]> err.no Git - linux-2.6/blob - drivers/net/wireless/rt2x00/rt2500pci.c
[PATCH] rt2x00: SW diversity should default to antenna B
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 /*
28  * Set enviroment defines for rt2x00.h
29  */
30 #define DRV_NAME "rt2500pci"
31
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
39
40 #include "rt2x00.h"
41 #include "rt2x00pci.h"
42 #include "rt2500pci.h"
43
44 /*
45  * Register access.
46  * All access to the CSR registers will go through the methods
47  * rt2x00pci_register_read and rt2x00pci_register_write.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers BBPCSR and RFCSR to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attampt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58 {
59         u32 reg;
60         unsigned int i;
61
62         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65                         break;
66                 udelay(REGISTER_BUSY_DELAY);
67         }
68
69         return reg;
70 }
71
72 static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73                                 const unsigned int word, const u8 value)
74 {
75         u32 reg;
76
77         /*
78          * Wait until the BBP becomes ready.
79          */
80         reg = rt2500pci_bbp_check(rt2x00dev);
81         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83                 return;
84         }
85
86         /*
87          * Write the data into the BBP.
88          */
89         reg = 0;
90         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96 }
97
98 static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99                                const unsigned int word, u8 *value)
100 {
101         u32 reg;
102
103         /*
104          * Wait until the BBP becomes ready.
105          */
106         reg = rt2500pci_bbp_check(rt2x00dev);
107         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109                 return;
110         }
111
112         /*
113          * Write the request into the BBP.
114          */
115         reg = 0;
116         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122         /*
123          * Wait until the BBP becomes ready.
124          */
125         reg = rt2500pci_bbp_check(rt2x00dev);
126         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128                 *value = 0xff;
129                 return;
130         }
131
132         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133 }
134
135 static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136                                const unsigned int word, const u32 value)
137 {
138         u32 reg;
139         unsigned int i;
140
141         if (!word)
142                 return;
143
144         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147                         goto rf_write;
148                 udelay(REGISTER_BUSY_DELAY);
149         }
150
151         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152         return;
153
154 rf_write:
155         reg = 0;
156         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162         rt2x00_rf_write(rt2x00dev, word, value);
163 }
164
165 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166 {
167         struct rt2x00_dev *rt2x00dev = eeprom->data;
168         u32 reg;
169
170         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174         eeprom->reg_data_clock =
175             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176         eeprom->reg_chip_select =
177             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178 }
179
180 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181 {
182         struct rt2x00_dev *rt2x00dev = eeprom->data;
183         u32 reg = 0;
184
185         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188                            !!eeprom->reg_data_clock);
189         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190                            !!eeprom->reg_chip_select);
191
192         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
196 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198 static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, u32 *data)
200 {
201         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202 }
203
204 static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205                                 const unsigned int word, u32 data)
206 {
207         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208 }
209
210 static const struct rt2x00debug rt2500pci_rt2x00debug = {
211         .owner  = THIS_MODULE,
212         .csr    = {
213                 .read           = rt2500pci_read_csr,
214                 .write          = rt2500pci_write_csr,
215                 .word_size      = sizeof(u32),
216                 .word_count     = CSR_REG_SIZE / sizeof(u32),
217         },
218         .eeprom = {
219                 .read           = rt2x00_eeprom_read,
220                 .write          = rt2x00_eeprom_write,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt2500pci_bbp_read,
226                 .write          = rt2500pci_bbp_write,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt2500pci_rf_write,
233                 .word_size      = sizeof(u32),
234                 .word_count     = RF_SIZE / sizeof(u32),
235         },
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239 #ifdef CONFIG_RT2500PCI_RFKILL
240 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242         u32 reg;
243
244         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246 }
247 #else
248 #define rt2500pci_rfkill_poll   NULL
249 #endif /* CONFIG_RT2500PCI_RFKILL */
250
251 /*
252  * Configuration handlers.
253  */
254 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
255                                       __le32 *mac)
256 {
257         rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
258                                       (2 * sizeof(__le32)));
259 }
260
261 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
262                                    __le32 *bssid)
263 {
264         rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
265                                       (2 * sizeof(__le32)));
266 }
267
268 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
269                                   const int tsf_sync)
270 {
271         u32 reg;
272
273         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274
275         /*
276          * Enable beacon config
277          */
278         rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
279         rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
280                            PREAMBLE + get_duration(IEEE80211_HEADER, 20));
281         rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
282                            rt2x00lib_get_ring(rt2x00dev,
283                                               IEEE80211_TX_QUEUE_BEACON)
284                            ->tx_params.cw_min);
285         rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
286
287         /*
288          * Enable synchronisation.
289          */
290         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
291         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
292         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
293         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
294         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
295         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
296 }
297
298 static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
299                                       const int short_preamble,
300                                       const int ack_timeout,
301                                       const int ack_consume_time)
302 {
303         int preamble_mask;
304         u32 reg;
305
306         /*
307          * When short preamble is enabled, we should set bit 0x08
308          */
309         preamble_mask = short_preamble << 3;
310
311         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
312         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
313         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
314         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
315
316         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
317         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
318         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
319         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
320         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
321
322         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
323         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
324         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
325         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
326         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
327
328         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
329         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
330         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
331         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
332         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
333
334         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
335         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
336         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
337         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
338         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
339 }
340
341 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
342                                      const int basic_rate_mask)
343 {
344         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
345 }
346
347 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
348                                      struct rf_channel *rf, const int txpower)
349 {
350         u8 r70;
351
352         /*
353          * Set TXpower.
