]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Fix TX status reporting
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00leds_led_radio(rt2x00dev, true);
116         rt2x00led_led_activity(rt2x00dev, true);
117
118         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120         /*
121          * Enable RX.
122          */
123         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125         /*
126          * Start the TX queues.
127          */
128         ieee80211_start_queues(rt2x00dev->hw);
129
130         return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136                 return;
137
138         /*
139          * Stop all scheduled work.
140          */
141         if (work_pending(&rt2x00dev->intf_work))
142                 cancel_work_sync(&rt2x00dev->intf_work);
143         if (work_pending(&rt2x00dev->filter_work))
144                 cancel_work_sync(&rt2x00dev->filter_work);
145
146         /*
147          * Stop the TX queues.
148          */
149         ieee80211_stop_queues(rt2x00dev->hw);
150
151         /*
152          * Disable RX.
153          */
154         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155
156         /*
157          * Disable radio.
158          */
159         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160         rt2x00led_led_activity(rt2x00dev, false);
161         rt2x00leds_led_radio(rt2x00dev, false);
162 }
163
164 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
165 {
166         /*
167          * When we are disabling the RX, we should also stop the link tuner.
168          */
169         if (state == STATE_RADIO_RX_OFF)
170                 rt2x00lib_stop_link_tuner(rt2x00dev);
171
172         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
173
174         /*
175          * When we are enabling the RX, we should also start the link tuner.
176          */
177         if (state == STATE_RADIO_RX_ON &&
178             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
179                 rt2x00lib_start_link_tuner(rt2x00dev);
180 }
181
182 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
183 {
184         enum antenna rx = rt2x00dev->link.ant.active.rx;
185         enum antenna tx = rt2x00dev->link.ant.active.tx;
186         int sample_a =
187             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
188         int sample_b =
189             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
190
191         /*
192          * We are done sampling. Now we should evaluate the results.
193          */
194         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
195
196         /*
197          * During the last period we have sampled the RSSI
198          * from both antenna's. It now is time to determine
199          * which antenna demonstrated the best performance.
200          * When we are already on the antenna with the best
201          * performance, then there really is nothing for us
202          * left to do.
203          */
204         if (sample_a == sample_b)
205                 return;
206
207         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
208                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209
210         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
211                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212
213         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
214 }
215
216 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
217 {
218         enum antenna rx = rt2x00dev->link.ant.active.rx;
219         enum antenna tx = rt2x00dev->link.ant.active.tx;
220         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
221         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
222
223         /*
224          * Legacy driver indicates that we should swap antenna's
225          * when the difference in RSSI is greater that 5. This
226          * also should be done when the RSSI was actually better
227          * then the previous sample.
228          * When the difference exceeds the threshold we should
229          * sample the rssi from the other antenna to make a valid
230          * comparison between the 2 antennas.
231          */
232         if (abs(rssi_curr - rssi_old) < 5)
233                 return;
234
235         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
236
237         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
238                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239
240         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
241                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242
243         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
244 }
245
246 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
247 {
248         /*
249          * Determine if software diversity is enabled for
250          * either the TX or RX antenna (or both).
251          * Always perform this check since within the link
252          * tuner interval the configuration might have changed.
253          */
254         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
255         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
256
257         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
258             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
259                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
260         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
261             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
262                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
263
264         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
265             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
266                 rt2x00dev->link.ant.flags = 0;
267                 return;
268         }
269
270         /*
271          * If we have only sampled the data over the last period
272          * we should now harvest the data. Otherwise just evaluate
273          * the data. The latter should only be performed once
274          * every 2 seconds.
