]> err.no Git - linux-2.6/blob - drivers/scsi/aacraid/commsup.c
[SCSI] aacraid: OS panic after Adapter panic (hardening).
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53  *      fib_map_alloc           -       allocate the fib objects
54  *      @dev: Adapter to allocate for
55  *
56  *      Allocate and map the shared PCI space for the FIB blocks used to
57  *      talk to the Adaptec firmware.
58  */
59  
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62         dprintk((KERN_INFO
63           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68           &dev->hw_fib_pa))==NULL)
69                 return -ENOMEM;
70         return 0;
71 }
72
73 /**
74  *      aac_fib_map_free                -       free the fib objects
75  *      @dev: Adapter to free
76  *
77  *      Free the PCI mappings and the memory allocated for FIB blocks
78  *      on this adapter.
79  */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83         pci_free_consistent(dev->pdev,
84           dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85           dev->hw_fib_va, dev->hw_fib_pa);
86         dev->hw_fib_va = NULL;
87         dev->hw_fib_pa = 0;
88 }
89
90 /**
91  *      aac_fib_setup   -       setup the fibs
92  *      @dev: Adapter to set up
93  *
94  *      Allocate the PCI space for the fibs, map it and then intialise the
95  *      fib area, the unmapped fib data and also the free list
96  */
97
98 int aac_fib_setup(struct aac_dev * dev)
99 {
100         struct fib *fibptr;
101         struct hw_fib *hw_fib;
102         dma_addr_t hw_fib_pa;
103         int i;
104
105         while (((i = fib_map_alloc(dev)) == -ENOMEM)
106          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
109         }
110         if (i<0)
111                 return -ENOMEM;
112                 
113         hw_fib = dev->hw_fib_va;
114         hw_fib_pa = dev->hw_fib_pa;
115         memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
116         /*
117          *      Initialise the fibs
118          */
119         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
120         {
121                 fibptr->dev = dev;
122                 fibptr->hw_fib_va = hw_fib;
123                 fibptr->data = (void *) fibptr->hw_fib_va->data;
124                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
125                 init_MUTEX_LOCKED(&fibptr->event_wait);
126                 spin_lock_init(&fibptr->event_lock);
127                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
128                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
129                 fibptr->hw_fib_pa = hw_fib_pa;
130                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
131                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
132         }
133         /*
134          *      Add the fib chain to the free list
135          */
136         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
137         /*
138          *      Enable this to debug out of queue space
139          */
140         dev->free_fib = &dev->fibs[0];
141         return 0;
142 }
143
144 /**
145  *      aac_fib_alloc   -       allocate a fib
146  *      @dev: Adapter to allocate the fib for
147  *
148  *      Allocate a fib from the adapter fib pool. If the pool is empty we
149  *      return NULL.
150  */
151  
152 struct fib *aac_fib_alloc(struct aac_dev *dev)
153 {
154         struct fib * fibptr;
155         unsigned long flags;
156         spin_lock_irqsave(&dev->fib_lock, flags);
157         fibptr = dev->free_fib; 
158         if(!fibptr){
159                 spin_unlock_irqrestore(&dev->fib_lock, flags);
160                 return fibptr;
161         }
162         dev->free_fib = fibptr->next;
163         spin_unlock_irqrestore(&dev->fib_lock, flags);
164         /*
165          *      Set the proper node type code and node byte size
166          */
167         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
168         fibptr->size = sizeof(struct fib);
169         /*
170          *      Null out fields that depend on being zero at the start of
171          *      each I/O
172          */
173         fibptr->hw_fib_va->header.XferState = 0;
174         fibptr->flags = 0;
175         fibptr->callback = NULL;
176         fibptr->callback_data = NULL;
177
178         return fibptr;
179 }
180
181 /**
182  *      aac_fib_free    -       free a fib
183  *      @fibptr: fib to free up
184  *
185  *      Frees up a fib and places it on the appropriate queue
186  */
187  
188 void aac_fib_free(struct fib *fibptr)
189 {
190         unsigned long flags;
191
192         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
193         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
194                 aac_config.fib_timeouts++;
195         if (fibptr->hw_fib_va->header.XferState != 0) {
196                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
197                          (void*)fibptr,
198                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
199         }
200         fibptr->next = fibptr->dev->free_fib;
201         fibptr->dev->free_fib = fibptr;
202         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
203 }
204
205 /**
206  *      aac_fib_init    -       initialise a fib
207  *      @fibptr: The fib to initialize
208  *      
209  *      Set up the generic fib fields ready for use
210  */
211  
212 void aac_fib_init(struct fib *fibptr)
213 {
214         struct hw_fib *hw_fib = fibptr->hw_fib_va;
215
216         hw_fib->header.StructType = FIB_MAGIC;
217         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
218         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
219         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
220         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
221         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
222 }
223
224 /**
225  *      fib_deallocate          -       deallocate a fib
226  *      @fibptr: fib to deallocate
227  *
228  *      Will deallocate and return to the free pool the FIB pointed to by the
229  *      caller.
230  */
231  
232 static void fib_dealloc(struct fib * fibptr)
233 {
234         struct hw_fib *hw_fib = fibptr->hw_fib_va;
235         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
236         hw_fib->header.XferState = 0;        
237 }
238
239 /*
240  *      Commuication primitives define and support the queuing method we use to
241  *      support host to adapter commuication. All queue accesses happen through
242  *      these routines and are the only routines which have a knowledge of the
243  *       how these queues are implemented.
244  */
245  
246 /**
247  *      aac_get_entry           -       get a queue entry
248  *      @dev: Adapter
249  *      @qid: Queue Number
250  *      @entry: Entry return
251  *      @index: Index return
252  *      @nonotify: notification control
253  *
254  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
255  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
256  *      returned.
257  */
258  
259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
260 {
261         struct aac_queue * q;
262         unsigned long idx;
263
264         /*
265          *      All of the queues wrap when they reach the end, so we check
266          *      to see if they have reached the end and if they have we just
267          *      set the index back to zero. This is a wrap. You could or off
268          *      the high bits in all updates but this is a bit faster I think.