354          */
355         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
356
357         /*
358          * Switch on tuning bits.
359          * For RT2523 devices we do not need to update the R1 register.
360          */
361         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
362                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
363         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
364
365         /*
366          * For RT2525 we should first set the channel to half band higher.
367          */
368         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
369                 static const u32 vals[] = {
370                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
371                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
372                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
373                         0x00080d2e, 0x00080d3a
374                 };
375
376                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
377                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
378                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
379                 if (rf->rf4)
380                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
381         }
382
383         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
384         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
385         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
386         if (rf->rf4)
387                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
388
389         /*
390          * Channel 14 requires the Japan filter bit to be set.
391          */
392         r70 = 0x46;
393         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
394         rt2500pci_bbp_write(rt2x00dev, 70, r70);
395
396         msleep(1);
397
398         /*
399          * Switch off tuning bits.
400          * For RT2523 devices we do not need to update the R1 register.
401          */
402         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
403                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
404                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
405         }
406
407         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
408         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
409
410         /*
411          * Clear false CRC during channel switch.
412          */
413         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
414 }
415
416 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
417                                      const int txpower)
418 {
419         u32 rf3;
420
421         rt2x00_rf_read(rt2x00dev, 3, &rf3);
422         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
423         rt2500pci_rf_write(rt2x00dev, 3, rf3);
424 }
425
426 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
427                                      struct antenna_setup *ant)
428 {
429         u32 reg;
430         u8 r14;
431         u8 r2;
432
433         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
434         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
435         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
436
437         /*
438          * Configure the TX antenna.
439          */
440         switch (ant->tx) {
441         case ANTENNA_A:
442                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
443                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
444                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
445                 break;
446         case ANTENNA_HW_DIVERSITY:
447         case ANTENNA_SW_DIVERSITY:
448                 /*
449                  * NOTE: We should never come here because rt2x00lib is
450                  * supposed to catch this and send us the correct antenna
451                  * explicitely. However we are nog going to bug about this.
452                  * Instead, just default to antenna B.
453                  */
454         case ANTENNA_B:
455                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
456                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
457                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
458                 break;
459         }
460
461         /*
462          * Configure the RX antenna.
463          */
464         switch (ant->rx) {
465         case ANTENNA_A:
466                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
467                 break;
468         case ANTENNA_HW_DIVERSITY:
469         case ANTENNA_SW_DIVERSITY:
470                 /*
471                  * NOTE: We should never come here because rt2x00lib is
472                  * supposed to catch this and send us the correct antenna
473                  * explicitely. However we are nog going to bug about this.
474                  * Instead, just default to antenna B.
475                  */
476         case ANTENNA_B:
477                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
478                 break;
479         }
480
481         /*
482          * RT2525E and RT5222 need to flip TX I/Q
483          */
484         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
485             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
486                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
487                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
488                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
489
490                 /*
491                  * RT2525E does not need RX I/Q Flip.
492                  */
493                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
494                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
495         } else {
496                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
497                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
498         }
499
500         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
501         rt2500pci_bbp_write(rt2x00dev, 14, r14);
502         rt2500pci_bbp_write(rt2x00dev, 2, r2);
503 }
504
505 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
506                                       struct rt2x00lib_conf *libconf)
507 {
508         u32 reg;
509
510         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
511         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
512         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
513
514         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
515         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
516         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
517         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
518
519         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
520         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
521         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
522         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
523
524         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
525         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
526         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
527         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
528
529         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
530         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
531                            libconf->conf->beacon_int * 16);
532         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
533                            libconf->conf->beacon_int * 16);
534         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
535 }
536
537 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
538                              const unsigned int flags,
539                              struct rt2x00lib_conf *libconf)
540 {
541         if (flags & CONFIG_UPDATE_PHYMODE)
542                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
543         if (flags & CONFIG_UPDATE_CHANNEL)
544                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
545                                          libconf->conf->power_level);
546         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
547                 rt2500pci_config_txpower(rt2x00dev,
548                                          libconf->conf->power_level);
549         if (flags & CONFIG_UPDATE_ANTENNA)
550                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
551         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
552                 rt2500pci_config_duration(rt2x00dev, libconf);
553 }
554
555 /*
556  * LED functions.
557  */
558 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
559 {
560         u32 reg;
561
562         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
563
564         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
565         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
566
567         if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
568                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
569                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
570         } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
571                 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
572                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
573         } else {
574                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
575                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
576         }
577
578         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
579 }
580
581 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
582 {
583         u32 reg;
584
585         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
586         rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
587         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
588         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
589 }
590
591 /*
592  * Link tuning
593  */
594 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
595                                  struct link_qual *qual)
596 {
597         u32 reg;
598
599         /*
600          * Update FCS error count from register.
