2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
36 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
37 const unsigned int queue)
39 int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
42 * Check if we are requesting a reqular TX ring,
43 * or if we are requesting a Beacon or Atim ring.
44 * For Atim rings, we should check if it is supported.
46 if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
47 return &rt2x00dev->tx[queue];
49 if (!rt2x00dev->bcn || !beacon)
52 if (queue == IEEE80211_TX_QUEUE_BEACON)
53 return &rt2x00dev->bcn[0];
54 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
55 return &rt2x00dev->bcn[1];
59 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
62 * Link tuning handlers
64 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
66 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
70 * Reset link information.
71 * Both the currently active vgc level as well as
72 * the link tuner counter should be reset. Resetting
73 * the counter is important for devices where the
74 * device should only perform link tuning during the
75 * first minute after being enabled.
77 rt2x00dev->link.count = 0;
78 rt2x00dev->link.vgc_level = 0;
81 * Reset the link tuner.
83 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
86 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
89 * Clear all (possibly) pre-existing quality statistics.
91 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
94 * The RX and TX percentage should start at 50%
95 * this will assure we will get at least get some
96 * decent value when the link tuner starts.
97 * The value will be dropped and overwritten with
98 * the correct (measured )value anyway during the
99 * first run of the link tuner.
101 rt2x00dev->link.qual.rx_percentage = 50;
102 rt2x00dev->link.qual.tx_percentage = 50;
104 rt2x00lib_reset_link_tuner(rt2x00dev);
106 queue_delayed_work(rt2x00dev->hw->workqueue,
107 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
110 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
112 cancel_delayed_work_sync(&rt2x00dev->link.work);
116 * Ring initialization
118 static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev)
120 struct data_ring *ring = rt2x00dev->rx;
123 if (!rt2x00dev->ops->lib->init_rxentry)
127 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
129 for (i = 0; i < ring->stats.limit; i++)
130 rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]);
132 rt2x00_ring_index_clear(ring);
135 static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev)
137 struct data_ring *ring;
140 if (!rt2x00dev->ops->lib->init_txentry)
143 txringall_for_each(rt2x00dev, ring) {
145 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
147 for (i = 0; i < ring->stats.limit; i++)
148 rt2x00dev->ops->lib->init_txentry(rt2x00dev,
151 rt2x00_ring_index_clear(ring);
156 * Radio control handlers.
158 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
163 * Don't enable the radio twice.
164 * And check if the hardware button has been disabled.
166 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
167 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
171 * Initialize all data rings.
173 rt2x00lib_init_rxrings(rt2x00dev);
174 rt2x00lib_init_txrings(rt2x00dev);
179 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
184 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
189 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
192 * Start the TX queues.
194 ieee80211_start_queues(rt2x00dev->hw);
199 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
201 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
205 * Stop all scheduled work.
207 if (work_pending(&rt2x00dev->beacon_work))
208 cancel_work_sync(&rt2x00dev->beacon_work);
209 if (work_pending(&rt2x00dev->filter_work))
210 cancel_work_sync(&rt2x00dev->filter_work);
211 if (work_pending(&rt2x00dev->config_work))
212 cancel_work_sync(&rt2x00dev->config_work);
215 * Stop the TX queues.
217 ieee80211_stop_queues(rt2x00dev->hw);
222 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
227 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
230 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
233 * When we are disabling the RX, we should also stop the link tuner.
235 if (state == STATE_RADIO_RX_OFF)
236 rt2x00lib_stop_link_tuner(rt2x00dev);
238 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
241 * When we are enabling the RX, we should also start the link tuner.
243 if (state == STATE_RADIO_RX_ON &&
244 is_interface_present(&rt2x00dev->interface))
245 rt2x00lib_start_link_tuner(rt2x00dev);
248 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
250 enum antenna rx = rt2x00dev->link.ant.active.rx;
251 enum antenna tx = rt2x00dev->link.ant.active.tx;
253 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
255 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
258 * We are done sampling. Now we should evaluate the results.
