2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
37 #include "rt2x00pci.h"
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
51 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
56 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
57 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, ®);
58 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
60 udelay(REGISTER_BUSY_DELAY);
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
72 * Wait until the BBP becomes ready.
74 reg = rt61pci_bbp_check(rt2x00dev);
75 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
76 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
81 * Write the data into the BBP.
84 rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
85 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
86 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
87 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
89 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
92 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
93 const unsigned int word, u8 *value)
98 * Wait until the BBP becomes ready.
100 reg = rt61pci_bbp_check(rt2x00dev);
101 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
102 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
107 * Write the request into the BBP.
110 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
111 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
112 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
114 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
117 * Wait until the BBP becomes ready.
119 reg = rt61pci_bbp_check(rt2x00dev);
120 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
121 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
126 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
129 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
130 const unsigned int word, const u32 value)
138 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
139 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, ®);
140 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
142 udelay(REGISTER_BUSY_DELAY);
145 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
150 rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
151 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21);
152 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
153 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
155 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
156 rt2x00_rf_write(rt2x00dev, word, value);
159 #ifdef CONFIG_RT61PCI_LEDS
161 * This function is only called from rt61pci_led_brightness()
162 * make gcc happy by placing this function inside the
163 * same ifdef statement as the caller.
165 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
166 const u8 command, const u8 token,
167 const u8 arg0, const u8 arg1)
171 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, ®);
173 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
174 ERROR(rt2x00dev, "mcu request error. "
175 "Request 0x%02x failed for token 0x%02x.\n",
180 rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
181 rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
182 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
183 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
184 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
186 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®);
187 rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
188 rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1);
189 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
191 #endif /* CONFIG_RT61PCI_LEDS */
193 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
198 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
200 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
201 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
202 eeprom->reg_data_clock =
203 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
204 eeprom->reg_chip_select =
205 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
208 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
210 struct rt2x00_dev *rt2x00dev = eeprom->data;
213 rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
214 rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
215 rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
216 !!eeprom->reg_data_clock);
217 rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
218 !!eeprom->reg_chip_select);
220 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
223 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
224 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
226 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
227 const unsigned int word, u32 *data)
229 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
232 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
233 const unsigned int word, u32 data)
235 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
238 static const struct rt2x00debug rt61pci_rt2x00debug = {
239 .owner = THIS_MODULE,
241 .read = rt61pci_read_csr,
242 .write = rt61pci_write_csr,
243 .word_size = sizeof(u32),
244 .word_count = CSR_REG_SIZE / sizeof(u32),
247 .read = rt2x00_eeprom_read,
248 .write = rt2x00_eeprom_write,
249 .word_size = sizeof(u16),
250 .word_count = EEPROM_SIZE / sizeof(u16),
253 .read = rt61pci_bbp_read,
254 .write = rt61pci_bbp_write,
255 .word_size = sizeof(u8),
256 .word_count = BBP_SIZE / sizeof(u8),
259 .read = rt2x00_rf_read,
260 .write = rt61pci_rf_write,
261 .word_size = sizeof(u32),
262 .word_count = RF_SIZE / sizeof(u32),
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
267 #ifdef CONFIG_RT61PCI_RFKILL
268 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
272 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
273 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
276 #define rt61pci_rfkill_poll NULL
277 #endif /* CONFIG_RT61PCI_RFKILL */
279 #ifdef CONFIG_RT61PCI_LEDS
280 static void rt61pci_led_brightness(struct led_classdev *led_cdev,
281 enum led_brightness brightness)
283 struct rt2x00_led *led =
284 container_of(led_cdev, struct rt2x00_led, led_dev);
285 unsigned int enabled = brightness != LED_OFF;
286 unsigned int a_mode =
287 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
288 unsigned int bg_mode =
289 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
291 if (led->type == LED_TYPE_RADIO) {
292 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
293 MCU_LEDCS_RADIO_STATUS, enabled);
295 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
296 (led->rt2x00dev->led_mcu_reg & 0xff),
297 ((led->rt2x00dev->led_mcu_reg >> 8)));
298 } else if (led->type == LED_TYPE_ASSOC) {
299 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
301 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
302 MCU_LEDCS_LINK_A_STATUS, a_mode);
304 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
305 (led->rt2x00dev->led_mcu_reg & 0xff),
306 ((led->rt2x00dev->led_mcu_reg >> 8)));
307 } else if (led->type == LED_TYPE_QUALITY) {
309 * The brightness is divided into 6 levels (0 - 5),
310 * this means we need to convert the brightness
311 * argument into the matching level within that range.
313 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
314 brightness / (LED_FULL / 6), 0);
318 #define rt61pci_led_brightness NULL
319 #endif /* CONFIG_RT61PCI_LEDS */
322 * Configuration handlers.
324 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
325 const unsigned int filter_flags)
330 * Start configuration steps.
331 * Note that the version error will always be dropped
332 * and broadcast frames will always be accepted since
333 * there is no filter for it at this time.
335 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
336 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
337 !(filter_flags & FIF_FCSFAIL));
338 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
339 !(filter_flags & FIF_PLCPFAIL));
340 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
341 !(filter_flags & FIF_CONTROL));
342 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
343 !(filter_flags & FIF_PROMISC_IN_BSS));
344 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
345 !(filter_flags & FIF_PROMISC_IN_BSS) &&
346 !rt2x00dev->intf_ap_count);
347 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
348 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
349 !(filter_flags & FIF_ALLMULTI));
350 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
351 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
352 !(filter_flags & FIF_CONTROL));
353 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
356 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
357 struct rt2x00_intf *intf,
358 struct rt2x00intf_conf *conf,
359 const unsigned int flags)
361 unsigned int beacon_base;
364 if (flags & CONFIG_UPDATE_TYPE) {
366 * Clear current synchronisation setup.
