]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Centralize RX packet alignment handling in rt2x00lib.
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop all scheduled work.
142          */
143         if (work_pending(&rt2x00dev->intf_work))
144                 cancel_work_sync(&rt2x00dev->intf_work);
145         if (work_pending(&rt2x00dev->filter_work))
146                 cancel_work_sync(&rt2x00dev->filter_work);
147
148         /*
149          * Stop the TX queues.
150          */
151         ieee80211_stop_queues(rt2x00dev->hw);
152
153         /*
154          * Disable RX.
155          */
156         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
157
158         /*
159          * Disable radio.
160          */
161         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
162         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
163         rt2x00led_led_activity(rt2x00dev, false);
164         rt2x00leds_led_radio(rt2x00dev, false);
165 }
166
167 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
168 {
169         /*
170          * When we are disabling the RX, we should also stop the link tuner.
171          */
172         if (state == STATE_RADIO_RX_OFF)
173                 rt2x00lib_stop_link_tuner(rt2x00dev);
174
175         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
176
177         /*
178          * When we are enabling the RX, we should also start the link tuner.
179          */
180         if (state == STATE_RADIO_RX_ON &&
181             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
182                 rt2x00lib_start_link_tuner(rt2x00dev);
183 }
184
185 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
186 {
187         enum antenna rx = rt2x00dev->link.ant.active.rx;
188         enum antenna tx = rt2x00dev->link.ant.active.tx;
189         int sample_a =
190             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
191         int sample_b =
192             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
193
194         /*
195          * We are done sampling. Now we should evaluate the results.
196          */
197         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
198
199         /*
200          * During the last period we have sampled the RSSI
201          * from both antenna's. It now is time to determine
202          * which antenna demonstrated the best performance.
203          * When we are already on the antenna with the best
204          * performance, then there really is nothing for us
205          * left to do.
206          */
207         if (sample_a == sample_b)
208                 return;
209
210         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
211                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212
213         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
214                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
215
216         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
217 }
218
219 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
220 {
221         enum antenna rx = rt2x00dev->link.ant.active.rx;
222         enum antenna tx = rt2x00dev->link.ant.active.tx;
223         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
224         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
225
226         /*
227          * Legacy driver indicates that we should swap antenna's
228          * when the difference in RSSI is greater that 5. This
229          * also should be done when the RSSI was actually better
230          * then the previous sample.
231          * When the difference exceeds the threshold we should
232          * sample the rssi from the other antenna to make a valid
233          * comparison between the 2 antennas.
234          */
235         if (abs(rssi_curr - rssi_old) < 5)
236                 return;
237
238         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
239
240         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
241                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242
243         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
244                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
245
246         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
247 }
248
249 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
250 {
251         /*
252          * Determine if software diversity is enabled for
253          * either the TX or RX antenna (or both).
254          * Always perform this check since within the link
255          * tuner interval the configuration might have changed.
256          */
257         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
258         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
259
260         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
261             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
262                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
263         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
264             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
265                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
266
267         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
268             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
269                 rt2x00dev->link.ant.flags = 0;
270                 return;
271         }
272
273         /*
274          * If we have only sampled the data over the last period
275          * we should now harvest the data. Otherwise just evaluate
276          * the data. The latter should only be performed once
277          * every 2 seconds.
