]> err.no Git - linux-2.6/blob - drivers/scsi/aacraid/commsup.c
[SCSI] aacraid: interruptible ioctl
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <scsi/scsi_host.h>
44 #include <scsi/scsi_device.h>
45 #include <asm/semaphore.h>
46
47 #include "aacraid.h"
48
49 /**
50  *      fib_map_alloc           -       allocate the fib objects
51  *      @dev: Adapter to allocate for
52  *
53  *      Allocate and map the shared PCI space for the FIB blocks used to
54  *      talk to the Adaptec firmware.
55  */
56  
57 static int fib_map_alloc(struct aac_dev *dev)
58 {
59         dprintk((KERN_INFO
60           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
61           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
62           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
63         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
64           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
65           &dev->hw_fib_pa))==NULL)
66                 return -ENOMEM;
67         return 0;
68 }
69
70 /**
71  *      aac_fib_map_free                -       free the fib objects
72  *      @dev: Adapter to free
73  *
74  *      Free the PCI mappings and the memory allocated for FIB blocks
75  *      on this adapter.
76  */
77
78 void aac_fib_map_free(struct aac_dev *dev)
79 {
80         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
81 }
82
83 /**
84  *      aac_fib_setup   -       setup the fibs
85  *      @dev: Adapter to set up
86  *
87  *      Allocate the PCI space for the fibs, map it and then intialise the
88  *      fib area, the unmapped fib data and also the free list
89  */
90
91 int aac_fib_setup(struct aac_dev * dev)
92 {
93         struct fib *fibptr;
94         struct hw_fib *hw_fib_va;
95         dma_addr_t hw_fib_pa;
96         int i;
97
98         while (((i = fib_map_alloc(dev)) == -ENOMEM)
99          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
100                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
101                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
102         }
103         if (i<0)
104                 return -ENOMEM;
105                 
106         hw_fib_va = dev->hw_fib_va;
107         hw_fib_pa = dev->hw_fib_pa;
108         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
109         /*
110          *      Initialise the fibs
111          */
112         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
113         {
114                 fibptr->dev = dev;
115                 fibptr->hw_fib = hw_fib_va;
116                 fibptr->data = (void *) fibptr->hw_fib->data;
117                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
118                 init_MUTEX_LOCKED(&fibptr->event_wait);
119                 spin_lock_init(&fibptr->event_lock);
120                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
121                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
122                 fibptr->hw_fib_pa = hw_fib_pa;
123                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
124                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
125         }
126         /*
127          *      Add the fib chain to the free list
128          */
129         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
130         /*
131          *      Enable this to debug out of queue space
132          */
133         dev->free_fib = &dev->fibs[0];
134         return 0;
135 }
136
137 /**
138  *      aac_fib_alloc   -       allocate a fib
139  *      @dev: Adapter to allocate the fib for
140  *
141  *      Allocate a fib from the adapter fib pool. If the pool is empty we
142  *      return NULL.
143  */
144  
145 struct fib *aac_fib_alloc(struct aac_dev *dev)
146 {
147         struct fib * fibptr;
148         unsigned long flags;
149         spin_lock_irqsave(&dev->fib_lock, flags);
150         fibptr = dev->free_fib; 
151         if(!fibptr){
152                 spin_unlock_irqrestore(&dev->fib_lock, flags);
153                 return fibptr;
154         }
155         dev->free_fib = fibptr->next;
156         spin_unlock_irqrestore(&dev->fib_lock, flags);
157         /*
158          *      Set the proper node type code and node byte size
159          */
160         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
161         fibptr->size = sizeof(struct fib);
162         /*
163          *      Null out fields that depend on being zero at the start of
164          *      each I/O
165          */
166         fibptr->hw_fib->header.XferState = 0;
167         fibptr->callback = NULL;
168         fibptr->callback_data = NULL;
169
170         return fibptr;
171 }
172
173 /**
174  *      aac_fib_free    -       free a fib
175  *      @fibptr: fib to free up
176  *
177  *      Frees up a fib and places it on the appropriate queue
178  *      (either free or timed out)
179  */
180  
181 void aac_fib_free(struct fib *fibptr)
182 {
183         unsigned long flags;
184
185         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
186         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
187                 aac_config.fib_timeouts++;
188                 fibptr->next = fibptr->dev->timeout_fib;
189                 fibptr->dev->timeout_fib = fibptr;
190         } else {
191                 if (fibptr->hw_fib->header.XferState != 0) {
192                         printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
193                                  (void*)fibptr, 
194                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
195                 }
196                 fibptr->next = fibptr->dev->free_fib;
197                 fibptr->dev->free_fib = fibptr;
198         }       
199         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
200 }
201
202 /**
203  *      aac_fib_init    -       initialise a fib
204  *      @fibptr: The fib to initialize
205  *      
206  *      Set up the generic fib fields ready for use
207  */
208  
209 void aac_fib_init(struct fib *fibptr)
210 {
211         struct hw_fib *hw_fib = fibptr->hw_fib;
212
213         hw_fib->header.StructType = FIB_MAGIC;
214         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
215         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
216         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
217         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
218         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
219 }
220
221 /**
222  *      fib_deallocate          -       deallocate a fib
223  *      @fibptr: fib to deallocate
224  *
225  *      Will deallocate and return to the free pool the FIB pointed to by the
226  *      caller.
