]> err.no Git - linux-2.6/blob - drivers/scsi/aacraid/commsup.c
Merge with rsync://fileserver/linux
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <scsi/scsi_host.h>
42 #include <asm/semaphore.h>
43
44 #include "aacraid.h"
45
46 /**
47  *      fib_map_alloc           -       allocate the fib objects
48  *      @dev: Adapter to allocate for
49  *
50  *      Allocate and map the shared PCI space for the FIB blocks used to
51  *      talk to the Adaptec firmware.
52  */
53  
54 static int fib_map_alloc(struct aac_dev *dev)
55 {
56         dprintk((KERN_INFO
57           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
58           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
59           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
60         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
61           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
62           &dev->hw_fib_pa))==NULL)
63                 return -ENOMEM;
64         return 0;
65 }
66
67 /**
68  *      fib_map_free            -       free the fib objects
69  *      @dev: Adapter to free
70  *
71  *      Free the PCI mappings and the memory allocated for FIB blocks
72  *      on this adapter.
73  */
74
75 void fib_map_free(struct aac_dev *dev)
76 {
77         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
78 }
79
80 /**
81  *      fib_setup       -       setup the fibs
82  *      @dev: Adapter to set up
83  *
84  *      Allocate the PCI space for the fibs, map it and then intialise the
85  *      fib area, the unmapped fib data and also the free list
86  */
87
88 int fib_setup(struct aac_dev * dev)
89 {
90         struct fib *fibptr;
91         struct hw_fib *hw_fib_va;
92         dma_addr_t hw_fib_pa;
93         int i;
94
95         while (((i = fib_map_alloc(dev)) == -ENOMEM)
96          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
97                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
98                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
99         }
100         if (i<0)
101                 return -ENOMEM;
102                 
103         hw_fib_va = dev->hw_fib_va;
104         hw_fib_pa = dev->hw_fib_pa;
105         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
106         /*
107          *      Initialise the fibs
108          */
109         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
110         {
111                 fibptr->dev = dev;
112                 fibptr->hw_fib = hw_fib_va;
113                 fibptr->data = (void *) fibptr->hw_fib->data;
114                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
115                 init_MUTEX_LOCKED(&fibptr->event_wait);
116                 spin_lock_init(&fibptr->event_lock);
117                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
118                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
119                 fibptr->hw_fib_pa = hw_fib_pa;
120                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
121                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
122         }
123         /*
124          *      Add the fib chain to the free list
125          */
126         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
127         /*
128          *      Enable this to debug out of queue space
129          */
130         dev->free_fib = &dev->fibs[0];
131         return 0;
132 }
133
134 /**
135  *      fib_alloc       -       allocate a fib
136  *      @dev: Adapter to allocate the fib for
137  *
138  *      Allocate a fib from the adapter fib pool. If the pool is empty we
139  *      return NULL.
140  */
141  
142 struct fib * fib_alloc(struct aac_dev *dev)
143 {
144         struct fib * fibptr;
145         unsigned long flags;
146         spin_lock_irqsave(&dev->fib_lock, flags);
147         fibptr = dev->free_fib; 
148         if(!fibptr){
149                 spin_unlock_irqrestore(&dev->fib_lock, flags);
150                 return fibptr;
151         }
152         dev->free_fib = fibptr->next;
153         spin_unlock_irqrestore(&dev->fib_lock, flags);
154         /*
155          *      Set the proper node type code and node byte size
156          */
157         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
158         fibptr->size = sizeof(struct fib);
159         /*
160          *      Null out fields that depend on being zero at the start of
161          *      each I/O
162          */
163         fibptr->hw_fib->header.XferState = 0;
164         fibptr->callback = NULL;
165         fibptr->callback_data = NULL;
166
167         return fibptr;
168 }
169
170 /**
171  *      fib_free        -       free a fib
172  *      @fibptr: fib to free up
173  *
174  *      Frees up a fib and places it on the appropriate queue
175  *      (either free or timed out)
176  */
177  
178 void fib_free(struct fib * fibptr)
179 {
180         unsigned long flags;
181
182         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
183         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
184                 aac_config.fib_timeouts++;
185                 fibptr->next = fibptr->dev->timeout_fib;
186                 fibptr->dev->timeout_fib = fibptr;
187         } else {
188                 if (fibptr->hw_fib->header.XferState != 0) {
189                         printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 
190                                  (void*)fibptr, 
191                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
192                 }
193                 fibptr->next = fibptr->dev->free_fib;
194                 fibptr->dev->free_fib = fibptr;
195         }       
196         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
197 }
198
199 /**
200  *      fib_init        -       initialise a fib
201  *      @fibptr: The fib to initialize
202  *      
203  *      Set up the generic fib fields ready for use
204  */
205  
206 void fib_init(struct fib *fibptr)
207 {
208         struct hw_fib *hw_fib = fibptr->hw_fib;
209
210         hw_fib->header.StructType = FIB_MAGIC;
211         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
212         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
213         hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
214         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
215         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
216 }
217
218 /**
219  *      fib_deallocate          -       deallocate a fib
220  *      @fibptr: fib to deallocate
221  *
222  *      Will deallocate and return to the free pool the FIB pointed to by the
223  *      caller.