278          */
279         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
280                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
281         else if (rt2x00dev->link.count & 1)
282                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
283 }
284
285 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
286 {
287         int avg_rssi = rssi;
288
289         /*
290          * Update global RSSI
291          */
292         if (link->qual.avg_rssi)
293                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
294         link->qual.avg_rssi = avg_rssi;
295
296         /*
297          * Update antenna RSSI
298          */
299         if (link->ant.rssi_ant)
300                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
301         link->ant.rssi_ant = rssi;
302 }
303
304 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
305 {
306         if (qual->rx_failed || qual->rx_success)
307                 qual->rx_percentage =
308                     (qual->rx_success * 100) /
309                     (qual->rx_failed + qual->rx_success);
310         else
311                 qual->rx_percentage = 50;
312
313         if (qual->tx_failed || qual->tx_success)
314                 qual->tx_percentage =
315                     (qual->tx_success * 100) /
316                     (qual->tx_failed + qual->tx_success);
317         else
318                 qual->tx_percentage = 50;
319
320         qual->rx_success = 0;
321         qual->rx_failed = 0;
322         qual->tx_success = 0;
323         qual->tx_failed = 0;
324 }
325
326 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
327                                            int rssi)
328 {
329         int rssi_percentage = 0;
330         int signal;
331
332         /*
333          * We need a positive value for the RSSI.
334          */
335         if (rssi < 0)
336                 rssi += rt2x00dev->rssi_offset;
337
338         /*
339          * Calculate the different percentages,
340          * which will be used for the signal.
341          */
342         if (rt2x00dev->rssi_offset)
343                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
344
345         /*
346          * Add the individual percentages and use the WEIGHT
347          * defines to calculate the current link signal.
348          */
349         signal = ((WEIGHT_RSSI * rssi_percentage) +
350                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
351                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
352
353         return (signal > 100) ? 100 : signal;
354 }
355
356 static void rt2x00lib_link_tuner(struct work_struct *work)
357 {
358         struct rt2x00_dev *rt2x00dev =
359             container_of(work, struct rt2x00_dev, link.work.work);
360
361         /*
362          * When the radio is shutting down we should
363          * immediately cease all link tuning.
364          */
365         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
366                 return;
367
368         /*
369          * Update statistics.
370          */
371         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
372         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
373             rt2x00dev->link.qual.rx_failed;
374
375         /*
376          * Only perform the link tuning when Link tuning
377          * has been enabled (This could have been disabled from the EEPROM).
378          */
379         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
380                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
381
382         /*
383          * Precalculate a portion of the link signal which is
384          * in based on the tx/rx success/failure counters.
385          */
386         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
387
388         /*
389          * Send a signal to the led to update the led signal strength.
390          */
391         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
392
393         /*
394          * Evaluate antenna setup, make this the last step since this could
395          * possibly reset some statistics.
396          */
397         rt2x00lib_evaluate_antenna(rt2x00dev);
398
399         /*
400          * Increase tuner counter, and reschedule the next link tuner run.
401          */
402         rt2x00dev->link.count++;
403         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
404                            LINK_TUNE_INTERVAL);
405 }
406
407 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
408 {
409         struct rt2x00_dev *rt2x00dev =
410             container_of(work, struct rt2x00_dev, filter_work);
411
412         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
413 }
414
415 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
416                                           struct ieee80211_vif *vif)
417 {
418         struct rt2x00_dev *rt2x00dev = data;
419         struct rt2x00_intf *intf = vif_to_intf(vif);
420         struct sk_buff *skb;
421         struct ieee80211_bss_conf conf;
422         int delayed_flags;
423
424         /*
425          * Copy all data we need during this action under the protection
426          * of a spinlock. Otherwise race conditions might occur which results
427          * into an invalid configuration.
428          */
429         spin_lock(&intf->lock);
430
431         memcpy(&conf, &intf->conf, sizeof(conf));
432         delayed_flags = intf->delayed_flags;
433         intf->delayed_flags = 0;
434
435         spin_unlock(&intf->lock);
436
437         if (delayed_flags & DELAYED_UPDATE_BEACON) {
438                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
439                 if (skb &&
440                     rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb))
441                         dev_kfree_skb(skb);
442         }
443
444         if (delayed_flags & DELAYED_CONFIG_ERP)
445                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
446
447         if (delayed_flags & DELAYED_LED_ASSOC)
448                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
449 }
450
451 static void rt2x00lib_intf_scheduled(struct work_struct *work)
452 {
453         struct rt2x00_dev *rt2x00dev =
454             container_of(work, struct rt2x00_dev, intf_work);
455
456         /*
457          * Iterate over each interface and perform the
458          * requested configurations.
