]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
[PATCH] rt2x00: Remove rt2x00_clear_link
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 /*
27  * Set enviroment defines for rt2x00.h
28  */
29 #define DRV_NAME "rt2x00lib"
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00lib.h"
36
37 /*
38  * Ring handler.
39  */
40 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
41                                      const unsigned int queue)
42 {
43         int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
44
45         /*
46          * Check if we are requesting a reqular TX ring,
47          * or if we are requesting a Beacon or Atim ring.
48          * For Atim rings, we should check if it is supported.
49          */
50         if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
51                 return &rt2x00dev->tx[queue];
52
53         if (!rt2x00dev->bcn || !beacon)
54                 return NULL;
55
56         if (queue == IEEE80211_TX_QUEUE_BEACON)
57                 return &rt2x00dev->bcn[0];
58         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
59                 return &rt2x00dev->bcn[1];
60
61         return NULL;
62 }
63 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
64
65 /*
66  * Link tuning handlers
67  */
68 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
69 {
70         rt2x00dev->link.count = 0;
71         rt2x00dev->link.vgc_level = 0;
72
73         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
74
75         /*
76          * The RX and TX percentage should start at 50%
77          * this will assure we will get at least get some
78          * decent value when the link tuner starts.
79          * The value will be dropped and overwritten with
80          * the correct (measured )value anyway during the
81          * first run of the link tuner.
82          */
83         rt2x00dev->link.qual.rx_percentage = 50;
84         rt2x00dev->link.qual.tx_percentage = 50;
85
86         /*
87          * Reset the link tuner.
88          */
89         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
90
91         queue_delayed_work(rt2x00dev->hw->workqueue,
92                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
93 }
94
95 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
96 {
97         cancel_delayed_work_sync(&rt2x00dev->link.work);
98 }
99
100 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
101 {
102         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
103                 return;
104
105         rt2x00lib_stop_link_tuner(rt2x00dev);
106         rt2x00lib_start_link_tuner(rt2x00dev);
107 }
108
109 /*
110  * Radio control handlers.
111  */
112 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
113 {
114         int status;
115
116         /*
117          * Don't enable the radio twice.
118          * And check if the hardware button has been disabled.
119          */
120         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
121             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
122                 return 0;
123
124         /*
125          * Enable radio.
126          */
127         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
128                                                        STATE_RADIO_ON);
129         if (status)
130                 return status;
131
132         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
133
134         /*
135          * Enable RX.
136          */
137         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
138
139         /*
140          * Start the TX queues.
141          */
142         ieee80211_start_queues(rt2x00dev->hw);
143
144         return 0;
145 }
146
147 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
148 {
149         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
150                 return;
151
152         /*
153          * Stop all scheduled work.
154          */
155         if (work_pending(&rt2x00dev->beacon_work))
156                 cancel_work_sync(&rt2x00dev->beacon_work);
157         if (work_pending(&rt2x00dev->filter_work))
158                 cancel_work_sync(&rt2x00dev->filter_work);
159         if (work_pending(&rt2x00dev->config_work))
160                 cancel_work_sync(&rt2x00dev->config_work);
161
162         /*
163          * Stop the TX queues.
164          */
165         ieee80211_stop_queues(rt2x00dev->hw);
166
167         /*
168          * Disable RX.
169          */
170         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
171
172         /*
173          * Disable radio.
174          */
175         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
176 }
177
178 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
179 {
180         /*
181          * When we are disabling the RX, we should also stop the link tuner.
182          */
183         if (state == STATE_RADIO_RX_OFF)
184                 rt2x00lib_stop_link_tuner(rt2x00dev);
185
186         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
187
188         /*
189          * When we are enabling the RX, we should also start the link tuner.
190          */
191         if (state == STATE_RADIO_RX_ON &&
192             is_interface_present(&rt2x00dev->interface))
193                 rt2x00lib_start_link_tuner(rt2x00dev);
194 }
195
196 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
197 {
198         if (qual->rx_failed || qual->rx_success)
199                 qual->rx_percentage =
200                     (qual->rx_success * 100) /
201                     (qual->rx_failed + qual->rx_success);
202         else
203                 qual->rx_percentage = 50;
204
205         if (qual->tx_failed || qual->tx_success)
206                 qual->tx_percentage =
207                     (qual->tx_success * 100) /
208                     (qual->tx_failed + qual->tx_success);
209         else
210                 qual->tx_percentage = 50;
211
212         qual->rx_success = 0;
213         qual->rx_failed = 0;
214         qual->tx_success = 0;
215         qual->tx_failed = 0;
216 }
217
218 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
219                                            int rssi)
220 {
221         int rssi_percentage = 0;
222         int signal;
223
224         /*
225          * We need a positive value for the RSSI.
