]> err.no Git - linux-2.6/blob - drivers/net/wireless/ipw2200.c
Removed legacy WIRELESS_EXT checks from ipw2200.c
[linux-2.6] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35 #define IPW2200_VERSION "1.0.7"
36 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
37 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
38 #define DRV_VERSION     IPW2200_VERSION
39
40 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
41
42 MODULE_DESCRIPTION(DRV_DESCRIPTION);
43 MODULE_VERSION(DRV_VERSION);
44 MODULE_AUTHOR(DRV_COPYRIGHT);
45 MODULE_LICENSE("GPL");
46
47 static int cmdlog = 0;
48 static int debug = 0;
49 static int channel = 0;
50 static int mode = 0;
51
52 static u32 ipw_debug_level;
53 static int associate = 1;
54 static int auto_create = 1;
55 static int led = 0;
56 static int disable = 0;
57 static int hwcrypto = 1;
58 static const char ipw_modes[] = {
59         'a', 'b', 'g', '?'
60 };
61
62 #ifdef CONFIG_IPW_QOS
63 static int qos_enable = 0;
64 static int qos_burst_enable = 0;
65 static int qos_no_ack_mask = 0;
66 static int burst_duration_CCK = 0;
67 static int burst_duration_OFDM = 0;
68
69 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
70         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
71          QOS_TX3_CW_MIN_OFDM},
72         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
73          QOS_TX3_CW_MAX_OFDM},
74         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
75         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
76         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
77          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
78 };
79
80 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
81         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
82          QOS_TX3_CW_MIN_CCK},
83         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
84          QOS_TX3_CW_MAX_CCK},
85         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
86         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
87         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
88          QOS_TX3_TXOP_LIMIT_CCK}
89 };
90
91 static struct ieee80211_qos_parameters def_parameters_OFDM = {
92         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
93          DEF_TX3_CW_MIN_OFDM},
94         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
95          DEF_TX3_CW_MAX_OFDM},
96         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
97         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
98         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
99          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
100 };
101
102 static struct ieee80211_qos_parameters def_parameters_CCK = {
103         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
104          DEF_TX3_CW_MIN_CCK},
105         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
106          DEF_TX3_CW_MAX_CCK},
107         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
108         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
109         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
110          DEF_TX3_TXOP_LIMIT_CCK}
111 };
112
113 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
114
115 static int from_priority_to_tx_queue[] = {
116         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
117         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
118 };
119
120 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
121
122 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
123                                        *qos_param);
124 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
125                                      *qos_param);
126 #endif                          /* CONFIG_IPW_QOS */
127
128 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
129 static void ipw_remove_current_network(struct ipw_priv *priv);
130 static void ipw_rx(struct ipw_priv *priv);
131 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
132                                 struct clx2_tx_queue *txq, int qindex);
133 static int ipw_queue_reset(struct ipw_priv *priv);
134
135 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
136                              int len, int sync);
137
138 static void ipw_tx_queue_free(struct ipw_priv *);
139
140 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
141 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
142 static void ipw_rx_queue_replenish(void *);
143 static int ipw_up(struct ipw_priv *);
144 static void ipw_bg_up(void *);
145 static void ipw_down(struct ipw_priv *);
146 static void ipw_bg_down(void *);
147 static int ipw_config(struct ipw_priv *);
148 static int init_supported_rates(struct ipw_priv *priv,
149                                 struct ipw_supported_rates *prates);
150 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
151 static void ipw_send_wep_keys(struct ipw_priv *, int);
152
153 static int ipw_is_valid_channel(struct ieee80211_device *, u8);
154 static int ipw_channel_to_index(struct ieee80211_device *, u8);
155 static u8 ipw_freq_to_channel(struct ieee80211_device *, u32);
156 static int ipw_set_geo(struct ieee80211_device *, const struct ieee80211_geo *);
157 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *);
158
159 static int snprint_line(char *buf, size_t count,
160                         const u8 * data, u32 len, u32 ofs)
161 {
162         int out, i, j, l;
163         char c;
164
165         out = snprintf(buf, count, "%08X", ofs);
166
167         for (l = 0, i = 0; i < 2; i++) {
168                 out += snprintf(buf + out, count - out, " ");
169                 for (j = 0; j < 8 && l < len; j++, l++)
170                         out += snprintf(buf + out, count - out, "%02X ",
171                                         data[(i * 8 + j)]);
172                 for (; j < 8; j++)
173                         out += snprintf(buf + out, count - out, "   ");
174         }
175
176         out += snprintf(buf + out, count - out, " ");
177         for (l = 0, i = 0; i < 2; i++) {
178                 out += snprintf(buf + out, count - out, " ");
179                 for (j = 0; j < 8 && l < len; j++, l++) {
180                         c = data[(i * 8 + j)];
181                         if (!isascii(c) || !isprint(c))
182                                 c = '.';
183
184                         out += snprintf(buf + out, count - out, "%c", c);
185                 }
186
187                 for (; j < 8; j++)
188                         out += snprintf(buf + out, count - out, " ");
189         }
190
191         return out;
192 }
193
194 static void printk_buf(int level, const u8 * data, u32 len)
195 {
196         char line[81];
197         u32 ofs = 0;
198         if (!(ipw_debug_level & level))
199                 return;
200
201         while (len) {
202                 snprint_line(line, sizeof(line), &data[ofs],
203                              min(len, 16U), ofs);
204                 printk(KERN_DEBUG "%s\n", line);
205                 ofs += 16;
206                 len -= min(len, 16U);
207         }
208 }
209
210 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
211 {
212         size_t out = size;
213         u32 ofs = 0;
214         int total = 0;
215
216         while (size && len) {
217                 out = snprint_line(output, size, &data[ofs],
218                                    min_t(size_t, len, 16U), ofs);
219
220                 ofs += 16;
221                 output += out;
222                 size -= out;
223                 len -= min_t(size_t, len, 16U);
224                 total += out;
225         }
226         return total;
227 }
228
229 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
230 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
231
232 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
233 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
234
235 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
236 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
237 {
238         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
239                      __LINE__, (u32) (b), (u32) (c));
240         _ipw_write_reg8(a, b, c);
241 }
242
243 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