459          */
460         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
461                                             rt2x00lib_intf_scheduled_iter,
462                                             rt2x00dev);
463 }
464
465 /*
466  * Interrupt context handlers.
467  */
468 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
469                                       struct ieee80211_vif *vif)
470 {
471         struct rt2x00_intf *intf = vif_to_intf(vif);
472
473         if (vif->type != IEEE80211_IF_TYPE_AP &&
474             vif->type != IEEE80211_IF_TYPE_IBSS)
475                 return;
476
477         spin_lock(&intf->lock);
478         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
479         spin_unlock(&intf->lock);
480 }
481
482 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
483 {
484         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
485                 return;
486
487         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
488                                                    rt2x00lib_beacondone_iter,
489                                                    rt2x00dev);
490
491         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
492 }
493 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
494
495 void rt2x00lib_txdone(struct queue_entry *entry,
496                       struct txdone_entry_desc *txdesc)
497 {
498         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
499         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
500
501         /*
502          * Send frame to debugfs immediately, after this call is completed
503          * we are going to overwrite the skb->cb array.
504          */
505         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
506
507         /*
508          * Update TX statistics.
509          */
510         rt2x00dev->link.qual.tx_success +=
511             test_bit(TXDONE_SUCCESS, &txdesc->flags);
512         rt2x00dev->link.qual.tx_failed +=
513             test_bit(TXDONE_FAILURE, &txdesc->flags);
514
515         /*
516          * Initialize TX status
517          */
518         memset(&tx_info->status, 0, sizeof(tx_info->status));
519         tx_info->status.ack_signal = 0;
520         tx_info->status.excessive_retries =
521             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
522         tx_info->status.retry_count = txdesc->retry;
523
524         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
525                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
526                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
527                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
528                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
529         }
530
531         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
532                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
533                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
534                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
535                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
536         }
537
538         /*
539          * Only send the status report to mac80211 when TX status was
540          * requested by it. If this was a extra frame coming through
541          * a mac80211 library call (RTS/CTS) then we should not send the
542          * status report back.
543          */
544         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
545                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
546         else
547                 dev_kfree_skb_irq(entry->skb);
548         entry->skb = NULL;
549 }
550 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
551
552 void rt2x00lib_rxdone(struct queue_entry *entry,
553                       struct rxdone_entry_desc *rxdesc)
554 {
555         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
556         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
557         unsigned int header_size = ieee80211_get_hdrlen_from_skb(entry->skb);
558         struct ieee80211_supported_band *sband;
559         struct ieee80211_hdr *hdr;
560         const struct rt2x00_rate *rate;
561         unsigned int align;
562         unsigned int i;
563         int idx = -1;
564         u16 fc;
565
566         /*
567          * The data behind the ieee80211 header must be
568          * aligned on a 4 byte boundary. We already reserved
569          * 2 bytes for header_size % 4 == 2 optimization.
570          * To determine the number of bytes which the data
571          * should be moved to the left, we must add these
572          * 2 bytes to the header_size.
573          */
574         align = (header_size + 2) % 4;
575
576         if (align) {
577                 skb_push(entry->skb, align);
578                 /* Move entire frame in 1 command */
579                 memmove(entry->skb->data, entry->skb->data + align,
580                         rxdesc->size);
581         }
582
583         /* Update data pointers, trim buffer to correct size */
584         skb_trim(entry->skb, rxdesc->size);
585
586         /*
587          * Update RX statistics.
588          */
589         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
590         for (i = 0; i < sband->n_bitrates; i++) {
591                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
592
593                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
594                      (rate->plcp == rxdesc->signal)) ||
595                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
596                       (rate->bitrate == rxdesc->signal))) {
597                         idx = i;
598                         break;
599                 }
600         }
601
602         if (idx < 0) {
603                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
604                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
605                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
606                 idx = 0;
607         }
608
609         /*
610          * Only update link status if this is a beacon frame carrying our bssid.