226          */
227         if (rssi < 0)
228                 rssi += rt2x00dev->rssi_offset;
229
230         /*
231          * Calculate the different percentages,
232          * which will be used for the signal.
233          */
234         if (rt2x00dev->rssi_offset)
235                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
236
237         /*
238          * Add the individual percentages and use the WEIGHT
239          * defines to calculate the current link signal.
240          */
241         signal = ((WEIGHT_RSSI * rssi_percentage) +
242                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
243                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
244
245         return (signal > 100) ? 100 : signal;
246 }
247
248 static void rt2x00lib_link_tuner(struct work_struct *work)
249 {
250         struct rt2x00_dev *rt2x00dev =
251             container_of(work, struct rt2x00_dev, link.work.work);
252
253         /*
254          * When the radio is shutting down we should
255          * immediately cease all link tuning.
256          */
257         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
258                 return;
259
260         /*
261          * Update statistics.
262          */
263         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
264
265         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
266             rt2x00dev->link.qual.rx_failed;
267
268         /*
269          * Only perform the link tuning when Link tuning
270          * has been enabled (This could have been disabled from the EEPROM).
271          */
272         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
273                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
274
275         /*
276          * Precalculate a portion of the link signal which is
277          * in based on the tx/rx success/failure counters.
278          */
279         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
280
281         /*
282          * Increase tuner counter, and reschedule the next link tuner run.
283          */
284         rt2x00dev->link.count++;
285         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
286                            LINK_TUNE_INTERVAL);
287 }
288
289 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
290 {
291         struct rt2x00_dev *rt2x00dev =
292             container_of(work, struct rt2x00_dev, filter_work);
293         unsigned int filter = rt2x00dev->interface.filter;
294
295         /*
296          * Since we had stored the filter inside interface.filter,
297          * we should now clear that field. Otherwise the driver will
298          * assume nothing has changed (*total_flags will be compared
299          * to interface.filter to determine if any action is required).
300          */
301         rt2x00dev->interface.filter = 0;
302
303         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
304                                              filter, &filter, 0, NULL);
305 }
306
307 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
308 {
309         struct rt2x00_dev *rt2x00dev =
310             container_of(work, struct rt2x00_dev, config_work);
311         int preamble = !test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
312
313         rt2x00mac_erp_ie_changed(rt2x00dev->hw,
314                                  IEEE80211_ERP_CHANGE_PREAMBLE, 0, preamble);
315 }
316
317 /*
318  * Interrupt context handlers.
319  */
320 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
321 {
322         struct rt2x00_dev *rt2x00dev =
323             container_of(work, struct rt2x00_dev, beacon_work);
324         struct data_ring *ring =
325             rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
326         struct data_entry *entry = rt2x00_get_data_entry(ring);
327         struct sk_buff *skb;
328
329         skb = ieee80211_beacon_get(rt2x00dev->hw,
330                                    rt2x00dev->interface.id,
331                                    &entry->tx_status.control);
332         if (!skb)
333                 return;
334
335         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
336                                           &entry->tx_status.control);
337
338         dev_kfree_skb(skb);
339 }
340
341 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
342 {
343         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
344                 return;
345
346         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
347 }
348 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
349
350 void rt2x00lib_txdone(struct data_entry *entry,
351                       const int status, const int retry)
352 {
353         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
354         struct ieee80211_tx_status *tx_status = &entry->tx_status;
355         struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
356         int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
357         int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
358                       status == TX_FAIL_OTHER);
359
360         /*
361          * Update TX statistics.