275          */
276         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
277                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
278         else if (rt2x00dev->link.count & 1)
279                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
280 }
281
282 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
283 {
284         int avg_rssi = rssi;
285
286         /*
287          * Update global RSSI
288          */
289         if (link->qual.avg_rssi)
290                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
291         link->qual.avg_rssi = avg_rssi;
292
293         /*
294          * Update antenna RSSI
295          */
296         if (link->ant.rssi_ant)
297                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
298         link->ant.rssi_ant = rssi;
299 }
300
301 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
302 {
303         if (qual->rx_failed || qual->rx_success)
304                 qual->rx_percentage =
305                     (qual->rx_success * 100) /
306                     (qual->rx_failed + qual->rx_success);
307         else
308                 qual->rx_percentage = 50;
309
310         if (qual->tx_failed || qual->tx_success)
311                 qual->tx_percentage =
312                     (qual->tx_success * 100) /
313                     (qual->tx_failed + qual->tx_success);
314         else
315                 qual->tx_percentage = 50;
316
317         qual->rx_success = 0;
318         qual->rx_failed = 0;
319         qual->tx_success = 0;
320         qual->tx_failed = 0;
321 }
322
323 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
324                                            int rssi)
325 {
326         int rssi_percentage = 0;
327         int signal;
328
329         /*
330          * We need a positive value for the RSSI.
331          */
332         if (rssi < 0)
333                 rssi += rt2x00dev->rssi_offset;
334
335         /*
336          * Calculate the different percentages,
337          * which will be used for the signal.
338          */
339         if (rt2x00dev->rssi_offset)
340                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
341
342         /*
343          * Add the individual percentages and use the WEIGHT
344          * defines to calculate the current link signal.
345          */
346         signal = ((WEIGHT_RSSI * rssi_percentage) +
347                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
348                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
349
350         return (signal > 100) ? 100 : signal;
351 }
352
353 static void rt2x00lib_link_tuner(struct work_struct *work)
354 {
355         struct rt2x00_dev *rt2x00dev =
356             container_of(work, struct rt2x00_dev, link.work.work);
357
358         /*
359          * When the radio is shutting down we should
360          * immediately cease all link tuning.
361          */
362         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
363                 return;
364
365         /*
366          * Update statistics.
367          */
368         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
369         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
370             rt2x00dev->link.qual.rx_failed;
371
372         /*
373          * Only perform the link tuning when Link tuning
374          * has been enabled (This could have been disabled from the EEPROM).
375          */
376         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
377                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
378
379         /*
380          * Precalculate a portion of the link signal which is
381          * in based on the tx/rx success/failure counters.
382          */
383         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
384
385         /*
386          * Send a signal to the led to update the led signal strength.
387          */
388         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
389
390         /*
391          * Evaluate antenna setup, make this the last step since this could
392          * possibly reset some statistics.
393          */
394         rt2x00lib_evaluate_antenna(rt2x00dev);
395
396         /*
397          * Increase tuner counter, and reschedule the next link tuner run.
398          */
399         rt2x00dev->link.count++;
400         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
401                            LINK_TUNE_INTERVAL);
402 }
403
404 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
405 {
406         struct rt2x00_dev *rt2x00dev =
407             container_of(work, struct rt2x00_dev, filter_work);
408
409         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
410 }
411
412 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
413                                           struct ieee80211_vif *vif)
414 {
415         struct rt2x00_dev *rt2x00dev = data;
416         struct rt2x00_intf *intf = vif_to_intf(vif);
417         struct sk_buff *skb;
418         struct ieee80211_tx_control control;
419         struct ieee80211_bss_conf conf;
420         int delayed_flags;
421
422         /*
423          * Copy all data we need during this action under the protection
424          * of a spinlock. Otherwise race conditions might occur which results
425          * into an invalid configuration.
