]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
ea130f2eb008439180ae79c256eca1565eb67b31
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00leds_led_radio(rt2x00dev, true);
116         rt2x00led_led_activity(rt2x00dev, true);
117
118         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120         /*
121          * Enable RX.
122          */
123         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125         /*
126          * Start the TX queues.
127          */
128         ieee80211_start_queues(rt2x00dev->hw);
129
130         return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136                 return;
137
138         /*
139          * Stop all scheduled work.
140          */
141         if (work_pending(&rt2x00dev->intf_work))
142                 cancel_work_sync(&rt2x00dev->intf_work);
143         if (work_pending(&rt2x00dev->filter_work))
144                 cancel_work_sync(&rt2x00dev->filter_work);
145
146         /*
147          * Stop the TX queues.
148          */
149         ieee80211_stop_queues(rt2x00dev->hw);
150
151         /*
152          * Disable RX.
153          */
154         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155
156         /*
157          * Disable radio.
158          */
159         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160         rt2x00led_led_activity(rt2x00dev, false);
161         rt2x00leds_led_radio(rt2x00dev, false);
162 }
163
164 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
165 {
166         /*
167          * When we are disabling the RX, we should also stop the link tuner.
168          */
169         if (state == STATE_RADIO_RX_OFF)
170                 rt2x00lib_stop_link_tuner(rt2x00dev);
171
172         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
173
174         /*
175          * When we are enabling the RX, we should also start the link tuner.
176          */
177         if (state == STATE_RADIO_RX_ON &&
178             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
179                 rt2x00lib_start_link_tuner(rt2x00dev);
180 }
181
182 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
183 {
184         enum antenna rx = rt2x00dev->link.ant.active.rx;
185         enum antenna tx = rt2x00dev->link.ant.active.tx;
186         int sample_a =
187             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
188         int sample_b =
189             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
190
191         /*
192          * We are done sampling. Now we should evaluate the results.
193          */
194         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
195
196         /*
197          * During the last period we have sampled the RSSI
198          * from both antenna's. It now is time to determine
199          * which antenna demonstrated the best performance.
200          * When we are already on the antenna with the best
201          * performance, then there really is nothing for us
202          * left to do.
203          */
204         if (sample_a == sample_b)
205                 return;
206
207         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
208                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209
210         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
211                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212
213         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
214 }
215
216 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
217 {
218         enum antenna rx = rt2x00dev->link.ant.active.rx;
219         enum antenna tx = rt2x00dev->link.ant.active.tx;
220         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
221         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
222
223         /*
224          * Legacy driver indicates that we should swap antenna's
225          * when the difference in RSSI is greater that 5. This
226          * also should be done when the RSSI was actually better
227          * then the previous sample.
228          * When the difference exceeds the threshold we should
229          * sample the rssi from the other antenna to make a valid
230          * comparison between the 2 antennas.
231          */
232         if (abs(rssi_curr - rssi_old) < 5)
233                 return;
234
235         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
236
237         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
238                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239
240         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
241                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242
243         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
244 }
245
246 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
247 {
248         /*
249          * Determine if software diversity is enabled for
250          * either the TX or RX antenna (or both).
251          * Always perform this check since within the link
252          * tuner interval the configuration might have changed.
253          */
254         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
255         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
256
257         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
258             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
259                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
260         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
261             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
262                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
263
264         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
265             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
266                 rt2x00dev->link.ant.flags = 0;
267                 return;
268         }
269
270         /*
271          * If we have only sampled the data over the last period
272          * we should now harvest the data. Otherwise just evaluate
273          * the data. The latter should only be performed once
274          * every 2 seconds.