367 * For the Beacon base registers we only need to clear
368 * the first byte since that byte contains the VALID and OWNER
369 * bits which (when set to 0) will invalidate the entire beacon.
371 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
372 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
375 * Enable synchronisation.
377 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
378 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
379 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
380 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
381 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
384 if (flags & CONFIG_UPDATE_MAC) {
385 reg = le32_to_cpu(conf->mac[1]);
386 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
387 conf->mac[1] = cpu_to_le32(reg);
389 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
390 conf->mac, sizeof(conf->mac));
393 if (flags & CONFIG_UPDATE_BSSID) {
394 reg = le32_to_cpu(conf->bssid[1]);
395 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
396 conf->bssid[1] = cpu_to_le32(reg);
398 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
399 conf->bssid, sizeof(conf->bssid));
403 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
404 struct rt2x00lib_erp *erp)
408 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
409 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
410 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
412 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
413 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
414 !!erp->short_preamble);
415 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
418 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
419 const int basic_rate_mask)
421 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
424 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
425 struct rf_channel *rf, const int txpower)
431 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
432 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
434 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
435 rt2x00_rf(&rt2x00dev->chip, RF2527));
437 rt61pci_bbp_read(rt2x00dev, 3, &r3);
438 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
439 rt61pci_bbp_write(rt2x00dev, 3, r3);
442 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
443 r94 += txpower - MAX_TXPOWER;
444 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
446 rt61pci_bbp_write(rt2x00dev, 94, r94);
448 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
449 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
450 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
451 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
455 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
456 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
457 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
458 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
462 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
463 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
464 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
465 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
470 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
473 struct rf_channel rf;
475 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
476 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
477 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
478 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
480 rt61pci_config_channel(rt2x00dev, &rf, txpower);
483 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
484 struct antenna_setup *ant)
490 rt61pci_bbp_read(rt2x00dev, 3, &r3);
491 rt61pci_bbp_read(rt2x00dev, 4, &r4);
492 rt61pci_bbp_read(rt2x00dev, 77, &r77);
494 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
495 rt2x00_rf(&rt2x00dev->chip, RF5325));
498 * Configure the RX antenna.
501 case ANTENNA_HW_DIVERSITY:
502 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
503 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
504 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
507 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
508 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
509 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
510 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
512 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
516 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
517 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
518 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
519 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
521 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
525 rt61pci_bbp_write(rt2x00dev, 77, r77);
526 rt61pci_bbp_write(rt2x00dev, 3, r3);
527 rt61pci_bbp_write(rt2x00dev, 4, r4);
530 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
531 struct antenna_setup *ant)
537 rt61pci_bbp_read(rt2x00dev, 3, &r3);
538 rt61pci_bbp_read(rt2x00dev, 4, &r4);
539 rt61pci_bbp_read(rt2x00dev, 77, &r77);
541 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
542 rt2x00_rf(&rt2x00dev->chip, RF2529));
543 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
544 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
547 * Configure the RX antenna.
550 case ANTENNA_HW_DIVERSITY:
551 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
554 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
555 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
559 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
560 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
564 rt61pci_bbp_write(rt2x00dev, 77, r77);
565 rt61pci_bbp_write(rt2x00dev, 3, r3);
566 rt61pci_bbp_write(rt2x00dev, 4, r4);
569 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
570 const int p1, const int p2)
574 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
576 rt2x00_set_field32(®, MAC_CSR13_BIT4, p1);
577 rt2x00_set_field32(®, MAC_CSR13_BIT12, 0);
579 rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2);
580 rt2x00_set_field32(®, MAC_CSR13_BIT11, 0);
582 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
585 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
586 struct antenna_setup *ant)
592 rt61pci_bbp_read(rt2x00dev, 3, &r3);
593 rt61pci_bbp_read(rt2x00dev, 4, &r4);
594 rt61pci_bbp_read(rt2x00dev, 77, &r77);
597 * Configure the RX antenna.
601 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
602 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
603 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
605 case ANTENNA_HW_DIVERSITY:
607 * FIXME: Antenna selection for the rf 2529 is very confusing
608 * in the legacy driver. Just default to antenna B until the
609 * legacy code can be properly translated into rt2x00 code.
613 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
614 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
615 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
619 rt61pci_bbp_write(rt2x00dev, 77, r77);
620 rt61pci_bbp_write(rt2x00dev, 3, r3);
621 rt61pci_bbp_write(rt2x00dev, 4, r4);
627 * value[0] -> non-LNA
633 static const struct antenna_sel antenna_sel_a[] = {
634 { 96, { 0x58, 0x78 } },
635 { 104, { 0x38, 0x48 } },
636 { 75, { 0xfe, 0x80 } },
637 { 86, { 0xfe, 0x80 } },
638 { 88, { 0xfe, 0x80 } },
639 { 35, { 0x60, 0x60 } },
640 { 97, { 0x58, 0x58 } },
641 { 98, { 0x58, 0x58 } },
644 static const struct antenna_sel antenna_sel_bg[] = {
645 { 96, { 0x48, 0x68 } },
646 { 104, { 0x2c, 0x3c } },
647 { 75, { 0xfe, 0x80 } },
648 { 86, { 0xfe, 0x80 } },
649 { 88, { 0xfe, 0x80 } },
650 { 35, { 0x50, 0x50 } },
651 { 97, { 0x48, 0x48 } },
652 { 98, { 0x48, 0x48 } },
655 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
656 struct antenna_setup *ant)
658 const struct antenna_sel *sel;
664 * We should never come here because rt2x00lib is supposed
665 * to catch this and send us the correct antenna explicitely.