227  */
228  
229 static void fib_dealloc(struct fib * fibptr)
230 {
231         struct hw_fib *hw_fib = fibptr->hw_fib;
232         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
233         hw_fib->header.XferState = 0;        
234 }
235
236 /*
237  *      Commuication primitives define and support the queuing method we use to
238  *      support host to adapter commuication. All queue accesses happen through
239  *      these routines and are the only routines which have a knowledge of the
240  *       how these queues are implemented.
241  */
242  
243 /**
244  *      aac_get_entry           -       get a queue entry
245  *      @dev: Adapter
246  *      @qid: Queue Number
247  *      @entry: Entry return
248  *      @index: Index return
249  *      @nonotify: notification control
250  *
251  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
252  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253  *      returned.
254  */
255  
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257 {
258         struct aac_queue * q;
259         unsigned long idx;
260
261         /*
262          *      All of the queues wrap when they reach the end, so we check
263          *      to see if they have reached the end and if they have we just
264          *      set the index back to zero. This is a wrap. You could or off
265          *      the high bits in all updates but this is a bit faster I think.
266          */
267
268         q = &dev->queues->queue[qid];
269
270         idx = *index = le32_to_cpu(*(q->headers.producer));
271         /* Interrupt Moderation, only interrupt for first two entries */
272         if (idx != le32_to_cpu(*(q->headers.consumer))) {
273                 if (--idx == 0) {
274                         if (qid == AdapNormCmdQueue)
275                                 idx = ADAP_NORM_CMD_ENTRIES;
276                         else
277                                 idx = ADAP_NORM_RESP_ENTRIES;
278                 }
279                 if (idx != le32_to_cpu(*(q->headers.consumer)))
280                         *nonotify = 1; 
281         }
282
283         if (qid == AdapNormCmdQueue) {
284                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
285                         *index = 0; /* Wrap to front of the Producer Queue. */
286         } else {
287                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
288                         *index = 0; /* Wrap to front of the Producer Queue. */
289         }
290
291         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293                                 qid, q->numpending);
294                 return 0;
295         } else {
296                 *entry = q->base + *index;
297                 return 1;
298         }
299 }   
300
301 /**
302  *      aac_queue_get           -       get the next free QE
303  *      @dev: Adapter
304  *      @index: Returned index
305  *      @priority: Priority of fib
306  *      @fib: Fib to associate with the queue entry
307  *      @wait: Wait if queue full
308  *      @fibptr: Driver fib object to go with fib
309  *      @nonotify: Don't notify the adapter
310  *
311  *      Gets the next free QE off the requested priorty adapter command
312  *      queue and associates the Fib with the QE. The QE represented by
313  *      index is ready to insert on the queue when this routine returns
314  *      success.
315  */
316
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318 {
319         struct aac_entry * entry = NULL;
320         int map = 0;
321             
322         if (qid == AdapNormCmdQueue) {
323                 /*  if no entries wait for some if caller wants to */
324                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
325                 {
326                         printk(KERN_ERR "GetEntries failed\n");
327                 }
328                 /*
329                  *      Setup queue entry with a command, status and fib mapped
330                  */
331                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332                 map = 1;
333         } else {
334                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
335                 {
336                         /* if no entries wait for some if caller wants to */
337                 }
338                 /*
339                  *      Setup queue entry with command, status and fib mapped
340                  */
341                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342                 entry->addr = hw_fib->header.SenderFibAddress;
343                         /* Restore adapters pointer to the FIB */
344                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
345                 map = 0;
346         }
347         /*
348          *      If MapFib is true than we need to map the Fib and put pointers
349          *      in the queue entry.
350          */
351         if (map)
352                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353         return 0;
354 }
355
356 /*
357  *      Define the highest level of host to adapter communication routines. 
358  *      These routines will support host to adapter FS commuication. These 
359  *      routines have no knowledge of the commuication method used. This level
360  *      sends and receives FIBs. This level has no knowledge of how these FIBs
361  *      get passed back and forth.
