]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00queue.c
rt2x00: Cleanup symbol exports
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 queue specific routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34                                         struct queue_entry *entry)
35 {
36         unsigned int frame_size;
37         unsigned int reserved_size;
38         struct sk_buff *skb;
39         struct skb_frame_desc *skbdesc;
40
41         /*
42          * The frame size includes descriptor size, because the
43          * hardware directly receive the frame into the skbuffer.
44          */
45         frame_size = entry->queue->data_size + entry->queue->desc_size;
46
47         /*
48          * Reserve a few bytes extra headroom to allow drivers some moving
49          * space (e.g. for alignment), while keeping the skb aligned.
50          */
51         reserved_size = 8;
52
53         /*
54          * Allocate skbuffer.
55          */
56         skb = dev_alloc_skb(frame_size + reserved_size);
57         if (!skb)
58                 return NULL;
59
60         skb_reserve(skb, reserved_size);
61         skb_put(skb, frame_size);
62
63         /*
64          * Populate skbdesc.
65          */
66         skbdesc = get_skb_frame_desc(skb);
67         memset(skbdesc, 0, sizeof(*skbdesc));
68         skbdesc->entry = entry;
69
70         if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
71                 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
72                                                   skb->data,
73                                                   skb->len,
74                                                   DMA_FROM_DEVICE);
75                 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
76         }
77
78         return skb;
79 }
80
81 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
82 {
83         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
84
85         skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
86                                           DMA_TO_DEVICE);
87         skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
88 }
89 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
90
91 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
92 {
93         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
94
95         if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
96                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
97                                  DMA_FROM_DEVICE);
98                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
99         }
100
101         if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
102                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
103                                  DMA_TO_DEVICE);
104                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
105         }
106 }
107
108 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
109 {
110         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
111
112         if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
113                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
114                                  DMA_FROM_DEVICE);
115         }
116
117         if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
118                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
119                                  DMA_TO_DEVICE);
120         }
121
122         dev_kfree_skb_any(skb);
123 }
124
125 void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
126                                       struct txentry_desc *txdesc)
127 {
128         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
129         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
130         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
131         struct ieee80211_rate *rate =
132             ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
133         const struct rt2x00_rate *hwrate;
134         unsigned int data_length;
135         unsigned int duration;
136         unsigned int residual;
137
138         memset(txdesc, 0, sizeof(*txdesc));
139
140         /*
141          * Initialize information from queue
142          */
143         txdesc->queue = entry->queue->qid;
144         txdesc->cw_min = entry->queue->cw_min;
145         txdesc->cw_max = entry->queue->cw_max;
146         txdesc->aifs = entry->queue->aifs;
147
148         /* Data length should be extended with 4 bytes for CRC */
149         data_length = entry->skb->len + 4;
150
151         /*
152          * Check whether this frame is to be acked.
153          */
154         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
155                 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
156
157         /*
158          * Check if this is a RTS/CTS frame
159          */
160         if (ieee80211_is_rts(hdr->frame_control) ||
161             ieee80211_is_cts(hdr->frame_control)) {
162                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
163                 if (ieee80211_is_rts(hdr->frame_control))
164                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
165                 else
166                         __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
167                 if (tx_info->control.rts_cts_rate_idx >= 0)
168                         rate =
169                             ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
170         }
171
172         /*
173          * Determine retry information.
174          */
175         txdesc->retry_limit = tx_info->control.retry_limit;
176         if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
177                 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
178
179         /*
180          * Check if more fragments are pending
181          */
182         if (ieee80211_has_morefrags(hdr->frame_control)) {
183                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
184                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
185         }
186
187         /*
188          * Beacons and probe responses require the tsf timestamp
189          * to be inserted into the frame.
190          */
191         if (ieee80211_is_beacon(hdr->frame_control) ||
192             ieee80211_is_probe_resp(hdr->frame_control))
193                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
194
195         /*
196          * Determine with what IFS priority this frame should be send.
