2 * "RTT as Real Time Clock" driver for AT91SAM9 SoC family
4 * (C) 2007 Michel Benoit
6 * Based on rtc-at91rm9200.c by Rick Bronson
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/time.h>
18 #include <linux/rtc.h>
19 #include <linux/interrupt.h>
20 #include <linux/ioctl.h>
22 #include <asm/arch/board.h>
23 #include <asm/arch/at91_rtt.h>
27 * This driver uses two configurable hardware resources that live in the
28 * AT91SAM9 backup power domain (intended to be powered at all times)
29 * to implement the Real Time Clock interfaces
31 * - A "Real-time Timer" (RTT) counts up in seconds from a base time.
32 * We can't assign the counter value (CRTV) ... but we can reset it.
34 * - One of the "General Purpose Backup Registers" (GPBRs) holds the
35 * base time, normally an offset from the beginning of the POSIX
36 * epoch (1970-Jan-1 00:00:00 UTC). Some systems also include the
37 * local timezone's offset.
39 * The RTC's value is the RTT counter plus that offset. The RTC's alarm
40 * is likewise a base (ALMV) plus that offset.
42 * Not all RTTs will be used as RTCs; some systems have multiple RTTs to
43 * choose from, or a "real" RTC module. All systems have multiple GPBR
44 * registers available, likewise usable for more than "RTC" support.
48 * We store ALARM_DISABLED in ALMV to record that no alarm is set.
49 * It's also the reset value for that field.
51 #define ALARM_DISABLED ((u32)~0)
56 struct rtc_device *rtcdev;
60 #define rtt_readl(rtc, field) \
61 __raw_readl((rtc)->rtt + AT91_RTT_ ## field)
62 #define rtt_writel(rtc, field, val) \
63 __raw_writel((val), (rtc)->rtt + AT91_RTT_ ## field)
65 #define gpbr_readl(rtc) \
66 at91_sys_read(AT91_GPBR + 4 * CONFIG_RTC_DRV_AT91SAM9_GPBR)
67 #define gpbr_writel(rtc, val) \
68 at91_sys_write(AT91_GPBR + 4 * CONFIG_RTC_DRV_AT91SAM9_GPBR, (val))
71 * Read current time and date in RTC
73 static int at91_rtc_readtime(struct device *dev, struct rtc_time *tm)
75 struct sam9_rtc *rtc = dev_get_drvdata(dev);
79 /* read current time offset */
80 offset = gpbr_readl(rtc);
84 /* reread the counter to help sync the two clock domains */
85 secs = rtt_readl(rtc, VR);
86 secs2 = rtt_readl(rtc, VR);
88 secs = rtt_readl(rtc, VR);
90 rtc_time_to_tm(offset + secs, tm);
92 dev_dbg(dev, "%s: %4d-%02d-%02d %02d:%02d:%02d\n", "readtime",
93 1900 + tm->tm_year, tm->tm_mon, tm->tm_mday,
94 tm->tm_hour, tm->tm_min, tm->tm_sec);
100 * Set current time and date in RTC
102 static int at91_rtc_settime(struct device *dev, struct rtc_time *tm)
104 struct sam9_rtc *rtc = dev_get_drvdata(dev);
106 u32 offset, alarm, mr;
109 dev_dbg(dev, "%s: %4d-%02d-%02d %02d:%02d:%02d\n", "settime",
110 1900 + tm->tm_year, tm->tm_mon, tm->tm_mday,
111 tm->tm_hour, tm->tm_min, tm->tm_sec);
113 err = rtc_tm_to_time(tm, &secs);
117 mr = rtt_readl(rtc, MR);
119 /* disable interrupts */
120 rtt_writel(rtc, MR, mr & ~(AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN));
122 /* read current time offset */
123 offset = gpbr_readl(rtc);
125 /* store the new base time in a battery backup register */
127 gpbr_writel(rtc, secs);
