }
268
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271         bio_put(bio);
272 }
273
274 /**
275  * scsi_req_map_sg - map a scatterlist into a request
276  * @rq:         request to fill
277  * @sg:         scatterlist
278  * @nsegs:      number of elements
279  * @bufflen:    len of buffer
280  * @gfp:        memory allocation flags
281  *
282  * scsi_req_map_sg maps a scatterlist into a request so that the
283  * request can be sent to the block layer. We do not trust the scatterlist
284  * sent to use, as some ULDs use that struct to only organize the pages.
285  */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287                            int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289         struct request_queue *q = rq->q;
290         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291         unsigned int data_len = bufflen, len, bytes, off;
292         struct scatterlist *sg;
293         struct page *page;
294         struct bio *bio = NULL;
295         int i, err, nr_vecs = 0;
296
297         for_each_sg(sgl, sg, nsegs, i) {
298                 page = sg->page;
299                 off = sg->offset;
300                 len = sg->length;
301                 data_len += len;
302
303                 while (len > 0 && data_len > 0) {
304                         /*
305                          * sg sends a scatterlist that is larger than
306                          * the data_len it wants transferred for certain
307                          * IO sizes
308                          */
309                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310                         bytes = min(bytes, data_len);
311
312                         if (!bio) {
313                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314                                 nr_pages -= nr_vecs;
315
316                                 bio = bio_alloc(gfp, nr_vecs);
317                                 if (!bio) {
318                                         err = -ENOMEM;
319                                         goto free_bios;
320                                 }
321                                 bio->bi_end_io = scsi_bi_endio;
322                         }
323
324                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
325                             bytes) {
326                                 bio_put(bio);
327                                 err = -EINVAL;
328                                 goto free_bios;
329                         }
330
331                         if (bio->bi_vcnt >= nr_vecs) {
332                                 err = scsi_merge_bio(rq, bio);
333                                 if (err) {
334                                         bio_endio(bio, 0);
335                                         goto free_bios;
336                                 }
337                                 bio = NULL;
338                         }
339
340                         page++;
341                         len -= bytes;
342                         data_len -=bytes;
343                         off = 0;
344                 }
345         }
346
347         rq->buffer = rq->data = NULL;
348         rq->data_len = bufflen;
349         return 0;
350
351 free_bios:
352         while ((bio = rq->bio) != NULL) {
353                 rq->bio = bio->bi_next;
354                 /*
355                  * call endio instead of bio_put incase it was bounced
356                  */
357                 bio_endio(bio, 0);
358         }
359
360         return err;
361 }
362
363 /**
364  * scsi_execute_async - insert request
365  * @sdev:       scsi device
366  * @cmd:        scsi command
367  * @cmd_len:    length of scsi cdb
368  * @data_direction: data direction
369  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
370  * @bufflen:    len of buffer
371  * @use_sg:     if buffer is a scatterlist this is the number of elements
372  * @timeout:    request timeout in seconds
373  * @retries:    number of times to retry request
374  * @flags:      or into request flags
375  **/
376 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
377                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
378                        int use_sg, int timeout, int retries, void *privdata,
379                        void (*done)(void *, char *, int, int), gfp_t gfp)
380 {
381         struct request *req;
382         struct scsi_io_context *sioc;
383         int err = 0;
384         int write = (data_direction == DMA_TO_DEVICE);
385
386         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
387         if (!sioc)
388                 return DRIVER_ERROR << 24;
389
390         req = blk_get_request(sdev->request_queue, write, gfp);
391         if (!req)
392                 goto free_sense;
393         req->cmd_type = REQ_TYPE_BLOCK_PC;
394         req->cmd_flags |= REQ_QUIET;
395
396         if (use_sg)
397                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
398         else if (bufflen)
399                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
400
401         if (err)
402                 goto free_req;
403
404         req->cmd_len = cmd_len;
405         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
406         memcpy(req->cmd, cmd, req->cmd_len);
407         req->sense = sioc->sense;
408         req->sense_len = 0;
409         req->timeout = timeout;
410         req->retries = retries;
411         req->end_io_data = sioc;
412
413         sioc->data = privdata;
414         sioc->done = done;
415
416         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
417         return 0;
418
419 free_req:
420         blk_put_request(req);
421 free_sense:
422         kmem_cache_free(scsi_io_context_cache, sioc);
423         return DRIVER_ERROR << 24;
424 }
425 EXPORT_SYMBOL_GPL(scsi_execute_async);
426
427 /*
428  * Function:    scsi_init_cmd_errh()
429  *
430  * Purpose:     Initialize cmd fields related to error handling.
431  *
432  * Arguments:   cmd     - command that is ready to be queued.
433  *
434  * Notes:       This function has the job of initializing a number of
435  *              fields related to error handling.   Typically this will
436  *              be called once for each command, as required.
437  */
438 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
439 {
440         cmd->serial_number = 0;
441         cmd->resid = 0;
442         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
443         if (cmd->cmd_len == 0)
444                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
445 }
446
447 void scsi_device_unbusy(struct scsi_device *sdev)
448 {
449         struct Scsi_Host *shost = sdev->host;
450         unsigned long flags;
451
452         spin_lock_irqsave(shost->host_lock, flags);
453         shost->host_busy--;
454         if (unlikely(scsi_host_in_recovery(shost) &&
455                      (shost->host_failed || shost->host_eh_scheduled)))
456                 scsi_eh_wakeup(shost);
457         spin_unlock(shost->host_lock);
458         spin_lock(sdev->request_queue->queue_lock);
459         sdev->device_busy--;
460         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
461 }
462
463 /*
464  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465  * and call blk_run_queue for all the scsi_devices on the target -
466  * including current_sdev first.
467  *
468  * Called with *no* scsi locks held.
469  */
470 static void scsi_single_lun_run(struct scsi_device *current_sdev)
471 {
472         struct Scsi_Host *shost = current_sdev->host;
473         struct scsi_device *sdev, *tmp;
474         struct scsi_target *starget = scsi_target(current_sdev);
475         unsigned long flags;
476
477         spin_lock_irqsave(shost->host_lock, flags);
478         starget->starget_sdev_user = NULL;
479         spin_unlock_irqrestore(shost->host_lock, flags);
480
481         /*
482          * Call blk_run_queue for all LUNs on the target, starting with
483          * current_sdev. We race with others (to set starget_sdev_user),
484          * but in most cases, we will be first. Ideally, each LU on the
485          * target would get some limited time or requests on the target.
486          */
487         blk_run_queue(current_sdev->request_queue);
488
489         spin_lock_irqsave(shost->host_lock, flags);
490         if (starget->starget_sdev_user)
491                 goto out;
492         list_for_each_entry_safe(sdev, tmp, &starget->devices,
493                         same_target_siblings) {
494                 if (sdev == current_sdev)
495                         continue;
496                 if (scsi_device_get(sdev))
497                         continue;
498
499                 spin_unlock_irqrestore(shost->host_lock, flags);
500                 blk_run_queue(sdev->request_queue);
501                 spin_lock_irqsave(shost->host_lock, flags);
502         
503                 scsi_device_put(sdev);
504         }
505  out:
506         spin_unlock_irqrestore(shost->host_lock, flags);
507 }
508
509 /*
510  * Function:    scsi_run_queue()
511  *
512  * Purpose:     Select a proper request queue to serve next
513  *
514  * Arguments:   q       - last request's queue
515  *
516  * Returns:     Nothing
517  *
518  * Notes:       The previous command was completely finished, start
519  *              a new one if possible.
520  */
521 static void scsi_run_queue(struct request_queue *q)
522 {
523         struct scsi_device *sdev = q->queuedata;
524         struct Scsi_Host *shost = sdev->host;
525         unsigned long flags;
526
527         if (sdev->single_lun)
528                 scsi_single_lun_run(sdev);
529
530         spin_lock_irqsave(shost->host_lock, flags);
531         while (!list_empty(&shost->starved_list) &&
532                !shost->host_blocked && !shost->host_self_blocked &&
533                 !((shost->can_queue > 0) &&
534                   (shost->host_busy >= shost->can_queue))) {
535                 /*
536                  * As long as shost is accepting commands and we have
537                  * starved queues, call blk_run_queue. scsi_request_fn
538                  * drops the queue_lock and can add us back to the
539                  * starved_list.