275          */
276         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
277                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
278         else if (rt2x00dev->link.count & 1)
279                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
280 }
281
282 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
283 {
284         int avg_rssi = rssi;
285
286         /*
287          * Update global RSSI
288          */
289         if (link->qual.avg_rssi)
290                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
291         link->qual.avg_rssi = avg_rssi;
292
293         /*
294          * Update antenna RSSI
295          */
296         if (link->ant.rssi_ant)
297                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
298         link->ant.rssi_ant = rssi;
299 }
300
301 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
302 {
303         if (qual->rx_failed || qual->rx_success)
304                 qual->rx_percentage =
305                     (qual->rx_success * 100) /
306                     (qual->rx_failed + qual->rx_success);
307         else
308                 qual->rx_percentage = 50;
309
310         if (qual->tx_failed || qual->tx_success)
311                 qual->tx_percentage =
312                     (qual->tx_success * 100) /
313                     (qual->tx_failed + qual->tx_success);
314         else
315                 qual->tx_percentage = 50;
316
317         qual->rx_success = 0;
318         qual->rx_failed = 0;
319         qual->tx_success = 0;
320         qual->tx_failed = 0;
321 }
322
323 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
324                                            int rssi)
325 {
326         int rssi_percentage = 0;
327         int signal;
328
329         /*
330          * We need a positive value for the RSSI.
331          */
332         if (rssi < 0)
333                 rssi += rt2x00dev->rssi_offset;
334
335         /*
336          * Calculate the different percentages,
337          * which will be used for the signal.
338          */
339         if (rt2x00dev->rssi_offset)
340                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
341
342         /*
343          * Add the individual percentages and use the WEIGHT
344          * defines to calculate the current link signal.
345          */
346         signal = ((WEIGHT_RSSI * rssi_percentage) +
347                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
348                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
349
350         return (signal > 100) ? 100 : signal;
351 }
352
353 static void rt2x00lib_link_tuner(struct work_struct *work)
354 {
355         struct rt2x00_dev *rt2x00dev =
356             container_of(work, struct rt2x00_dev, link.work.work);
357
358         /*
359          * When the radio is shutting down we should
360          * immediately cease all link tuning.
361          */
362         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
363                 return;
364
365         /*
366          * Update statistics.
367          */
368         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
369         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
370             rt2x00dev->link.qual.rx_failed;
371
372         /*
373          * Only perform the link tuning when Link tuning
374          * has been enabled (This could have been disabled from the EEPROM).
375          */
376         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
377                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
378
379         /*
380          * Precalculate a portion of the link signal which is
381          * in based on the tx/rx success/failure counters.
382          */
383         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
384
385         /*
386          * Send a signal to the led to update the led signal strength.
387          */
388         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
389
390         /*
391          * Evaluate antenna setup, make this the last step since this could
392          * possibly reset some statistics.
393          */
394         rt2x00lib_evaluate_antenna(rt2x00dev);
395
396         /*
397          * Increase tuner counter, and reschedule the next link tuner run.
398          */
399         rt2x00dev->link.count++;
400         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
401                            LINK_TUNE_INTERVAL);
402 }
403
404 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
405 {
406         struct rt2x00_dev *rt2x00dev =
407             container_of(work, struct rt2x00_dev, filter_work);
408
409         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
410 }
411
412 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
413                                           struct ieee80211_vif *vif)
414 {
415         struct rt2x00_dev *rt2x00dev = data;
416         struct rt2x00_intf *intf = vif_to_intf(vif);
417         struct sk_buff *skb;
418         struct ieee80211_tx_control control;
419         struct ieee80211_bss_conf conf;
420         int delayed_flags;
421
422         /*
423          * Copy all data we need during this action under the protection
424          * of a spinlock. Otherwise race conditions might occur which results
425          * into an invalid configuration.