269          */
270
271         q = &dev->queues->queue[qid];
272
273         idx = *index = le32_to_cpu(*(q->headers.producer));
274         /* Interrupt Moderation, only interrupt for first two entries */
275         if (idx != le32_to_cpu(*(q->headers.consumer))) {
276                 if (--idx == 0) {
277                         if (qid == AdapNormCmdQueue)
278                                 idx = ADAP_NORM_CMD_ENTRIES;
279                         else
280                                 idx = ADAP_NORM_RESP_ENTRIES;
281                 }
282                 if (idx != le32_to_cpu(*(q->headers.consumer)))
283                         *nonotify = 1; 
284         }
285
286         if (qid == AdapNormCmdQueue) {
287                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
288                         *index = 0; /* Wrap to front of the Producer Queue. */
289         } else {
290                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
291                         *index = 0; /* Wrap to front of the Producer Queue. */
292         }
293
294         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
295                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
296                                 qid, q->numpending);
297                 return 0;
298         } else {
299                 *entry = q->base + *index;
300                 return 1;
301         }
302 }   
303
304 /**
305  *      aac_queue_get           -       get the next free QE
306  *      @dev: Adapter
307  *      @index: Returned index
308  *      @priority: Priority of fib
309  *      @fib: Fib to associate with the queue entry
310  *      @wait: Wait if queue full
311  *      @fibptr: Driver fib object to go with fib
312  *      @nonotify: Don't notify the adapter
313  *
314  *      Gets the next free QE off the requested priorty adapter command
315  *      queue and associates the Fib with the QE. The QE represented by
316  *      index is ready to insert on the queue when this routine returns
317  *      success.
318  */
319
320 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
321 {
322         struct aac_entry * entry = NULL;
323         int map = 0;
324             
325         if (qid == AdapNormCmdQueue) {
326                 /*  if no entries wait for some if caller wants to */
327                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
328                 {
329                         printk(KERN_ERR "GetEntries failed\n");
330                 }
331                 /*
332                  *      Setup queue entry with a command, status and fib mapped
333                  */
334                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
335                 map = 1;
336         } else {
337                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
338                 {
339                         /* if no entries wait for some if caller wants to */
340                 }
341                 /*
342                  *      Setup queue entry with command, status and fib mapped
343                  */
344                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
345                 entry->addr = hw_fib->header.SenderFibAddress;
346                         /* Restore adapters pointer to the FIB */
347                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
348                 map = 0;
349         }
350         /*
351          *      If MapFib is true than we need to map the Fib and put pointers
352          *      in the queue entry.
353          */
354         if (map)
355                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
356         return 0;
357 }
358
359 /*
360  *      Define the highest level of host to adapter communication routines. 
361  *      These routines will support host to adapter FS commuication. These 
362  *      routines have no knowledge of the commuication method used. This level
363  *      sends and receives FIBs. This level has no knowledge of how these FIBs
364  *      get passed back and forth.
365  */
366
367 /**
368  *      aac_fib_send    -       send a fib to the adapter
369  *      @command: Command to send
370  *      @fibptr: The fib
371  *      @size: Size of fib data area
372  *      @priority: Priority of Fib
373  *      @wait: Async/sync select
374  *      @reply: True if a reply is wanted
375  *      @callback: Called with reply
376  *      @callback_data: Passed to callback
377  *
378  *      Sends the requested FIB to the adapter and optionally will wait for a
379  *      response FIB. If the caller does not wish to wait for a response than
380  *      an event to wait on must be supplied. This event will be set when a
381  *      response FIB is received from the adapter.
382  */
383  
384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
385                 int priority, int wait, int reply, fib_callback callback,
386                 void *callback_data)
387 {
388         struct aac_dev * dev = fibptr->dev;
389         struct hw_fib * hw_fib = fibptr->hw_fib_va;
390         unsigned long flags = 0;
391         unsigned long qflags;
392
393         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
394                 return -EBUSY;
395         /*
396          *      There are 5 cases with the wait and reponse requested flags. 
397          *      The only invalid cases are if the caller requests to wait and
398          *      does not request a response and if the caller does not want a
399          *      response and the Fib is not allocated from pool. If a response
400          *      is not requesed the Fib will just be deallocaed by the DPC
401          *      routine when the response comes back from the adapter. No
402          *      further processing will be done besides deleting the Fib. We 
403          *      will have a debug mode where the adapter can notify the host
404          *      it had a problem and the host can log that fact.
405          */
406         fibptr->flags = 0;
407         if (wait && !reply) {
408                 return -EINVAL;
409         } else if (!wait && reply) {
410                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
411                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
412         } else if (!wait && !reply) {
413                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
414                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
415         } else if (wait && reply) {
416                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
417                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
418         } 
419         /*
420          *      Map the fib into 32bits by using the fib number
421          */
422
423         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
424         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
425         /*
426          *      Set FIB state to indicate where it came from and if we want a
427          *      response from the adapter. Also load the command from the
428          *      caller.
429          *
430          *      Map the hw fib pointer as a 32bit value
431          */
432         hw_fib->header.Command = cpu_to_le16(command);
433         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
434         fibptr->hw_fib_va->header.Flags = 0;    /* 0 the flags field - internal only*/
435         /*
436          *      Set the size of the Fib we want to send to the adapter
437          */
438         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
439         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
440                 return -EMSGSIZE;
441         }                
442         /*
443          *      Get a queue entry connect the FIB to it and send an notify
444          *      the adapter a command is ready.
445          */
446         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
447
448         /*
449          *      Fill in the Callback and CallbackContext if we are not
450          *      going to wait.
451          */
452         if (!wait) {
453                 fibptr->callback = callback;
454                 fibptr->callback_data = callback_data;
455                 fibptr->flags = FIB_CONTEXT_FLAG;
456         }
457
458         fibptr->done = 0;
459
460         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
461
462         dprintk((KERN_DEBUG "Fib contents:.\n"));
463         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
464         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
465         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
466         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
467         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
468         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
469
470         if (!dev->queues)
471                 return -EBUSY;
472
473         if(wait)
474                 spin_lock_irqsave(&fibptr->event_lock, flags);
475         aac_adapter_deliver(fibptr);
476
477         /*
478          *      If the caller wanted us to wait for response wait now. 
479          */
480     
481         if (wait) {
482                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
483                 /* Only set for first known interruptable command */
484                 if (wait < 0) {
485                         /*
486                          * *VERY* Dangerous to time out a command, the
487                          * assumption is made that we have no hope of
488                          * functioning because an interrupt routing or other
489                          * hardware failure has occurred.