362  */
363
364 /**
365  *      aac_fib_send    -       send a fib to the adapter
366  *      @command: Command to send
367  *      @fibptr: The fib
368  *      @size: Size of fib data area
369  *      @priority: Priority of Fib
370  *      @wait: Async/sync select
371  *      @reply: True if a reply is wanted
372  *      @callback: Called with reply
373  *      @callback_data: Passed to callback
374  *
375  *      Sends the requested FIB to the adapter and optionally will wait for a
376  *      response FIB. If the caller does not wish to wait for a response than
377  *      an event to wait on must be supplied. This event will be set when a
378  *      response FIB is received from the adapter.
379  */
380  
381 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
382                 int priority, int wait, int reply, fib_callback callback,
383                 void *callback_data)
384 {
385         struct aac_dev * dev = fibptr->dev;
386         struct hw_fib * hw_fib = fibptr->hw_fib;
387         struct aac_queue * q;
388         unsigned long flags = 0;
389         unsigned long qflags;
390
391         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392                 return -EBUSY;
393         /*
394          *      There are 5 cases with the wait and reponse requested flags. 
395          *      The only invalid cases are if the caller requests to wait and
396          *      does not request a response and if the caller does not want a
397          *      response and the Fib is not allocated from pool. If a response
398          *      is not requesed the Fib will just be deallocaed by the DPC
399          *      routine when the response comes back from the adapter. No
400          *      further processing will be done besides deleting the Fib. We 
401          *      will have a debug mode where the adapter can notify the host
402          *      it had a problem and the host can log that fact.
403          */
404         if (wait && !reply) {
405                 return -EINVAL;
406         } else if (!wait && reply) {
407                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
408                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
409         } else if (!wait && !reply) {
410                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
411                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
412         } else if (wait && reply) {
413                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
414                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
415         } 
416         /*
417          *      Map the fib into 32bits by using the fib number
418          */
419
420         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
421         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
422         /*
423          *      Set FIB state to indicate where it came from and if we want a
424          *      response from the adapter. Also load the command from the
425          *      caller.
426          *
427          *      Map the hw fib pointer as a 32bit value
428          */
429         hw_fib->header.Command = cpu_to_le16(command);
430         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
431         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
432         /*
433          *      Set the size of the Fib we want to send to the adapter
434          */
435         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
436         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
437                 return -EMSGSIZE;
438         }                
439         /*
440          *      Get a queue entry connect the FIB to it and send an notify
441          *      the adapter a command is ready.
442          */
443         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
444
445         /*
446          *      Fill in the Callback and CallbackContext if we are not
447          *      going to wait.
448          */
449         if (!wait) {
450                 fibptr->callback = callback;
451                 fibptr->callback_data = callback_data;
452         }
453
454         fibptr->done = 0;
455         fibptr->flags = 0;
456
457         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
458
459         dprintk((KERN_DEBUG "Fib contents:.\n"));
460         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
461         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
462         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
463         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
464         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
466
467         if (!dev->queues)
468                 return -ENODEV;
469         q = &dev->queues->queue[AdapNormCmdQueue];
470
471         if(wait)
472                 spin_lock_irqsave(&fibptr->event_lock, flags);
473         spin_lock_irqsave(q->lock, qflags);
474         if (dev->new_comm_interface) {
475                 unsigned long count = 10000000L; /* 50 seconds */
476                 q->numpending++;
477                 spin_unlock_irqrestore(q->lock, qflags);
478                 while (aac_adapter_send(fibptr) != 0) {
479                         if (--count == 0) {
480                                 if (wait)
481                                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
482                                 spin_lock_irqsave(q->lock, qflags);
483                                 q->numpending--;
484                                 spin_unlock_irqrestore(q->lock, qflags);
485                                 return -ETIMEDOUT;
486                         }
487                         udelay(5);
488                 }
489         } else {
490                 u32 index;
491                 unsigned long nointr = 0;
492                 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
493
494                 q->numpending++;
495                 *(q->headers.producer) = cpu_to_le32(index + 1);
496                 spin_unlock_irqrestore(q->lock, qflags);
497                 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
498                 if (!(nointr & aac_config.irq_mod))
499                         aac_adapter_notify(dev, AdapNormCmdQueue);
500         }
501
502         /*
503          *      If the caller wanted us to wait for response wait now. 
504          */
505     
506         if (wait) {
507                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
508                 /* Only set for first known interruptable command */
509                 if (wait < 0) {
510                         /*
511                          * *VERY* Dangerous to time out a command, the
512                          * assumption is made that we have no hope of
513                          * functioning because an interrupt routing or other
514                          * hardware failure has occurred.