540                  *
541                  * host_lock protects the starved_list and starved_entry.
542                  * scsi_request_fn must get the host_lock before checking
543                  * or modifying starved_list or starved_entry.
544                  */
545                 sdev = list_entry(shost->starved_list.next,
546                                           struct scsi_device, starved_entry);
547                 list_del_init(&sdev->starved_entry);
548                 spin_unlock_irqrestore(shost->host_lock, flags);
549
550
551                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
552                     !test_and_set_bit(QUEUE_FLAG_REENTER,
553                                       &sdev->request_queue->queue_flags)) {
554                         blk_run_queue(sdev->request_queue);
555                         clear_bit(QUEUE_FLAG_REENTER,
556                                   &sdev->request_queue->queue_flags);
557                 } else
558                         blk_run_queue(sdev->request_queue);
559
560                 spin_lock_irqsave(shost->host_lock, flags);
561                 if (unlikely(!list_empty(&sdev->starved_entry)))
562                         /*
563                          * sdev lost a race, and was put back on the
564                          * starved list. This is unlikely but without this
565                          * in theory we could loop forever.
566                          */
567                         break;
568         }
569         spin_unlock_irqrestore(shost->host_lock, flags);
570
571         blk_run_queue(q);
572 }
573
574 /*
575  * Function:    scsi_requeue_command()
576  *
577  * Purpose:     Handle post-processing of completed commands.
578  *
579  * Arguments:   q       - queue to operate on
580  *              cmd     - command that may need to be requeued.
581  *
582  * Returns:     Nothing
583  *
584  * Notes:       After command completion, there may be blocks left
585  *              over which weren't finished by the previous command
586  *              this can be for a number of reasons - the main one is
587  *              I/O errors in the middle of the request, in which case
588  *              we need to request the blocks that come after the bad
589  *              sector.
590  * Notes:       Upon return, cmd is a stale pointer.
591  */
592 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
593 {
594         struct request *req = cmd->request;
595         unsigned long flags;
596
597         scsi_unprep_request(req);
598         spin_lock_irqsave(q->queue_lock, flags);
599         blk_requeue_request(q, req);
600         spin_unlock_irqrestore(q->queue_lock, flags);
601
602         scsi_run_queue(q);
603 }
604
605 void scsi_next_command(struct scsi_cmnd *cmd)
606 {
607         struct scsi_device *sdev = cmd->device;
608         struct request_queue *q = sdev->request_queue;
609
610         /* need to hold a reference on the device before we let go of the cmd */
611         get_device(&sdev->sdev_gendev);
612
613         scsi_put_command(cmd);
614         scsi_run_queue(q);
615
616         /* ok to remove device now */
617         put_device(&sdev->sdev_gendev);
618 }
619
620 void scsi_run_host_queues(struct Scsi_Host *shost)
621 {
622         struct scsi_device *sdev;
623
624         shost_for_each_device(sdev, shost)
625                 scsi_run_queue(sdev->request_queue);
626 }
627
628 /*
629  * Function:    scsi_end_request()
630  *
631  * Purpose:     Post-processing of completed commands (usually invoked at end
632  *              of upper level post-processing and scsi_io_completion).
633  *
634  * Arguments:   cmd      - command that is complete.
635  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636  *              bytes    - number of bytes of completed I/O
637  *              requeue  - indicates whether we should requeue leftovers.
638  *
639  * Lock status: Assumed that lock is not held upon entry.
640  *
641  * Returns:     cmd if requeue required, NULL otherwise.
642  *
643  * Notes:       This is called for block device requests in order to
644  *              mark some number of sectors as complete.
645  * 
646  *              We are guaranteeing that the request queue will be goosed
647  *              at some point during this call.
648  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
649  */
650 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
651                                           int bytes, int requeue)
652 {
653         struct request_queue *q = cmd->device->request_queue;
654         struct request *req = cmd->request;
655         unsigned long flags;
656
657         /*
658          * If there are blocks left over at the end, set up the command
659          * to queue the remainder of them.
660          */
661         if (end_that_request_chunk(req, uptodate, bytes)) {
662                 int leftover = (req->hard_nr_sectors << 9);
663
664                 if (blk_pc_request(req))
665                         leftover = req->data_len;
666
667                 /* kill remainder if no retrys */
668                 if (!uptodate && blk_noretry_request(req))
669                         end_that_request_chunk(req, 0, leftover);
670                 else {
671                         if (requeue) {
672                                 /*
673                                  * Bleah.  Leftovers again.  Stick the
674                                  * leftovers in the front of the
675                                  * queue, and goose the queue again.
676                                  */
677                                 scsi_requeue_command(q, cmd);
678                                 cmd = NULL;
679                         }
680                         return cmd;
681                 }
682         }
683
684         add_disk_randomness(req->rq_disk);
685
686         spin_lock_irqsave(q->queue_lock, flags);
687         if (blk_rq_tagged(req))
688                 blk_queue_end_tag(q, req);
689         end_that_request_last(req, uptodate);
690         spin_unlock_irqrestore(q->queue_lock, flags);
691
692         /*
693          * This will goose the queue request function at the end, so we don't
694          * need to worry about launching another command.
695          */
696         scsi_next_command(cmd);
697         return NULL;
698 }
699
700 /*
701  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
703  */
704 #define SCSI_MAX_SG_CHAIN_SEGMENTS      2048
705
706 static inline unsigned int scsi_sgtable_index(unsigned short nents)
707 {
708         unsigned int index;
709
710         switch (nents) {
711         case 1 ... 8:
712                 index = 0;
713                 break;
714         case 9 ... 16:
715                 index = 1;
716                 break;
717 #if (SCSI_MAX_SG_SEGMENTS > 16)
718         case 17 ... 32:
719                 index = 2;
720                 break;
721 #if (SCSI_MAX_SG_SEGMENTS > 32)
722         case 33 ... 64:
723                 index = 3;
724                 break;
725 #if (SCSI_MAX_SG_SEGMENTS > 64)
726         case 65 ... 128:
727                 index = 4;
728                 break;
729 #endif
730 #endif
731 #endif
732         default:
733                 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
734                 BUG();
735         }
736
737         return index;
738 }
739
740 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741 {
742         struct scsi_host_sg_pool *sgp;
743         struct scatterlist *sgl, *prev, *ret;
744         unsigned int index;
745         int this, left;
746
747         BUG_ON(!cmd->use_sg);
748
749         left = cmd->use_sg;
750         ret = prev = NULL;
751         do {
752                 this = left;
753                 if (this > SCSI_MAX_SG_SEGMENTS) {
754                         this = SCSI_MAX_SG_SEGMENTS - 1;
755                         index = SG_MEMPOOL_NR - 1;
756                 } else
757                         index = scsi_sgtable_index(this);
758
759                 left -= this;
760
761                 sgp = scsi_sg_pools + index;
762
763                 sgl = mempool_alloc(sgp->pool, gfp_mask);
764                 if (unlikely(!sgl))
765                         goto enomem;
766
767                 memset(sgl, 0, sizeof(*sgl) * sgp->size);
768
769                 /*
770                  * first loop through, set initial index and return value
771                  */
772                 if (!ret) {
773                         cmd->sglist_len = index;
774                         ret = sgl;
775                 }
776
777                 /*
778                  * chain previous sglist, if any. we know the previous
779                  * sglist must be the biggest one, or we would not have
780                  * ended up doing another loop.
781                  */
782                 if (prev)
783                         sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
784
785                 /*
786                  * don't allow subsequent mempool allocs to sleep, it would
787                  * violate the mempool principle.
788                  */
789                 gfp_mask &= ~__GFP_WAIT;
790                 gfp_mask |= __GFP_HIGH;
791                 prev = sgl;
792         } while (left);
793
794         /*
795          * ->use_sg may get modified after dma mapping has potentially
796          * shrunk the number of segments, so keep a copy of it for free.
797          */
798         cmd->__use_sg = cmd->use_sg;
799         return ret;
800 enomem:
801         if (ret) {
802                 /*
803                  * Free entries chained off ret. Since we were trying to
804                  * allocate another sglist, we know that all entries are of
805                  * the max size.