611          */
612         hdr = (struct ieee80211_hdr *)entry->skb->data;
613         fc = le16_to_cpu(hdr->frame_control);
614         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
615                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
616
617         rt2x00dev->link.qual.rx_success++;
618
619         rx_status->rate_idx = idx;
620         rx_status->qual =
621             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
622         rx_status->signal = rxdesc->rssi;
623         rx_status->flag = rxdesc->flags;
624         rx_status->antenna = rt2x00dev->link.ant.active.rx;
625
626         /*
627          * Send frame to mac80211 & debugfs.
628          * mac80211 will clean up the skb structure.
629          */
630         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
631         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
632         entry->skb = NULL;
633 }
634 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
635
636 /*
637  * Driver initialization handlers.
638  */
639 const struct rt2x00_rate rt2x00_supported_rates[12] = {
640         {
641                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
642                 .bitrate = 10,
643                 .ratemask = BIT(0),
644                 .plcp = 0x00,
645         },
646         {
647                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
648                 .bitrate = 20,
649                 .ratemask = BIT(1),
650                 .plcp = 0x01,
651         },
652         {
653                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
654                 .bitrate = 55,
655                 .ratemask = BIT(2),
656                 .plcp = 0x02,
657         },
658         {
659                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
660                 .bitrate = 110,
661                 .ratemask = BIT(3),
662                 .plcp = 0x03,
663         },
664         {
665                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
666                 .bitrate = 60,
667                 .ratemask = BIT(4),
668                 .plcp = 0x0b,
669         },
670         {
671                 .flags = DEV_RATE_OFDM,
672                 .bitrate = 90,
673                 .ratemask = BIT(5),
674                 .plcp = 0x0f,
675         },
676         {
677                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
678                 .bitrate = 120,
679                 .ratemask = BIT(6),
680                 .plcp = 0x0a,
681         },
682         {
683                 .flags = DEV_RATE_OFDM,
684                 .bitrate = 180,
685                 .ratemask = BIT(7),
686                 .plcp = 0x0e,
687         },
688         {
689                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
690                 .bitrate = 240,
691                 .ratemask = BIT(8),
692                 .plcp = 0x09,
693         },
694         {
695                 .flags = DEV_RATE_OFDM,
696                 .bitrate = 360,
697                 .ratemask = BIT(9),
698                 .plcp = 0x0d,
699         },
700         {
701                 .flags = DEV_RATE_OFDM,
702                 .bitrate = 480,
703                 .ratemask = BIT(10),
704                 .plcp = 0x08,
705         },
706         {
707                 .flags = DEV_RATE_OFDM,
708                 .bitrate = 540,
709                 .ratemask = BIT(11),
710                 .plcp = 0x0c,
711         },
712 };
713
714 static void rt2x00lib_channel(struct ieee80211_channel *entry,
715                               const int channel, const int tx_power,
716                               const int value)
717 {
718         entry->center_freq = ieee80211_channel_to_frequency(channel);
719         entry->hw_value = value;
720         entry->max_power = tx_power;
721         entry->max_antenna_gain = 0xff;
722 }
723
724 static void rt2x00lib_rate(struct ieee80211_rate *entry,
725                            const u16 index, const struct rt2x00_rate *rate)
726 {
727         entry->flags = 0;
728         entry->bitrate = rate->bitrate;
729         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
730         entry->hw_value_short = entry->hw_value;
731
732         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
733                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
734                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
735         }
736 }
737
738 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
739                                     struct hw_mode_spec *spec)
740 {
741         struct ieee80211_hw *hw = rt2x00dev->hw;
742         struct ieee80211_channel *channels;
743         struct ieee80211_rate *rates;
744         unsigned int num_rates;
745         unsigned int i;
746         unsigned char tx_power;
747
748         num_rates = 0;
749         if (spec->supported_rates & SUPPORT_RATE_CCK)
750                 num_rates += 4;
751         if (spec->supported_rates & SUPPORT_RATE_OFDM)
752                 num_rates += 8;
753
754         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
755         if (!channels)
756                 return -ENOMEM;
757
758         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
759         if (!rates)
760                 goto exit_free_channels;
761
762         /*
763          * Initialize Rate list.
