]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00queue.c
29d2b912853395a132d81e7183cb0068c338f586
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 queue specific routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34                                         struct queue_entry *entry)
35 {
36         unsigned int frame_size;
37         unsigned int reserved_size;
38         struct sk_buff *skb;
39         struct skb_frame_desc *skbdesc;
40
41         /*
42          * The frame size includes descriptor size, because the
43          * hardware directly receive the frame into the skbuffer.
44          */
45         frame_size = entry->queue->data_size + entry->queue->desc_size;
46
47         /*
48          * Reserve a few bytes extra headroom to allow drivers some moving
49          * space (e.g. for alignment), while keeping the skb aligned.
50          */
51         reserved_size = 8;
52
53         /*
54          * Allocate skbuffer.
55          */
56         skb = dev_alloc_skb(frame_size + reserved_size);
57         if (!skb)
58                 return NULL;
59
60         skb_reserve(skb, reserved_size);
61         skb_put(skb, frame_size);
62
63         /*
64          * Populate skbdesc.
65          */
66         skbdesc = get_skb_frame_desc(skb);
67         memset(skbdesc, 0, sizeof(*skbdesc));
68         skbdesc->entry = entry;
69
70         if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
71                 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
72                                                   skb->data,
73                                                   skb->len,
74                                                   DMA_FROM_DEVICE);
75                 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
76         }
77
78         return skb;
79 }
80 EXPORT_SYMBOL_GPL(rt2x00queue_alloc_rxskb);
81
82 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
83 {
84         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
85
86         skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
87                                           DMA_TO_DEVICE);
88         skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
89 }
90 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
91
92 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
93 {
94         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
95
96         if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
97                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
98                                  DMA_FROM_DEVICE);
99                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
100         }
101
102         if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
103                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
104                                  DMA_TO_DEVICE);
105                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
106         }
107 }
108 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
109
110 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
111 {
112         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
113
114         if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
115                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
116                                  DMA_FROM_DEVICE);
117         }
118
119         if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
121                                  DMA_TO_DEVICE);
122         }
123
124         dev_kfree_skb_any(skb);
125 }
126 EXPORT_SYMBOL_GPL(rt2x00queue_free_skb);
127
128 void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
129                                       struct txentry_desc *txdesc)
130 {
131         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
132         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
133         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
134         struct ieee80211_rate *rate =
135             ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
136         const struct rt2x00_rate *hwrate;
137         unsigned int data_length;
138         unsigned int duration;
139         unsigned int residual;
140
141         memset(txdesc, 0, sizeof(*txdesc));
142
143         /*
144          * Initialize information from queue
145          */
146         txdesc->queue = entry->queue->qid;
147         txdesc->cw_min = entry->queue->cw_min;
148         txdesc->cw_max = entry->queue->cw_max;
149         txdesc->aifs = entry->queue->aifs;
150
151         /* Data length should be extended with 4 bytes for CRC */
152         data_length = entry->skb->len + 4;
153
154         /*
155          * Check whether this frame is to be acked.
156          */
157         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
158                 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
159
160         /*
161          * Check if this is a RTS/CTS frame
162          */
163         if (ieee80211_is_rts(hdr->frame_control) ||
164             ieee80211_is_cts(hdr->frame_control)) {
165                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
166                 if (ieee80211_is_rts(hdr->frame_control))
167                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
168                 else
169                         __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
170                 if (tx_info->control.rts_cts_rate_idx >= 0)
171                         rate =
172                             ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
173         }
174
175         /*
176          * Determine retry information.
177          */
178         txdesc->retry_limit = tx_info->control.retry_limit;
179         if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
180                 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
181
182         /*
183          * Check if more fragments are pending
184          */
185         if (ieee80211_has_morefrags(hdr->frame_control)) {
186                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
187                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
188         }
189
190         /*
191          * Beacons and probe responses require the tsf timestamp
192          * to be inserted into the frame.