601          */
602         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
603         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
604
605         /*
606          * Update False CCA count from register.
607          */
608         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
609         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
610 }
611
612 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
613 {
614         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
615         rt2x00dev->link.vgc_level = 0x48;
616 }
617
618 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
619 {
620         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
621         u8 r17;
622
623         /*
624          * To prevent collisions with MAC ASIC on chipsets
625          * up to version C the link tuning should halt after 20
626          * seconds.
627          */
628         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
629             rt2x00dev->link.count > 20)
630                 return;
631
632         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
633
634         /*
635          * Chipset versions C and lower should directly continue
636          * to the dynamic CCA tuning.
637          */
638         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
639                 goto dynamic_cca_tune;
640
641         /*
642          * A too low RSSI will cause too much false CCA which will
643          * then corrupt the R17 tuning. To remidy this the tuning should
644          * be stopped (While making sure the R17 value will not exceed limits)
645          */
646         if (rssi < -80 && rt2x00dev->link.count > 20) {
647                 if (r17 >= 0x41) {
648                         r17 = rt2x00dev->link.vgc_level;
649                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
650                 }
651                 return;
652         }
653
654         /*
655          * Special big-R17 for short distance
656          */
657         if (rssi >= -58) {
658                 if (r17 != 0x50)
659                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
660                 return;
661         }
662
663         /*
664          * Special mid-R17 for middle distance
665          */
666         if (rssi >= -74) {
667                 if (r17 != 0x41)
668                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
669                 return;
670         }
671
672         /*
673          * Leave short or middle distance condition, restore r17
674          * to the dynamic tuning range.
675          */
676         if (r17 >= 0x41) {
677                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
678                 return;
679         }
680
681 dynamic_cca_tune:
682
683         /*
684          * R17 is inside the dynamic tuning range,
685          * start tuning the link based on the false cca counter.
686          */
687         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
688                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
689                 rt2x00dev->link.vgc_level = r17;
690         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
691                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
692                 rt2x00dev->link.vgc_level = r17;
693         }
694 }
695
696 /*
697  * Initialization functions.
698  */
699 static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
700 {
701         struct data_ring *ring = rt2x00dev->rx;
702         struct data_desc *rxd;
703         unsigned int i;
704         u32 word;
705
706         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
707
708         for (i = 0; i < ring->stats.limit; i++) {
709                 rxd = ring->entry[i].priv;
710
711                 rt2x00_desc_read(rxd, 1, &word);
712                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
713                                    ring->entry[i].data_dma);
714                 rt2x00_desc_write(rxd, 1, word);
715
716                 rt2x00_desc_read(rxd, 0, &word);
717                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
718                 rt2x00_desc_write(rxd, 0, word);
719         }
720
721         rt2x00_ring_index_clear(rt2x00dev->rx);
722 }
723
724 static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
725 {
726         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
727         struct data_desc *txd;
728         unsigned int i;
729         u32 word;
730
731         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
732
733         for (i = 0; i < ring->stats.limit; i++) {
734                 txd = ring->entry[i].priv;
735
736                 rt2x00_desc_read(txd, 1, &word);
737                 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
738                                    ring->entry[i].data_dma);
739                 rt2x00_desc_write(txd, 1, word);
740
741                 rt2x00_desc_read(txd, 0, &word);
742                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
743                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
744                 rt2x00_desc_write(txd, 0, word);
745         }
746
747         rt2x00_ring_index_clear(ring);
748 }
749
750 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
751 {
752         u32 reg;
753
754         /*
755          * Initialize rings.
756          */
757         rt2500pci_init_rxring(rt2x00dev);
758         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
759         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
760         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
761         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
762
763         /*
764          * Initialize registers.
765          */
766         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
767         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
768                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
769         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
770                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
771         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
772                            rt2x00dev->bcn[1].stats.limit);
773         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
774                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
775         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
776
777         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
778         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
779                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
780         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
781
782         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
783         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
784                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
785         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
786
787         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
788         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
789                            rt2x00dev->bcn[1].data_dma);
790         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
791
792         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
793         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
794                            rt2x00dev->bcn[0].data_dma);
795         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
796
797         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
798         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
799         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
800         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
801
802         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
803         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
804                            rt2x00dev->rx->data_dma);
805         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
806
807         return 0;
808 }
809
810 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
811 {
812         u32 reg;
813
814         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
815         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
816         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
817         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
818
819         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
820         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
821         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
822         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
823         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
824
825         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
826         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
827                            rt2x00dev->rx->data_size / 128);
828         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
829
830         /*
831          * Always use CWmin and CWmax set in descriptor.
