]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Use skbdesc fields for descriptor initialization
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112                                                        STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118         /*
119          * Enable RX.
120          */
121         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123         /*
124          * Start the TX queues.
125          */
126         ieee80211_start_queues(rt2x00dev->hw);
127
128         return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134                 return;
135
136         /*
137          * Stop all scheduled work.
138          */
139         if (work_pending(&rt2x00dev->intf_work))
140                 cancel_work_sync(&rt2x00dev->intf_work);
141         if (work_pending(&rt2x00dev->filter_work))
142                 cancel_work_sync(&rt2x00dev->filter_work);
143
144         /*
145          * Stop the TX queues.
146          */
147         ieee80211_stop_queues(rt2x00dev->hw);
148
149         /*
150          * Disable RX.
151          */
152         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154         /*
155          * Disable radio.
156          */
157         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162         /*
163          * When we are disabling the RX, we should also stop the link tuner.
164          */
165         if (state == STATE_RADIO_RX_OFF)
166                 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170         /*
171          * When we are enabling the RX, we should also start the link tuner.
172          */
173         if (state == STATE_RADIO_RX_ON &&
174             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175                 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180         enum antenna rx = rt2x00dev->link.ant.active.rx;
181         enum antenna tx = rt2x00dev->link.ant.active.tx;
182         int sample_a =
183             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184         int sample_b =
185             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187         /*
188          * We are done sampling. Now we should evaluate the results.
189          */
190         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192         /*
193          * During the last period we have sampled the RSSI
194          * from both antenna's. It now is time to determine
195          * which antenna demonstrated the best performance.
196          * When we are already on the antenna with the best
197          * performance, then there really is nothing for us
198          * left to do.
199          */
200         if (sample_a == sample_b)
201                 return;
202
203         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214         enum antenna rx = rt2x00dev->link.ant.active.rx;
215         enum antenna tx = rt2x00dev->link.ant.active.tx;
216         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219         /*
220          * Legacy driver indicates that we should swap antenna's
221          * when the difference in RSSI is greater that 5. This
222          * also should be done when the RSSI was actually better
223          * then the previous sample.
224          * When the difference exceeds the threshold we should
225          * sample the rssi from the other antenna to make a valid
226          * comparison between the 2 antennas.
227          */
228         if (abs(rssi_curr - rssi_old) < 5)
229                 return;
230
231         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244         /*
245          * Determine if software diversity is enabled for
246          * either the TX or RX antenna (or both).
247          * Always perform this check since within the link
248          * tuner interval the configuration might have changed.
249          */
250         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262                 rt2x00dev->link.ant.flags = 0;
263                 return;
264         }
265
266         /*
267          * If we have only sampled the data over the last period
268          * we should now harvest the data. Otherwise just evaluate
269          * the data. The latter should only be performed once
270          * every 2 seconds.
271          */
272         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274         else if (rt2x00dev->link.count & 1)
275                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280         int avg_rssi = rssi;
281
282         /*
283          * Update global RSSI
284          */
285         if (link->qual.avg_rssi)
286                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287         link->qual.avg_rssi = avg_rssi;
288
289         /*
290          * Update antenna RSSI
291          */
292         if (link->ant.rssi_ant)
293                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294         link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299         if (qual->rx_failed || qual->rx_success)
300                 qual->rx_percentage =
301                     (qual->rx_success * 100) /
302                     (qual->rx_failed + qual->rx_success);
303         else
304                 qual->rx_percentage = 50;
305
306         if (qual->tx_failed || qual->tx_success)
307                 qual->tx_percentage =
308                     (qual->tx_success * 100) /
309                     (qual->tx_failed + qual->tx_success);
310         else
311                 qual->tx_percentage = 50;
312
313         qual->rx_success = 0;
314         qual->rx_failed = 0;
315         qual->tx_success = 0;
316         qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320                                            int rssi)
321 {
322         int rssi_percentage = 0;
323         int signal;
324
325         /*
326          * We need a positive value for the RSSI.