224  */
225  
226 static void fib_dealloc(struct fib * fibptr)
227 {
228         struct hw_fib *hw_fib = fibptr->hw_fib;
229         if(hw_fib->header.StructType != FIB_MAGIC) 
230                 BUG();
231         hw_fib->header.XferState = 0;        
232 }
233
234 /*
235  *      Commuication primitives define and support the queuing method we use to
236  *      support host to adapter commuication. All queue accesses happen through
237  *      these routines and are the only routines which have a knowledge of the
238  *       how these queues are implemented.
239  */
240  
241 /**
242  *      aac_get_entry           -       get a queue entry
243  *      @dev: Adapter
244  *      @qid: Queue Number
245  *      @entry: Entry return
246  *      @index: Index return
247  *      @nonotify: notification control
248  *
249  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
250  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
251  *      returned.
252  */
253  
254 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
255 {
256         struct aac_queue * q;
257
258         /*
259          *      All of the queues wrap when they reach the end, so we check
260          *      to see if they have reached the end and if they have we just
261          *      set the index back to zero. This is a wrap. You could or off
262          *      the high bits in all updates but this is a bit faster I think.
263          */
264
265         q = &dev->queues->queue[qid];
266         
267         *index = le32_to_cpu(*(q->headers.producer));
268         if ((*index - 2) == le32_to_cpu(*(q->headers.consumer)))
269                         *nonotify = 1; 
270
271         if (qid == AdapHighCmdQueue) {
272                 if (*index >= ADAP_HIGH_CMD_ENTRIES)
273                         *index = 0;
274         } else if (qid == AdapNormCmdQueue) {
275                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
276                         *index = 0; /* Wrap to front of the Producer Queue. */
277         }
278         else if (qid == AdapHighRespQueue) 
279         {
280                 if (*index >= ADAP_HIGH_RESP_ENTRIES)
281                         *index = 0;
282         }
283         else if (qid == AdapNormRespQueue) 
284         {
285                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
286                         *index = 0; /* Wrap to front of the Producer Queue. */
287         }
288         else {
289                 printk("aacraid: invalid qid\n");
290                 BUG();
291         }
292
293         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
294                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
295                                 qid, q->numpending);
296                 return 0;
297         } else {
298                 *entry = q->base + *index;
299                 return 1;
300         }
301 }   
302
303 /**
304  *      aac_queue_get           -       get the next free QE
305  *      @dev: Adapter
306  *      @index: Returned index
307  *      @priority: Priority of fib
308  *      @fib: Fib to associate with the queue entry
309  *      @wait: Wait if queue full
310  *      @fibptr: Driver fib object to go with fib
311  *      @nonotify: Don't notify the adapter
312  *
313  *      Gets the next free QE off the requested priorty adapter command
314  *      queue and associates the Fib with the QE. The QE represented by
315  *      index is ready to insert on the queue when this routine returns
316  *      success.
317  */
318
319 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
320 {
321         struct aac_entry * entry = NULL;
322         int map = 0;
323         struct aac_queue * q = &dev->queues->queue[qid];
324                 
325         spin_lock_irqsave(q->lock, q->SavedIrql);
326             
327         if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue) 
328         {
329                 /*  if no entries wait for some if caller wants to */
330                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
331                 {
332                         printk(KERN_ERR "GetEntries failed\n");
333                 }
334                 /*
335                  *      Setup queue entry with a command, status and fib mapped
336                  */
337                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
338                 map = 1;
339         }
340         else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
341         {
342                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
343                 {
344                         /* if no entries wait for some if caller wants to */
345                 }
346                 /*
347                  *      Setup queue entry with command, status and fib mapped
348                  */
349                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
350                 entry->addr = hw_fib->header.SenderFibAddress;
351                         /* Restore adapters pointer to the FIB */
352                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
353                 map = 0;
354         }
355         /*
356          *      If MapFib is true than we need to map the Fib and put pointers
357          *      in the queue entry.