832          */
833         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
834         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
835         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
836
837         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
838
839         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
840         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
841         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
842         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
843         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
844         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
845         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
846         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
847         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
848         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
849
850         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
851         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
852         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
853         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
854         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
855         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
856
857         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
858         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
859         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
860         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
861         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
862         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
863
864         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
865         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
866         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
867         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
868         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
869         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
870
871         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
872         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
873         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
874         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
875         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
876         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
877         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
878         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
879         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
880         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
881
882         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
883         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
884         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
885         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
886         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
887         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
888         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
889         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
890         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
891
892         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
893
894         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
895         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
896
897         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
898                 return -EBUSY;
899
900         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
901         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
902
903         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
904         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
905         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
906
907         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
908         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
909         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
910         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
911         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
912         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
913         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
914         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
915
916         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
917
918         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
919
920         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
921         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
922         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
923         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
924         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
925
926         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
927         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
928         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
929         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
930
931         /*
932          * We must clear the FCS and FIFO error count.
933          * These registers are cleared on read,
934          * so we may pass a useless variable to store the value.
935          */
936         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
937         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
938
939         return 0;
940 }
941
942 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
943 {
944         unsigned int i;
945         u16 eeprom;
946         u8 reg_id;
947         u8 value;
948
949         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
950                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
951                 if ((value != 0xff) && (value != 0x00))
952                         goto continue_csr_init;
953                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
954                 udelay(REGISTER_BUSY_DELAY);
955         }
956
957         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
958         return -EACCES;
959
960 continue_csr_init:
961         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
962         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
963         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
964         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
965         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
966         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
967         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
968         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
969         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
970         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
971         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
972         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
973         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
974         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
975         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
976         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
977         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
978         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
979         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
980         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
981         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
982         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
983         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
984         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
985         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
986         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
987         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
988         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
989         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
990         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
991
992         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
993         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
994                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
995
996                 if (eeprom != 0xffff && eeprom != 0x0000) {
997                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
998                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
999                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1000                               reg_id, value);
1001                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1002                 }
1003         }
1004         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1005
1006         return 0;
1007 }
1008
1009 /*
1010  * Device state switch handlers.
1011  */
1012 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1013                                 enum dev_state state)
1014 {
1015         u32 reg;
1016
1017         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1018         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1019                            state == STATE_RADIO_RX_OFF);
1020         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1021 }
1022
1023 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1024                                  enum dev_state state)
1025 {
1026         int mask = (state == STATE_RADIO_IRQ_OFF);
1027         u32 reg;
1028
1029         /*
1030          * When interrupts are being enabled, the interrupt registers
1031          * should clear the register to assure a clean state.
1032          */
1033         if (state == STATE_RADIO_IRQ_ON) {
1034                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1035                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1036         }
1037
1038         /*
1039          * Only toggle the interrupts bits we are going to use.
1040          * Non-checked interrupt bits are disabled by default.
1041          */
1042         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1043         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1044         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1045         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1046         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1047         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1048         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1049 }
1050
1051 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1052 {
1053         /*
1054          * Initialize all registers.
1055          */
1056         if (rt2500pci_init_rings(rt2x00dev) ||
1057             rt2500pci_init_registers(rt2x00dev) ||
1058             rt2500pci_init_bbp(rt2x00dev)) {
1059                 ERROR(rt2x00dev, "Register initialization failed.\n");
1060                 return -EIO;
1061         }
1062
1063         /*
1064          * Enable interrupts.
1065          */
1066         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1067
1068         /*
1069          * Enable LED
1070          */
1071         rt2500pci_enable_led(rt2x00dev);
1072
1073         return 0;
1074 }
1075
1076 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1077 {
1078         u32 reg;
1079
1080         /*
1081          * Disable LED
1082          */
1083         rt2500pci_disable_led(rt2x00dev);
1084
1085         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1086
1087         /*
1088          * Disable synchronisation.
1089          */
1090         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1091
1092         /*
1093          * Cancel RX and TX.
1094          */
1095         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1096         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1097         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1098
1099         /*
1100          * Disable interrupts.
1101          */
1102         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1103 }
1104
1105 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1106                                enum dev_state state)
1107 {
1108         u32 reg;
1109         unsigned int i;
1110         char put_to_sleep;
1111         char bbp_state;
1112         char rf_state;
1113
1114         put_to_sleep = (state != STATE_AWAKE);
1115
1116         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1117         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1118         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1119         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1120         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1121         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1122
1123         /*
1124          * Device is not guaranteed to be in the requested state yet.
1125          * We must wait until the register indicates that the
1126          * device has entered the correct state.
1127          */
1128         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1129                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1130                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1131                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1132                 if (bbp_state == state && rf_state == state)
1133                         return 0;
1134                 msleep(10);
1135         }
1136
1137         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1138                "current device state: bbp %d and rf %d.\n",
1139                state, bbp_state, rf_state);
1140
1141         return -EBUSY;
1142 }
1143
1144 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1145                                       enum dev_state state)
1146 {
1147         int retval = 0;
1148
1149         switch (state) {
1150         case STATE_RADIO_ON:
1151                 retval = rt2500pci_enable_radio(rt2x00dev);
1152                 break;
1153         case STATE_RADIO_OFF:
1154                 rt2500pci_disable_radio(rt2x00dev);
1155                 break;
1156         case STATE_RADIO_RX_ON:
1157         case STATE_RADIO_RX_OFF:
1158                 rt2500pci_toggle_rx(rt2x00dev, state);
1159                 break;
1160         case STATE_DEEP_SLEEP:
1161         case STATE_SLEEP:
1162         case STATE_STANDBY:
1163         case STATE_AWAKE:
1164                 retval = rt2500pci_set_state(rt2x00dev, state);
1165                 break;
1166         default:
1167                 retval = -ENOTSUPP;
1168                 break;
1169         }
1170
1171         return retval;
1172 }
1173
1174 /*
1175  * TX descriptor initialization
1176  */
1177 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1178                                     struct data_desc *txd,
1179                                     struct txdata_entry_desc *desc,
1180                                     struct ieee80211_hdr *ieee80211hdr,
1181                                     unsigned int length,
1182                                     struct ieee80211_tx_control *control)
1183 {
1184         u32 word;
1185
1186         /*
1187          * Start writing the descriptor words.
