]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2500usb.c
Merge branch 'master' of ../net-2.6/
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2500usb_register_read and rt2500usb_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  * If the usb_cache_mutex is already held then the _lock variants must
51  * be used instead.
52  */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54                                            const unsigned int offset,
55                                            u16 *value)
56 {
57         __le16 reg;
58         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59                                       USB_VENDOR_REQUEST_IN, offset,
60                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
61         *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65                                                 const unsigned int offset,
66                                                 u16 *value)
67 {
68         __le16 reg;
69         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70                                        USB_VENDOR_REQUEST_IN, offset,
71                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
72         *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76                                                 const unsigned int offset,
77                                                 void *value, const u16 length)
78 {
79         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
80         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
81                                       USB_VENDOR_REQUEST_IN, offset,
82                                       value, length, timeout);
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86                                             const unsigned int offset,
87                                             u16 value)
88 {
89         __le16 reg = cpu_to_le16(value);
90         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91                                       USB_VENDOR_REQUEST_OUT, offset,
92                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96                                                  const unsigned int offset,
97                                                  u16 value)
98 {
99         __le16 reg = cpu_to_le16(value);
100         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101                                        USB_VENDOR_REQUEST_OUT, offset,
102                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106                                                  const unsigned int offset,
107                                                  void *value, const u16 length)
108 {
109         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
110         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
111                                       USB_VENDOR_REQUEST_OUT, offset,
112                                       value, length, timeout);
113 }
114
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
116 {
117         u16 reg;
118         unsigned int i;
119
120         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122                 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123                         break;
124                 udelay(REGISTER_BUSY_DELAY);
125         }
126
127         return reg;
128 }
129
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131                                 const unsigned int word, const u8 value)
132 {
133         u16 reg;
134
135         mutex_lock(&rt2x00dev->usb_cache_mutex);
136
137         /*
138          * Wait until the BBP becomes ready.
139          */
140         reg = rt2500usb_bbp_check(rt2x00dev);
141         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144                 return;
145         }
146
147         /*
148          * Write the data into the BBP.
149          */
150         reg = 0;
151         rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
154
155         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
156
157         mutex_unlock(&rt2x00dev->usb_cache_mutex);
158 }
159
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161                                const unsigned int word, u8 *value)
162 {
163         u16 reg;
164
165         mutex_lock(&rt2x00dev->usb_cache_mutex);
166
167         /*
168          * Wait until the BBP becomes ready.
169          */
170         reg = rt2500usb_bbp_check(rt2x00dev);
171         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173                 return;
174         }
175
176         /*
177          * Write the request into the BBP.
178          */
179         reg = 0;
180         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
182
183         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
184
185         /*
186          * Wait until the BBP becomes ready.
187          */
188         reg = rt2500usb_bbp_check(rt2x00dev);
189         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191                 *value = 0xff;
192                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193                 return;
194         }
195
196         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->usb_cache_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206         unsigned int i;
207
208         if (!word)
209                 return;
210
211         mutex_lock(&rt2x00dev->usb_cache_mutex);
212
213         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215                 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216                         goto rf_write;
217                 udelay(REGISTER_BUSY_DELAY);
218         }
219
220         mutex_unlock(&rt2x00dev->usb_cache_mutex);
221         ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222         return;
223
224 rf_write:
225         reg = 0;
226         rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
228
229         reg = 0;
230         rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231         rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232         rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233         rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
234
235         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236         rt2x00_rf_write(rt2x00dev, word, value);
237
238         mutex_unlock(&rt2x00dev->usb_cache_mutex);
239 }
240
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
243
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245                                const unsigned int word, u32 *data)
246 {
247         rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
248 }
249
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251                                 const unsigned int word, u32 data)
252 {
253         rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
254 }
255
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257         .owner  = THIS_MODULE,
258         .csr    = {
259                 .read           = rt2500usb_read_csr,
260                 .write          = rt2500usb_write_csr,
261                 .word_size      = sizeof(u16),
262                 .word_count     = CSR_REG_SIZE / sizeof(u16),
263         },
264         .eeprom = {
265                 .read           = rt2x00_eeprom_read,
266                 .write          = rt2x00_eeprom_write,
267                 .word_size      = sizeof(u16),
268                 .word_count     = EEPROM_SIZE / sizeof(u16),
269         },
270         .bbp    = {
271                 .read           = rt2500usb_bbp_read,
272                 .write          = rt2500usb_bbp_write,
273                 .word_size      = sizeof(u8),
274                 .word_count     = BBP_SIZE / sizeof(u8),
275         },
276         .rf     = {
277                 .read           = rt2x00_rf_read,
278                 .write          = rt2500usb_rf_write,
279                 .word_size      = sizeof(u32),
280                 .word_count     = RF_SIZE / sizeof(u32),
281         },
282 };
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
284
285 #ifdef CONFIG_RT2500USB_LEDS
286 static void rt2500usb_led_brightness(struct led_classdev *led_cdev,
287                                      enum led_brightness brightness)
288 {
289         struct rt2x00_led *led =
290             container_of(led_cdev, struct rt2x00_led, led_dev);
291         unsigned int enabled = brightness != LED_OFF;
292         unsigned int activity =
293             led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
294
295         if (in_atomic()) {
296                 NOTICE(led->rt2x00dev,
297                        "Ignoring LED brightness command for led %d\n",
298                        led->type);
299                 return;
300         }
301
302         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
303                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
304                                    MAC_CSR20_LINK, enabled);
305                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
306                                    MAC_CSR20_ACTIVITY, enabled && activity);
307         }
308
309         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20,
310                                  led->rt2x00dev->led_mcu_reg);
311 }
312 #else
313 #define rt2500usb_led_brightness        NULL
314 #endif /* CONFIG_RT2500USB_LEDS */
315
316 /*
317  * Configuration handlers.
