2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Link tuning handlers
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
53 * Reset the link tuner.
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
61 * Clear all (possibly) pre-existing quality statistics.
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
76 rt2x00lib_reset_link_tuner(rt2x00dev);
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
88 * Radio control handlers.
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
103 * Initialize all data queues.
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
111 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
116 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124 * Start the TX queues.
126 ieee80211_start_queues(rt2x00dev->hw);
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
133 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
137 * Stop all scheduled work.
139 if (work_pending(&rt2x00dev->intf_work))
140 cancel_work_sync(&rt2x00dev->intf_work);
141 if (work_pending(&rt2x00dev->filter_work))
142 cancel_work_sync(&rt2x00dev->filter_work);
145 * Stop the TX queues.
147 ieee80211_stop_queues(rt2x00dev->hw);
152 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
157 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
163 * When we are disabling the RX, we should also stop the link tuner.
165 if (state == STATE_RADIO_RX_OFF)
166 rt2x00lib_stop_link_tuner(rt2x00dev);
168 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
171 * When we are enabling the RX, we should also start the link tuner.
173 if (state == STATE_RADIO_RX_ON &&
174 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175 rt2x00lib_start_link_tuner(rt2x00dev);
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
180 enum antenna rx = rt2x00dev->link.ant.active.rx;
181 enum antenna tx = rt2x00dev->link.ant.active.tx;
183 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
185 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
188 * We are done sampling. Now we should evaluate the results.
190 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
193 * During the last period we have sampled the RSSI
194 * from both antenna's. It now is time to determine
195 * which antenna demonstrated the best performance.
196 * When we are already on the antenna with the best
197 * performance, then there really is nothing for us
200 if (sample_a == sample_b)
203 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
206 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
214 enum antenna rx = rt2x00dev->link.ant.active.rx;
215 enum antenna tx = rt2x00dev->link.ant.active.tx;
216 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
220 * Legacy driver indicates that we should swap antenna's
221 * when the difference in RSSI is greater that 5. This
222 * also should be done when the RSSI was actually better
223 * then the previous sample.
224 * When the difference exceeds the threshold we should
225 * sample the rssi from the other antenna to make a valid
226 * comparison between the 2 antennas.
228 if (abs(rssi_curr - rssi_old) < 5)
231 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
233 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
236 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
245 * Determine if software diversity is enabled for
246 * either the TX or RX antenna (or both).
247 * Always perform this check since within the link
248 * tuner interval the configuration might have changed.
250 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
253 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
260 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262 rt2x00dev->link.ant.flags = 0;
267 * If we have only sampled the data over the last period
268 * we should now harvest the data. Otherwise just evaluate
269 * the data. The latter should only be performed once
272 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274 else if (rt2x00dev->link.count & 1)
275 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
285 if (link->qual.avg_rssi)
286 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287 link->qual.avg_rssi = avg_rssi;
290 * Update antenna RSSI
292 if (link->ant.rssi_ant)
293 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294 link->ant.rssi_ant = rssi;
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
299 if (qual->rx_failed || qual->rx_success)
300 qual->rx_percentage =
301 (qual->rx_success * 100) /
302 (qual->rx_failed + qual->rx_success);
304 qual->rx_percentage = 50;
306 if (qual->tx_failed || qual->tx_success)
307 qual->tx_percentage =
308 (qual->tx_success * 100) /
309 (qual->tx_failed + qual->tx_success);
311 qual->tx_percentage = 50;
313 qual->rx_success = 0;
315 qual->tx_success = 0;
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
322 int rssi_percentage = 0;
326 * We need a positive value for the RSSI.
329 rssi += rt2x00dev->rssi_offset;
332 * Calculate the different percentages,
333 * which will be used for the signal.
335 if (rt2x00dev->rssi_offset)
336 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
339 * Add the individual percentages and use the WEIGHT
340 * defines to calculate the current link signal.
342 signal = ((WEIGHT_RSSI * rssi_percentage) +
343 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
346 return (signal > 100) ? 100 : signal;
349 static void rt2x00lib_link_tuner(struct work_struct *work)
351 struct rt2x00_dev *rt2x00dev =
352 container_of(work, struct rt2x00_dev, link.work.work);
355 * When the radio is shutting down we should
356 * immediately cease all link tuning.
358 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
364 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366 rt2x00dev->link.qual.rx_failed;
369 * Only perform the link tuning when Link tuning
370 * has been enabled (This could have been disabled from the EEPROM).
372 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
376 * Precalculate a portion of the link signal which is
377 * in based on the tx/rx success/failure counters.