667 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
668 ant->tx == ANTENNA_SW_DIVERSITY);
670 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
672 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
674 sel = antenna_sel_bg;
675 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
678 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
679 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
681 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®);
683 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
684 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
685 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
686 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
688 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
690 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
691 rt2x00_rf(&rt2x00dev->chip, RF5325))
692 rt61pci_config_antenna_5x(rt2x00dev, ant);
693 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
694 rt61pci_config_antenna_2x(rt2x00dev, ant);
695 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
696 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
697 rt61pci_config_antenna_2x(rt2x00dev, ant);
699 rt61pci_config_antenna_2529(rt2x00dev, ant);
703 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
704 struct rt2x00lib_conf *libconf)
708 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
709 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, libconf->slot_time);
710 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
712 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®);
713 rt2x00_set_field32(®, MAC_CSR8_SIFS, libconf->sifs);
714 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
715 rt2x00_set_field32(®, MAC_CSR8_EIFS, libconf->eifs);
716 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
718 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
719 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
720 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
722 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
723 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
724 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
726 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
727 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
728 libconf->conf->beacon_int * 16);
729 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
732 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
733 struct rt2x00lib_conf *libconf,
734 const unsigned int flags)
736 if (flags & CONFIG_UPDATE_PHYMODE)
737 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
738 if (flags & CONFIG_UPDATE_CHANNEL)
739 rt61pci_config_channel(rt2x00dev, &libconf->rf,
740 libconf->conf->power_level);
741 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
742 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
743 if (flags & CONFIG_UPDATE_ANTENNA)
744 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
745 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
746 rt61pci_config_duration(rt2x00dev, libconf);
752 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
753 struct link_qual *qual)
758 * Update FCS error count from register.
760 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
761 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
764 * Update False CCA count from register.
766 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
767 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
770 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
772 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
773 rt2x00dev->link.vgc_level = 0x20;
776 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
778 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
783 rt61pci_bbp_read(rt2x00dev, 17, &r17);
786 * Determine r17 bounds.
788 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
791 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
798 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
805 * If we are not associated, we should go straight to the
806 * dynamic CCA tuning.
808 if (!rt2x00dev->intf_associated)
809 goto dynamic_cca_tune;
812 * Special big-R17 for very short distance
816 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
821 * Special big-R17 for short distance
825 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
830 * Special big-R17 for middle-short distance
834 if (r17 != low_bound)
835 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
840 * Special mid-R17 for middle distance
844 if (r17 != low_bound)
845 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
850 * Special case: Change up_bound based on the rssi.
851 * Lower up_bound when rssi is weaker then -74 dBm.
853 up_bound -= 2 * (-74 - rssi);
854 if (low_bound > up_bound)
855 up_bound = low_bound;
857 if (r17 > up_bound) {
858 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
865 * r17 does not yet exceed upper limit, continue and base
866 * the r17 tuning on the false CCA count.
868 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
869 if (++r17 > up_bound)
871 rt61pci_bbp_write(rt2x00dev, 17, r17);
872 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
873 if (--r17 < low_bound)
875 rt61pci_bbp_write(rt2x00dev, 17, r17);
882 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
886 switch (rt2x00dev->chip.rt) {
888 fw_name = FIRMWARE_RT2561;
891 fw_name = FIRMWARE_RT2561s;
894 fw_name = FIRMWARE_RT2661;
904 static u16 rt61pci_get_firmware_crc(void *data, const size_t len)
909 * Use the crc itu-t algorithm.
910 * The last 2 bytes in the firmware array are the crc checksum itself,
911 * this means that we should never pass those 2 bytes to the crc
914 crc = crc_itu_t(0, data, len - 2);
915 crc = crc_itu_t_byte(crc, 0);
916 crc = crc_itu_t_byte(crc, 0);
921 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
928 * Wait for stable hardware.
930 for (i = 0; i < 100; i++) {
931 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
938 ERROR(rt2x00dev, "Unstable hardware.\n");
943 * Prepare MCU and mailbox for firmware loading.
946 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
947 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
948 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
949 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
950 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
953 * Write firmware to device.
956 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
957 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1);
958 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
960 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
963 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0);
964 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
966 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0);
967 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
969 for (i = 0; i < 100; i++) {
970 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®);
971 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
977 ERROR(rt2x00dev, "MCU Control register not ready.\n");
982 * Reset MAC and BBP registers.
985 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
986 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
987 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
989 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
990 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
991 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
992 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
994 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
995 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
996 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1002 * Initialization functions.