426          */
427         spin_lock(&intf->lock);
428
429         memcpy(&conf, &intf->conf, sizeof(conf));
430         delayed_flags = intf->delayed_flags;
431         intf->delayed_flags = 0;
432
433         spin_unlock(&intf->lock);
434
435         if (delayed_flags & DELAYED_UPDATE_BEACON) {
436                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
437                 if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw,
438                                                              skb, &control))
439                         dev_kfree_skb(skb);
440         }
441
442         if (delayed_flags & DELAYED_CONFIG_ERP)
443                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
444
445         if (delayed_flags & DELAYED_LED_ASSOC)
446                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
447 }
448
449 static void rt2x00lib_intf_scheduled(struct work_struct *work)
450 {
451         struct rt2x00_dev *rt2x00dev =
452             container_of(work, struct rt2x00_dev, intf_work);
453
454         /*
455          * Iterate over each interface and perform the
456          * requested configurations.
457          */
458         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
459                                             rt2x00lib_intf_scheduled_iter,
460                                             rt2x00dev);
461 }
462
463 /*
464  * Interrupt context handlers.
465  */
466 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
467                                       struct ieee80211_vif *vif)
468 {
469         struct rt2x00_intf *intf = vif_to_intf(vif);
470
471         if (vif->type != IEEE80211_IF_TYPE_AP &&
472             vif->type != IEEE80211_IF_TYPE_IBSS)
473                 return;
474
475         spin_lock(&intf->lock);
476         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
477         spin_unlock(&intf->lock);
478 }
479
480 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
481 {
482         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
483                 return;
484
485         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
486                                             rt2x00lib_beacondone_iter,
487                                             rt2x00dev);
488
489         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
490 }
491 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
492
493 void rt2x00lib_txdone(struct queue_entry *entry,
494                       struct txdone_entry_desc *txdesc)
495 {
496         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
497         struct skb_frame_desc *skbdesc;
498         struct ieee80211_tx_status tx_status;
499         int success = !!(txdesc->status == TX_SUCCESS ||
500                          txdesc->status == TX_SUCCESS_RETRY);
501         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
502                       txdesc->status == TX_FAIL_INVALID ||
503                       txdesc->status == TX_FAIL_OTHER);
504
505         /*
506          * Update TX statistics.
507          */
508         rt2x00dev->link.qual.tx_success += success;
509         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
510
511         /*
512          * Initialize TX status
513          */
514         tx_status.flags = 0;
515         tx_status.ack_signal = 0;
516         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
517         tx_status.retry_count = txdesc->retry;
518         memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
519
520         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
521                 if (success)
522                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
523                 else
524                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
525         }
526
527         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
528                 if (success)
529                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
530                 else
531                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
532         }
533
534         /*
535          * Send the tx_status to debugfs. Only send the status report
536          * to mac80211 when the frame originated from there. If this was
537          * a extra frame coming through a mac80211 library call (RTS/CTS)
538          * then we should not send the status report back.
539          * If send to mac80211, mac80211 will clean up the skb structure,
540          * otherwise we have to do it ourself.
541          */
542         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
543
544         skbdesc = get_skb_frame_desc(entry->skb);
545         if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
546                 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
547                                             entry->skb, &tx_status);
548         else
549                 dev_kfree_skb(entry->skb);
550         entry->skb = NULL;
551 }
552 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
553
554 void rt2x00lib_rxdone(struct queue_entry *entry,
555                       struct rxdone_entry_desc *rxdesc)
556 {
557         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
558         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
559         struct ieee80211_supported_band *sband;
560         struct ieee80211_hdr *hdr;
561         const struct rt2x00_rate *rate;
562         unsigned int i;
563         int idx = -1;
564         u16 fc;
565
566         /*
567          * Update RX statistics.
568          */
569         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
570         for (i = 0; i < sband->n_bitrates; i++) {
571                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
572
573                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
574                      (rate->plcp == rxdesc->signal)) ||
575                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
576                       (rate->bitrate == rxdesc->signal))) {
577                         idx = i;
578                         break;
579                 }
580         }
581
582         if (idx < 0) {
583                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
584                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
585                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
586                 idx = 0;
587         }
588
589         /*
590          * Only update link status if this is a beacon frame carrying our bssid.
