2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: This supports the initialization of the host adapter commuication interface.
28 * This is a platform dependent module for the pci cyclone board.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/pci.h>
36 #include <linux/spinlock.h>
37 #include <linux/slab.h>
38 #include <linux/blkdev.h>
39 #include <linux/completion.h>
41 #include <scsi/scsi_host.h>
45 struct aac_common aac_config = {
49 static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
52 unsigned long size, align;
53 const unsigned long fibsize = 4096;
54 const unsigned long printfbufsiz = 256;
55 struct aac_init *init;
58 size = fibsize + sizeof(struct aac_init) + commsize + commalign + printfbufsiz;
61 base = pci_alloc_consistent(dev->pdev, size, &phys);
65 printk(KERN_ERR "aacraid: unable to create mapping.\n");
68 dev->comm_addr = (void *)base;
69 dev->comm_phys = phys;
70 dev->comm_size = size;
72 dev->init = (struct aac_init *)(base + fibsize);
73 dev->init_pa = phys + fibsize;
77 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
78 if (dev->max_fib_size != sizeof(struct hw_fib))
79 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4);
80 init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
81 init->fsrev = cpu_to_le32(dev->fsrev);
84 * Adapter Fibs are the first thing allocated so that they
87 dev->aif_base_va = (struct hw_fib *)base;
89 init->AdapterFibsVirtualAddress = 0;
90 init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
91 init->AdapterFibsSize = cpu_to_le32(fibsize);
92 init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
93 init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
96 if (dev->comm_interface == AAC_COMM_MESSAGE) {
97 init->InitFlags = cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED);
98 dprintk((KERN_WARNING"aacraid: New Comm Interface enabled\n"));
100 init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
101 init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9);
102 init->MaxFibSize = cpu_to_le32(dev->max_fib_size);
105 * Increment the base address by the amount already used
107 base = base + fibsize + sizeof(struct aac_init);
108 phys = (dma_addr_t)((ulong)phys + fibsize + sizeof(struct aac_init));
110 * Align the beginning of Headers to commalign
112 align = (commalign - ((uintptr_t)(base) & (commalign - 1)));
116 * Fill in addresses of the Comm Area Headers and Queues
119 init->CommHeaderAddress = cpu_to_le32((u32)phys);
121 * Increment the base address by the size of the CommArea
123 base = base + commsize;
124 phys = phys + commsize;
126 * Place the Printf buffer area after the Fast I/O comm area.
128 dev->printfbuf = (void *)base;
129 init->printfbuf = cpu_to_le32(phys);
130 init->printfbufsiz = cpu_to_le32(printfbufsiz);
131 memset(base, 0, printfbufsiz);
135 static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
139 init_waitqueue_head(&q->cmdready);
140 INIT_LIST_HEAD(&q->cmdq);
141 init_waitqueue_head(&q->qfull);
142 spin_lock_init(&q->lockdata);
143 q->lock = &q->lockdata;
144 q->headers.producer = (__le32 *)mem;
145 q->headers.consumer = (__le32 *)(mem+1);
146 *(q->headers.producer) = cpu_to_le32(qsize);
147 *(q->headers.consumer) = cpu_to_le32(qsize);
152 * aac_send_shutdown - shutdown an adapter
153 * @dev: Adapter to shutdown
155 * This routine will send a VM_CloseAll (shutdown) request to the adapter.
158 int aac_send_shutdown(struct aac_dev * dev)
161 struct aac_close *cmd;
164 fibctx = aac_fib_alloc(dev);
167 aac_fib_init(fibctx);
169 cmd = (struct aac_close *) fib_data(fibctx);
171 cmd->command = cpu_to_le32(VM_CloseAll);
172 cmd->cid = cpu_to_le32(0xffffffff);
174 status = aac_fib_send(ContainerCommand,
176 sizeof(struct aac_close),
178 -2 /* Timeout silently */, 1,
182 aac_fib_complete(fibctx);
183 aac_fib_free(fibctx);
188 * aac_comm_init - Initialise FSA data structures
189 * @dev: Adapter to initialise
191 * Initializes the data structures that are required for the FSA commuication
192 * interface to operate.
194 * 1 - if we were able to init the commuication interface.
195 * 0 - If there were errors initing. This is a fatal error.
198 static int aac_comm_init(struct aac_dev * dev)
200 unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
201 unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
203 struct aac_entry * queues;
205 struct aac_queue_block * comm = dev->queues;
207 * Now allocate and initialize the zone structures used as our
208 * pool of FIB context records. The size of the zone is based
209 * on the system memory size. We also initialize the mutex used
210 * to protect the zone.