1004 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1005 struct queue_entry *entry)
1007 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1010 rt2x00_desc_read(priv_rx->desc, 5, &word);
1011 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1013 rt2x00_desc_write(priv_rx->desc, 5, word);
1015 rt2x00_desc_read(priv_rx->desc, 0, &word);
1016 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1017 rt2x00_desc_write(priv_rx->desc, 0, word);
1020 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1021 struct queue_entry *entry)
1023 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
1026 rt2x00_desc_read(priv_tx->desc, 1, &word);
1027 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1028 rt2x00_desc_write(priv_tx->desc, 1, word);
1030 rt2x00_desc_read(priv_tx->desc, 5, &word);
1031 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1032 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1033 rt2x00_desc_write(priv_tx->desc, 5, word);
1035 rt2x00_desc_read(priv_tx->desc, 6, &word);
1036 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1038 rt2x00_desc_write(priv_tx->desc, 6, word);
1040 rt2x00_desc_read(priv_tx->desc, 0, &word);
1041 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1042 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1043 rt2x00_desc_write(priv_tx->desc, 0, word);
1046 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1048 struct queue_entry_priv_pci_rx *priv_rx;
1049 struct queue_entry_priv_pci_tx *priv_tx;
1053 * Initialize registers.
1055 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®);
1056 rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE,
1057 rt2x00dev->tx[0].limit);
1058 rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE,
1059 rt2x00dev->tx[1].limit);
1060 rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE,
1061 rt2x00dev->tx[2].limit);
1062 rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE,
1063 rt2x00dev->tx[3].limit);
1064 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1066 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®);
1067 rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE,
1068 rt2x00dev->tx[0].desc_size / 4);
1069 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1071 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
1072 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®);
1073 rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER,
1075 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1077 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
1078 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®);
1079 rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER,
1081 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1083 priv_tx = rt2x00dev->tx[2].entries[0].priv_data;
1084 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®);
1085 rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER,
1087 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1089 priv_tx = rt2x00dev->tx[3].entries[0].priv_data;
1090 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®);
1091 rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER,
1093 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1095 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®);
1096 rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1097 rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE,
1098 rt2x00dev->rx->desc_size / 4);
1099 rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1100 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1102 priv_rx = rt2x00dev->rx->entries[0].priv_data;
1103 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®);
1104 rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER,
1106 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1108 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®);
1109 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2);
1110 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2);
1111 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2);
1112 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2);
1113 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1115 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®);
1116 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1117 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1118 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1119 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1120 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1122 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1123 rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1);
1124 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1129 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1133 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1134 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
1135 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1136 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1137 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1139 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®);
1140 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1141 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
1142 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1143 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
1144 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1145 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
1146 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1147 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
1148 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1151 * CCK TXD BBP registers
1153 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®);
1154 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
1155 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
1156 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
1157 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
1158 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
1159 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
1160 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
1161 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
1162 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1165 * OFDM TXD BBP registers
1167 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®);
1168 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
1169 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
1170 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
1171 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
1172 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
1173 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
1174 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1176 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®);
1177 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
1178 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
1179 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
1180 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
1181 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1183 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®);
1184 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
1185 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
1186 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
1187 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
1188 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1190 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1192 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1194 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
1195 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
1196 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1198 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1200 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1203 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1205 rt2x00pci_register_read(rt2x00dev, MAC_CSR14, ®);
1206 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, 70);
1207 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, 30);
1208 rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
1211 * Invalidate all Shared Keys (SEC_CSR0),
1212 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1214 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1215 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1216 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1218 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1219 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1220 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1221 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1223 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1225 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1227 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1229 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, ®);
1230 rt2x00_set_field32(®, AC_TXOP_CSR0_AC0_TX_OP, 0);
1231 rt2x00_set_field32(®, AC_TXOP_CSR0_AC1_TX_OP, 0);
1232 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1234 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, ®);
1235 rt2x00_set_field32(®, AC_TXOP_CSR1_AC2_TX_OP, 192);
1236 rt2x00_set_field32(®, AC_TXOP_CSR1_AC3_TX_OP, 48);
1237 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1241 * For the Beacon base registers we only need to clear
1242 * the first byte since that byte contains the VALID and OWNER
1243 * bits which (when set to 0) will invalidate the entire beacon.
1245 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1246 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1247 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1248 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1251 * We must clear the error counters.
1252 * These registers are cleared on read,
1253 * so we may pass a useless variable to store the value.
1255 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
1256 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
1257 rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®);
1260 * Reset MAC and BBP registers.
1262 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1263 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1264 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1265 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1267 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1268 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1269 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1270 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1272 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1273 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1274 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1279 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1286 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1287 rt61pci_bbp_read(rt2x00dev, 0, &value);
1288 if ((value != 0xff) && (value != 0x00))
1289 goto continue_csr_init;
1290 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
1291 udelay(REGISTER_BUSY_DELAY);
1294 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1298 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1299 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1300 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1301 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1302 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1303 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1304 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1305 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1306 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1307 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1308 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1309 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1310 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1311 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1312 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1313 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1314 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1315 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1316 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1317 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1318 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1319 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1320 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1321 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1323 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1324 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1326 if (eeprom != 0xffff && eeprom != 0x0000) {
1327 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1328 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1329 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1337 * Device state switch handlers.
1339 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1340 enum dev_state state)
1344 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1345 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX,
1346 state == STATE_RADIO_RX_OFF);
1347 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1350 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1351 enum dev_state state)
1353 int mask = (state == STATE_RADIO_IRQ_OFF);
1357 * When interrupts are being enabled, the interrupt registers
1358 * should clear the register to assure a clean state.
1360 if (state == STATE_RADIO_IRQ_ON) {
1361 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
1362 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1364 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®);
1365 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1369 * Only toggle the interrupts bits we are going to use.
1370 * Non-checked interrupt bits are disabled by default.
1372 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®);
1373 rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask);
1374 rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask);
1375 rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1376 rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1377 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1379 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
1380 rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask);
1381 rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask);
1382 rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask);
1383 rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask);
1384 rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask);
1385 rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask);
1386 rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask);
1387 rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask);
1388 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1391 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1396 * Initialize all registers.