806                  */
807                 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
808                 prev = ret;
809                 ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
810
811                 while ((sgl = sg_chain_ptr(ret)) != NULL) {
812                         ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
813                         mempool_free(sgl, sgp->pool);
814                 }
815
816                 mempool_free(prev, sgp->pool);
817         }
818         return NULL;
819 }
820
821 EXPORT_SYMBOL(scsi_alloc_sgtable);
822
823 void scsi_free_sgtable(struct scsi_cmnd *cmd)
824 {
825         struct scatterlist *sgl = cmd->request_buffer;
826         struct scsi_host_sg_pool *sgp;
827
828         BUG_ON(cmd->sglist_len >= SG_MEMPOOL_NR);
829
830         /*
831          * if this is the biggest size sglist, check if we have
832          * chained parts we need to free
833          */
834         if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
835                 unsigned short this, left;
836                 struct scatterlist *next;
837                 unsigned int index;
838
839                 left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
840                 next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
841                 while (left && next) {
842                         sgl = next;
843                         this = left;
844                         if (this > SCSI_MAX_SG_SEGMENTS) {
845                                 this = SCSI_MAX_SG_SEGMENTS - 1;
846                                 index = SG_MEMPOOL_NR - 1;
847                         } else
848                                 index = scsi_sgtable_index(this);
849
850                         left -= this;
851
852                         sgp = scsi_sg_pools + index;
853
854                         if (left)
855                                 next = sg_chain_ptr(&sgl[sgp->size - 1]);
856
857                         mempool_free(sgl, sgp->pool);
858                 }
859
860                 /*
861                  * Restore original, will be freed below
862                  */
863                 sgl = cmd->request_buffer;
864         }
865
866         sgp = scsi_sg_pools + cmd->sglist_len;
867         mempool_free(sgl, sgp->pool);
868 }
869
870 EXPORT_SYMBOL(scsi_free_sgtable);
871
872 /*
873  * Function:    scsi_release_buffers()
874  *
875  * Purpose:     Completion processing for block device I/O requests.
876  *
877  * Arguments:   cmd     - command that we are bailing.
878  *
879  * Lock status: Assumed that no lock is held upon entry.
880  *
881  * Returns:     Nothing
882  *
883  * Notes:       In the event that an upper level driver rejects a
884  *              command, we must release resources allocated during
885  *              the __init_io() function.  Primarily this would involve
886  *              the scatter-gather table, and potentially any bounce
887  *              buffers.
888  */
889 static void scsi_release_buffers(struct scsi_cmnd *cmd)
890 {
891         if (cmd->use_sg)
892                 scsi_free_sgtable(cmd);
893
894         /*
895          * Zero these out.  They now point to freed memory, and it is
896          * dangerous to hang onto the pointers.
897          */
898         cmd->request_buffer = NULL;
899         cmd->request_bufflen = 0;
900 }
901
902 /*
903  * Function:    scsi_io_completion()
904  *
905  * Purpose:     Completion processing for block device I/O requests.
906  *
907  * Arguments:   cmd   - command that is finished.
908  *
909  * Lock status: Assumed that no lock is held upon entry.
910  *
911  * Returns:     Nothing
912  *
913  * Notes:       This function is matched in terms of capabilities to
914  *              the function that created the scatter-gather list.
915  *              In other words, if there are no bounce buffers
916  *              (the normal case for most drivers), we don't need
917  *              the logic to deal with cleaning up afterwards.
918  *
919  *              We must do one of several things here:
920  *
921  *              a) Call scsi_end_request.  This will finish off the
922  *                 specified number of sectors.  If we are done, the
923  *                 command block will be released, and the queue
924  *                 function will be goosed.  If we are not done, then
925  *                 scsi_end_request will directly goose the queue.
926  *
927  *              b) We can just use scsi_requeue_command() here.  This would
928  *                 be used if we just wanted to retry, for example.
929  */
930 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
931 {
932         int result = cmd->result;
933         int this_count = cmd->request_bufflen;
934         struct request_queue *q = cmd->device->request_queue;
935         struct request *req = cmd->request;
936         int clear_errors = 1;
937         struct scsi_sense_hdr sshdr;
938         int sense_valid = 0;
939         int sense_deferred = 0;
940
941         scsi_release_buffers(cmd);
942
943         if (result) {
944                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
945                 if (sense_valid)
946                         sense_deferred = scsi_sense_is_deferred(&sshdr);
947         }
948
949         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
950                 req->errors = result;
951                 if (result) {
952                         clear_errors = 0;
953                         if (sense_valid && req->sense) {
954                                 /*
955                                  * SG_IO wants current and deferred errors
956                                  */
957                                 int len = 8 + cmd->sense_buffer[7];
958
959                                 if (len > SCSI_SENSE_BUFFERSIZE)
960                                         len = SCSI_SENSE_BUFFERSIZE;
961                                 memcpy(req->sense, cmd->sense_buffer,  len);
962                                 req->sense_len = len;
963                         }
964                 }
965                 req->data_len = cmd->resid;
966         }
967
968         /*
969          * Next deal with any sectors which we were able to correctly
970          * handle.
971          */
972         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
973                                       "%d bytes done.\n",
974                                       req->nr_sectors, good_bytes));
975         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
976
977         if (clear_errors)
978                 req->errors = 0;
979
980         /* A number of bytes were successfully read.  If there
981          * are leftovers and there is some kind of error
982          * (result != 0), retry the rest.
983          */
984         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
985                 return;
986
987         /* good_bytes = 0, or (inclusive) there were leftovers and
988          * result = 0, so scsi_end_request couldn't retry.
989          */
990         if (sense_valid && !sense_deferred) {
991                 switch (sshdr.sense_key) {
992                 case UNIT_ATTENTION:
993                         if (cmd->device->removable) {
994                                 /* Detected disc change.  Set a bit
995                                  * and quietly refuse further access.
996                                  */
997                                 cmd->device->changed = 1;
998                                 scsi_end_request(cmd, 0, this_count, 1);
999                                 return;
1000                         } else {
1001                                 /* Must have been a power glitch, or a
1002                                  * bus reset.  Could not have been a
1003                                  * media change, so we just retry the
1004                                  * request and see what happens.
1005                                  */
1006                                 scsi_requeue_command(q, cmd);
1007                                 return;
1008                         }
1009                         break;
1010                 case ILLEGAL_REQUEST:
1011                         /* If we had an ILLEGAL REQUEST returned, then
1012                          * we may have performed an unsupported
1013                          * command.  The only thing this should be
1014                          * would be a ten byte read where only a six
1015                          * byte read was supported.  Also, on a system
1016                          * where READ CAPACITY failed, we may have
1017                          * read past the end of the disk.
1018                          */
1019                         if ((cmd->device->use_10_for_rw &&
1020                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1021                             (cmd->cmnd[0] == READ_10 ||
1022                              cmd->cmnd[0] == WRITE_10)) {
1023                                 cmd->device->use_10_for_rw = 0;
1024                                 /* This will cause a retry with a
1025                                  * 6-byte command.
1026                                  */
1027                                 scsi_requeue_command(q, cmd);
1028                                 return;
1029                         } else {
1030                                 scsi_end_request(cmd, 0, this_count, 1);
1031                                 return;
1032                         }
1033                         break;
1034                 case NOT_READY:
1035                         /* If the device is in the process of becoming
1036                          * ready, or has a temporary blockage, retry.
1037                          */
1038                         if (sshdr.asc == 0x04) {
1039                                 switch (sshdr.ascq) {
1040                                 case 0x01: /* becoming ready */
1041                                 case 0x04: /* format in progress */
1042                                 case 0x05: /* rebuild in progress */
1043                                 case 0x06: /* recalculation in progress */
1044                                 case 0x07: /* operation in progress */
1045                                 case 0x08: /* Long write in progress */
1046                                 case 0x09: /* self test in progress */
1047                                         scsi_requeue_command(q, cmd);
1048                                         return;
1049                                 default:
1050                                         break;
1051                                 }
1052                         }
1053                         if (!(req->cmd_flags & REQ_QUIET))
1054                                 scsi_cmd_print_sense_hdr(cmd,
1055                                                          "Device not ready",
1056                                                          &sshdr);
1057
1058                         scsi_end_request(cmd, 0, this_count, 1);
1059                         return;
1060                 case VOLUME_OVERFLOW:
1061                         if (!(req->cmd_flags & REQ_QUIET)) {
1062                                 scmd_printk(KERN_INFO, cmd,
1063                                             "Volume overflow, CDB: ");
1064                                 __scsi_print_command(cmd->cmnd);
1065                                 scsi_print_sense("", cmd);
1066                         }
1067                         /* See SSC3rXX or current. */
1068                         scsi_end_request(cmd, 0, this_count, 1);
1069                         return;
1070                 default:
1071                         break;
1072                 }
1073         }
1074         if (host_byte(result) == DID_RESET) {
1075                 /* Third party bus reset or reset for error recovery
1076                  * reasons.  Just retry the request and see what
1077                  * happens.