591          */
592         hdr = (struct ieee80211_hdr *)entry->skb->data;
593         fc = le16_to_cpu(hdr->frame_control);
594         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
595                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
596
597         rt2x00dev->link.qual.rx_success++;
598
599         rx_status->rate_idx = idx;
600         rx_status->qual =
601             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
602         rx_status->signal = rxdesc->rssi;
603         rx_status->flag = rxdesc->flags;
604         rx_status->antenna = rt2x00dev->link.ant.active.rx;
605
606         /*
607          * Send frame to mac80211 & debugfs.
608          * mac80211 will clean up the skb structure.
609          */
610         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
611         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
612         entry->skb = NULL;
613 }
614 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
615
616 /*
617  * TX descriptor initializer
618  */
619 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
620                              struct sk_buff *skb,
621                              struct ieee80211_tx_control *control)
622 {
623         struct txentry_desc txdesc;
624         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
625         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
626         const struct rt2x00_rate *rate;
627         int tx_rate;
628         int length;
629         int duration;
630         int residual;
631         u16 frame_control;
632         u16 seq_ctrl;
633
634         memset(&txdesc, 0, sizeof(txdesc));
635
636         txdesc.queue = skbdesc->entry->queue->qid;
637         txdesc.cw_min = skbdesc->entry->queue->cw_min;
638         txdesc.cw_max = skbdesc->entry->queue->cw_max;
639         txdesc.aifs = skbdesc->entry->queue->aifs;
640
641         /*
642          * Read required fields from ieee80211 header.
643          */
644         frame_control = le16_to_cpu(hdr->frame_control);
645         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
646
647         tx_rate = control->tx_rate->hw_value;
648
649         /*
650          * Check whether this frame is to be acked
651          */
652         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
653                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
654
655         /*
656          * Check if this is a RTS/CTS frame
657          */
658         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
659                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
660                 if (is_rts_frame(frame_control)) {
661                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
662                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
663                 } else
664                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
665                 if (control->rts_cts_rate)
666                         tx_rate = control->rts_cts_rate->hw_value;
667         }
668
669         rate = rt2x00_get_rate(tx_rate);
670
671         /*
672          * Check if more fragments are pending
673          */
674         if (ieee80211_get_morefrag(hdr)) {
675                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
676                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
677         }
678
679         /*
680          * Beacons and probe responses require the tsf timestamp
681          * to be inserted into the frame.
682          */
683         if (txdesc.queue == QID_BEACON || is_probe_resp(frame_control))
684                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
685
686         /*
687          * Determine with what IFS priority this frame should be send.
688          * Set ifs to IFS_SIFS when the this is not the first fragment,
689          * or this fragment came after RTS/CTS.
690          */
691         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
692             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
693                 txdesc.ifs = IFS_SIFS;
694         else
695                 txdesc.ifs = IFS_BACKOFF;
696
697         /*
698          * PLCP setup
699          * Length calculation depends on OFDM/CCK rate.
700          */
701         txdesc.signal = rate->plcp;
702         txdesc.service = 0x04;
703
704         length = skbdesc->data_len + FCS_LEN;
705         if (rate->flags & DEV_RATE_OFDM) {
706                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
707
708                 txdesc.length_high = (length >> 6) & 0x3f;
709                 txdesc.length_low = length & 0x3f;
710         } else {
711                 /*
712                  * Convert length to microseconds.
713                  */
714                 residual = get_duration_res(length, rate->bitrate);
715                 duration = get_duration(length, rate->bitrate);
716
717                 if (residual != 0) {
718                         duration++;
719
720                         /*
721                          * Check if we need to set the Length Extension
722                          */
723                         if (rate->bitrate == 110 && residual <= 30)
724                                 txdesc.service |= 0x80;
725                 }
726
727                 txdesc.length_high = (duration >> 8) & 0xff;
728                 txdesc.length_low = duration & 0xff;
729
730                 /*
731                  * When preamble is enabled we should set the
732                  * preamble bit for the signal.