1398 if (rt61pci_init_queues(rt2x00dev) ||
1399 rt61pci_init_registers(rt2x00dev) ||
1400 rt61pci_init_bbp(rt2x00dev)) {
1401 ERROR(rt2x00dev, "Register initialization failed.\n");
1406 * Enable interrupts.
1408 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1413 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1414 rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1415 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1420 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1424 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1427 * Disable synchronisation.
1429 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1434 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1435 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1436 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1437 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1438 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1439 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1442 * Disable interrupts.
1444 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1447 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1454 put_to_sleep = (state != STATE_AWAKE);
1456 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1457 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1458 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1459 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1462 * Device is not guaranteed to be in the requested state yet.
1463 * We must wait until the register indicates that the
1464 * device has entered the correct state.
1466 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1467 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1469 rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1470 if (current_state == !put_to_sleep)
1475 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1476 "current device state %d.\n", !put_to_sleep, current_state);
1481 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1482 enum dev_state state)
1487 case STATE_RADIO_ON:
1488 retval = rt61pci_enable_radio(rt2x00dev);
1490 case STATE_RADIO_OFF:
1491 rt61pci_disable_radio(rt2x00dev);
1493 case STATE_RADIO_RX_ON:
1494 case STATE_RADIO_RX_ON_LINK:
1495 rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1497 case STATE_RADIO_RX_OFF:
1498 case STATE_RADIO_RX_OFF_LINK:
1499 rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1501 case STATE_DEEP_SLEEP:
1505 retval = rt61pci_set_state(rt2x00dev, state);
1516 * TX descriptor initialization
1518 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1519 struct sk_buff *skb,
1520 struct txentry_desc *txdesc,
1521 struct ieee80211_tx_control *control)
1523 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1524 __le32 *txd = skbdesc->desc;
1528 * Start writing the descriptor words.
1530 rt2x00_desc_read(txd, 1, &word);
1531 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1532 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1533 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1534 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1535 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1536 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1537 rt2x00_desc_write(txd, 1, word);
1539 rt2x00_desc_read(txd, 2, &word);
1540 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1541 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1542 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1543 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1544 rt2x00_desc_write(txd, 2, word);
1546 rt2x00_desc_read(txd, 5, &word);
1547 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1548 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1549 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1550 rt2x00_desc_write(txd, 5, word);
1552 if (skbdesc->desc_len > TXINFO_SIZE) {
1553 rt2x00_desc_read(txd, 11, &word);
1554 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
1555 rt2x00_desc_write(txd, 11, word);
1558 rt2x00_desc_read(txd, 0, &word);
1559 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1560 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1561 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1562 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1563 rt2x00_set_field32(&word, TXD_W0_ACK,
1564 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1565 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1566 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1567 rt2x00_set_field32(&word, TXD_W0_OFDM,
1568 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1569 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1570 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1572 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1573 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1574 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1575 rt2x00_set_field32(&word, TXD_W0_BURST,
1576 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1577 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1578 rt2x00_desc_write(txd, 0, word);
1582 * TX data initialization
1584 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1585 const unsigned int queue)
1589 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1591 * For Wi-Fi faily generated beacons between participating
1592 * stations. Set TBTT phase adaptive adjustment step to 8us.
1594 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1596 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1597 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1598 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
1599 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
1600 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1601 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1606 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1607 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0,
1608 (queue == IEEE80211_TX_QUEUE_DATA0));
1609 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1,
1610 (queue == IEEE80211_TX_QUEUE_DATA1));
1611 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2,
1612 (queue == IEEE80211_TX_QUEUE_DATA2));
1613 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3,
1614 (queue == IEEE80211_TX_QUEUE_DATA3));
1615 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1619 * RX control handlers
1621 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1627 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1642 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1643 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1646 if (lna == 3 || lna == 2)
1649 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1650 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1652 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1655 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1656 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1659 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1662 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1663 struct rxdone_entry_desc *rxdesc)
1665 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1669 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1670 rt2x00_desc_read(priv_rx->desc, 1, &word1);
1673 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1674 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1677 * Obtain the status about this packet.
1678 * When frame was received with an OFDM bitrate,
1679 * the signal is the PLCP value. If it was received with
1680 * a CCK bitrate the signal is the rate in 100kbit/s.
1682 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1683 rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
1684 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1686 rxdesc->dev_flags = 0;
1687 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1688 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1689 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1690 rxdesc->dev_flags |= RXDONE_MY_BSS;
1694 * Interrupt functions.
1696 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1698 struct data_queue *queue;
1699 struct queue_entry *entry;
1700 struct queue_entry *entry_done;
1701 struct queue_entry_priv_pci_tx *priv_tx;
1702 struct txdone_entry_desc txdesc;
1710 * During each loop we will compare the freshly read
1711 * STA_CSR4 register value with the value read from
1712 * the previous loop. If the 2 values are equal then
1713 * we should stop processing because the chance it
1714 * quite big that the device has been unplugged and
1715 * we risk going into an endless loop.
1720 rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®);
1721 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1729 * Skip this entry when it contains an invalid
1730 * queue identication number.
1732 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1733 queue = rt2x00queue_get_queue(rt2x00dev, type);
1734 if (unlikely(!queue))
1738 * Skip this entry when it contains an invalid
1741 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1742 if (unlikely(index >= queue->limit))
1745 entry = &queue->entries[index];
1746 priv_tx = entry->priv_data;
1747 rt2x00_desc_read(priv_tx->desc, 0, &word);
1749 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1750 !rt2x00_get_field32(word, TXD_W0_VALID))
1753 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1754 while (entry != entry_done) {
1756 * Just report any entries we missed as failed.