426          */
427         spin_lock(&intf->lock);
428
429         memcpy(&conf, &intf->conf, sizeof(conf));
430         delayed_flags = intf->delayed_flags;
431         intf->delayed_flags = 0;
432
433         spin_unlock(&intf->lock);
434
435         if (delayed_flags & DELAYED_UPDATE_BEACON) {
436                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
437                 if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw,
438                                                              skb, &control))
439                         dev_kfree_skb(skb);
440         }
441
442         if (delayed_flags & DELAYED_CONFIG_ERP)
443                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
444
445         if (delayed_flags & DELAYED_LED_ASSOC)
446                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
447 }
448
449 static void rt2x00lib_intf_scheduled(struct work_struct *work)
450 {
451         struct rt2x00_dev *rt2x00dev =
452             container_of(work, struct rt2x00_dev, intf_work);
453
454         /*
455          * Iterate over each interface and perform the
456          * requested configurations.
457          */
458         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
459                                             rt2x00lib_intf_scheduled_iter,
460                                             rt2x00dev);
461 }
462
463 /*
464  * Interrupt context handlers.
465  */
466 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
467                                       struct ieee80211_vif *vif)
468 {
469         struct rt2x00_intf *intf = vif_to_intf(vif);
470
471         if (vif->type != IEEE80211_IF_TYPE_AP &&
472             vif->type != IEEE80211_IF_TYPE_IBSS)
473                 return;
474
475         spin_lock(&intf->lock);
476         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
477         spin_unlock(&intf->lock);
478 }
479
480 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
481 {
482         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
483                 return;
484
485         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
486                                             rt2x00lib_beacondone_iter,
487                                             rt2x00dev);
488
489         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
490 }
491 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
492
493 void rt2x00lib_txdone(struct queue_entry *entry,
494                       struct txdone_entry_desc *txdesc)
495 {
496         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
497         struct skb_frame_desc *skbdesc;
498         struct ieee80211_tx_status tx_status;
499
500         /*
501          * Update TX statistics.
502          */
503         rt2x00dev->link.qual.tx_success +=
504             test_bit(TXDONE_SUCCESS, &txdesc->flags);
505         rt2x00dev->link.qual.tx_failed +=
506             txdesc->retry + !!test_bit(TXDONE_FAILURE, &txdesc->flags);
507
508         /*
509          * Initialize TX status
510          */
511         tx_status.flags = 0;
512         tx_status.ack_signal = 0;
513         tx_status.excessive_retries =
514             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
515         tx_status.retry_count = txdesc->retry;
516         memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
517
518         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
519                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
520                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
521                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
522                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
523         }
524
525         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
526                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
527                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
528                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
529                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
530         }
531
532         /*
533          * Send the tx_status to debugfs. Only send the status report
534          * to mac80211 when the frame originated from there. If this was
535          * a extra frame coming through a mac80211 library call (RTS/CTS)
536          * then we should not send the status report back.
537          * If send to mac80211, mac80211 will clean up the skb structure,
538          * otherwise we have to do it ourself.
539          */
540         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
541
542         skbdesc = get_skb_frame_desc(entry->skb);
543         if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
544                 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
545                                             entry->skb, &tx_status);
546         else
547                 dev_kfree_skb_irq(entry->skb);
548         entry->skb = NULL;
549 }
550 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
551
552 void rt2x00lib_rxdone(struct queue_entry *entry,
553                       struct rxdone_entry_desc *rxdesc)
554 {
555         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
556         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
557         struct ieee80211_supported_band *sband;
558         struct ieee80211_hdr *hdr;
559         const struct rt2x00_rate *rate;
560         unsigned int i;
561         int idx = -1;
562         u16 fc;
563
564         /*
565          * Update RX statistics.
566          */
567         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
568         for (i = 0; i < sband->n_bitrates; i++) {
569                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
570
571                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
572                      (rate->plcp == rxdesc->signal)) ||
573                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
574                       (rate->bitrate == rxdesc->signal))) {
575                         idx = i;
576                         break;
577                 }
578         }
579
580         if (idx < 0) {
581                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
582                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
583                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
584                 idx = 0;
585         }
586
587         /*
588          * Only update link status if this is a beacon frame carrying our bssid.
