]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Cleanup symbol exports
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop all scheduled work.
142          */
143         if (work_pending(&rt2x00dev->intf_work))
144                 cancel_work_sync(&rt2x00dev->intf_work);
145         if (work_pending(&rt2x00dev->filter_work))
146                 cancel_work_sync(&rt2x00dev->filter_work);
147
148         /*
149          * Stop the TX queues.
150          */
151         ieee80211_stop_queues(rt2x00dev->hw);
152
153         /*
154          * Disable RX.
155          */
156         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
157
158         /*
159          * Disable radio.
160          */
161         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
162         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
163         rt2x00led_led_activity(rt2x00dev, false);
164         rt2x00leds_led_radio(rt2x00dev, false);
165 }
166
167 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
168 {
169         /*
170          * When we are disabling the RX, we should also stop the link tuner.
171          */
172         if (state == STATE_RADIO_RX_OFF)
173                 rt2x00lib_stop_link_tuner(rt2x00dev);
174
175         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
176
177         /*
178          * When we are enabling the RX, we should also start the link tuner.
179          */
180         if (state == STATE_RADIO_RX_ON &&
181             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
182                 rt2x00lib_start_link_tuner(rt2x00dev);
183 }
184
185 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
186 {
187         enum antenna rx = rt2x00dev->link.ant.active.rx;
188         enum antenna tx = rt2x00dev->link.ant.active.tx;
189         int sample_a =
190             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
191         int sample_b =
192             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
193
194         /*
195          * We are done sampling. Now we should evaluate the results.
196          */
197         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
198
199         /*
200          * During the last period we have sampled the RSSI
201          * from both antenna's. It now is time to determine
202          * which antenna demonstrated the best performance.
203          * When we are already on the antenna with the best
204          * performance, then there really is nothing for us
205          * left to do.
206          */
207         if (sample_a == sample_b)
208                 return;
209
210         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
211                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212
213         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
214                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
215
216         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
217 }
218
219 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
220 {
221         enum antenna rx = rt2x00dev->link.ant.active.rx;
222         enum antenna tx = rt2x00dev->link.ant.active.tx;
223         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
224         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
225
226         /*
227          * Legacy driver indicates that we should swap antenna's
228          * when the difference in RSSI is greater that 5. This
229          * also should be done when the RSSI was actually better
230          * then the previous sample.
231          * When the difference exceeds the threshold we should
232          * sample the rssi from the other antenna to make a valid
233          * comparison between the 2 antennas.
234          */
235         if (abs(rssi_curr - rssi_old) < 5)
236                 return;
237
238         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
239
240         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
241                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242
243         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
244                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
245
246         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
247 }
248
249 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
250 {
251         /*
252          * Determine if software diversity is enabled for
253          * either the TX or RX antenna (or both).
254          * Always perform this check since within the link
255          * tuner interval the configuration might have changed.
256          */
257         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
258         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
259
260         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
261             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
262                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
263         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
264             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
265                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
266
267         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
268             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
269                 rt2x00dev->link.ant.flags = 0;
270                 return;
271         }
272
273         /*
274          * If we have only sampled the data over the last period
275          * we should now harvest the data. Otherwise just evaluate
276          * the data. The latter should only be performed once
277          * every 2 seconds.
278          */
279         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
280                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
281         else if (rt2x00dev->link.count & 1)
282                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
283 }
284
285 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
286 {
287         int avg_rssi = rssi;
288
289         /*
290          * Update global RSSI
291          */
292         if (link->qual.avg_rssi)
293                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
294         link->qual.avg_rssi = avg_rssi;
295
296         /*
297          * Update antenna RSSI
298          */
299         if (link->ant.rssi_ant)
300                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
301         link->ant.rssi_ant = rssi;
302 }
303
304 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
305 {
306         if (qual->rx_failed || qual->rx_success)
307                 qual->rx_percentage =
308                     (qual->rx_success * 100) /
309                     (qual->rx_failed + qual->rx_success);
310         else
311                 qual->rx_percentage = 50;
312
313         if (qual->tx_failed || qual->tx_success)
314                 qual->tx_percentage =
315                     (qual->tx_success * 100) /
316                     (qual->tx_failed + qual->tx_success);
317         else
318                 qual->tx_percentage = 50;
319
320         qual->rx_success = 0;
321         qual->rx_failed = 0;
322         qual->tx_success = 0;
323         qual->tx_failed = 0;
324 }
325
326 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
327                                            int rssi)
328 {
329         int rssi_percentage = 0;
330         int signal;
331
332         /*
333          * We need a positive value for the RSSI.