1759 "TX status report missed for entry %d\n",
1760 entry_done->entry_idx);
1762 txdesc.status = TX_FAIL_OTHER;
1765 rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
1766 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1770 * Obtain the status about this packet.
1772 txdesc.status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
1773 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1775 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1779 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1781 struct rt2x00_dev *rt2x00dev = dev_instance;
1786 * Get the interrupt sources & saved to local variable.
1787 * Write register value back to clear pending interrupts.
1789 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu);
1790 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1792 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
1793 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1795 if (!reg && !reg_mcu)
1798 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1802 * Handle interrupts, walk through all bits
1803 * and run the tasks, the bits are checked in order of
1808 * 1 - Rx ring done interrupt.
1810 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1811 rt2x00pci_rxdone(rt2x00dev);
1814 * 2 - Tx ring done interrupt.
1816 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1817 rt61pci_txdone(rt2x00dev);
1820 * 3 - Handle MCU command done.
1823 rt2x00pci_register_write(rt2x00dev,
1824 M2H_CMD_DONE_CSR, 0xffffffff);
1830 * Device probe functions.
1832 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1834 struct eeprom_93cx6 eeprom;
1840 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
1842 eeprom.data = rt2x00dev;
1843 eeprom.register_read = rt61pci_eepromregister_read;
1844 eeprom.register_write = rt61pci_eepromregister_write;
1845 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1846 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1847 eeprom.reg_data_in = 0;
1848 eeprom.reg_data_out = 0;
1849 eeprom.reg_data_clock = 0;
1850 eeprom.reg_chip_select = 0;
1852 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1853 EEPROM_SIZE / sizeof(u16));
1856 * Start validation of the data that has been read.
1858 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1859 if (!is_valid_ether_addr(mac)) {
1860 DECLARE_MAC_BUF(macbuf);
1862 random_ether_addr(mac);
1863 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1866 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1867 if (word == 0xffff) {
1868 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1869 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1871 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1873 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1874 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1875 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1876 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1877 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1878 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1881 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1882 if (word == 0xffff) {
1883 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1884 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1885 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1886 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1887 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1888 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1889 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1890 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1893 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1894 if (word == 0xffff) {
1895 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1897 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1898 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1901 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1902 if (word == 0xffff) {
1903 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1904 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1905 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1906 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1909 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1910 if (word == 0xffff) {
1911 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1912 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1913 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1914 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1916 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1917 if (value < -10 || value > 10)
1918 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1919 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1920 if (value < -10 || value > 10)
1921 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1922 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1925 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1926 if (word == 0xffff) {
1927 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1928 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1929 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1930 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1932 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1933 if (value < -10 || value > 10)
1934 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1935 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1936 if (value < -10 || value > 10)
1937 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1938 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1944 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1952 * Read EEPROM word for configuration.
1954 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1957 * Identify RF chipset.
1958 * To determine the RT chip we have to read the
1959 * PCI header of the device.
1961 pci_read_config_word(rt2x00dev_pci(rt2x00dev),
1962 PCI_CONFIG_HEADER_DEVICE, &device);
1963 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1964 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
1965 rt2x00_set_chip(rt2x00dev, device, value, reg);
1967 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1968 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
1969 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
1970 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
1971 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1976 * Determine number of antenna's.
1978 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
1979 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
1982 * Identify default antenna configuration.
1984 rt2x00dev->default_ant.tx =
1985 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1986 rt2x00dev->default_ant.rx =
1987 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1990 * Read the Frame type.
1992 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1993 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1996 * Detect if this device has an hardware controlled radio.
1998 #ifdef CONFIG_RT61PCI_RFKILL
1999 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2000 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2001 #endif /* CONFIG_RT61PCI_RFKILL */
2004 * Read frequency offset and RF programming sequence.
2006 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2007 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2008 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2010 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2013 * Read external LNA informations.
2015 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2017 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2018 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2019 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2020 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2023 * When working with a RF2529 chip without double antenna
2024 * the antenna settings should be gathered from the NIC
2027 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2028 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2029 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2031 rt2x00dev->default_ant.tx = ANTENNA_B;
2032 rt2x00dev->default_ant.rx = ANTENNA_A;
2035 rt2x00dev->default_ant.tx = ANTENNA_B;
2036 rt2x00dev->default_ant.rx = ANTENNA_B;
2039 rt2x00dev->default_ant.tx = ANTENNA_A;
2040 rt2x00dev->default_ant.rx = ANTENNA_A;
2043 rt2x00dev->default_ant.tx = ANTENNA_A;
2044 rt2x00dev->default_ant.rx = ANTENNA_B;
2048 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2049 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2050 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2051 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2055 * Store led settings, for correct led behaviour.
2056 * If the eeprom value is invalid,
2057 * switch to default led mode.