589          */
590         hdr = (struct ieee80211_hdr *)entry->skb->data;
591         fc = le16_to_cpu(hdr->frame_control);
592         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
593                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
594
595         rt2x00dev->link.qual.rx_success++;
596
597         rx_status->rate_idx = idx;
598         rx_status->qual =
599             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
600         rx_status->signal = rxdesc->rssi;
601         rx_status->flag = rxdesc->flags;
602         rx_status->antenna = rt2x00dev->link.ant.active.rx;
603
604         /*
605          * Send frame to mac80211 & debugfs.
606          * mac80211 will clean up the skb structure.
607          */
608         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
609         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
610         entry->skb = NULL;
611 }
612 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
613
614 /*
615  * TX descriptor initializer
616  */
617 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
618                              struct sk_buff *skb,
619                              struct ieee80211_tx_control *control)
620 {
621         struct txentry_desc txdesc;
622         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
623         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
624         const struct rt2x00_rate *rate;
625         int tx_rate;
626         int length;
627         int duration;
628         int residual;
629         u16 frame_control;
630         u16 seq_ctrl;
631
632         memset(&txdesc, 0, sizeof(txdesc));
633
634         txdesc.queue = skbdesc->entry->queue->qid;
635         txdesc.cw_min = skbdesc->entry->queue->cw_min;
636         txdesc.cw_max = skbdesc->entry->queue->cw_max;
637         txdesc.aifs = skbdesc->entry->queue->aifs;
638
639         /*
640          * Read required fields from ieee80211 header.
641          */
642         frame_control = le16_to_cpu(hdr->frame_control);
643         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
644
645         tx_rate = control->tx_rate->hw_value;
646
647         /*
648          * Check whether this frame is to be acked
649          */
650         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
651                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
652
653         /*
654          * Check if this is a RTS/CTS frame
655          */
656         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
657                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
658                 if (is_rts_frame(frame_control)) {
659                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
660                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
661                 } else
662                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
663                 if (control->rts_cts_rate)
664                         tx_rate = control->rts_cts_rate->hw_value;
665         }
666
667         rate = rt2x00_get_rate(tx_rate);
668
669         /*
670          * Check if more fragments are pending
671          */
672         if (ieee80211_get_morefrag(hdr)) {
673                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
674                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
675         }
676
677         /*
678          * Beacons and probe responses require the tsf timestamp
679          * to be inserted into the frame.
680          */
681         if (txdesc.queue == QID_BEACON || is_probe_resp(frame_control))
682                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
683
684         /*
685          * Determine with what IFS priority this frame should be send.
686          * Set ifs to IFS_SIFS when the this is not the first fragment,
687          * or this fragment came after RTS/CTS.
688          */
689         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
690             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
691                 txdesc.ifs = IFS_SIFS;
692         else
693                 txdesc.ifs = IFS_BACKOFF;
694
695         /*
696          * PLCP setup
697          * Length calculation depends on OFDM/CCK rate.
698          */
699         txdesc.signal = rate->plcp;
700         txdesc.service = 0x04;
701
702         length = skbdesc->data_len + FCS_LEN;
703         if (rate->flags & DEV_RATE_OFDM) {
704                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
705
706                 txdesc.length_high = (length >> 6) & 0x3f;
707                 txdesc.length_low = length & 0x3f;
708         } else {
709                 /*
710                  * Convert length to microseconds.
711                  */
712                 residual = get_duration_res(length, rate->bitrate);
713                 duration = get_duration(length, rate->bitrate);
714
715                 if (residual != 0) {
716                         duration++;
717
718                         /*
719                          * Check if we need to set the Length Extension
720                          */
721                         if (rate->bitrate == 110 && residual <= 30)
722                                 txdesc.service |= 0x80;
723                 }
724
725                 txdesc.length_high = (duration >> 8) & 0xff;
726                 txdesc.length_low = duration & 0xff;
727
728                 /*
729                  * When preamble is enabled we should set the
730                  * preamble bit for the signal.