244 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
245 {
246         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
247                      __LINE__, (u32) (b), (u32) (c));
248         _ipw_write_reg16(a, b, c);
249 }
250
251 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
252 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
253 {
254         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
255                      __LINE__, (u32) (b), (u32) (c));
256         _ipw_write_reg32(a, b, c);
257 }
258
259 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
260 #define ipw_write8(ipw, ofs, val) \
261  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
262  _ipw_write8(ipw, ofs, val)
263
264 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
265 #define ipw_write16(ipw, ofs, val) \
266  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
267  _ipw_write16(ipw, ofs, val)
268
269 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
270 #define ipw_write32(ipw, ofs, val) \
271  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
272  _ipw_write32(ipw, ofs, val)
273
274 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
275 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
276 {
277         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
278         return _ipw_read8(ipw, ofs);
279 }
280
281 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
282
283 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
284 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
285 {
286         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
287         return _ipw_read16(ipw, ofs);
288 }
289
290 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
291
292 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
293 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
294 {
295         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
296         return _ipw_read32(ipw, ofs);
297 }
298
299 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
300
301 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
302 static inline void __ipw_read_indirect(const char *f, int l,
303                                        struct ipw_priv *a, u32 b, u8 * c, int d)
304 {
305         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
306                      d);
307         _ipw_read_indirect(a, b, c, d);
308 }
309
310 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
311
312 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
313                                 int num);
314 #define ipw_write_indirect(a, b, c, d) \
315         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
316         _ipw_write_indirect(a, b, c, d)
317
318 /* indirect write s */
319 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
320 {
321         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
322         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
323         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
324 }
325
326 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
327 {
328         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
329         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
330         _ipw_write8(priv, IPW_INDIRECT_DATA, value);
331 }
332
333 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
334 {
335         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
336         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
337         _ipw_write16(priv, IPW_INDIRECT_DATA, value);
338 }
339
340 /* indirect read s */
341
342 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
343 {
344         u32 word;
345         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
346         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
347         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
348         return (word >> ((reg & 0x3) * 8)) & 0xff;
349 }
350
351 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
352 {
353         u32 value;
354
355         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
356
357         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
358         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
359         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
360         return value;
361 }
362
363 /* iterative/auto-increment 32 bit reads and writes */
364 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
365                                int num)
366 {
367         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
368         u32 dif_len = addr - aligned_addr;
369         u32 i;
370
371         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
372
373         if (num <= 0) {
374                 return;
375         }
376
377         /* Read the first nibble byte by byte */
378         if (unlikely(dif_len)) {
379                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
380                 /* Start reading at aligned_addr + dif_len */
381                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
382                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
383                 aligned_addr += 4;
384         }
385
386         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
387         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
388                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
389
390         /* Copy the last nibble */
391         if (unlikely(num)) {
392                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
393                 for (i = 0; num > 0; i++, num--)
394                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
395         }
396 }
397
398 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
399                                 int num)
400 {
401         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
402         u32 dif_len = addr - aligned_addr;
403         u32 i;
404
405         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
406
407         if (num <= 0) {
408                 return;
409         }
410
411         /* Write the first nibble byte by byte */
412         if (unlikely(dif_len)) {
413                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414                 /* Start reading at aligned_addr + dif_len */
415                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
416                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
417                 aligned_addr += 4;
418         }
419
420         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
421         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
422                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
423
424         /* Copy the last nibble */
425         if (unlikely(num)) {
426                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
427                 for (i = 0; num > 0; i++, num--, buf++)
428                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
429         }
430 }
431
432 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
433                              int num)
434 {
435         memcpy_toio((priv->hw_base + addr), buf, num);
436 }
437
438 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
439 {
440         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
441 }
442
443 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
444 {
445         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
446 }
447
448 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
449 {
450         if (priv->status & STATUS_INT_ENABLED)
451                 return;
452         priv->status |= STATUS_INT_ENABLED;
453         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
454 }
455
456 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
457 {
458         if (!(priv->status & STATUS_INT_ENABLED))
459                 return;
460         priv->status &= ~STATUS_INT_ENABLED;
461         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
462 }
463
464 #ifdef CONFIG_IPW_DEBUG
465 static char *ipw_error_desc(u32 val)
466 {
467         switch (val) {
468         case IPW_FW_ERROR_OK:
469                 return "ERROR_OK";
470         case IPW_FW_ERROR_FAIL:
471                 return "ERROR_FAIL";