334          */
335         if (rssi < 0)
336                 rssi += rt2x00dev->rssi_offset;
337
338         /*
339          * Calculate the different percentages,
340          * which will be used for the signal.
341          */
342         if (rt2x00dev->rssi_offset)
343                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
344
345         /*
346          * Add the individual percentages and use the WEIGHT
347          * defines to calculate the current link signal.
348          */
349         signal = ((WEIGHT_RSSI * rssi_percentage) +
350                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
351                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
352
353         return (signal > 100) ? 100 : signal;
354 }
355
356 static void rt2x00lib_link_tuner(struct work_struct *work)
357 {
358         struct rt2x00_dev *rt2x00dev =
359             container_of(work, struct rt2x00_dev, link.work.work);
360
361         /*
362          * When the radio is shutting down we should
363          * immediately cease all link tuning.
364          */
365         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
366                 return;
367
368         /*
369          * Update statistics.
370          */
371         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
372         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
373             rt2x00dev->link.qual.rx_failed;
374
375         /*
376          * Only perform the link tuning when Link tuning
377          * has been enabled (This could have been disabled from the EEPROM).
378          */
379         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
380                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
381
382         /*
383          * Precalculate a portion of the link signal which is
384          * in based on the tx/rx success/failure counters.
385          */
386         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
387
388         /*
389          * Send a signal to the led to update the led signal strength.
390          */
391         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
392
393         /*
394          * Evaluate antenna setup, make this the last step since this could
395          * possibly reset some statistics.
396          */
397         rt2x00lib_evaluate_antenna(rt2x00dev);
398
399         /*
400          * Increase tuner counter, and reschedule the next link tuner run.
401          */
402         rt2x00dev->link.count++;
403         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
404                            LINK_TUNE_INTERVAL);
405 }
406
407 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
408 {
409         struct rt2x00_dev *rt2x00dev =
410             container_of(work, struct rt2x00_dev, filter_work);
411
412         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
413 }
414
415 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
416                                           struct ieee80211_vif *vif)
417 {
418         struct rt2x00_dev *rt2x00dev = data;
419         struct rt2x00_intf *intf = vif_to_intf(vif);
420         struct sk_buff *skb;
421         struct ieee80211_bss_conf conf;
422         int delayed_flags;
423
424         /*
425          * Copy all data we need during this action under the protection
426          * of a spinlock. Otherwise race conditions might occur which results
427          * into an invalid configuration.
428          */
429         spin_lock(&intf->lock);
430
431         memcpy(&conf, &intf->conf, sizeof(conf));
432         delayed_flags = intf->delayed_flags;
433         intf->delayed_flags = 0;
434
435         spin_unlock(&intf->lock);
436
437         if (delayed_flags & DELAYED_UPDATE_BEACON) {
438                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
439                 if (skb &&
440                     rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb))
441                         dev_kfree_skb(skb);
442         }
443
444         if (delayed_flags & DELAYED_CONFIG_ERP)
445                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
446
447         if (delayed_flags & DELAYED_LED_ASSOC)
448                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
449 }
450
451 static void rt2x00lib_intf_scheduled(struct work_struct *work)
452 {
453         struct rt2x00_dev *rt2x00dev =
454             container_of(work, struct rt2x00_dev, intf_work);
455
456         /*
457          * Iterate over each interface and perform the
458          * requested configurations.
459          */
460         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
461                                             rt2x00lib_intf_scheduled_iter,
462                                             rt2x00dev);
463 }
464
465 /*
466  * Interrupt context handlers.