1078                  */
1079                 scsi_requeue_command(q, cmd);
1080                 return;
1081         }
1082         if (result) {
1083                 if (!(req->cmd_flags & REQ_QUIET)) {
1084                         scsi_print_result(cmd);
1085                         if (driver_byte(result) & DRIVER_SENSE)
1086                                 scsi_print_sense("", cmd);
1087                 }
1088         }
1089         scsi_end_request(cmd, 0, this_count, !result);
1090 }
1091
1092 /*
1093  * Function:    scsi_init_io()
1094  *
1095  * Purpose:     SCSI I/O initialize function.
1096  *
1097  * Arguments:   cmd   - Command descriptor we wish to initialize
1098  *
1099  * Returns:     0 on success
1100  *              BLKPREP_DEFER if the failure is retryable
1101  *              BLKPREP_KILL if the failure is fatal
1102  */
1103 static int scsi_init_io(struct scsi_cmnd *cmd)
1104 {
1105         struct request     *req = cmd->request;
1106         int                count;
1107
1108         /*
1109          * We used to not use scatter-gather for single segment request,
1110          * but now we do (it makes highmem I/O easier to support without
1111          * kmapping pages)
1112          */
1113         cmd->use_sg = req->nr_phys_segments;
1114
1115         /*
1116          * If sg table allocation fails, requeue request later.
1117          */
1118         cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1119         if (unlikely(!cmd->request_buffer)) {
1120                 scsi_unprep_request(req);
1121                 return BLKPREP_DEFER;
1122         }
1123
1124         req->buffer = NULL;
1125         if (blk_pc_request(req))
1126                 cmd->request_bufflen = req->data_len;
1127         else
1128                 cmd->request_bufflen = req->nr_sectors << 9;
1129
1130         /* 
1131          * Next, walk the list, and fill in the addresses and sizes of
1132          * each segment.
1133          */
1134         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1135         if (likely(count <= cmd->use_sg)) {
1136                 cmd->use_sg = count;
1137                 return BLKPREP_OK;
1138         }
1139
1140         printk(KERN_ERR "Incorrect number of segments after building list\n");
1141         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1142         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1143                         req->current_nr_sectors);
1144
1145         return BLKPREP_KILL;
1146 }
1147
1148 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1149                 struct request *req)
1150 {
1151         struct scsi_cmnd *cmd;
1152
1153         if (!req->special) {
1154                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1155                 if (unlikely(!cmd))
1156                         return NULL;
1157                 req->special = cmd;
1158         } else {
1159                 cmd = req->special;
1160         }
1161
1162         /* pull a tag out of the request if we have one */
1163         cmd->tag = req->tag;
1164         cmd->request = req;
1165
1166         return cmd;
1167 }
1168
1169 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1170 {
1171         struct scsi_cmnd *cmd;
1172         int ret = scsi_prep_state_check(sdev, req);
1173
1174         if (ret != BLKPREP_OK)
1175                 return ret;
1176
1177         cmd = scsi_get_cmd_from_req(sdev, req);
1178         if (unlikely(!cmd))
1179                 return BLKPREP_DEFER;
1180
1181         /*
1182          * BLOCK_PC requests may transfer data, in which case they must
1183          * a bio attached to them.  Or they might contain a SCSI command
1184          * that does not transfer data, in which case they may optionally
1185          * submit a request without an attached bio.
1186          */
1187         if (req->bio) {
1188                 int ret;
1189
1190                 BUG_ON(!req->nr_phys_segments);
1191
1192                 ret = scsi_init_io(cmd);
1193                 if (unlikely(ret))
1194                         return ret;
1195         } else {
1196                 BUG_ON(req->data_len);
1197                 BUG_ON(req->data);
1198
1199                 cmd->request_bufflen = 0;
1200                 cmd->request_buffer = NULL;
1201                 cmd->use_sg = 0;
1202                 req->buffer = NULL;
1203         }
1204
1205         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1206         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1207         cmd->cmd_len = req->cmd_len;
1208         if (!req->data_len)
1209                 cmd->sc_data_direction = DMA_NONE;
1210         else if (rq_data_dir(req) == WRITE)
1211                 cmd->sc_data_direction = DMA_TO_DEVICE;
1212         else
1213                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1214         
1215         cmd->transfersize = req->data_len;
1216         cmd->allowed = req->retries;
1217         cmd->timeout_per_command = req->timeout;
1218         return BLKPREP_OK;
1219 }
1220 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1221
1222 /*
1223  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1224  * from filesystems that still need to be translated to SCSI CDBs from
1225  * the ULD.
1226  */
1227 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1228 {
1229         struct scsi_cmnd *cmd;
1230         int ret = scsi_prep_state_check(sdev, req);
1231
1232         if (ret != BLKPREP_OK)
1233                 return ret;
1234         /*
1235          * Filesystem requests must transfer data.
1236          */
1237         BUG_ON(!req->nr_phys_segments);
1238
1239         cmd = scsi_get_cmd_from_req(sdev, req);
1240         if (unlikely(!cmd))
1241                 return BLKPREP_DEFER;
1242
1243         return scsi_init_io(cmd);
1244 }
1245 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1246
1247 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1248 {
1249         int ret = BLKPREP_OK;
1250
1251         /*
1252          * If the device is not in running state we will reject some
1253          * or all commands.
1254          */
1255         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1256                 switch (sdev->sdev_state) {
1257                 case SDEV_OFFLINE:
1258                         /*
1259                          * If the device is offline we refuse to process any
1260                          * commands.  The device must be brought online
1261                          * before trying any recovery commands.
1262                          */
1263                         sdev_printk(KERN_ERR, sdev,
1264                                     "rejecting I/O to offline device\n");
1265                         ret = BLKPREP_KILL;
1266                         break;
1267                 case SDEV_DEL:
1268                         /*
1269                          * If the device is fully deleted, we refuse to
1270                          * process any commands as well.
1271                          */
1272                         sdev_printk(KERN_ERR, sdev,
1273                                     "rejecting I/O to dead device\n");
1274                         ret = BLKPREP_KILL;
1275                         break;
1276                 case SDEV_QUIESCE:
1277                 case SDEV_BLOCK:
1278                         /*
1279                          * If the devices is blocked we defer normal commands.
1280                          */
1281                         if (!(req->cmd_flags & REQ_PREEMPT))
1282                                 ret = BLKPREP_DEFER;
1283                         break;
1284                 default:
1285                         /*
1286                          * For any other not fully online state we only allow
1287                          * special commands.  In particular any user initiated
1288                          * command is not allowed.
1289                          */
1290                         if (!(req->cmd_flags & REQ_PREEMPT))
1291                                 ret = BLKPREP_KILL;
1292                         break;
1293                 }
1294         }
1295         return ret;
1296 }
1297 EXPORT_SYMBOL(scsi_prep_state_check);
1298
1299 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1300 {
1301         struct scsi_device *sdev = q->queuedata;
1302
1303         switch (ret) {
1304         case BLKPREP_KILL:
1305                 req->errors = DID_NO_CONNECT << 16;
1306                 /* release the command and kill it */
1307                 if (req->special) {
1308                         struct scsi_cmnd *cmd = req->special;
1309                         scsi_release_buffers(cmd);
1310                         scsi_put_command(cmd);
1311                         req->special = NULL;
1312                 }
1313                 break;
1314         case BLKPREP_DEFER:
1315                 /*
1316                  * If we defer, the elv_next_request() returns NULL, but the
1317                  * queue must be restarted, so we plug here if no returning
1318                  * command will automatically do that.