472         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
473                 return "MEMORY_UNDERFLOW";
474         case IPW_FW_ERROR_MEMORY_OVERFLOW:
475                 return "MEMORY_OVERFLOW";
476         case IPW_FW_ERROR_BAD_PARAM:
477                 return "BAD_PARAM";
478         case IPW_FW_ERROR_BAD_CHECKSUM:
479                 return "BAD_CHECKSUM";
480         case IPW_FW_ERROR_NMI_INTERRUPT:
481                 return "NMI_INTERRUPT";
482         case IPW_FW_ERROR_BAD_DATABASE:
483                 return "BAD_DATABASE";
484         case IPW_FW_ERROR_ALLOC_FAIL:
485                 return "ALLOC_FAIL";
486         case IPW_FW_ERROR_DMA_UNDERRUN:
487                 return "DMA_UNDERRUN";
488         case IPW_FW_ERROR_DMA_STATUS:
489                 return "DMA_STATUS";
490         case IPW_FW_ERROR_DINO_ERROR:
491                 return "DINO_ERROR";
492         case IPW_FW_ERROR_EEPROM_ERROR:
493                 return "EEPROM_ERROR";
494         case IPW_FW_ERROR_SYSASSERT:
495                 return "SYSASSERT";
496         case IPW_FW_ERROR_FATAL_ERROR:
497                 return "FATAL_ERROR";
498         default:
499                 return "UNKNOWN_ERROR";
500         }
501 }
502
503 static void ipw_dump_error_log(struct ipw_priv *priv,
504                                struct ipw_fw_error *error)
505 {
506         u32 i;
507
508         if (!error) {
509                 IPW_ERROR("Error allocating and capturing error log.  "
510                           "Nothing to dump.\n");
511                 return;
512         }
513
514         IPW_ERROR("Start IPW Error Log Dump:\n");
515         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
516                   error->status, error->config);
517
518         for (i = 0; i < error->elem_len; i++)
519                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
520                           ipw_error_desc(error->elem[i].desc),
521                           error->elem[i].time,
522                           error->elem[i].blink1,
523                           error->elem[i].blink2,
524                           error->elem[i].link1,
525                           error->elem[i].link2, error->elem[i].data);
526         for (i = 0; i < error->log_len; i++)
527                 IPW_ERROR("%i\t0x%08x\t%i\n",
528                           error->log[i].time,
529                           error->log[i].event, error->log[i].data);
530 }
531 #endif
532
533 static inline int ipw_is_init(struct ipw_priv *priv)
534 {
535         return (priv->status & STATUS_INIT) ? 1 : 0;
536 }
537
538 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
539 {
540         u32 addr, field_info, field_len, field_count, total_len;
541
542         IPW_DEBUG_ORD("ordinal = %i\n", ord);
543
544         if (!priv || !val || !len) {
545                 IPW_DEBUG_ORD("Invalid argument\n");
546                 return -EINVAL;
547         }
548
549         /* verify device ordinal tables have been initialized */
550         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
551                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
552                 return -EINVAL;
553         }
554
555         switch (IPW_ORD_TABLE_ID_MASK & ord) {
556         case IPW_ORD_TABLE_0_MASK:
557                 /*
558                  * TABLE 0: Direct access to a table of 32 bit values
559                  *
560                  * This is a very simple table with the data directly
561                  * read from the table
562                  */
563
564                 /* remove the table id from the ordinal */
565                 ord &= IPW_ORD_TABLE_VALUE_MASK;
566
567                 /* boundary check */
568                 if (ord > priv->table0_len) {
569                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
570                                       "max (%i)\n", ord, priv->table0_len);
571                         return -EINVAL;
572                 }
573
574                 /* verify we have enough room to store the value */
575                 if (*len < sizeof(u32)) {
576                         IPW_DEBUG_ORD("ordinal buffer length too small, "
577                                       "need %zd\n", sizeof(u32));
578                         return -EINVAL;
579                 }
580
581                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
582                               ord, priv->table0_addr + (ord << 2));
583
584                 *len = sizeof(u32);
585                 ord <<= 2;
586                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
587                 break;
588
589         case IPW_ORD_TABLE_1_MASK:
590                 /*
591                  * TABLE 1: Indirect access to a table of 32 bit values
592                  *
593                  * This is a fairly large table of u32 values each
594                  * representing starting addr for the data (which is
595                  * also a u32)
596                  */
597
598                 /* remove the table id from the ordinal */
599                 ord &= IPW_ORD_TABLE_VALUE_MASK;
600
601                 /* boundary check */
602                 if (ord > priv->table1_len) {
603                         IPW_DEBUG_ORD("ordinal value too long\n");
604                         return -EINVAL;
605                 }
606
607                 /* verify we have enough room to store the value */
608                 if (*len < sizeof(u32)) {
609                         IPW_DEBUG_ORD("ordinal buffer length too small, "
610                                       "need %zd\n", sizeof(u32));
611                         return -EINVAL;
612                 }
613
614                 *((u32 *) val) =
615                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
616                 *len = sizeof(u32);
617                 break;
618
619         case IPW_ORD_TABLE_2_MASK:
620                 /*
621                  * TABLE 2: Indirect access to a table of variable sized values
622                  *
623                  * This table consist of six values, each containing
624                  *     - dword containing the starting offset of the data
625                  *     - dword containing the lengh in the first 16bits
626                  *       and the count in the second 16bits
627                  */
628
629                 /* remove the table id from the ordinal */
630                 ord &= IPW_ORD_TABLE_VALUE_MASK;
631
632                 /* boundary check */
633                 if (ord > priv->table2_len) {
634                         IPW_DEBUG_ORD("ordinal value too long\n");
635                         return -EINVAL;
636                 }
637
638                 /* get the address of statistic */
639                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
640
641                 /* get the second DW of statistics ;
642                  * two 16-bit words - first is length, second is count */
643                 field_info =
644                     ipw_read_reg32(priv,
645                                    priv->table2_addr + (ord << 3) +
646                                    sizeof(u32));
647
648                 /* get each entry length */
649                 field_len = *((u16 *) & field_info);
650
651                 /* get number of entries */
652                 field_count = *(((u16 *) & field_info) + 1);
653
654                 /* abort if not enought memory */
655                 total_len = field_len * field_count;
656                 if (total_len > *len) {
657                         *len = total_len;
658                         return -EINVAL;
659                 }
660
661                 *len = total_len;
662                 if (!total_len)
663                         return 0;
664
665                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
666                               "field_info = 0x%08x\n",
667                               addr, total_len, field_info);
668                 ipw_read_indirect(priv, addr, val, total_len);
669                 break;
670
671         default:
672                 IPW_DEBUG_ORD("Invalid ordinal!\n");
673                 return -EINVAL;
674
675         }
676
677         return 0;