515                          */
516                         unsigned long count = 36000000L; /* 3 minutes */
517                         while (down_trylock(&fibptr->event_wait)) {
518                                 if (--count == 0) {
519                                         spin_lock_irqsave(q->lock, qflags);
520                                         q->numpending--;
521                                         spin_unlock_irqrestore(q->lock, qflags);
522                                         if (wait == -1) {
523                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
524                                                   "Usually a result of a PCI interrupt routing problem;\n"
525                                                   "update mother board BIOS or consider utilizing one of\n"
526                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
527                                         }
528                                         return -ETIMEDOUT;
529                                 }
530                                 udelay(5);
531                         }
532                 } else if (down_interruptible(&fibptr->event_wait)) {
533                         spin_lock_irqsave(&fibptr->event_lock, flags);
534                         if (fibptr->done == 0) {
535                                 fibptr->done = 2; /* Tell interrupt we aborted */
536                                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
537                                 return -EINTR;
538                         }
539                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
540                 }
541                 BUG_ON(fibptr->done == 0);
542                         
543                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
544                         return -ETIMEDOUT;
545                 } else {
546                         return 0;
547                 }
548         }
549         /*
550          *      If the user does not want a response than return success otherwise
551          *      return pending
552          */
553         if (reply)
554                 return -EINPROGRESS;
555         else
556                 return 0;
557 }
558
559 /** 
560  *      aac_consumer_get        -       get the top of the queue
561  *      @dev: Adapter
562  *      @q: Queue
563  *      @entry: Return entry
564  *
565  *      Will return a pointer to the entry on the top of the queue requested that
566  *      we are a consumer of, and return the address of the queue entry. It does
567  *      not change the state of the queue. 
568  */
569
570 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
571 {
572         u32 index;
573         int status;
574         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
575                 status = 0;
576         } else {
577                 /*
578                  *      The consumer index must be wrapped if we have reached
579                  *      the end of the queue, else we just use the entry
580                  *      pointed to by the header index
581                  */
582                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
583                         index = 0;              
584                 else
585                         index = le32_to_cpu(*q->headers.consumer);
586                 *entry = q->base + index;
587                 status = 1;
588         }
589         return(status);
590 }
591
592 /**
593  *      aac_consumer_free       -       free consumer entry
594  *      @dev: Adapter
595  *      @q: Queue
596  *      @qid: Queue ident
597  *
598  *      Frees up the current top of the queue we are a consumer of. If the
599  *      queue was full notify the producer that the queue is no longer full.
600  */
601
602 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
603 {
604         int wasfull = 0;
605         u32 notify;
606
607         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
608                 wasfull = 1;
609         
610         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
611                 *q->headers.consumer = cpu_to_le32(1);
612         else
613                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
614         
615         if (wasfull) {
616                 switch (qid) {
617
618                 case HostNormCmdQueue:
619                         notify = HostNormCmdNotFull;
620                         break;
621                 case HostNormRespQueue:
622                         notify = HostNormRespNotFull;
623                         break;
624                 default:
625                         BUG();
626                         return;
627                 }
628                 aac_adapter_notify(dev, notify);
629         }
630 }        
631
632 /**
633  *      aac_fib_adapter_complete        -       complete adapter issued fib
634  *      @fibptr: fib to complete
635  *      @size: size of fib
636  *
637  *      Will do all necessary work to complete a FIB that was sent from
638  *      the adapter.
639  */
640
641 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
642 {
643         struct hw_fib * hw_fib = fibptr->hw_fib;
644         struct aac_dev * dev = fibptr->dev;
645         struct aac_queue * q;
646         unsigned long nointr = 0;
647         unsigned long qflags;
648
649         if (hw_fib->header.XferState == 0) {
650                 if (dev->new_comm_interface)
651                         kfree (hw_fib);
652                 return 0;
653         }
654         /*
655          *      If we plan to do anything check the structure type first.
656          */ 
657         if ( hw_fib->header.StructType != FIB_MAGIC ) {
658                 if (dev->new_comm_interface)
659                         kfree (hw_fib);
660                 return -EINVAL;
661         }
662         /*
663          *      This block handles the case where the adapter had sent us a
664          *      command and we have finished processing the command. We
665          *      call completeFib when we are done processing the command 
666          *      and want to send a response back to the adapter. This will 
667          *      send the completed cdb to the adapter.
668          */
669         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
670                 if (dev->new_comm_interface) {
671                         kfree (hw_fib);
672                 } else {
673                         u32 index;
674                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
675                         if (size) {
676                                 size += sizeof(struct aac_fibhdr);
677                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
678                                         return -EMSGSIZE;
679                                 hw_fib->header.Size = cpu_to_le16(size);
680                         }
681                         q = &dev->queues->queue[AdapNormRespQueue];
682                         spin_lock_irqsave(q->lock, qflags);
683                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
684                         *(q->headers.producer) = cpu_to_le32(index + 1);
685                         spin_unlock_irqrestore(q->lock, qflags);
686                         if (!(nointr & (int)aac_config.irq_mod))
687                                 aac_adapter_notify(dev, AdapNormRespQueue);
688                 }
689         }
690         else 
691         {
692                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
693                 BUG();
694         }   
695         return 0;
696 }
697
698 /**
699  *      aac_fib_complete        -       fib completion handler
700  *      @fib: FIB to complete
701  *
702  *      Will do all necessary work to complete a FIB.