193          */
194         if (ieee80211_is_beacon(hdr->frame_control) ||
195             ieee80211_is_probe_resp(hdr->frame_control))
196                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
197
198         /*
199          * Determine with what IFS priority this frame should be send.
200          * Set ifs to IFS_SIFS when the this is not the first fragment,
201          * or this fragment came after RTS/CTS.
202          */
203         if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
204                 txdesc->ifs = IFS_SIFS;
205         } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
206                 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
207                 txdesc->ifs = IFS_BACKOFF;
208         } else {
209                 txdesc->ifs = IFS_SIFS;
210         }
211
212         /*
213          * PLCP setup
214          * Length calculation depends on OFDM/CCK rate.
215          */
216         hwrate = rt2x00_get_rate(rate->hw_value);
217         txdesc->signal = hwrate->plcp;
218         txdesc->service = 0x04;
219
220         if (hwrate->flags & DEV_RATE_OFDM) {
221                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
222
223                 txdesc->length_high = (data_length >> 6) & 0x3f;
224                 txdesc->length_low = data_length & 0x3f;
225         } else {
226                 /*
227                  * Convert length to microseconds.
228                  */
229                 residual = get_duration_res(data_length, hwrate->bitrate);
230                 duration = get_duration(data_length, hwrate->bitrate);
231
232                 if (residual != 0) {
233                         duration++;
234
235                         /*
236                          * Check if we need to set the Length Extension
237                          */
238                         if (hwrate->bitrate == 110 && residual <= 30)
239                                 txdesc->service |= 0x80;
240                 }
241
242                 txdesc->length_high = (duration >> 8) & 0xff;
243                 txdesc->length_low = duration & 0xff;
244
245                 /*
246                  * When preamble is enabled we should set the
247                  * preamble bit for the signal.
248                  */
249                 if (rt2x00_get_rate_preamble(rate->hw_value))
250                         txdesc->signal |= 0x08;
251         }
252 }
253 EXPORT_SYMBOL_GPL(rt2x00queue_create_tx_descriptor);
254
255 void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
256                                      struct txentry_desc *txdesc)
257 {
258         struct data_queue *queue = entry->queue;
259         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
260
261         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
262
263         /*
264          * All processing on the frame has been completed, this means
265          * it is now ready to be dumped to userspace through debugfs.
266          */
267         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
268
269         /*
270          * Check if we need to kick the queue, there are however a few rules
271          *      1) Don't kick beacon queue
272          *      2) Don't kick unless this is the last in frame in a burst.
273          *         When the burst flag is set, this frame is always followed
274          *         by another frame which in some way are related to eachother.
275          *         This is true for fragments, RTS or CTS-to-self frames.
276          *      3) Rule 2 can be broken when the available entries
277          *         in the queue are less then a certain threshold.
278          */
279         if (entry->queue->qid == QID_BEACON)
280                 return;
281
282         if (rt2x00queue_threshold(queue) ||
283             !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
284                 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
285 }
286 EXPORT_SYMBOL_GPL(rt2x00queue_write_tx_descriptor);
287
288 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
289 {
290         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
291         struct txentry_desc txdesc;
292
293         if (unlikely(rt2x00queue_full(queue)))
294                 return -EINVAL;
295
296         if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
297                 ERROR(queue->rt2x00dev,
298                       "Arrived at non-free entry in the non-full queue %d.\n"
299                       "Please file bug report to %s.\n",
300                       queue->qid, DRV_PROJECT);
301                 return -EINVAL;
302         }
303
304         /*
305          * Copy all TX descriptor information into txdesc,
306          * after that we are free to use the skb->cb array
307          * for our information.