731                  */
732                 if (rt2x00_get_rate_preamble(tx_rate))
733                         txdesc.signal |= 0x08;
734         }
735
736         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
737
738         /*
739          * Update queue entry.
740          */
741         skbdesc->entry->skb = skb;
742
743         /*
744          * The frame has been completely initialized and ready
745          * for sending to the device. The caller will push the
746          * frame to the device, but we are going to push the
747          * frame to debugfs here.
748          */
749         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, skb);
750 }
751 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
752
753 /*
754  * Driver initialization handlers.
755  */
756 const struct rt2x00_rate rt2x00_supported_rates[12] = {
757         {
758                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
759                 .bitrate = 10,
760                 .ratemask = BIT(0),
761                 .plcp = 0x00,
762         },
763         {
764                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
765                 .bitrate = 20,
766                 .ratemask = BIT(1),
767                 .plcp = 0x01,
768         },
769         {
770                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
771                 .bitrate = 55,
772                 .ratemask = BIT(2),
773                 .plcp = 0x02,
774         },
775         {
776                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
777                 .bitrate = 110,
778                 .ratemask = BIT(3),
779                 .plcp = 0x03,
780         },
781         {
782                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
783                 .bitrate = 60,
784                 .ratemask = BIT(4),
785                 .plcp = 0x0b,
786         },
787         {
788                 .flags = DEV_RATE_OFDM,
789                 .bitrate = 90,
790                 .ratemask = BIT(5),
791                 .plcp = 0x0f,
792         },
793         {
794                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
795                 .bitrate = 120,
796                 .ratemask = BIT(6),
797                 .plcp = 0x0a,
798         },
799         {
800                 .flags = DEV_RATE_OFDM,
801                 .bitrate = 180,
802                 .ratemask = BIT(7),
803                 .plcp = 0x0e,
804         },
805         {
806                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
807                 .bitrate = 240,
808                 .ratemask = BIT(8),
809                 .plcp = 0x09,
810         },
811         {
812                 .flags = DEV_RATE_OFDM,
813                 .bitrate = 360,
814                 .ratemask = BIT(9),
815                 .plcp = 0x0d,
816         },
817         {
818                 .flags = DEV_RATE_OFDM,
819                 .bitrate = 480,
820                 .ratemask = BIT(10),
821                 .plcp = 0x08,
822         },
823         {
824                 .flags = DEV_RATE_OFDM,
825                 .bitrate = 540,
826                 .ratemask = BIT(11),
827                 .plcp = 0x0c,
828         },
829 };
830
831 static void rt2x00lib_channel(struct ieee80211_channel *entry,
832                               const int channel, const int tx_power,
833                               const int value)
834 {
835         entry->center_freq = ieee80211_channel_to_frequency(channel);
836         entry->hw_value = value;
837         entry->max_power = tx_power;
838         entry->max_antenna_gain = 0xff;
839 }
840
841 static void rt2x00lib_rate(struct ieee80211_rate *entry,
842                            const u16 index, const struct rt2x00_rate *rate)
843 {
844         entry->flags = 0;
845         entry->bitrate = rate->bitrate;
846         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
847         entry->hw_value_short = entry->hw_value;
848
849         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
850                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
851                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
852         }
853 }
854
855 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
856                                     struct hw_mode_spec *spec)
857 {
858         struct ieee80211_hw *hw = rt2x00dev->hw;
859         struct ieee80211_channel *channels;
860         struct ieee80211_rate *rates;
861         unsigned int num_rates;
862         unsigned int i;
863         unsigned char tx_power;
864
865         num_rates = 0;
866         if (spec->supported_rates & SUPPORT_RATE_CCK)
867                 num_rates += 4;
868         if (spec->supported_rates & SUPPORT_RATE_OFDM)
869                 num_rates += 8;
870
871         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
872         if (!channels)
873                 return -ENOMEM;
874
875         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
876         if (!rates)
877                 goto exit_free_channels;
878
879         /*
880          * Initialize Rate list.