764          */
765         for (i = 0; i < num_rates; i++)
766                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
767
768         /*
769          * Initialize Channel list.
770          */
771         for (i = 0; i < spec->num_channels; i++) {
772                 if (spec->channels[i].channel <= 14) {
773                         if (spec->tx_power_bg)
774                                 tx_power = spec->tx_power_bg[i];
775                         else
776                                 tx_power = spec->tx_power_default;
777                 } else {
778                         if (spec->tx_power_a)
779                                 tx_power = spec->tx_power_a[i];
780                         else
781                                 tx_power = spec->tx_power_default;
782                 }
783
784                 rt2x00lib_channel(&channels[i],
785                                   spec->channels[i].channel, tx_power, i);
786         }
787
788         /*
789          * Intitialize 802.11b, 802.11g
790          * Rates: CCK, OFDM.
791          * Channels: 2.4 GHz
792          */
793         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
794                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
795                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
796                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
797                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
798                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
799                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
800         }
801
802         /*
803          * Intitialize 802.11a
804          * Rates: OFDM.
805          * Channels: OFDM, UNII, HiperLAN2.
806          */
807         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
808                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
809                     spec->num_channels - 14;
810                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
811                     num_rates - 4;
812                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
813                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
814                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
815                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
816         }
817
818         return 0;
819
820  exit_free_channels:
821         kfree(channels);
822         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
823         return -ENOMEM;
824 }
825
826 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
827 {
828         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
829                 ieee80211_unregister_hw(rt2x00dev->hw);
830
831         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
832                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
833                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
834                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
835                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
836         }
837 }
838
839 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
840 {
841         struct hw_mode_spec *spec = &rt2x00dev->spec;
842         int status;
843
844         /*
845          * Initialize HW modes.
846          */
847         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
848         if (status)
849                 return status;
850
851         /*
852          * Initialize HW fields.
853          */
854         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
855
856         /*
857          * Register HW.
858          */
859         status = ieee80211_register_hw(rt2x00dev->hw);
860         if (status) {
861                 rt2x00lib_remove_hw(rt2x00dev);
862                 return status;
863         }
864
865         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
866
867         return 0;
868 }
869
870 /*
871  * Initialization/uninitialization handlers.
872  */
873 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
874 {
875         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
876                 return;
877
878         /*
879          * Unregister extra components.
880          */
881         rt2x00rfkill_unregister(rt2x00dev);
882
883         /*
884          * Allow the HW to uninitialize.
885          */
886         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
887
888         /*
889          * Free allocated queue entries.
890          */
891         rt2x00queue_uninitialize(rt2x00dev);
892 }
893
894 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
895 {
896         int status;
897
898         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
899                 return 0;
900
901         /*
902          * Allocate all queue entries.
903          */
904         status = rt2x00queue_initialize(rt2x00dev);
905         if (status)
906                 return status;
907
908         /*
909          * Initialize the device.
910          */
911         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
912         if (status) {
913                 rt2x00queue_uninitialize(rt2x00dev);
914                 return status;
915         }
916
917         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
918
919         /*
920          * Register the extra components.
921          */
922         rt2x00rfkill_register(rt2x00dev);
923
924         return 0;
925 }
926
927 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
928 {
929         int retval;
930
931         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
932                 return 0;
933
934         /*
935          * If this is the first interface which is added,
936          * we should load the firmware now.
937          */
938         retval = rt2x00lib_load_firmware(rt2x00dev);
939         if (retval)
940                 return retval;
941
942         /*
943          * Initialize the device.
