]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
41b3289b82810b4bbd437b198c63c2c6c3898bd1
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop the TX queues.
142          */
143         ieee80211_stop_queues(rt2x00dev->hw);
144
145         /*
146          * Disable RX.
147          */
148         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150         /*
151          * Disable radio.
152          */
153         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155         rt2x00led_led_activity(rt2x00dev, false);
156         rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161         /*
162          * When we are disabling the RX, we should also stop the link tuner.
163          */
164         if (state == STATE_RADIO_RX_OFF)
165                 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169         /*
170          * When we are enabling the RX, we should also start the link tuner.
171          */
172         if (state == STATE_RADIO_RX_ON &&
173             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174                 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179         enum antenna rx = rt2x00dev->link.ant.active.rx;
180         enum antenna tx = rt2x00dev->link.ant.active.tx;
181         int sample_a =
182             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183         int sample_b =
184             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185
186         /*
187          * We are done sampling. Now we should evaluate the results.
188          */
189         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191         /*
192          * During the last period we have sampled the RSSI
193          * from both antenna's. It now is time to determine
194          * which antenna demonstrated the best performance.
195          * When we are already on the antenna with the best
196          * performance, then there really is nothing for us
197          * left to do.
198          */
199         if (sample_a == sample_b)
200                 return;
201
202         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213         enum antenna rx = rt2x00dev->link.ant.active.rx;
214         enum antenna tx = rt2x00dev->link.ant.active.tx;
215         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218         /*
219          * Legacy driver indicates that we should swap antenna's
220          * when the difference in RSSI is greater that 5. This
221          * also should be done when the RSSI was actually better
222          * then the previous sample.
223          * When the difference exceeds the threshold we should
224          * sample the rssi from the other antenna to make a valid
225          * comparison between the 2 antennas.
226          */
227         if (abs(rssi_curr - rssi_old) < 5)
228                 return;
229
230         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
231
232         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
233                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
234
235         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
236                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237
238         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 }
240
241 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 {
243         /*
244          * Determine if software diversity is enabled for
245          * either the TX or RX antenna (or both).
246          * Always perform this check since within the link
247          * tuner interval the configuration might have changed.
248          */
249         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
250         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
251
252         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
253             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
256             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258
259         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261                 rt2x00dev->link.ant.flags = 0;
262                 return;
263         }
264
265         /*
266          * If we have only sampled the data over the last period
267          * we should now harvest the data. Otherwise just evaluate
268          * the data. The latter should only be performed once
269          * every 2 seconds.
270          */
271         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273         else if (rt2x00dev->link.count & 1)
274                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 }
276
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 {
279         int avg_rssi = rssi;
280
281         /*
282          * Update global RSSI
283          */
284         if (link->qual.avg_rssi)
285                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286         link->qual.avg_rssi = avg_rssi;
287
288         /*
289          * Update antenna RSSI
290          */
291         if (link->ant.rssi_ant)
292                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293         link->ant.rssi_ant = rssi;
294 }
295
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 {
298         if (qual->rx_failed || qual->rx_success)
299                 qual->rx_percentage =
300                     (qual->rx_success * 100) /
301                     (qual->rx_failed + qual->rx_success);
302         else
303                 qual->rx_percentage = 50;
304
305         if (qual->tx_failed || qual->tx_success)
306                 qual->tx_percentage =
307                     (qual->tx_success * 100) /
308                     (qual->tx_failed + qual->tx_success);
309         else
310                 qual->tx_percentage = 50;
311
312         qual->rx_success = 0;
313         qual->rx_failed = 0;
314         qual->tx_success = 0;
315         qual->tx_failed = 0;
316 }
317
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
319                                            int rssi)
320 {
321         int rssi_percentage = 0;
322         int signal;
323
324         /*
325          * We need a positive value for the RSSI.
326          */
327         if (rssi < 0)
328                 rssi += rt2x00dev->rssi_offset;
329
330         /*
331          * Calculate the different percentages,
332          * which will be used for the signal.
333          */
334         if (rt2x00dev->rssi_offset)
335                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336
337         /*
338          * Add the individual percentages and use the WEIGHT
339          * defines to calculate the current link signal.