881          */
882         for (i = 0; i < num_rates; i++)
883                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
884
885         /*
886          * Initialize Channel list.
887          */
888         for (i = 0; i < spec->num_channels; i++) {
889                 if (spec->channels[i].channel <= 14) {
890                         if (spec->tx_power_bg)
891                                 tx_power = spec->tx_power_bg[i];
892                         else
893                                 tx_power = spec->tx_power_default;
894                 } else {
895                         if (spec->tx_power_a)
896                                 tx_power = spec->tx_power_a[i];
897                         else
898                                 tx_power = spec->tx_power_default;
899                 }
900
901                 rt2x00lib_channel(&channels[i],
902                                   spec->channels[i].channel, tx_power, i);
903         }
904
905         /*
906          * Intitialize 802.11b, 802.11g
907          * Rates: CCK, OFDM.
908          * Channels: 2.4 GHz
909          */
910         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
911                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
912                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
913                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
914                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
915                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
916                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
917         }
918
919         /*
920          * Intitialize 802.11a
921          * Rates: OFDM.
922          * Channels: OFDM, UNII, HiperLAN2.
923          */
924         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
925                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
926                     spec->num_channels - 14;
927                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
928                     num_rates - 4;
929                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
930                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
931                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
932                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
933         }
934
935         return 0;
936
937  exit_free_channels:
938         kfree(channels);
939         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
940         return -ENOMEM;
941 }
942
943 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
944 {
945         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
946                 ieee80211_unregister_hw(rt2x00dev->hw);
947
948         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
949                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
950                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
951                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
952                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
953         }
954 }
955
956 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
957 {
958         struct hw_mode_spec *spec = &rt2x00dev->spec;
959         int status;
960
961         /*
962          * Initialize HW modes.
963          */
964         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
965         if (status)
966                 return status;
967
968         /*
969          * Register HW.
970          */
971         status = ieee80211_register_hw(rt2x00dev->hw);
972         if (status) {
973                 rt2x00lib_remove_hw(rt2x00dev);
974                 return status;
975         }
976
977         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
978
979         return 0;
980 }
981
982 /*
983  * Initialization/uninitialization handlers.
984  */
985 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
986 {
987         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
988                 return;
989
990         /*
991          * Unregister extra components.
992          */
993         rt2x00rfkill_unregister(rt2x00dev);
994
995         /*
996          * Allow the HW to uninitialize.
997          */
998         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
999
1000         /*
1001          * Free allocated queue entries.
1002          */
1003         rt2x00queue_uninitialize(rt2x00dev);
1004 }
1005
1006 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1007 {
1008         int status;
1009
1010         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1011                 return 0;
1012
1013         /*
1014          * Allocate all queue entries.
1015          */
1016         status = rt2x00queue_initialize(rt2x00dev);
1017         if (status)
1018                 return status;
1019
1020         /*
1021          * Initialize the device.
1022          */
1023         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1024         if (status) {
1025                 rt2x00queue_uninitialize(rt2x00dev);
1026                 return status;
1027         }
1028
1029         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1030
1031         /*
1032          * Register the extra components.
1033          */
1034         rt2x00rfkill_register(rt2x00dev);
1035
1036         return 0;
1037 }
1038
1039 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1040 {
1041         int retval;
1042
1043         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1044                 return 0;
1045
1046         /*
1047          * If this is the first interface which is added,
1048          * we should load the firmware now.
1049          */
1050         retval = rt2x00lib_load_firmware(rt2x00dev);
1051         if (retval)
1052                 return retval;
1053
1054         /*
1055          * Initialize the device.
1056          */
1057         retval = rt2x00lib_initialize(rt2x00dev);
1058         if (retval)
1059                 return retval;
1060
1061         /*
1062          * Enable radio.