678 }
679
680 static void ipw_init_ordinals(struct ipw_priv *priv)
681 {
682         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
683         priv->table0_len = ipw_read32(priv, priv->table0_addr);
684
685         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
686                       priv->table0_addr, priv->table0_len);
687
688         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
689         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
690
691         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
692                       priv->table1_addr, priv->table1_len);
693
694         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
695         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
696         priv->table2_len &= 0x0000ffff; /* use first two bytes */
697
698         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
699                       priv->table2_addr, priv->table2_len);
700
701 }
702
703 u32 ipw_register_toggle(u32 reg)
704 {
705         reg &= ~IPW_START_STANDBY;
706         if (reg & IPW_GATE_ODMA)
707                 reg &= ~IPW_GATE_ODMA;
708         if (reg & IPW_GATE_IDMA)
709                 reg &= ~IPW_GATE_IDMA;
710         if (reg & IPW_GATE_ADMA)
711                 reg &= ~IPW_GATE_ADMA;
712         return reg;
713 }
714
715 /*
716  * LED behavior:
717  * - On radio ON, turn on any LEDs that require to be on during start
718  * - On initialization, start unassociated blink
719  * - On association, disable unassociated blink
720  * - On disassociation, start unassociated blink
721  * - On radio OFF, turn off any LEDs started during radio on
722  *
723  */
724 #define LD_TIME_LINK_ON 300
725 #define LD_TIME_LINK_OFF 2700
726 #define LD_TIME_ACT_ON 250
727
728 void ipw_led_link_on(struct ipw_priv *priv)
729 {
730         unsigned long flags;
731         u32 led;
732
733         /* If configured to not use LEDs, or nic_type is 1,
734          * then we don't toggle a LINK led */
735         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
736                 return;
737
738         spin_lock_irqsave(&priv->lock, flags);
739
740         if (!(priv->status & STATUS_RF_KILL_MASK) &&
741             !(priv->status & STATUS_LED_LINK_ON)) {
742                 IPW_DEBUG_LED("Link LED On\n");
743                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
744                 led |= priv->led_association_on;
745
746                 led = ipw_register_toggle(led);
747
748                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
749                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
750
751                 priv->status |= STATUS_LED_LINK_ON;
752
753                 /* If we aren't associated, schedule turning the LED off */
754                 if (!(priv->status & STATUS_ASSOCIATED))
755                         queue_delayed_work(priv->workqueue,
756                                            &priv->led_link_off,
757                                            LD_TIME_LINK_ON);
758         }
759
760         spin_unlock_irqrestore(&priv->lock, flags);
761 }
762
763 static void ipw_bg_led_link_on(void *data)
764 {
765         struct ipw_priv *priv = data;
766         down(&priv->sem);
767         ipw_led_link_on(data);
768         up(&priv->sem);
769 }
770
771 void ipw_led_link_off(struct ipw_priv *priv)
772 {
773         unsigned long flags;
774         u32 led;
775
776         /* If configured not to use LEDs, or nic type is 1,
777          * then we don't goggle the LINK led. */
778         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
779                 return;
780
781         spin_lock_irqsave(&priv->lock, flags);
782
783         if (priv->status & STATUS_LED_LINK_ON) {
784                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
785                 led &= priv->led_association_off;
786                 led = ipw_register_toggle(led);
787
788                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
789                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
790
791                 IPW_DEBUG_LED("Link LED Off\n");
792
793                 priv->status &= ~STATUS_LED_LINK_ON;
794
795                 /* If we aren't associated and the radio is on, schedule
796                  * turning the LED on (blink while unassociated) */
797                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
798                     !(priv->status & STATUS_ASSOCIATED))
799                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
800                                            LD_TIME_LINK_OFF);
801
802         }
803
804         spin_unlock_irqrestore(&priv->lock, flags);
805 }
806
807 static void ipw_bg_led_link_off(void *data)
808 {
809         struct ipw_priv *priv = data;
810         down(&priv->sem);
811         ipw_led_link_off(data);
812         up(&priv->sem);
813 }
814
815 static inline void __ipw_led_activity_on(struct ipw_priv *priv)
816 {
817         u32 led;
818
819         if (priv->config & CFG_NO_LED)
820                 return;
821
822         if (priv->status & STATUS_RF_KILL_MASK)
823                 return;
824
825         if (!(priv->status & STATUS_LED_ACT_ON)) {
826                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
827                 led |= priv->led_activity_on;
828
829                 led = ipw_register_toggle(led);
830
831                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
832                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
833
834                 IPW_DEBUG_LED("Activity LED On\n");
835
836                 priv->status |= STATUS_LED_ACT_ON;
837
838                 cancel_delayed_work(&priv->led_act_off);
839                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
840                                    LD_TIME_ACT_ON);
841         } else {
842                 /* Reschedule LED off for full time period */
843                 cancel_delayed_work(&priv->led_act_off);
844                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
845                                    LD_TIME_ACT_ON);
846         }
847 }
848
849 void ipw_led_activity_on(struct ipw_priv *priv)
850 {
851         unsigned long flags;
852         spin_lock_irqsave(&priv->lock, flags);
853         __ipw_led_activity_on(priv);
854         spin_unlock_irqrestore(&priv->lock, flags);
855 }
856
857 void ipw_led_activity_off(struct ipw_priv *priv)
858 {
859         unsigned long flags;
860         u32 led;
861
862         if (priv->config & CFG_NO_LED)
863                 return;
864
865         spin_lock_irqsave(&priv->lock, flags);
866
867         if (priv->status & STATUS_LED_ACT_ON) {
868                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
869                 led &= priv->led_activity_off;
870
871                 led = ipw_register_toggle(led);
872
873                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
874                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
875
876                 IPW_DEBUG_LED("Activity LED Off\n");
877
878                 priv->status &= ~STATUS_LED_ACT_ON;
879         }
880
881         spin_unlock_irqrestore(&priv->lock, flags);
882 }
883
884 static void ipw_bg_led_activity_off(void *data)
885 {
886         struct ipw_priv *priv = data;
887         down(&priv->sem);
888         ipw_led_activity_off(data);
889         up(&priv->sem);
890 }
891
892 void ipw_led_band_on(struct ipw_priv *priv)
893 {
894         unsigned long flags;
895         u32 led;
896
897         /* Only nic type 1 supports mode LEDs */
898         if (priv->config & CFG_NO_LED ||
899             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
900                 return;
901
902         spin_lock_irqsave(&priv->lock, flags);
903
904         led = ipw_read_reg32(priv, IPW_EVENT_REG);
905         if (priv->assoc_network->mode == IEEE_A) {
906                 led |= priv->led_ofdm_on;
907                 led &= priv->led_association_off;
908                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
909         } else if (priv->assoc_network->mode == IEEE_G) {
910                 led |= priv->led_ofdm_on;
911                 led |= priv->led_association_on;
