]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Use ieee80211_channel_to_frequency()
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112                                                        STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118         /*
119          * Enable RX.
120          */
121         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123         /*
124          * Start the TX queues.
125          */
126         ieee80211_start_queues(rt2x00dev->hw);
127
128         return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134                 return;
135
136         /*
137          * Stop all scheduled work.
138          */
139         if (work_pending(&rt2x00dev->intf_work))
140                 cancel_work_sync(&rt2x00dev->intf_work);
141         if (work_pending(&rt2x00dev->filter_work))
142                 cancel_work_sync(&rt2x00dev->filter_work);
143
144         /*
145          * Stop the TX queues.
146          */
147         ieee80211_stop_queues(rt2x00dev->hw);
148
149         /*
150          * Disable RX.
151          */
152         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154         /*
155          * Disable radio.
156          */
157         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162         /*
163          * When we are disabling the RX, we should also stop the link tuner.
164          */
165         if (state == STATE_RADIO_RX_OFF)
166                 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170         /*
171          * When we are enabling the RX, we should also start the link tuner.
172          */
173         if (state == STATE_RADIO_RX_ON &&
174             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175                 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180         enum antenna rx = rt2x00dev->link.ant.active.rx;
181         enum antenna tx = rt2x00dev->link.ant.active.tx;
182         int sample_a =
183             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184         int sample_b =
185             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187         /*
188          * We are done sampling. Now we should evaluate the results.
189          */
190         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192         /*
193          * During the last period we have sampled the RSSI
194          * from both antenna's. It now is time to determine
195          * which antenna demonstrated the best performance.
196          * When we are already on the antenna with the best
197          * performance, then there really is nothing for us
198          * left to do.
199          */
200         if (sample_a == sample_b)
201                 return;
202
203         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214         enum antenna rx = rt2x00dev->link.ant.active.rx;
215         enum antenna tx = rt2x00dev->link.ant.active.tx;
216         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219         /*
220          * Legacy driver indicates that we should swap antenna's
221          * when the difference in RSSI is greater that 5. This
222          * also should be done when the RSSI was actually better
223          * then the previous sample.
224          * When the difference exceeds the threshold we should
225          * sample the rssi from the other antenna to make a valid
226          * comparison between the 2 antennas.
227          */
228         if (abs(rssi_curr - rssi_old) < 5)
229                 return;
230
231         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244         /*
245          * Determine if software diversity is enabled for
246          * either the TX or RX antenna (or both).
247          * Always perform this check since within the link
248          * tuner interval the configuration might have changed.
249          */
250         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262                 rt2x00dev->link.ant.flags = 0;
263                 return;
264         }
265
266         /*
267          * If we have only sampled the data over the last period
268          * we should now harvest the data. Otherwise just evaluate
269          * the data. The latter should only be performed once
270          * every 2 seconds.
271          */
272         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274         else if (rt2x00dev->link.count & 1)
275                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280         int avg_rssi = rssi;
281
282         /*
283          * Update global RSSI
284          */
285         if (link->qual.avg_rssi)
286                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287         link->qual.avg_rssi = avg_rssi;
288
289         /*
290          * Update antenna RSSI
291          */
292         if (link->ant.rssi_ant)
293                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294         link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299         if (qual->rx_failed || qual->rx_success)
300                 qual->rx_percentage =
301                     (qual->rx_success * 100) /
302                     (qual->rx_failed + qual->rx_success);
303         else
304                 qual->rx_percentage = 50;
305
306         if (qual->tx_failed || qual->tx_success)
307                 qual->tx_percentage =
308                     (qual->tx_success * 100) /
309                     (qual->tx_failed + qual->tx_success);
310         else
311                 qual->tx_percentage = 50;
312
313         qual->rx_success = 0;
314         qual->rx_failed = 0;
315         qual->tx_success = 0;
316         qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320                                            int rssi)
321 {
322         int rssi_percentage = 0;
323         int signal;
324
325         /*
326          * We need a positive value for the RSSI.
327          */
328         if (rssi < 0)
329                 rssi += rt2x00dev->rssi_offset;
330
331         /*
332          * Calculate the different percentages,
333          * which will be used for the signal.
334          */
335         if (rt2x00dev->rssi_offset)
336                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338         /*
339          * Add the individual percentages and use the WEIGHT
340          * defines to calculate the current link signal.