129 /* adjust the alarm time for the new base */
130 alarm = rtt_readl(rtc, AR);
131 if (alarm != ALARM_DISABLED) {
133 /* time jumped backwards, increase time until alarm */
134 alarm += (offset - secs);
135 } else if ((alarm + offset) > secs) {
136 /* time jumped forwards, decrease time until alarm */
137 alarm -= (secs - offset);
139 /* time jumped past the alarm, disable alarm */
140 alarm = ALARM_DISABLED;
141 mr &= ~AT91_RTT_ALMIEN;
143 rtt_writel(rtc, AR, alarm);
146 /* reset the timer, and re-enable interrupts */
147 rtt_writel(rtc, MR, mr | AT91_RTT_RTTRST);
152 static int at91_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
154 struct sam9_rtc *rtc = dev_get_drvdata(dev);
155 struct rtc_time *tm = &alrm->time;
156 u32 alarm = rtt_readl(rtc, AR);
159 offset = gpbr_readl(rtc);
163 memset(alrm, 0, sizeof(alrm));
164 if (alarm != ALARM_DISABLED && offset != 0) {
165 rtc_time_to_tm(offset + alarm, tm);
167 dev_dbg(dev, "%s: %4d-%02d-%02d %02d:%02d:%02d\n", "readalarm",
168 1900 + tm->tm_year, tm->tm_mon, tm->tm_mday,
169 tm->tm_hour, tm->tm_min, tm->tm_sec);
171 if (rtt_readl(rtc, MR) & AT91_RTT_ALMIEN)
178 static int at91_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
180 struct sam9_rtc *rtc = dev_get_drvdata(dev);
181 struct rtc_time *tm = &alrm->time;
187 err = rtc_tm_to_time(tm, &secs);
191 offset = gpbr_readl(rtc);
193 /* time is not set */
196 mr = rtt_readl(rtc, MR);
197 rtt_writel(rtc, MR, mr & ~AT91_RTT_ALMIEN);
199 /* alarm in the past? finish and leave disabled */
200 if (secs <= offset) {
201 rtt_writel(rtc, AR, ALARM_DISABLED);
205 /* else set alarm and maybe enable it */
206 rtt_writel(rtc, AR, secs - offset);
208 rtt_writel(rtc, MR, mr | AT91_RTT_ALMIEN);
210 dev_dbg(dev, "%s: %4d-%02d-%02d %02d:%02d:%02d\n", "setalarm",
211 tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_hour,
212 tm->tm_min, tm->tm_sec);
218 * Handle commands from user-space
220 static int at91_rtc_ioctl(struct device *dev, unsigned int cmd,
223 struct sam9_rtc *rtc = dev_get_drvdata(dev);
225 u32 mr = rtt_readl(rtc, MR);
227 dev_dbg(dev, "ioctl: cmd=%08x, arg=%08lx, mr %08x\n", cmd, arg, mr);
230 case RTC_AIE_OFF: /* alarm off */
231 rtt_writel(rtc, MR, mr & ~AT91_RTT_ALMIEN);
233 case RTC_AIE_ON: /* alarm on */
234 rtt_writel(rtc, MR, mr | AT91_RTT_ALMIEN);
236 case RTC_UIE_OFF: /* update off */
237 rtt_writel(rtc, MR, mr & ~AT91_RTT_RTTINCIEN);
239 case RTC_UIE_ON: /* update on */
240 rtt_writel(rtc, MR, mr | AT91_RTT_RTTINCIEN);
251 * Provide additional RTC information in /proc/driver/rtc
253 static int at91_rtc_proc(struct device *dev, struct seq_file *seq)
255 struct sam9_rtc *rtc = dev_get_drvdata(dev);
256 u32 mr = mr = rtt_readl(rtc, MR);
258 seq_printf(seq, "update_IRQ\t: %s\n",
259 (mr & AT91_RTT_RTTINCIEN) ? "yes" : "no");
264 * IRQ handler for the RTC
266 static irqreturn_t at91_rtc_interrupt(int irq, void *_rtc)
268 struct sam9_rtc *rtc = _rtc;
270 unsigned long events = 0;
272 /* Shared interrupt may be for another device. Note: reading
273 * SR clears it, so we must only read it in this irq handler!