467  */
468 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
469                                       struct ieee80211_vif *vif)
470 {
471         struct rt2x00_dev *rt2x00dev = data;
472         struct rt2x00_intf *intf = vif_to_intf(vif);
473
474         if (vif->type != IEEE80211_IF_TYPE_AP &&
475             vif->type != IEEE80211_IF_TYPE_IBSS)
476                 return;
477
478         /*
479          * Clean up the beacon skb.
480          */
481         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
482         intf->beacon->skb = NULL;
483
484         spin_lock(&intf->lock);
485         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
486         spin_unlock(&intf->lock);
487 }
488
489 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
490 {
491         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
492                 return;
493
494         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
495                                                    rt2x00lib_beacondone_iter,
496                                                    rt2x00dev);
497
498         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
499 }
500 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
501
502 void rt2x00lib_txdone(struct queue_entry *entry,
503                       struct txdone_entry_desc *txdesc)
504 {
505         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
506         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
507         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
508
509         /*
510          * Unmap the skb.
511          */
512         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
513
514         /*
515          * Send frame to debugfs immediately, after this call is completed
516          * we are going to overwrite the skb->cb array.
517          */
518         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
519
520         /*
521          * Update TX statistics.
522          */
523         rt2x00dev->link.qual.tx_success +=
524             test_bit(TXDONE_SUCCESS, &txdesc->flags);
525         rt2x00dev->link.qual.tx_failed +=
526             test_bit(TXDONE_FAILURE, &txdesc->flags);
527
528         /*
529          * Initialize TX status
530          */
531         memset(&tx_info->status, 0, sizeof(tx_info->status));
532         tx_info->status.ack_signal = 0;
533         tx_info->status.excessive_retries =
534             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
535         tx_info->status.retry_count = txdesc->retry;
536
537         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
538                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
539                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
540                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
541                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
542         }
543
544         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
545                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
546                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
547                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
548                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
549         }
550
551         /*
552          * Only send the status report to mac80211 when TX status was
553          * requested by it. If this was a extra frame coming through
554          * a mac80211 library call (RTS/CTS) then we should not send the
555          * status report back.
556          */
557         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
558                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
559         else
560                 dev_kfree_skb_irq(entry->skb);
561
562         /*
563          * Make this entry available for reuse.
564          */
565         entry->skb = NULL;
566         entry->flags = 0;
567
568         rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
569
570         __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
571         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
572
573         /*
574          * If the data queue was below the threshold before the txdone
575          * handler we must make sure the packet queue in the mac80211 stack
576          * is reenabled when the txdone handler has finished.
577          */
578         if (!rt2x00queue_threshold(entry->queue))
579                 ieee80211_wake_queue(rt2x00dev->hw, qid);
580 }
581 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
582
583 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
584                       struct queue_entry *entry)
585 {
586         struct rxdone_entry_desc rxdesc;
587         struct sk_buff *skb;
588         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
589         struct ieee80211_supported_band *sband;
590         struct ieee80211_hdr *hdr;
591         const struct rt2x00_rate *rate;
592         unsigned int header_size;
593         unsigned int align;
594         unsigned int i;
595         int idx = -1;
596
597         /*
598          * Allocate a new sk_buffer. If no new buffer available, drop the
599          * received frame and reuse the existing buffer.
600          */
601         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
602         if (!skb)
603                 return;
604
605         /*
606          * Unmap the skb.
607          */
608         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
609
610         /*
611          * Extract the RXD details.
612          */
613         memset(&rxdesc, 0, sizeof(rxdesc));
614         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
615
616         /*
617          * The data behind the ieee80211 header must be
618          * aligned on a 4 byte boundary.
619          */
620         header_size = ieee80211_get_hdrlen_from_skb(entry->skb);
621         align = ((unsigned long)(entry->skb->data + header_size)) & 3;
622
623         if (align) {
624                 skb_push(entry->skb, align);
625                 /* Move entire frame in 1 command */
626                 memmove(entry->skb->data, entry->skb->data + align,
627                         rxdesc.size);
628         }
629
630         /* Update data pointers, trim buffer to correct size */
631         skb_trim(entry->skb, rxdesc.size);
632
633         /*
634          * Update RX statistics.