341          */
342         signal = ((WEIGHT_RSSI * rssi_percentage) +
343                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346         return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351         struct rt2x00_dev *rt2x00dev =
352             container_of(work, struct rt2x00_dev, link.work.work);
353
354         /*
355          * When the radio is shutting down we should
356          * immediately cease all link tuning.
357          */
358         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359                 return;
360
361         /*
362          * Update statistics.
363          */
364         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366             rt2x00dev->link.qual.rx_failed;
367
368         /*
369          * Only perform the link tuning when Link tuning
370          * has been enabled (This could have been disabled from the EEPROM).
371          */
372         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375         /*
376          * Precalculate a portion of the link signal which is
377          * in based on the tx/rx success/failure counters.
378          */
379         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381         /*
382          * Evaluate antenna setup, make this the last step since this could
383          * possibly reset some statistics.
384          */
385         rt2x00lib_evaluate_antenna(rt2x00dev);
386
387         /*
388          * Increase tuner counter, and reschedule the next link tuner run.
389          */
390         rt2x00dev->link.count++;
391         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
392                            LINK_TUNE_INTERVAL);
393 }
394
395 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
396 {
397         struct rt2x00_dev *rt2x00dev =
398             container_of(work, struct rt2x00_dev, filter_work);
399         unsigned int filter = rt2x00dev->packet_filter;
400
401         /*
402          * Since we had stored the filter inside rt2x00dev->packet_filter,
403          * we should now clear that field. Otherwise the driver will
404          * assume nothing has changed (*total_flags will be compared
405          * to rt2x00dev->packet_filter to determine if any action is required).
406          */
407         rt2x00dev->packet_filter = 0;
408
409         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
410                                              filter, &filter, 0, NULL);
411 }
412
413 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
414                                           struct ieee80211_vif *vif)
415 {
416         struct rt2x00_dev *rt2x00dev = data;
417         struct rt2x00_intf *intf = vif_to_intf(vif);
418         struct sk_buff *skb;
419         struct ieee80211_tx_control control;
420         struct ieee80211_bss_conf conf;
421         int delayed_flags;
422
423         /*
424          * Copy all data we need during this action under the protection
425          * of a spinlock. Otherwise race conditions might occur which results
426          * into an invalid configuration.
427          */
428         spin_lock(&intf->lock);
429
430         memcpy(&conf, &intf->conf, sizeof(conf));
431         delayed_flags = intf->delayed_flags;
432         intf->delayed_flags = 0;
433
434         spin_unlock(&intf->lock);
435
436         if (delayed_flags & DELAYED_UPDATE_BEACON) {
437                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
438                 if (skb) {
439                         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
440                                                           &control);
441                         dev_kfree_skb(skb);
442                 }
443         }
444
445         if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
446                 rt2x00lib_config_preamble(rt2x00dev, intf,
447                                           intf->conf.use_short_preamble);
448 }
449
450 static void rt2x00lib_intf_scheduled(struct work_struct *work)
451 {
452         struct rt2x00_dev *rt2x00dev =
453             container_of(work, struct rt2x00_dev, intf_work);
454
455         /*
456          * Iterate over each interface and perform the
457          * requested configurations.
458          */
459         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
460                                             rt2x00lib_intf_scheduled_iter,
461                                             rt2x00dev);
462 }
463
464 /*
465  * Interrupt context handlers.
466  */
467 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
468                                       struct ieee80211_vif *vif)
469 {
470         struct rt2x00_intf *intf = vif_to_intf(vif);
471
472         if (vif->type != IEEE80211_IF_TYPE_AP &&
473             vif->type != IEEE80211_IF_TYPE_IBSS)
474                 return;
475
476         spin_lock(&intf->lock);
477         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
478         spin_unlock(&intf->lock);
479 }
480
481 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
482 {
483         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
484                 return;
485
486         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
487                                             rt2x00lib_beacondone_iter,
488                                             rt2x00dev);
489
490         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
491 }
492 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
493
494 void rt2x00lib_txdone(struct queue_entry *entry,
495                       struct txdone_entry_desc *txdesc)
496 {
497         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
498         struct ieee80211_tx_status tx_status;
499         int success = !!(txdesc->status == TX_SUCCESS ||
500                          txdesc->status == TX_SUCCESS_RETRY);
501         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
502                       txdesc->status == TX_FAIL_INVALID ||
503                       txdesc->status == TX_FAIL_OTHER);
504
505         /*
506          * Update TX statistics.