362          */
363         tx_status->flags = 0;
364         tx_status->ack_signal = 0;
365         tx_status->excessive_retries = (status == TX_FAIL_RETRY);
366         tx_status->retry_count = retry;
367         rt2x00dev->link.qual.tx_success += success;
368         rt2x00dev->link.qual.tx_failed += retry + fail;
369
370         if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
371                 if (success)
372                         tx_status->flags |= IEEE80211_TX_STATUS_ACK;
373                 else
374                         stats->dot11ACKFailureCount++;
375         }
376
377         tx_status->queue_length = entry->ring->stats.limit;
378         tx_status->queue_number = tx_status->control.queue;
379
380         if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
381                 if (success)
382                         stats->dot11RTSSuccessCount++;
383                 else
384                         stats->dot11RTSFailureCount++;
385         }
386
387         /*
388          * Send the tx_status to mac80211,
389          * that method also cleans up the skb structure.
390          */
391         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
392         entry->skb = NULL;
393 }
394 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
395
396 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
397                       struct rxdata_entry_desc *desc)
398 {
399         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
400         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
401         struct ieee80211_hw_mode *mode;
402         struct ieee80211_rate *rate;
403         unsigned int i;
404         int val = 0;
405
406         /*
407          * Update RX statistics.
408          */
409         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
410         for (i = 0; i < mode->num_rates; i++) {
411                 rate = &mode->rates[i];
412
413                 /*
414                  * When frame was received with an OFDM bitrate,
415                  * the signal is the PLCP value. If it was received with
416                  * a CCK bitrate the signal is the rate in 0.5kbit/s.
417                  */
418                 if (!desc->ofdm)
419                         val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
420                 else
421                         val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
422
423                 if (val == desc->signal) {
424                         val = rate->val;
425                         break;
426                 }
427         }
428
429         rt2x00_update_link_rssi(&rt2x00dev->link, desc->rssi);
430         rt2x00dev->link.qual.rx_success++;
431         rx_status->rate = val;
432         rx_status->signal =
433             rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
434         rx_status->ssi = desc->rssi;
435         rx_status->flag = desc->flags;
436         rx_status->antenna = rt2x00dev->link.active_ant.rx;
437
438         /*
439          * Send frame to mac80211
440          */
441         ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
442 }
443 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
444
445 /*
446  * TX descriptor initializer
447  */
448 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
449                              struct data_desc *txd,
450                              struct ieee80211_hdr *ieee80211hdr,
451                              unsigned int length,
452                              struct ieee80211_tx_control *control)
453 {
454         struct txdata_entry_desc desc;
455         struct data_ring *ring;
456         int tx_rate;
457         int bitrate;
458         int duration;
459         int residual;
460         u16 frame_control;
461         u16 seq_ctrl;
462
463         /*
464          * Make sure the descriptor is properly cleared.
465          */
466         memset(&desc, 0x00, sizeof(desc));
467
468         /*
469          * Get ring pointer, if we fail to obtain the
470          * correct ring, then use the first TX ring.
471          */
472         ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
473         if (!ring)
474                 ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
475
476         desc.cw_min = ring->tx_params.cw_min;
477         desc.cw_max = ring->tx_params.cw_max;
478         desc.aifs = ring->tx_params.aifs;
479
480         /*
481          * Identify queue
482          */
483         if (control->queue < rt2x00dev->hw->queues)
484                 desc.queue = control->queue;
485         else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
486                  control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
487                 desc.queue = QUEUE_MGMT;
488         else
489                 desc.queue = QUEUE_OTHER;
490
491         /*
492          * Read required fields from ieee80211 header.
493          */
494         frame_control = le16_to_cpu(ieee80211hdr->frame_control);
495         seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
496
497         tx_rate = control->tx_rate;
498
499         /*
500          * Check if this is a RTS/CTS frame
501          */
502         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
503                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
504                 if (is_rts_frame(frame_control))
505                         __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
506                 if (control->rts_cts_rate)
507                         tx_rate = control->rts_cts_rate;
508         }
509
510         /*
511          * Check for OFDM
512          */
513         if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
514                 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
515
516         /*
517          * Check if more fragments are pending
518          */
519         if (ieee80211_get_morefrag(ieee80211hdr)) {
520                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
521                 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
522         }
523
524         /*
525          * Beacons and probe responses require the tsf timestamp
526          * to be inserted into the frame.
527          */
528         if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
529             is_probe_resp(frame_control))
530                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
531
532         /*
533          * Determine with what IFS priority this frame should be send.
534          * Set ifs to IFS_SIFS when the this is not the first fragment,
535          * or this fragment came after RTS/CTS.
536          */
537         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
538             test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
539                 desc.ifs = IFS_SIFS;
540         else
541                 desc.ifs = IFS_BACKOFF;
542
543         /*
544          * PLCP setup
545          * Length calculation depends on OFDM/CCK rate.