379 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
382 * Send a signal to the led to update the led signal strength.
384 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
387 * Evaluate antenna setup, make this the last step since this could
388 * possibly reset some statistics.
390 rt2x00lib_evaluate_antenna(rt2x00dev);
393 * Increase tuner counter, and reschedule the next link tuner run.
395 rt2x00dev->link.count++;
396 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
400 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
402 struct rt2x00_dev *rt2x00dev =
403 container_of(work, struct rt2x00_dev, filter_work);
404 unsigned int filter = rt2x00dev->packet_filter;
407 * Since we had stored the filter inside rt2x00dev->packet_filter,
408 * we should now clear that field. Otherwise the driver will
409 * assume nothing has changed (*total_flags will be compared
410 * to rt2x00dev->packet_filter to determine if any action is required).
412 rt2x00dev->packet_filter = 0;
414 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415 filter, &filter, 0, NULL);
418 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
419 struct ieee80211_vif *vif)
421 struct rt2x00_dev *rt2x00dev = data;
422 struct rt2x00_intf *intf = vif_to_intf(vif);
424 struct ieee80211_tx_control control;
425 struct ieee80211_bss_conf conf;
429 * Copy all data we need during this action under the protection
430 * of a spinlock. Otherwise race conditions might occur which results
431 * into an invalid configuration.
433 spin_lock(&intf->lock);
435 memcpy(&conf, &intf->conf, sizeof(conf));
436 delayed_flags = intf->delayed_flags;
437 intf->delayed_flags = 0;
439 spin_unlock(&intf->lock);
441 if (delayed_flags & DELAYED_UPDATE_BEACON) {
442 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
444 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
450 if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
451 rt2x00lib_config_preamble(rt2x00dev, intf,
452 intf->conf.use_short_preamble);
455 static void rt2x00lib_intf_scheduled(struct work_struct *work)
457 struct rt2x00_dev *rt2x00dev =
458 container_of(work, struct rt2x00_dev, intf_work);
461 * Iterate over each interface and perform the
462 * requested configurations.
464 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
465 rt2x00lib_intf_scheduled_iter,
470 * Interrupt context handlers.
472 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
473 struct ieee80211_vif *vif)
475 struct rt2x00_intf *intf = vif_to_intf(vif);
477 if (vif->type != IEEE80211_IF_TYPE_AP &&
478 vif->type != IEEE80211_IF_TYPE_IBSS)
481 spin_lock(&intf->lock);
482 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
483 spin_unlock(&intf->lock);
486 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
488 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
491 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
492 rt2x00lib_beacondone_iter,
495 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
497 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
499 void rt2x00lib_txdone(struct queue_entry *entry,
500 struct txdone_entry_desc *txdesc)
502 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
503 struct skb_frame_desc *skbdesc;
504 struct ieee80211_tx_status tx_status;
505 int success = !!(txdesc->status == TX_SUCCESS ||
506 txdesc->status == TX_SUCCESS_RETRY);
507 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
508 txdesc->status == TX_FAIL_INVALID ||
509 txdesc->status == TX_FAIL_OTHER);
512 * Update TX statistics.
514 rt2x00dev->link.qual.tx_success += success;
515 rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
518 * Initialize TX status
521 tx_status.ack_signal = 0;
522 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
523 tx_status.retry_count = txdesc->retry;
524 memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
526 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
528 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
530 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
533 tx_status.queue_length = entry->queue->limit;
534 tx_status.queue_number = tx_status.control.queue;
536 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
538 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
540 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
544 * Send the tx_status to debugfs. Only send the status report
545 * to mac80211 when the frame originated from there. If this was
546 * a extra frame coming through a mac80211 library call (RTS/CTS)
547 * then we should not send the status report back.
548 * If send to mac80211, mac80211 will clean up the skb structure,
549 * otherwise we have to do it ourself.
551 skbdesc = get_skb_frame_desc(entry->skb);
552 skbdesc->frame_type = DUMP_FRAME_TXDONE;
554 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
556 if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
557 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
558 entry->skb, &tx_status);
560 dev_kfree_skb(entry->skb);
563 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
565 void rt2x00lib_rxdone(struct queue_entry *entry,
566 struct rxdone_entry_desc *rxdesc)
568 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
569 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
570 struct ieee80211_supported_band *sband;
571 struct ieee80211_hdr *hdr;
572 const struct rt2x00_rate *rate;
578 * Update RX statistics.
580 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
581 for (i = 0; i < sband->n_bitrates; i++) {
582 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
585 * When frame was received with an OFDM bitrate,
586 * the signal is the PLCP value. If it was received with
587 * a CCK bitrate the signal is the rate in 100kbit/s.