733                  */
734                 if (rt2x00_get_rate_preamble(tx_rate))
735                         txdesc.signal |= 0x08;
736         }
737
738         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
739
740         /*
741          * Update queue entry.
742          */
743         skbdesc->entry->skb = skb;
744
745         /*
746          * The frame has been completely initialized and ready
747          * for sending to the device. The caller will push the
748          * frame to the device, but we are going to push the
749          * frame to debugfs here.
750          */
751         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, skb);
752 }
753 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
754
755 /*
756  * Driver initialization handlers.
757  */
758 const struct rt2x00_rate rt2x00_supported_rates[12] = {
759         {
760                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
761                 .bitrate = 10,
762                 .ratemask = BIT(0),
763                 .plcp = 0x00,
764         },
765         {
766                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
767                 .bitrate = 20,
768                 .ratemask = BIT(1),
769                 .plcp = 0x01,
770         },
771         {
772                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
773                 .bitrate = 55,
774                 .ratemask = BIT(2),
775                 .plcp = 0x02,
776         },
777         {
778                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
779                 .bitrate = 110,
780                 .ratemask = BIT(3),
781                 .plcp = 0x03,
782         },
783         {
784                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
785                 .bitrate = 60,
786                 .ratemask = BIT(4),
787                 .plcp = 0x0b,
788         },
789         {
790                 .flags = DEV_RATE_OFDM,
791                 .bitrate = 90,
792                 .ratemask = BIT(5),
793                 .plcp = 0x0f,
794         },
795         {
796                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
797                 .bitrate = 120,
798                 .ratemask = BIT(6),
799                 .plcp = 0x0a,
800         },
801         {
802                 .flags = DEV_RATE_OFDM,
803                 .bitrate = 180,
804                 .ratemask = BIT(7),
805                 .plcp = 0x0e,
806         },
807         {
808                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
809                 .bitrate = 240,
810                 .ratemask = BIT(8),
811                 .plcp = 0x09,
812         },
813         {
814                 .flags = DEV_RATE_OFDM,
815                 .bitrate = 360,
816                 .ratemask = BIT(9),
817                 .plcp = 0x0d,
818         },
819         {
820                 .flags = DEV_RATE_OFDM,
821                 .bitrate = 480,
822                 .ratemask = BIT(10),
823                 .plcp = 0x08,
824         },
825         {
826                 .flags = DEV_RATE_OFDM,
827                 .bitrate = 540,
828                 .ratemask = BIT(11),
829                 .plcp = 0x0c,
830         },
831 };
832
833 static void rt2x00lib_channel(struct ieee80211_channel *entry,
834                               const int channel, const int tx_power,
835                               const int value)
836 {
837         entry->center_freq = ieee80211_channel_to_frequency(channel);
838         entry->hw_value = value;
839         entry->max_power = tx_power;
840         entry->max_antenna_gain = 0xff;
841 }
842
843 static void rt2x00lib_rate(struct ieee80211_rate *entry,
844                            const u16 index, const struct rt2x00_rate *rate)
845 {
846         entry->flags = 0;
847         entry->bitrate = rate->bitrate;
848         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
849         entry->hw_value_short = entry->hw_value;
850
851         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
852                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
853                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
854         }
855 }
856
857 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
858                                     struct hw_mode_spec *spec)
859 {
860         struct ieee80211_hw *hw = rt2x00dev->hw;
861         struct ieee80211_channel *channels;
862         struct ieee80211_rate *rates;
863         unsigned int num_rates;
864         unsigned int i;
865         unsigned char tx_power;
866
867         num_rates = 0;
868         if (spec->supported_rates & SUPPORT_RATE_CCK)
869                 num_rates += 4;
870         if (spec->supported_rates & SUPPORT_RATE_OFDM)
871                 num_rates += 8;
872
873         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
874         if (!channels)
875                 return -ENOMEM;
876
877         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
878         if (!rates)
879                 goto exit_free_channels;
880
881         /*
882          * Initialize Rate list.