1319                  */
1320                 if (sdev->device_busy == 0)
1321                         blk_plug_device(q);
1322                 break;
1323         default:
1324                 req->cmd_flags |= REQ_DONTPREP;
1325         }
1326
1327         return ret;
1328 }
1329 EXPORT_SYMBOL(scsi_prep_return);
1330
1331 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1332 {
1333         struct scsi_device *sdev = q->queuedata;
1334         int ret = BLKPREP_KILL;
1335
1336         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1337                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1338         return scsi_prep_return(q, req, ret);
1339 }
1340
1341 /*
1342  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1343  * return 0.
1344  *
1345  * Called with the queue_lock held.
1346  */
1347 static inline int scsi_dev_queue_ready(struct request_queue *q,
1348                                   struct scsi_device *sdev)
1349 {
1350         if (sdev->device_busy >= sdev->queue_depth)
1351                 return 0;
1352         if (sdev->device_busy == 0 && sdev->device_blocked) {
1353                 /*
1354                  * unblock after device_blocked iterates to zero
1355                  */
1356                 if (--sdev->device_blocked == 0) {
1357                         SCSI_LOG_MLQUEUE(3,
1358                                    sdev_printk(KERN_INFO, sdev,
1359                                    "unblocking device at zero depth\n"));
1360                 } else {
1361                         blk_plug_device(q);
1362                         return 0;
1363                 }
1364         }
1365         if (sdev->device_blocked)
1366                 return 0;
1367
1368         return 1;
1369 }
1370
1371 /*
1372  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1373  * return 0. We must end up running the queue again whenever 0 is
1374  * returned, else IO can hang.
1375  *
1376  * Called with host_lock held.
1377  */
1378 static inline int scsi_host_queue_ready(struct request_queue *q,
1379                                    struct Scsi_Host *shost,
1380                                    struct scsi_device *sdev)
1381 {
1382         if (scsi_host_in_recovery(shost))
1383                 return 0;
1384         if (shost->host_busy == 0 && shost->host_blocked) {
1385                 /*
1386                  * unblock after host_blocked iterates to zero
1387                  */
1388                 if (--shost->host_blocked == 0) {
1389                         SCSI_LOG_MLQUEUE(3,
1390                                 printk("scsi%d unblocking host at zero depth\n",
1391                                         shost->host_no));
1392                 } else {
1393                         blk_plug_device(q);
1394                         return 0;
1395                 }
1396         }
1397         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1398             shost->host_blocked || shost->host_self_blocked) {
1399                 if (list_empty(&sdev->starved_entry))
1400                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1401                 return 0;
1402         }
1403
1404         /* We're OK to process the command, so we can't be starved */
1405         if (!list_empty(&sdev->starved_entry))
1406                 list_del_init(&sdev->starved_entry);
1407
1408         return 1;
1409 }
1410
1411 /*
1412  * Kill a request for a dead device
1413  */
1414 static void scsi_kill_request(struct request *req, struct request_queue *q)
1415 {
1416         struct scsi_cmnd *cmd = req->special;
1417         struct scsi_device *sdev = cmd->device;
1418         struct Scsi_Host *shost = sdev->host;
1419
1420         blkdev_dequeue_request(req);
1421
1422         if (unlikely(cmd == NULL)) {
1423                 printk(KERN_CRIT "impossible request in %s.\n",
1424                                  __FUNCTION__);
1425                 BUG();
1426         }
1427
1428         scsi_init_cmd_errh(cmd);
1429         cmd->result = DID_NO_CONNECT << 16;
1430         atomic_inc(&cmd->device->iorequest_cnt);
1431
1432         /*
1433          * SCSI request completion path will do scsi_device_unbusy(),
1434          * bump busy counts.  To bump the counters, we need to dance
1435          * with the locks as normal issue path does.
1436          */
1437         sdev->device_busy++;
1438         spin_unlock(sdev->request_queue->queue_lock);
1439         spin_lock(shost->host_lock);
1440         shost->host_busy++;
1441         spin_unlock(shost->host_lock);
1442         spin_lock(sdev->request_queue->queue_lock);
1443
1444         __scsi_done(cmd);
1445 }
1446
1447 static void scsi_softirq_done(struct request *rq)
1448 {
1449         struct scsi_cmnd *cmd = rq->completion_data;
1450         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1451         int disposition;
1452
1453         INIT_LIST_HEAD(&cmd->eh_entry);
1454
1455         disposition = scsi_decide_disposition(cmd);
1456         if (disposition != SUCCESS &&
1457             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1458                 sdev_printk(KERN_ERR, cmd->device,
1459                             "timing out command, waited %lus\n",
1460                             wait_for/HZ);
1461                 disposition = SUCCESS;
1462         }
1463                         
1464         scsi_log_completion(cmd, disposition);
1465
1466         switch (disposition) {
1467                 case SUCCESS:
1468                         scsi_finish_command(cmd);
1469                         break;
1470                 case NEEDS_RETRY:
1471                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1472                         break;
1473                 case ADD_TO_MLQUEUE:
1474                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1475                         break;
1476                 default:
1477                         if (!scsi_eh_scmd_add(cmd, 0))
1478                                 scsi_finish_command(cmd);
1479         }
1480 }
1481
1482 /*
1483  * Function:    scsi_request_fn()
1484  *
1485  * Purpose:     Main strategy routine for SCSI.
1486  *
1487  * Arguments:   q       - Pointer to actual queue.
1488  *
1489  * Returns:     Nothing
1490  *
1491  * Lock status: IO request lock assumed to be held when called.
1492  */
1493 static void scsi_request_fn(struct request_queue *q)
1494 {
1495         struct scsi_device *sdev = q->queuedata;
1496         struct Scsi_Host *shost;
1497         struct scsi_cmnd *cmd;
1498         struct request *req;
1499
1500         if (!sdev) {
1501                 printk("scsi: killing requests for dead queue\n");
1502                 while ((req = elv_next_request(q)) != NULL)
1503                         scsi_kill_request(req, q);
1504                 return;
1505         }
1506
1507         if(!get_device(&sdev->sdev_gendev))
1508                 /* We must be tearing the block queue down already */
1509                 return;
1510
1511         /*
1512          * To start with, we keep looping until the queue is empty, or until
1513          * the host is no longer able to accept any more requests.
1514          */
1515         shost = sdev->host;
1516         while (!blk_queue_plugged(q)) {
1517                 int rtn;
1518                 /*
1519                  * get next queueable request.  We do this early to make sure
1520                  * that the request is fully prepared even if we cannot 
1521                  * accept it.
1522                  */
1523                 req = elv_next_request(q);
1524                 if (!req || !scsi_dev_queue_ready(q, sdev))
1525                         break;
1526
1527                 if (unlikely(!scsi_device_online(sdev))) {
1528                         sdev_printk(KERN_ERR, sdev,
1529                                     "rejecting I/O to offline device\n");
1530                         scsi_kill_request(req, q);
1531                         continue;
1532                 }
1533
1534
1535                 /*
1536                  * Remove the request from the request list.
1537                  */
1538                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1539                         blkdev_dequeue_request(req);
1540                 sdev->device_busy++;
1541
1542                 spin_unlock(q->queue_lock);
1543                 cmd = req->special;
1544                 if (unlikely(cmd == NULL)) {
1545                         printk(KERN_CRIT "impossible request in %s.\n"
1546                                          "please mail a stack trace to "
1547                                          "linux-scsi@vger.kernel.org\n",
1548                                          __FUNCTION__);
1549                         blk_dump_rq_flags(req, "foo");
1550                         BUG();
1551                 }
1552                 spin_lock(shost->host_lock);
1553
1554                 if (!scsi_host_queue_ready(q, shost, sdev))
1555                         goto not_ready;
1556                 if (sdev->single_lun) {
1557                         if (scsi_target(sdev)->starget_sdev_user &&
1558                             scsi_target(sdev)->starget_sdev_user != sdev)
1559                                 goto not_ready;
1560                         scsi_target(sdev)->starget_sdev_user = sdev;
1561                 }
1562                 shost->host_busy++;
1563
1564                 /*
1565                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1566                  *              take the lock again.
1567                  */
1568                 spin_unlock_irq(shost->host_lock);
1569
1570                 /*
1571                  * Finally, initialize any error handling parameters, and set up
1572                  * the timers for timeouts.
1573                  */
1574                 scsi_init_cmd_errh(cmd);
1575
1576                 /*
1577                  * Dispatch the command to the low-level driver.