507          */
508         rt2x00dev->link.qual.tx_success += success;
509         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
510
511         /*
512          * Initialize TX status
513          */
514         tx_status.flags = 0;
515         tx_status.ack_signal = 0;
516         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
517         tx_status.retry_count = txdesc->retry;
518         memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control));
519
520         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
521                 if (success)
522                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
523                 else
524                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
525         }
526
527         tx_status.queue_length = entry->queue->limit;
528         tx_status.queue_number = tx_status.control.queue;
529
530         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
531                 if (success)
532                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
533                 else
534                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
535         }
536
537         /*
538          * Send the tx_status to mac80211 & debugfs.
539          * mac80211 will clean up the skb structure.
540          */
541         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
542         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
543         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status);
544         entry->skb = NULL;
545 }
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
547
548 void rt2x00lib_rxdone(struct queue_entry *entry,
549                       struct rxdone_entry_desc *rxdesc)
550 {
551         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
552         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
553         struct ieee80211_supported_band *sband;
554         struct ieee80211_hdr *hdr;
555         const struct rt2x00_rate *rate;
556         unsigned int i;
557         int idx = -1;
558         u16 fc;
559
560         /*
561          * Update RX statistics.
562          */
563         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
564         for (i = 0; i < sband->n_bitrates; i++) {
565                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
566
567                 /*
568                  * When frame was received with an OFDM bitrate,
569                  * the signal is the PLCP value. If it was received with
570                  * a CCK bitrate the signal is the rate in 100kbit/s.
571                  */
572                 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
573                     (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
574                         idx = i;
575                         break;
576                 }
577         }
578
579         /*
580          * Only update link status if this is a beacon frame carrying our bssid.
581          */
582         hdr = (struct ieee80211_hdr *)entry->skb->data;
583         fc = le16_to_cpu(hdr->frame_control);
584         if (is_beacon(fc) && rxdesc->my_bss)
585                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
586
587         rt2x00dev->link.qual.rx_success++;
588
589         rx_status->rate_idx = idx;
590         rx_status->signal =
591             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
592         rx_status->ssi = rxdesc->rssi;
593         rx_status->flag = rxdesc->flags;
594         rx_status->antenna = rt2x00dev->link.ant.active.rx;
595
596         /*
597          * Send frame to mac80211 & debugfs.
598          * mac80211 will clean up the skb structure.
599          */
600         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
601         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
602         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
603         entry->skb = NULL;
604 }
605 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
606
607 /*
608  * TX descriptor initializer
609  */
610 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
611                              struct sk_buff *skb,
612                              struct ieee80211_tx_control *control)
613 {
614         struct txentry_desc txdesc;
615         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
616         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
617         const struct rt2x00_rate *rate;
618         int tx_rate;
619         int length;
620         int duration;
621         int residual;
622         u16 frame_control;
623         u16 seq_ctrl;
624
625         memset(&txdesc, 0, sizeof(txdesc));
626
627         txdesc.queue = skbdesc->entry->queue->qid;
628         txdesc.cw_min = skbdesc->entry->queue->cw_min;
629         txdesc.cw_max = skbdesc->entry->queue->cw_max;
630         txdesc.aifs = skbdesc->entry->queue->aifs;
631
632         /*
633          * Read required fields from ieee80211 header.
634          */
635         frame_control = le16_to_cpu(hdr->frame_control);
636         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
637
638         tx_rate = control->tx_rate->hw_value;
639
640         /*
641          * Check whether this frame is to be acked
642          */
643         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
644                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
645
646         /*
647          * Check if this is a RTS/CTS frame
648          */
649         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
650                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
651                 if (is_rts_frame(frame_control)) {
652                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
653                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
654                 } else
655                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
656                 if (control->rts_cts_rate)
657                         tx_rate = control->rts_cts_rate->hw_value;
658         }
659
660         rate = rt2x00_get_rate(tx_rate);
661
662         /*
663          * Check if more fragments are pending
664          */
665         if (ieee80211_get_morefrag(hdr)) {
666                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
667                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
668         }
669
670         /*
671          * Beacons and probe responses require the tsf timestamp
672          * to be inserted into the frame.
673          */
674         if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
675             is_probe_resp(frame_control))
676                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
677
678         /*
679          * Determine with what IFS priority this frame should be send.