327          */
328         if (rssi < 0)
329                 rssi += rt2x00dev->rssi_offset;
330
331         /*
332          * Calculate the different percentages,
333          * which will be used for the signal.
334          */
335         if (rt2x00dev->rssi_offset)
336                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338         /*
339          * Add the individual percentages and use the WEIGHT
340          * defines to calculate the current link signal.
341          */
342         signal = ((WEIGHT_RSSI * rssi_percentage) +
343                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346         return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351         struct rt2x00_dev *rt2x00dev =
352             container_of(work, struct rt2x00_dev, link.work.work);
353
354         /*
355          * When the radio is shutting down we should
356          * immediately cease all link tuning.
357          */
358         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359                 return;
360
361         /*
362          * Update statistics.
363          */
364         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366             rt2x00dev->link.qual.rx_failed;
367
368         /*
369          * Only perform the link tuning when Link tuning
370          * has been enabled (This could have been disabled from the EEPROM).
371          */
372         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375         /*
376          * Precalculate a portion of the link signal which is
377          * in based on the tx/rx success/failure counters.
378          */
379         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381         /*
382          * Send a signal to the led to update the led signal strength.
383          */
384         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
385
386         /*
387          * Evaluate antenna setup, make this the last step since this could
388          * possibly reset some statistics.
389          */
390         rt2x00lib_evaluate_antenna(rt2x00dev);
391
392         /*
393          * Increase tuner counter, and reschedule the next link tuner run.
394          */
395         rt2x00dev->link.count++;
396         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
397                            LINK_TUNE_INTERVAL);
398 }
399
400 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
401 {
402         struct rt2x00_dev *rt2x00dev =
403             container_of(work, struct rt2x00_dev, filter_work);
404         unsigned int filter = rt2x00dev->packet_filter;
405
406         /*
407          * Since we had stored the filter inside rt2x00dev->packet_filter,
408          * we should now clear that field. Otherwise the driver will
409          * assume nothing has changed (*total_flags will be compared
410          * to rt2x00dev->packet_filter to determine if any action is required).
411          */
412         rt2x00dev->packet_filter = 0;
413
414         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415                                              filter, &filter, 0, NULL);
416 }
417
418 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
419                                           struct ieee80211_vif *vif)
420 {
421         struct rt2x00_dev *rt2x00dev = data;
422         struct rt2x00_intf *intf = vif_to_intf(vif);
423         struct sk_buff *skb;
424         struct ieee80211_tx_control control;
425         struct ieee80211_bss_conf conf;
426         int delayed_flags;
427
428         /*
429          * Copy all data we need during this action under the protection
430          * of a spinlock. Otherwise race conditions might occur which results
431          * into an invalid configuration.
432          */
433         spin_lock(&intf->lock);
434
435         memcpy(&conf, &intf->conf, sizeof(conf));
436         delayed_flags = intf->delayed_flags;
437         intf->delayed_flags = 0;
438
439         spin_unlock(&intf->lock);
440
441         if (delayed_flags & DELAYED_UPDATE_BEACON) {
442                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
443                 if (skb) {
444                         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
445                                                           &control);
446                         dev_kfree_skb(skb);
447                 }
448         }
449
450         if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
451                 rt2x00lib_config_preamble(rt2x00dev, intf,
452                                           intf->conf.use_short_preamble);
453 }
454
455 static void rt2x00lib_intf_scheduled(struct work_struct *work)
456 {
457         struct rt2x00_dev *rt2x00dev =
458             container_of(work, struct rt2x00_dev, intf_work);
459
460         /*
461          * Iterate over each interface and perform the
462          * requested configurations.
463          */
464         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
465                                             rt2x00lib_intf_scheduled_iter,
466                                             rt2x00dev);
467 }
468
469 /*
470  * Interrupt context handlers.