546          */
547         desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
548         desc.service = 0x04;
549
550         if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
551                 desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
552                 desc.length_low = ((length + FCS_LEN) & 0x3f);
553         } else {
554                 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
555
556                 /*
557                  * Convert length to microseconds.
558                  */
559                 residual = get_duration_res(length + FCS_LEN, bitrate);
560                 duration = get_duration(length + FCS_LEN, bitrate);
561
562                 if (residual != 0) {
563                         duration++;
564
565                         /*
566                          * Check if we need to set the Length Extension
567                          */
568                         if (bitrate == 110 && residual <= 30)
569                                 desc.service |= 0x80;
570                 }
571
572                 desc.length_high = (duration >> 8) & 0xff;
573                 desc.length_low = duration & 0xff;
574
575                 /*
576                  * When preamble is enabled we should set the
577                  * preamble bit for the signal.
578                  */
579                 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
580                         desc.signal |= 0x08;
581         }
582
583         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
584                                            ieee80211hdr, length, control);
585 }
586 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
587
588 /*
589  * Driver initialization handlers.
590  */
591 static void rt2x00lib_channel(struct ieee80211_channel *entry,
592                               const int channel, const int tx_power,
593                               const int value)
594 {
595         entry->chan = channel;
596         if (channel <= 14)
597                 entry->freq = 2407 + (5 * channel);
598         else
599                 entry->freq = 5000 + (5 * channel);
600         entry->val = value;
601         entry->flag =
602             IEEE80211_CHAN_W_IBSS |
603             IEEE80211_CHAN_W_ACTIVE_SCAN |
604             IEEE80211_CHAN_W_SCAN;
605         entry->power_level = tx_power;
606         entry->antenna_max = 0xff;
607 }
608
609 static void rt2x00lib_rate(struct ieee80211_rate *entry,
610                            const int rate, const int mask,
611                            const int plcp, const int flags)
612 {
613         entry->rate = rate;
614         entry->val =
615             DEVICE_SET_RATE_FIELD(rate, RATE) |
616             DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
617             DEVICE_SET_RATE_FIELD(plcp, PLCP);
618         entry->flags = flags;
619         entry->val2 = entry->val;
620         if (entry->flags & IEEE80211_RATE_PREAMBLE2)
621                 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
622         entry->min_rssi_ack = 0;
623         entry->min_rssi_ack_delta = 0;
624 }
625
626 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
627                                     struct hw_mode_spec *spec)
628 {
629         struct ieee80211_hw *hw = rt2x00dev->hw;
630         struct ieee80211_hw_mode *hwmodes;
631         struct ieee80211_channel *channels;
632         struct ieee80211_rate *rates;
633         unsigned int i;
634         unsigned char tx_power;
635
636         hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
637         if (!hwmodes)
638                 goto exit;
639
640         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
641         if (!channels)
642                 goto exit_free_modes;
643
644         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
645         if (!rates)
646                 goto exit_free_channels;
647
648         /*
649          * Initialize Rate list.
650          */
651         rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
652                        0x00, IEEE80211_RATE_CCK);
653         rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
654                        0x01, IEEE80211_RATE_CCK_2);
655         rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
656                        0x02, IEEE80211_RATE_CCK_2);
657         rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
658                        0x03, IEEE80211_RATE_CCK_2);
659
660         if (spec->num_rates > 4) {
661                 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
662                                0x0b, IEEE80211_RATE_OFDM);
663                 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
664                                0x0f, IEEE80211_RATE_OFDM);
665                 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
666                                0x0a, IEEE80211_RATE_OFDM);
667                 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
668                                0x0e, IEEE80211_RATE_OFDM);
669                 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
670                                0x09, IEEE80211_RATE_OFDM);
671                 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
672                                0x0d, IEEE80211_RATE_OFDM);
673                 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
674                                0x08, IEEE80211_RATE_OFDM);
675                 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
676                                0x0c, IEEE80211_RATE_OFDM);
677         }
678
679         /*
680          * Initialize Channel list.