2059 #ifdef CONFIG_RT61PCI_LEDS
2060 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2062 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2065 case LED_MODE_TXRX_ACTIVITY:
2067 case LED_MODE_ALPHA:
2068 case LED_MODE_DEFAULT:
2069 rt2x00dev->led_flags =
2070 LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC;
2072 case LED_MODE_SIGNAL_STRENGTH:
2073 rt2x00dev->led_flags =
2074 LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC |
2075 LED_SUPPORT_QUALITY;
2079 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2080 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2081 rt2x00_get_field16(eeprom,
2082 EEPROM_LED_POLARITY_GPIO_0));
2083 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2084 rt2x00_get_field16(eeprom,
2085 EEPROM_LED_POLARITY_GPIO_1));
2086 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2087 rt2x00_get_field16(eeprom,
2088 EEPROM_LED_POLARITY_GPIO_2));
2089 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2090 rt2x00_get_field16(eeprom,
2091 EEPROM_LED_POLARITY_GPIO_3));
2092 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2093 rt2x00_get_field16(eeprom,
2094 EEPROM_LED_POLARITY_GPIO_4));
2095 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2096 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2097 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2098 rt2x00_get_field16(eeprom,
2099 EEPROM_LED_POLARITY_RDY_G));
2100 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2101 rt2x00_get_field16(eeprom,
2102 EEPROM_LED_POLARITY_RDY_A));
2103 #endif /* CONFIG_RT61PCI_LEDS */
2109 * RF value list for RF5225 & RF5325
2110 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2112 static const struct rf_channel rf_vals_noseq[] = {
2113 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2114 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2115 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2116 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2117 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2118 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2119 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2120 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2121 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2122 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2123 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2124 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2125 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2126 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2128 /* 802.11 UNI / HyperLan 2 */
2129 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2130 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2131 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2132 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2133 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2134 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2135 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2136 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2138 /* 802.11 HyperLan 2 */
2139 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2140 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2141 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2142 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2143 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2144 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2145 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2146 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2147 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2148 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2151 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2152 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2153 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2154 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2155 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2156 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2158 /* MMAC(Japan)J52 ch 34,38,42,46 */
2159 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2160 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2161 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2162 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2166 * RF value list for RF5225 & RF5325
2167 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2169 static const struct rf_channel rf_vals_seq[] = {
2170 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2171 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2172 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2173 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2174 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2175 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2176 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2177 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2178 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2179 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2180 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2181 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2182 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2183 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2185 /* 802.11 UNI / HyperLan 2 */
2186 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2187 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2188 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2189 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2190 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2191 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2192 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2193 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2195 /* 802.11 HyperLan 2 */
2196 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2197 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2198 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2199 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2200 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2201 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2202 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2203 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2204 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2205 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2208 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2209 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2210 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2211 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2212 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2213 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2215 /* MMAC(Japan)J52 ch 34,38,42,46 */
2216 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2217 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2218 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2219 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2222 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2224 struct hw_mode_spec *spec = &rt2x00dev->spec;
2229 * Initialize all hw fields.
2231 rt2x00dev->hw->flags =
2232 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
2233 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
2234 rt2x00dev->hw->extra_tx_headroom = 0;
2235 rt2x00dev->hw->max_signal = MAX_SIGNAL;
2236 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
2237 rt2x00dev->hw->queues = 4;
2239 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
2240 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2241 rt2x00_eeprom_addr(rt2x00dev,
2242 EEPROM_MAC_ADDR_0));
2245 * Convert tx_power array in eeprom.
2247 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2248 for (i = 0; i < 14; i++)
2249 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2252 * Initialize hw_mode information.
2254 spec->supported_bands = SUPPORT_BAND_2GHZ;
2255 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2256 spec->tx_power_a = NULL;
2257 spec->tx_power_bg = txpower;
2258 spec->tx_power_default = DEFAULT_TXPOWER;
2260 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2261 spec->num_channels = 14;
2262 spec->channels = rf_vals_noseq;
2264 spec->num_channels = 14;
2265 spec->channels = rf_vals_seq;
2268 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2269 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2270 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2271 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2273 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2274 for (i = 0; i < 14; i++)
2275 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2277 spec->tx_power_a = txpower;
2281 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2286 * Allocate eeprom data.
2288 retval = rt61pci_validate_eeprom(rt2x00dev);
2292 retval = rt61pci_init_eeprom(rt2x00dev);
2297 * Initialize hw specifications.
2299 rt61pci_probe_hw_mode(rt2x00dev);
2302 * This device requires firmware.
2304 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2307 * Set the rssi offset.
2309 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2315 * IEEE80211 stack callback functions.
2317 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2318 u32 short_retry, u32 long_retry)
2320 struct rt2x00_dev *rt2x00dev = hw->priv;
2323 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
2324 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2325 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2326 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2331 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2333 struct rt2x00_dev *rt2x00dev = hw->priv;
2337 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®);
2338 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2339 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®);
2340 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2345 static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
2346 struct ieee80211_tx_control *control)
2348 struct rt2x00_dev *rt2x00dev = hw->priv;
2349 struct rt2x00_intf *intf = vif_to_intf(control->vif);
2350 struct skb_frame_desc *skbdesc;
2351 unsigned int beacon_base;
2354 if (unlikely(!intf->beacon))
2358 * We need to append the descriptor in front of the
2361 if (skb_headroom(skb) < intf->beacon->queue->desc_size) {
2362 if (pskb_expand_head(skb, intf->beacon->queue->desc_size,
2370 * Add the descriptor in front of the skb.
2372 skb_push(skb, intf->beacon->queue->desc_size);
2373 memset(skb->data, 0, intf->beacon->queue->desc_size);
2376 * Fill in skb descriptor
2378 skbdesc = get_skb_frame_desc(skb);
2379 memset(skbdesc, 0, sizeof(*skbdesc));
2380 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
2381 skbdesc->data = skb->data + intf->beacon->queue->desc_size;
2382 skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
2383 skbdesc->desc = skb->data;
2384 skbdesc->desc_len = intf->beacon->queue->desc_size;
2385 skbdesc->entry = intf->beacon;
2388 * Disable beaconing while we are reloading the beacon data,
2389 * otherwise we might be sending out invalid data.