358          */
359         if (map)
360                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
361         return 0;
362 }
363
364
365 /**
366  *      aac_insert_entry        -       insert a queue entry
367  *      @dev: Adapter
368  *      @index: Index of entry to insert
369  *      @qid: Queue number
370  *      @nonotify: Suppress adapter notification
371  *
372  *      Gets the next free QE off the requested priorty adapter command
373  *      queue and associates the Fib with the QE. The QE represented by
374  *      index is ready to insert on the queue when this routine returns
375  *      success.
376  */
377  
378 static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify) 
379 {
380         struct aac_queue * q = &dev->queues->queue[qid];
381
382         if(q == NULL)
383                 BUG();
384         *(q->headers.producer) = cpu_to_le32(index + 1);
385         spin_unlock_irqrestore(q->lock, q->SavedIrql);
386
387         if (qid == AdapHighCmdQueue ||
388             qid == AdapNormCmdQueue ||
389             qid == AdapHighRespQueue ||
390             qid == AdapNormRespQueue)
391         {
392                 if (!nonotify)
393                         aac_adapter_notify(dev, qid);
394         }
395         else
396                 printk("Suprise insert!\n");
397         return 0;
398 }
399
400 /*
401  *      Define the highest level of host to adapter communication routines. 
402  *      These routines will support host to adapter FS commuication. These 
403  *      routines have no knowledge of the commuication method used. This level
404  *      sends and receives FIBs. This level has no knowledge of how these FIBs
405  *      get passed back and forth.
406  */
407
408 /**
409  *      fib_send        -       send a fib to the adapter
410  *      @command: Command to send
411  *      @fibptr: The fib
412  *      @size: Size of fib data area
413  *      @priority: Priority of Fib
414  *      @wait: Async/sync select
415  *      @reply: True if a reply is wanted
416  *      @callback: Called with reply
417  *      @callback_data: Passed to callback
418  *
419  *      Sends the requested FIB to the adapter and optionally will wait for a
420  *      response FIB. If the caller does not wish to wait for a response than
421  *      an event to wait on must be supplied. This event will be set when a
422  *      response FIB is received from the adapter.
423  */
424  
425 int fib_send(u16 command, struct fib * fibptr, unsigned long size,  int priority, int wait, int reply, fib_callback callback, void * callback_data)
426 {
427         u32 index;
428         u32 qid;
429         struct aac_dev * dev = fibptr->dev;
430         unsigned long nointr = 0;
431         struct hw_fib * hw_fib = fibptr->hw_fib;
432         struct aac_queue * q;
433         unsigned long flags = 0;
434         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
435                 return -EBUSY;
436         /*
437          *      There are 5 cases with the wait and reponse requested flags. 
438          *      The only invalid cases are if the caller requests to wait and
439          *      does not request a response and if the caller does not want a
440          *      response and the Fib is not allocated from pool. If a response
441          *      is not requesed the Fib will just be deallocaed by the DPC
442          *      routine when the response comes back from the adapter. No
443          *      further processing will be done besides deleting the Fib. We 
444          *      will have a debug mode where the adapter can notify the host
445          *      it had a problem and the host can log that fact.
446          */
447         if (wait && !reply) {
448                 return -EINVAL;
449         } else if (!wait && reply) {
450                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
451                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
452         } else if (!wait && !reply) {
453                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
454                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
455         } else if (wait && reply) {
456                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
457                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
458         } 
459         /*
460          *      Map the fib into 32bits by using the fib number
461          */
462
463         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
464         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
465         /*
466          *      Set FIB state to indicate where it came from and if we want a
467          *      response from the adapter. Also load the command from the
468          *      caller.
469          *
470          *      Map the hw fib pointer as a 32bit value
471          */
472         hw_fib->header.Command = cpu_to_le16(command);
473         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
474         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
475         /*
476          *      Set the size of the Fib we want to send to the adapter
477          */
478         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
479         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
480                 return -EMSGSIZE;
481         }                
482         /*
483          *      Get a queue entry connect the FIB to it and send an notify
484          *      the adapter a command is ready.