318  */
319 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
320                                   struct rt2x00_intf *intf,
321                                   struct rt2x00intf_conf *conf,
322                                   const unsigned int flags)
323 {
324         unsigned int bcn_preload;
325         u16 reg;
326
327         if (flags & CONFIG_UPDATE_TYPE) {
328                 /*
329                  * Enable beacon config
330                  */
331                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
332                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
333                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
334                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
335                                    2 * (conf->type != IEEE80211_IF_TYPE_STA));
336                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
337
338                 /*
339                  * Enable synchronisation.
340                  */
341                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
342                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
343                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
344
345                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
346                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
347                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
348                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
349                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
350         }
351
352         if (flags & CONFIG_UPDATE_MAC)
353                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
354                                               (3 * sizeof(__le16)));
355
356         if (flags & CONFIG_UPDATE_BSSID)
357                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
358                                               (3 * sizeof(__le16)));
359 }
360
361 static int rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
362                                 struct rt2x00lib_erp *erp)
363 {
364         u16 reg;
365
366         /*
367          * When in atomic context, we should let rt2x00lib
368          * try this configuration again later.
369          */
370         if (in_atomic())
371                 return -EAGAIN;
372
373         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
374         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
375         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
376
377         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
378         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
379                            !!erp->short_preamble);
380         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
381
382         return 0;
383 }
384
385 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
386                                      const int basic_rate_mask)
387 {
388         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
389 }
390
391 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
392                                      struct rf_channel *rf, const int txpower)
393 {
394         /*
395          * Set TXpower.
396          */
397         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
398
399         /*
400          * For RT2525E we should first set the channel to half band higher.
401          */
402         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
403                 static const u32 vals[] = {
404                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
405                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
406                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
407                         0x00000902, 0x00000906
408                 };
409
410                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
411                 if (rf->rf4)
412                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
413         }
414
415         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
416         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
417         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
418         if (rf->rf4)
419                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
420 }
421
422 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
423                                      const int txpower)
424 {
425         u32 rf3;
426
427         rt2x00_rf_read(rt2x00dev, 3, &rf3);
428         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
429         rt2500usb_rf_write(rt2x00dev, 3, rf3);
430 }
431
432 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
433                                      struct antenna_setup *ant)
434 {
435         u8 r2;
436         u8 r14;
437         u16 csr5;
438         u16 csr6;
439
440         /*
441          * We should never come here because rt2x00lib is supposed
442          * to catch this and send us the correct antenna explicitely.
443          */
444         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
445                ant->tx == ANTENNA_SW_DIVERSITY);
446
447         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
448         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
449         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
450         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
451
452         /*
453          * Configure the TX antenna.
454          */
455         switch (ant->tx) {
456         case ANTENNA_HW_DIVERSITY:
457                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
458                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
459                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
460                 break;
461         case ANTENNA_A:
462                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
463                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
464                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
465                 break;
466         case ANTENNA_B:
467         default:
468                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
469                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
470                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
471                 break;
472         }
473
474         /*
475          * Configure the RX antenna.
476          */
477         switch (ant->rx) {
478         case ANTENNA_HW_DIVERSITY:
479                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
480                 break;
481         case ANTENNA_A:
482                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
483                 break;
484         case ANTENNA_B:
485         default:
486                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
487                 break;
488         }
489
490         /*
491          * RT2525E and RT5222 need to flip TX I/Q
492          */
493         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
494             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
495                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
496                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
497                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
498
499                 /*
500                  * RT2525E does not need RX I/Q Flip.
501                  */
502                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
503                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
504         } else {
505                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
506                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
507         }
508
509         rt2500usb_bbp_write(rt2x00dev, 2, r2);
510         rt2500usb_bbp_write(rt2x00dev, 14, r14);
511         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
512         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
513 }
514
515 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
516                                       struct rt2x00lib_conf *libconf)
517 {
518         u16 reg;
519
520         rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
521         rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
522         rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
523
524         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
525         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
526                            libconf->conf->beacon_int * 4);
527         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
528 }
529
530 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
531                              struct rt2x00lib_conf *libconf,
532                              const unsigned int flags)
533 {
534         if (flags & CONFIG_UPDATE_PHYMODE)
535                 rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
536         if (flags & CONFIG_UPDATE_CHANNEL)
537                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
538                                          libconf->conf->power_level);
539         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
540                 rt2500usb_config_txpower(rt2x00dev,
541                                          libconf->conf->power_level);
542         if (flags & CONFIG_UPDATE_ANTENNA)
543                 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
544         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
545                 rt2500usb_config_duration(rt2x00dev, libconf);
546 }
547
548 /*
549  * Link tuning
550  */
551 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
552                                  struct link_qual *qual)
553 {
554         u16 reg;
555
556         /*
557          * Update FCS error count from register.
558          */
559         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
560         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
561
562         /*
563          * Update False CCA count from register.