589 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
590 (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
597 * Only update link status if this is a beacon frame carrying our bssid.
599 hdr = (struct ieee80211_hdr *)entry->skb->data;
600 fc = le16_to_cpu(hdr->frame_control);
601 if (is_beacon(fc) && rxdesc->my_bss)
602 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
604 rt2x00dev->link.qual.rx_success++;
606 rx_status->rate_idx = idx;
608 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
609 rx_status->ssi = rxdesc->rssi;
610 rx_status->flag = rxdesc->flags;
611 rx_status->antenna = rt2x00dev->link.ant.active.rx;
614 * Send frame to mac80211 & debugfs.
615 * mac80211 will clean up the skb structure.
617 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
618 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
619 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
622 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
625 * TX descriptor initializer
627 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
629 struct ieee80211_tx_control *control)
631 struct txentry_desc txdesc;
632 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
633 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
634 const struct rt2x00_rate *rate;
642 memset(&txdesc, 0, sizeof(txdesc));
644 txdesc.queue = skbdesc->entry->queue->qid;
645 txdesc.cw_min = skbdesc->entry->queue->cw_min;
646 txdesc.cw_max = skbdesc->entry->queue->cw_max;
647 txdesc.aifs = skbdesc->entry->queue->aifs;
650 * Read required fields from ieee80211 header.
652 frame_control = le16_to_cpu(hdr->frame_control);
653 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
655 tx_rate = control->tx_rate->hw_value;
658 * Check whether this frame is to be acked
660 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
661 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
664 * Check if this is a RTS/CTS frame
666 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
667 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
668 if (is_rts_frame(frame_control)) {
669 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
670 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
672 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
673 if (control->rts_cts_rate)
674 tx_rate = control->rts_cts_rate->hw_value;
677 rate = rt2x00_get_rate(tx_rate);
680 * Check if more fragments are pending
682 if (ieee80211_get_morefrag(hdr)) {
683 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
684 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
688 * Beacons and probe responses require the tsf timestamp
689 * to be inserted into the frame.
691 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
692 is_probe_resp(frame_control))
693 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
696 * Determine with what IFS priority this frame should be send.
697 * Set ifs to IFS_SIFS when the this is not the first fragment,
698 * or this fragment came after RTS/CTS.
700 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
701 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
702 txdesc.ifs = IFS_SIFS;
704 txdesc.ifs = IFS_BACKOFF;
708 * Length calculation depends on OFDM/CCK rate.
710 txdesc.signal = rate->plcp;
711 txdesc.service = 0x04;
713 length = skbdesc->data_len + FCS_LEN;
714 if (rate->flags & DEV_RATE_OFDM) {
715 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
717 txdesc.length_high = (length >> 6) & 0x3f;
718 txdesc.length_low = length & 0x3f;
721 * Convert length to microseconds.
723 residual = get_duration_res(length, rate->bitrate);
724 duration = get_duration(length, rate->bitrate);
730 * Check if we need to set the Length Extension
732 if (rate->bitrate == 110 && residual <= 30)
733 txdesc.service |= 0x80;
736 txdesc.length_high = (duration >> 8) & 0xff;
737 txdesc.length_low = duration & 0xff;
740 * When preamble is enabled we should set the
741 * preamble bit for the signal.
743 if (rt2x00_get_rate_preamble(tx_rate))
744 txdesc.signal |= 0x08;
747 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
750 * Update queue entry.
752 skbdesc->entry->skb = skb;
755 * The frame has been completely initialized and ready
756 * for sending to the device. The caller will push the
757 * frame to the device, but we are going to push the
758 * frame to debugfs here.
760 skbdesc->frame_type = DUMP_FRAME_TX;
761 rt2x00debug_dump_frame(rt2x00dev, skb);
763 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
766 * Driver initialization handlers.