944          */
945         retval = rt2x00lib_initialize(rt2x00dev);
946         if (retval)
947                 return retval;
948
949         /*
950          * Enable radio.
951          */
952         retval = rt2x00lib_enable_radio(rt2x00dev);
953         if (retval) {
954                 rt2x00lib_uninitialize(rt2x00dev);
955                 return retval;
956         }
957
958         rt2x00dev->intf_ap_count = 0;
959         rt2x00dev->intf_sta_count = 0;
960         rt2x00dev->intf_associated = 0;
961
962         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
963
964         return 0;
965 }
966
967 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
968 {
969         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
970                 return;
971
972         /*
973          * Perhaps we can add something smarter here,
974          * but for now just disabling the radio should do.
975          */
976         rt2x00lib_disable_radio(rt2x00dev);
977
978         rt2x00dev->intf_ap_count = 0;
979         rt2x00dev->intf_sta_count = 0;
980         rt2x00dev->intf_associated = 0;
981
982         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
983 }
984
985 /*
986  * driver allocation handlers.
987  */
988 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
989 {
990         int retval = -ENOMEM;
991
992         /*
993          * Make room for rt2x00_intf inside the per-interface
994          * structure ieee80211_vif.
995          */
996         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
997
998         /*
999          * Let the driver probe the device to detect the capabilities.
1000          */
1001         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1002         if (retval) {
1003                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1004                 goto exit;
1005         }
1006
1007         /*
1008          * Initialize configuration work.
1009          */
1010         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1011         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1012         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1013
1014         /*
1015          * Allocate queue array.
1016          */
1017         retval = rt2x00queue_allocate(rt2x00dev);
1018         if (retval)
1019                 goto exit;
1020
1021         /*
1022          * Initialize ieee80211 structure.
1023          */
1024         retval = rt2x00lib_probe_hw(rt2x00dev);
1025         if (retval) {
1026                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1027                 goto exit;
1028         }
1029
1030         /*
1031          * Register extra components.
1032          */
1033         rt2x00leds_register(rt2x00dev);
1034         rt2x00rfkill_allocate(rt2x00dev);
1035         rt2x00debug_register(rt2x00dev);
1036
1037         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1038
1039         return 0;
1040
1041 exit:
1042         rt2x00lib_remove_dev(rt2x00dev);
1043
1044         return retval;
1045 }
1046 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1047
1048 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1049 {
1050         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1051
1052         /*
1053          * Disable radio.
1054          */
1055         rt2x00lib_disable_radio(rt2x00dev);
1056
1057         /*
1058          * Uninitialize device.
1059          */
1060         rt2x00lib_uninitialize(rt2x00dev);
1061
1062         /*
1063          * Free extra components
1064          */
1065         rt2x00debug_deregister(rt2x00dev);
1066         rt2x00rfkill_free(rt2x00dev);
1067         rt2x00leds_unregister(rt2x00dev);
1068
1069         /*
1070          * Free ieee80211_hw memory.
1071          */
1072         rt2x00lib_remove_hw(rt2x00dev);
1073
1074         /*
1075          * Free firmware image.
1076          */
1077         rt2x00lib_free_firmware(rt2x00dev);
1078
1079         /*
1080          * Free queue structures.
1081          */
1082         rt2x00queue_free(rt2x00dev);
1083 }
1084 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1085
1086 /*
1087  * Device state handlers
1088  */
1089 #ifdef CONFIG_PM
1090 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1091 {
1092         int retval;
1093
1094         NOTICE(rt2x00dev, "Going to sleep.\n");
1095         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1096
1097         /*
1098          * Only continue if mac80211 has open interfaces.
1099          */
1100         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1101                 goto exit;
1102         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1103
1104         /*
1105          * Disable radio.
1106          */
1107         rt2x00lib_stop(rt2x00dev);
1108         rt2x00lib_uninitialize(rt2x00dev);
1109
1110         /*
1111          * Suspend/disable extra components.