340          */
341         signal = ((WEIGHT_RSSI * rssi_percentage) +
342                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344
345         return (signal > 100) ? 100 : signal;
346 }
347
348 static void rt2x00lib_link_tuner(struct work_struct *work)
349 {
350         struct rt2x00_dev *rt2x00dev =
351             container_of(work, struct rt2x00_dev, link.work.work);
352
353         /*
354          * When the radio is shutting down we should
355          * immediately cease all link tuning.
356          */
357         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
358                 return;
359
360         /*
361          * Update statistics.
362          */
363         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365             rt2x00dev->link.qual.rx_failed;
366
367         /*
368          * Only perform the link tuning when Link tuning
369          * has been enabled (This could have been disabled from the EEPROM).
370          */
371         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373
374         /*
375          * Precalculate a portion of the link signal which is
376          * in based on the tx/rx success/failure counters.
377          */
378         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379
380         /*
381          * Send a signal to the led to update the led signal strength.
382          */
383         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384
385         /*
386          * Evaluate antenna setup, make this the last step since this could
387          * possibly reset some statistics.
388          */
389         rt2x00lib_evaluate_antenna(rt2x00dev);
390
391         /*
392          * Increase tuner counter, and reschedule the next link tuner run.
393          */
394         rt2x00dev->link.count++;
395         queue_delayed_work(rt2x00dev->workqueue,
396                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 }
398
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 {
401         struct rt2x00_dev *rt2x00dev =
402             container_of(work, struct rt2x00_dev, filter_work);
403
404         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 }
406
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408                                           struct ieee80211_vif *vif)
409 {
410         struct rt2x00_dev *rt2x00dev = data;
411         struct rt2x00_intf *intf = vif_to_intf(vif);
412         struct sk_buff *skb;
413         struct ieee80211_bss_conf conf;
414         int delayed_flags;
415
416         /*
417          * Copy all data we need during this action under the protection
418          * of a spinlock. Otherwise race conditions might occur which results
419          * into an invalid configuration.
420          */
421         spin_lock(&intf->lock);
422
423         memcpy(&conf, &intf->conf, sizeof(conf));
424         delayed_flags = intf->delayed_flags;
425         intf->delayed_flags = 0;
426
427         spin_unlock(&intf->lock);
428
429         /*
430          * It is possible the radio was disabled while the work had been
431          * scheduled. If that happens we should return here immediately,
432          * note that in the spinlock protected area above the delayed_flags
433          * have been cleared correctly.
434          */
435         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
436                 return;
437
438         if (delayed_flags & DELAYED_UPDATE_BEACON) {
439                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
440                 if (skb &&
441                     rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb))
442                         dev_kfree_skb(skb);
443         }
444
445         if (delayed_flags & DELAYED_CONFIG_ERP)
446                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
447
448         if (delayed_flags & DELAYED_LED_ASSOC)
449                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
450 }
451
452 static void rt2x00lib_intf_scheduled(struct work_struct *work)
453 {
454         struct rt2x00_dev *rt2x00dev =
455             container_of(work, struct rt2x00_dev, intf_work);
456
457         /*
458          * Iterate over each interface and perform the
459          * requested configurations.
460          */
461         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
462                                             rt2x00lib_intf_scheduled_iter,
463                                             rt2x00dev);
464 }
465
466 /*
467  * Interrupt context handlers.
468  */
469 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
470                                       struct ieee80211_vif *vif)
471 {
472         struct rt2x00_dev *rt2x00dev = data;
473         struct rt2x00_intf *intf = vif_to_intf(vif);
474
475         if (vif->type != IEEE80211_IF_TYPE_AP &&
476             vif->type != IEEE80211_IF_TYPE_IBSS)
477                 return;
478
479         /*
480          * Clean up the beacon skb.