197          * Set ifs to IFS_SIFS when the this is not the first fragment,
198          * or this fragment came after RTS/CTS.
199          */
200         if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
201                 txdesc->ifs = IFS_SIFS;
202         } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
203                 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
204                 txdesc->ifs = IFS_BACKOFF;
205         } else {
206                 txdesc->ifs = IFS_SIFS;
207         }
208
209         /*
210          * PLCP setup
211          * Length calculation depends on OFDM/CCK rate.
212          */
213         hwrate = rt2x00_get_rate(rate->hw_value);
214         txdesc->signal = hwrate->plcp;
215         txdesc->service = 0x04;
216
217         if (hwrate->flags & DEV_RATE_OFDM) {
218                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
219
220                 txdesc->length_high = (data_length >> 6) & 0x3f;
221                 txdesc->length_low = data_length & 0x3f;
222         } else {
223                 /*
224                  * Convert length to microseconds.
225                  */
226                 residual = get_duration_res(data_length, hwrate->bitrate);
227                 duration = get_duration(data_length, hwrate->bitrate);
228
229                 if (residual != 0) {
230                         duration++;
231
232                         /*
233                          * Check if we need to set the Length Extension
234                          */
235                         if (hwrate->bitrate == 110 && residual <= 30)
236                                 txdesc->service |= 0x80;
237                 }
238
239                 txdesc->length_high = (duration >> 8) & 0xff;
240                 txdesc->length_low = duration & 0xff;
241
242                 /*
243                  * When preamble is enabled we should set the
244                  * preamble bit for the signal.
245                  */
246                 if (rt2x00_get_rate_preamble(rate->hw_value))
247                         txdesc->signal |= 0x08;
248         }
249 }
250 EXPORT_SYMBOL_GPL(rt2x00queue_create_tx_descriptor);
251
252 void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
253                                      struct txentry_desc *txdesc)
254 {
255         struct data_queue *queue = entry->queue;
256         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
257
258         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
259
260         /*
261          * All processing on the frame has been completed, this means
262          * it is now ready to be dumped to userspace through debugfs.
263          */
264         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
265
266         /*
267          * Check if we need to kick the queue, there are however a few rules
268          *      1) Don't kick beacon queue
269          *      2) Don't kick unless this is the last in frame in a burst.
270          *         When the burst flag is set, this frame is always followed
271          *         by another frame which in some way are related to eachother.
272          *         This is true for fragments, RTS or CTS-to-self frames.
273          *      3) Rule 2 can be broken when the available entries
274          *         in the queue are less then a certain threshold.
275          */
276         if (entry->queue->qid == QID_BEACON)
277                 return;
278
279         if (rt2x00queue_threshold(queue) ||
280             !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
281                 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
282 }
283 EXPORT_SYMBOL_GPL(rt2x00queue_write_tx_descriptor);
284
285 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
286 {
287         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
288         struct txentry_desc txdesc;
289         struct skb_frame_desc *skbdesc;
290
291         if (unlikely(rt2x00queue_full(queue)))
292                 return -EINVAL;
293
294         if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
295                 ERROR(queue->rt2x00dev,
296                       "Arrived at non-free entry in the non-full queue %d.\n"
297                       "Please file bug report to %s.\n",
298                       queue->qid, DRV_PROJECT);
299                 return -EINVAL;
300         }
301
302         /*
303          * Copy all TX descriptor information into txdesc,
304          * after that we are free to use the skb->cb array
305          * for our information.
306          */
307         entry->skb = skb;
308         rt2x00queue_create_tx_descriptor(entry, &txdesc);
309
310         /*
311          * skb->cb array is now ours and we are free to use it.