912                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
913         } else {
914                 led &= priv->led_ofdm_off;
915                 led |= priv->led_association_on;
916                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
917         }
918
919         led = ipw_register_toggle(led);
920
921         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
922         ipw_write_reg32(priv, IPW_EVENT_REG, led);
923
924         spin_unlock_irqrestore(&priv->lock, flags);
925 }
926
927 void ipw_led_band_off(struct ipw_priv *priv)
928 {
929         unsigned long flags;
930         u32 led;
931
932         /* Only nic type 1 supports mode LEDs */
933         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
934                 return;
935
936         spin_lock_irqsave(&priv->lock, flags);
937
938         led = ipw_read_reg32(priv, IPW_EVENT_REG);
939         led &= priv->led_ofdm_off;
940         led &= priv->led_association_off;
941
942         led = ipw_register_toggle(led);
943
944         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
945         ipw_write_reg32(priv, IPW_EVENT_REG, led);
946
947         spin_unlock_irqrestore(&priv->lock, flags);
948 }
949
950 void ipw_led_radio_on(struct ipw_priv *priv)
951 {
952         ipw_led_link_on(priv);
953 }
954
955 void ipw_led_radio_off(struct ipw_priv *priv)
956 {
957         ipw_led_activity_off(priv);
958         ipw_led_link_off(priv);
959 }
960
961 void ipw_led_link_up(struct ipw_priv *priv)
962 {
963         /* Set the Link Led on for all nic types */
964         ipw_led_link_on(priv);
965 }
966
967 void ipw_led_link_down(struct ipw_priv *priv)
968 {
969         ipw_led_activity_off(priv);
970         ipw_led_link_off(priv);
971
972         if (priv->status & STATUS_RF_KILL_MASK)
973                 ipw_led_radio_off(priv);
974 }
975
976 void ipw_led_init(struct ipw_priv *priv)
977 {
978         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
979
980         /* Set the default PINs for the link and activity leds */
981         priv->led_activity_on = IPW_ACTIVITY_LED;
982         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
983
984         priv->led_association_on = IPW_ASSOCIATED_LED;
985         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
986
987         /* Set the default PINs for the OFDM leds */
988         priv->led_ofdm_on = IPW_OFDM_LED;
989         priv->led_ofdm_off = ~(IPW_OFDM_LED);
990
991         switch (priv->nic_type) {
992         case EEPROM_NIC_TYPE_1:
993                 /* In this NIC type, the LEDs are reversed.... */
994                 priv->led_activity_on = IPW_ASSOCIATED_LED;
995                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
996                 priv->led_association_on = IPW_ACTIVITY_LED;
997                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
998
999                 if (!(priv->config & CFG_NO_LED))
1000                         ipw_led_band_on(priv);
1001
1002                 /* And we don't blink link LEDs for this nic, so
1003                  * just return here */
1004                 return;
1005
1006         case EEPROM_NIC_TYPE_3:
1007         case EEPROM_NIC_TYPE_2:
1008         case EEPROM_NIC_TYPE_4:
1009         case EEPROM_NIC_TYPE_0:
1010                 break;
1011
1012         default:
1013                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1014                                priv->nic_type);
1015                 priv->nic_type = EEPROM_NIC_TYPE_0;
1016                 break;
1017         }
1018
1019         if (!(priv->config & CFG_NO_LED)) {
1020                 if (priv->status & STATUS_ASSOCIATED)
1021                         ipw_led_link_on(priv);
1022                 else
1023                         ipw_led_link_off(priv);
1024         }
1025 }
1026
1027 void ipw_led_shutdown(struct ipw_priv *priv)
1028 {
1029         ipw_led_activity_off(priv);
1030         ipw_led_link_off(priv);
1031         ipw_led_band_off(priv);
1032         cancel_delayed_work(&priv->led_link_on);
1033         cancel_delayed_work(&priv->led_link_off);
1034         cancel_delayed_work(&priv->led_act_off);
1035 }
1036
1037 /*
1038  * The following adds a new attribute to the sysfs representation
1039  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1040  * used for controling the debug level.
1041  *
1042  * See the level definitions in ipw for details.
1043  */
1044 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1045 {
1046         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1047 }
1048
1049 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1050                                  size_t count)
1051 {
1052         char *p = (char *)buf;
1053         u32 val;
1054
1055         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1056                 p++;
1057                 if (p[0] == 'x' || p[0] == 'X')
1058                         p++;
1059                 val = simple_strtoul(p, &p, 16);
1060         } else
1061                 val = simple_strtoul(p, &p, 10);
1062         if (p == buf)
1063                 printk(KERN_INFO DRV_NAME
1064                        ": %s is not in hex or decimal form.\n", buf);
1065         else
1066                 ipw_debug_level = val;
1067
1068         return strnlen(buf, count);
1069 }
1070
1071 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1072                    show_debug_level, store_debug_level);
1073
1074 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1075 {
1076         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1077 }
1078
1079 static void ipw_capture_event_log(struct ipw_priv *priv,
1080                                   u32 log_len, struct ipw_event *log)
1081 {
1082         u32 base;
1083
1084         if (log_len) {
1085                 base = ipw_read32(priv, IPW_EVENT_LOG);
1086                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1087                                   (u8 *) log, sizeof(*log) * log_len);
1088         }
1089 }
1090
1091 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1092 {
1093         struct ipw_fw_error *error;
1094         u32 log_len = ipw_get_event_log_len(priv);
1095         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1096         u32 elem_len = ipw_read_reg32(priv, base);
1097
1098         error = kmalloc(sizeof(*error) +
1099                         sizeof(*error->elem) * elem_len +
1100                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1101         if (!error) {
1102                 IPW_ERROR("Memory allocation for firmware error log "
1103                           "failed.\n");
1104                 return NULL;
1105         }
1106         error->jiffies = jiffies;
1107         error->status = priv->status;
1108         error->config = priv->config;
1109         error->elem_len = elem_len;
1110         error->log_len = log_len;
1111         error->elem = (struct ipw_error_elem *)error->payload;
1112         error->log = (struct ipw_event *)(error->elem +
1113                                           (sizeof(*error->elem) * elem_len));
1114
1115         ipw_capture_event_log(priv, log_len, error->log);
1116
1117         if (elem_len)
1118                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1119                                   sizeof(*error->elem) * elem_len);
1120
1121         return error;
1122 }
1123
1124 static void ipw_free_error_log(struct ipw_fw_error *error)
1125 {
1126         if (error)
1127                 kfree(error);
1128 }
1129
1130 static ssize_t show_event_log(struct device *d,
1131                               struct device_attribute *attr, char *buf)
1132 {
1133         struct ipw_priv *priv = dev_get_drvdata(d);
1134         u32 log_len = ipw_get_event_log_len(priv);
1135         struct ipw_event log[log_len];
1136         u32 len = 0, i;
1137
1138         ipw_capture_event_log(priv, log_len, log);
1139
1140         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1141         for (i = 0; i < log_len; i++)
1142                 len += snprintf(buf + len, PAGE_SIZE - len,
1143                                 "\n%08X%08X%08X",
1144                                 log[i].time, log[i].event, log[i].data);