681          */
682         for (i = 0; i < spec->num_channels; i++) {
683                 if (spec->channels[i].channel <= 14)
684                         tx_power = spec->tx_power_bg[i];
685                 else if (spec->tx_power_a)
686                         tx_power = spec->tx_power_a[i];
687                 else
688                         tx_power = spec->tx_power_default;
689
690                 rt2x00lib_channel(&channels[i],
691                                   spec->channels[i].channel, tx_power, i);
692         }
693
694         /*
695          * Intitialize 802.11b
696          * Rates: CCK.
697          * Channels: OFDM.
698          */
699         if (spec->num_modes > HWMODE_B) {
700                 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
701                 hwmodes[HWMODE_B].num_channels = 14;
702                 hwmodes[HWMODE_B].num_rates = 4;
703                 hwmodes[HWMODE_B].channels = channels;
704                 hwmodes[HWMODE_B].rates = rates;
705         }
706
707         /*
708          * Intitialize 802.11g
709          * Rates: CCK, OFDM.
710          * Channels: OFDM.
711          */
712         if (spec->num_modes > HWMODE_G) {
713                 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
714                 hwmodes[HWMODE_G].num_channels = 14;
715                 hwmodes[HWMODE_G].num_rates = spec->num_rates;
716                 hwmodes[HWMODE_G].channels = channels;
717                 hwmodes[HWMODE_G].rates = rates;
718         }
719
720         /*
721          * Intitialize 802.11a
722          * Rates: OFDM.
723          * Channels: OFDM, UNII, HiperLAN2.
724          */
725         if (spec->num_modes > HWMODE_A) {
726                 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
727                 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
728                 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
729                 hwmodes[HWMODE_A].channels = &channels[14];
730                 hwmodes[HWMODE_A].rates = &rates[4];
731         }
732
733         if (spec->num_modes > HWMODE_G &&
734             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
735                 goto exit_free_rates;
736
737         if (spec->num_modes > HWMODE_B &&
738             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
739                 goto exit_free_rates;
740
741         if (spec->num_modes > HWMODE_A &&
742             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
743                 goto exit_free_rates;
744
745         rt2x00dev->hwmodes = hwmodes;
746
747         return 0;
748
749 exit_free_rates:
750         kfree(rates);
751
752 exit_free_channels:
753         kfree(channels);
754
755 exit_free_modes:
756         kfree(hwmodes);
757
758 exit:
759         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
760         return -ENOMEM;
761 }
762
763 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
764 {
765         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
766                 ieee80211_unregister_hw(rt2x00dev->hw);
767
768         if (likely(rt2x00dev->hwmodes)) {
769                 kfree(rt2x00dev->hwmodes->channels);
770                 kfree(rt2x00dev->hwmodes->rates);
771                 kfree(rt2x00dev->hwmodes);
772                 rt2x00dev->hwmodes = NULL;
773         }
774 }
775
776 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
777 {
778         struct hw_mode_spec *spec = &rt2x00dev->spec;
779         int status;
780
781         /*
782          * Initialize HW modes.
783          */
784         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
785         if (status)
786                 return status;
787
788         /*
789          * Register HW.
790          */
791         status = ieee80211_register_hw(rt2x00dev->hw);
792         if (status) {
793                 rt2x00lib_remove_hw(rt2x00dev);
794                 return status;
795         }
796
797         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
798
799         return 0;
800 }
801
802 /*
803  * Initialization/uninitialization handlers.
804  */
805 static int rt2x00lib_alloc_entries(struct data_ring *ring,
806                                    const u16 max_entries, const u16 data_size,
807                                    const u16 desc_size)
808 {
809         struct data_entry *entry;
810         unsigned int i;
811
812         ring->stats.limit = max_entries;
813         ring->data_size = data_size;
814         ring->desc_size = desc_size;
815
816         /*
817          * Allocate all ring entries.
818          */
819         entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
820         if (!entry)
821                 return -ENOMEM;
822
823         for (i = 0; i < ring->stats.limit; i++) {
824                 entry[i].flags = 0;
825                 entry[i].ring = ring;
826                 entry[i].skb = NULL;
827         }
828
829         ring->entry = entry;
830
831         return 0;
832 }
833
834 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
835 {
836         struct data_ring *ring;
837
838         /*
839          * Allocate the RX ring.
840          */
841         if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
842                                     rt2x00dev->ops->rxd_size))
843                 return -ENOMEM;
844
845         /*
846          * First allocate the TX rings.