883          */
884         for (i = 0; i < num_rates; i++)
885                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
886
887         /*
888          * Initialize Channel list.
889          */
890         for (i = 0; i < spec->num_channels; i++) {
891                 if (spec->channels[i].channel <= 14) {
892                         if (spec->tx_power_bg)
893                                 tx_power = spec->tx_power_bg[i];
894                         else
895                                 tx_power = spec->tx_power_default;
896                 } else {
897                         if (spec->tx_power_a)
898                                 tx_power = spec->tx_power_a[i];
899                         else
900                                 tx_power = spec->tx_power_default;
901                 }
902
903                 rt2x00lib_channel(&channels[i],
904                                   spec->channels[i].channel, tx_power, i);
905         }
906
907         /*
908          * Intitialize 802.11b, 802.11g
909          * Rates: CCK, OFDM.
910          * Channels: 2.4 GHz
911          */
912         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
913                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
914                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
915                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
916                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
917                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
918                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
919         }
920
921         /*
922          * Intitialize 802.11a
923          * Rates: OFDM.
924          * Channels: OFDM, UNII, HiperLAN2.
925          */
926         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
927                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
928                     spec->num_channels - 14;
929                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
930                     num_rates - 4;
931                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
932                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
933                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
934                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
935         }
936
937         return 0;
938
939  exit_free_channels:
940         kfree(channels);
941         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
942         return -ENOMEM;
943 }
944
945 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
946 {
947         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
948                 ieee80211_unregister_hw(rt2x00dev->hw);
949
950         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
951                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
952                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
953                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
954                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
955         }
956 }
957
958 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
959 {
960         struct hw_mode_spec *spec = &rt2x00dev->spec;
961         int status;
962
963         /*
964          * Initialize HW modes.
965          */
966         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
967         if (status)
968                 return status;
969
970         /*
971          * Register HW.
972          */
973         status = ieee80211_register_hw(rt2x00dev->hw);
974         if (status) {
975                 rt2x00lib_remove_hw(rt2x00dev);
976                 return status;
977         }
978
979         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
980
981         return 0;
982 }
983
984 /*
985  * Initialization/uninitialization handlers.
986  */
987 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
988 {
989         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
990                 return;
991
992         /*
993          * Unregister extra components.
994          */
995         rt2x00rfkill_unregister(rt2x00dev);
996
997         /*
998          * Allow the HW to uninitialize.
999          */
1000         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1001
1002         /*
1003          * Free allocated queue entries.
1004          */
1005         rt2x00queue_uninitialize(rt2x00dev);
1006 }
1007
1008 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1009 {
1010         int status;
1011
1012         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1013                 return 0;
1014
1015         /*
1016          * Allocate all queue entries.
1017          */
1018         status = rt2x00queue_initialize(rt2x00dev);
1019         if (status)
1020                 return status;
1021
1022         /*
1023          * Initialize the device.
1024          */
1025         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1026         if (status) {
1027                 rt2x00queue_uninitialize(rt2x00dev);
1028                 return status;
1029         }
1030
1031         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1032
1033         /*
1034          * Register the extra components.
1035          */
1036         rt2x00rfkill_register(rt2x00dev);
1037
1038         return 0;
1039 }
1040
1041 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1042 {
1043         int retval;
1044
1045         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1046                 return 0;
1047
1048         /*
1049          * If this is the first interface which is added,
1050          * we should load the firmware now.
1051          */
1052         retval = rt2x00lib_load_firmware(rt2x00dev);
1053         if (retval)
1054                 return retval;
1055
1056         /*
1057          * Initialize the device.
1058          */
1059         retval = rt2x00lib_initialize(rt2x00dev);
1060         if (retval)
1061                 return retval;
1062
1063         /*
1064          * Enable radio.