481          */
482         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
483         intf->beacon->skb = NULL;
484
485         spin_lock(&intf->lock);
486         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
487         spin_unlock(&intf->lock);
488 }
489
490 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
491 {
492         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
493                 return;
494
495         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
496                                                    rt2x00lib_beacondone_iter,
497                                                    rt2x00dev);
498
499         queue_work(rt2x00dev->workqueue, &rt2x00dev->intf_work);
500 }
501 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
502
503 void rt2x00lib_txdone(struct queue_entry *entry,
504                       struct txdone_entry_desc *txdesc)
505 {
506         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
507         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
508         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
509
510         /*
511          * Unmap the skb.
512          */
513         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
514
515         /*
516          * Send frame to debugfs immediately, after this call is completed
517          * we are going to overwrite the skb->cb array.
518          */
519         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
520
521         /*
522          * Update TX statistics.
523          */
524         rt2x00dev->link.qual.tx_success +=
525             test_bit(TXDONE_SUCCESS, &txdesc->flags);
526         rt2x00dev->link.qual.tx_failed +=
527             test_bit(TXDONE_FAILURE, &txdesc->flags);
528
529         /*
530          * Initialize TX status
531          */
532         memset(&tx_info->status, 0, sizeof(tx_info->status));
533         tx_info->status.ack_signal = 0;
534         tx_info->status.excessive_retries =
535             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
536         tx_info->status.retry_count = txdesc->retry;
537
538         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
539                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
540                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
541                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
542                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
543         }
544
545         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
546                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
547                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
548                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
549                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
550         }
551
552         /*
553          * Only send the status report to mac80211 when TX status was
554          * requested by it. If this was a extra frame coming through
555          * a mac80211 library call (RTS/CTS) then we should not send the
556          * status report back.
557          */
558         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
559                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
560         else
561                 dev_kfree_skb_irq(entry->skb);
562
563         /*
564          * Make this entry available for reuse.
565          */
566         entry->skb = NULL;
567         entry->flags = 0;
568
569         rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
570
571         __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
572         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
573
574         /*
575          * If the data queue was below the threshold before the txdone
576          * handler we must make sure the packet queue in the mac80211 stack
577          * is reenabled when the txdone handler has finished.
578          */
579         if (!rt2x00queue_threshold(entry->queue))
580                 ieee80211_wake_queue(rt2x00dev->hw, qid);
581 }
582 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
583
584 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
585                       struct queue_entry *entry)
586 {
587         struct rxdone_entry_desc rxdesc;
588         struct sk_buff *skb;
589         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
590         struct ieee80211_supported_band *sband;
591         struct ieee80211_hdr *hdr;
592         const struct rt2x00_rate *rate;
593         unsigned int header_size;
594         unsigned int align;
595         unsigned int i;
596         int idx = -1;
597
598         /*
599          * Allocate a new sk_buffer. If no new buffer available, drop the
600          * received frame and reuse the existing buffer.
601          */
602         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
603         if (!skb)
604                 return;
605
606         /*
607          * Unmap the skb.
608          */
609         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
610
611         /*
612          * Extract the RXD details.
613          */
614         memset(&rxdesc, 0, sizeof(rxdesc));
615         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
616
617         /*
618          * The data behind the ieee80211 header must be
619          * aligned on a 4 byte boundary.
620          */
621         header_size = ieee80211_get_hdrlen_from_skb(entry->skb);
622         align = ((unsigned long)(entry->skb->data + header_size)) & 3;
623
624         if (align) {
625                 skb_push(entry->skb, align);
626                 /* Move entire frame in 1 command */
627                 memmove(entry->skb->data, entry->skb->data + align,
628                         rxdesc.size);
629         }
630
631         /* Update data pointers, trim buffer to correct size */
632         skb_trim(entry->skb, rxdesc.size);
633
634         /*
635          * Update RX statistics.
636          */
637         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
638         for (i = 0; i < sband->n_bitrates; i++) {
639                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
640
641                 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
642                      (rate->plcp == rxdesc.signal)) ||
643                     (!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
644                       (rate->bitrate == rxdesc.signal))) {
645                         idx = i;
646                         break;
647                 }
648         }
649
650         if (idx < 0) {
651                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
652                         "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
653                         !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
654                 idx = 0;
655         }
656
657         /*
658          * Only update link status if this is a beacon frame carrying our bssid.