1188          */
1189         rt2x00_desc_read(txd, 2, &word);
1190         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1191         rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1192         rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1193         rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1194         rt2x00_desc_write(txd, 2, word);
1195
1196         rt2x00_desc_read(txd, 3, &word);
1197         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1198         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1199         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1200         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1201         rt2x00_desc_write(txd, 3, word);
1202
1203         rt2x00_desc_read(txd, 10, &word);
1204         rt2x00_set_field32(&word, TXD_W10_RTS,
1205                            test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1206         rt2x00_desc_write(txd, 10, word);
1207
1208         rt2x00_desc_read(txd, 0, &word);
1209         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1210         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1211         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1212                            test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1213         rt2x00_set_field32(&word, TXD_W0_ACK,
1214                            !(control->flags & IEEE80211_TXCTL_NO_ACK));
1215         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1216                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1217         rt2x00_set_field32(&word, TXD_W0_OFDM,
1218                            test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1219         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1220         rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1221         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1222                            !!(control->flags &
1223                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1224         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1225         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1226         rt2x00_desc_write(txd, 0, word);
1227 }
1228
1229 /*
1230  * TX data initialization
1231  */
1232 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1233                                     unsigned int queue)
1234 {
1235         u32 reg;
1236
1237         if (queue == IEEE80211_TX_QUEUE_BEACON) {
1238                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1239                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1240                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1241                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1242                 }
1243                 return;
1244         }
1245
1246         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1247         if (queue == IEEE80211_TX_QUEUE_DATA0)
1248                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1249         else if (queue == IEEE80211_TX_QUEUE_DATA1)
1250                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1251         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1252                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1253         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1254 }
1255
1256 /*
1257  * RX control handlers
1258  */
1259 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1260                                   struct rxdata_entry_desc *desc)
1261 {
1262         struct data_desc *rxd = entry->priv;
1263         u32 word0;
1264         u32 word2;
1265
1266         rt2x00_desc_read(rxd, 0, &word0);
1267         rt2x00_desc_read(rxd, 2, &word2);
1268
1269         desc->flags = 0;
1270         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1271                 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1272         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1273                 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1274
1275         desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1276         desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1277             entry->ring->rt2x00dev->rssi_offset;
1278         desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1279         desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1280 }
1281
1282 /*
1283  * Interrupt functions.
1284  */
1285 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1286 {
1287         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1288         struct data_entry *entry;
1289         struct data_desc *txd;
1290         u32 word;
1291         int tx_status;
1292         int retry;
1293
1294         while (!rt2x00_ring_empty(ring)) {
1295                 entry = rt2x00_get_data_entry_done(ring);
1296                 txd = entry->priv;
1297                 rt2x00_desc_read(txd, 0, &word);
1298
1299                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1300                     !rt2x00_get_field32(word, TXD_W0_VALID))
1301                         break;
1302
1303                 /*
1304                  * Obtain the status about this packet.
1305                  */
1306                 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1307                 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1308
1309                 rt2x00lib_txdone(entry, tx_status, retry);
1310
1311                 /*
1312                  * Make this entry available for reuse.
1313                  */
1314                 entry->flags = 0;
1315                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1316                 rt2x00_desc_write(txd, 0, word);
1317                 rt2x00_ring_index_done_inc(ring);
1318         }
1319
1320         /*
1321          * If the data ring was full before the txdone handler
1322          * we must make sure the packet queue in the mac80211 stack
1323          * is reenabled when the txdone handler has finished.
1324          */
1325         entry = ring->entry;
1326         if (!rt2x00_ring_full(ring))
1327                 ieee80211_wake_queue(rt2x00dev->hw,
1328                                      entry->tx_status.control.queue);
1329 }
1330
1331 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1332 {
1333         struct rt2x00_dev *rt2x00dev = dev_instance;
1334         u32 reg;
1335
1336         /*
1337          * Get the interrupt sources & saved to local variable.
1338          * Write register value back to clear pending interrupts.
1339          */
1340         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1341         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1342
1343         if (!reg)
1344                 return IRQ_NONE;
1345
1346         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1347                 return IRQ_HANDLED;
1348
1349         /*
1350          * Handle interrupts, walk through all bits
1351          * and run the tasks, the bits are checked in order of
1352          * priority.
1353          */
1354
1355         /*
1356          * 1 - Beacon timer expired interrupt.