1065          */
1066         retval = rt2x00lib_enable_radio(rt2x00dev);
1067         if (retval) {
1068                 rt2x00lib_uninitialize(rt2x00dev);
1069                 return retval;
1070         }
1071
1072         rt2x00dev->intf_ap_count = 0;
1073         rt2x00dev->intf_sta_count = 0;
1074         rt2x00dev->intf_associated = 0;
1075
1076         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1077
1078         return 0;
1079 }
1080
1081 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1082 {
1083         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1084                 return;
1085
1086         /*
1087          * Perhaps we can add something smarter here,
1088          * but for now just disabling the radio should do.
1089          */
1090         rt2x00lib_disable_radio(rt2x00dev);
1091
1092         rt2x00dev->intf_ap_count = 0;
1093         rt2x00dev->intf_sta_count = 0;
1094         rt2x00dev->intf_associated = 0;
1095
1096         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1097 }
1098
1099 /*
1100  * driver allocation handlers.
1101  */
1102 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1103 {
1104         int retval = -ENOMEM;
1105
1106         /*
1107          * Make room for rt2x00_intf inside the per-interface
1108          * structure ieee80211_vif.
1109          */
1110         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1111
1112         /*
1113          * Let the driver probe the device to detect the capabilities.
1114          */
1115         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1116         if (retval) {
1117                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1118                 goto exit;
1119         }
1120
1121         /*
1122          * Initialize configuration work.
1123          */
1124         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1125         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1126         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1127
1128         /*
1129          * Allocate queue array.
1130          */
1131         retval = rt2x00queue_allocate(rt2x00dev);
1132         if (retval)
1133                 goto exit;
1134
1135         /*
1136          * Initialize ieee80211 structure.
1137          */
1138         retval = rt2x00lib_probe_hw(rt2x00dev);
1139         if (retval) {
1140                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1141                 goto exit;
1142         }
1143
1144         /*
1145          * Register extra components.
1146          */
1147         rt2x00leds_register(rt2x00dev);
1148         rt2x00rfkill_allocate(rt2x00dev);
1149         rt2x00debug_register(rt2x00dev);
1150
1151         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1152
1153         return 0;
1154
1155 exit:
1156         rt2x00lib_remove_dev(rt2x00dev);
1157
1158         return retval;
1159 }
1160 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1161
1162 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1163 {
1164         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1165
1166         /*
1167          * Disable radio.
1168          */
1169         rt2x00lib_disable_radio(rt2x00dev);
1170
1171         /*
1172          * Uninitialize device.
1173          */
1174         rt2x00lib_uninitialize(rt2x00dev);
1175
1176         /*
1177          * Free extra components
1178          */
1179         rt2x00debug_deregister(rt2x00dev);
1180         rt2x00rfkill_free(rt2x00dev);
1181         rt2x00leds_unregister(rt2x00dev);
1182
1183         /*
1184          * Free ieee80211_hw memory.
1185          */
1186         rt2x00lib_remove_hw(rt2x00dev);
1187
1188         /*
1189          * Free firmware image.
1190          */
1191         rt2x00lib_free_firmware(rt2x00dev);
1192
1193         /*
1194          * Free queue structures.
1195          */
1196         rt2x00queue_free(rt2x00dev);
1197 }
1198 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1199
1200 /*
1201  * Device state handlers
1202  */
1203 #ifdef CONFIG_PM
1204 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1205 {
1206         int retval;
1207
1208         NOTICE(rt2x00dev, "Going to sleep.\n");
1209         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1210
1211         /*
1212          * Only continue if mac80211 has open interfaces.
1213          */
1214         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1215                 goto exit;
1216         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1217
1218         /*
1219          * Disable radio.
1220          */
1221         rt2x00lib_stop(rt2x00dev);
1222         rt2x00lib_uninitialize(rt2x00dev);
1223
1224         /*
1225          * Suspend/disable extra components.