308          */
309         entry->skb = skb;
310         rt2x00queue_create_tx_descriptor(entry, &txdesc);
311
312         if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
313                 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
314                 return -EIO;
315         }
316
317         __set_bit(ENTRY_DATA_PENDING, &entry->flags);
318
319         rt2x00queue_index_inc(queue, Q_INDEX);
320         rt2x00queue_write_tx_descriptor(entry, &txdesc);
321
322         return 0;
323 }
324
325 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
326                                          const enum data_queue_qid queue)
327 {
328         int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
329
330         if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
331                 return &rt2x00dev->tx[queue];
332
333         if (!rt2x00dev->bcn)
334                 return NULL;
335
336         if (queue == QID_BEACON)
337                 return &rt2x00dev->bcn[0];
338         else if (queue == QID_ATIM && atim)
339                 return &rt2x00dev->bcn[1];
340
341         return NULL;
342 }
343 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
344
345 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
346                                           enum queue_index index)
347 {
348         struct queue_entry *entry;
349         unsigned long irqflags;
350
351         if (unlikely(index >= Q_INDEX_MAX)) {
352                 ERROR(queue->rt2x00dev,
353                       "Entry requested from invalid index type (%d)\n", index);
354                 return NULL;
355         }
356
357         spin_lock_irqsave(&queue->lock, irqflags);
358
359         entry = &queue->entries[queue->index[index]];
360
361         spin_unlock_irqrestore(&queue->lock, irqflags);
362
363         return entry;
364 }
365 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
366
367 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
368 {
369         unsigned long irqflags;
370
371         if (unlikely(index >= Q_INDEX_MAX)) {
372                 ERROR(queue->rt2x00dev,
373                       "Index change on invalid index type (%d)\n", index);
374                 return;
375         }
376
377         spin_lock_irqsave(&queue->lock, irqflags);
378
379         queue->index[index]++;
380         if (queue->index[index] >= queue->limit)
381                 queue->index[index] = 0;
382
383         if (index == Q_INDEX) {
384                 queue->length++;
385         } else if (index == Q_INDEX_DONE) {
386                 queue->length--;
387                 queue->count ++;
388         }
389
390         spin_unlock_irqrestore(&queue->lock, irqflags);
391 }
392 EXPORT_SYMBOL_GPL(rt2x00queue_index_inc);
393
394 static void rt2x00queue_reset(struct data_queue *queue)
395 {
396         unsigned long irqflags;
397
398         spin_lock_irqsave(&queue->lock, irqflags);
399
400         queue->count = 0;
401         queue->length = 0;
402         memset(queue->index, 0, sizeof(queue->index));
403
404         spin_unlock_irqrestore(&queue->lock, irqflags);
405 }
406
407 void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
408 {
409         struct data_queue *queue = rt2x00dev->rx;
410         unsigned int i;
411
412         rt2x00queue_reset(queue);
413
414         if (!rt2x00dev->ops->lib->init_rxentry)
415                 return;
416
417         for (i = 0; i < queue->limit; i++)
418                 rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
419                                                   &queue->entries[i]);
420 }
421
422 void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
423 {
424         struct data_queue *queue;
425         unsigned int i;
426
427         txall_queue_for_each(rt2x00dev, queue) {
428                 rt2x00queue_reset(queue);
429
430                 if (!rt2x00dev->ops->lib->init_txentry)
431                         continue;
432
433                 for (i = 0; i < queue->limit; i++)
434                         rt2x00dev->ops->lib->init_txentry(rt2x00dev,
435                                                           &queue->entries[i]);
436         }
437 }
438
439 static int rt2x00queue_alloc_entries(struct data_queue *queue,
440                                      const struct data_queue_desc *qdesc)
441 {
442         struct queue_entry *entries;
443         unsigned int entry_size;
444         unsigned int i;
445
446         rt2x00queue_reset(queue);
447
448         queue->limit = qdesc->entry_num;
449         queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
450         queue->data_size = qdesc->data_size;
451         queue->desc_size = qdesc->desc_size;
452
453         /*
454          * Allocate all queue entries.