564          */
565         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
566         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
567 }
568
569 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
570 {
571         u16 eeprom;
572         u16 value;
573
574         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
575         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
576         rt2500usb_bbp_write(rt2x00dev, 24, value);
577
578         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
579         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
580         rt2500usb_bbp_write(rt2x00dev, 25, value);
581
582         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
583         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
584         rt2500usb_bbp_write(rt2x00dev, 61, value);
585
586         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
587         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
588         rt2500usb_bbp_write(rt2x00dev, 17, value);
589
590         rt2x00dev->link.vgc_level = value;
591 }
592
593 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
594 {
595         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
596         u16 bbp_thresh;
597         u16 vgc_bound;
598         u16 sens;
599         u16 r24;
600         u16 r25;
601         u16 r61;
602         u16 r17_sens;
603         u8 r17;
604         u8 up_bound;
605         u8 low_bound;
606
607         /*
608          * Read current r17 value, as well as the sensitivity values
609          * for the r17 register.
610          */
611         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
612         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
613
614         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
615         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
616         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
617
618         /*
619          * If we are not associated, we should go straight to the
620          * dynamic CCA tuning.
621          */
622         if (!rt2x00dev->intf_associated)
623                 goto dynamic_cca_tune;
624
625         /*
626          * Determine the BBP tuning threshold and correctly
627          * set BBP 24, 25 and 61.
628          */
629         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
630         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
631
632         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
633         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
634         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
635
636         if ((rssi + bbp_thresh) > 0) {
637                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
638                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
639                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
640         } else {
641                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
642                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
643                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
644         }
645
646         rt2500usb_bbp_write(rt2x00dev, 24, r24);
647         rt2500usb_bbp_write(rt2x00dev, 25, r25);
648         rt2500usb_bbp_write(rt2x00dev, 61, r61);
649
650         /*
651          * A too low RSSI will cause too much false CCA which will
652          * then corrupt the R17 tuning. To remidy this the tuning should
653          * be stopped (While making sure the R17 value will not exceed limits)
654          */
655         if (rssi >= -40) {
656                 if (r17 != 0x60)
657                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
658                 return;
659         }
660
661         /*
662          * Special big-R17 for short distance
663          */
664         if (rssi >= -58) {
665                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
666                 if (r17 != sens)
667                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
668                 return;
669         }
670
671         /*
672          * Special mid-R17 for middle distance
673          */
674         if (rssi >= -74) {
675                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
676                 if (r17 != sens)
677                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
678                 return;
679         }
680
681         /*
682          * Leave short or middle distance condition, restore r17
683          * to the dynamic tuning range.
684          */
685         low_bound = 0x32;
686         if (rssi < -77)
687                 up_bound -= (-77 - rssi);
688
689         if (up_bound < low_bound)
690                 up_bound = low_bound;
691
692         if (r17 > up_bound) {
693                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
694                 rt2x00dev->link.vgc_level = up_bound;
695                 return;
696         }
697
698 dynamic_cca_tune:
699
700         /*
701          * R17 is inside the dynamic tuning range,
702          * start tuning the link based on the false cca counter.
703          */
704         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
705                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
706                 rt2x00dev->link.vgc_level = r17;
707         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
708                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
709                 rt2x00dev->link.vgc_level = r17;
710         }
711 }
712
713 /*
714  * Initialization functions.
715  */
716 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
717 {
718         u16 reg;
719
720         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
721                                     USB_MODE_TEST, REGISTER_TIMEOUT);
722         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
723                                     0x00f0, REGISTER_TIMEOUT);
724
725         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
726         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
727         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
728
729         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
730         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
731
732         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
733         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
734         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
735         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
736         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
737
738         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
739         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
740         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
741         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
742         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
743
744         rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
745         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
746         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
747         rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
748
749         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
750         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
751         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
752         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
753         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
754         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
755
756         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
757         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
758         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
759         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
760         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
761         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
762
763         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
764         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
765         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
766         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
767         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
768         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
769
770         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
771         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
772         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
773         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
774         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
775         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
776
777         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
778         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
779
780         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
781                 return -EBUSY;
782
783         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
784         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
785         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
786         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
787         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
788
789         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
790                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
791                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
792         } else {
793                 reg = 0;
794                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
795                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
796         }
797         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
798
799         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
800         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
801         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
802         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
803
804         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
805         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
806                            rt2x00dev->rx->data_size);
807         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
808
809         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
810         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
811         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
812         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
813
814         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
815         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
816         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
817
818         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
819         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
820         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
821
822         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
823         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
824         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
825
826         return 0;
827 }
828
829 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
830 {
831         unsigned int i;
832         u16 eeprom;
833         u8 value;
834         u8 reg_id;
835
836         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
837                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
838                 if ((value != 0xff) && (value != 0x00))
839                         goto continue_csr_init;
840                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
841                 udelay(REGISTER_BUSY_DELAY);
842         }
843
844         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
845         return -EACCES;
846
847 continue_csr_init:
848         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
849         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
850         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
851         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
852         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
853         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
854         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
855         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
856         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
857         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
858         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
859         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
860         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
861         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
862         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
863         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
864         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
865         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
866         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
867         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
868         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
869         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
870         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
871         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
872         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
873         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
874         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
875         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
876         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
877         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
878         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
879
880         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
881                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
882
883                 if (eeprom != 0xffff && eeprom != 0x0000) {
884                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
885                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
886                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
887                 }
888         }
889
890         return 0;
891 }
892
893 /*
894  * Device state switch handlers.