471  */
472 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
473                                       struct ieee80211_vif *vif)
474 {
475         struct rt2x00_intf *intf = vif_to_intf(vif);
476
477         if (vif->type != IEEE80211_IF_TYPE_AP &&
478             vif->type != IEEE80211_IF_TYPE_IBSS)
479                 return;
480
481         spin_lock(&intf->lock);
482         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
483         spin_unlock(&intf->lock);
484 }
485
486 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
487 {
488         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
489                 return;
490
491         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
492                                             rt2x00lib_beacondone_iter,
493                                             rt2x00dev);
494
495         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
496 }
497 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
498
499 void rt2x00lib_txdone(struct queue_entry *entry,
500                       struct txdone_entry_desc *txdesc)
501 {
502         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
503         struct skb_frame_desc *skbdesc;
504         struct ieee80211_tx_status tx_status;
505         int success = !!(txdesc->status == TX_SUCCESS ||
506                          txdesc->status == TX_SUCCESS_RETRY);
507         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
508                       txdesc->status == TX_FAIL_INVALID ||
509                       txdesc->status == TX_FAIL_OTHER);
510
511         /*
512          * Update TX statistics.
513          */
514         rt2x00dev->link.qual.tx_success += success;
515         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
516
517         /*
518          * Initialize TX status
519          */
520         tx_status.flags = 0;
521         tx_status.ack_signal = 0;
522         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
523         tx_status.retry_count = txdesc->retry;
524         memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
525
526         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
527                 if (success)
528                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
529                 else
530                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
531         }
532
533         tx_status.queue_length = entry->queue->limit;
534         tx_status.queue_number = tx_status.control.queue;
535
536         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
537                 if (success)
538                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
539                 else
540                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
541         }
542
543         /*
544          * Send the tx_status to debugfs. Only send the status report
545          * to mac80211 when the frame originated from there. If this was
546          * a extra frame coming through a mac80211 library call (RTS/CTS)
547          * then we should not send the status report back.
548          * If send to mac80211, mac80211 will clean up the skb structure,
549          * otherwise we have to do it ourself.
550          */
551         skbdesc = get_skb_frame_desc(entry->skb);
552         skbdesc->frame_type = DUMP_FRAME_TXDONE;
553
554         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
555
556         if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
557                 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
558                                             entry->skb, &tx_status);
559         else
560                 dev_kfree_skb(entry->skb);
561         entry->skb = NULL;
562 }
563 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
564
565 void rt2x00lib_rxdone(struct queue_entry *entry,
566                       struct rxdone_entry_desc *rxdesc)
567 {
568         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
569         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
570         struct ieee80211_supported_band *sband;
571         struct ieee80211_hdr *hdr;
572         const struct rt2x00_rate *rate;
573         unsigned int i;
574         int idx = -1;
575         u16 fc;
576
577         /*
578          * Update RX statistics.
579          */
580         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
581         for (i = 0; i < sband->n_bitrates; i++) {
582                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
583
584                 /*
585                  * When frame was received with an OFDM bitrate,
586                  * the signal is the PLCP value. If it was received with
587                  * a CCK bitrate the signal is the rate in 100kbit/s.
588                  */
589                 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
590                     (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
591                         idx = i;
592                         break;
593                 }
594         }
595
596         /*
597          * Only update link status if this is a beacon frame carrying our bssid.
598          */
599         hdr = (struct ieee80211_hdr *)entry->skb->data;
600         fc = le16_to_cpu(hdr->frame_control);
601         if (is_beacon(fc) && rxdesc->my_bss)
602                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
603
604         rt2x00dev->link.qual.rx_success++;
605
606         rx_status->rate_idx = idx;
607         rx_status->signal =
608             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
609         rx_status->ssi = rxdesc->rssi;
610         rx_status->flag = rxdesc->flags;
611         rx_status->antenna = rt2x00dev->link.ant.active.rx;
612
613         /*
614          * Send frame to mac80211 & debugfs.