1112          */
1113         rt2x00leds_suspend(rt2x00dev);
1114         rt2x00rfkill_suspend(rt2x00dev);
1115         rt2x00debug_deregister(rt2x00dev);
1116
1117 exit:
1118         /*
1119          * Set device mode to sleep for power management,
1120          * on some hardware this call seems to consistently fail.
1121          * From the specifications it is hard to tell why it fails,
1122          * and if this is a "bad thing".
1123          * Overall it is safe to just ignore the failure and
1124          * continue suspending. The only downside is that the
1125          * device will not be in optimal power save mode, but with
1126          * the radio and the other components already disabled the
1127          * device is as good as disabled.
1128          */
1129         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1130         if (retval)
1131                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1132                         "continue suspending.\n");
1133
1134         return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1137
1138 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1139                                   struct ieee80211_vif *vif)
1140 {
1141         struct rt2x00_dev *rt2x00dev = data;
1142         struct rt2x00_intf *intf = vif_to_intf(vif);
1143
1144         spin_lock(&intf->lock);
1145
1146         rt2x00lib_config_intf(rt2x00dev, intf,
1147                               vif->type, intf->mac, intf->bssid);
1148
1149
1150         /*
1151          * Master or Ad-hoc mode require a new beacon update.
1152          */
1153         if (vif->type == IEEE80211_IF_TYPE_AP ||
1154             vif->type == IEEE80211_IF_TYPE_IBSS)
1155                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1156
1157         spin_unlock(&intf->lock);
1158 }
1159
1160 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1161 {
1162         int retval;
1163
1164         NOTICE(rt2x00dev, "Waking up.\n");
1165
1166         /*
1167          * Restore/enable extra components.
1168          */
1169         rt2x00debug_register(rt2x00dev);
1170         rt2x00rfkill_resume(rt2x00dev);
1171         rt2x00leds_resume(rt2x00dev);
1172
1173         /*
1174          * Only continue if mac80211 had open interfaces.
1175          */
1176         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1177                 return 0;
1178
1179         /*
1180          * Reinitialize device and all active interfaces.
1181          */
1182         retval = rt2x00lib_start(rt2x00dev);
1183         if (retval)
1184                 goto exit;
1185
1186         /*
1187          * Reconfigure device.
1188          */
1189         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1190         if (!rt2x00dev->hw->conf.radio_enabled)
1191                 rt2x00lib_disable_radio(rt2x00dev);
1192
1193         /*
1194          * Iterator over each active interface to
1195          * reconfigure the hardware.
1196          */
1197         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1198                                             rt2x00lib_resume_intf, rt2x00dev);
1199
1200         /*
1201          * We are ready again to receive requests from mac80211.
1202          */
1203         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1204
1205         /*
1206          * It is possible that during that mac80211 has attempted
1207          * to send frames while we were suspending or resuming.
1208          * In that case we have disabled the TX queue and should
1209          * now enable it again
1210          */
1211         ieee80211_wake_queues(rt2x00dev->hw);
1212
1213         /*
1214          * During interface iteration we might have changed the
1215          * delayed_flags, time to handles the event by calling
1216          * the work handler directly.
1217          */
1218         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1219
1220         return 0;
1221
1222 exit:
1223         rt2x00lib_disable_radio(rt2x00dev);
1224         rt2x00lib_uninitialize(rt2x00dev);
1225         rt2x00debug_deregister(rt2x00dev);
1226
1227         return retval;
1228 }
1229 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1230 #endif /* CONFIG_PM */
1231
1232 /*
1233  * rt2x00lib module information.
1234  */
1235 MODULE_AUTHOR(DRV_PROJECT);
1236 MODULE_VERSION(DRV_VERSION);
1237 MODULE_DESCRIPTION("rt2x00 library");
1238 MODULE_LICENSE("GPL");