895  */
896 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
897                                 enum dev_state state)
898 {
899         u16 reg;
900
901         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
902         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
903                            state == STATE_RADIO_RX_OFF);
904         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
905 }
906
907 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
908 {
909         /*
910          * Initialize all registers.
911          */
912         if (rt2500usb_init_registers(rt2x00dev) ||
913             rt2500usb_init_bbp(rt2x00dev)) {
914                 ERROR(rt2x00dev, "Register initialization failed.\n");
915                 return -EIO;
916         }
917
918         return 0;
919 }
920
921 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
922 {
923         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
924         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
925
926         /*
927          * Disable synchronisation.
928          */
929         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
930
931         rt2x00usb_disable_radio(rt2x00dev);
932 }
933
934 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
935                                enum dev_state state)
936 {
937         u16 reg;
938         u16 reg2;
939         unsigned int i;
940         char put_to_sleep;
941         char bbp_state;
942         char rf_state;
943
944         put_to_sleep = (state != STATE_AWAKE);
945
946         reg = 0;
947         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
948         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
949         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
950         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
951         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
952         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
953
954         /*
955          * Device is not guaranteed to be in the requested state yet.
956          * We must wait until the register indicates that the
957          * device has entered the correct state.
958          */
959         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
960                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
961                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
962                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
963                 if (bbp_state == state && rf_state == state)
964                         return 0;
965                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
966                 msleep(30);
967         }
968
969         NOTICE(rt2x00dev, "Device failed to enter state %d, "
970                "current device state: bbp %d and rf %d.\n",
971                state, bbp_state, rf_state);
972
973         return -EBUSY;
974 }
975
976 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
977                                       enum dev_state state)
978 {
979         int retval = 0;
980
981         switch (state) {
982         case STATE_RADIO_ON:
983                 retval = rt2500usb_enable_radio(rt2x00dev);
984                 break;
985         case STATE_RADIO_OFF:
986                 rt2500usb_disable_radio(rt2x00dev);
987                 break;
988         case STATE_RADIO_RX_ON:
989         case STATE_RADIO_RX_ON_LINK:
990                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
991                 break;
992         case STATE_RADIO_RX_OFF:
993         case STATE_RADIO_RX_OFF_LINK:
994                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
995                 break;
996         case STATE_DEEP_SLEEP:
997         case STATE_SLEEP:
998         case STATE_STANDBY:
999         case STATE_AWAKE:
1000                 retval = rt2500usb_set_state(rt2x00dev, state);
1001                 break;
1002         default:
1003                 retval = -ENOTSUPP;
1004                 break;
1005         }
1006
1007         return retval;
1008 }
1009
1010 /*
1011  * TX descriptor initialization
1012  */
1013 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1014                                     struct sk_buff *skb,
1015                                     struct txentry_desc *txdesc,
1016                                     struct ieee80211_tx_control *control)
1017 {
1018         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1019         __le32 *txd = skbdesc->desc;
1020         u32 word;
1021
1022         /*
1023          * Start writing the descriptor words.
1024          */
1025         rt2x00_desc_read(txd, 1, &word);
1026         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1027         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1028         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1029         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1030         rt2x00_desc_write(txd, 1, word);
1031
1032         rt2x00_desc_read(txd, 2, &word);
1033         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1034         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1035         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1036         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1037         rt2x00_desc_write(txd, 2, word);
1038
1039         rt2x00_desc_read(txd, 0, &word);
1040         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
1041         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1042                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1043         rt2x00_set_field32(&word, TXD_W0_ACK,
1044                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1045         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1046                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1047         rt2x00_set_field32(&word, TXD_W0_OFDM,
1048                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1049         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1050                            !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
1051         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1052         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1053         rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1054         rt2x00_desc_write(txd, 0, word);
1055 }
1056
1057 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1058                                      struct sk_buff *skb)
1059 {
1060         int length;
1061
1062         /*
1063          * The length _must_ be a multiple of 2,
1064          * but it must _not_ be a multiple of the USB packet size.
1065          */
1066         length = roundup(skb->len, 2);
1067         length += (2 * !(length % rt2x00dev->usb_maxpacket));
1068
1069         return length;
1070 }
1071
1072 /*
1073  * TX data initialization
1074  */
1075 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1076                                     const unsigned int queue)
1077 {
1078         u16 reg;
1079
1080         if (queue != RT2X00_BCN_QUEUE_BEACON)
1081                 return;
1082
1083         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1084         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1085                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1086                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1087                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1088                 /*
1089                  * Beacon generation will fail initially.
1090                  * To prevent this we need to register the TXRX_CSR19
1091                  * register several times.
1092                  */
1093                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1094                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1095                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1096                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1097                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1098         }
1099 }
1100
1101 /*
1102  * RX control handlers
1103  */
1104 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1105                                   struct rxdone_entry_desc *rxdesc)
1106 {
1107         struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
1108         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1109         __le32 *rxd =
1110             (__le32 *)(entry->skb->data +
1111                        (priv_rx->urb->actual_length - entry->queue->desc_size));
1112         unsigned int offset = entry->queue->desc_size + 2;
1113         u32 word0;
1114         u32 word1;
1115
1116         /*
1117          * Copy descriptor to the available headroom inside the skbuffer.
1118          */
1119         skb_push(entry->skb, offset);
1120         memcpy(entry->skb->data, rxd, entry->queue->desc_size);
1121         rxd = (__le32 *)entry->skb->data;
1122
1123         /*
1124          * The descriptor is now aligned to 4 bytes and thus it is
1125          * now safe to read it on all architectures.