260 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
263 * During the last period we have sampled the RSSI
264 * from both antenna's. It now is time to determine
265 * which antenna demonstrated the best performance.
266 * When we are already on the antenna with the best
267 * performance, then there really is nothing for us
270 if (sample_a == sample_b)
273 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
274 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
276 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
277 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
279 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
282 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
284 enum antenna rx = rt2x00dev->link.ant.active.rx;
285 enum antenna tx = rt2x00dev->link.ant.active.tx;
286 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
287 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
290 * Legacy driver indicates that we should swap antenna's
291 * when the difference in RSSI is greater that 5. This
292 * also should be done when the RSSI was actually better
293 * then the previous sample.
294 * When the difference exceeds the threshold we should
295 * sample the rssi from the other antenna to make a valid
296 * comparison between the 2 antennas.
298 if (abs(rssi_curr - rssi_old) < 5)
301 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
303 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
304 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
306 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
307 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
309 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
312 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
315 * Determine if software diversity is enabled for
316 * either the TX or RX antenna (or both).
317 * Always perform this check since within the link
318 * tuner interval the configuration might have changed.
320 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
321 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
323 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
324 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
325 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
326 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
327 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
328 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
330 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
331 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
332 rt2x00dev->link.ant.flags = 0;
337 * If we have only sampled the data over the last period
338 * we should now harvest the data. Otherwise just evaluate
339 * the data. The latter should only be performed once
342 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
343 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
344 else if (rt2x00dev->link.count & 1)
345 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
348 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
355 if (link->qual.avg_rssi)
356 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
357 link->qual.avg_rssi = avg_rssi;
360 * Update antenna RSSI
362 if (link->ant.rssi_ant)
363 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
364 link->ant.rssi_ant = rssi;
367 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
369 if (qual->rx_failed || qual->rx_success)
370 qual->rx_percentage =
371 (qual->rx_success * 100) /
372 (qual->rx_failed + qual->rx_success);
374 qual->rx_percentage = 50;
376 if (qual->tx_failed || qual->tx_success)
377 qual->tx_percentage =
378 (qual->tx_success * 100) /
379 (qual->tx_failed + qual->tx_success);
381 qual->tx_percentage = 50;
383 qual->rx_success = 0;
385 qual->tx_success = 0;
389 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
392 int rssi_percentage = 0;
396 * We need a positive value for the RSSI.
399 rssi += rt2x00dev->rssi_offset;
402 * Calculate the different percentages,
403 * which will be used for the signal.
405 if (rt2x00dev->rssi_offset)
406 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
409 * Add the individual percentages and use the WEIGHT
410 * defines to calculate the current link signal.
412 signal = ((WEIGHT_RSSI * rssi_percentage) +
413 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
414 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
416 return (signal > 100) ? 100 : signal;
419 static void rt2x00lib_link_tuner(struct work_struct *work)
421 struct rt2x00_dev *rt2x00dev =
422 container_of(work, struct rt2x00_dev, link.work.work);
425 * When the radio is shutting down we should
426 * immediately cease all link tuning.
428 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
434 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
435 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
436 rt2x00dev->link.qual.rx_failed;
439 * Only perform the link tuning when Link tuning
440 * has been enabled (This could have been disabled from the EEPROM).
442 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
443 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
446 * Precalculate a portion of the link signal which is
447 * in based on the tx/rx success/failure counters.
449 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
452 * Evaluate antenna setup, make this the last step since this could
453 * possibly reset some statistics.
455 rt2x00lib_evaluate_antenna(rt2x00dev);
458 * Increase tuner counter, and reschedule the next link tuner run.