485          */
486         if (priority == FsaHigh) {
487                 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
488                 qid = AdapHighCmdQueue;
489         } else {
490                 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
491                 qid = AdapNormCmdQueue;
492         }
493         q = &dev->queues->queue[qid];
494
495         if(wait)
496                 spin_lock_irqsave(&fibptr->event_lock, flags);
497         if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
498                 return -EWOULDBLOCK;
499         dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
500         dprintk((KERN_DEBUG "Fib contents:.\n"));
501         dprintk((KERN_DEBUG "  Command =               %d.\n", hw_fib->header.Command));
502         dprintk((KERN_DEBUG "  XferState  =            %x.\n", hw_fib->header.XferState));
503         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
504         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
505         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
506         /*
507          *      Fill in the Callback and CallbackContext if we are not
508          *      going to wait.
509          */
510         if (!wait) {
511                 fibptr->callback = callback;
512                 fibptr->callback_data = callback_data;
513         }
514         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
515         list_add_tail(&fibptr->queue, &q->pendingq);
516         q->numpending++;
517
518         fibptr->done = 0;
519         fibptr->flags = 0;
520
521         if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
522                 return -EWOULDBLOCK;
523         /*
524          *      If the caller wanted us to wait for response wait now. 
525          */
526     
527         if (wait) {
528                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
529                 down(&fibptr->event_wait);
530                 if(fibptr->done == 0)
531                         BUG();
532                         
533                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
534                         return -ETIMEDOUT;
535                 } else {
536                         return 0;
537                 }
538         }
539         /*
540          *      If the user does not want a response than return success otherwise
541          *      return pending
542          */
543         if (reply)
544                 return -EINPROGRESS;
545         else
546                 return 0;
547 }
548
549 /** 
550  *      aac_consumer_get        -       get the top of the queue
551  *      @dev: Adapter
552  *      @q: Queue
553  *      @entry: Return entry
554  *
555  *      Will return a pointer to the entry on the top of the queue requested that
556  *      we are a consumer of, and return the address of the queue entry. It does
557  *      not change the state of the queue. 
558  */
559
560 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
561 {
562         u32 index;
563         int status;
564         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
565                 status = 0;
566         } else {
567                 /*
568                  *      The consumer index must be wrapped if we have reached
569                  *      the end of the queue, else we just use the entry
570                  *      pointed to by the header index
571                  */
572                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
573                         index = 0;              
574                 else
575                         index = le32_to_cpu(*q->headers.consumer);
576                 *entry = q->base + index;
577                 status = 1;
578         }
579         return(status);
580 }
581
582 /**
583  *      aac_consumer_free       -       free consumer entry
584  *      @dev: Adapter
585  *      @q: Queue
586  *      @qid: Queue ident
587  *
588  *      Frees up the current top of the queue we are a consumer of. If the
589  *      queue was full notify the producer that the queue is no longer full.
590  */
591
592 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
593 {
594         int wasfull = 0;
595         u32 notify;
596
597         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
598                 wasfull = 1;
599         
600         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
601                 *q->headers.consumer = cpu_to_le32(1);
602         else
603                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
604         
605         if (wasfull) {
606                 switch (qid) {
607
608                 case HostNormCmdQueue:
609                         notify = HostNormCmdNotFull;
610                         break;
611                 case HostHighCmdQueue:
612                         notify = HostHighCmdNotFull;
613                         break;
614                 case HostNormRespQueue:
615                         notify = HostNormRespNotFull;
616                         break;
617                 case HostHighRespQueue:
618                         notify = HostHighRespNotFull;
619                         break;
620                 default:
621                         BUG();
622                         return;
623                 }
624                 aac_adapter_notify(dev, notify);
625         }
626 }        
627
628 /**
629  *      fib_adapter_complete    -       complete adapter issued fib
630  *      @fibptr: fib to complete
631  *      @size: size of fib
632  *
633  *      Will do all necessary work to complete a FIB that was sent from
634  *      the adapter.
635  */
636
637 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
638 {
639         struct hw_fib * hw_fib = fibptr->hw_fib;
640         struct aac_dev * dev = fibptr->dev;
641         unsigned long nointr = 0;
642         if (hw_fib->header.XferState == 0)
643                 return 0;
644         /*
645          *      If we plan to do anything check the structure type first.
646          */ 
647         if ( hw_fib->header.StructType != FIB_MAGIC ) {
648                 return -EINVAL;
649         }
650         /*
651          *      This block handles the case where the adapter had sent us a
652          *      command and we have finished processing the command. We
653          *      call completeFib when we are done processing the command 
654          *      and want to send a response back to the adapter. This will 
655          *      send the completed cdb to the adapter.