1126          */
1127         rt2x00_desc_read(rxd, 0, &word0);
1128         rt2x00_desc_read(rxd, 1, &word1);
1129
1130         rxdesc->flags = 0;
1131         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1132                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1133         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1134                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1135
1136         /*
1137          * Obtain the status about this packet.
1138          * When frame was received with an OFDM bitrate,
1139          * the signal is the PLCP value. If it was received with
1140          * a CCK bitrate the signal is the rate in 100kbit/s.
1141          */
1142         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1143         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1144         rxdesc->signal_plcp = rxdesc->ofdm;
1145         rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1146             entry->queue->rt2x00dev->rssi_offset;
1147         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1148         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1149
1150         /*
1151          * Adjust the skb memory window to the frame boundaries.
1152          */
1153         skb_pull(entry->skb, offset);
1154         skb_trim(entry->skb, rxdesc->size);
1155
1156         /*
1157          * Set descriptor and data pointer.
1158          */
1159         skbdesc->data = entry->skb->data;
1160         skbdesc->data_len = rxdesc->size;
1161         skbdesc->desc = rxd;
1162         skbdesc->desc_len = entry->queue->desc_size;
1163 }
1164
1165 /*
1166  * Interrupt functions.
1167  */
1168 static void rt2500usb_beacondone(struct urb *urb)
1169 {
1170         struct queue_entry *entry = (struct queue_entry *)urb->context;
1171         struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
1172
1173         if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1174                 return;
1175
1176         /*
1177          * Check if this was the guardian beacon,
1178          * if that was the case we need to send the real beacon now.
1179          * Otherwise we should free the sk_buffer, the device
1180          * should be doing the rest of the work now.
1181          */
1182         if (priv_bcn->guardian_urb == urb) {
1183                 usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
1184         } else if (priv_bcn->urb == urb) {
1185                 dev_kfree_skb(entry->skb);
1186                 entry->skb = NULL;
1187         }
1188 }
1189
1190 /*
1191  * Device probe functions.
1192  */
1193 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1194 {
1195         u16 word;
1196         u8 *mac;
1197         u8 bbp;
1198
1199         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1200
1201         /*
1202          * Start validation of the data that has been read.
1203          */
1204         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1205         if (!is_valid_ether_addr(mac)) {
1206                 DECLARE_MAC_BUF(macbuf);
1207
1208                 random_ether_addr(mac);
1209                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1210         }
1211
1212         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1213         if (word == 0xffff) {
1214                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1215                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1216                                    ANTENNA_SW_DIVERSITY);
1217                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1218                                    ANTENNA_SW_DIVERSITY);
1219                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1220                                    LED_MODE_DEFAULT);
1221                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1222                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1223                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1224                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1225                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1226         }
1227
1228         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1229         if (word == 0xffff) {
1230                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1231                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1232                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1233                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1234                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1235         }
1236
1237         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1238         if (word == 0xffff) {
1239                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1240                                    DEFAULT_RSSI_OFFSET);
1241                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1242                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1243         }
1244
1245         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1246         if (word == 0xffff) {
1247                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1248                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1249                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1250         }
1251
1252         /*
1253          * Switch lower vgc bound to current BBP R17 value,
1254          * lower the value a bit for better quality.
1255          */
1256         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1257         bbp -= 6;
1258
1259         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1260         if (word == 0xffff) {
1261                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1262                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1263                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1264                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1265         }
1266
1267         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1268         if (word == 0xffff) {
1269                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1270                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1271                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1272                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1273         } else {
1274                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1275                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1276         }
1277
1278         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1279         if (word == 0xffff) {
1280                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1281                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1282                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1283                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1284         }
1285
1286         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1287         if (word == 0xffff) {
1288                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1289                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1290                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1291                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1292         }
1293
1294         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1295         if (word == 0xffff) {
1296                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1297                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1298                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1299                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1300         }
1301
1302         return 0;
1303 }
1304
1305 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1306 {
1307         u16 reg;
1308         u16 value;
1309         u16 eeprom;
1310
1311         /*
1312          * Read EEPROM word for configuration.
1313          */
1314         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1315
1316         /*
1317          * Identify RF chipset.
1318          */
1319         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1320         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1321         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1322
1323         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1324                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1325                 return -ENODEV;
1326         }
1327
1328         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1329             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1330             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1331             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1332             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1333             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1334                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1335                 return -ENODEV;
1336         }
1337
1338         /*
1339          * Identify default antenna configuration.
1340          */
1341         rt2x00dev->default_ant.tx =
1342             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1343         rt2x00dev->default_ant.rx =
1344             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1345
1346         /*
1347          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1348          * I am not 100% sure about this, but the legacy drivers do not
1349          * indicate antenna swapping in software is required when
1350          * diversity is enabled.
1351          */
1352         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1353                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1354         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1355                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1356
1357         /*
1358          * Store led mode, for correct led behaviour.
1359          */
1360 #ifdef CONFIG_RT2500USB_LEDS
1361         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1362
1363         switch (value) {
1364         case LED_MODE_ASUS:
1365         case LED_MODE_ALPHA:
1366         case LED_MODE_DEFAULT:
1367                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1368                 break;
1369         case LED_MODE_TXRX_ACTIVITY:
1370                 rt2x00dev->led_flags =
1371                     LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1372                 break;
1373         case LED_MODE_SIGNAL_STRENGTH:
1374                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1375                 break;
1376         }
1377
1378         /*
1379          * Store the current led register value, we need it later
1380          * in set_brightness but that is called in irq context which
1381          * means we can't use rt2500usb_register_read() at that time.