275 mr = rtt_readl(rtc, MR) & (AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN);
276 sr = rtt_readl(rtc, SR) & (mr >> 16);
281 if (sr & AT91_RTT_ALMS)
282 events |= (RTC_AF | RTC_IRQF);
284 /* timer update/increment */
285 if (sr & AT91_RTT_RTTINC)
286 events |= (RTC_UF | RTC_IRQF);
288 rtc_update_irq(rtc->rtcdev, 1, events);
290 pr_debug("%s: num=%ld, events=0x%02lx\n", __func__,
291 events >> 8, events & 0x000000FF);
296 static const struct rtc_class_ops at91_rtc_ops = {
297 .ioctl = at91_rtc_ioctl,
298 .read_time = at91_rtc_readtime,
299 .set_time = at91_rtc_settime,
300 .read_alarm = at91_rtc_readalarm,
301 .set_alarm = at91_rtc_setalarm,
302 .proc = at91_rtc_proc,
306 * Initialize and install RTC driver
308 static int __init at91_rtc_probe(struct platform_device *pdev)
311 struct sam9_rtc *rtc;
315 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
319 rtc = kzalloc(sizeof *rtc, GFP_KERNEL);
323 /* platform setup code should have handled this; sigh */
324 if (!device_can_wakeup(&pdev->dev))
325 device_init_wakeup(&pdev->dev, 1);
327 platform_set_drvdata(pdev, rtc);
328 rtc->rtt = (void __force __iomem *) (AT91_VA_BASE_SYS - AT91_BASE_SYS);
329 rtc->rtt += r->start;
331 mr = rtt_readl(rtc, MR);
333 /* unless RTT is counting at 1 Hz, re-initialize it */
334 if ((mr & AT91_RTT_RTPRES) != AT91_SLOW_CLOCK) {
335 mr = AT91_RTT_RTTRST | (AT91_SLOW_CLOCK & AT91_RTT_RTPRES);
339 /* disable all interrupts (same as on shutdown path) */
340 mr &= ~(AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN);
341 rtt_writel(rtc, MR, mr);
343 rtc->rtcdev = rtc_device_register(pdev->name, &pdev->dev,
344 &at91_rtc_ops, THIS_MODULE);
345 if (IS_ERR(rtc->rtcdev)) {
346 ret = PTR_ERR(rtc->rtcdev);
350 /* register irq handler after we know what name we'll use */
351 ret = request_irq(AT91_ID_SYS, at91_rtc_interrupt,
352 IRQF_DISABLED | IRQF_SHARED,
353 rtc->rtcdev->dev.bus_id, rtc);
355 dev_dbg(&pdev->dev, "can't share IRQ %d?\n", AT91_ID_SYS);
356 rtc_device_unregister(rtc->rtcdev);
360 /* NOTE: sam9260 rev A silicon has a ROM bug which resets the
361 * RTT on at least some reboots. If you have that chip, you must
362 * initialize the time from some external source like a GPS, wall
363 * clock, discrete RTC, etc
366 if (gpbr_readl(rtc) == 0)
367 dev_warn(&pdev->dev, "%s: SET TIME!\n",
368 rtc->rtcdev->dev.bus_id);
373 platform_set_drvdata(pdev, NULL);
379 * Disable and remove the RTC driver
381 static int __exit at91_rtc_remove(struct platform_device *pdev)
383 struct sam9_rtc *rtc = platform_get_drvdata(pdev);
384 u32 mr = rtt_readl(rtc, MR);
386 /* disable all interrupts */
387 rtt_writel(rtc, MR, mr & ~(AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN));
388 free_irq(AT91_ID_SYS, rtc);
390 rtc_device_unregister(rtc->rtcdev);
392 platform_set_drvdata(pdev, NULL);
397 static void at91_rtc_shutdown(struct platform_device *pdev)
399 struct sam9_rtc *rtc = platform_get_drvdata(pdev);
400 u32 mr = rtt_readl(rtc, MR);
402 rtc->imr = mr & (AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN);
403 rtt_writel(rtc, MR, mr & ~rtc->imr);
408 /* AT91SAM9 RTC Power management control */
410 static int at91_rtc_suspend(struct platform_device *pdev,
413 struct sam9_rtc *rtc = platform_get_drvdata(pdev);
414 u32 mr = rtt_readl(rtc, MR);
417 * This IRQ is shared with DBGU and other hardware which isn't
418 * necessarily a wakeup event source.