635          */
636         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
637         for (i = 0; i < sband->n_bitrates; i++) {
638                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
639
640                 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
641                      (rate->plcp == rxdesc.signal)) ||
642                     (!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
643                       (rate->bitrate == rxdesc.signal))) {
644                         idx = i;
645                         break;
646                 }
647         }
648
649         if (idx < 0) {
650                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
651                         "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
652                         !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
653                 idx = 0;
654         }
655
656         /*
657          * Only update link status if this is a beacon frame carrying our bssid.
658          */
659         hdr = (struct ieee80211_hdr *)entry->skb->data;
660         if (ieee80211_is_beacon(hdr->frame_control) &&
661             (rxdesc.dev_flags & RXDONE_MY_BSS))
662                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
663
664         rt2x00dev->link.qual.rx_success++;
665
666         rx_status->rate_idx = idx;
667         rx_status->qual =
668             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
669         rx_status->signal = rxdesc.rssi;
670         rx_status->flag = rxdesc.flags;
671         rx_status->antenna = rt2x00dev->link.ant.active.rx;
672
673         /*
674          * Send frame to mac80211 & debugfs.
675          * mac80211 will clean up the skb structure.
676          */
677         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
678         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
679
680         /*
681          * Replace the skb with the freshly allocated one.
682          */
683         entry->skb = skb;
684         entry->flags = 0;
685
686         rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
687
688         rt2x00queue_index_inc(entry->queue, Q_INDEX);
689 }
690 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
691
692 /*
693  * Driver initialization handlers.
694  */
695 const struct rt2x00_rate rt2x00_supported_rates[12] = {
696         {
697                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
698                 .bitrate = 10,
699                 .ratemask = BIT(0),
700                 .plcp = 0x00,
701         },
702         {
703                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
704                 .bitrate = 20,
705                 .ratemask = BIT(1),
706                 .plcp = 0x01,
707         },
708         {
709                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
710                 .bitrate = 55,
711                 .ratemask = BIT(2),
712                 .plcp = 0x02,
713         },
714         {
715                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
716                 .bitrate = 110,
717                 .ratemask = BIT(3),
718                 .plcp = 0x03,
719         },
720         {
721                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
722                 .bitrate = 60,
723                 .ratemask = BIT(4),
724                 .plcp = 0x0b,
725         },
726         {
727                 .flags = DEV_RATE_OFDM,
728                 .bitrate = 90,
729                 .ratemask = BIT(5),
730                 .plcp = 0x0f,
731         },
732         {
733                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
734                 .bitrate = 120,
735                 .ratemask = BIT(6),
736                 .plcp = 0x0a,
737         },
738         {
739                 .flags = DEV_RATE_OFDM,
740                 .bitrate = 180,
741                 .ratemask = BIT(7),
742                 .plcp = 0x0e,
743         },
744         {
745                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
746                 .bitrate = 240,
747                 .ratemask = BIT(8),
748                 .plcp = 0x09,
749         },
750         {
751                 .flags = DEV_RATE_OFDM,
752                 .bitrate = 360,
753                 .ratemask = BIT(9),
754                 .plcp = 0x0d,
755         },
756         {
757                 .flags = DEV_RATE_OFDM,
758                 .bitrate = 480,
759                 .ratemask = BIT(10),
760                 .plcp = 0x08,
761         },
762         {
763                 .flags = DEV_RATE_OFDM,
764                 .bitrate = 540,
765                 .ratemask = BIT(11),
766                 .plcp = 0x0c,
767         },
768 };
769
770 static void rt2x00lib_channel(struct ieee80211_channel *entry,
771                               const int channel, const int tx_power,
772                               const int value)
773 {
774         entry->center_freq = ieee80211_channel_to_frequency(channel);
775         entry->hw_value = value;
776         entry->max_power = tx_power;
777         entry->max_antenna_gain = 0xff;
778 }
779
780 static void rt2x00lib_rate(struct ieee80211_rate *entry,
781                            const u16 index, const struct rt2x00_rate *rate)
782 {
783         entry->flags = 0;
784         entry->bitrate = rate->bitrate;
785         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
786         entry->hw_value_short = entry->hw_value;
787
788         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
789                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
790                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
791         }
792 }
793
794 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
795                                     struct hw_mode_spec *spec)
796 {
797         struct ieee80211_hw *hw = rt2x00dev->hw;
798         struct ieee80211_channel *channels;
799         struct ieee80211_rate *rates;
800         unsigned int num_rates;
801         unsigned int i;
802         unsigned char tx_power;
803
804         num_rates = 0;
805         if (spec->supported_rates & SUPPORT_RATE_CCK)
806                 num_rates += 4;
807         if (spec->supported_rates & SUPPORT_RATE_OFDM)
808                 num_rates += 8;
809
810         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
811         if (!channels)
812                 return -ENOMEM;
813
814         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
815         if (!rates)
816                 goto exit_free_channels;
817
818         /*
819          * Initialize Rate list.