659          */
660         hdr = (struct ieee80211_hdr *)entry->skb->data;
661         if (ieee80211_is_beacon(hdr->frame_control) &&
662             (rxdesc.dev_flags & RXDONE_MY_BSS))
663                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
664
665         rt2x00dev->link.qual.rx_success++;
666
667         rx_status->rate_idx = idx;
668         rx_status->qual =
669             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
670         rx_status->signal = rxdesc.rssi;
671         rx_status->flag = rxdesc.flags;
672         rx_status->antenna = rt2x00dev->link.ant.active.rx;
673
674         /*
675          * Send frame to mac80211 & debugfs.
676          * mac80211 will clean up the skb structure.
677          */
678         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
679         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
680
681         /*
682          * Replace the skb with the freshly allocated one.
683          */
684         entry->skb = skb;
685         entry->flags = 0;
686
687         rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
688
689         rt2x00queue_index_inc(entry->queue, Q_INDEX);
690 }
691 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
692
693 /*
694  * Driver initialization handlers.
695  */
696 const struct rt2x00_rate rt2x00_supported_rates[12] = {
697         {
698                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
699                 .bitrate = 10,
700                 .ratemask = BIT(0),
701                 .plcp = 0x00,
702         },
703         {
704                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
705                 .bitrate = 20,
706                 .ratemask = BIT(1),
707                 .plcp = 0x01,
708         },
709         {
710                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
711                 .bitrate = 55,
712                 .ratemask = BIT(2),
713                 .plcp = 0x02,
714         },
715         {
716                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
717                 .bitrate = 110,
718                 .ratemask = BIT(3),
719                 .plcp = 0x03,
720         },
721         {
722                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
723                 .bitrate = 60,
724                 .ratemask = BIT(4),
725                 .plcp = 0x0b,
726         },
727         {
728                 .flags = DEV_RATE_OFDM,
729                 .bitrate = 90,
730                 .ratemask = BIT(5),
731                 .plcp = 0x0f,
732         },
733         {
734                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
735                 .bitrate = 120,
736                 .ratemask = BIT(6),
737                 .plcp = 0x0a,
738         },
739         {
740                 .flags = DEV_RATE_OFDM,
741                 .bitrate = 180,
742                 .ratemask = BIT(7),
743                 .plcp = 0x0e,
744         },
745         {
746                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
747                 .bitrate = 240,
748                 .ratemask = BIT(8),
749                 .plcp = 0x09,
750         },
751         {
752                 .flags = DEV_RATE_OFDM,
753                 .bitrate = 360,
754                 .ratemask = BIT(9),
755                 .plcp = 0x0d,
756         },
757         {
758                 .flags = DEV_RATE_OFDM,
759                 .bitrate = 480,
760                 .ratemask = BIT(10),
761                 .plcp = 0x08,
762         },
763         {
764                 .flags = DEV_RATE_OFDM,
765                 .bitrate = 540,
766                 .ratemask = BIT(11),
767                 .plcp = 0x0c,
768         },
769 };
770
771 static void rt2x00lib_channel(struct ieee80211_channel *entry,
772                               const int channel, const int tx_power,
773                               const int value)
774 {
775         entry->center_freq = ieee80211_channel_to_frequency(channel);
776         entry->hw_value = value;
777         entry->max_power = tx_power;
778         entry->max_antenna_gain = 0xff;
779 }
780
781 static void rt2x00lib_rate(struct ieee80211_rate *entry,
782                            const u16 index, const struct rt2x00_rate *rate)
783 {
784         entry->flags = 0;
785         entry->bitrate = rate->bitrate;
786         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
787         entry->hw_value_short = entry->hw_value;
788
789         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
790                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
791                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
792         }
793 }
794
795 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
796                                     struct hw_mode_spec *spec)
797 {
798         struct ieee80211_hw *hw = rt2x00dev->hw;
799         struct ieee80211_channel *channels;
800         struct ieee80211_rate *rates;
801         unsigned int num_rates;
802         unsigned int i;
803         unsigned char tx_power;
804
805         num_rates = 0;
806         if (spec->supported_rates & SUPPORT_RATE_CCK)
807                 num_rates += 4;
808         if (spec->supported_rates & SUPPORT_RATE_OFDM)
809                 num_rates += 8;
810
811         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
812         if (!channels)
813                 return -ENOMEM;
814
815         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
816         if (!rates)
817                 goto exit_free_channels;
818
819         /*
820          * Initialize Rate list.