1357          */
1358         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1359                 rt2x00lib_beacondone(rt2x00dev);
1360
1361         /*
1362          * 2 - Rx ring done interrupt.
1363          */
1364         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1365                 rt2x00pci_rxdone(rt2x00dev);
1366
1367         /*
1368          * 3 - Atim ring transmit done interrupt.
1369          */
1370         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1371                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1372
1373         /*
1374          * 4 - Priority ring transmit done interrupt.
1375          */
1376         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1377                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1378
1379         /*
1380          * 5 - Tx ring transmit done interrupt.
1381          */
1382         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1383                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1384
1385         return IRQ_HANDLED;
1386 }
1387
1388 /*
1389  * Device probe functions.
1390  */
1391 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1392 {
1393         struct eeprom_93cx6 eeprom;
1394         u32 reg;
1395         u16 word;
1396         u8 *mac;
1397
1398         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1399
1400         eeprom.data = rt2x00dev;
1401         eeprom.register_read = rt2500pci_eepromregister_read;
1402         eeprom.register_write = rt2500pci_eepromregister_write;
1403         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1404             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1405         eeprom.reg_data_in = 0;
1406         eeprom.reg_data_out = 0;
1407         eeprom.reg_data_clock = 0;
1408         eeprom.reg_chip_select = 0;
1409
1410         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1411                                EEPROM_SIZE / sizeof(u16));
1412
1413         /*
1414          * Start validation of the data that has been read.
1415          */
1416         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1417         if (!is_valid_ether_addr(mac)) {
1418                 DECLARE_MAC_BUF(macbuf);
1419
1420                 random_ether_addr(mac);
1421                 EEPROM(rt2x00dev, "MAC: %s\n",
1422                        print_mac(macbuf, mac));
1423         }
1424
1425         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1426         if (word == 0xffff) {
1427                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1428                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1429                                    ANTENNA_SW_DIVERSITY);
1430                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1431                                    ANTENNA_SW_DIVERSITY);
1432                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1433                                    LED_MODE_DEFAULT);
1434                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1435                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1436                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1437                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1438                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1439         }
1440
1441         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1442         if (word == 0xffff) {
1443                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1444                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1445                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1446                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1447                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1448         }
1449
1450         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1451         if (word == 0xffff) {
1452                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1453                                    DEFAULT_RSSI_OFFSET);
1454                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1455                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1456         }
1457
1458         return 0;
1459 }
1460
1461 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1462 {
1463         u32 reg;
1464         u16 value;
1465         u16 eeprom;
1466
1467         /*
1468          * Read EEPROM word for configuration.
1469          */
1470         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1471
1472         /*
1473          * Identify RF chipset.
1474          */
1475         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1476         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1477         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1478
1479         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1480             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1481             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1482             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1483             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1484             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1485                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1486                 return -ENODEV;
1487         }
1488
1489         /*
1490          * Identify default antenna configuration.
1491          */
1492         rt2x00dev->default_ant.tx =
1493             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1494         rt2x00dev->default_ant.rx =
1495             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1496
1497         /*
1498          * Store led mode, for correct led behaviour.
1499          */
1500         rt2x00dev->led_mode =
1501             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1502
1503         /*
1504          * Detect if this device has an hardware controlled radio.
1505          */
1506 #ifdef CONFIG_RT2500PCI_RFKILL
1507         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1508                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1509 #endif /* CONFIG_RT2500PCI_RFKILL */
1510
1511         /*
1512          * Check if the BBP tuning should be enabled.
1513          */
1514         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1515
1516         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1517                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1518
1519         /*
1520          * Read the RSSI <-> dBm offset information.
1521          */
1522         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1523         rt2x00dev->rssi_offset =
1524             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1525
1526         return 0;
1527 }
1528
1529 /*
1530  * RF value list for RF2522
1531  * Supports: 2.4 GHz
1532  */
1533 static const struct rf_channel rf_vals_bg_2522[] = {
1534         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1535         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1536         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1537         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1538         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1539         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1540         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1541         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1542         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1543         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1544         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1545         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1546         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1547         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1548 };
1549
1550 /*
1551  * RF value list for RF2523
1552  * Supports: 2.4 GHz
1553  */
1554 static const struct rf_channel rf_vals_bg_2523[] = {
1555         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1556         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1557         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1558         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1559         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1560         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1561         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1562         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1563         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1564         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1565         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1566         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1567         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1568         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1569 };
1570
1571 /*
1572  * RF value list for RF2524
1573  * Supports: 2.4 GHz
1574  */
1575 static const struct rf_channel rf_vals_bg_2524[] = {
1576         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1577         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1578         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1579         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1580         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1581         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1582         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1583         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1584         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1585         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1586         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1587         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1588         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1589         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1590 };
1591
1592 /*
1593  * RF value list for RF2525
1594  * Supports: 2.4 GHz
1595  */
1596 static const struct rf_channel rf_vals_bg_2525[] = {
1597         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1598         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1599         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1600         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1601         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1602         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1603         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1604         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1605         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1606         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1607         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1608         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1609         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1610         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1611 };
1612
1613 /*
1614  * RF value list for RF2525e
1615  * Supports: 2.4 GHz
1616  */
1617 static const struct rf_channel rf_vals_bg_2525e[] = {
1618         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1619         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1620         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1621         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1622         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1623         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1624         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1625         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1626         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1627         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1628         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1629         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1630         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1631         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1632 };
1633
1634 /*
1635  * RF value list for RF5222
1636  * Supports: 2.4 GHz & 5.2 GHz
1637  */
1638 static const struct rf_channel rf_vals_5222[] = {
1639         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1640         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1641         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1642         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1643         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1644         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1645         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1646         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1647         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1648         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1649         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1650         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1651         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1652         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1653
1654         /* 802.11 UNI / HyperLan 2 */
1655         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1656         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1657         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1658         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1659         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1660         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1661         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1662         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1663
1664         /* 802.11 HyperLan 2 */
1665         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1666         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1667         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1668         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1669         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1670         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1671         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1672         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1673         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1674         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1675
1676         /* 802.11 UNII */
1677         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1678         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1679         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1680         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1681         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1682 };
1683
1684 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1685 {
1686         struct hw_mode_spec *spec = &rt2x00dev->spec;
1687         u8 *txpower;
1688         unsigned int i;
1689
1690         /*
1691          * Initialize all hw fields.