1063          */
1064         retval = rt2x00lib_enable_radio(rt2x00dev);
1065         if (retval) {
1066                 rt2x00lib_uninitialize(rt2x00dev);
1067                 return retval;
1068         }
1069
1070         rt2x00dev->intf_ap_count = 0;
1071         rt2x00dev->intf_sta_count = 0;
1072         rt2x00dev->intf_associated = 0;
1073
1074         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1075
1076         return 0;
1077 }
1078
1079 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1080 {
1081         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1082                 return;
1083
1084         /*
1085          * Perhaps we can add something smarter here,
1086          * but for now just disabling the radio should do.
1087          */
1088         rt2x00lib_disable_radio(rt2x00dev);
1089
1090         rt2x00dev->intf_ap_count = 0;
1091         rt2x00dev->intf_sta_count = 0;
1092         rt2x00dev->intf_associated = 0;
1093
1094         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1095 }
1096
1097 /*
1098  * driver allocation handlers.
1099  */
1100 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1101 {
1102         int retval = -ENOMEM;
1103
1104         /*
1105          * Make room for rt2x00_intf inside the per-interface
1106          * structure ieee80211_vif.
1107          */
1108         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1109
1110         /*
1111          * Let the driver probe the device to detect the capabilities.
1112          */
1113         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1114         if (retval) {
1115                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1116                 goto exit;
1117         }
1118
1119         /*
1120          * Initialize configuration work.
1121          */
1122         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1123         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1124         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1125
1126         /*
1127          * Allocate queue array.
1128          */
1129         retval = rt2x00queue_allocate(rt2x00dev);
1130         if (retval)
1131                 goto exit;
1132
1133         /*
1134          * Initialize ieee80211 structure.
1135          */
1136         retval = rt2x00lib_probe_hw(rt2x00dev);
1137         if (retval) {
1138                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1139                 goto exit;
1140         }
1141
1142         /*
1143          * Register extra components.
1144          */
1145         rt2x00leds_register(rt2x00dev);
1146         rt2x00rfkill_allocate(rt2x00dev);
1147         rt2x00debug_register(rt2x00dev);
1148
1149         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1150
1151         return 0;
1152
1153 exit:
1154         rt2x00lib_remove_dev(rt2x00dev);
1155
1156         return retval;
1157 }
1158 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1159
1160 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1161 {
1162         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1163
1164         /*
1165          * Disable radio.
1166          */
1167         rt2x00lib_disable_radio(rt2x00dev);
1168
1169         /*
1170          * Uninitialize device.
1171          */
1172         rt2x00lib_uninitialize(rt2x00dev);
1173
1174         /*
1175          * Free extra components
1176          */
1177         rt2x00debug_deregister(rt2x00dev);
1178         rt2x00rfkill_free(rt2x00dev);
1179         rt2x00leds_unregister(rt2x00dev);
1180
1181         /*
1182          * Free ieee80211_hw memory.
1183          */
1184         rt2x00lib_remove_hw(rt2x00dev);
1185
1186         /*
1187          * Free firmware image.
1188          */
1189         rt2x00lib_free_firmware(rt2x00dev);
1190
1191         /*
1192          * Free queue structures.
1193          */
1194         rt2x00queue_free(rt2x00dev);
1195 }
1196 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1197
1198 /*
1199  * Device state handlers
1200  */
1201 #ifdef CONFIG_PM
1202 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1203 {
1204         int retval;
1205
1206         NOTICE(rt2x00dev, "Going to sleep.\n");
1207         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1208
1209         /*
1210          * Only continue if mac80211 has open interfaces.
1211          */
1212         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1213                 goto exit;
1214         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1215
1216         /*
1217          * Disable radio.
1218          */
1219         rt2x00lib_stop(rt2x00dev);
1220         rt2x00lib_uninitialize(rt2x00dev);
1221
1222         /*
1223          * Suspend/disable extra components.