847          */
848         txring_for_each(rt2x00dev, ring) {
849                 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
850                                             rt2x00dev->ops->txd_size))
851                         return -ENOMEM;
852         }
853
854         if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
855                 return 0;
856
857         /*
858          * Allocate the BEACON ring.
859          */
860         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
861                                     MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
862                 return -ENOMEM;
863
864         /*
865          * Allocate the Atim ring.
866          */
867         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
868                                     DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
869                 return -ENOMEM;
870
871         return 0;
872 }
873
874 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
875 {
876         struct data_ring *ring;
877
878         ring_for_each(rt2x00dev, ring) {
879                 kfree(ring->entry);
880                 ring->entry = NULL;
881         }
882 }
883
884 void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
885 {
886         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
887                 return;
888
889         /*
890          * Unregister rfkill.
891          */
892         rt2x00rfkill_unregister(rt2x00dev);
893
894         /*
895          * Allow the HW to uninitialize.
896          */
897         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
898
899         /*
900          * Free allocated ring entries.
901          */
902         rt2x00lib_free_ring_entries(rt2x00dev);
903 }
904
905 int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
906 {
907         int status;
908
909         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
910                 return 0;
911
912         /*
913          * Allocate all ring entries.
914          */
915         status = rt2x00lib_alloc_ring_entries(rt2x00dev);
916         if (status) {
917                 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
918                 return status;
919         }
920
921         /*
922          * Initialize the device.
923          */
924         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
925         if (status)
926                 goto exit;
927
928         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
929
930         /*
931          * Register the rfkill handler.
932          */
933         status = rt2x00rfkill_register(rt2x00dev);
934         if (status)
935                 goto exit_unitialize;
936
937         return 0;
938
939 exit_unitialize:
940         rt2x00lib_uninitialize(rt2x00dev);
941
942 exit:
943         rt2x00lib_free_ring_entries(rt2x00dev);
944
945         return status;
946 }
947
948 /*
949  * driver allocation handlers.
950  */
951 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
952 {
953         struct data_ring *ring;
954
955         /*
956          * We need the following rings:
957          * RX: 1
958          * TX: hw->queues
959          * Beacon: 1 (if required)
960          * Atim: 1 (if required)
961          */
962         rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
963             (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
964
965         ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
966         if (!ring) {
967                 ERROR(rt2x00dev, "Ring allocation failed.\n");
968                 return -ENOMEM;
969         }
970
971         /*
972          * Initialize pointers
973          */
974         rt2x00dev->rx = ring;
975         rt2x00dev->tx = &rt2x00dev->rx[1];
976         if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
977                 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
978
979         /*
980          * Initialize ring parameters.
981          * cw_min: 2^5 = 32.
982          * cw_max: 2^10 = 1024.
983          */
984         ring_for_each(rt2x00dev, ring) {
985                 ring->rt2x00dev = rt2x00dev;
986                 ring->tx_params.aifs = 2;
987                 ring->tx_params.cw_min = 5;
988                 ring->tx_params.cw_max = 10;
989         }
990
991         return 0;
992 }
993
994 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
995 {
996         kfree(rt2x00dev->rx);
997         rt2x00dev->rx = NULL;
998         rt2x00dev->tx = NULL;
999         rt2x00dev->bcn = NULL;
1000 }
1001
1002 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1003 {
1004         int retval = -ENOMEM;
1005
1006         /*
1007          * Let the driver probe the device to detect the capabilities.
1008          */
1009         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1010         if (retval) {
1011                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1012                 goto exit;
1013         }
1014
1015         /*
1016          * Initialize configuration work.
1017          */
1018         INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1019         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1020         INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1021         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1022
1023         /*
1024          * Reset current working type.
1025          */
1026         rt2x00dev->interface.type = INVALID_INTERFACE;
1027
1028         /*
1029          * Allocate ring array.
1030          */
1031         retval = rt2x00lib_alloc_rings(rt2x00dev);
1032         if (retval)
1033                 goto exit;
1034
1035         /*
1036          * Initialize ieee80211 structure.
1037          */
1038         retval = rt2x00lib_probe_hw(rt2x00dev);
1039         if (retval) {
1040                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1041                 goto exit;
1042         }
1043
1044         /*
1045          * Allocatie rfkill.
1046          */
1047         retval = rt2x00rfkill_allocate(rt2x00dev);
1048         if (retval)
1049                 goto exit;
1050
1051         /*
1052          * Open the debugfs entry.