1382          */
1383         rt2500usb_register_read(rt2x00dev, MAC_CSR20, &rt2x00dev->led_mcu_reg);
1384 #endif /* CONFIG_RT2500USB_LEDS */
1385
1386         /*
1387          * Check if the BBP tuning should be disabled.
1388          */
1389         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1390         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1391                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1392
1393         /*
1394          * Read the RSSI <-> dBm offset information.
1395          */
1396         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1397         rt2x00dev->rssi_offset =
1398             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1399
1400         return 0;
1401 }
1402
1403 /*
1404  * RF value list for RF2522
1405  * Supports: 2.4 GHz
1406  */
1407 static const struct rf_channel rf_vals_bg_2522[] = {
1408         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1409         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1410         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1411         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1412         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1413         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1414         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1415         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1416         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1417         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1418         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1419         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1420         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1421         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1422 };
1423
1424 /*
1425  * RF value list for RF2523
1426  * Supports: 2.4 GHz
1427  */
1428 static const struct rf_channel rf_vals_bg_2523[] = {
1429         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1430         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1431         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1432         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1433         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1434         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1435         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1436         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1437         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1438         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1439         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1440         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1441         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1442         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1443 };
1444
1445 /*
1446  * RF value list for RF2524
1447  * Supports: 2.4 GHz
1448  */
1449 static const struct rf_channel rf_vals_bg_2524[] = {
1450         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1451         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1452         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1453         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1454         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1455         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1456         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1457         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1458         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1459         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1460         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1461         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1462         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1463         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1464 };
1465
1466 /*
1467  * RF value list for RF2525
1468  * Supports: 2.4 GHz
1469  */
1470 static const struct rf_channel rf_vals_bg_2525[] = {
1471         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1472         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1473         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1474         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1475         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1476         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1477         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1478         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1479         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1480         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1481         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1482         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1483         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1484         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1485 };
1486
1487 /*
1488  * RF value list for RF2525e
1489  * Supports: 2.4 GHz
1490  */
1491 static const struct rf_channel rf_vals_bg_2525e[] = {
1492         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1493         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1494         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1495         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1496         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1497         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1498         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1499         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1500         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1501         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1502         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1503         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1504         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1505         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1506 };
1507
1508 /*
1509  * RF value list for RF5222
1510  * Supports: 2.4 GHz & 5.2 GHz
1511  */
1512 static const struct rf_channel rf_vals_5222[] = {
1513         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1514         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1515         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1516         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1517         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1518         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1519         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1520         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1521         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1522         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1523         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1524         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1525         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1526         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1527
1528         /* 802.11 UNI / HyperLan 2 */
1529         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1530         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1531         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1532         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1533         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1534         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1535         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1536         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1537
1538         /* 802.11 HyperLan 2 */
1539         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1540         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1541         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1542         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1543         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1544         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1545         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1546         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1547         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1548         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1549
1550         /* 802.11 UNII */
1551         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1552         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1553         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1554         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1555         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1556 };
1557
1558 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1559 {
1560         struct hw_mode_spec *spec = &rt2x00dev->spec;
1561         u8 *txpower;
1562         unsigned int i;
1563
1564         /*
1565          * Initialize all hw fields.
1566          */
1567         rt2x00dev->hw->flags =
1568             IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1569             IEEE80211_HW_RX_INCLUDES_FCS |
1570             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1571         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1572         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1573         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1574         rt2x00dev->hw->queues = 2;
1575
1576         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1577         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1578                                 rt2x00_eeprom_addr(rt2x00dev,
1579                                                    EEPROM_MAC_ADDR_0));
1580
1581         /*
1582          * Convert tx_power array in eeprom.
1583          */
1584         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1585         for (i = 0; i < 14; i++)
1586                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1587
1588         /*
1589          * Initialize hw_mode information.
1590          */
1591         spec->supported_bands = SUPPORT_BAND_2GHZ;
1592         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1593         spec->tx_power_a = NULL;
1594         spec->tx_power_bg = txpower;
1595         spec->tx_power_default = DEFAULT_TXPOWER;
1596
1597         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1598                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1599                 spec->channels = rf_vals_bg_2522;
1600         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1601                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1602                 spec->channels = rf_vals_bg_2523;
1603         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1604                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1605                 spec->channels = rf_vals_bg_2524;
1606         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1607                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1608                 spec->channels = rf_vals_bg_2525;
1609         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1610                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1611                 spec->channels = rf_vals_bg_2525e;
1612         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1613                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1614                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1615                 spec->channels = rf_vals_5222;
1616         }
1617 }
1618
1619 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1620 {
1621         int retval;
1622
1623         /*
1624          * Allocate eeprom data.
1625          */
1626         retval = rt2500usb_validate_eeprom(rt2x00dev);
1627         if (retval)
1628                 return retval;
1629
1630         retval = rt2500usb_init_eeprom(rt2x00dev);
1631         if (retval)
1632                 return retval;
1633
1634         /*
1635          * Initialize hw specifications.
1636          */
1637         rt2500usb_probe_hw_mode(rt2x00dev);
1638
1639         /*
1640          * This device requires the atim queue
1641          */
1642         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1643         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1644
1645         /*
1646          * Set the rssi offset.