212 spin_lock_init(&dev->fib_lock);
215 * Allocate the physically contigous space for the commuication
219 size = hdrsize + queuesize;
221 if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
224 queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
226 /* Adapter to Host normal priority Command queue */
227 comm->queue[HostNormCmdQueue].base = queues;
228 aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
229 queues += HOST_NORM_CMD_ENTRIES;
232 /* Adapter to Host high priority command queue */
233 comm->queue[HostHighCmdQueue].base = queues;
234 aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
236 queues += HOST_HIGH_CMD_ENTRIES;
239 /* Host to adapter normal priority command queue */
240 comm->queue[AdapNormCmdQueue].base = queues;
241 aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
243 queues += ADAP_NORM_CMD_ENTRIES;
246 /* host to adapter high priority command queue */
247 comm->queue[AdapHighCmdQueue].base = queues;
248 aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
250 queues += ADAP_HIGH_CMD_ENTRIES;
253 /* adapter to host normal priority response queue */
254 comm->queue[HostNormRespQueue].base = queues;
255 aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
256 queues += HOST_NORM_RESP_ENTRIES;
259 /* adapter to host high priority response queue */
260 comm->queue[HostHighRespQueue].base = queues;
261 aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
263 queues += HOST_HIGH_RESP_ENTRIES;
266 /* host to adapter normal priority response queue */
267 comm->queue[AdapNormRespQueue].base = queues;
268 aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
270 queues += ADAP_NORM_RESP_ENTRIES;
273 /* host to adapter high priority response queue */
274 comm->queue[AdapHighRespQueue].base = queues;
275 aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
277 comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
278 comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
279 comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
280 comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
285 struct aac_dev *aac_init_adapter(struct aac_dev *dev)
288 struct Scsi_Host * host = dev->scsi_host_ptr;
291 * Check the preferred comm settings, defaults from template.
293 dev->max_fib_size = sizeof(struct hw_fib);
294 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
295 - sizeof(struct aac_fibhdr)
296 - sizeof(struct aac_write) + sizeof(struct sgentry))
297 / sizeof(struct sgentry);
298 dev->comm_interface = AAC_COMM_PRODUCER;
300 if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
301 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
302 (status[0] == 0x00000001)) {
303 if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_64))
305 if (dev->a_ops.adapter_comm &&
306 (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM)))
307 dev->comm_interface = AAC_COMM_MESSAGE;
308 if ((dev->comm_interface == AAC_COMM_MESSAGE) &&
309 (status[2] > dev->base_size)) {
310 aac_adapter_ioremap(dev, 0);
311 dev->base_size = status[2];
312 if (aac_adapter_ioremap(dev, status[2])) {
313 /* remap failed, go back ... */
314 dev->comm_interface = AAC_COMM_PRODUCER;
315 if (aac_adapter_ioremap(dev, AAC_MIN_FOOTPRINT_SIZE)) {
317 "aacraid: unable to map adapter.\n");
323 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
325 status+0, status+1, status+2, status+3, status+4))
326 && (status[0] == 0x00000001)) {
328 * status[1] >> 16 maximum command size in KB
329 * status[1] & 0xFFFF maximum FIB size
330 * status[2] >> 16 maximum SG elements to driver
331 * status[2] & 0xFFFF maximum SG elements from driver
332 * status[3] & 0xFFFF maximum number FIBs outstanding
334 host->max_sectors = (status[1] >> 16) << 1;
335 dev->max_fib_size = status[1] & 0xFFFF;
336 host->sg_tablesize = status[2] >> 16;
337 dev->sg_tablesize = status[2] & 0xFFFF;
338 host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB;
341 * All these overrides are based on a fixed internal
342 * knowledge and understanding of existing adapters,
343 * acbsize should be set with caution.
345 if (acbsize == 512) {
346 host->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
347 dev->max_fib_size = 512;
348 dev->sg_tablesize = host->sg_tablesize
349 = (512 - sizeof(struct aac_fibhdr)
350 - sizeof(struct aac_write) + sizeof(struct sgentry))
351 / sizeof(struct sgentry);
352 host->can_queue = AAC_NUM_IO_FIB;
353 } else if (acbsize == 2048) {
354 host->max_sectors = 512;
355 dev->max_fib_size = 2048;
356 host->sg_tablesize = 65;
357 dev->sg_tablesize = 81;
358 host->can_queue = 512 - AAC_NUM_MGT_FIB;
359 } else if (acbsize == 4096) {
360 host->max_sectors = 1024;
361 dev->max_fib_size = 4096;
362 host->sg_tablesize = 129;
363 dev->sg_tablesize = 166;
364 host->can_queue = 256 - AAC_NUM_MGT_FIB;
365 } else if (acbsize == 8192) {
366 host->max_sectors = 2048;
367 dev->max_fib_size = 8192;
368 host->sg_tablesize = 257;
369 dev->sg_tablesize = 337;
370 host->can_queue = 128 - AAC_NUM_MGT_FIB;
371 } else if (acbsize > 0) {
372 printk("Illegal acbsize=%d ignored\n", acbsize);
378 if (numacb < host->can_queue)
379 host->can_queue = numacb;
381 printk("numacb=%d ignored\n", numacb);
386 * Ok now init the communication subsystem
389 dev->queues = kzalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
390 if (dev->queues == NULL) {
391 printk(KERN_ERR "Error could not allocate comm region.\n");
395 if (aac_comm_init(dev)<0){
400 * Initialize the list of fibs
402 if (aac_fib_setup(dev) < 0) {
407 INIT_LIST_HEAD(&dev->fib_list);