490                          */
491                         unsigned long count = 36000000L; /* 3 minutes */
492                         while (down_trylock(&fibptr->event_wait)) {
493                                 int blink;
494                                 if (--count == 0) {
495                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
496                                         spin_lock_irqsave(q->lock, qflags);
497                                         q->numpending--;
498                                         spin_unlock_irqrestore(q->lock, qflags);
499                                         if (wait == -1) {
500                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
501                                                   "Usually a result of a PCI interrupt routing problem;\n"
502                                                   "update mother board BIOS or consider utilizing one of\n"
503                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
504                                         }
505                                         return -ETIMEDOUT;
506                                 }
507                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
508                                         if (wait == -1) {
509                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
510                                                   "Usually a result of a serious unrecoverable hardware problem\n",
511                                                   blink);
512                                         }
513                                         return -EFAULT;
514                                 }
515                                 udelay(5);
516                         }
517                 } else
518                         (void)down_interruptible(&fibptr->event_wait);
519                 spin_lock_irqsave(&fibptr->event_lock, flags);
520                 if (fibptr->done == 0) {
521                         fibptr->done = 2; /* Tell interrupt we aborted */
522                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
523                         return -EINTR;
524                 }
525                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
526                 BUG_ON(fibptr->done == 0);
527                         
528                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
529                         return -ETIMEDOUT;
530                 return 0;
531         }
532         /*
533          *      If the user does not want a response than return success otherwise
534          *      return pending
535          */
536         if (reply)
537                 return -EINPROGRESS;
538         else
539                 return 0;
540 }
541
542 /** 
543  *      aac_consumer_get        -       get the top of the queue
544  *      @dev: Adapter
545  *      @q: Queue
546  *      @entry: Return entry
547  *
548  *      Will return a pointer to the entry on the top of the queue requested that
549  *      we are a consumer of, and return the address of the queue entry. It does
550  *      not change the state of the queue. 
551  */
552
553 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
554 {
555         u32 index;
556         int status;
557         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
558                 status = 0;
559         } else {
560                 /*
561                  *      The consumer index must be wrapped if we have reached
562                  *      the end of the queue, else we just use the entry
563                  *      pointed to by the header index
564                  */
565                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
566                         index = 0;              
567                 else
568                         index = le32_to_cpu(*q->headers.consumer);
569                 *entry = q->base + index;
570                 status = 1;
571         }
572         return(status);
573 }
574
575 /**
576  *      aac_consumer_free       -       free consumer entry
577  *      @dev: Adapter
578  *      @q: Queue
579  *      @qid: Queue ident
580  *
581  *      Frees up the current top of the queue we are a consumer of. If the
582  *      queue was full notify the producer that the queue is no longer full.
583  */
584
585 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
586 {
587         int wasfull = 0;
588         u32 notify;
589
590         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
591                 wasfull = 1;
592         
593         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
594                 *q->headers.consumer = cpu_to_le32(1);
595         else
596                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
597         
598         if (wasfull) {
599                 switch (qid) {
600
601                 case HostNormCmdQueue:
602                         notify = HostNormCmdNotFull;
603                         break;
604                 case HostNormRespQueue:
605                         notify = HostNormRespNotFull;
606                         break;
607                 default:
608                         BUG();
609                         return;
610                 }
611                 aac_adapter_notify(dev, notify);
612         }
613 }        
614
615 /**
616  *      aac_fib_adapter_complete        -       complete adapter issued fib
617  *      @fibptr: fib to complete
618  *      @size: size of fib
619  *
620  *      Will do all necessary work to complete a FIB that was sent from
621  *      the adapter.
622  */
623
624 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
625 {
626         struct hw_fib * hw_fib = fibptr->hw_fib_va;
627         struct aac_dev * dev = fibptr->dev;
628         struct aac_queue * q;
629         unsigned long nointr = 0;
630         unsigned long qflags;
631
632         if (hw_fib->header.XferState == 0) {
633                 if (dev->comm_interface == AAC_COMM_MESSAGE)
634                         kfree (hw_fib);
635                 return 0;
636         }
637         /*
638          *      If we plan to do anything check the structure type first.
639          */ 
640         if ( hw_fib->header.StructType != FIB_MAGIC ) {
641                 if (dev->comm_interface == AAC_COMM_MESSAGE)
642                         kfree (hw_fib);
643                 return -EINVAL;
644         }
645         /*
646          *      This block handles the case where the adapter had sent us a
647          *      command and we have finished processing the command. We
648          *      call completeFib when we are done processing the command 
649          *      and want to send a response back to the adapter. This will 
650          *      send the completed cdb to the adapter.
651          */
652         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
653                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
654                         kfree (hw_fib);
655                 } else {
656                         u32 index;
657                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
658                         if (size) {
659                                 size += sizeof(struct aac_fibhdr);
660                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
661                                         return -EMSGSIZE;
662                                 hw_fib->header.Size = cpu_to_le16(size);
663                         }
664                         q = &dev->queues->queue[AdapNormRespQueue];
665                         spin_lock_irqsave(q->lock, qflags);
666                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
667                         *(q->headers.producer) = cpu_to_le32(index + 1);
668                         spin_unlock_irqrestore(q->lock, qflags);
669                         if (!(nointr & (int)aac_config.irq_mod))
670                                 aac_adapter_notify(dev, AdapNormRespQueue);
671                 }
672         }
673         else 
674         {
675                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
676                 BUG();
677         }   
678         return 0;
679 }
680
681 /**
682  *      aac_fib_complete        -       fib completion handler
683  *      @fib: FIB to complete
684  *
685  *      Will do all necessary work to complete a FIB.
686  */
687  
688 int aac_fib_complete(struct fib *fibptr)
689 {
690         struct hw_fib * hw_fib = fibptr->hw_fib_va;
691
692         /*
693          *      Check for a fib which has already been completed
694          */
695
696         if (hw_fib->header.XferState == 0)
697                 return 0;
698         /*
699          *      If we plan to do anything check the structure type first.
700          */ 
701
702         if (hw_fib->header.StructType != FIB_MAGIC)
703                 return -EINVAL;
704         /*
705          *      This block completes a cdb which orginated on the host and we 
706          *      just need to deallocate the cdb or reinit it. At this point the
707          *      command is complete that we had sent to the adapter and this
708          *      cdb could be reused.