1692          */
1693         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1694         rt2x00dev->hw->extra_tx_headroom = 0;
1695         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1696         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1697         rt2x00dev->hw->queues = 2;
1698
1699         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1700         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1701                                 rt2x00_eeprom_addr(rt2x00dev,
1702                                                    EEPROM_MAC_ADDR_0));
1703
1704         /*
1705          * Convert tx_power array in eeprom.
1706          */
1707         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1708         for (i = 0; i < 14; i++)
1709                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1710
1711         /*
1712          * Initialize hw_mode information.
1713          */
1714         spec->num_modes = 2;
1715         spec->num_rates = 12;
1716         spec->tx_power_a = NULL;
1717         spec->tx_power_bg = txpower;
1718         spec->tx_power_default = DEFAULT_TXPOWER;
1719
1720         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1721                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1722                 spec->channels = rf_vals_bg_2522;
1723         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1724                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1725                 spec->channels = rf_vals_bg_2523;
1726         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1727                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1728                 spec->channels = rf_vals_bg_2524;
1729         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1730                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1731                 spec->channels = rf_vals_bg_2525;
1732         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1733                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1734                 spec->channels = rf_vals_bg_2525e;
1735         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1736                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1737                 spec->channels = rf_vals_5222;
1738                 spec->num_modes = 3;
1739         }
1740 }
1741
1742 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1743 {
1744         int retval;
1745
1746         /*
1747          * Allocate eeprom data.
1748          */
1749         retval = rt2500pci_validate_eeprom(rt2x00dev);
1750         if (retval)
1751                 return retval;
1752
1753         retval = rt2500pci_init_eeprom(rt2x00dev);
1754         if (retval)
1755                 return retval;
1756
1757         /*
1758          * Initialize hw specifications.
1759          */
1760         rt2500pci_probe_hw_mode(rt2x00dev);
1761
1762         /*
1763          * This device requires the beacon ring
1764          */
1765         __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1766
1767         /*
1768          * Set the rssi offset.
1769          */
1770         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1771
1772         return 0;
1773 }
1774
1775 /*
1776  * IEEE80211 stack callback functions.
1777  */
1778 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1779                                        unsigned int changed_flags,
1780                                        unsigned int *total_flags,
1781                                        int mc_count,
1782                                        struct dev_addr_list *mc_list)
1783 {
1784         struct rt2x00_dev *rt2x00dev = hw->priv;
1785         struct interface *intf = &rt2x00dev->interface;
1786         u32 reg;
1787
1788         /*
1789          * Mask off any flags we are going to ignore from
1790          * the total_flags field.
1791          */
1792         *total_flags &=
1793             FIF_ALLMULTI |
1794             FIF_FCSFAIL |
1795             FIF_PLCPFAIL |
1796             FIF_CONTROL |
1797             FIF_OTHER_BSS |
1798             FIF_PROMISC_IN_BSS;
1799
1800         /*
1801          * Apply some rules to the filters:
1802          * - Some filters imply different filters to be set.
1803          * - Some things we can't filter out at all.
1804          * - Some filters are set based on interface type.
1805          */
1806         if (mc_count)
1807                 *total_flags |= FIF_ALLMULTI;
1808         if (*total_flags & FIF_OTHER_BSS ||
1809             *total_flags & FIF_PROMISC_IN_BSS)
1810                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1811         if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1812                 *total_flags |= FIF_PROMISC_IN_BSS;
1813
1814         /*
1815          * Check if there is any work left for us.
1816          */
1817         if (intf->filter == *total_flags)
1818                 return;
1819         intf->filter = *total_flags;
1820
1821         /*
1822          * Start configuration steps.
1823          * Note that the version error will always be dropped
1824          * and broadcast frames will always be accepted since
1825          * there is no filter for it at this time.