820          */
821         for (i = 0; i < num_rates; i++)
822                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
823
824         /*
825          * Initialize Channel list.
826          */
827         for (i = 0; i < spec->num_channels; i++) {
828                 if (spec->channels[i].channel <= 14) {
829                         if (spec->tx_power_bg)
830                                 tx_power = spec->tx_power_bg[i];
831                         else
832                                 tx_power = spec->tx_power_default;
833                 } else {
834                         if (spec->tx_power_a)
835                                 tx_power = spec->tx_power_a[i];
836                         else
837                                 tx_power = spec->tx_power_default;
838                 }
839
840                 rt2x00lib_channel(&channels[i],
841                                   spec->channels[i].channel, tx_power, i);
842         }
843
844         /*
845          * Intitialize 802.11b, 802.11g
846          * Rates: CCK, OFDM.
847          * Channels: 2.4 GHz
848          */
849         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
850                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
851                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
852                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
853                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
854                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
855                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
856         }
857
858         /*
859          * Intitialize 802.11a
860          * Rates: OFDM.
861          * Channels: OFDM, UNII, HiperLAN2.
862          */
863         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
864                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
865                     spec->num_channels - 14;
866                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
867                     num_rates - 4;
868                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
869                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
870                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
871                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
872         }
873
874         return 0;
875
876  exit_free_channels:
877         kfree(channels);
878         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
879         return -ENOMEM;
880 }
881
882 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
883 {
884         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
885                 ieee80211_unregister_hw(rt2x00dev->hw);
886
887         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
888                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
889                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
890                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
891                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
892         }
893 }
894
895 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
896 {
897         struct hw_mode_spec *spec = &rt2x00dev->spec;
898         int status;
899
900         /*
901          * Initialize HW modes.
902          */
903         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
904         if (status)
905                 return status;
906
907         /*
908          * Initialize HW fields.
909          */
910         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
911
912         /*
913          * Register HW.
914          */
915         status = ieee80211_register_hw(rt2x00dev->hw);
916         if (status) {
917                 rt2x00lib_remove_hw(rt2x00dev);
918                 return status;
919         }
920
921         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
922
923         return 0;
924 }
925
926 /*
927  * Initialization/uninitialization handlers.
928  */
929 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
930 {
931         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
932                 return;
933
934         /*
935          * Unregister extra components.
936          */
937         rt2x00rfkill_unregister(rt2x00dev);
938
939         /*
940          * Allow the HW to uninitialize.
941          */
942         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
943
944         /*
945          * Free allocated queue entries.
946          */
947         rt2x00queue_uninitialize(rt2x00dev);
948 }
949
950 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
951 {
952         int status;
953
954         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
955                 return 0;
956
957         /*
958          * Allocate all queue entries.
959          */
960         status = rt2x00queue_initialize(rt2x00dev);
961         if (status)
962                 return status;
963
964         /*
965          * Initialize the device.
966          */
967         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
968         if (status) {
969                 rt2x00queue_uninitialize(rt2x00dev);
970                 return status;
971         }
972
973         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
974
975         /*
976          * Register the extra components.
977          */
978         rt2x00rfkill_register(rt2x00dev);
979
980         return 0;
981 }
982
983 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
984 {
985         int retval;
986
987         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
988                 return 0;
989
990         /*
991          * If this is the first interface which is added,
992          * we should load the firmware now.