703  */
704  
705 int aac_fib_complete(struct fib *fibptr)
706 {
707         struct hw_fib * hw_fib = fibptr->hw_fib;
708
709         /*
710          *      Check for a fib which has already been completed
711          */
712
713         if (hw_fib->header.XferState == 0)
714                 return 0;
715         /*
716          *      If we plan to do anything check the structure type first.
717          */ 
718
719         if (hw_fib->header.StructType != FIB_MAGIC)
720                 return -EINVAL;
721         /*
722          *      This block completes a cdb which orginated on the host and we 
723          *      just need to deallocate the cdb or reinit it. At this point the
724          *      command is complete that we had sent to the adapter and this
725          *      cdb could be reused.
726          */
727         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
728                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
729         {
730                 fib_dealloc(fibptr);
731         }
732         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
733         {
734                 /*
735                  *      This handles the case when the host has aborted the I/O
736                  *      to the adapter because the adapter is not responding
737                  */
738                 fib_dealloc(fibptr);
739         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
740                 fib_dealloc(fibptr);
741         } else {
742                 BUG();
743         }   
744         return 0;
745 }
746
747 /**
748  *      aac_printf      -       handle printf from firmware
749  *      @dev: Adapter
750  *      @val: Message info
751  *
752  *      Print a message passed to us by the controller firmware on the
753  *      Adaptec board
754  */
755
756 void aac_printf(struct aac_dev *dev, u32 val)
757 {
758         char *cp = dev->printfbuf;
759         if (dev->printf_enabled)
760         {
761                 int length = val & 0xffff;
762                 int level = (val >> 16) & 0xffff;
763                 
764                 /*
765                  *      The size of the printfbuf is set in port.c
766                  *      There is no variable or define for it
767                  */
768                 if (length > 255)
769                         length = 255;
770                 if (cp[length] != 0)
771                         cp[length] = 0;
772                 if (level == LOG_AAC_HIGH_ERROR)
773                         printk(KERN_WARNING "%s:%s", dev->name, cp);
774                 else
775                         printk(KERN_INFO "%s:%s", dev->name, cp);
776         }
777         memset(cp, 0,  256);
778 }
779
780
781 /**
782  *      aac_handle_aif          -       Handle a message from the firmware
783  *      @dev: Which adapter this fib is from
784  *      @fibptr: Pointer to fibptr from adapter
785  *
786  *      This routine handles a driver notify fib from the adapter and
787  *      dispatches it to the appropriate routine for handling.
788  */
789
790 #define AIF_SNIFF_TIMEOUT       (30*HZ)
791 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
792 {
793         struct hw_fib * hw_fib = fibptr->hw_fib;
794         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
795         int busy;
796         u32 container;
797         struct scsi_device *device;
798         enum {
799                 NOTHING,
800                 DELETE,
801                 ADD,
802                 CHANGE
803         } device_config_needed;
804
805         /* Sniff for container changes */
806
807         if (!dev || !dev->fsa_dev)
808                 return;
809         container = (u32)-1;
810
811         /*
812          *      We have set this up to try and minimize the number of
813          * re-configures that take place. As a result of this when
814          * certain AIF's come in we will set a flag waiting for another
815          * type of AIF before setting the re-config flag.
816          */
817         switch (le32_to_cpu(aifcmd->command)) {
818         case AifCmdDriverNotify:
819                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
820                 /*
821                  *      Morph or Expand complete
822                  */
823                 case AifDenMorphComplete:
824                 case AifDenVolumeExtendComplete:
825                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
826                         if (container >= dev->maximum_num_containers)
827                                 break;
828
829                         /*
830                          *      Find the scsi_device associated with the SCSI
831                          * address. Make sure we have the right array, and if
832                          * so set the flag to initiate a new re-config once we
833                          * see an AifEnConfigChange AIF come through.
834                          */
835
836                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
837                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
838                                         CONTAINER_TO_CHANNEL(container), 
839                                         CONTAINER_TO_ID(container), 
840                                         CONTAINER_TO_LUN(container));
841                                 if (device) {
842                                         dev->fsa_dev[container].config_needed = CHANGE;
843                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
844                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
845                                         scsi_device_put(device);
846                                 }
847                         }
848                 }
849
850                 /*
851                  *      If we are waiting on something and this happens to be
852                  * that thing then set the re-configure flag.