460 rt2x00dev->link.count++;
461 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
465 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
467 struct rt2x00_dev *rt2x00dev =
468 container_of(work, struct rt2x00_dev, filter_work);
469 unsigned int filter = rt2x00dev->packet_filter;
472 * Since we had stored the filter inside interface.filter,
473 * we should now clear that field. Otherwise the driver will
474 * assume nothing has changed (*total_flags will be compared
475 * to interface.filter to determine if any action is required).
477 rt2x00dev->packet_filter = 0;
479 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
480 filter, &filter, 0, NULL);
483 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
485 struct rt2x00_dev *rt2x00dev =
486 container_of(work, struct rt2x00_dev, config_work);
487 struct ieee80211_bss_conf bss_conf;
489 bss_conf.use_short_preamble =
490 test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
493 * FIXME: shouldn't invoke it this way because all other contents
494 * of bss_conf is invalid.
496 rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id,
497 &bss_conf, BSS_CHANGED_ERP_PREAMBLE);
501 * Interrupt context handlers.
503 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
505 struct rt2x00_dev *rt2x00dev =
506 container_of(work, struct rt2x00_dev, beacon_work);
507 struct data_ring *ring =
508 rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
509 struct data_entry *entry = rt2x00_get_data_entry(ring);
512 skb = ieee80211_beacon_get(rt2x00dev->hw,
513 rt2x00dev->interface.id,
514 &entry->tx_status.control);
518 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
519 &entry->tx_status.control);
524 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
526 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
529 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
531 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
533 void rt2x00lib_txdone(struct data_entry *entry,
534 const int status, const int retry)
536 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
537 struct ieee80211_tx_status *tx_status = &entry->tx_status;
538 struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
539 int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
540 int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
541 status == TX_FAIL_OTHER);
544 * Update TX statistics.
546 tx_status->flags = 0;
547 tx_status->ack_signal = 0;
548 tx_status->excessive_retries = (status == TX_FAIL_RETRY);
549 tx_status->retry_count = retry;
550 rt2x00dev->link.qual.tx_success += success;
551 rt2x00dev->link.qual.tx_failed += retry + fail;
553 if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
555 tx_status->flags |= IEEE80211_TX_STATUS_ACK;
557 stats->dot11ACKFailureCount++;
560 tx_status->queue_length = entry->ring->stats.limit;
561 tx_status->queue_number = tx_status->control.queue;
563 if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
565 stats->dot11RTSSuccessCount++;
567 stats->dot11RTSFailureCount++;
571 * Send the tx_status to mac80211 & debugfs.
572 * mac80211 will clean up the skb structure.
574 get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
575 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
576 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
579 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
581 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
582 struct rxdata_entry_desc *desc)
584 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
585 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
586 struct ieee80211_hw_mode *mode;
587 struct ieee80211_rate *rate;
588 struct ieee80211_hdr *hdr;
594 * Update RX statistics.
596 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
597 for (i = 0; i < mode->num_rates; i++) {
598 rate = &mode->rates[i];
601 * When frame was received with an OFDM bitrate,
602 * the signal is the PLCP value. If it was received with
603 * a CCK bitrate the signal is the rate in 0.5kbit/s.
606 val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
608 val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
610 if (val == desc->signal) {
617 * Only update link status if this is a beacon frame carrying our bssid.
619 hdr = (struct ieee80211_hdr*)skb->data;
620 fc = le16_to_cpu(hdr->frame_control);
621 if (is_beacon(fc) && desc->my_bss)
622 rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
624 rt2x00dev->link.qual.rx_success++;
626 rx_status->rate = val;
628 rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
629 rx_status->ssi = desc->rssi;
630 rx_status->flag = desc->flags;
631 rx_status->antenna = rt2x00dev->link.ant.active.rx;
634 * Send frame to mac80211 & debugfs
636 get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
637 rt2x00debug_dump_frame(rt2x00dev, skb);
638 ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
640 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
643 * TX descriptor initializer
645 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
647 struct ieee80211_tx_control *control)
649 struct txdata_entry_desc desc;
650 struct skb_desc *skbdesc = get_skb_desc(skb);
651 struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
660 memset(&desc, 0, sizeof(desc));
662 desc.cw_min = skbdesc->ring->tx_params.cw_min;
663 desc.cw_max = skbdesc->ring->tx_params.cw_max;
664 desc.aifs = skbdesc->ring->tx_params.aifs;
669 if (control->queue < rt2x00dev->hw->queues)
670 desc.queue = control->queue;
671 else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
672 control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
673 desc.queue = QUEUE_MGMT;
675 desc.queue = QUEUE_OTHER;
678 * Read required fields from ieee80211 header.