1647          */
1648         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1649
1650         return 0;
1651 }
1652
1653 /*
1654  * IEEE80211 stack callback functions.
1655  */
1656 static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
1657                                        unsigned int changed_flags,
1658                                        unsigned int *total_flags,
1659                                        int mc_count,
1660                                        struct dev_addr_list *mc_list)
1661 {
1662         struct rt2x00_dev *rt2x00dev = hw->priv;
1663         u16 reg;
1664
1665         /*
1666          * Mask off any flags we are going to ignore from
1667          * the total_flags field.
1668          */
1669         *total_flags &=
1670             FIF_ALLMULTI |
1671             FIF_FCSFAIL |
1672             FIF_PLCPFAIL |
1673             FIF_CONTROL |
1674             FIF_OTHER_BSS |
1675             FIF_PROMISC_IN_BSS;
1676
1677         /*
1678          * Apply some rules to the filters:
1679          * - Some filters imply different filters to be set.
1680          * - Some things we can't filter out at all.
1681          */
1682         if (mc_count)
1683                 *total_flags |= FIF_ALLMULTI;
1684         if (*total_flags & FIF_OTHER_BSS ||
1685             *total_flags & FIF_PROMISC_IN_BSS)
1686                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1687
1688         /*
1689          * Check if there is any work left for us.
1690          */
1691         if (rt2x00dev->packet_filter == *total_flags)
1692                 return;
1693         rt2x00dev->packet_filter = *total_flags;
1694
1695         /*
1696          * When in atomic context, reschedule and let rt2x00lib
1697          * call this function again.
1698          */
1699         if (in_atomic()) {
1700                 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
1701                 return;
1702         }
1703
1704         /*
1705          * Start configuration steps.
1706          * Note that the version error will always be dropped
1707          * and broadcast frames will always be accepted since
1708          * there is no filter for it at this time.
1709          */
1710         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1711         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
1712                            !(*total_flags & FIF_FCSFAIL));
1713         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
1714                            !(*total_flags & FIF_PLCPFAIL));
1715         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
1716                            !(*total_flags & FIF_CONTROL));
1717         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
1718                            !(*total_flags & FIF_PROMISC_IN_BSS));
1719         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
1720                            !(*total_flags & FIF_PROMISC_IN_BSS));
1721         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
1722         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
1723                            !(*total_flags & FIF_ALLMULTI));
1724         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
1725         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1726 }
1727
1728 static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
1729                                    struct sk_buff *skb,
1730                                    struct ieee80211_tx_control *control)
1731 {
1732         struct rt2x00_dev *rt2x00dev = hw->priv;
1733         struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
1734         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1735         struct queue_entry_priv_usb_bcn *priv_bcn;
1736         struct skb_frame_desc *skbdesc;
1737         int pipe = usb_sndbulkpipe(usb_dev, 1);
1738         int length;
1739         u16 reg;
1740
1741         if (unlikely(!intf->beacon))
1742                 return -ENOBUFS;
1743
1744         priv_bcn = intf->beacon->priv_data;
1745
1746         /*
1747          * Add the descriptor in front of the skb.
1748          */
1749         skb_push(skb, intf->beacon->queue->desc_size);
1750         memset(skb->data, 0, intf->beacon->queue->desc_size);
1751
1752         /*
1753          * Fill in skb descriptor
1754          */
1755         skbdesc = get_skb_frame_desc(skb);
1756         memset(skbdesc, 0, sizeof(*skbdesc));
1757         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1758         skbdesc->data = skb->data + intf->beacon->queue->desc_size;
1759         skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
1760         skbdesc->desc = skb->data;
1761         skbdesc->desc_len = intf->beacon->queue->desc_size;
1762         skbdesc->entry = intf->beacon;
1763
1764         /*
1765          * Disable beaconing while we are reloading the beacon data,
1766          * otherwise we might be sending out invalid data.
1767          */
1768         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1769         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1770         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1771         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1772         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1773
1774         /*
1775          * mac80211 doesn't provide the control->queue variable
1776          * for beacons. Set our own queue identification so
1777          * it can be used during descriptor initialization.
1778          */
1779         control->queue = RT2X00_BCN_QUEUE_BEACON;
1780         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1781
1782         /*
1783          * USB devices cannot blindly pass the skb->len as the
1784          * length of the data to usb_fill_bulk_urb. Pass the skb
1785          * to the driver to determine what the length should be.
1786          */
1787         length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1788
1789         usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
1790                           skb->data, length, rt2500usb_beacondone,
1791                           intf->beacon);
1792
1793         /*
1794          * Second we need to create the guardian byte.
1795          * We only need a single byte, so lets recycle
1796          * the 'flags' field we are not using for beacons.
1797          */
1798         priv_bcn->guardian_data = 0;
1799         usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
1800                           &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
1801                           intf->beacon);
1802
1803         /*
1804          * Send out the guardian byte.
1805          */
1806         usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
1807
1808         /*
1809          * Enable beacon generation.