1226          */
1227         rt2x00leds_suspend(rt2x00dev);
1228         rt2x00rfkill_suspend(rt2x00dev);
1229         rt2x00debug_deregister(rt2x00dev);
1230
1231 exit:
1232         /*
1233          * Set device mode to sleep for power management,
1234          * on some hardware this call seems to consistently fail.
1235          * From the specifications it is hard to tell why it fails,
1236          * and if this is a "bad thing".
1237          * Overall it is safe to just ignore the failure and
1238          * continue suspending. The only downside is that the
1239          * device will not be in optimal power save mode, but with
1240          * the radio and the other components already disabled the
1241          * device is as good as disabled.
1242          */
1243         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1244         if (retval)
1245                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1246                         "continue suspending.\n");
1247
1248         return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1251
1252 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1253                                   struct ieee80211_vif *vif)
1254 {
1255         struct rt2x00_dev *rt2x00dev = data;
1256         struct rt2x00_intf *intf = vif_to_intf(vif);
1257
1258         spin_lock(&intf->lock);
1259
1260         rt2x00lib_config_intf(rt2x00dev, intf,
1261                               vif->type, intf->mac, intf->bssid);
1262
1263
1264         /*
1265          * Master or Ad-hoc mode require a new beacon update.
1266          */
1267         if (vif->type == IEEE80211_IF_TYPE_AP ||
1268             vif->type == IEEE80211_IF_TYPE_IBSS)
1269                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1270
1271         spin_unlock(&intf->lock);
1272 }
1273
1274 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1275 {
1276         int retval;
1277
1278         NOTICE(rt2x00dev, "Waking up.\n");
1279
1280         /*
1281          * Restore/enable extra components.
1282          */
1283         rt2x00debug_register(rt2x00dev);
1284         rt2x00rfkill_resume(rt2x00dev);
1285         rt2x00leds_resume(rt2x00dev);
1286
1287         /*
1288          * Only continue if mac80211 had open interfaces.
1289          */
1290         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1291                 return 0;
1292
1293         /*
1294          * Reinitialize device and all active interfaces.
1295          */
1296         retval = rt2x00lib_start(rt2x00dev);
1297         if (retval)
1298                 goto exit;
1299
1300         /*
1301          * Reconfigure device.
1302          */
1303         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1304         if (!rt2x00dev->hw->conf.radio_enabled)
1305                 rt2x00lib_disable_radio(rt2x00dev);
1306
1307         /*
1308          * Iterator over each active interface to
1309          * reconfigure the hardware.
1310          */
1311         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1312                                             rt2x00lib_resume_intf, rt2x00dev);
1313
1314         /*
1315          * We are ready again to receive requests from mac80211.
1316          */
1317         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1318
1319         /*
1320          * It is possible that during that mac80211 has attempted
1321          * to send frames while we were suspending or resuming.
1322          * In that case we have disabled the TX queue and should
1323          * now enable it again
1324          */
1325         ieee80211_start_queues(rt2x00dev->hw);
1326
1327         /*
1328          * During interface iteration we might have changed the
1329          * delayed_flags, time to handles the event by calling
1330          * the work handler directly.
1331          */
1332         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1333
1334         return 0;
1335
1336 exit:
1337         rt2x00lib_disable_radio(rt2x00dev);
1338         rt2x00lib_uninitialize(rt2x00dev);
1339         rt2x00debug_deregister(rt2x00dev);
1340
1341         return retval;
1342 }
1343 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1344 #endif /* CONFIG_PM */
1345
1346 /*
1347  * rt2x00lib module information.
1348  */
1349 MODULE_AUTHOR(DRV_PROJECT);
1350 MODULE_VERSION(DRV_VERSION);
1351 MODULE_DESCRIPTION("rt2x00 library");
1352 MODULE_LICENSE("GPL");