656          */
657         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
658                 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
659                 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
660                         u32 index;
661                         if (size) 
662                         {
663                                 size += sizeof(struct aac_fibhdr);
664                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
665                                         return -EMSGSIZE;
666                                 hw_fib->header.Size = cpu_to_le16(size);
667                         }
668                         if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
669                                 return -EWOULDBLOCK;
670                         }
671                         if (aac_insert_entry(dev, index, AdapHighRespQueue,  (nointr & (int)aac_config.irq_mod)) != 0) {
672                         }
673                 } else if (hw_fib->header.XferState & 
674                                 cpu_to_le32(NormalPriority)) {
675                         u32 index;
676
677                         if (size) {
678                                 size += sizeof(struct aac_fibhdr);
679                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
680                                         return -EMSGSIZE;
681                                 hw_fib->header.Size = cpu_to_le16(size);
682                         }
683                         if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0) 
684                                 return -EWOULDBLOCK;
685                         if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) 
686                         {
687                         }
688                 }
689         }
690         else 
691         {
692                 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
693                 BUG();
694         }   
695         return 0;
696 }
697
698 /**
699  *      fib_complete    -       fib completion handler
700  *      @fib: FIB to complete
701  *
702  *      Will do all necessary work to complete a FIB.
703  */
704  
705 int fib_complete(struct fib * fibptr)
706 {
707         struct hw_fib * hw_fib = fibptr->hw_fib;
708
709         /*
710          *      Check for a fib which has already been completed
711          */
712
713         if (hw_fib->header.XferState == 0)
714                 return 0;
715         /*
716          *      If we plan to do anything check the structure type first.
717          */ 
718
719         if (hw_fib->header.StructType != FIB_MAGIC)
720                 return -EINVAL;
721         /*
722          *      This block completes a cdb which orginated on the host and we 
723          *      just need to deallocate the cdb or reinit it. At this point the
724          *      command is complete that we had sent to the adapter and this
725          *      cdb could be reused.
726          */
727         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
728                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
729         {
730                 fib_dealloc(fibptr);
731         }
732         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
733         {
734                 /*
735                  *      This handles the case when the host has aborted the I/O
736                  *      to the adapter because the adapter is not responding
737                  */
738                 fib_dealloc(fibptr);
739         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
740                 fib_dealloc(fibptr);
741         } else {
742                 BUG();
743         }   
744         return 0;
745 }
746
747 /**
748  *      aac_printf      -       handle printf from firmware
749  *      @dev: Adapter
750  *      @val: Message info
751  *
752  *      Print a message passed to us by the controller firmware on the
753  *      Adaptec board
754  */
755
756 void aac_printf(struct aac_dev *dev, u32 val)
757 {
758         char *cp = dev->printfbuf;
759         if (dev->printf_enabled)
760         {
761                 int length = val & 0xffff;
762                 int level = (val >> 16) & 0xffff;
763                 
764                 /*
765                  *      The size of the printfbuf is set in port.c
766                  *      There is no variable or define for it
767                  */
768                 if (length > 255)
769                         length = 255;
770                 if (cp[length] != 0)
771                         cp[length] = 0;
772                 if (level == LOG_AAC_HIGH_ERROR)
773                         printk(KERN_WARNING "aacraid:%s", cp);
774                 else
775                         printk(KERN_INFO "aacraid:%s", cp);
776         }
777         memset(cp, 0,  256);
778 }
779
780 /**
781  *      aac_command_thread      -       command processing thread
782  *      @dev: Adapter to monitor
783  *
784  *      Waits on the commandready event in it's queue. When the event gets set
785  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
786  *      until the queue is empty. When the queue is empty it will wait for
787  *      more FIBs.
788  */
789  
790 int aac_command_thread(struct aac_dev * dev)
791 {
792         struct hw_fib *hw_fib, *hw_newfib;
793         struct fib *fib, *newfib;
794         struct aac_queue_block *queues = dev->queues;
795         struct aac_fib_context *fibctx;
796         unsigned long flags;
797         DECLARE_WAITQUEUE(wait, current);
798
799         /*
800          *      We can only have one thread per adapter for AIF's.
801          */
802         if (dev->aif_thread)
803                 return -EINVAL;
804         /*
805          *      Set up the name that will appear in 'ps'
806          *      stored in  task_struct.comm[16].
807          */
808         daemonize("aacraid");
809         allow_signal(SIGKILL);
810         /*
811          *      Let the DPC know it has a place to send the AIF's to.