821          */
822         for (i = 0; i < num_rates; i++)
823                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
824
825         /*
826          * Initialize Channel list.
827          */
828         for (i = 0; i < spec->num_channels; i++) {
829                 if (spec->channels[i].channel <= 14) {
830                         if (spec->tx_power_bg)
831                                 tx_power = spec->tx_power_bg[i];
832                         else
833                                 tx_power = spec->tx_power_default;
834                 } else {
835                         if (spec->tx_power_a)
836                                 tx_power = spec->tx_power_a[i];
837                         else
838                                 tx_power = spec->tx_power_default;
839                 }
840
841                 rt2x00lib_channel(&channels[i],
842                                   spec->channels[i].channel, tx_power, i);
843         }
844
845         /*
846          * Intitialize 802.11b, 802.11g
847          * Rates: CCK, OFDM.
848          * Channels: 2.4 GHz
849          */
850         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
851                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
852                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
853                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
854                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
855                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
856                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
857         }
858
859         /*
860          * Intitialize 802.11a
861          * Rates: OFDM.
862          * Channels: OFDM, UNII, HiperLAN2.
863          */
864         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
865                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
866                     spec->num_channels - 14;
867                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
868                     num_rates - 4;
869                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
870                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
871                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
872                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
873         }
874
875         return 0;
876
877  exit_free_channels:
878         kfree(channels);
879         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
880         return -ENOMEM;
881 }
882
883 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
884 {
885         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
886                 ieee80211_unregister_hw(rt2x00dev->hw);
887
888         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
889                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
890                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
891                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
892                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
893         }
894 }
895
896 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
897 {
898         struct hw_mode_spec *spec = &rt2x00dev->spec;
899         int status;
900
901         /*
902          * Initialize HW modes.
903          */
904         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
905         if (status)
906                 return status;
907
908         /*
909          * Initialize HW fields.
910          */
911         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
912
913         /*
914          * Register HW.
915          */
916         status = ieee80211_register_hw(rt2x00dev->hw);
917         if (status) {
918                 rt2x00lib_remove_hw(rt2x00dev);
919                 return status;
920         }
921
922         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
923
924         return 0;
925 }
926
927 /*
928  * Initialization/uninitialization handlers.
929  */
930 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
931 {
932         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
933                 return;
934
935         /*
936          * Unregister extra components.
937          */
938         rt2x00rfkill_unregister(rt2x00dev);
939
940         /*
941          * Allow the HW to uninitialize.
942          */
943         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
944
945         /*
946          * Free allocated queue entries.
947          */
948         rt2x00queue_uninitialize(rt2x00dev);
949 }
950
951 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
952 {
953         int status;
954
955         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
956                 return 0;
957
958         /*
959          * Allocate all queue entries.
960          */
961         status = rt2x00queue_initialize(rt2x00dev);
962         if (status)
963                 return status;
964
965         /*
966          * Initialize the device.
967          */
968         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
969         if (status) {
970                 rt2x00queue_uninitialize(rt2x00dev);
971                 return status;
972         }
973
974         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
975
976         /*
977          * Register the extra components.
978          */
979         rt2x00rfkill_register(rt2x00dev);
980
981         return 0;
982 }
983
984 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
985 {
986         int retval;
987
988         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
989                 return 0;
990
991         /*
992          * If this is the first interface which is added,
993          * we should load the firmware now.
994          */
995         retval = rt2x00lib_load_firmware(rt2x00dev);
996         if (retval)
997                 return retval;
998
999         /*
1000          * Initialize the device.
1001          */
1002         retval = rt2x00lib_initialize(rt2x00dev);
1003         if (retval)
1004                 return retval;
1005
1006         /*
1007          * Enable radio.