680 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
681 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
683 tx_rate = control->tx_rate;
686 * Check whether this frame is to be acked
688 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
689 __set_bit(ENTRY_TXD_ACK, &desc.flags);
692 * Check if this is a RTS/CTS frame
694 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
695 __set_bit(ENTRY_TXD_BURST, &desc.flags);
696 if (is_rts_frame(frame_control)) {
697 __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
698 __set_bit(ENTRY_TXD_ACK, &desc.flags);
700 __clear_bit(ENTRY_TXD_ACK, &desc.flags);
701 if (control->rts_cts_rate)
702 tx_rate = control->rts_cts_rate;
708 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
709 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
712 * Check if more fragments are pending
714 if (ieee80211_get_morefrag(ieee80211hdr)) {
715 __set_bit(ENTRY_TXD_BURST, &desc.flags);
716 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
720 * Beacons and probe responses require the tsf timestamp
721 * to be inserted into the frame.
723 if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
724 is_probe_resp(frame_control))
725 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
728 * Determine with what IFS priority this frame should be send.
729 * Set ifs to IFS_SIFS when the this is not the first fragment,
730 * or this fragment came after RTS/CTS.
732 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
733 test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
736 desc.ifs = IFS_BACKOFF;
740 * Length calculation depends on OFDM/CCK rate.
742 desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
745 length = skbdesc->data_len + FCS_LEN;
746 if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
747 desc.length_high = (length >> 6) & 0x3f;
748 desc.length_low = length & 0x3f;
750 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
753 * Convert length to microseconds.
755 residual = get_duration_res(length, bitrate);
756 duration = get_duration(length, bitrate);
762 * Check if we need to set the Length Extension
764 if (bitrate == 110 && residual <= 30)
765 desc.service |= 0x80;
768 desc.length_high = (duration >> 8) & 0xff;
769 desc.length_low = duration & 0xff;
772 * When preamble is enabled we should set the
773 * preamble bit for the signal.
775 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
779 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
784 skbdesc->entry->skb = skb;
785 memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
788 * The frame has been completely initialized and ready
789 * for sending to the device. The caller will push the
790 * frame to the device, but we are going to push the
791 * frame to debugfs here.
793 skbdesc->frame_type = DUMP_FRAME_TX;
794 rt2x00debug_dump_frame(rt2x00dev, skb);
796 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
799 * Driver initialization handlers.
801 static void rt2x00lib_channel(struct ieee80211_channel *entry,
802 const int channel, const int tx_power,
805 entry->chan = channel;
807 entry->freq = 2407 + (5 * channel);
809 entry->freq = 5000 + (5 * channel);
812 IEEE80211_CHAN_W_IBSS |
813 IEEE80211_CHAN_W_ACTIVE_SCAN |
814 IEEE80211_CHAN_W_SCAN;
815 entry->power_level = tx_power;
816 entry->antenna_max = 0xff;
819 static void rt2x00lib_rate(struct ieee80211_rate *entry,
820 const int rate, const int mask,
821 const int plcp, const int flags)
825 DEVICE_SET_RATE_FIELD(rate, RATE) |
826 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
827 DEVICE_SET_RATE_FIELD(plcp, PLCP);
828 entry->flags = flags;
829 entry->val2 = entry->val;
830 if (entry->flags & IEEE80211_RATE_PREAMBLE2)
831 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
832 entry->min_rssi_ack = 0;
833 entry->min_rssi_ack_delta = 0;
836 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
837 struct hw_mode_spec *spec)
839 struct ieee80211_hw *hw = rt2x00dev->hw;
840 struct ieee80211_hw_mode *hwmodes;
841 struct ieee80211_channel *channels;
842 struct ieee80211_rate *rates;
844 unsigned char tx_power;
846 hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
850 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
852 goto exit_free_modes;
854 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
856 goto exit_free_channels;
859 * Initialize Rate list.