812          */
813         dev->aif_thread = 1;
814         add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
815         set_current_state(TASK_INTERRUPTIBLE);
816         while(1) 
817         {
818                 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
819                 while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
820                         struct list_head *entry;
821                         struct aac_aifcmd * aifcmd;
822
823                         set_current_state(TASK_RUNNING);
824                 
825                         entry = queues->queue[HostNormCmdQueue].cmdq.next;
826                         list_del(entry);
827                         
828                         spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
829                         fib = list_entry(entry, struct fib, fiblink);
830                         /*
831                          *      We will process the FIB here or pass it to a 
832                          *      worker thread that is TBD. We Really can't 
833                          *      do anything at this point since we don't have
834                          *      anything defined for this thread to do.
835                          */
836                         hw_fib = fib->hw_fib;
837                         memset(fib, 0, sizeof(struct fib));
838                         fib->type = FSAFS_NTC_FIB_CONTEXT;
839                         fib->size = sizeof( struct fib );
840                         fib->hw_fib = hw_fib;
841                         fib->data = hw_fib->data;
842                         fib->dev = dev;
843                         /*
844                          *      We only handle AifRequest fibs from the adapter.
845                          */
846                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
847                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
848                                 /* Handle Driver Notify Events */
849                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
850                                 fib_adapter_complete(fib, (u16)sizeof(u32));
851                         } else {
852                                 struct list_head *entry;
853                                 /* The u32 here is important and intended. We are using
854                                    32bit wrapping time to fit the adapter field */
855                                    
856                                 u32 time_now, time_last;
857                                 unsigned long flagv;
858                                 
859                                 time_now = jiffies/HZ;
860
861                                 spin_lock_irqsave(&dev->fib_lock, flagv);
862                                 entry = dev->fib_list.next;
863                                 /*
864                                  * For each Context that is on the 
865                                  * fibctxList, make a copy of the
866                                  * fib, and then set the event to wake up the
867                                  * thread that is waiting for it.
868                                  */
869                                 while (entry != &dev->fib_list) {
870                                         /*
871                                          * Extract the fibctx
872                                          */
873                                         fibctx = list_entry(entry, struct aac_fib_context, next);
874                                         /*
875                                          * Check if the queue is getting
876                                          * backlogged
877                                          */
878                                         if (fibctx->count > 20)
879                                         {
880                                                 /*
881                                                  * It's *not* jiffies folks,
882                                                  * but jiffies / HZ so do not
883                                                  * panic ...
884                                                  */
885                                                 time_last = fibctx->jiffies;
886                                                 /*
887                                                  * Has it been > 2 minutes 
888                                                  * since the last read off
889                                                  * the queue?
890                                                  */
891                                                 if ((time_now - time_last) > 120) {
892                                                         entry = entry->next;
893                                                         aac_close_fib_context(dev, fibctx);
894                                                         continue;
895                                                 }
896                                         }
897                                         /*
898                                          * Warning: no sleep allowed while
899                                          * holding spinlock
900                                          */
901                                         hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
902                                         newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
903                                         if (newfib && hw_newfib) {
904                                                 /*
905                                                  * Make the copy of the FIB
906                                                  */
907                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
908                                                 memcpy(newfib, fib, sizeof(struct fib));
909                                                 newfib->hw_fib = hw_newfib;
910                                                 /*
911                                                  * Put the FIB onto the
912                                                  * fibctx's fibs
913                                                  */
914                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
915                                                 fibctx->count++;
916                                                 /* 
917                                                  * Set the event to wake up the
918                                                  * thread that will waiting.
919                                                  */
920                                                 up(&fibctx->wait_sem);
921                                         } else {
922                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
923                                                 if(newfib)
924                                                         kfree(newfib);
925                                                 if(hw_newfib)
926                                                         kfree(hw_newfib);
927                                         }
928                                         entry = entry->next;
929                                 }
930                                 /*
931                                  *      Set the status of this FIB
932                                  */
933                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
934                                 fib_adapter_complete(fib, sizeof(u32));
935                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
936                         }
937                         spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
938                         kfree(fib);
939                 }
940                 /*
941                  *      There are no more AIF's
942                  */
943                 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
944                 schedule();
945
946                 if(signal_pending(current))
947                         break;
948                 set_current_state(TASK_INTERRUPTIBLE);
949         }
950         remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
951         dev->aif_thread = 0;
952         complete_and_exit(&dev->aif_completion, 0);
953 }