680          * Set ifs to IFS_SIFS when the this is not the first fragment,
681          * or this fragment came after RTS/CTS.
682          */
683         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
684             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
685                 txdesc.ifs = IFS_SIFS;
686         else
687                 txdesc.ifs = IFS_BACKOFF;
688
689         /*
690          * PLCP setup
691          * Length calculation depends on OFDM/CCK rate.
692          */
693         txdesc.signal = rate->plcp;
694         txdesc.service = 0x04;
695
696         length = skb->len + FCS_LEN;
697         if (rate->flags & DEV_RATE_OFDM) {
698                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
699
700                 txdesc.length_high = (length >> 6) & 0x3f;
701                 txdesc.length_low = length & 0x3f;
702         } else {
703                 /*
704                  * Convert length to microseconds.
705                  */
706                 residual = get_duration_res(length, rate->bitrate);
707                 duration = get_duration(length, rate->bitrate);
708
709                 if (residual != 0) {
710                         duration++;
711
712                         /*
713                          * Check if we need to set the Length Extension
714                          */
715                         if (rate->bitrate == 110 && residual <= 30)
716                                 txdesc.service |= 0x80;
717                 }
718
719                 txdesc.length_high = (duration >> 8) & 0xff;
720                 txdesc.length_low = duration & 0xff;
721
722                 /*
723                  * When preamble is enabled we should set the
724                  * preamble bit for the signal.
725                  */
726                 if (rt2x00_get_rate_preamble(tx_rate))
727                         txdesc.signal |= 0x08;
728         }
729
730         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
731
732         /*
733          * Update queue entry.
734          */
735         skbdesc->entry->skb = skb;
736
737         /*
738          * The frame has been completely initialized and ready
739          * for sending to the device. The caller will push the
740          * frame to the device, but we are going to push the
741          * frame to debugfs here.
742          */
743         skbdesc->frame_type = DUMP_FRAME_TX;
744         rt2x00debug_dump_frame(rt2x00dev, skb);
745 }
746 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
747
748 /*
749  * Driver initialization handlers.
750  */
751 const struct rt2x00_rate rt2x00_supported_rates[12] = {
752         {
753                 .flags = 0,
754                 .bitrate = 10,
755                 .ratemask = DEV_RATEMASK_1MB,
756                 .plcp = 0x00,
757         },
758         {
759                 .flags = DEV_RATE_SHORT_PREAMBLE,
760                 .bitrate = 20,
761                 .ratemask = DEV_RATEMASK_2MB,
762                 .plcp = 0x01,
763         },
764         {
765                 .flags = DEV_RATE_SHORT_PREAMBLE,
766                 .bitrate = 55,
767                 .ratemask = DEV_RATEMASK_5_5MB,
768                 .plcp = 0x02,
769         },
770         {
771                 .flags = DEV_RATE_SHORT_PREAMBLE,
772                 .bitrate = 110,
773                 .ratemask = DEV_RATEMASK_11MB,
774                 .plcp = 0x03,
775         },
776         {
777                 .flags = DEV_RATE_OFDM,
778                 .bitrate = 60,
779                 .ratemask = DEV_RATEMASK_6MB,
780                 .plcp = 0x0b,
781         },
782         {
783                 .flags = DEV_RATE_OFDM,
784                 .bitrate = 90,
785                 .ratemask = DEV_RATEMASK_9MB,
786                 .plcp = 0x0f,
787         },
788         {
789                 .flags = DEV_RATE_OFDM,
790                 .bitrate = 120,
791                 .ratemask = DEV_RATEMASK_12MB,
792                 .plcp = 0x0a,
793         },
794         {
795                 .flags = DEV_RATE_OFDM,
796                 .bitrate = 180,
797                 .ratemask = DEV_RATEMASK_18MB,
798                 .plcp = 0x0e,
799         },
800         {
801                 .flags = DEV_RATE_OFDM,
802                 .bitrate = 240,
803                 .ratemask = DEV_RATEMASK_24MB,
804                 .plcp = 0x09,
805         },
806         {
807                 .flags = DEV_RATE_OFDM,
808                 .bitrate = 360,
809                 .ratemask = DEV_RATEMASK_36MB,
810                 .plcp = 0x0d,
811         },
812         {
813                 .flags = DEV_RATE_OFDM,
814                 .bitrate = 480,
815                 .ratemask = DEV_RATEMASK_48MB,
816                 .plcp = 0x08,
817         },
818         {
819                 .flags = DEV_RATE_OFDM,
820                 .bitrate = 540,
821                 .ratemask = DEV_RATEMASK_54MB,
822                 .plcp = 0x0c,
823         },
824 };
825
826 static void rt2x00lib_channel(struct ieee80211_channel *entry,
827                               const int channel, const int tx_power,
828                               const int value)
829 {
830         entry->center_freq = ieee80211_channel_to_frequency(channel);
831         entry->hw_value = value;
832         entry->max_power = tx_power;