861 rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
862 0x00, IEEE80211_RATE_CCK);
863 rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
864 0x01, IEEE80211_RATE_CCK_2);
865 rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
866 0x02, IEEE80211_RATE_CCK_2);
867 rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
868 0x03, IEEE80211_RATE_CCK_2);
870 if (spec->num_rates > 4) {
871 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
872 0x0b, IEEE80211_RATE_OFDM);
873 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
874 0x0f, IEEE80211_RATE_OFDM);
875 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
876 0x0a, IEEE80211_RATE_OFDM);
877 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
878 0x0e, IEEE80211_RATE_OFDM);
879 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
880 0x09, IEEE80211_RATE_OFDM);
881 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
882 0x0d, IEEE80211_RATE_OFDM);
883 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
884 0x08, IEEE80211_RATE_OFDM);
885 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
886 0x0c, IEEE80211_RATE_OFDM);
890 * Initialize Channel list.
892 for (i = 0; i < spec->num_channels; i++) {
893 if (spec->channels[i].channel <= 14)
894 tx_power = spec->tx_power_bg[i];
895 else if (spec->tx_power_a)
896 tx_power = spec->tx_power_a[i];
898 tx_power = spec->tx_power_default;
900 rt2x00lib_channel(&channels[i],
901 spec->channels[i].channel, tx_power, i);
905 * Intitialize 802.11b
909 if (spec->num_modes > HWMODE_B) {
910 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
911 hwmodes[HWMODE_B].num_channels = 14;
912 hwmodes[HWMODE_B].num_rates = 4;
913 hwmodes[HWMODE_B].channels = channels;
914 hwmodes[HWMODE_B].rates = rates;
918 * Intitialize 802.11g
922 if (spec->num_modes > HWMODE_G) {
923 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
924 hwmodes[HWMODE_G].num_channels = 14;
925 hwmodes[HWMODE_G].num_rates = spec->num_rates;
926 hwmodes[HWMODE_G].channels = channels;
927 hwmodes[HWMODE_G].rates = rates;
931 * Intitialize 802.11a
933 * Channels: OFDM, UNII, HiperLAN2.
935 if (spec->num_modes > HWMODE_A) {
936 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
937 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
938 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
939 hwmodes[HWMODE_A].channels = &channels[14];
940 hwmodes[HWMODE_A].rates = &rates[4];
943 if (spec->num_modes > HWMODE_G &&
944 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
945 goto exit_free_rates;
947 if (spec->num_modes > HWMODE_B &&
948 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
949 goto exit_free_rates;
951 if (spec->num_modes > HWMODE_A &&
952 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
953 goto exit_free_rates;
955 rt2x00dev->hwmodes = hwmodes;
969 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
973 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
975 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
976 ieee80211_unregister_hw(rt2x00dev->hw);
978 if (likely(rt2x00dev->hwmodes)) {
979 kfree(rt2x00dev->hwmodes->channels);
980 kfree(rt2x00dev->hwmodes->rates);
981 kfree(rt2x00dev->hwmodes);
982 rt2x00dev->hwmodes = NULL;
986 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
988 struct hw_mode_spec *spec = &rt2x00dev->spec;
992 * Initialize HW modes.
994 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1001 status = ieee80211_register_hw(rt2x00dev->hw);
1003 rt2x00lib_remove_hw(rt2x00dev);
1007 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
1013 * Initialization/uninitialization handlers.