1826          */
1827         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1828         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1829                            !(*total_flags & FIF_FCSFAIL));
1830         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1831                            !(*total_flags & FIF_PLCPFAIL));
1832         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1833                            !(*total_flags & FIF_CONTROL));
1834         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1835                            !(*total_flags & FIF_PROMISC_IN_BSS));
1836         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1837                            !(*total_flags & FIF_PROMISC_IN_BSS));
1838         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1839         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1840                            !(*total_flags & FIF_ALLMULTI));
1841         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1842         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1843 }
1844
1845 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1846                                      u32 short_retry, u32 long_retry)
1847 {
1848         struct rt2x00_dev *rt2x00dev = hw->priv;
1849         u32 reg;
1850
1851         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1852         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1853         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1854         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1855
1856         return 0;
1857 }
1858
1859 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1860 {
1861         struct rt2x00_dev *rt2x00dev = hw->priv;
1862         u64 tsf;
1863         u32 reg;
1864
1865         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1866         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1867         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1868         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1869
1870         return tsf;
1871 }
1872
1873 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1874 {
1875         struct rt2x00_dev *rt2x00dev = hw->priv;
1876
1877         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1878         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1879 }
1880
1881 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1882 {
1883         struct rt2x00_dev *rt2x00dev = hw->priv;
1884         u32 reg;
1885
1886         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1887         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1888 }
1889
1890 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1891         .tx                     = rt2x00mac_tx,
1892         .start                  = rt2x00mac_start,
1893         .stop                   = rt2x00mac_stop,
1894         .add_interface          = rt2x00mac_add_interface,
1895         .remove_interface       = rt2x00mac_remove_interface,
1896         .config                 = rt2x00mac_config,
1897         .config_interface       = rt2x00mac_config_interface,
1898         .configure_filter       = rt2500pci_configure_filter,
1899         .get_stats              = rt2x00mac_get_stats,
1900         .set_retry_limit        = rt2500pci_set_retry_limit,
1901         .erp_ie_changed         = rt2x00mac_erp_ie_changed,
1902         .conf_tx                = rt2x00mac_conf_tx,
1903         .get_tx_stats           = rt2x00mac_get_tx_stats,
1904         .get_tsf                = rt2500pci_get_tsf,
1905         .reset_tsf              = rt2500pci_reset_tsf,
1906         .beacon_update          = rt2x00pci_beacon_update,
1907         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1908 };
1909
1910 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1911         .irq_handler            = rt2500pci_interrupt,
1912         .probe_hw               = rt2500pci_probe_hw,
1913         .initialize             = rt2x00pci_initialize,
1914         .uninitialize           = rt2x00pci_uninitialize,
1915         .set_device_state       = rt2500pci_set_device_state,
1916         .rfkill_poll            = rt2500pci_rfkill_poll,
1917         .link_stats             = rt2500pci_link_stats,
1918         .reset_tuner            = rt2500pci_reset_tuner,
1919         .link_tuner             = rt2500pci_link_tuner,
1920         .write_tx_desc          = rt2500pci_write_tx_desc,
1921         .write_tx_data          = rt2x00pci_write_tx_data,
1922         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1923         .fill_rxdone            = rt2500pci_fill_rxdone,
1924         .config_mac_addr        = rt2500pci_config_mac_addr,
1925         .config_bssid           = rt2500pci_config_bssid,
1926         .config_type            = rt2500pci_config_type,
1927         .config_preamble        = rt2500pci_config_preamble,
1928         .config                 = rt2500pci_config,
1929 };
1930
1931 static const struct rt2x00_ops rt2500pci_ops = {
1932         .name           = DRV_NAME,
1933         .rxd_size       = RXD_DESC_SIZE,
1934         .txd_size       = TXD_DESC_SIZE,
1935         .eeprom_size    = EEPROM_SIZE,
1936         .rf_size        = RF_SIZE,
1937         .lib            = &rt2500pci_rt2x00_ops,
1938         .hw             = &rt2500pci_mac80211_ops,
1939 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1940         .debugfs        = &rt2500pci_rt2x00debug,
1941 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1942 };
1943
1944 /*
1945  * RT2500pci module information.
1946  */
1947 static struct pci_device_id rt2500pci_device_table[] = {
1948         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1949         { 0, }
1950 };
1951
1952 MODULE_AUTHOR(DRV_PROJECT);
1953 MODULE_VERSION(DRV_VERSION);
1954 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1955 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1956 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1957 MODULE_LICENSE("GPL");
1958
1959 static struct pci_driver rt2500pci_driver = {
1960         .name           = DRV_NAME,
1961         .id_table       = rt2500pci_device_table,
1962         .probe          = rt2x00pci_probe,
1963         .remove         = __devexit_p(rt2x00pci_remove),
1964         .suspend        = rt2x00pci_suspend,
1965         .resume         = rt2x00pci_resume,
1966 };
1967
1968 static int __init rt2500pci_init(void)
1969 {
1970         return pci_register_driver(&rt2500pci_driver);
1971 }
1972
1973 static void __exit rt2500pci_exit(void)
1974 {
1975         pci_unregister_driver(&rt2500pci_driver);
1976 }
1977
1978 module_init(rt2500pci_init);
1979 module_exit(rt2500pci_exit);