833         entry->max_antenna_gain = 0xff;
834 }
835
836 static void rt2x00lib_rate(struct ieee80211_rate *entry,
837                            const u16 index, const struct rt2x00_rate *rate)
838 {
839         entry->flags = 0;
840         entry->bitrate = rate->bitrate;
841         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
842         entry->hw_value_short = entry->hw_value;
843
844         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
845                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
846                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
847         }
848 }
849
850 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
851                                     struct hw_mode_spec *spec)
852 {
853         struct ieee80211_hw *hw = rt2x00dev->hw;
854         struct ieee80211_supported_band *sbands;
855         struct ieee80211_channel *channels;
856         struct ieee80211_rate *rates;
857         unsigned int i;
858         unsigned char tx_power;
859
860         sbands = &rt2x00dev->bands[0];
861
862         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
863         if (!channels)
864                 return -ENOMEM;
865
866         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
867         if (!rates)
868                 goto exit_free_channels;
869
870         /*
871          * Initialize Rate list.
872          */
873         for (i = 0; i < spec->num_rates; i++)
874                 rt2x00lib_rate(&rates[0], i, rt2x00_get_rate(i));
875
876         /*
877          * Initialize Channel list.
878          */
879         for (i = 0; i < spec->num_channels; i++) {
880                 if (spec->channels[i].channel <= 14)
881                         tx_power = spec->tx_power_bg[i];
882                 else if (spec->tx_power_a)
883                         tx_power = spec->tx_power_a[i];
884                 else
885                         tx_power = spec->tx_power_default;
886
887                 rt2x00lib_channel(&channels[i],
888                                   spec->channels[i].channel, tx_power, i);
889         }
890
891         /*
892          * Intitialize 802.11b
893          * Rates: CCK.
894          * Channels: 2.4 GHz
895          */
896         if (spec->num_modes > 0) {
897                 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
898                 sbands[IEEE80211_BAND_2GHZ].n_bitrates = 4;
899                 sbands[IEEE80211_BAND_2GHZ].channels = channels;
900                 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
901                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
902         }
903
904         /*
905          * Intitialize 802.11g
906          * Rates: CCK, OFDM.
907          * Channels: 2.4 GHz
908          */
909         if (spec->num_modes > 1) {
910                 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
911                 sbands[IEEE80211_BAND_2GHZ].n_bitrates = spec->num_rates;
912                 sbands[IEEE80211_BAND_2GHZ].channels = channels;
913                 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
914                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
915         }
916
917         /*
918          * Intitialize 802.11a
919          * Rates: OFDM.
920          * Channels: OFDM, UNII, HiperLAN2.
921          */
922         if (spec->num_modes > 2) {
923                 sbands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14;
924                 sbands[IEEE80211_BAND_5GHZ].n_bitrates = spec->num_rates - 4;
925                 sbands[IEEE80211_BAND_5GHZ].channels = &channels[14];
926                 sbands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
927                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
928         }
929
930         return 0;
931
932  exit_free_channels:
933         kfree(channels);
934         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
935         return -ENOMEM;
936 }
937
938 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
939 {
940         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
941                 ieee80211_unregister_hw(rt2x00dev->hw);
942
943         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
944                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
945                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
946                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
947                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
948         }
949 }
950
951 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
952 {
953         struct hw_mode_spec *spec = &rt2x00dev->spec;
954         int status;
955
956         /*
957          * Initialize HW modes.
958          */
959         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
960         if (status)
961                 return status;
962
963         /*
964          * Register HW.
965          */
966         status = ieee80211_register_hw(rt2x00dev->hw);
967         if (status) {
968                 rt2x00lib_remove_hw(rt2x00dev);
969                 return status;
970         }
971
972         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
973
974         return 0;
975 }
976
977 /*
978  * Initialization/uninitialization handlers.