615          * mac80211 will clean up the skb structure.
616          */
617         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
618         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
619         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
620         entry->skb = NULL;
621 }
622 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
623
624 /*
625  * TX descriptor initializer
626  */
627 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
628                              struct sk_buff *skb,
629                              struct ieee80211_tx_control *control)
630 {
631         struct txentry_desc txdesc;
632         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
633         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
634         const struct rt2x00_rate *rate;
635         int tx_rate;
636         int length;
637         int duration;
638         int residual;
639         u16 frame_control;
640         u16 seq_ctrl;
641
642         memset(&txdesc, 0, sizeof(txdesc));
643
644         txdesc.queue = skbdesc->entry->queue->qid;
645         txdesc.cw_min = skbdesc->entry->queue->cw_min;
646         txdesc.cw_max = skbdesc->entry->queue->cw_max;
647         txdesc.aifs = skbdesc->entry->queue->aifs;
648
649         /*
650          * Read required fields from ieee80211 header.
651          */
652         frame_control = le16_to_cpu(hdr->frame_control);
653         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
654
655         tx_rate = control->tx_rate->hw_value;
656
657         /*
658          * Check whether this frame is to be acked
659          */
660         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
661                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
662
663         /*
664          * Check if this is a RTS/CTS frame
665          */
666         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
667                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
668                 if (is_rts_frame(frame_control)) {
669                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
670                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
671                 } else
672                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
673                 if (control->rts_cts_rate)
674                         tx_rate = control->rts_cts_rate->hw_value;
675         }
676
677         rate = rt2x00_get_rate(tx_rate);
678
679         /*
680          * Check if more fragments are pending
681          */
682         if (ieee80211_get_morefrag(hdr)) {
683                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
684                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
685         }
686
687         /*
688          * Beacons and probe responses require the tsf timestamp
689          * to be inserted into the frame.
690          */
691         if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
692             is_probe_resp(frame_control))
693                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
694
695         /*
696          * Determine with what IFS priority this frame should be send.
697          * Set ifs to IFS_SIFS when the this is not the first fragment,
698          * or this fragment came after RTS/CTS.
699          */
700         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
701             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
702                 txdesc.ifs = IFS_SIFS;
703         else
704                 txdesc.ifs = IFS_BACKOFF;
705
706         /*
707          * PLCP setup
708          * Length calculation depends on OFDM/CCK rate.
709          */
710         txdesc.signal = rate->plcp;
711         txdesc.service = 0x04;
712
713         length = skbdesc->data_len + FCS_LEN;
714         if (rate->flags & DEV_RATE_OFDM) {
715                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
716
717                 txdesc.length_high = (length >> 6) & 0x3f;
718                 txdesc.length_low = length & 0x3f;
719         } else {
720                 /*
721                  * Convert length to microseconds.
722                  */
723                 residual = get_duration_res(length, rate->bitrate);
724                 duration = get_duration(length, rate->bitrate);
725
726                 if (residual != 0) {
727                         duration++;
728
729                         /*
730                          * Check if we need to set the Length Extension
731                          */
732                         if (rate->bitrate == 110 && residual <= 30)
733                                 txdesc.service |= 0x80;
734                 }
735
736                 txdesc.length_high = (duration >> 8) & 0xff;
737                 txdesc.length_low = duration & 0xff;
738
739                 /*
740                  * When preamble is enabled we should set the
741                  * preamble bit for the signal.
742                  */
743                 if (rt2x00_get_rate_preamble(tx_rate))
744                         txdesc.signal |= 0x08;
745         }
746
747         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
748
749         /*
750          * Update queue entry.
751          */
752         skbdesc->entry->skb = skb;
753
754         /*
755          * The frame has been completely initialized and ready
756          * for sending to the device. The caller will push the
757          * frame to the device, but we are going to push the
758          * frame to debugfs here.