1578                  */
1579                 rtn = scsi_dispatch_cmd(cmd);
1580                 spin_lock_irq(q->queue_lock);
1581                 if(rtn) {
1582                         /* we're refusing the command; because of
1583                          * the way locks get dropped, we need to 
1584                          * check here if plugging is required */
1585                         if(sdev->device_busy == 0)
1586                                 blk_plug_device(q);
1587
1588                         break;
1589                 }
1590         }
1591
1592         goto out;
1593
1594  not_ready:
1595         spin_unlock_irq(shost->host_lock);
1596
1597         /*
1598          * lock q, handle tag, requeue req, and decrement device_busy. We
1599          * must return with queue_lock held.
1600          *
1601          * Decrementing device_busy without checking it is OK, as all such
1602          * cases (host limits or settings) should run the queue at some
1603          * later time.
1604          */
1605         spin_lock_irq(q->queue_lock);
1606         blk_requeue_request(q, req);
1607         sdev->device_busy--;
1608         if(sdev->device_busy == 0)
1609                 blk_plug_device(q);
1610  out:
1611         /* must be careful here...if we trigger the ->remove() function
1612          * we cannot be holding the q lock */
1613         spin_unlock_irq(q->queue_lock);
1614         put_device(&sdev->sdev_gendev);
1615         spin_lock_irq(q->queue_lock);
1616 }
1617
1618 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1619 {
1620         struct device *host_dev;
1621         u64 bounce_limit = 0xffffffff;
1622
1623         if (shost->unchecked_isa_dma)
1624                 return BLK_BOUNCE_ISA;
1625         /*
1626          * Platforms with virtual-DMA translation
1627          * hardware have no practical limit.
1628          */
1629         if (!PCI_DMA_BUS_IS_PHYS)
1630                 return BLK_BOUNCE_ANY;
1631
1632         host_dev = scsi_get_device(shost);
1633         if (host_dev && host_dev->dma_mask)
1634                 bounce_limit = *host_dev->dma_mask;
1635
1636         return bounce_limit;
1637 }
1638 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1639
1640 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1641                                          request_fn_proc *request_fn)
1642 {
1643         struct request_queue *q;
1644
1645         q = blk_init_queue(request_fn, NULL);
1646         if (!q)
1647                 return NULL;
1648
1649         /*
1650          * this limit is imposed by hardware restrictions
1651          */
1652         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1653
1654         /*
1655          * In the future, sg chaining support will be mandatory and this
1656          * ifdef can then go away. Right now we don't have all archs
1657          * converted, so better keep it safe.
1658          */
1659 #ifdef ARCH_HAS_SG_CHAIN
1660         if (shost->use_sg_chaining)
1661                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1662         else
1663                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1664 #else
1665         blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1666 #endif
1667
1668         blk_queue_max_sectors(q, shost->max_sectors);
1669         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1670         blk_queue_segment_boundary(q, shost->dma_boundary);
1671
1672         if (!shost->use_clustering)
1673                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1674         return q;
1675 }
1676 EXPORT_SYMBOL(__scsi_alloc_queue);
1677
1678 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1679 {
1680         struct request_queue *q;
1681
1682         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1683         if (!q)
1684                 return NULL;
1685
1686         blk_queue_prep_rq(q, scsi_prep_fn);
1687         blk_queue_softirq_done(q, scsi_softirq_done);
1688         return q;
1689 }
1690
1691 void scsi_free_queue(struct request_queue *q)
1692 {
1693         blk_cleanup_queue(q);
1694 }
1695
1696 /*
1697  * Function:    scsi_block_requests()
1698  *
1699  * Purpose:     Utility function used by low-level drivers to prevent further
1700  *              commands from being queued to the device.
1701  *
1702  * Arguments:   shost       - Host in question
1703  *
1704  * Returns:     Nothing
1705  *
1706  * Lock status: No locks are assumed held.
1707  *
1708  * Notes:       There is no timer nor any other means by which the requests
1709  *              get unblocked other than the low-level driver calling
1710  *              scsi_unblock_requests().
1711  */
1712 void scsi_block_requests(struct Scsi_Host *shost)
1713 {
1714         shost->host_self_blocked = 1;
1715 }
1716 EXPORT_SYMBOL(scsi_block_requests);
1717
1718 /*
1719  * Function:    scsi_unblock_requests()
1720  *
1721  * Purpose:     Utility function used by low-level drivers to allow further
1722  *              commands from being queued to the device.
1723  *
1724  * Arguments:   shost       - Host in question
1725  *
1726  * Returns:     Nothing
1727  *
1728  * Lock status: No locks are assumed held.
1729  *
1730  * Notes:       There is no timer nor any other means by which the requests
1731  *              get unblocked other than the low-level driver calling
1732  *              scsi_unblock_requests().
1733  *
1734  *              This is done as an API function so that changes to the
1735  *              internals of the scsi mid-layer won't require wholesale
1736  *              changes to drivers that use this feature.
1737  */
1738 void scsi_unblock_requests(struct Scsi_Host *shost)
1739 {
1740         shost->host_self_blocked = 0;
1741         scsi_run_host_queues(shost);
1742 }
1743 EXPORT_SYMBOL(scsi_unblock_requests);
1744
1745 int __init scsi_init_queue(void)
1746 {
1747         int i;
1748
1749         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1750                                         sizeof(struct scsi_io_context),
1751                                         0, 0, NULL);
1752         if (!scsi_io_context_cache) {
1753                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1754                 return -ENOMEM;
1755         }
1756
1757         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1758                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1759                 int size = sgp->size * sizeof(struct scatterlist);
1760
1761                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1762                                 SLAB_HWCACHE_ALIGN, NULL);
1763                 if (!sgp->slab) {
1764                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1765                                         sgp->name);
1766                 }
1767
1768                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1769                                                      sgp->slab);
1770                 if (!sgp->pool) {
1771                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1772                                         sgp->name);
1773                 }
1774         }
1775
1776         return 0;
1777 }
1778
1779 void scsi_exit_queue(void)
1780 {
1781         int i;
1782
1783         kmem_cache_destroy(scsi_io_context_cache);
1784
1785         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1786                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1787                 mempool_destroy(sgp->pool);
1788                 kmem_cache_destroy(sgp->slab);
1789         }
1790 }
1791
1792 /**
1793  *      scsi_mode_select - issue a mode select
1794  *      @sdev:  SCSI device to be queried
1795  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1796  *      @sp:    Save page bit (0 == don't save, 1 == save)
1797  *      @modepage: mode page being requested
1798  *      @buffer: request buffer (may not be smaller than eight bytes)
1799  *      @len:   length of request buffer.
1800  *      @timeout: command timeout
1801  *      @retries: number of retries before failing
1802  *      @data: returns a structure abstracting the mode header data
1803  *      @sense: place to put sense data (or NULL if no sense to be collected).
1804  *              must be SCSI_SENSE_BUFFERSIZE big.
1805  *
1806  *      Returns zero if successful; negative error number or scsi
1807  *      status on error
1808  *
1809  */
1810 int
1811 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1812                  unsigned char *buffer, int len, int timeout, int retries,
1813                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1814 {
1815         unsigned char cmd[10];
1816         unsigned char *real_buffer;
1817         int ret;
1818
1819         memset(cmd, 0, sizeof(cmd));
1820         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1821
1822         if (sdev->use_10_for_ms) {
1823                 if (len > 65535)
1824                         return -EINVAL;
1825                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1826                 if (!real_buffer)
1827                         return -ENOMEM;
1828                 memcpy(real_buffer + 8, buffer, len);
1829                 len += 8;
1830                 real_buffer[0] = 0;
1831                 real_buffer[1] = 0;
1832                 real_buffer[2] = data->medium_type;
1833                 real_buffer[3] = data->device_specific;
1834                 real_buffer[4] = data->longlba ? 0x01 : 0;
1835                 real_buffer[5] = 0;
1836                 real_buffer[6] = data->block_descriptor_length >> 8;
1837                 real_buffer[7] = data->block_descriptor_length;
1838
1839                 cmd[0] = MODE_SELECT_10;
1840                 cmd[7] = len >> 8;
1841                 cmd[8] = len;
1842         } else {
1843                 if (len > 255 || data->block_descriptor_length > 255 ||
1844                     data->longlba)
1845                         return -EINVAL;
1846
1847                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1848                 if (!real_buffer)
1849                         return -ENOMEM;
1850                 memcpy(real_buffer + 4, buffer, len);
1851                 len += 4;
1852                 real_buffer[0] = 0;
1853                 real_buffer[1] = data->medium_type;
1854                 real_buffer[2] = data->device_specific;
1855                 real_buffer[3] = data->block_descriptor_length;
1856                 
1857
1858                 cmd[0] = MODE_SELECT;
1859                 cmd[4] = len;
1860         }
1861
1862         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1863                                sshdr, timeout, retries);
1864         kfree(real_buffer);
1865         return ret;
1866 }
1867 EXPORT_SYMBOL_GPL(scsi_mode_select);
1868
1869 /**
1870  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1871  *              six bytes if necessary.