853                  */
854                 if (container != (u32)-1) {
855                         if (container >= dev->maximum_num_containers)
856                                 break;
857                         if ((dev->fsa_dev[container].config_waiting_on ==
858                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
859                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
860                                 dev->fsa_dev[container].config_waiting_on = 0;
861                 } else for (container = 0;
862                     container < dev->maximum_num_containers; ++container) {
863                         if ((dev->fsa_dev[container].config_waiting_on ==
864                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
865                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
866                                 dev->fsa_dev[container].config_waiting_on = 0;
867                 }
868                 break;
869
870         case AifCmdEventNotify:
871                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
872                 /*
873                  *      Add an Array.
874                  */
875                 case AifEnAddContainer:
876                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
877                         if (container >= dev->maximum_num_containers)
878                                 break;
879                         dev->fsa_dev[container].config_needed = ADD;
880                         dev->fsa_dev[container].config_waiting_on =
881                                 AifEnConfigChange;
882                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
883                         break;
884
885                 /*
886                  *      Delete an Array.
887                  */
888                 case AifEnDeleteContainer:
889                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
890                         if (container >= dev->maximum_num_containers)
891                                 break;
892                         dev->fsa_dev[container].config_needed = DELETE;
893                         dev->fsa_dev[container].config_waiting_on =
894                                 AifEnConfigChange;
895                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
896                         break;
897
898                 /*
899                  *      Container change detected. If we currently are not
900                  * waiting on something else, setup to wait on a Config Change.
901                  */
902                 case AifEnContainerChange:
903                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
904                         if (container >= dev->maximum_num_containers)
905                                 break;
906                         if (dev->fsa_dev[container].config_waiting_on &&
907                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
908                                 break;
909                         dev->fsa_dev[container].config_needed = CHANGE;
910                         dev->fsa_dev[container].config_waiting_on =
911                                 AifEnConfigChange;
912                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
913                         break;
914
915                 case AifEnConfigChange:
916                         break;
917
918                 }
919
920                 /*
921                  *      If we are waiting on something and this happens to be
922                  * that thing then set the re-configure flag.
923                  */
924                 if (container != (u32)-1) {
925                         if (container >= dev->maximum_num_containers)
926                                 break;
927                         if ((dev->fsa_dev[container].config_waiting_on ==
928                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
929                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
930                                 dev->fsa_dev[container].config_waiting_on = 0;
931                 } else for (container = 0;
932                     container < dev->maximum_num_containers; ++container) {
933                         if ((dev->fsa_dev[container].config_waiting_on ==
934                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
935                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
936                                 dev->fsa_dev[container].config_waiting_on = 0;
937                 }
938                 break;
939
940         case AifCmdJobProgress:
941                 /*
942                  *      These are job progress AIF's. When a Clear is being
943                  * done on a container it is initially created then hidden from
944                  * the OS. When the clear completes we don't get a config
945                  * change so we monitor the job status complete on a clear then
946                  * wait for a container change.
947                  */
948
949                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
950                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
951                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
952                         for (container = 0;
953                             container < dev->maximum_num_containers;
954                             ++container) {
955                                 /*
956                                  * Stomp on all config sequencing for all
957                                  * containers?
958                                  */
959                                 dev->fsa_dev[container].config_waiting_on =
960                                         AifEnContainerChange;
961                                 dev->fsa_dev[container].config_needed = ADD;
962                                 dev->fsa_dev[container].config_waiting_stamp =
963                                         jiffies;
964                         }
965                 }
966                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
967                  && (((u32 *)aifcmd->data)[6] == 0)
968                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
969                         for (container = 0;
970                             container < dev->maximum_num_containers;
971                             ++container) {
972                                 /*
973                                  * Stomp on all config sequencing for all
974                                  * containers?
975                                  */
976                                 dev->fsa_dev[container].config_waiting_on =
977                                         AifEnContainerChange;
978                                 dev->fsa_dev[container].config_needed = DELETE;
979                                 dev->fsa_dev[container].config_waiting_stamp =
980                                         jiffies;
981                         }
982                 }
983                 break;
984         }
985
986         device_config_needed = NOTHING;
987         for (container = 0; container < dev->maximum_num_containers;
988             ++container) {
989                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
990                         (dev->fsa_dev[container].config_needed != NOTHING) &&
991                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
992                         device_config_needed =
993                                 dev->fsa_dev[container].config_needed;
994                         dev->fsa_dev[container].config_needed = NOTHING;
995                         break;
996                 }
997         }
998         if (device_config_needed == NOTHING)
999                 return;
1000
1001         /*
1002          *      If we decided that a re-configuration needs to be done,
1003          * schedule it here on the way out the door, please close the door
1004          * behind you.
1005          */
1006
1007         busy = 0;
1008
1009
1010         /*
1011          *      Find the scsi_device associated with the SCSI address,
1012          * and mark it as changed, invalidating the cache. This deals
1013          * with changes to existing device IDs.