759          */
760         skbdesc->frame_type = DUMP_FRAME_TX;
761         rt2x00debug_dump_frame(rt2x00dev, skb);
762 }
763 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
764
765 /*
766  * Driver initialization handlers.
767  */
768 const struct rt2x00_rate rt2x00_supported_rates[12] = {
769         {
770                 .flags = DEV_RATE_CCK,
771                 .bitrate = 10,
772                 .ratemask = DEV_RATEMASK_1MB,
773                 .plcp = 0x00,
774         },
775         {
776                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
777                 .bitrate = 20,
778                 .ratemask = DEV_RATEMASK_2MB,
779                 .plcp = 0x01,
780         },
781         {
782                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
783                 .bitrate = 55,
784                 .ratemask = DEV_RATEMASK_5_5MB,
785                 .plcp = 0x02,
786         },
787         {
788                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
789                 .bitrate = 110,
790                 .ratemask = DEV_RATEMASK_11MB,
791                 .plcp = 0x03,
792         },
793         {
794                 .flags = DEV_RATE_OFDM,
795                 .bitrate = 60,
796                 .ratemask = DEV_RATEMASK_6MB,
797                 .plcp = 0x0b,
798         },
799         {
800                 .flags = DEV_RATE_OFDM,
801                 .bitrate = 90,
802                 .ratemask = DEV_RATEMASK_9MB,
803                 .plcp = 0x0f,
804         },
805         {
806                 .flags = DEV_RATE_OFDM,
807                 .bitrate = 120,
808                 .ratemask = DEV_RATEMASK_12MB,
809                 .plcp = 0x0a,
810         },
811         {
812                 .flags = DEV_RATE_OFDM,
813                 .bitrate = 180,
814                 .ratemask = DEV_RATEMASK_18MB,
815                 .plcp = 0x0e,
816         },
817         {
818                 .flags = DEV_RATE_OFDM,
819                 .bitrate = 240,
820                 .ratemask = DEV_RATEMASK_24MB,
821                 .plcp = 0x09,
822         },
823         {
824                 .flags = DEV_RATE_OFDM,
825                 .bitrate = 360,
826                 .ratemask = DEV_RATEMASK_36MB,
827                 .plcp = 0x0d,
828         },
829         {
830                 .flags = DEV_RATE_OFDM,
831                 .bitrate = 480,
832                 .ratemask = DEV_RATEMASK_48MB,
833                 .plcp = 0x08,
834         },
835         {
836                 .flags = DEV_RATE_OFDM,
837                 .bitrate = 540,
838                 .ratemask = DEV_RATEMASK_54MB,
839                 .plcp = 0x0c,
840         },
841 };
842
843 static void rt2x00lib_channel(struct ieee80211_channel *entry,
844                               const int channel, const int tx_power,
845                               const int value)
846 {
847         entry->center_freq = ieee80211_channel_to_frequency(channel);
848         entry->hw_value = value;
849         entry->max_power = tx_power;
850         entry->max_antenna_gain = 0xff;
851 }
852
853 static void rt2x00lib_rate(struct ieee80211_rate *entry,
854                            const u16 index, const struct rt2x00_rate *rate)
855 {
856         entry->flags = 0;
857         entry->bitrate = rate->bitrate;
858         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
859         entry->hw_value_short = entry->hw_value;
860
861         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
862                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
863                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
864         }
865 }
866
867 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
868                                     struct hw_mode_spec *spec)
869 {
870         struct ieee80211_hw *hw = rt2x00dev->hw;
871         struct ieee80211_channel *channels;
872         struct ieee80211_rate *rates;
873         unsigned int num_rates;
874         unsigned int i;
875         unsigned char tx_power;
876
877         num_rates = 0;
878         if (spec->supported_rates & SUPPORT_RATE_CCK)
879                 num_rates += 4;
880         if (spec->supported_rates & SUPPORT_RATE_OFDM)
881                 num_rates += 8;
882
883         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
884         if (!channels)
885                 return -ENOMEM;
886
887         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
888         if (!rates)
889                 goto exit_free_channels;
890
891         /*
892          * Initialize Rate list.