1015 static int rt2x00lib_alloc_entries(struct data_ring *ring,
1016 const u16 max_entries, const u16 data_size,
1017 const u16 desc_size)
1019 struct data_entry *entry;
1022 ring->stats.limit = max_entries;
1023 ring->data_size = data_size;
1024 ring->desc_size = desc_size;
1027 * Allocate all ring entries.
1029 entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
1033 for (i = 0; i < ring->stats.limit; i++) {
1035 entry[i].ring = ring;
1036 entry[i].skb = NULL;
1037 entry[i].entry_idx = i;
1040 ring->entry = entry;
1045 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
1047 struct data_ring *ring;
1050 * Allocate the RX ring.
1052 if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
1053 rt2x00dev->ops->rxd_size))
1057 * First allocate the TX rings.
1059 txring_for_each(rt2x00dev, ring) {
1060 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
1061 rt2x00dev->ops->txd_size))
1065 if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1069 * Allocate the BEACON ring.
1071 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
1072 MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
1076 * Allocate the Atim ring.
1078 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
1079 DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
1085 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
1087 struct data_ring *ring;
1089 ring_for_each(rt2x00dev, ring) {
1095 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1097 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1101 * Unregister extra components.
1103 rt2x00rfkill_unregister(rt2x00dev);
1106 * Allow the HW to uninitialize.
1108 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1111 * Free allocated ring entries.
1113 rt2x00lib_free_ring_entries(rt2x00dev);
1116 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1120 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1124 * Allocate all ring entries.
1126 status = rt2x00lib_alloc_ring_entries(rt2x00dev);
1128 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
1133 * Initialize the device.
1135 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1139 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1142 * Register the extra components.
1144 rt2x00rfkill_register(rt2x00dev);
1149 rt2x00lib_free_ring_entries(rt2x00dev);
1154 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1158 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1162 * If this is the first interface which is added,
1163 * we should load the firmware now.
1165 if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
1166 retval = rt2x00lib_load_firmware(rt2x00dev);
1172 * Initialize the device.
1174 retval = rt2x00lib_initialize(rt2x00dev);
1181 retval = rt2x00lib_enable_radio(rt2x00dev);
1183 rt2x00lib_uninitialize(rt2x00dev);
1187 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1192 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1194 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1198 * Perhaps we can add something smarter here,
1199 * but for now just disabling the radio should do.
1201 rt2x00lib_disable_radio(rt2x00dev);
1203 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1207 * driver allocation handlers.
1209 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
1211 struct data_ring *ring;
1215 * We need the following rings:
1218 * Beacon: 1 (if required)
1219 * Atim: 1 (if required)
1221 rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
1222 (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
1224 ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
1226 ERROR(rt2x00dev, "Ring allocation failed.\n");
1231 * Initialize pointers
1233 rt2x00dev->rx = ring;
1234 rt2x00dev->tx = &rt2x00dev->rx[1];
1235 if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1236 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
1239 * Initialize ring parameters.
1241 * TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index
1242 * TX: cw_min: 2^5 = 32.
1243 * TX: cw_max: 2^10 = 1024.
1245 rt2x00dev->rx->rt2x00dev = rt2x00dev;
1246 rt2x00dev->rx->queue_idx = 0;
1248 index = IEEE80211_TX_QUEUE_DATA0;
1249 txring_for_each(rt2x00dev, ring) {
1250 ring->rt2x00dev = rt2x00dev;
1251 ring->queue_idx = index++;
1252 ring->tx_params.aifs = 2;
1253 ring->tx_params.cw_min = 5;
1254 ring->tx_params.cw_max = 10;
1260 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
1262 kfree(rt2x00dev->rx);
1263 rt2x00dev->rx = NULL;
1264 rt2x00dev->tx = NULL;
1265 rt2x00dev->bcn = NULL;
1268 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1270 int retval = -ENOMEM;
1273 * Let the driver probe the device to detect the capabilities.