2391 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
2392 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
2393 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
2394 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
2395 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2398 * mac80211 doesn't provide the control->queue variable
2399 * for beacons. Set our own queue identification so
2400 * it can be used during descriptor initialization.
2402 control->queue = RT2X00_BCN_QUEUE_BEACON;
2403 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
2406 * Write entire beacon with descriptor to register,
2407 * and kick the beacon generator.
2409 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
2410 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2411 skb->data, skb->len);
2412 rt61pci_kick_tx_queue(rt2x00dev, control->queue);
2417 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2419 .start = rt2x00mac_start,
2420 .stop = rt2x00mac_stop,
2421 .add_interface = rt2x00mac_add_interface,
2422 .remove_interface = rt2x00mac_remove_interface,
2423 .config = rt2x00mac_config,
2424 .config_interface = rt2x00mac_config_interface,
2425 .configure_filter = rt2x00mac_configure_filter,
2426 .get_stats = rt2x00mac_get_stats,
2427 .set_retry_limit = rt61pci_set_retry_limit,
2428 .bss_info_changed = rt2x00mac_bss_info_changed,
2429 .conf_tx = rt2x00mac_conf_tx,
2430 .get_tx_stats = rt2x00mac_get_tx_stats,
2431 .get_tsf = rt61pci_get_tsf,
2432 .beacon_update = rt61pci_beacon_update,
2435 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2436 .irq_handler = rt61pci_interrupt,
2437 .probe_hw = rt61pci_probe_hw,
2438 .get_firmware_name = rt61pci_get_firmware_name,
2439 .get_firmware_crc = rt61pci_get_firmware_crc,
2440 .load_firmware = rt61pci_load_firmware,
2441 .initialize = rt2x00pci_initialize,
2442 .uninitialize = rt2x00pci_uninitialize,
2443 .init_rxentry = rt61pci_init_rxentry,
2444 .init_txentry = rt61pci_init_txentry,
2445 .set_device_state = rt61pci_set_device_state,
2446 .rfkill_poll = rt61pci_rfkill_poll,
2447 .link_stats = rt61pci_link_stats,
2448 .reset_tuner = rt61pci_reset_tuner,
2449 .link_tuner = rt61pci_link_tuner,
2450 .led_brightness = rt61pci_led_brightness,
2451 .write_tx_desc = rt61pci_write_tx_desc,
2452 .write_tx_data = rt2x00pci_write_tx_data,
2453 .kick_tx_queue = rt61pci_kick_tx_queue,
2454 .fill_rxdone = rt61pci_fill_rxdone,
2455 .config_filter = rt61pci_config_filter,
2456 .config_intf = rt61pci_config_intf,
2457 .config_erp = rt61pci_config_erp,
2458 .config = rt61pci_config,
2461 static const struct data_queue_desc rt61pci_queue_rx = {
2462 .entry_num = RX_ENTRIES,
2463 .data_size = DATA_FRAME_SIZE,
2464 .desc_size = RXD_DESC_SIZE,
2465 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
2468 static const struct data_queue_desc rt61pci_queue_tx = {
2469 .entry_num = TX_ENTRIES,
2470 .data_size = DATA_FRAME_SIZE,
2471 .desc_size = TXD_DESC_SIZE,
2472 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
2475 static const struct data_queue_desc rt61pci_queue_bcn = {
2476 .entry_num = 4 * BEACON_ENTRIES,
2477 .data_size = MGMT_FRAME_SIZE,
2478 .desc_size = TXINFO_SIZE,
2479 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
2482 static const struct rt2x00_ops rt61pci_ops = {
2483 .name = KBUILD_MODNAME,
2486 .eeprom_size = EEPROM_SIZE,
2488 .rx = &rt61pci_queue_rx,
2489 .tx = &rt61pci_queue_tx,
2490 .bcn = &rt61pci_queue_bcn,
2491 .lib = &rt61pci_rt2x00_ops,
2492 .hw = &rt61pci_mac80211_ops,
2493 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2494 .debugfs = &rt61pci_rt2x00debug,
2495 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2499 * RT61pci module information.
2501 static struct pci_device_id rt61pci_device_table[] = {
2503 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2505 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2507 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2511 MODULE_AUTHOR(DRV_PROJECT);
2512 MODULE_VERSION(DRV_VERSION);
2513 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2514 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2515 "PCI & PCMCIA chipset based cards");
2516 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2517 MODULE_FIRMWARE(FIRMWARE_RT2561);
2518 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2519 MODULE_FIRMWARE(FIRMWARE_RT2661);
2520 MODULE_LICENSE("GPL");
2522 static struct pci_driver rt61pci_driver = {
2523 .name = KBUILD_MODNAME,
2524 .id_table = rt61pci_device_table,
2525 .probe = rt2x00pci_probe,
2526 .remove = __devexit_p(rt2x00pci_remove),
2527 .suspend = rt2x00pci_suspend,
2528 .resume = rt2x00pci_resume,
2531 static int __init rt61pci_init(void)
2533 return pci_register_driver(&rt61pci_driver);
2536 static void __exit rt61pci_exit(void)
2538 pci_unregister_driver(&rt61pci_driver);
2541 module_init(rt61pci_init);
2542 module_exit(rt61pci_exit);