893          */
894         for (i = 0; i < num_rates; i++)
895                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
896
897         /*
898          * Initialize Channel list.
899          */
900         for (i = 0; i < spec->num_channels; i++) {
901                 if (spec->channels[i].channel <= 14) {
902                         if (spec->tx_power_bg)
903                                 tx_power = spec->tx_power_bg[i];
904                         else
905                                 tx_power = spec->tx_power_default;
906                 } else {
907                         if (spec->tx_power_a)
908                                 tx_power = spec->tx_power_a[i];
909                         else
910                                 tx_power = spec->tx_power_default;
911                 }
912
913                 rt2x00lib_channel(&channels[i],
914                                   spec->channels[i].channel, tx_power, i);
915         }
916
917         /*
918          * Intitialize 802.11b, 802.11g
919          * Rates: CCK, OFDM.
920          * Channels: 2.4 GHz
921          */
922         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
923                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
924                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
925                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
926                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
927                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
928                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
929         }
930
931         /*
932          * Intitialize 802.11a
933          * Rates: OFDM.
934          * Channels: OFDM, UNII, HiperLAN2.
935          */
936         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
937                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
938                     spec->num_channels - 14;
939                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
940                     num_rates - 4;
941                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
942                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
943                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
944                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
945         }
946
947         return 0;
948
949  exit_free_channels:
950         kfree(channels);
951         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
952         return -ENOMEM;
953 }
954
955 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
956 {
957         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
958                 ieee80211_unregister_hw(rt2x00dev->hw);
959
960         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
961                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
962                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
963                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
964                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
965         }
966 }
967
968 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
969 {
970         struct hw_mode_spec *spec = &rt2x00dev->spec;
971         int status;
972
973         /*
974          * Initialize HW modes.
975          */
976         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
977         if (status)
978                 return status;
979
980         /*
981          * Register HW.
982          */
983         status = ieee80211_register_hw(rt2x00dev->hw);
984         if (status) {
985                 rt2x00lib_remove_hw(rt2x00dev);
986                 return status;
987         }
988
989         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
990
991         return 0;
992 }
993
994 /*
995  * Initialization/uninitialization handlers.
996  */
997 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
998 {
999         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1000                 return;
1001
1002         /*
1003          * Unregister rfkill.
1004          */
1005         rt2x00rfkill_unregister(rt2x00dev);
1006
1007         /*
1008          * Allow the HW to uninitialize.
1009          */
1010         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1011
1012         /*
1013          * Free allocated queue entries.
1014          */
1015         rt2x00queue_uninitialize(rt2x00dev);
1016 }
1017
1018 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1019 {
1020         int status;
1021
1022         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1023                 return 0;
1024
1025         /*
1026          * Allocate all queue entries.
1027          */
1028         status = rt2x00queue_initialize(rt2x00dev);
1029         if (status)
1030                 return status;
1031
1032         /*
1033          * Initialize the device.
1034          */
1035         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1036         if (status)
1037                 goto exit;
1038
1039         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1040
1041         /*
1042          * Register the rfkill handler.
1043          */
1044         status = rt2x00rfkill_register(rt2x00dev);
1045         if (status)
1046                 goto exit;
1047
1048         return 0;
1049
1050 exit:
1051         rt2x00lib_uninitialize(rt2x00dev);
1052
1053         return status;
1054 }
1055
1056 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1057 {
1058         int retval;
1059
1060         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1061                 return 0;
1062
1063         /*
1064          * If this is the first interface which is added,
1065          * we should load the firmware now.