1810          */
1811         rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
1812
1813         return 0;
1814 }
1815
1816 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1817         .tx                     = rt2x00mac_tx,
1818         .start                  = rt2x00mac_start,
1819         .stop                   = rt2x00mac_stop,
1820         .add_interface          = rt2x00mac_add_interface,
1821         .remove_interface       = rt2x00mac_remove_interface,
1822         .config                 = rt2x00mac_config,
1823         .config_interface       = rt2x00mac_config_interface,
1824         .configure_filter       = rt2500usb_configure_filter,
1825         .get_stats              = rt2x00mac_get_stats,
1826         .bss_info_changed       = rt2x00mac_bss_info_changed,
1827         .conf_tx                = rt2x00mac_conf_tx,
1828         .get_tx_stats           = rt2x00mac_get_tx_stats,
1829         .beacon_update          = rt2500usb_beacon_update,
1830 };
1831
1832 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1833         .probe_hw               = rt2500usb_probe_hw,
1834         .initialize             = rt2x00usb_initialize,
1835         .uninitialize           = rt2x00usb_uninitialize,
1836         .init_rxentry           = rt2x00usb_init_rxentry,
1837         .init_txentry           = rt2x00usb_init_txentry,
1838         .set_device_state       = rt2500usb_set_device_state,
1839         .link_stats             = rt2500usb_link_stats,
1840         .reset_tuner            = rt2500usb_reset_tuner,
1841         .link_tuner             = rt2500usb_link_tuner,
1842         .led_brightness         = rt2500usb_led_brightness,
1843         .write_tx_desc          = rt2500usb_write_tx_desc,
1844         .write_tx_data          = rt2x00usb_write_tx_data,
1845         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1846         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1847         .fill_rxdone            = rt2500usb_fill_rxdone,
1848         .config_intf            = rt2500usb_config_intf,
1849         .config_erp             = rt2500usb_config_erp,
1850         .config                 = rt2500usb_config,
1851 };
1852
1853 static const struct data_queue_desc rt2500usb_queue_rx = {
1854         .entry_num              = RX_ENTRIES,
1855         .data_size              = DATA_FRAME_SIZE,
1856         .desc_size              = RXD_DESC_SIZE,
1857         .priv_size              = sizeof(struct queue_entry_priv_usb_rx),
1858 };
1859
1860 static const struct data_queue_desc rt2500usb_queue_tx = {
1861         .entry_num              = TX_ENTRIES,
1862         .data_size              = DATA_FRAME_SIZE,
1863         .desc_size              = TXD_DESC_SIZE,
1864         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1865 };
1866
1867 static const struct data_queue_desc rt2500usb_queue_bcn = {
1868         .entry_num              = BEACON_ENTRIES,
1869         .data_size              = MGMT_FRAME_SIZE,
1870         .desc_size              = TXD_DESC_SIZE,
1871         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1872 };
1873
1874 static const struct data_queue_desc rt2500usb_queue_atim = {
1875         .entry_num              = ATIM_ENTRIES,
1876         .data_size              = DATA_FRAME_SIZE,
1877         .desc_size              = TXD_DESC_SIZE,
1878         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1879 };
1880
1881 static const struct rt2x00_ops rt2500usb_ops = {
1882         .name           = KBUILD_MODNAME,
1883         .max_sta_intf   = 1,
1884         .max_ap_intf    = 1,
1885         .eeprom_size    = EEPROM_SIZE,
1886         .rf_size        = RF_SIZE,
1887         .rx             = &rt2500usb_queue_rx,
1888         .tx             = &rt2500usb_queue_tx,
1889         .bcn            = &rt2500usb_queue_bcn,
1890         .atim           = &rt2500usb_queue_atim,
1891         .lib            = &rt2500usb_rt2x00_ops,
1892         .hw             = &rt2500usb_mac80211_ops,
1893 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1894         .debugfs        = &rt2500usb_rt2x00debug,
1895 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1896 };
1897
1898 /*
1899  * rt2500usb module information.
1900  */
1901 static struct usb_device_id rt2500usb_device_table[] = {
1902         /* ASUS */
1903         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1904         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1905         /* Belkin */
1906         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1907         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1908         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1909         /* Cisco Systems */
1910         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1911         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1912         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1913         /* Conceptronic */
1914         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1915         /* D-LINK */
1916         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1917         /* Gigabyte */
1918         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1919         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1920         /* Hercules */
1921         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1922         /* Melco */
1923         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1924         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1925         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1926         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1927         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1928         /* MSI */
1929         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1930         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1931         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1932         /* Ralink */
1933         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1934         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1935         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1936         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1937         /* Siemens */
1938         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1939         /* SMC */
1940         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1941         /* Spairon */
1942         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1943         /* Trust */
1944         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1945         /* Zinwell */
1946         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1947         { 0, }
1948 };
1949
1950 MODULE_AUTHOR(DRV_PROJECT);
1951 MODULE_VERSION(DRV_VERSION);
1952 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1953 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1954 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1955 MODULE_LICENSE("GPL");
1956
1957 static struct usb_driver rt2500usb_driver = {
1958         .name           = KBUILD_MODNAME,
1959         .id_table       = rt2500usb_device_table,
1960         .probe          = rt2x00usb_probe,
1961         .disconnect     = rt2x00usb_disconnect,
1962         .suspend        = rt2x00usb_suspend,
1963         .resume         = rt2x00usb_resume,
1964 };
1965
1966 static int __init rt2500usb_init(void)
1967 {
1968         return usb_register(&rt2500usb_driver);
1969 }
1970
1971 static void __exit rt2500usb_exit(void)
1972 {
1973         usb_deregister(&rt2500usb_driver);
1974 }
1975
1976 module_init(rt2500usb_init);
1977 module_exit(rt2500usb_exit);