979  */
980 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
981 {
982         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
983                 return;
984
985         /*
986          * Unregister rfkill.
987          */
988         rt2x00rfkill_unregister(rt2x00dev);
989
990         /*
991          * Allow the HW to uninitialize.
992          */
993         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
994
995         /*
996          * Free allocated queue entries.
997          */
998         rt2x00queue_uninitialize(rt2x00dev);
999 }
1000
1001 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1002 {
1003         int status;
1004
1005         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1006                 return 0;
1007
1008         /*
1009          * Allocate all queue entries.
1010          */
1011         status = rt2x00queue_initialize(rt2x00dev);
1012         if (status)
1013                 return status;
1014
1015         /*
1016          * Initialize the device.
1017          */
1018         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1019         if (status)
1020                 goto exit;
1021
1022         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1023
1024         /*
1025          * Register the rfkill handler.
1026          */
1027         status = rt2x00rfkill_register(rt2x00dev);
1028         if (status)
1029                 goto exit;
1030
1031         return 0;
1032
1033 exit:
1034         rt2x00lib_uninitialize(rt2x00dev);
1035
1036         return status;
1037 }
1038
1039 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1040 {
1041         int retval;
1042
1043         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1044                 return 0;
1045
1046         /*
1047          * If this is the first interface which is added,
1048          * we should load the firmware now.
1049          */
1050         retval = rt2x00lib_load_firmware(rt2x00dev);
1051         if (retval)
1052                 return retval;
1053
1054         /*
1055          * Initialize the device.
1056          */
1057         retval = rt2x00lib_initialize(rt2x00dev);
1058         if (retval)
1059                 return retval;
1060
1061         /*
1062          * Enable radio.
1063          */
1064         retval = rt2x00lib_enable_radio(rt2x00dev);
1065         if (retval) {
1066                 rt2x00lib_uninitialize(rt2x00dev);
1067                 return retval;
1068         }
1069
1070         rt2x00dev->intf_ap_count = 0;
1071         rt2x00dev->intf_sta_count = 0;
1072         rt2x00dev->intf_associated = 0;
1073
1074         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1075
1076         return 0;
1077 }
1078
1079 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1080 {
1081         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1082                 return;
1083
1084         /*
1085          * Perhaps we can add something smarter here,
1086          * but for now just disabling the radio should do.
1087          */
1088         rt2x00lib_disable_radio(rt2x00dev);
1089
1090         rt2x00dev->intf_ap_count = 0;
1091         rt2x00dev->intf_sta_count = 0;
1092         rt2x00dev->intf_associated = 0;
1093
1094         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1095 }
1096
1097 /*
1098  * driver allocation handlers.
1099  */
1100 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1101 {
1102         int retval = -ENOMEM;
1103
1104         /*
1105          * Make room for rt2x00_intf inside the per-interface
1106          * structure ieee80211_vif.
1107          */
1108         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1109
1110         /*
1111          * Let the driver probe the device to detect the capabilities.
1112          */
1113         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1114         if (retval) {
1115                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1116                 goto exit;
1117         }
1118
1119         /*
1120          * Initialize configuration work.
1121          */
1122         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1123         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1124         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1125
1126         /*
1127          * Allocate queue array.
1128          */
1129         retval = rt2x00queue_allocate(rt2x00dev);
1130         if (retval)
1131                 goto exit;
1132
1133         /*
1134          * Initialize ieee80211 structure.
1135          */
1136         retval = rt2x00lib_probe_hw(rt2x00dev);
1137         if (retval) {
1138                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1139                 goto exit;
1140         }
1141
1142         /*
1143          * Allocatie rfkill.
1144          */
1145         retval = rt2x00rfkill_allocate(rt2x00dev);
1146         if (retval)
1147                 goto exit;
1148
1149         /*
1150          * Open the debugfs entry.
1151          */
1152         rt2x00debug_register(rt2x00dev);
1153
1154         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1155
1156         return 0;
1157
1158 exit:
1159         rt2x00lib_remove_dev(rt2x00dev);
1160
1161         return retval;
1162 }
1163 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1164
1165 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1166 {
1167         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1168
1169         /*
1170          * Disable radio.
1171          */
1172         rt2x00lib_disable_radio(rt2x00dev);
1173
1174         /*
1175          * Uninitialize device.
1176          */
1177         rt2x00lib_uninitialize(rt2x00dev);
1178
1179         /*
1180          * Close debugfs entry.