1145         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1146         return len;
1147 }
1148
1149 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1150
1151 static ssize_t show_error(struct device *d,
1152                           struct device_attribute *attr, char *buf)
1153 {
1154         struct ipw_priv *priv = dev_get_drvdata(d);
1155         u32 len = 0, i;
1156         if (!priv->error)
1157                 return 0;
1158         len += snprintf(buf + len, PAGE_SIZE - len,
1159                         "%08lX%08X%08X%08X",
1160                         priv->error->jiffies,
1161                         priv->error->status,
1162                         priv->error->config, priv->error->elem_len);
1163         for (i = 0; i < priv->error->elem_len; i++)
1164                 len += snprintf(buf + len, PAGE_SIZE - len,
1165                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1166                                 priv->error->elem[i].time,
1167                                 priv->error->elem[i].desc,
1168                                 priv->error->elem[i].blink1,
1169                                 priv->error->elem[i].blink2,
1170                                 priv->error->elem[i].link1,
1171                                 priv->error->elem[i].link2,
1172                                 priv->error->elem[i].data);
1173
1174         len += snprintf(buf + len, PAGE_SIZE - len,
1175                         "\n%08X", priv->error->log_len);
1176         for (i = 0; i < priv->error->log_len; i++)
1177                 len += snprintf(buf + len, PAGE_SIZE - len,
1178                                 "\n%08X%08X%08X",
1179                                 priv->error->log[i].time,
1180                                 priv->error->log[i].event,
1181                                 priv->error->log[i].data);
1182         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1183         return len;
1184 }
1185
1186 static ssize_t clear_error(struct device *d,
1187                            struct device_attribute *attr,
1188                            const char *buf, size_t count)
1189 {
1190         struct ipw_priv *priv = dev_get_drvdata(d);
1191         if (priv->error) {
1192                 ipw_free_error_log(priv->error);
1193                 priv->error = NULL;
1194         }
1195         return count;
1196 }
1197
1198 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1199
1200 static ssize_t show_cmd_log(struct device *d,
1201                             struct device_attribute *attr, char *buf)
1202 {
1203         struct ipw_priv *priv = dev_get_drvdata(d);
1204         u32 len = 0, i;
1205         if (!priv->cmdlog)
1206                 return 0;
1207         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1208              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1209              i = (i + 1) % priv->cmdlog_len) {
1210                 len +=
1211                     snprintf(buf + len, PAGE_SIZE - len,
1212                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1213                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1214                              priv->cmdlog[i].cmd.len);
1215                 len +=
1216                     snprintk_buf(buf + len, PAGE_SIZE - len,
1217                                  (u8 *) priv->cmdlog[i].cmd.param,
1218                                  priv->cmdlog[i].cmd.len);
1219                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1220         }
1221         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1222         return len;
1223 }
1224
1225 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1226
1227 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1228                              char *buf)
1229 {
1230         struct ipw_priv *priv = dev_get_drvdata(d);
1231         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1232 }
1233
1234 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1235                               const char *buf, size_t count)
1236 {
1237         struct ipw_priv *priv = dev_get_drvdata(d);
1238 #ifdef CONFIG_IPW_DEBUG
1239         struct net_device *dev = priv->net_dev;
1240 #endif
1241         char buffer[] = "00000000";
1242         unsigned long len =
1243             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1244         unsigned long val;
1245         char *p = buffer;
1246
1247         IPW_DEBUG_INFO("enter\n");
1248
1249         strncpy(buffer, buf, len);
1250         buffer[len] = 0;
1251
1252         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1253                 p++;
1254                 if (p[0] == 'x' || p[0] == 'X')
1255                         p++;
1256                 val = simple_strtoul(p, &p, 16);
1257         } else
1258                 val = simple_strtoul(p, &p, 10);
1259         if (p == buffer) {
1260                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1261         } else {
1262                 priv->ieee->scan_age = val;
1263                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1264         }
1265
1266         IPW_DEBUG_INFO("exit\n");
1267         return len;
1268 }
1269
1270 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1271
1272 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1273                         char *buf)
1274 {
1275         struct ipw_priv *priv = dev_get_drvdata(d);
1276         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1277 }
1278
1279 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1280                          const char *buf, size_t count)
1281 {
1282         struct ipw_priv *priv = dev_get_drvdata(d);
1283
1284         IPW_DEBUG_INFO("enter\n");
1285
1286         if (count == 0)
1287                 return 0;
1288
1289         if (*buf == 0) {
1290                 IPW_DEBUG_LED("Disabling LED control.\n");
1291                 priv->config |= CFG_NO_LED;
1292                 ipw_led_shutdown(priv);
1293         } else {
1294                 IPW_DEBUG_LED("Enabling LED control.\n");
1295                 priv->config &= ~CFG_NO_LED;
1296                 ipw_led_init(priv);
1297         }
1298
1299         IPW_DEBUG_INFO("exit\n");
1300         return count;
1301 }
1302
1303 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1304
1305 static ssize_t show_status(struct device *d,
1306                            struct device_attribute *attr, char *buf)
1307 {
1308         struct ipw_priv *p = d->driver_data;
1309         return sprintf(buf, "0x%08x\n", (int)p->status);
1310 }
1311
1312 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1313
1314 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1315                         char *buf)
1316 {
1317         struct ipw_priv *p = d->driver_data;
1318         return sprintf(buf, "0x%08x\n", (int)p->config);
1319 }
1320
1321 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1322
1323 static ssize_t show_nic_type(struct device *d,
1324                              struct device_attribute *attr, char *buf)
1325 {
1326         struct ipw_priv *priv = d->driver_data;
1327         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1328 }
1329
1330 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1331
1332 static ssize_t show_ucode_version(struct device *d,
1333                                   struct device_attribute *attr, char *buf)
1334 {
1335         u32 len = sizeof(u32), tmp = 0;
1336         struct ipw_priv *p = d->driver_data;
1337
1338         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1339                 return 0;
1340
1341         return sprintf(buf, "0x%08x\n", tmp);
1342 }
1343
1344 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1345
1346 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1347                         char *buf)
1348 {
1349         u32 len = sizeof(u32), tmp = 0;
1350         struct ipw_priv *p = d->driver_data;
1351
1352         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1353                 return 0;
1354
1355         return sprintf(buf, "0x%08x\n", tmp);
1356 }
1357
1358 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1359
1360 /*
1361  * Add a device attribute to view/control the delay between eeprom
1362  * operations.