709          */
710         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
711                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
712         {
713                 fib_dealloc(fibptr);
714         }
715         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
716         {
717                 /*
718                  *      This handles the case when the host has aborted the I/O
719                  *      to the adapter because the adapter is not responding
720                  */
721                 fib_dealloc(fibptr);
722         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
723                 fib_dealloc(fibptr);
724         } else {
725                 BUG();
726         }   
727         return 0;
728 }
729
730 /**
731  *      aac_printf      -       handle printf from firmware
732  *      @dev: Adapter
733  *      @val: Message info
734  *
735  *      Print a message passed to us by the controller firmware on the
736  *      Adaptec board
737  */
738
739 void aac_printf(struct aac_dev *dev, u32 val)
740 {
741         char *cp = dev->printfbuf;
742         if (dev->printf_enabled)
743         {
744                 int length = val & 0xffff;
745                 int level = (val >> 16) & 0xffff;
746                 
747                 /*
748                  *      The size of the printfbuf is set in port.c
749                  *      There is no variable or define for it
750                  */
751                 if (length > 255)
752                         length = 255;
753                 if (cp[length] != 0)
754                         cp[length] = 0;
755                 if (level == LOG_AAC_HIGH_ERROR)
756                         printk(KERN_WARNING "%s:%s", dev->name, cp);
757                 else
758                         printk(KERN_INFO "%s:%s", dev->name, cp);
759         }
760         memset(cp, 0,  256);
761 }
762
763
764 /**
765  *      aac_handle_aif          -       Handle a message from the firmware
766  *      @dev: Which adapter this fib is from
767  *      @fibptr: Pointer to fibptr from adapter
768  *
769  *      This routine handles a driver notify fib from the adapter and
770  *      dispatches it to the appropriate routine for handling.
771  */
772
773 #define AIF_SNIFF_TIMEOUT       (30*HZ)
774 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
775 {
776         struct hw_fib * hw_fib = fibptr->hw_fib_va;
777         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
778         u32 container;
779         struct scsi_device *device;
780         enum {
781                 NOTHING,
782                 DELETE,
783                 ADD,
784                 CHANGE
785         } device_config_needed;
786
787         /* Sniff for container changes */
788
789         if (!dev || !dev->fsa_dev)
790                 return;
791         container = (u32)-1;
792
793         /*
794          *      We have set this up to try and minimize the number of
795          * re-configures that take place. As a result of this when
796          * certain AIF's come in we will set a flag waiting for another
797          * type of AIF before setting the re-config flag.
798          */
799         switch (le32_to_cpu(aifcmd->command)) {
800         case AifCmdDriverNotify:
801                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
802                 /*
803                  *      Morph or Expand complete
804                  */
805                 case AifDenMorphComplete:
806                 case AifDenVolumeExtendComplete:
807                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
808                         if (container >= dev->maximum_num_containers)
809                                 break;
810
811                         /*
812                          *      Find the scsi_device associated with the SCSI
813                          * address. Make sure we have the right array, and if
814                          * so set the flag to initiate a new re-config once we
815                          * see an AifEnConfigChange AIF come through.
816                          */
817
818                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
819                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
820                                         CONTAINER_TO_CHANNEL(container), 
821                                         CONTAINER_TO_ID(container), 
822                                         CONTAINER_TO_LUN(container));
823                                 if (device) {
824                                         dev->fsa_dev[container].config_needed = CHANGE;
825                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
826                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
827                                         scsi_device_put(device);
828                                 }
829                         }
830                 }
831
832                 /*
833                  *      If we are waiting on something and this happens to be
834                  * that thing then set the re-configure flag.
835                  */
836                 if (container != (u32)-1) {
837                         if (container >= dev->maximum_num_containers)
838                                 break;
839                         if ((dev->fsa_dev[container].config_waiting_on ==
840                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
841                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
842                                 dev->fsa_dev[container].config_waiting_on = 0;
843                 } else for (container = 0;
844                     container < dev->maximum_num_containers; ++container) {
845                         if ((dev->fsa_dev[container].config_waiting_on ==
846                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
847                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
848                                 dev->fsa_dev[container].config_waiting_on = 0;
849                 }
850                 break;
851
852         case AifCmdEventNotify:
853                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
854                 case AifEnBatteryEvent:
855                         dev->cache_protected =
856                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
857                         break;
858                 /*
859                  *      Add an Array.
860                  */
861                 case AifEnAddContainer:
862                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
863                         if (container >= dev->maximum_num_containers)
864                                 break;
865                         dev->fsa_dev[container].config_needed = ADD;
866                         dev->fsa_dev[container].config_waiting_on =
867                                 AifEnConfigChange;
868                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
869                         break;
870
871                 /*
872                  *      Delete an Array.
873                  */
874                 case AifEnDeleteContainer:
875                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
876                         if (container >= dev->maximum_num_containers)
877                                 break;
878                         dev->fsa_dev[container].config_needed = DELETE;
879                         dev->fsa_dev[container].config_waiting_on =
880                                 AifEnConfigChange;
881                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
882                         break;
883
884                 /*
885                  *      Container change detected. If we currently are not
886                  * waiting on something else, setup to wait on a Config Change.
887                  */
888                 case AifEnContainerChange:
889                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
890                         if (container >= dev->maximum_num_containers)
891                                 break;
892                         if (dev->fsa_dev[container].config_waiting_on &&
893                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
894                                 break;
895                         dev->fsa_dev[container].config_needed = CHANGE;
896                         dev->fsa_dev[container].config_waiting_on =
897                                 AifEnConfigChange;
898                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
899                         break;
900
901                 case AifEnConfigChange:
902                         break;
903
904                 }
905
906                 /*
907                  *      If we are waiting on something and this happens to be
908                  * that thing then set the re-configure flag.
909                  */
910                 if (container != (u32)-1) {
911                         if (container >= dev->maximum_num_containers)
912                                 break;
913                         if ((dev->fsa_dev[container].config_waiting_on ==
914                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
915                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
916                                 dev->fsa_dev[container].config_waiting_on = 0;
917                 } else for (container = 0;
918                     container < dev->maximum_num_containers; ++container) {
919                         if ((dev->fsa_dev[container].config_waiting_on ==
920                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
921                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
922                                 dev->fsa_dev[container].config_waiting_on = 0;
923                 }
924                 break;
925
926         case AifCmdJobProgress:
927                 /*
928                  *      These are job progress AIF's. When a Clear is being
929                  * done on a container it is initially created then hidden from
930                  * the OS. When the clear completes we don't get a config
931                  * change so we monitor the job status complete on a clear then
932                  * wait for a container change.