312          */
313         skbdesc = get_skb_frame_desc(entry->skb);
314         memset(skbdesc, 0, sizeof(*skbdesc));
315         skbdesc->entry = entry;
316
317         if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
318                 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
319                 return -EIO;
320         }
321
322         if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
323                 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
324
325         __set_bit(ENTRY_DATA_PENDING, &entry->flags);
326
327         rt2x00queue_index_inc(queue, Q_INDEX);
328         rt2x00queue_write_tx_descriptor(entry, &txdesc);
329
330         return 0;
331 }
332
333 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
334                                          const enum data_queue_qid queue)
335 {
336         int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
337
338         if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
339                 return &rt2x00dev->tx[queue];
340
341         if (!rt2x00dev->bcn)
342                 return NULL;
343
344         if (queue == QID_BEACON)
345                 return &rt2x00dev->bcn[0];
346         else if (queue == QID_ATIM && atim)
347                 return &rt2x00dev->bcn[1];
348
349         return NULL;
350 }
351 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
352
353 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
354                                           enum queue_index index)
355 {
356         struct queue_entry *entry;
357         unsigned long irqflags;
358
359         if (unlikely(index >= Q_INDEX_MAX)) {
360                 ERROR(queue->rt2x00dev,
361                       "Entry requested from invalid index type (%d)\n", index);
362                 return NULL;
363         }
364
365         spin_lock_irqsave(&queue->lock, irqflags);
366
367         entry = &queue->entries[queue->index[index]];
368
369         spin_unlock_irqrestore(&queue->lock, irqflags);
370
371         return entry;
372 }
373 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
374
375 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
376 {
377         unsigned long irqflags;
378
379         if (unlikely(index >= Q_INDEX_MAX)) {
380                 ERROR(queue->rt2x00dev,
381                       "Index change on invalid index type (%d)\n", index);
382                 return;
383         }
384
385         spin_lock_irqsave(&queue->lock, irqflags);
386
387         queue->index[index]++;
388         if (queue->index[index] >= queue->limit)
389                 queue->index[index] = 0;
390
391         if (index == Q_INDEX) {
392                 queue->length++;
393         } else if (index == Q_INDEX_DONE) {
394                 queue->length--;
395                 queue->count ++;
396         }
397
398         spin_unlock_irqrestore(&queue->lock, irqflags);
399 }
400
401 static void rt2x00queue_reset(struct data_queue *queue)
402 {
403         unsigned long irqflags;
404
405         spin_lock_irqsave(&queue->lock, irqflags);
406
407         queue->count = 0;
408         queue->length = 0;
409         memset(queue->index, 0, sizeof(queue->index));
410
411         spin_unlock_irqrestore(&queue->lock, irqflags);
412 }
413
414 void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
415 {
416         struct data_queue *queue = rt2x00dev->rx;
417         unsigned int i;
418
419         rt2x00queue_reset(queue);
420
421         if (!rt2x00dev->ops->lib->init_rxentry)
422                 return;
423
424         for (i = 0; i < queue->limit; i++)
425                 rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
426                                                   &queue->entries[i]);
427 }
428
429 void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
430 {
431         struct data_queue *queue;
432         unsigned int i;
433
434         txall_queue_for_each(rt2x00dev, queue) {
435                 rt2x00queue_reset(queue);
436
437                 if (!rt2x00dev->ops->lib->init_txentry)
438                         continue;
439
440                 for (i = 0; i < queue->limit; i++)
441                         rt2x00dev->ops->lib->init_txentry(rt2x00dev,
442                                                           &queue->entries[i]);
443         }
444 }
445
446 static int rt2x00queue_alloc_entries(struct data_queue *queue,
447                                      const struct data_queue_desc *qdesc)
448 {
449         struct queue_entry *entries;
450         unsigned int entry_size;
451         unsigned int i;
452
453         rt2x00queue_reset(queue);
454
455         queue->limit = qdesc->entry_num;
456         queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
457         queue->data_size = qdesc->data_size;
458         queue->desc_size = qdesc->desc_size;
459
460         /*
461          * Allocate all queue entries.