1363  */
1364 static ssize_t show_eeprom_delay(struct device *d,
1365                                  struct device_attribute *attr, char *buf)
1366 {
1367         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1368         return sprintf(buf, "%i\n", n);
1369 }
1370 static ssize_t store_eeprom_delay(struct device *d,
1371                                   struct device_attribute *attr,
1372                                   const char *buf, size_t count)
1373 {
1374         struct ipw_priv *p = d->driver_data;
1375         sscanf(buf, "%i", &p->eeprom_delay);
1376         return strnlen(buf, count);
1377 }
1378
1379 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1380                    show_eeprom_delay, store_eeprom_delay);
1381
1382 static ssize_t show_command_event_reg(struct device *d,
1383                                       struct device_attribute *attr, char *buf)
1384 {
1385         u32 reg = 0;
1386         struct ipw_priv *p = d->driver_data;
1387
1388         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1389         return sprintf(buf, "0x%08x\n", reg);
1390 }
1391 static ssize_t store_command_event_reg(struct device *d,
1392                                        struct device_attribute *attr,
1393                                        const char *buf, size_t count)
1394 {
1395         u32 reg;
1396         struct ipw_priv *p = d->driver_data;
1397
1398         sscanf(buf, "%x", &reg);
1399         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1400         return strnlen(buf, count);
1401 }
1402
1403 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1404                    show_command_event_reg, store_command_event_reg);
1405
1406 static ssize_t show_mem_gpio_reg(struct device *d,
1407                                  struct device_attribute *attr, char *buf)
1408 {
1409         u32 reg = 0;
1410         struct ipw_priv *p = d->driver_data;
1411
1412         reg = ipw_read_reg32(p, 0x301100);
1413         return sprintf(buf, "0x%08x\n", reg);
1414 }
1415 static ssize_t store_mem_gpio_reg(struct device *d,
1416                                   struct device_attribute *attr,
1417                                   const char *buf, size_t count)
1418 {
1419         u32 reg;
1420         struct ipw_priv *p = d->driver_data;
1421
1422         sscanf(buf, "%x", &reg);
1423         ipw_write_reg32(p, 0x301100, reg);
1424         return strnlen(buf, count);
1425 }
1426
1427 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1428                    show_mem_gpio_reg, store_mem_gpio_reg);
1429
1430 static ssize_t show_indirect_dword(struct device *d,
1431                                    struct device_attribute *attr, char *buf)
1432 {
1433         u32 reg = 0;
1434         struct ipw_priv *priv = d->driver_data;
1435
1436         if (priv->status & STATUS_INDIRECT_DWORD)
1437                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1438         else
1439                 reg = 0;
1440
1441         return sprintf(buf, "0x%08x\n", reg);
1442 }
1443 static ssize_t store_indirect_dword(struct device *d,
1444                                     struct device_attribute *attr,
1445                                     const char *buf, size_t count)
1446 {
1447         struct ipw_priv *priv = d->driver_data;
1448
1449         sscanf(buf, "%x", &priv->indirect_dword);
1450         priv->status |= STATUS_INDIRECT_DWORD;
1451         return strnlen(buf, count);
1452 }
1453
1454 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1455                    show_indirect_dword, store_indirect_dword);
1456
1457 static ssize_t show_indirect_byte(struct device *d,
1458                                   struct device_attribute *attr, char *buf)
1459 {
1460         u8 reg = 0;
1461         struct ipw_priv *priv = d->driver_data;
1462
1463         if (priv->status & STATUS_INDIRECT_BYTE)
1464                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1465         else
1466                 reg = 0;
1467
1468         return sprintf(buf, "0x%02x\n", reg);
1469 }
1470 static ssize_t store_indirect_byte(struct device *d,
1471                                    struct device_attribute *attr,
1472                                    const char *buf, size_t count)
1473 {
1474         struct ipw_priv *priv = d->driver_data;
1475
1476         sscanf(buf, "%x", &priv->indirect_byte);
1477         priv->status |= STATUS_INDIRECT_BYTE;
1478         return strnlen(buf, count);
1479 }
1480
1481 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1482                    show_indirect_byte, store_indirect_byte);
1483
1484 static ssize_t show_direct_dword(struct device *d,
1485                                  struct device_attribute *attr, char *buf)
1486 {
1487         u32 reg = 0;
1488         struct ipw_priv *priv = d->driver_data;
1489
1490         if (priv->status & STATUS_DIRECT_DWORD)
1491                 reg = ipw_read32(priv, priv->direct_dword);
1492         else
1493                 reg = 0;
1494
1495         return sprintf(buf, "0x%08x\n", reg);
1496 }
1497 static ssize_t store_direct_dword(struct device *d,
1498                                   struct device_attribute *attr,
1499                                   const char *buf, size_t count)
1500 {
1501         struct ipw_priv *priv = d->driver_data;
1502
1503         sscanf(buf, "%x", &priv->direct_dword);
1504         priv->status |= STATUS_DIRECT_DWORD;
1505         return strnlen(buf, count);
1506 }
1507
1508 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1509                    show_direct_dword, store_direct_dword);
1510
1511 static inline int rf_kill_active(struct ipw_priv *priv)
1512 {
1513         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1514                 priv->status |= STATUS_RF_KILL_HW;
1515         else
1516                 priv->status &= ~STATUS_RF_KILL_HW;
1517
1518         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1519 }
1520
1521 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1522                             char *buf)
1523 {
1524         /* 0 - RF kill not enabled
1525            1 - SW based RF kill active (sysfs)
1526            2 - HW based RF kill active
1527            3 - Both HW and SW baed RF kill active */
1528         struct ipw_priv *priv = d->driver_data;
1529         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1530             (rf_kill_active(priv) ? 0x2 : 0x0);
1531         return sprintf(buf, "%i\n", val);
1532 }
1533
1534 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1535 {
1536         if ((disable_radio ? 1 : 0) ==
1537             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1538                 return 0;
1539
1540         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1541                           disable_radio ? "OFF" : "ON");
1542
1543         if (disable_radio) {
1544                 priv->status |= STATUS_RF_KILL_SW;
1545
1546                 if (priv->workqueue)
1547                         cancel_delayed_work(&priv->request_scan);
1548                 queue_work(priv->workqueue, &priv->down);
1549         } else {
1550                 priv->status &= ~STATUS_RF_KILL_SW;
1551                 if (rf_kill_active(priv)) {
1552                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1553                                           "disabled by HW switch\n");
1554                         /* Make sure the RF_KILL check timer is running */
1555                         cancel_delayed_work(&priv->rf_kill);
1556                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1557                                            2 * HZ);
1558                 } else
1559                         queue_work(priv->workqueue, &priv->up);
1560         }
1561
1562         return 1;
1563 }
1564
1565 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1566                              const char *buf, size_t count)
1567 {
1568         struct ipw_priv *priv = d->driver_data;
1569
1570         ipw_radio_kill_sw(priv, buf[0] == '1');
1571
1572         return count;
1573 }
1574
1575 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1576
1577 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1578                                char *buf)
1579 {
1580         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1581         int pos = 0, len = 0;
1582         if (priv->config & CFG_SPEED_SCAN) {
1583                 while (priv->speed_scan[pos] != 0)
1584                         len += sprintf(&buf[len], "%d ",
1585                                        priv->speed_scan[pos++]);
1586                 return len + sprintf(&buf[len], "\n");
1587         }
1588
1589         return sprintf(buf, "0\n");
1590 }
1591
1592 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1593                                 const char *buf, size_t count)
1594 {
1595         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1596         int channel, pos = 0;
1597         const char *p = buf;
1598
1599         /* list of space separated channels to scan, optionally ending with 0 */
1600         while ((channel = simple_strtol(p, NULL, 0))) {
1601                 if (pos == MAX_SPEED_SCAN - 1) {
1602                         priv->speed_scan[pos] = 0;
1603                         break;
1604                 }
1605
1606                 if (ipw_is_valid_channel(priv->ieee, channel))
1607                         priv->speed_scan[pos++] = channel;