933                  */
934
935                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
936                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
937                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
938                         for (container = 0;
939                             container < dev->maximum_num_containers;
940                             ++container) {
941                                 /*
942                                  * Stomp on all config sequencing for all
943                                  * containers?
944                                  */
945                                 dev->fsa_dev[container].config_waiting_on =
946                                         AifEnContainerChange;
947                                 dev->fsa_dev[container].config_needed = ADD;
948                                 dev->fsa_dev[container].config_waiting_stamp =
949                                         jiffies;
950                         }
951                 }
952                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
953                     ((__le32 *)aifcmd->data)[6] == 0 &&
954                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
955                         for (container = 0;
956                             container < dev->maximum_num_containers;
957                             ++container) {
958                                 /*
959                                  * Stomp on all config sequencing for all
960                                  * containers?
961                                  */
962                                 dev->fsa_dev[container].config_waiting_on =
963                                         AifEnContainerChange;
964                                 dev->fsa_dev[container].config_needed = DELETE;
965                                 dev->fsa_dev[container].config_waiting_stamp =
966                                         jiffies;
967                         }
968                 }
969                 break;
970         }
971
972         device_config_needed = NOTHING;
973         for (container = 0; container < dev->maximum_num_containers;
974             ++container) {
975                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
976                         (dev->fsa_dev[container].config_needed != NOTHING) &&
977                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
978                         device_config_needed =
979                                 dev->fsa_dev[container].config_needed;
980                         dev->fsa_dev[container].config_needed = NOTHING;
981                         break;
982                 }
983         }
984         if (device_config_needed == NOTHING)
985                 return;
986
987         /*
988          *      If we decided that a re-configuration needs to be done,
989          * schedule it here on the way out the door, please close the door
990          * behind you.
991          */
992
993         /*
994          *      Find the scsi_device associated with the SCSI address,
995          * and mark it as changed, invalidating the cache. This deals
996          * with changes to existing device IDs.
997          */
998
999         if (!dev || !dev->scsi_host_ptr)
1000                 return;
1001         /*
1002          * force reload of disk info via aac_probe_container
1003          */
1004         if ((device_config_needed == CHANGE)
1005          && (dev->fsa_dev[container].valid == 1))
1006                 dev->fsa_dev[container].valid = 2;
1007         if ((device_config_needed == CHANGE) ||
1008                         (device_config_needed == ADD))
1009                 aac_probe_container(dev, container);
1010         device = scsi_device_lookup(dev->scsi_host_ptr, 
1011                 CONTAINER_TO_CHANNEL(container), 
1012                 CONTAINER_TO_ID(container), 
1013                 CONTAINER_TO_LUN(container));
1014         if (device) {
1015                 switch (device_config_needed) {
1016                 case DELETE:
1017                 case CHANGE:
1018                         scsi_rescan_device(&device->sdev_gendev);
1019
1020                 default:
1021                         break;
1022                 }
1023                 scsi_device_put(device);
1024         }
1025         if (device_config_needed == ADD) {
1026                 scsi_add_device(dev->scsi_host_ptr,
1027                   CONTAINER_TO_CHANNEL(container),
1028                   CONTAINER_TO_ID(container),
1029                   CONTAINER_TO_LUN(container));
1030         }
1031
1032 }
1033
1034 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1035 {
1036         int index, quirks;
1037         int retval;
1038         struct Scsi_Host *host;
1039         struct scsi_device *dev;
1040         struct scsi_cmnd *command;
1041         struct scsi_cmnd *command_list;
1042         int jafo = 0;
1043
1044         /*
1045          * Assumptions:
1046          *      - host is locked, unless called by the aacraid thread.
1047          *        (a matter of convenience, due to legacy issues surrounding
1048          *        eh_host_adapter_reset).
1049          *      - in_reset is asserted, so no new i/o is getting to the
1050          *        card.
1051          *      - The card is dead, or will be very shortly ;-/ so no new
1052          *        commands are completing in the interrupt service.
1053          */
1054         host = aac->scsi_host_ptr;
1055         scsi_block_requests(host);
1056         aac_adapter_disable_int(aac);
1057         if (aac->thread->pid != current->pid) {
1058                 spin_unlock_irq(host->host_lock);
1059                 kthread_stop(aac->thread);
1060                 jafo = 1;
1061         }
1062
1063         /*
1064          *      If a positive health, means in a known DEAD PANIC
1065          * state and the adapter could be reset to `try again'.
1066          */
1067         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1068
1069         if (retval)
1070                 goto out;
1071
1072         /*
1073          *      Loop through the fibs, close the synchronous FIBS
1074          */
1075         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1076                 struct fib *fib = &aac->fibs[index];
1077                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1078                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1079                         unsigned long flagv;
1080                         spin_lock_irqsave(&fib->event_lock, flagv);
1081                         up(&fib->event_wait);
1082                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1083                         schedule();
1084                         retval = 0;
1085                 }
1086         }
1087         /* Give some extra time for ioctls to complete. */
1088         if (retval == 0)
1089                 ssleep(2);
1090         index = aac->cardtype;
1091
1092         /*
1093          * Re-initialize the adapter, first free resources, then carefully
1094          * apply the initialization sequence to come back again. Only risk
1095          * is a change in Firmware dropping cache, it is assumed the caller
1096          * will ensure that i/o is queisced and the card is flushed in that
1097          * case.