1014          */
1015
1016         if (!dev || !dev->scsi_host_ptr)
1017                 return;
1018         /*
1019          * force reload of disk info via aac_probe_container
1020          */
1021         if ((device_config_needed == CHANGE)
1022          && (dev->fsa_dev[container].valid == 1))
1023                 dev->fsa_dev[container].valid = 2;
1024         if ((device_config_needed == CHANGE) ||
1025                         (device_config_needed == ADD))
1026                 aac_probe_container(dev, container);
1027         device = scsi_device_lookup(dev->scsi_host_ptr, 
1028                 CONTAINER_TO_CHANNEL(container), 
1029                 CONTAINER_TO_ID(container), 
1030                 CONTAINER_TO_LUN(container));
1031         if (device) {
1032                 switch (device_config_needed) {
1033                 case DELETE:
1034                         scsi_remove_device(device);
1035                         break;
1036                 case CHANGE:
1037                         if (!dev->fsa_dev[container].valid) {
1038                                 scsi_remove_device(device);
1039                                 break;
1040                         }
1041                         scsi_rescan_device(&device->sdev_gendev);
1042
1043                 default:
1044                         break;
1045                 }
1046                 scsi_device_put(device);
1047         }
1048         if (device_config_needed == ADD) {
1049                 scsi_add_device(dev->scsi_host_ptr,
1050                   CONTAINER_TO_CHANNEL(container),
1051                   CONTAINER_TO_ID(container),
1052                   CONTAINER_TO_LUN(container));
1053         }
1054
1055 }
1056
1057 /**
1058  *      aac_command_thread      -       command processing thread
1059  *      @dev: Adapter to monitor
1060  *
1061  *      Waits on the commandready event in it's queue. When the event gets set
1062  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1063  *      until the queue is empty. When the queue is empty it will wait for
1064  *      more FIBs.
1065  */
1066  
1067 int aac_command_thread(void *data)
1068 {
1069         struct aac_dev *dev = data;
1070         struct hw_fib *hw_fib, *hw_newfib;
1071         struct fib *fib, *newfib;
1072         struct aac_fib_context *fibctx;
1073         unsigned long flags;
1074         DECLARE_WAITQUEUE(wait, current);
1075
1076         /*
1077          *      We can only have one thread per adapter for AIF's.
1078          */
1079         if (dev->aif_thread)
1080                 return -EINVAL;
1081
1082         /*
1083          *      Let the DPC know it has a place to send the AIF's to.
1084          */
1085         dev->aif_thread = 1;
1086         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1087         set_current_state(TASK_INTERRUPTIBLE);
1088         dprintk ((KERN_INFO "aac_command_thread start\n"));
1089         while(1) 
1090         {
1091                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1092                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1093                         struct list_head *entry;
1094                         struct aac_aifcmd * aifcmd;
1095
1096                         set_current_state(TASK_RUNNING);
1097         
1098                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1099                         list_del(entry);
1100                 
1101                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1102                         fib = list_entry(entry, struct fib, fiblink);
1103                         /*
1104                          *      We will process the FIB here or pass it to a 
1105                          *      worker thread that is TBD. We Really can't 
1106                          *      do anything at this point since we don't have
1107                          *      anything defined for this thread to do.
1108                          */
1109                         hw_fib = fib->hw_fib;
1110                         memset(fib, 0, sizeof(struct fib));
1111                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1112                         fib->size = sizeof( struct fib );
1113                         fib->hw_fib = hw_fib;
1114                         fib->data = hw_fib->data;
1115                         fib->dev = dev;
1116                         /*
1117                          *      We only handle AifRequest fibs from the adapter.
1118                          */
1119                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1120                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1121                                 /* Handle Driver Notify Events */
1122                                 aac_handle_aif(dev, fib);
1123                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1124                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1125                         } else {
1126                                 struct list_head *entry;
1127                                 /* The u32 here is important and intended. We are using
1128                                    32bit wrapping time to fit the adapter field */
1129                                    
1130                                 u32 time_now, time_last;
1131                                 unsigned long flagv;
1132                                 unsigned num;
1133                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1134                                 struct fib ** fib_pool, ** fib_p;
1135                         
1136                                 /* Sniff events */
1137                                 if ((aifcmd->command == 
1138                                      cpu_to_le32(AifCmdEventNotify)) ||
1139                                     (aifcmd->command == 
1140                                      cpu_to_le32(AifCmdJobProgress))) {
1141                                         aac_handle_aif(dev, fib);
1142                                 }
1143                                 
1144                                 time_now = jiffies/HZ;
1145
1146                                 /*
1147                                  * Warning: no sleep allowed while
1148                                  * holding spinlock. We take the estimate
1149                                  * and pre-allocate a set of fibs outside the
1150                                  * lock.