1053          */
1054         rt2x00debug_register(rt2x00dev);
1055
1056         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1057
1058         return 0;
1059
1060 exit:
1061         rt2x00lib_remove_dev(rt2x00dev);
1062
1063         return retval;
1064 }
1065 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1066
1067 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1068 {
1069         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1070
1071         /*
1072          * Disable radio.
1073          */
1074         rt2x00lib_disable_radio(rt2x00dev);
1075
1076         /*
1077          * Uninitialize device.
1078          */
1079         rt2x00lib_uninitialize(rt2x00dev);
1080
1081         /*
1082          * Close debugfs entry.
1083          */
1084         rt2x00debug_deregister(rt2x00dev);
1085
1086         /*
1087          * Free rfkill
1088          */
1089         rt2x00rfkill_free(rt2x00dev);
1090
1091         /*
1092          * Free ieee80211_hw memory.
1093          */
1094         rt2x00lib_remove_hw(rt2x00dev);
1095
1096         /*
1097          * Free firmware image.
1098          */
1099         rt2x00lib_free_firmware(rt2x00dev);
1100
1101         /*
1102          * Free ring structures.
1103          */
1104         rt2x00lib_free_rings(rt2x00dev);
1105 }
1106 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1107
1108 /*
1109  * Device state handlers
1110  */
1111 #ifdef CONFIG_PM
1112 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1113 {
1114         int retval;
1115
1116         NOTICE(rt2x00dev, "Going to sleep.\n");
1117         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1118
1119         /*
1120          * Only continue if mac80211 has open interfaces.
1121          */
1122         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1123                 goto exit;
1124         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1125
1126         /*
1127          * Disable radio and unitialize all items
1128          * that must be recreated on resume.
1129          */
1130         rt2x00mac_stop(rt2x00dev->hw);
1131         rt2x00lib_uninitialize(rt2x00dev);
1132         rt2x00debug_deregister(rt2x00dev);
1133
1134 exit:
1135         /*
1136          * Set device mode to sleep for power management.
1137          */
1138         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1139         if (retval)
1140                 return retval;
1141
1142         return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1145
1146 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1147 {
1148         struct interface *intf = &rt2x00dev->interface;
1149         int retval;
1150
1151         NOTICE(rt2x00dev, "Waking up.\n");
1152         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1153
1154         /*
1155          * Open the debugfs entry.
1156          */
1157         rt2x00debug_register(rt2x00dev);
1158
1159         /*
1160          * Only continue if mac80211 had open interfaces.
1161          */
1162         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1163                 return 0;
1164
1165         /*
1166          * Reinitialize device and all active interfaces.
1167          */
1168         retval = rt2x00mac_start(rt2x00dev->hw);
1169         if (retval)
1170                 goto exit;
1171
1172         /*
1173          * Reconfigure device.
1174          */
1175         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1176         if (!rt2x00dev->hw->conf.radio_enabled)
1177                 rt2x00lib_disable_radio(rt2x00dev);
1178
1179         rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1180         rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1181         rt2x00lib_config_type(rt2x00dev, intf->type);
1182
1183         /*
1184          * It is possible that during that mac80211 has attempted
1185          * to send frames while we were suspending or resuming.
1186          * In that case we have disabled the TX queue and should
1187          * now enable it again
1188          */
1189         ieee80211_start_queues(rt2x00dev->hw);
1190
1191         /*
1192          * When in Master or Ad-hoc mode,
1193          * restart Beacon transmitting by faking a beacondone event.
1194          */
1195         if (intf->type == IEEE80211_IF_TYPE_AP ||
1196             intf->type == IEEE80211_IF_TYPE_IBSS)
1197                 rt2x00lib_beacondone(rt2x00dev);
1198
1199         return 0;
1200
1201 exit:
1202         rt2x00lib_disable_radio(rt2x00dev);
1203         rt2x00lib_uninitialize(rt2x00dev);
1204         rt2x00debug_deregister(rt2x00dev);
1205
1206         return retval;
1207 }
1208 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1209 #endif /* CONFIG_PM */
1210
1211 /*
1212  * rt2x00lib module information.
1213  */
1214 MODULE_AUTHOR(DRV_PROJECT);
1215 MODULE_VERSION(DRV_VERSION);
1216 MODULE_DESCRIPTION("rt2x00 library");
1217 MODULE_LICENSE("GPL");