768 const struct rt2x00_rate rt2x00_supported_rates[12] = {
770 .flags = DEV_RATE_CCK,
772 .ratemask = DEV_RATEMASK_1MB,
776 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
778 .ratemask = DEV_RATEMASK_2MB,
782 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
784 .ratemask = DEV_RATEMASK_5_5MB,
788 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
790 .ratemask = DEV_RATEMASK_11MB,
794 .flags = DEV_RATE_OFDM,
796 .ratemask = DEV_RATEMASK_6MB,
800 .flags = DEV_RATE_OFDM,
802 .ratemask = DEV_RATEMASK_9MB,
806 .flags = DEV_RATE_OFDM,
808 .ratemask = DEV_RATEMASK_12MB,
812 .flags = DEV_RATE_OFDM,
814 .ratemask = DEV_RATEMASK_18MB,
818 .flags = DEV_RATE_OFDM,
820 .ratemask = DEV_RATEMASK_24MB,
824 .flags = DEV_RATE_OFDM,
826 .ratemask = DEV_RATEMASK_36MB,
830 .flags = DEV_RATE_OFDM,
832 .ratemask = DEV_RATEMASK_48MB,
836 .flags = DEV_RATE_OFDM,
838 .ratemask = DEV_RATEMASK_54MB,
843 static void rt2x00lib_channel(struct ieee80211_channel *entry,
844 const int channel, const int tx_power,
847 entry->center_freq = ieee80211_channel_to_frequency(channel);
848 entry->hw_value = value;
849 entry->max_power = tx_power;
850 entry->max_antenna_gain = 0xff;
853 static void rt2x00lib_rate(struct ieee80211_rate *entry,
854 const u16 index, const struct rt2x00_rate *rate)
857 entry->bitrate = rate->bitrate;
858 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
859 entry->hw_value_short = entry->hw_value;
861 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
862 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
863 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
867 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
868 struct hw_mode_spec *spec)
870 struct ieee80211_hw *hw = rt2x00dev->hw;
871 struct ieee80211_channel *channels;
872 struct ieee80211_rate *rates;
873 unsigned int num_rates;
875 unsigned char tx_power;
878 if (spec->supported_rates & SUPPORT_RATE_CCK)
880 if (spec->supported_rates & SUPPORT_RATE_OFDM)
883 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
887 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
889 goto exit_free_channels;
892 * Initialize Rate list.
894 for (i = 0; i < num_rates; i++)
895 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
898 * Initialize Channel list.
900 for (i = 0; i < spec->num_channels; i++) {
901 if (spec->channels[i].channel <= 14) {
902 if (spec->tx_power_bg)
903 tx_power = spec->tx_power_bg[i];
905 tx_power = spec->tx_power_default;
907 if (spec->tx_power_a)
908 tx_power = spec->tx_power_a[i];
910 tx_power = spec->tx_power_default;
913 rt2x00lib_channel(&channels[i],
914 spec->channels[i].channel, tx_power, i);
918 * Intitialize 802.11b, 802.11g
922 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
923 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
924 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
925 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
926 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
927 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
928 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
932 * Intitialize 802.11a
934 * Channels: OFDM, UNII, HiperLAN2.
936 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
937 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
938 spec->num_channels - 14;
939 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
941 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
942 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
943 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
944 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
951 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
955 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
957 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
958 ieee80211_unregister_hw(rt2x00dev->hw);
960 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
961 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
962 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
963 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
964 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
968 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
970 struct hw_mode_spec *spec = &rt2x00dev->spec;
974 * Initialize HW modes.
976 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
983 status = ieee80211_register_hw(rt2x00dev->hw);
985 rt2x00lib_remove_hw(rt2x00dev);
989 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
995 * Initialization/uninitialization handlers.
997 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
999 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1003 * Unregister rfkill.
1005 rt2x00rfkill_unregister(rt2x00dev);
1008 * Allow the HW to uninitialize.
1010 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1013 * Free allocated queue entries.
1015 rt2x00queue_uninitialize(rt2x00dev);
1018 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1022 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1026 * Allocate all queue entries.
1028 status = rt2x00queue_initialize(rt2x00dev);
1033 * Initialize the device.
1035 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1039 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1042 * Register the rfkill handler.
1044 status = rt2x00rfkill_register(rt2x00dev);
1051 rt2x00lib_uninitialize(rt2x00dev);
1056 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1060 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1064 * If this is the first interface which is added,
1065 * we should load the firmware now.
1067 retval = rt2x00lib_load_firmware(rt2x00dev);
1072 * Initialize the device.
1074 retval = rt2x00lib_initialize(rt2x00dev);
1081 retval = rt2x00lib_enable_radio(rt2x00dev);
1083 rt2x00lib_uninitialize(rt2x00dev);
1087 rt2x00dev->intf_ap_count = 0;
1088 rt2x00dev->intf_sta_count = 0;
1089 rt2x00dev->intf_associated = 0;
1091 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1096 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1098 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1102 * Perhaps we can add something smarter here,
1103 * but for now just disabling the radio should do.
1105 rt2x00lib_disable_radio(rt2x00dev);
1107 rt2x00dev->intf_ap_count = 0;
1108 rt2x00dev->intf_sta_count = 0;
1109 rt2x00dev->intf_associated = 0;
1111 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1115 * driver allocation handlers.