993          */
994         retval = rt2x00lib_load_firmware(rt2x00dev);
995         if (retval)
996                 return retval;
997
998         /*
999          * Initialize the device.
1000          */
1001         retval = rt2x00lib_initialize(rt2x00dev);
1002         if (retval)
1003                 return retval;
1004
1005         /*
1006          * Enable radio.
1007          */
1008         retval = rt2x00lib_enable_radio(rt2x00dev);
1009         if (retval) {
1010                 rt2x00lib_uninitialize(rt2x00dev);
1011                 return retval;
1012         }
1013
1014         rt2x00dev->intf_ap_count = 0;
1015         rt2x00dev->intf_sta_count = 0;
1016         rt2x00dev->intf_associated = 0;
1017
1018         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1019
1020         return 0;
1021 }
1022
1023 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1024 {
1025         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1026                 return;
1027
1028         /*
1029          * Perhaps we can add something smarter here,
1030          * but for now just disabling the radio should do.
1031          */
1032         rt2x00lib_disable_radio(rt2x00dev);
1033
1034         rt2x00dev->intf_ap_count = 0;
1035         rt2x00dev->intf_sta_count = 0;
1036         rt2x00dev->intf_associated = 0;
1037
1038         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1039 }
1040
1041 /*
1042  * driver allocation handlers.
1043  */
1044 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1045 {
1046         int retval = -ENOMEM;
1047
1048         /*
1049          * Make room for rt2x00_intf inside the per-interface
1050          * structure ieee80211_vif.
1051          */
1052         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1053
1054         /*
1055          * Let the driver probe the device to detect the capabilities.
1056          */
1057         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1058         if (retval) {
1059                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1060                 goto exit;
1061         }
1062
1063         /*
1064          * Initialize configuration work.
1065          */
1066         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1067         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1068         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1069
1070         /*
1071          * Allocate queue array.
1072          */
1073         retval = rt2x00queue_allocate(rt2x00dev);
1074         if (retval)
1075                 goto exit;
1076
1077         /*
1078          * Initialize ieee80211 structure.
1079          */
1080         retval = rt2x00lib_probe_hw(rt2x00dev);
1081         if (retval) {
1082                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1083                 goto exit;
1084         }
1085
1086         /*
1087          * Register extra components.
1088          */
1089         rt2x00leds_register(rt2x00dev);
1090         rt2x00rfkill_allocate(rt2x00dev);
1091         rt2x00debug_register(rt2x00dev);
1092
1093         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1094
1095         return 0;
1096
1097 exit:
1098         rt2x00lib_remove_dev(rt2x00dev);
1099
1100         return retval;
1101 }
1102 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1103
1104 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1105 {
1106         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1107
1108         /*
1109          * Disable radio.
1110          */
1111         rt2x00lib_disable_radio(rt2x00dev);
1112
1113         /*
1114          * Uninitialize device.
1115          */
1116         rt2x00lib_uninitialize(rt2x00dev);
1117
1118         /*
1119          * Free extra components
1120          */
1121         rt2x00debug_deregister(rt2x00dev);
1122         rt2x00rfkill_free(rt2x00dev);
1123         rt2x00leds_unregister(rt2x00dev);
1124
1125         /*
1126          * Free ieee80211_hw memory.
1127          */
1128         rt2x00lib_remove_hw(rt2x00dev);
1129
1130         /*
1131          * Free firmware image.
1132          */
1133         rt2x00lib_free_firmware(rt2x00dev);
1134
1135         /*
1136          * Free queue structures.
1137          */
1138         rt2x00queue_free(rt2x00dev);
1139 }
1140 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1141
1142 /*
1143  * Device state handlers
1144  */
1145 #ifdef CONFIG_PM
1146 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1147 {
1148         int retval;
1149
1150         NOTICE(rt2x00dev, "Going to sleep.\n");
1151         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1152
1153         /*
1154          * Only continue if mac80211 has open interfaces.