1008          */
1009         retval = rt2x00lib_enable_radio(rt2x00dev);
1010         if (retval) {
1011                 rt2x00lib_uninitialize(rt2x00dev);
1012                 return retval;
1013         }
1014
1015         rt2x00dev->intf_ap_count = 0;
1016         rt2x00dev->intf_sta_count = 0;
1017         rt2x00dev->intf_associated = 0;
1018
1019         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1020
1021         return 0;
1022 }
1023
1024 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1025 {
1026         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1027                 return;
1028
1029         /*
1030          * Perhaps we can add something smarter here,
1031          * but for now just disabling the radio should do.
1032          */
1033         rt2x00lib_disable_radio(rt2x00dev);
1034
1035         rt2x00dev->intf_ap_count = 0;
1036         rt2x00dev->intf_sta_count = 0;
1037         rt2x00dev->intf_associated = 0;
1038
1039         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1040 }
1041
1042 /*
1043  * driver allocation handlers.
1044  */
1045 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1046 {
1047         int retval = -ENOMEM;
1048
1049         /*
1050          * Make room for rt2x00_intf inside the per-interface
1051          * structure ieee80211_vif.
1052          */
1053         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1054
1055         /*
1056          * Let the driver probe the device to detect the capabilities.
1057          */
1058         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1059         if (retval) {
1060                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1061                 goto exit;
1062         }
1063
1064         /*
1065          * Initialize configuration work.
1066          */
1067         rt2x00dev->workqueue = create_singlethread_workqueue("rt2x00lib");
1068         if (!rt2x00dev->workqueue)
1069                 goto exit;
1070
1071         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1072         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1073         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1074
1075         /*
1076          * Allocate queue array.
1077          */
1078         retval = rt2x00queue_allocate(rt2x00dev);
1079         if (retval)
1080                 goto exit;
1081
1082         /*
1083          * Initialize ieee80211 structure.
1084          */
1085         retval = rt2x00lib_probe_hw(rt2x00dev);
1086         if (retval) {
1087                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1088                 goto exit;
1089         }
1090
1091         /*
1092          * Register extra components.
1093          */
1094         rt2x00leds_register(rt2x00dev);
1095         rt2x00rfkill_allocate(rt2x00dev);
1096         rt2x00debug_register(rt2x00dev);
1097
1098         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1099
1100         return 0;
1101
1102 exit:
1103         rt2x00lib_remove_dev(rt2x00dev);
1104
1105         return retval;
1106 }
1107 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1108
1109 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1110 {
1111         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1112
1113         /*
1114          * Disable radio.
1115          */
1116         rt2x00lib_disable_radio(rt2x00dev);
1117
1118         /*
1119          * Uninitialize device.
1120          */
1121         rt2x00lib_uninitialize(rt2x00dev);
1122
1123         /*
1124          * Free extra components
1125          */
1126         rt2x00debug_deregister(rt2x00dev);
1127         rt2x00rfkill_free(rt2x00dev);
1128         rt2x00leds_unregister(rt2x00dev);
1129
1130         /*
1131          * Stop all queued work. Note that most tasks will already be halted
1132          * during rt2x00lib_disable_radio() and rt2x00lib_uninitialize().
1133          */
1134         flush_workqueue(rt2x00dev->workqueue);
1135         destroy_workqueue(rt2x00dev->workqueue);
1136
1137         /*
1138          * Free ieee80211_hw memory.
1139          */
1140         rt2x00lib_remove_hw(rt2x00dev);
1141
1142         /*
1143          * Free firmware image.
1144          */
1145         rt2x00lib_free_firmware(rt2x00dev);
1146
1147         /*
1148          * Free queue structures.
1149          */
1150         rt2x00queue_free(rt2x00dev);
1151 }
1152 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1153
1154 /*
1155  * Device state handlers
1156  */
1157 #ifdef CONFIG_PM
1158 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1159 {
1160         int retval;
1161
1162         NOTICE(rt2x00dev, "Going to sleep.\n");
1163         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1164
1165         /*
1166          * Only continue if mac80211 has open interfaces.