1066          */
1067         retval = rt2x00lib_load_firmware(rt2x00dev);
1068         if (retval)
1069                 return retval;
1070
1071         /*
1072          * Initialize the device.
1073          */
1074         retval = rt2x00lib_initialize(rt2x00dev);
1075         if (retval)
1076                 return retval;
1077
1078         /*
1079          * Enable radio.
1080          */
1081         retval = rt2x00lib_enable_radio(rt2x00dev);
1082         if (retval) {
1083                 rt2x00lib_uninitialize(rt2x00dev);
1084                 return retval;
1085         }
1086
1087         rt2x00dev->intf_ap_count = 0;
1088         rt2x00dev->intf_sta_count = 0;
1089         rt2x00dev->intf_associated = 0;
1090
1091         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1092
1093         return 0;
1094 }
1095
1096 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1097 {
1098         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1099                 return;
1100
1101         /*
1102          * Perhaps we can add something smarter here,
1103          * but for now just disabling the radio should do.
1104          */
1105         rt2x00lib_disable_radio(rt2x00dev);
1106
1107         rt2x00dev->intf_ap_count = 0;
1108         rt2x00dev->intf_sta_count = 0;
1109         rt2x00dev->intf_associated = 0;
1110
1111         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1112 }
1113
1114 /*
1115  * driver allocation handlers.
1116  */
1117 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1118 {
1119         int retval = -ENOMEM;
1120
1121         /*
1122          * Make room for rt2x00_intf inside the per-interface
1123          * structure ieee80211_vif.
1124          */
1125         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1126
1127         /*
1128          * Let the driver probe the device to detect the capabilities.
1129          */
1130         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1131         if (retval) {
1132                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1133                 goto exit;
1134         }
1135
1136         /*
1137          * Initialize configuration work.
1138          */
1139         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1140         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1141         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1142
1143         /*
1144          * Allocate queue array.
1145          */
1146         retval = rt2x00queue_allocate(rt2x00dev);
1147         if (retval)
1148                 goto exit;
1149
1150         /*
1151          * Initialize ieee80211 structure.
1152          */
1153         retval = rt2x00lib_probe_hw(rt2x00dev);
1154         if (retval) {
1155                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1156                 goto exit;
1157         }
1158
1159         /*
1160          * Register LED.
1161          */
1162         rt2x00leds_register(rt2x00dev);
1163
1164         /*
1165          * Allocatie rfkill.
1166          */
1167         retval = rt2x00rfkill_allocate(rt2x00dev);
1168         if (retval)
1169                 goto exit;
1170
1171         /*
1172          * Open the debugfs entry.
1173          */
1174         rt2x00debug_register(rt2x00dev);
1175
1176         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1177
1178         return 0;
1179
1180 exit:
1181         rt2x00lib_remove_dev(rt2x00dev);
1182
1183         return retval;
1184 }
1185 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1186
1187 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1188 {
1189         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1190
1191         /*
1192          * Disable radio.
1193          */
1194         rt2x00lib_disable_radio(rt2x00dev);
1195
1196         /*
1197          * Uninitialize device.
1198          */
1199         rt2x00lib_uninitialize(rt2x00dev);
1200
1201         /*
1202          * Close debugfs entry.
1203          */
1204         rt2x00debug_deregister(rt2x00dev);
1205
1206         /*
1207          * Free rfkill
1208          */
1209         rt2x00rfkill_free(rt2x00dev);
1210
1211         /*
1212          * Free LED.
1213          */
1214         rt2x00leds_unregister(rt2x00dev);
1215
1216         /*
1217          * Free ieee80211_hw memory.
1218          */
1219         rt2x00lib_remove_hw(rt2x00dev);
1220
1221         /*
1222          * Free firmware image.
1223          */
1224         rt2x00lib_free_firmware(rt2x00dev);
1225
1226         /*
1227          * Free queue structures.