1098          */
1099         aac_fib_map_free(aac);
1100         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1101         aac->comm_addr = NULL;
1102         aac->comm_phys = 0;
1103         kfree(aac->queues);
1104         aac->queues = NULL;
1105         free_irq(aac->pdev->irq, aac);
1106         kfree(aac->fsa_dev);
1107         aac->fsa_dev = NULL;
1108         quirks = aac_get_driver_ident(index)->quirks;
1109         if (quirks & AAC_QUIRK_31BIT) {
1110                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
1111                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
1112                         goto out;
1113         } else {
1114                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1115                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1116                         goto out;
1117         }
1118         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1119                 goto out;
1120         if (quirks & AAC_QUIRK_31BIT)
1121                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1122                         goto out;
1123         if (jafo) {
1124                 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1125                 if (IS_ERR(aac->thread)) {
1126                         retval = PTR_ERR(aac->thread);
1127                         goto out;
1128                 }
1129         }
1130         (void)aac_get_adapter_info(aac);
1131         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1132                 host->sg_tablesize = 34;
1133                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1134         }
1135         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1136                 host->sg_tablesize = 17;
1137                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1138         }
1139         aac_get_config_status(aac, 1);
1140         aac_get_containers(aac);
1141         /*
1142          * This is where the assumption that the Adapter is quiesced
1143          * is important.
1144          */
1145         command_list = NULL;
1146         __shost_for_each_device(dev, host) {
1147                 unsigned long flags;
1148                 spin_lock_irqsave(&dev->list_lock, flags);
1149                 list_for_each_entry(command, &dev->cmd_list, list)
1150                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1151                                 command->SCp.buffer = (struct scatterlist *)command_list;
1152                                 command_list = command;
1153                         }
1154                 spin_unlock_irqrestore(&dev->list_lock, flags);
1155         }
1156         while ((command = command_list)) {
1157                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1158                 command->SCp.buffer = NULL;
1159                 command->result = DID_OK << 16
1160                   | COMMAND_COMPLETE << 8
1161                   | SAM_STAT_TASK_SET_FULL;
1162                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1163                 command->scsi_done(command);
1164         }
1165         retval = 0;
1166
1167 out:
1168         aac->in_reset = 0;
1169         scsi_unblock_requests(host);
1170         if (jafo) {
1171                 spin_lock_irq(host->host_lock);
1172         }
1173         return retval;
1174 }
1175
1176 int aac_reset_adapter(struct aac_dev * aac, int forced)
1177 {
1178         unsigned long flagv = 0;
1179         int retval;
1180         struct Scsi_Host * host;
1181
1182         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1183                 return -EBUSY;
1184
1185         if (aac->in_reset) {
1186                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1187                 return -EBUSY;
1188         }
1189         aac->in_reset = 1;
1190         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1191
1192         /*
1193          * Wait for all commands to complete to this specific
1194          * target (block maximum 60 seconds). Although not necessary,
1195          * it does make us a good storage citizen.
1196          */
1197         host = aac->scsi_host_ptr;
1198         scsi_block_requests(host);
1199         if (forced < 2) for (retval = 60; retval; --retval) {
1200                 struct scsi_device * dev;
1201                 struct scsi_cmnd * command;
1202                 int active = 0;
1203
1204                 __shost_for_each_device(dev, host) {
1205                         spin_lock_irqsave(&dev->list_lock, flagv);
1206                         list_for_each_entry(command, &dev->cmd_list, list) {
1207                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1208                                         active++;
1209                                         break;
1210                                 }
1211                         }
1212                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1213                         if (active)
1214                                 break;
1215
1216                 }
1217                 /*
1218                  * We can exit If all the commands are complete
1219                  */
1220                 if (active == 0)
1221                         break;
1222                 ssleep(1);
1223         }
1224
1225         /* Quiesce build, flush cache, write through mode */
1226         if (forced < 2)
1227                 aac_send_shutdown(aac);
1228         spin_lock_irqsave(host->host_lock, flagv);
1229         retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1230         spin_unlock_irqrestore(host->host_lock, flagv);
1231
1232         if ((forced < 2) && (retval == -ENODEV)) {
1233                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1234                 struct fib * fibctx = aac_fib_alloc(aac);
1235                 if (fibctx) {
1236                         struct aac_pause *cmd;
1237                         int status;
1238
1239                         aac_fib_init(fibctx);
1240
1241                         cmd = (struct aac_pause *) fib_data(fibctx);
1242
1243                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1244                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1245                         cmd->timeout = cpu_to_le32(1);
1246                         cmd->min = cpu_to_le32(1);
1247                         cmd->noRescan = cpu_to_le32(1);
1248                         cmd->count = cpu_to_le32(0);
1249
1250                         status = aac_fib_send(ContainerCommand,
1251                           fibctx,
1252                           sizeof(struct aac_pause),
1253                           FsaNormal,
1254                           -2 /* Timeout silently */, 1,
1255                           NULL, NULL);
1256
1257                         if (status >= 0)
1258                                 aac_fib_complete(fibctx);
1259                         aac_fib_free(fibctx);
1260                 }
1261         }
1262
1263         return retval;
1264 }
1265
1266 int aac_check_health(struct aac_dev * aac)
1267 {
1268         int BlinkLED;
1269         unsigned long time_now, flagv = 0;
1270         struct list_head * entry;
1271         struct Scsi_Host * host;
1272
1273         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1274         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1275                 return 0;
1276
1277         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1278                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1279                 return 0; /* OK */
1280         }
1281
1282         aac->in_reset = 1;
1283
1284         /* Fake up an AIF:
1285          *      aac_aifcmd.command = AifCmdEventNotify = 1
1286          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1287          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1288          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1289          *      aac.aifcmd.data[2] = AifHighPriority = 3
1290          *      aac.aifcmd.data[3] = BlinkLED
1291          */
1292
1293         time_now = jiffies/HZ;
1294         entry = aac->fib_list.next;
1295
1296         /*
1297          * For each Context that is on the
1298          * fibctxList, make a copy of the
1299          * fib, and then set the event to wake up the
1300          * thread that is waiting for it.
1301          */
1302         while (entry != &aac->fib_list) {
1303                 /*
1304                  * Extract the fibctx
1305                  */
1306                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1307                 struct hw_fib * hw_fib;
1308                 struct fib * fib;
1309                 /*
1310                  * Check if the queue is getting
1311                  * backlogged
1312                  */
1313                 if (fibctx->count > 20) {
1314                         /*
1315                          * It's *not* jiffies folks,
1316                          * but jiffies / HZ, so do not
1317                          * panic ...
1318                          */
1319                         u32 time_last = fibctx->jiffies;
1320                         /*
1321                          * Has it been > 2 minutes
1322                          * since the last read off
1323                          * the queue?