455          */
456         entry_size = sizeof(*entries) + qdesc->priv_size;
457         entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
458         if (!entries)
459                 return -ENOMEM;
460
461 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
462         ( ((char *)(__base)) + ((__limit) * (__esize)) + \
463             ((__index) * (__psize)) )
464
465         for (i = 0; i < queue->limit; i++) {
466                 entries[i].flags = 0;
467                 entries[i].queue = queue;
468                 entries[i].skb = NULL;
469                 entries[i].entry_idx = i;
470                 entries[i].priv_data =
471                     QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
472                                             sizeof(*entries), qdesc->priv_size);
473         }
474
475 #undef QUEUE_ENTRY_PRIV_OFFSET
476
477         queue->entries = entries;
478
479         return 0;
480 }
481
482 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
483                                   struct data_queue *queue)
484 {
485         unsigned int i;
486
487         if (!queue->entries)
488                 return;
489
490         for (i = 0; i < queue->limit; i++) {
491                 if (queue->entries[i].skb)
492                         rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
493         }
494 }
495
496 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
497                                     struct data_queue *queue)
498 {
499         unsigned int i;
500         struct sk_buff *skb;
501
502         for (i = 0; i < queue->limit; i++) {
503                 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
504                 if (!skb)
505                         goto exit;
506                 queue->entries[i].skb = skb;
507         }
508
509         return 0;
510
511 exit:
512         rt2x00queue_free_skbs(rt2x00dev, queue);
513
514         return -ENOMEM;
515 }
516
517 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
518 {
519         struct data_queue *queue;
520         int status;
521
522         status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
523         if (status)
524                 goto exit;
525
526         tx_queue_for_each(rt2x00dev, queue) {
527                 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
528                 if (status)
529                         goto exit;
530         }
531
532         status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
533         if (status)
534                 goto exit;
535
536         if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
537                 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
538                                                    rt2x00dev->ops->atim);
539                 if (status)
540                         goto exit;
541         }
542
543         status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
544         if (status)
545                 goto exit;
546
547         return 0;
548
549 exit:
550         ERROR(rt2x00dev, "Queue entries allocation failed.\n");
551
552         rt2x00queue_uninitialize(rt2x00dev);
553
554         return status;
555 }
556
557 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
558 {
559         struct data_queue *queue;
560
561         rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
562
563         queue_for_each(rt2x00dev, queue) {
564                 kfree(queue->entries);
565                 queue->entries = NULL;
566         }
567 }
568
569 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
570                              struct data_queue *queue, enum data_queue_qid qid)
571 {
572         spin_lock_init(&queue->lock);
573
574         queue->rt2x00dev = rt2x00dev;
575         queue->qid = qid;
576         queue->aifs = 2;
577         queue->cw_min = 5;
578         queue->cw_max = 10;
579 }
580
581 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
582 {
583         struct data_queue *queue;
584         enum data_queue_qid qid;
585         unsigned int req_atim =
586             !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
587
588         /*
589          * We need the following queues:
590          * RX: 1
591          * TX: ops->tx_queues
592          * Beacon: 1
593          * Atim: 1 (if required)
594          */
595         rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
596
597         queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
598         if (!queue) {
599                 ERROR(rt2x00dev, "Queue allocation failed.\n");
600                 return -ENOMEM;
601         }
602
603         /*
604          * Initialize pointers
605          */
606         rt2x00dev->rx = queue;
607         rt2x00dev->tx = &queue[1];
608         rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
609
610         /*
611          * Initialize queue parameters.
612          * RX: qid = QID_RX
613          * TX: qid = QID_AC_BE + index
614          * TX: cw_min: 2^5 = 32.
615          * TX: cw_max: 2^10 = 1024.
616          * BCN: qid = QID_BEACON
617          * ATIM: qid = QID_ATIM
618          */
619         rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
620
621         qid = QID_AC_BE;
622         tx_queue_for_each(rt2x00dev, queue)
623                 rt2x00queue_init(rt2x00dev, queue, qid++);
624
625         rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
626         if (req_atim)
627                 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
628
629         return 0;
630 }
631
632 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
633 {
634         kfree(rt2x00dev->rx);
635         rt2x00dev->rx = NULL;
636         rt2x00dev->tx = NULL;
637         rt2x00dev->bcn = NULL;
638 }