1167          */
1168         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1169                 goto exit;
1170         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1171
1172         /*
1173          * Disable radio.
1174          */
1175         rt2x00lib_stop(rt2x00dev);
1176         rt2x00lib_uninitialize(rt2x00dev);
1177
1178         /*
1179          * Suspend/disable extra components.
1180          */
1181         rt2x00leds_suspend(rt2x00dev);
1182         rt2x00debug_deregister(rt2x00dev);
1183
1184 exit:
1185         /*
1186          * Set device mode to sleep for power management,
1187          * on some hardware this call seems to consistently fail.
1188          * From the specifications it is hard to tell why it fails,
1189          * and if this is a "bad thing".
1190          * Overall it is safe to just ignore the failure and
1191          * continue suspending. The only downside is that the
1192          * device will not be in optimal power save mode, but with
1193          * the radio and the other components already disabled the
1194          * device is as good as disabled.
1195          */
1196         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1197         if (retval)
1198                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1199                         "continue suspending.\n");
1200
1201         return 0;
1202 }
1203 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1204
1205 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1206                                   struct ieee80211_vif *vif)
1207 {
1208         struct rt2x00_dev *rt2x00dev = data;
1209         struct rt2x00_intf *intf = vif_to_intf(vif);
1210
1211         spin_lock(&intf->lock);
1212
1213         rt2x00lib_config_intf(rt2x00dev, intf,
1214                               vif->type, intf->mac, intf->bssid);
1215
1216
1217         /*
1218          * Master or Ad-hoc mode require a new beacon update.
1219          */
1220         if (vif->type == IEEE80211_IF_TYPE_AP ||
1221             vif->type == IEEE80211_IF_TYPE_IBSS)
1222                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1223
1224         spin_unlock(&intf->lock);
1225 }
1226
1227 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1228 {
1229         int retval;
1230
1231         NOTICE(rt2x00dev, "Waking up.\n");
1232
1233         /*
1234          * Restore/enable extra components.
1235          */
1236         rt2x00debug_register(rt2x00dev);
1237         rt2x00leds_resume(rt2x00dev);
1238
1239         /*
1240          * Only continue if mac80211 had open interfaces.
1241          */
1242         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1243                 return 0;
1244
1245         /*
1246          * Reinitialize device and all active interfaces.
1247          */
1248         retval = rt2x00lib_start(rt2x00dev);
1249         if (retval)
1250                 goto exit;
1251
1252         /*
1253          * Reconfigure device.
1254          */
1255         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1256         if (!rt2x00dev->hw->conf.radio_enabled)
1257                 rt2x00lib_disable_radio(rt2x00dev);
1258
1259         /*
1260          * Iterator over each active interface to
1261          * reconfigure the hardware.
1262          */
1263         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1264                                             rt2x00lib_resume_intf, rt2x00dev);
1265
1266         /*
1267          * We are ready again to receive requests from mac80211.
1268          */
1269         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1270
1271         /*
1272          * It is possible that during that mac80211 has attempted
1273          * to send frames while we were suspending or resuming.
1274          * In that case we have disabled the TX queue and should
1275          * now enable it again
1276          */
1277         ieee80211_wake_queues(rt2x00dev->hw);
1278
1279         /*
1280          * During interface iteration we might have changed the
1281          * delayed_flags, time to handles the event by calling
1282          * the work handler directly.
1283          */
1284         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1285
1286         return 0;
1287
1288 exit:
1289         rt2x00lib_disable_radio(rt2x00dev);
1290         rt2x00lib_uninitialize(rt2x00dev);
1291         rt2x00debug_deregister(rt2x00dev);
1292
1293         return retval;
1294 }
1295 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1296 #endif /* CONFIG_PM */
1297
1298 /*
1299  * rt2x00lib module information.
1300  */
1301 MODULE_AUTHOR(DRV_PROJECT);
1302 MODULE_VERSION(DRV_VERSION);
1303 MODULE_DESCRIPTION("rt2x00 library");
1304 MODULE_LICENSE("GPL");