1324                          */
1325                         if ((time_now - time_last) > aif_timeout) {
1326                                 entry = entry->next;
1327                                 aac_close_fib_context(aac, fibctx);
1328                                 continue;
1329                         }
1330                 }
1331                 /*
1332                  * Warning: no sleep allowed while
1333                  * holding spinlock
1334                  */
1335                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1336                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1337                 if (fib && hw_fib) {
1338                         struct aac_aifcmd * aif;
1339
1340                         fib->hw_fib_va = hw_fib;
1341                         fib->dev = aac;
1342                         aac_fib_init(fib);
1343                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1344                         fib->size = sizeof (struct fib);
1345                         fib->data = hw_fib->data;
1346                         aif = (struct aac_aifcmd *)hw_fib->data;
1347                         aif->command = cpu_to_le32(AifCmdEventNotify);
1348                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1349                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1350                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1351                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1352                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1353
1354                         /*
1355                          * Put the FIB onto the
1356                          * fibctx's fibs
1357                          */
1358                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1359                         fibctx->count++;
1360                         /*
1361                          * Set the event to wake up the
1362                          * thread that will waiting.
1363                          */
1364                         up(&fibctx->wait_sem);
1365                 } else {
1366                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1367                         kfree(fib);
1368                         kfree(hw_fib);
1369                 }
1370                 entry = entry->next;
1371         }
1372
1373         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1374
1375         if (BlinkLED < 0) {
1376                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1377                 goto out;
1378         }
1379
1380         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1381
1382         if (!aac_check_reset || ((aac_check_reset != 1) &&
1383                 (aac->supplement_adapter_info.SupportedOptions2 &
1384                         AAC_OPTION_IGNORE_RESET)))
1385                 goto out;
1386         host = aac->scsi_host_ptr;
1387         if (aac->thread->pid != current->pid)
1388                 spin_lock_irqsave(host->host_lock, flagv);
1389         BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1390         if (aac->thread->pid != current->pid)
1391                 spin_unlock_irqrestore(host->host_lock, flagv);
1392         return BlinkLED;
1393
1394 out:
1395         aac->in_reset = 0;
1396         return BlinkLED;
1397 }
1398
1399
1400 /**
1401  *      aac_command_thread      -       command processing thread
1402  *      @dev: Adapter to monitor
1403  *
1404  *      Waits on the commandready event in it's queue. When the event gets set
1405  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1406  *      until the queue is empty. When the queue is empty it will wait for
1407  *      more FIBs.
1408  */
1409  
1410 int aac_command_thread(void *data)
1411 {
1412         struct aac_dev *dev = data;
1413         struct hw_fib *hw_fib, *hw_newfib;
1414         struct fib *fib, *newfib;
1415         struct aac_fib_context *fibctx;
1416         unsigned long flags;
1417         DECLARE_WAITQUEUE(wait, current);
1418         unsigned long next_jiffies = jiffies + HZ;
1419         unsigned long next_check_jiffies = next_jiffies;
1420         long difference = HZ;
1421
1422         /*
1423          *      We can only have one thread per adapter for AIF's.
1424          */
1425         if (dev->aif_thread)
1426                 return -EINVAL;
1427
1428         /*
1429          *      Let the DPC know it has a place to send the AIF's to.
1430          */
1431         dev->aif_thread = 1;
1432         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1433         set_current_state(TASK_INTERRUPTIBLE);
1434         dprintk ((KERN_INFO "aac_command_thread start\n"));
1435         while(1) 
1436         {
1437                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1438                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1439                         struct list_head *entry;
1440                         struct aac_aifcmd * aifcmd;
1441
1442                         set_current_state(TASK_RUNNING);
1443         
1444                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1445                         list_del(entry);
1446                 
1447                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1448                         fib = list_entry(entry, struct fib, fiblink);
1449                         /*
1450                          *      We will process the FIB here or pass it to a 
1451                          *      worker thread that is TBD. We Really can't 
1452                          *      do anything at this point since we don't have
1453                          *      anything defined for this thread to do.
1454                          */
1455                         hw_fib = fib->hw_fib_va;
1456                         memset(fib, 0, sizeof(struct fib));
1457                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1458                         fib->size = sizeof( struct fib );
1459                         fib->hw_fib_va = hw_fib;
1460                         fib->data = hw_fib->data;
1461                         fib->dev = dev;
1462                         /*
1463                          *      We only handle AifRequest fibs from the adapter.
1464                          */
1465                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1466                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1467                                 /* Handle Driver Notify Events */
1468                                 aac_handle_aif(dev, fib);
1469                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1470                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1471                         } else {
1472                                 struct list_head *entry;
1473                                 /* The u32 here is important and intended. We are using
1474                                    32bit wrapping time to fit the adapter field */
1475                                    
1476                                 u32 time_now, time_last;
1477                                 unsigned long flagv;
1478                                 unsigned num;
1479                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1480                                 struct fib ** fib_pool, ** fib_p;
1481                         
1482                                 /* Sniff events */
1483                                 if ((aifcmd->command == 
1484                                      cpu_to_le32(AifCmdEventNotify)) ||
1485                                     (aifcmd->command == 
1486                                      cpu_to_le32(AifCmdJobProgress))) {
1487                                         aac_handle_aif(dev, fib);
1488                                 }
1489
1490                                 time_now = jiffies/HZ;
1491
1492                                 /*
1493                                  * Warning: no sleep allowed while
1494                                  * holding spinlock. We take the estimate
1495                                  * and pre-allocate a set of fibs outside the
1496                                  * lock.
1497                                  */
1498                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1499                                     / sizeof(struct hw_fib); /* some extra */
1500                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1501                                 entry = dev->fib_list.next;
1502                                 while (entry != &dev->fib_list) {
1503                                         entry = entry->next;
1504                                         ++num;
1505                                 }
1506                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1507                                 hw_fib_pool = NULL;
1508                                 fib_pool = NULL;
1509                                 if (num
1510                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1511                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1512                                         hw_fib_p = hw_fib_pool;
1513                                         fib_p = fib_pool;
1514                                         while (hw_fib_p < &hw_fib_pool[num]) {
1515                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1516                                                         --hw_fib_p;
1517                                                         break;
1518                                                 }
1519                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1520                                                         kfree(*(--hw_fib_p));
1521                                                         break;
1522                                                 }
1523                                         }
1524                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1525                                                 kfree(fib_pool);
1526                                                 fib_pool = NULL;
1527                                                 kfree(hw_fib_pool);
1528                                                 hw_fib_pool = NULL;
1529                                         }
1530                                 } else {
1531                                         kfree(hw_fib_pool);
1532                                         hw_fib_pool = NULL;
1533                                 }
1534                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1535                                 entry = dev->fib_list.next;
1536                                 /*
1537                                  * For each Context that is on the 
1538                                  * fibctxList, make a copy of the
1539                                  * fib, and then set the event to wake up the
1540                                  * thread that is waiting for it.