1117 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1119 int retval = -ENOMEM;
1122 * Make room for rt2x00_intf inside the per-interface
1123 * structure ieee80211_vif.
1125 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1128 * Let the driver probe the device to detect the capabilities.
1130 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1132 ERROR(rt2x00dev, "Failed to allocate device.\n");
1137 * Initialize configuration work.
1139 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1140 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1141 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1144 * Allocate queue array.
1146 retval = rt2x00queue_allocate(rt2x00dev);
1151 * Initialize ieee80211 structure.
1153 retval = rt2x00lib_probe_hw(rt2x00dev);
1155 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1162 rt2x00leds_register(rt2x00dev);
1167 retval = rt2x00rfkill_allocate(rt2x00dev);
1172 * Open the debugfs entry.
1174 rt2x00debug_register(rt2x00dev);
1176 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1181 rt2x00lib_remove_dev(rt2x00dev);
1185 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1187 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1189 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1194 rt2x00lib_disable_radio(rt2x00dev);
1197 * Uninitialize device.
1199 rt2x00lib_uninitialize(rt2x00dev);
1202 * Close debugfs entry.
1204 rt2x00debug_deregister(rt2x00dev);
1209 rt2x00rfkill_free(rt2x00dev);
1214 rt2x00leds_unregister(rt2x00dev);
1217 * Free ieee80211_hw memory.
1219 rt2x00lib_remove_hw(rt2x00dev);
1222 * Free firmware image.
1224 rt2x00lib_free_firmware(rt2x00dev);
1227 * Free queue structures.
1229 rt2x00queue_free(rt2x00dev);
1231 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1234 * Device state handlers
1237 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1241 NOTICE(rt2x00dev, "Going to sleep.\n");
1242 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1245 * Only continue if mac80211 has open interfaces.
1247 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1249 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1252 * Disable radio and unitialize all items
1253 * that must be recreated on resume.
1255 rt2x00lib_stop(rt2x00dev);
1256 rt2x00lib_uninitialize(rt2x00dev);
1257 rt2x00leds_suspend(rt2x00dev);
1258 rt2x00debug_deregister(rt2x00dev);
1262 * Set device mode to sleep for power management.
1264 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1270 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1272 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1273 struct ieee80211_vif *vif)
1275 struct rt2x00_dev *rt2x00dev = data;
1276 struct rt2x00_intf *intf = vif_to_intf(vif);
1278 spin_lock(&intf->lock);
1280 rt2x00lib_config_intf(rt2x00dev, intf,
1281 vif->type, intf->mac, intf->bssid);
1285 * Master or Ad-hoc mode require a new beacon update.
1287 if (vif->type == IEEE80211_IF_TYPE_AP ||
1288 vif->type == IEEE80211_IF_TYPE_IBSS)
1289 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1291 spin_unlock(&intf->lock);
1294 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1298 NOTICE(rt2x00dev, "Waking up.\n");
1301 * Open the debugfs entry and restore led handling.
1303 rt2x00debug_register(rt2x00dev);
1304 rt2x00leds_resume(rt2x00dev);
1307 * Only continue if mac80211 had open interfaces.
1309 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1313 * Reinitialize device and all active interfaces.
1315 retval = rt2x00lib_start(rt2x00dev);
1320 * Reconfigure device.
1322 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1323 if (!rt2x00dev->hw->conf.radio_enabled)
1324 rt2x00lib_disable_radio(rt2x00dev);
1327 * Iterator over each active interface to
1328 * reconfigure the hardware.
1330 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1331 rt2x00lib_resume_intf, rt2x00dev);
1334 * We are ready again to receive requests from mac80211.
1336 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1339 * It is possible that during that mac80211 has attempted
1340 * to send frames while we were suspending or resuming.
1341 * In that case we have disabled the TX queue and should
1342 * now enable it again
1344 ieee80211_start_queues(rt2x00dev->hw);
1347 * During interface iteration we might have changed the
1348 * delayed_flags, time to handles the event by calling
1349 * the work handler directly.
1351 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1356 rt2x00lib_disable_radio(rt2x00dev);
1357 rt2x00lib_uninitialize(rt2x00dev);
1358 rt2x00debug_deregister(rt2x00dev);
1362 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1363 #endif /* CONFIG_PM */
1366 * rt2x00lib module information.
1368 MODULE_AUTHOR(DRV_PROJECT);
1369 MODULE_VERSION(DRV_VERSION);
1370 MODULE_DESCRIPTION("rt2x00 library");
1371 MODULE_LICENSE("GPL");