1872  *      @sdev:  SCSI device to be queried
1873  *      @dbd:   set if mode sense will allow block descriptors to be returned
1874  *      @modepage: mode page being requested
1875  *      @buffer: request buffer (may not be smaller than eight bytes)
1876  *      @len:   length of request buffer.
1877  *      @timeout: command timeout
1878  *      @retries: number of retries before failing
1879  *      @data: returns a structure abstracting the mode header data
1880  *      @sense: place to put sense data (or NULL if no sense to be collected).
1881  *              must be SCSI_SENSE_BUFFERSIZE big.
1882  *
1883  *      Returns zero if unsuccessful, or the header offset (either 4
1884  *      or 8 depending on whether a six or ten byte command was
1885  *      issued) if successful.
1886  **/
1887 int
1888 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1889                   unsigned char *buffer, int len, int timeout, int retries,
1890                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1891 {
1892         unsigned char cmd[12];
1893         int use_10_for_ms;
1894         int header_length;
1895         int result;
1896         struct scsi_sense_hdr my_sshdr;
1897
1898         memset(data, 0, sizeof(*data));
1899         memset(&cmd[0], 0, 12);
1900         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1901         cmd[2] = modepage;
1902
1903         /* caller might not be interested in sense, but we need it */
1904         if (!sshdr)
1905                 sshdr = &my_sshdr;
1906
1907  retry:
1908         use_10_for_ms = sdev->use_10_for_ms;
1909
1910         if (use_10_for_ms) {
1911                 if (len < 8)
1912                         len = 8;
1913
1914                 cmd[0] = MODE_SENSE_10;
1915                 cmd[8] = len;
1916                 header_length = 8;
1917         } else {
1918                 if (len < 4)
1919                         len = 4;
1920
1921                 cmd[0] = MODE_SENSE;
1922                 cmd[4] = len;
1923                 header_length = 4;
1924         }
1925
1926         memset(buffer, 0, len);
1927
1928         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1929                                   sshdr, timeout, retries);
1930
1931         /* This code looks awful: what it's doing is making sure an
1932          * ILLEGAL REQUEST sense return identifies the actual command
1933          * byte as the problem.  MODE_SENSE commands can return
1934          * ILLEGAL REQUEST if the code page isn't supported */
1935
1936         if (use_10_for_ms && !scsi_status_is_good(result) &&
1937             (driver_byte(result) & DRIVER_SENSE)) {
1938                 if (scsi_sense_valid(sshdr)) {
1939                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1940                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1941                                 /* 
1942                                  * Invalid command operation code
1943                                  */
1944                                 sdev->use_10_for_ms = 0;
1945                                 goto retry;
1946                         }
1947                 }
1948         }
1949
1950         if(scsi_status_is_good(result)) {
1951                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1952                              (modepage == 6 || modepage == 8))) {
1953                         /* Initio breakage? */
1954                         header_length = 0;
1955                         data->length = 13;
1956                         data->medium_type = 0;
1957                         data->device_specific = 0;
1958                         data->longlba = 0;
1959                         data->block_descriptor_length = 0;
1960                 } else if(use_10_for_ms) {
1961                         data->length = buffer[0]*256 + buffer[1] + 2;
1962                         data->medium_type = buffer[2];
1963                         data->device_specific = buffer[3];
1964                         data->longlba = buffer[4] & 0x01;
1965                         data->block_descriptor_length = buffer[6]*256
1966                                 + buffer[7];
1967                 } else {
1968                         data->length = buffer[0] + 1;
1969                         data->medium_type = buffer[1];
1970                         data->device_specific = buffer[2];
1971                         data->block_descriptor_length = buffer[3];
1972                 }
1973                 data->header_length = header_length;
1974         }
1975
1976         return result;
1977 }
1978 EXPORT_SYMBOL(scsi_mode_sense);
1979
1980 int
1981 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1982 {
1983         char cmd[] = {
1984                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1985         };
1986         struct scsi_sense_hdr sshdr;
1987         int result;
1988         
1989         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1990                                   timeout, retries);
1991
1992         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1993
1994                 if ((scsi_sense_valid(&sshdr)) &&
1995                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1996                      (sshdr.sense_key == NOT_READY))) {
1997                         sdev->changed = 1;
1998                         result = 0;
1999                 }
2000         }
2001         return result;
2002 }
2003 EXPORT_SYMBOL(scsi_test_unit_ready);
2004
2005 /**
2006  *      scsi_device_set_state - Take the given device through the device
2007  *              state model.
2008  *      @sdev:  scsi device to change the state of.
2009  *      @state: state to change to.
2010  *
2011  *      Returns zero if unsuccessful or an error if the requested 
2012  *      transition is illegal.
2013  **/
2014 int
2015 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2016 {
2017         enum scsi_device_state oldstate = sdev->sdev_state;
2018
2019         if (state == oldstate)
2020                 return 0;
2021
2022         switch (state) {
2023         case SDEV_CREATED:
2024                 /* There are no legal states that come back to
2025                  * created.  This is the manually initialised start
2026                  * state */
2027                 goto illegal;
2028                         
2029         case SDEV_RUNNING:
2030                 switch (oldstate) {
2031                 case SDEV_CREATED:
2032                 case SDEV_OFFLINE:
2033                 case SDEV_QUIESCE:
2034                 case SDEV_BLOCK:
2035                         break;
2036                 default:
2037                         goto illegal;
2038                 }
2039                 break;
2040
2041         case SDEV_QUIESCE:
2042                 switch (oldstate) {
2043                 case SDEV_RUNNING:
2044                 case SDEV_OFFLINE:
2045                         break;
2046                 default:
2047                         goto illegal;
2048                 }
2049                 break;
2050
2051         case SDEV_OFFLINE:
2052                 switch (oldstate) {
2053                 case SDEV_CREATED:
2054                 case SDEV_RUNNING:
2055                 case SDEV_QUIESCE:
2056                 case SDEV_BLOCK:
2057                         break;
2058                 default:
2059                         goto illegal;
2060                 }
2061                 break;
2062
2063         case SDEV_BLOCK:
2064                 switch (oldstate) {
2065                 case SDEV_CREATED:
2066                 case SDEV_RUNNING:
2067                         break;
2068                 default:
2069                         goto illegal;
2070                 }
2071                 break;
2072
2073         case SDEV_CANCEL:
2074                 switch (oldstate) {
2075                 case SDEV_CREATED:
2076                 case SDEV_RUNNING:
2077                 case SDEV_QUIESCE:
2078                 case SDEV_OFFLINE:
2079                 case SDEV_BLOCK:
2080                         break;
2081                 default:
2082                         goto illegal;
2083                 }
2084                 break;
2085
2086         case SDEV_DEL:
2087                 switch (oldstate) {
2088                 case SDEV_CREATED:
2089                 case SDEV_RUNNING:
2090                 case SDEV_OFFLINE:
2091                 case SDEV_CANCEL:
2092                         break;
2093                 default:
2094                         goto illegal;
2095                 }
2096                 break;
2097
2098         }
2099         sdev->sdev_state = state;
2100         return 0;
2101
2102  illegal:
2103         SCSI_LOG_ERROR_RECOVERY(1, 
2104                                 sdev_printk(KERN_ERR, sdev,
2105                                             "Illegal state transition %s->%s\n",
2106                                             scsi_device_state_name(oldstate),
2107                                             scsi_device_state_name(state))
2108                                 );
2109         return -EINVAL;
2110 }
2111 EXPORT_SYMBOL(scsi_device_set_state);
2112
2113 /**
2114  *      scsi_device_quiesce - Block user issued commands.
2115  *      @sdev:  scsi device to quiesce.