1224          */
1225         rt2x00leds_suspend(rt2x00dev);
1226         rt2x00rfkill_suspend(rt2x00dev);
1227         rt2x00debug_deregister(rt2x00dev);
1228
1229 exit:
1230         /*
1231          * Set device mode to sleep for power management,
1232          * on some hardware this call seems to consistently fail.
1233          * From the specifications it is hard to tell why it fails,
1234          * and if this is a "bad thing".
1235          * Overall it is safe to just ignore the failure and
1236          * continue suspending. The only downside is that the
1237          * device will not be in optimal power save mode, but with
1238          * the radio and the other components already disabled the
1239          * device is as good as disabled.
1240          */
1241         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1242         if (retval)
1243                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1244                         "continue suspending.\n");
1245
1246         return 0;
1247 }
1248 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1249
1250 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1251                                   struct ieee80211_vif *vif)
1252 {
1253         struct rt2x00_dev *rt2x00dev = data;
1254         struct rt2x00_intf *intf = vif_to_intf(vif);
1255
1256         spin_lock(&intf->lock);
1257
1258         rt2x00lib_config_intf(rt2x00dev, intf,
1259                               vif->type, intf->mac, intf->bssid);
1260
1261
1262         /*
1263          * Master or Ad-hoc mode require a new beacon update.
1264          */
1265         if (vif->type == IEEE80211_IF_TYPE_AP ||
1266             vif->type == IEEE80211_IF_TYPE_IBSS)
1267                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1268
1269         spin_unlock(&intf->lock);
1270 }
1271
1272 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1273 {
1274         int retval;
1275
1276         NOTICE(rt2x00dev, "Waking up.\n");
1277
1278         /*
1279          * Restore/enable extra components.
1280          */
1281         rt2x00debug_register(rt2x00dev);
1282         rt2x00rfkill_resume(rt2x00dev);
1283         rt2x00leds_resume(rt2x00dev);
1284
1285         /*
1286          * Only continue if mac80211 had open interfaces.
1287          */
1288         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1289                 return 0;
1290
1291         /*
1292          * Reinitialize device and all active interfaces.
1293          */
1294         retval = rt2x00lib_start(rt2x00dev);
1295         if (retval)
1296                 goto exit;
1297
1298         /*
1299          * Reconfigure device.
1300          */
1301         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1302         if (!rt2x00dev->hw->conf.radio_enabled)
1303                 rt2x00lib_disable_radio(rt2x00dev);
1304
1305         /*
1306          * Iterator over each active interface to
1307          * reconfigure the hardware.
1308          */
1309         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1310                                             rt2x00lib_resume_intf, rt2x00dev);
1311
1312         /*
1313          * We are ready again to receive requests from mac80211.
1314          */
1315         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1316
1317         /*
1318          * It is possible that during that mac80211 has attempted
1319          * to send frames while we were suspending or resuming.
1320          * In that case we have disabled the TX queue and should
1321          * now enable it again
1322          */
1323         ieee80211_start_queues(rt2x00dev->hw);
1324
1325         /*
1326          * During interface iteration we might have changed the
1327          * delayed_flags, time to handles the event by calling
1328          * the work handler directly.
1329          */
1330         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1331
1332         return 0;
1333
1334 exit:
1335         rt2x00lib_disable_radio(rt2x00dev);
1336         rt2x00lib_uninitialize(rt2x00dev);
1337         rt2x00debug_deregister(rt2x00dev);
1338
1339         return retval;
1340 }
1341 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1342 #endif /* CONFIG_PM */
1343
1344 /*
1345  * rt2x00lib module information.
1346  */
1347 MODULE_AUTHOR(DRV_PROJECT);
1348 MODULE_VERSION(DRV_VERSION);
1349 MODULE_DESCRIPTION("rt2x00 library");
1350 MODULE_LICENSE("GPL");