1155          */
1156         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1157                 goto exit;
1158         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1159
1160         /*
1161          * Disable radio.
1162          */
1163         rt2x00lib_stop(rt2x00dev);
1164         rt2x00lib_uninitialize(rt2x00dev);
1165
1166         /*
1167          * Suspend/disable extra components.
1168          */
1169         rt2x00leds_suspend(rt2x00dev);
1170         rt2x00rfkill_suspend(rt2x00dev);
1171         rt2x00debug_deregister(rt2x00dev);
1172
1173 exit:
1174         /*
1175          * Set device mode to sleep for power management,
1176          * on some hardware this call seems to consistently fail.
1177          * From the specifications it is hard to tell why it fails,
1178          * and if this is a "bad thing".
1179          * Overall it is safe to just ignore the failure and
1180          * continue suspending. The only downside is that the
1181          * device will not be in optimal power save mode, but with
1182          * the radio and the other components already disabled the
1183          * device is as good as disabled.
1184          */
1185         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1186         if (retval)
1187                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1188                         "continue suspending.\n");
1189
1190         return 0;
1191 }
1192 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1193
1194 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1195                                   struct ieee80211_vif *vif)
1196 {
1197         struct rt2x00_dev *rt2x00dev = data;
1198         struct rt2x00_intf *intf = vif_to_intf(vif);
1199
1200         spin_lock(&intf->lock);
1201
1202         rt2x00lib_config_intf(rt2x00dev, intf,
1203                               vif->type, intf->mac, intf->bssid);
1204
1205
1206         /*
1207          * Master or Ad-hoc mode require a new beacon update.
1208          */
1209         if (vif->type == IEEE80211_IF_TYPE_AP ||
1210             vif->type == IEEE80211_IF_TYPE_IBSS)
1211                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1212
1213         spin_unlock(&intf->lock);
1214 }
1215
1216 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1217 {
1218         int retval;
1219
1220         NOTICE(rt2x00dev, "Waking up.\n");
1221
1222         /*
1223          * Restore/enable extra components.
1224          */
1225         rt2x00debug_register(rt2x00dev);
1226         rt2x00rfkill_resume(rt2x00dev);
1227         rt2x00leds_resume(rt2x00dev);
1228
1229         /*
1230          * Only continue if mac80211 had open interfaces.
1231          */
1232         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1233                 return 0;
1234
1235         /*
1236          * Reinitialize device and all active interfaces.
1237          */
1238         retval = rt2x00lib_start(rt2x00dev);
1239         if (retval)
1240                 goto exit;
1241
1242         /*
1243          * Reconfigure device.
1244          */
1245         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1246         if (!rt2x00dev->hw->conf.radio_enabled)
1247                 rt2x00lib_disable_radio(rt2x00dev);
1248
1249         /*
1250          * Iterator over each active interface to
1251          * reconfigure the hardware.
1252          */
1253         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1254                                             rt2x00lib_resume_intf, rt2x00dev);
1255
1256         /*
1257          * We are ready again to receive requests from mac80211.
1258          */
1259         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1260
1261         /*
1262          * It is possible that during that mac80211 has attempted
1263          * to send frames while we were suspending or resuming.
1264          * In that case we have disabled the TX queue and should
1265          * now enable it again
1266          */
1267         ieee80211_wake_queues(rt2x00dev->hw);
1268
1269         /*
1270          * During interface iteration we might have changed the
1271          * delayed_flags, time to handles the event by calling
1272          * the work handler directly.
1273          */
1274         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1275
1276         return 0;
1277
1278 exit:
1279         rt2x00lib_disable_radio(rt2x00dev);
1280         rt2x00lib_uninitialize(rt2x00dev);
1281         rt2x00debug_deregister(rt2x00dev);
1282
1283         return retval;
1284 }
1285 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1286 #endif /* CONFIG_PM */
1287
1288 /*
1289  * rt2x00lib module information.
1290  */
1291 MODULE_AUTHOR(DRV_PROJECT);
1292 MODULE_VERSION(DRV_VERSION);
1293 MODULE_DESCRIPTION("rt2x00 library");
1294 MODULE_LICENSE("GPL");