1275 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1277 ERROR(rt2x00dev, "Failed to allocate device.\n");
1282 * Initialize configuration work.
1284 INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1285 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1286 INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1287 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1290 * Reset current working type.
1292 rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
1295 * Allocate ring array.
1297 retval = rt2x00lib_alloc_rings(rt2x00dev);
1302 * Initialize ieee80211 structure.
1304 retval = rt2x00lib_probe_hw(rt2x00dev);
1306 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1311 * Register extra components.
1313 rt2x00rfkill_allocate(rt2x00dev);
1314 rt2x00debug_register(rt2x00dev);
1316 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1321 rt2x00lib_remove_dev(rt2x00dev);
1325 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1327 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1329 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1334 rt2x00lib_disable_radio(rt2x00dev);
1337 * Uninitialize device.
1339 rt2x00lib_uninitialize(rt2x00dev);
1342 * Free extra components
1344 rt2x00debug_deregister(rt2x00dev);
1345 rt2x00rfkill_free(rt2x00dev);
1348 * Free ieee80211_hw memory.
1350 rt2x00lib_remove_hw(rt2x00dev);
1353 * Free firmware image.
1355 rt2x00lib_free_firmware(rt2x00dev);
1358 * Free ring structures.
1360 rt2x00lib_free_rings(rt2x00dev);
1362 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1365 * Device state handlers
1368 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1372 NOTICE(rt2x00dev, "Going to sleep.\n");
1373 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1376 * Only continue if mac80211 has open interfaces.
1378 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1380 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1385 rt2x00lib_stop(rt2x00dev);
1386 rt2x00lib_uninitialize(rt2x00dev);
1389 * Suspend/disable extra components.
1391 rt2x00rfkill_suspend(rt2x00dev);
1392 rt2x00debug_deregister(rt2x00dev);
1396 * Set device mode to sleep for power management.
1398 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1404 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1406 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1408 struct interface *intf = &rt2x00dev->interface;
1411 NOTICE(rt2x00dev, "Waking up.\n");
1414 * Restore/enable extra components.
1416 rt2x00debug_register(rt2x00dev);
1417 rt2x00rfkill_resume(rt2x00dev);
1420 * Only continue if mac80211 had open interfaces.
1422 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1426 * Reinitialize device and all active interfaces.
1428 retval = rt2x00lib_start(rt2x00dev);
1433 * Reconfigure device.
1435 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1436 if (!rt2x00dev->hw->conf.radio_enabled)
1437 rt2x00lib_disable_radio(rt2x00dev);
1439 rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1440 rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1441 rt2x00lib_config_type(rt2x00dev, intf->type);
1444 * We are ready again to receive requests from mac80211.
1446 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1449 * It is possible that during that mac80211 has attempted
1450 * to send frames while we were suspending or resuming.
1451 * In that case we have disabled the TX queue and should
1452 * now enable it again
1454 ieee80211_start_queues(rt2x00dev->hw);
1457 * When in Master or Ad-hoc mode,
1458 * restart Beacon transmitting by faking a beacondone event.
1460 if (intf->type == IEEE80211_IF_TYPE_AP ||
1461 intf->type == IEEE80211_IF_TYPE_IBSS)
1462 rt2x00lib_beacondone(rt2x00dev);
1467 rt2x00lib_disable_radio(rt2x00dev);
1468 rt2x00lib_uninitialize(rt2x00dev);
1469 rt2x00debug_deregister(rt2x00dev);
1473 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1474 #endif /* CONFIG_PM */
1477 * rt2x00lib module information.
1479 MODULE_AUTHOR(DRV_PROJECT);
1480 MODULE_VERSION(DRV_VERSION);
1481 MODULE_DESCRIPTION("rt2x00 library");
1482 MODULE_LICENSE("GPL");