1228          */
1229         rt2x00queue_free(rt2x00dev);
1230 }
1231 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1232
1233 /*
1234  * Device state handlers
1235  */
1236 #ifdef CONFIG_PM
1237 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1238 {
1239         int retval;
1240
1241         NOTICE(rt2x00dev, "Going to sleep.\n");
1242         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1243
1244         /*
1245          * Only continue if mac80211 has open interfaces.
1246          */
1247         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1248                 goto exit;
1249         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1250
1251         /*
1252          * Disable radio and unitialize all items
1253          * that must be recreated on resume.
1254          */
1255         rt2x00lib_stop(rt2x00dev);
1256         rt2x00lib_uninitialize(rt2x00dev);
1257         rt2x00leds_suspend(rt2x00dev);
1258         rt2x00debug_deregister(rt2x00dev);
1259
1260 exit:
1261         /*
1262          * Set device mode to sleep for power management.
1263          */
1264         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1265         if (retval)
1266                 return retval;
1267
1268         return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1271
1272 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1273                                   struct ieee80211_vif *vif)
1274 {
1275         struct rt2x00_dev *rt2x00dev = data;
1276         struct rt2x00_intf *intf = vif_to_intf(vif);
1277
1278         spin_lock(&intf->lock);
1279
1280         rt2x00lib_config_intf(rt2x00dev, intf,
1281                               vif->type, intf->mac, intf->bssid);
1282
1283
1284         /*
1285          * Master or Ad-hoc mode require a new beacon update.
1286          */
1287         if (vif->type == IEEE80211_IF_TYPE_AP ||
1288             vif->type == IEEE80211_IF_TYPE_IBSS)
1289                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1290
1291         spin_unlock(&intf->lock);
1292 }
1293
1294 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1295 {
1296         int retval;
1297
1298         NOTICE(rt2x00dev, "Waking up.\n");
1299
1300         /*
1301          * Open the debugfs entry and restore led handling.
1302          */
1303         rt2x00debug_register(rt2x00dev);
1304         rt2x00leds_resume(rt2x00dev);
1305
1306         /*
1307          * Only continue if mac80211 had open interfaces.
1308          */
1309         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1310                 return 0;
1311
1312         /*
1313          * Reinitialize device and all active interfaces.
1314          */
1315         retval = rt2x00lib_start(rt2x00dev);
1316         if (retval)
1317                 goto exit;
1318
1319         /*
1320          * Reconfigure device.
1321          */
1322         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1323         if (!rt2x00dev->hw->conf.radio_enabled)
1324                 rt2x00lib_disable_radio(rt2x00dev);
1325
1326         /*
1327          * Iterator over each active interface to
1328          * reconfigure the hardware.
1329          */
1330         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1331                                             rt2x00lib_resume_intf, rt2x00dev);
1332
1333         /*
1334          * We are ready again to receive requests from mac80211.
1335          */
1336         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1337
1338         /*
1339          * It is possible that during that mac80211 has attempted
1340          * to send frames while we were suspending or resuming.
1341          * In that case we have disabled the TX queue and should
1342          * now enable it again
1343          */
1344         ieee80211_start_queues(rt2x00dev->hw);
1345
1346         /*
1347          * During interface iteration we might have changed the
1348          * delayed_flags, time to handles the event by calling
1349          * the work handler directly.
1350          */
1351         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1352
1353         return 0;
1354
1355 exit:
1356         rt2x00lib_disable_radio(rt2x00dev);
1357         rt2x00lib_uninitialize(rt2x00dev);
1358         rt2x00debug_deregister(rt2x00dev);
1359
1360         return retval;
1361 }
1362 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1363 #endif /* CONFIG_PM */
1364
1365 /*
1366  * rt2x00lib module information.
1367  */
1368 MODULE_AUTHOR(DRV_PROJECT);
1369 MODULE_VERSION(DRV_VERSION);
1370 MODULE_DESCRIPTION("rt2x00 library");
1371 MODULE_LICENSE("GPL");