1181          */
1182         rt2x00debug_deregister(rt2x00dev);
1183
1184         /*
1185          * Free rfkill
1186          */
1187         rt2x00rfkill_free(rt2x00dev);
1188
1189         /*
1190          * Free ieee80211_hw memory.
1191          */
1192         rt2x00lib_remove_hw(rt2x00dev);
1193
1194         /*
1195          * Free firmware image.
1196          */
1197         rt2x00lib_free_firmware(rt2x00dev);
1198
1199         /*
1200          * Free queue structures.
1201          */
1202         rt2x00queue_free(rt2x00dev);
1203 }
1204 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1205
1206 /*
1207  * Device state handlers
1208  */
1209 #ifdef CONFIG_PM
1210 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1211 {
1212         int retval;
1213
1214         NOTICE(rt2x00dev, "Going to sleep.\n");
1215         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1216
1217         /*
1218          * Only continue if mac80211 has open interfaces.
1219          */
1220         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1221                 goto exit;
1222         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1223
1224         /*
1225          * Disable radio and unitialize all items
1226          * that must be recreated on resume.
1227          */
1228         rt2x00lib_stop(rt2x00dev);
1229         rt2x00lib_uninitialize(rt2x00dev);
1230         rt2x00debug_deregister(rt2x00dev);
1231
1232 exit:
1233         /*
1234          * Set device mode to sleep for power management.
1235          */
1236         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1237         if (retval)
1238                 return retval;
1239
1240         return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1243
1244 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1245                                   struct ieee80211_vif *vif)
1246 {
1247         struct rt2x00_dev *rt2x00dev = data;
1248         struct rt2x00_intf *intf = vif_to_intf(vif);
1249
1250         spin_lock(&intf->lock);
1251
1252         rt2x00lib_config_intf(rt2x00dev, intf,
1253                               vif->type, intf->mac, intf->bssid);
1254
1255
1256         /*
1257          * Master or Ad-hoc mode require a new beacon update.
1258          */
1259         if (vif->type == IEEE80211_IF_TYPE_AP ||
1260             vif->type == IEEE80211_IF_TYPE_IBSS)
1261                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1262
1263         spin_unlock(&intf->lock);
1264 }
1265
1266 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1267 {
1268         int retval;
1269
1270         NOTICE(rt2x00dev, "Waking up.\n");
1271
1272         /*
1273          * Open the debugfs entry.
1274          */
1275         rt2x00debug_register(rt2x00dev);
1276
1277         /*
1278          * Only continue if mac80211 had open interfaces.
1279          */
1280         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1281                 return 0;
1282
1283         /*
1284          * Reinitialize device and all active interfaces.
1285          */
1286         retval = rt2x00lib_start(rt2x00dev);
1287         if (retval)
1288                 goto exit;
1289
1290         /*
1291          * Reconfigure device.
1292          */
1293         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1294         if (!rt2x00dev->hw->conf.radio_enabled)
1295                 rt2x00lib_disable_radio(rt2x00dev);
1296
1297         /*
1298          * Iterator over each active interface to
1299          * reconfigure the hardware.
1300          */
1301         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1302                                             rt2x00lib_resume_intf, rt2x00dev);
1303
1304         /*
1305          * We are ready again to receive requests from mac80211.
1306          */
1307         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1308
1309         /*
1310          * It is possible that during that mac80211 has attempted
1311          * to send frames while we were suspending or resuming.
1312          * In that case we have disabled the TX queue and should
1313          * now enable it again
1314          */
1315         ieee80211_start_queues(rt2x00dev->hw);
1316
1317         /*
1318          * During interface iteration we might have changed the
1319          * delayed_flags, time to handles the event by calling
1320          * the work handler directly.
1321          */
1322         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1323
1324         return 0;
1325
1326 exit:
1327         rt2x00lib_disable_radio(rt2x00dev);
1328         rt2x00lib_uninitialize(rt2x00dev);
1329         rt2x00debug_deregister(rt2x00dev);
1330
1331         return retval;
1332 }
1333 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1334 #endif /* CONFIG_PM */
1335
1336 /*
1337  * rt2x00lib module information.
1338  */
1339 MODULE_AUTHOR(DRV_PROJECT);
1340 MODULE_VERSION(DRV_VERSION);
1341 MODULE_DESCRIPTION("rt2x00 library");
1342 MODULE_LICENSE("GPL");