1541                                  */
1542                                 hw_fib_p = hw_fib_pool;
1543                                 fib_p = fib_pool;
1544                                 while (entry != &dev->fib_list) {
1545                                         /*
1546                                          * Extract the fibctx
1547                                          */
1548                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1549                                         /*
1550                                          * Check if the queue is getting
1551                                          * backlogged
1552                                          */
1553                                         if (fibctx->count > 20)
1554                                         {
1555                                                 /*
1556                                                  * It's *not* jiffies folks,
1557                                                  * but jiffies / HZ so do not
1558                                                  * panic ...
1559                                                  */
1560                                                 time_last = fibctx->jiffies;
1561                                                 /*
1562                                                  * Has it been > 2 minutes 
1563                                                  * since the last read off
1564                                                  * the queue?
1565                                                  */
1566                                                 if ((time_now - time_last) > aif_timeout) {
1567                                                         entry = entry->next;
1568                                                         aac_close_fib_context(dev, fibctx);
1569                                                         continue;
1570                                                 }
1571                                         }
1572                                         /*
1573                                          * Warning: no sleep allowed while
1574                                          * holding spinlock
1575                                          */
1576                                         if (hw_fib_p < &hw_fib_pool[num]) {
1577                                                 hw_newfib = *hw_fib_p;
1578                                                 *(hw_fib_p++) = NULL;
1579                                                 newfib = *fib_p;
1580                                                 *(fib_p++) = NULL;
1581                                                 /*
1582                                                  * Make the copy of the FIB
1583                                                  */
1584                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1585                                                 memcpy(newfib, fib, sizeof(struct fib));
1586                                                 newfib->hw_fib_va = hw_newfib;
1587                                                 /*
1588                                                  * Put the FIB onto the
1589                                                  * fibctx's fibs
1590                                                  */
1591                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1592                                                 fibctx->count++;
1593                                                 /* 
1594                                                  * Set the event to wake up the
1595                                                  * thread that is waiting.
1596                                                  */
1597                                                 up(&fibctx->wait_sem);
1598                                         } else {
1599                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1600                                         }
1601                                         entry = entry->next;
1602                                 }
1603                                 /*
1604                                  *      Set the status of this FIB
1605                                  */
1606                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1607                                 aac_fib_adapter_complete(fib, sizeof(u32));
1608                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1609                                 /* Free up the remaining resources */
1610                                 hw_fib_p = hw_fib_pool;
1611                                 fib_p = fib_pool;
1612                                 while (hw_fib_p < &hw_fib_pool[num]) {
1613                                         kfree(*hw_fib_p);
1614                                         kfree(*fib_p);
1615                                         ++fib_p;
1616                                         ++hw_fib_p;
1617                                 }
1618                                 kfree(hw_fib_pool);
1619                                 kfree(fib_pool);
1620                         }
1621                         kfree(fib);
1622                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1623                 }
1624                 /*
1625                  *      There are no more AIF's
1626                  */
1627                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1628
1629                 /*
1630                  *      Background activity
1631                  */
1632                 if ((time_before(next_check_jiffies,next_jiffies))
1633                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
1634                         next_check_jiffies = next_jiffies;
1635                         if (aac_check_health(dev) == 0) {
1636                                 difference = ((long)(unsigned)check_interval)
1637                                            * HZ;
1638                                 next_check_jiffies = jiffies + difference;
1639                         } else if (!dev->queues)
1640                                 break;
1641                 }
1642                 if (!time_before(next_check_jiffies,next_jiffies)
1643                  && ((difference = next_jiffies - jiffies) <= 0)) {
1644                         struct timeval now;
1645                         int ret;
1646
1647                         /* Don't even try to talk to adapter if its sick */
1648                         ret = aac_check_health(dev);
1649                         if (!ret && !dev->queues)
1650                                 break;
1651                         next_check_jiffies = jiffies
1652                                            + ((long)(unsigned)check_interval)
1653                                            * HZ;
1654                         do_gettimeofday(&now);
1655
1656                         /* Synchronize our watches */
1657                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1658                          && (now.tv_usec > (1000000 / HZ)))
1659                                 difference = (((1000000 - now.tv_usec) * HZ)
1660                                   + 500000) / 1000000;
1661                         else if (ret == 0) {
1662                                 struct fib *fibptr;
1663
1664                                 if ((fibptr = aac_fib_alloc(dev))) {
1665                                         __le32 *info;
1666
1667                                         aac_fib_init(fibptr);
1668
1669                                         info = (__le32 *) fib_data(fibptr);
1670                                         if (now.tv_usec > 500000)
1671                                                 ++now.tv_sec;
1672
1673                                         *info = cpu_to_le32(now.tv_sec);
1674
1675                                         (void)aac_fib_send(SendHostTime,
1676                                                 fibptr,
1677                                                 sizeof(*info),
1678                                                 FsaNormal,
1679                                                 1, 1,
1680                                                 NULL,
1681                                                 NULL);
1682                                         aac_fib_complete(fibptr);
1683                                         aac_fib_free(fibptr);
1684                                 }
1685                                 difference = (long)(unsigned)update_interval*HZ;
1686                         } else {
1687                                 /* retry shortly */
1688                                 difference = 10 * HZ;
1689                         }
1690                         next_jiffies = jiffies + difference;
1691                         if (time_before(next_check_jiffies,next_jiffies))
1692                                 difference = next_check_jiffies - jiffies;
1693                 }
1694                 if (difference <= 0)
1695                         difference = 1;
1696                 set_current_state(TASK_INTERRUPTIBLE);
1697                 schedule_timeout(difference);
1698
1699                 if (kthread_should_stop())
1700                         break;
1701         }
1702         if (dev->queues)
1703                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1704         dev->aif_thread = 0;
1705         return 0;
1706 }