2116  *
2117  *      This works by trying to transition to the SDEV_QUIESCE state
2118  *      (which must be a legal transition).  When the device is in this
2119  *      state, only special requests will be accepted, all others will
2120  *      be deferred.  Since special requests may also be requeued requests,
2121  *      a successful return doesn't guarantee the device will be 
2122  *      totally quiescent.
2123  *
2124  *      Must be called with user context, may sleep.
2125  *
2126  *      Returns zero if unsuccessful or an error if not.
2127  **/
2128 int
2129 scsi_device_quiesce(struct scsi_device *sdev)
2130 {
2131         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2132         if (err)
2133                 return err;
2134
2135         scsi_run_queue(sdev->request_queue);
2136         while (sdev->device_busy) {
2137                 msleep_interruptible(200);
2138                 scsi_run_queue(sdev->request_queue);
2139         }
2140         return 0;
2141 }
2142 EXPORT_SYMBOL(scsi_device_quiesce);
2143
2144 /**
2145  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2146  *      @sdev:  scsi device to resume.
2147  *
2148  *      Moves the device from quiesced back to running and restarts the
2149  *      queues.
2150  *
2151  *      Must be called with user context, may sleep.
2152  **/
2153 void
2154 scsi_device_resume(struct scsi_device *sdev)
2155 {
2156         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2157                 return;
2158         scsi_run_queue(sdev->request_queue);
2159 }
2160 EXPORT_SYMBOL(scsi_device_resume);
2161
2162 static void
2163 device_quiesce_fn(struct scsi_device *sdev, void *data)
2164 {
2165         scsi_device_quiesce(sdev);
2166 }
2167
2168 void
2169 scsi_target_quiesce(struct scsi_target *starget)
2170 {
2171         starget_for_each_device(starget, NULL, device_quiesce_fn);
2172 }
2173 EXPORT_SYMBOL(scsi_target_quiesce);
2174
2175 static void
2176 device_resume_fn(struct scsi_device *sdev, void *data)
2177 {
2178         scsi_device_resume(sdev);
2179 }
2180
2181 void
2182 scsi_target_resume(struct scsi_target *starget)
2183 {
2184         starget_for_each_device(starget, NULL, device_resume_fn);
2185 }
2186 EXPORT_SYMBOL(scsi_target_resume);
2187
2188 /**
2189  * scsi_internal_device_block - internal function to put a device
2190  *                              temporarily into the SDEV_BLOCK state
2191  * @sdev:       device to block
2192  *
2193  * Block request made by scsi lld's to temporarily stop all
2194  * scsi commands on the specified device.  Called from interrupt
2195  * or normal process context.
2196  *
2197  * Returns zero if successful or error if not
2198  *
2199  * Notes:       
2200  *      This routine transitions the device to the SDEV_BLOCK state
2201  *      (which must be a legal transition).  When the device is in this
2202  *      state, all commands are deferred until the scsi lld reenables
2203  *      the device with scsi_device_unblock or device_block_tmo fires.
2204  *      This routine assumes the host_lock is held on entry.
2205  **/
2206 int
2207 scsi_internal_device_block(struct scsi_device *sdev)
2208 {
2209         struct request_queue *q = sdev->request_queue;
2210         unsigned long flags;
2211         int err = 0;
2212
2213         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2214         if (err)
2215                 return err;
2216
2217         /* 
2218          * The device has transitioned to SDEV_BLOCK.  Stop the
2219          * block layer from calling the midlayer with this device's
2220          * request queue. 
2221          */
2222         spin_lock_irqsave(q->queue_lock, flags);
2223         blk_stop_queue(q);
2224         spin_unlock_irqrestore(q->queue_lock, flags);
2225
2226         return 0;
2227 }
2228 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2229  
2230 /**
2231  * scsi_internal_device_unblock - resume a device after a block request
2232  * @sdev:       device to resume
2233  *
2234  * Called by scsi lld's or the midlayer to restart the device queue
2235  * for the previously suspended scsi device.  Called from interrupt or
2236  * normal process context.
2237  *
2238  * Returns zero if successful or error if not.
2239  *
2240  * Notes:       
2241  *      This routine transitions the device to the SDEV_RUNNING state
2242  *      (which must be a legal transition) allowing the midlayer to
2243  *      goose the queue for this device.  This routine assumes the 
2244  *      host_lock is held upon entry.
2245  **/
2246 int
2247 scsi_internal_device_unblock(struct scsi_device *sdev)
2248 {
2249         struct request_queue *q = sdev->request_queue; 
2250         int err;
2251         unsigned long flags;
2252         
2253         /* 
2254          * Try to transition the scsi device to SDEV_RUNNING
2255          * and goose the device queue if successful.  
2256          */
2257         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2258         if (err)
2259                 return err;
2260
2261         spin_lock_irqsave(q->queue_lock, flags);
2262         blk_start_queue(q);
2263         spin_unlock_irqrestore(q->queue_lock, flags);
2264
2265         return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2268
2269 static void
2270 device_block(struct scsi_device *sdev, void *data)
2271 {
2272         scsi_internal_device_block(sdev);
2273 }
2274
2275 static int
2276 target_block(struct device *dev, void *data)
2277 {
2278         if (scsi_is_target_device(dev))
2279                 starget_for_each_device(to_scsi_target(dev), NULL,
2280                                         device_block);
2281         return 0;
2282 }
2283
2284 void
2285 scsi_target_block(struct device *dev)
2286 {
2287         if (scsi_is_target_device(dev))
2288                 starget_for_each_device(to_scsi_target(dev), NULL,
2289                                         device_block);
2290         else
2291                 device_for_each_child(dev, NULL, target_block);
2292 }
2293 EXPORT_SYMBOL_GPL(scsi_target_block);
2294
2295 static void
2296 device_unblock(struct scsi_device *sdev, void *data)
2297 {
2298         scsi_internal_device_unblock(sdev);
2299 }
2300
2301 static int
2302 target_unblock(struct device *dev, void *data)
2303 {
2304         if (scsi_is_target_device(dev))
2305                 starget_for_each_device(to_scsi_target(dev), NULL,
2306                                         device_unblock);
2307         return 0;
2308 }
2309
2310 void
2311 scsi_target_unblock(struct device *dev)
2312 {
2313         if (scsi_is_target_device(dev))
2314                 starget_for_each_device(to_scsi_target(dev), NULL,
2315                                         device_unblock);
2316         else
2317                 device_for_each_child(dev, NULL, target_unblock);
2318 }
2319 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2320
2321 /**
2322  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2323  * @sg:         scatter-gather list
2324  * @sg_count:   number of segments in sg
2325  * @offset:     offset in bytes into sg, on return offset into the mapped area
2326  * @len:        bytes to map, on return number of bytes mapped
2327  *
2328  * Returns virtual address of the start of the mapped page
2329  */
2330 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2331                           size_t *offset, size_t *len)
2332 {
2333         int i;
2334         size_t sg_len = 0, len_complete = 0;
2335         struct scatterlist *sg;
2336         struct page *page;
2337
2338         WARN_ON(!irqs_disabled());
2339
2340         for_each_sg(sgl, sg, sg_count, i) {
2341                 len_complete = sg_len; /* Complete sg-entries */
2342                 sg_len += sg->length;
2343                 if (sg_len > *offset)
2344                         break;
2345         }
2346
2347         if (unlikely(i == sg_count)) {
2348                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2349                         "elements %d\n",
2350                        __FUNCTION__, sg_len, *offset, sg_count);
2351                 WARN_ON(1);
2352                 return NULL;
2353         }
2354
2355         /* Offset starting from the beginning of first page in this sg-entry */
2356         *offset = *offset - len_complete + sg->offset;
2357
2358         /* Assumption: contiguous pages can be accessed as "page + i" */
2359         page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2360         *offset &= ~PAGE_MASK;
2361
2362         /* Bytes in this sg-entry from *offset to the end of the page */
2363         sg_len = PAGE_SIZE - *offset;
2364         if (*len > sg_len)
2365                 *len = sg_len;
2366
2367         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2368 }
2369 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2370
2371 /**
2372  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2373  *                         mapped with scsi_kmap_atomic_sg
2374  * @virt:       virtual address to be unmapped
2375  */
2376 void scsi_kunmap_atomic_sg(void *virt)
2377 {
2378         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2379 }
2380 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);