420 rtc->imr = mr & (AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN);
422 if (device_may_wakeup(&pdev->dev) && (mr & AT91_RTT_ALMIEN)) {
423 enable_irq_wake(AT91_ID_SYS);
424 /* don't let RTTINC cause wakeups */
425 if (mr & AT91_RTT_RTTINCIEN)
426 rtt_writel(rtc, MR, mr & ~AT91_RTT_RTTINCIEN);
428 rtt_writel(rtc, MR, mr & ~rtc->imr);
434 static int at91_rtc_resume(struct platform_device *pdev)
436 struct sam9_rtc *rtc = platform_get_drvdata(pdev);
440 if (device_may_wakeup(&pdev->dev))
441 disable_irq_wake(AT91_ID_SYS);
442 mr = rtt_readl(rtc, MR);
443 rtt_writel(rtc, MR, mr | rtc->imr);
449 #define at91_rtc_suspend NULL
450 #define at91_rtc_resume NULL
453 static struct platform_driver at91_rtc_driver = {
454 .driver.name = "rtc-at91sam9",
455 .driver.owner = THIS_MODULE,
456 .remove = __exit_p(at91_rtc_remove),
457 .shutdown = at91_rtc_shutdown,
458 .suspend = at91_rtc_suspend,
459 .resume = at91_rtc_resume,
462 /* Chips can have more than one RTT module, and they can be used for more
463 * than just RTCs. So we can't just register as "the" RTT driver.
465 * A normal approach in such cases is to create a library to allocate and
466 * free the modules. Here we just use bus_find_device() as like such a
467 * library, binding directly ... no runtime "library" footprint is needed.
469 static int __init at91_rtc_match(struct device *dev, void *v)
471 struct platform_device *pdev = to_platform_device(dev);
474 /* continue searching if this isn't the RTT we need */
475 if (strcmp("at91_rtt", pdev->name) != 0
476 || pdev->id != CONFIG_RTC_DRV_AT91SAM9_RTT)
479 /* else we found it ... but fail unless we can bind to the RTC driver */
481 dev_dbg(dev, "busy, can't use as RTC!\n");
484 dev->driver = &at91_rtc_driver.driver;
485 if (device_attach(dev) == 0) {
486 dev_dbg(dev, "can't attach RTC!\n");
489 ret = at91_rtc_probe(pdev);
493 dev_dbg(dev, "RTC probe err %d!\n", ret);
498 static int __init at91_rtc_init(void)
503 status = platform_driver_register(&at91_rtc_driver);
506 rtc = bus_find_device(&platform_bus_type, NULL,
507 NULL, at91_rtc_match);
509 platform_driver_unregister(&at91_rtc_driver);
510 return rtc ? 0 : -ENODEV;
512 module_init(at91_rtc_init);
514 static void __exit at91_rtc_exit(void)
516 platform_driver_unregister(&at91_rtc_driver);
518 module_exit(at91_rtc_exit);
521 MODULE_AUTHOR("Michel Benoit");
522 MODULE_DESCRIPTION("RTC driver for Atmel AT91SAM9x");
523 MODULE_LICENSE("GPL");