1151                                  */
1152                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1153                                     / sizeof(struct hw_fib); /* some extra */
1154                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1155                                 entry = dev->fib_list.next;
1156                                 while (entry != &dev->fib_list) {
1157                                         entry = entry->next;
1158                                         ++num;
1159                                 }
1160                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1161                                 hw_fib_pool = NULL;
1162                                 fib_pool = NULL;
1163                                 if (num
1164                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1165                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1166                                         hw_fib_p = hw_fib_pool;
1167                                         fib_p = fib_pool;
1168                                         while (hw_fib_p < &hw_fib_pool[num]) {
1169                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1170                                                         --hw_fib_p;
1171                                                         break;
1172                                                 }
1173                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1174                                                         kfree(*(--hw_fib_p));
1175                                                         break;
1176                                                 }
1177                                         }
1178                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1179                                                 kfree(fib_pool);
1180                                                 fib_pool = NULL;
1181                                                 kfree(hw_fib_pool);
1182                                                 hw_fib_pool = NULL;
1183                                         }
1184                                 } else {
1185                                         kfree(hw_fib_pool);
1186                                         hw_fib_pool = NULL;
1187                                 }
1188                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1189                                 entry = dev->fib_list.next;
1190                                 /*
1191                                  * For each Context that is on the 
1192                                  * fibctxList, make a copy of the
1193                                  * fib, and then set the event to wake up the
1194                                  * thread that is waiting for it.
1195                                  */
1196                                 hw_fib_p = hw_fib_pool;
1197                                 fib_p = fib_pool;
1198                                 while (entry != &dev->fib_list) {
1199                                         /*
1200                                          * Extract the fibctx
1201                                          */
1202                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1203                                         /*
1204                                          * Check if the queue is getting
1205                                          * backlogged
1206                                          */
1207                                         if (fibctx->count > 20)
1208                                         {
1209                                                 /*
1210                                                  * It's *not* jiffies folks,
1211                                                  * but jiffies / HZ so do not
1212                                                  * panic ...
1213                                                  */
1214                                                 time_last = fibctx->jiffies;
1215                                                 /*
1216                                                  * Has it been > 2 minutes 
1217                                                  * since the last read off
1218                                                  * the queue?
1219                                                  */
1220                                                 if ((time_now - time_last) > aif_timeout) {
1221                                                         entry = entry->next;
1222                                                         aac_close_fib_context(dev, fibctx);
1223                                                         continue;
1224                                                 }
1225                                         }
1226                                         /*
1227                                          * Warning: no sleep allowed while
1228                                          * holding spinlock
1229                                          */
1230                                         if (hw_fib_p < &hw_fib_pool[num]) {
1231                                                 hw_newfib = *hw_fib_p;
1232                                                 *(hw_fib_p++) = NULL;
1233                                                 newfib = *fib_p;
1234                                                 *(fib_p++) = NULL;
1235                                                 /*
1236                                                  * Make the copy of the FIB
1237                                                  */
1238                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1239                                                 memcpy(newfib, fib, sizeof(struct fib));
1240                                                 newfib->hw_fib = hw_newfib;
1241                                                 /*
1242                                                  * Put the FIB onto the
1243                                                  * fibctx's fibs
1244                                                  */
1245                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1246                                                 fibctx->count++;
1247                                                 /* 
1248                                                  * Set the event to wake up the
1249                                                  * thread that is waiting.
1250                                                  */
1251                                                 up(&fibctx->wait_sem);
1252                                         } else {
1253                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1254                                         }
1255                                         entry = entry->next;
1256                                 }
1257                                 /*
1258                                  *      Set the status of this FIB
1259                                  */
1260                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1261                                 aac_fib_adapter_complete(fib, sizeof(u32));
1262                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1263                                 /* Free up the remaining resources */
1264                                 hw_fib_p = hw_fib_pool;
1265                                 fib_p = fib_pool;
1266                                 while (hw_fib_p < &hw_fib_pool[num]) {
1267                                         kfree(*hw_fib_p);
1268                                         kfree(*fib_p);
1269                                         ++fib_p;
1270                                         ++hw_fib_p;
1271                                 }
1272                                 kfree(hw_fib_pool);
1273                                 kfree(fib_pool);
1274                         }
1275                         kfree(fib);
1276                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1277                 }
1278                 /*
1279                  *      There are no more AIF's
1280                  */
1281                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1282                 schedule();
1283
1284                 if (kthread_should_stop())
1285                         break;
1286                 set_current_state(TASK_INTERRUPTIBLE);
1287         }
1288         if (dev->queues)
1289                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1290         dev->aif_thread = 0;
1291         return 0;
1292 }