462          */
463         entry_size = sizeof(*entries) + qdesc->priv_size;
464         entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
465         if (!entries)
466                 return -ENOMEM;
467
468 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
469         ( ((char *)(__base)) + ((__limit) * (__esize)) + \
470             ((__index) * (__psize)) )
471
472         for (i = 0; i < queue->limit; i++) {
473                 entries[i].flags = 0;
474                 entries[i].queue = queue;
475                 entries[i].skb = NULL;
476                 entries[i].entry_idx = i;
477                 entries[i].priv_data =
478                     QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
479                                             sizeof(*entries), qdesc->priv_size);
480         }
481
482 #undef QUEUE_ENTRY_PRIV_OFFSET
483
484         queue->entries = entries;
485
486         return 0;
487 }
488
489 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
490                                   struct data_queue *queue)
491 {
492         unsigned int i;
493
494         if (!queue->entries)
495                 return;
496
497         for (i = 0; i < queue->limit; i++) {
498                 if (queue->entries[i].skb)
499                         rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
500         }
501 }
502
503 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
504                                     struct data_queue *queue)
505 {
506         unsigned int i;
507         struct sk_buff *skb;
508
509         for (i = 0; i < queue->limit; i++) {
510                 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
511                 if (!skb)
512                         goto exit;
513                 queue->entries[i].skb = skb;
514         }
515
516         return 0;
517
518 exit:
519         rt2x00queue_free_skbs(rt2x00dev, queue);
520
521         return -ENOMEM;
522 }
523
524 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
525 {
526         struct data_queue *queue;
527         int status;
528
529         status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
530         if (status)
531                 goto exit;
532
533         tx_queue_for_each(rt2x00dev, queue) {
534                 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
535                 if (status)
536                         goto exit;
537         }
538
539         status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
540         if (status)
541                 goto exit;
542
543         if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
544                 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
545                                                    rt2x00dev->ops->atim);
546                 if (status)
547                         goto exit;
548         }
549
550         status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
551         if (status)
552                 goto exit;
553
554         return 0;
555
556 exit:
557         ERROR(rt2x00dev, "Queue entries allocation failed.\n");
558
559         rt2x00queue_uninitialize(rt2x00dev);
560
561         return status;
562 }
563
564 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
565 {
566         struct data_queue *queue;
567
568         rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
569
570         queue_for_each(rt2x00dev, queue) {
571                 kfree(queue->entries);
572                 queue->entries = NULL;
573         }
574 }
575
576 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
577                              struct data_queue *queue, enum data_queue_qid qid)
578 {
579         spin_lock_init(&queue->lock);
580
581         queue->rt2x00dev = rt2x00dev;
582         queue->qid = qid;
583         queue->aifs = 2;
584         queue->cw_min = 5;
585         queue->cw_max = 10;
586 }
587
588 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
589 {
590         struct data_queue *queue;
591         enum data_queue_qid qid;
592         unsigned int req_atim =
593             !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
594
595         /*
596          * We need the following queues:
597          * RX: 1
598          * TX: ops->tx_queues
599          * Beacon: 1
600          * Atim: 1 (if required)
601          */
602         rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
603
604         queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
605         if (!queue) {
606                 ERROR(rt2x00dev, "Queue allocation failed.\n");
607                 return -ENOMEM;
608         }
609
610         /*
611          * Initialize pointers
612          */
613         rt2x00dev->rx = queue;
614         rt2x00dev->tx = &queue[1];
615         rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
616
617         /*
618          * Initialize queue parameters.
619          * RX: qid = QID_RX
620          * TX: qid = QID_AC_BE + index
621          * TX: cw_min: 2^5 = 32.
622          * TX: cw_max: 2^10 = 1024.
623          * BCN: qid = QID_BEACON
624          * ATIM: qid = QID_ATIM
625          */
626         rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
627
628         qid = QID_AC_BE;
629         tx_queue_for_each(rt2x00dev, queue)
630                 rt2x00queue_init(rt2x00dev, queue, qid++);
631
632         rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
633         if (req_atim)
634                 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
635
636         return 0;
637 }
638
639 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
640 {
641         kfree(rt2x00dev->rx);
642         rt2x00dev->rx = NULL;
643         rt2x00dev->tx = NULL;
644         rt2x00dev->bcn = NULL;
645 }