1608                 else
1609                         IPW_WARNING("Skipping invalid channel request: %d\n",
1610                                     channel);
1611                 p = strchr(p, ' ');
1612                 if (!p)
1613                         break;
1614                 while (*p == ' ' || *p == '\t')
1615                         p++;
1616         }
1617
1618         if (pos == 0)
1619                 priv->config &= ~CFG_SPEED_SCAN;
1620         else {
1621                 priv->speed_scan_pos = 0;
1622                 priv->config |= CFG_SPEED_SCAN;
1623         }
1624
1625         return count;
1626 }
1627
1628 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1629                    store_speed_scan);
1630
1631 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1632                               char *buf)
1633 {
1634         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1635         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1636 }
1637
1638 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1639                                const char *buf, size_t count)
1640 {
1641         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1642         if (buf[0] == '1')
1643                 priv->config |= CFG_NET_STATS;
1644         else
1645                 priv->config &= ~CFG_NET_STATS;
1646
1647         return count;
1648 }
1649
1650 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1651                    show_net_stats, store_net_stats);
1652
1653 static void notify_wx_assoc_event(struct ipw_priv *priv)
1654 {
1655         union iwreq_data wrqu;
1656         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1657         if (priv->status & STATUS_ASSOCIATED)
1658                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1659         else
1660                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1661         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1662 }
1663
1664 static void ipw_irq_tasklet(struct ipw_priv *priv)
1665 {
1666         u32 inta, inta_mask, handled = 0;
1667         unsigned long flags;
1668         int rc = 0;
1669
1670         spin_lock_irqsave(&priv->lock, flags);
1671
1672         inta = ipw_read32(priv, IPW_INTA_RW);
1673         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1674         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1675
1676         /* Add any cached INTA values that need to be handled */
1677         inta |= priv->isr_inta;
1678
1679         /* handle all the justifications for the interrupt */
1680         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1681                 ipw_rx(priv);
1682                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1683         }
1684
1685         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1686                 IPW_DEBUG_HC("Command completed.\n");
1687                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1688                 priv->status &= ~STATUS_HCMD_ACTIVE;
1689                 wake_up_interruptible(&priv->wait_command_queue);
1690                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1691         }
1692
1693         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1694                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1695                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1696                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1697         }
1698
1699         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1700                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1701                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1702                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1703         }
1704
1705         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1706                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1707                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1708                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1709         }
1710
1711         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1712                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1713                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1714                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1715         }
1716
1717         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1718                 IPW_WARNING("STATUS_CHANGE\n");
1719                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1720         }
1721
1722         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1723                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1724                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1725         }
1726
1727         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1728                 IPW_WARNING("HOST_CMD_DONE\n");
1729                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1730         }
1731
1732         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1733                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1734                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1735         }
1736
1737         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1738                 IPW_WARNING("PHY_OFF_DONE\n");
1739                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1740         }
1741
1742         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1743                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1744                 priv->status |= STATUS_RF_KILL_HW;
1745                 wake_up_interruptible(&priv->wait_command_queue);
1746                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1747                 cancel_delayed_work(&priv->request_scan);
1748                 schedule_work(&priv->link_down);
1749                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1750                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1751         }
1752
1753         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1754                 IPW_ERROR("Firmware error detected.  Restarting.\n");
1755                 if (priv->error) {
1756                         IPW_ERROR("Sysfs 'error' log already exists.\n");
1757 #ifdef CONFIG_IPW_DEBUG
1758                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1759                                 struct ipw_fw_error *error =
1760                                     ipw_alloc_error_log(priv);
1761                                 ipw_dump_error_log(priv, error);
1762                                 if (error)
1763                                         ipw_free_error_log(error);
1764                         }
1765 #endif
1766                 } else {
1767                         priv->error = ipw_alloc_error_log(priv);
1768                         if (priv->error)
1769                                 IPW_ERROR("Sysfs 'error' log captured.\n");
1770                         else
1771                                 IPW_ERROR("Error allocating sysfs 'error' "
1772                                           "log.\n");
1773 #ifdef CONFIG_IPW_DEBUG
1774                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1775                                 ipw_dump_error_log(priv, priv->error);
1776 #endif
1777                 }
1778
1779                 /* XXX: If hardware encryption is for WPA/WPA2,
1780                  * we have to notify the supplicant. */
1781                 if (priv->ieee->sec.encrypt) {
1782                         priv->status &= ~STATUS_ASSOCIATED;
1783                         notify_wx_assoc_event(priv);
1784                 }
1785
1786                 /* Keep the restart process from trying to send host
1787                  * commands by clearing the INIT status bit */
1788                 priv->status &= ~STATUS_INIT;
1789
1790                 /* Cancel currently queued command. */
1791                 priv->status &= ~STATUS_HCMD_ACTIVE;
1792                 wake_up_interruptible(&priv->wait_command_queue);
1793
1794                 queue_work(priv->workqueue, &priv->adapter_restart);
1795                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1796         }
1797
1798         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1799                 IPW_ERROR("Parity error\n");
1800                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1801         }
1802
1803         if (handled != inta) {
1804                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1805         }
1806
1807         /* enable all interrupts */
1808         ipw_enable_interrupts(priv);
1809
1810         spin_unlock_irqrestore(&priv->lock, flags);
1811 }
1812
1813 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1814 static char *get_cmd_string(u8 cmd)
1815 {
1816         switch (cmd) {
1817                 IPW_CMD(HOST_COMPLETE);
1818                 IPW_CMD(POWER_DOWN);
1819                 IPW_CMD(SYSTEM_CONFIG);
1820                 IPW_CMD(MULTICAST_ADDRESS);
1821                 IPW_CMD(SSID);
1822                 IPW_CMD(ADAPTER_ADDRESS);
1823                 IPW_CMD(PORT_TYPE);
1824                 IPW_CMD(RTS_THRESHOLD);
1825                 IPW_CMD(FRAG_THRESHOLD);
1826                 IPW_CMD(POWER_MODE);
1827                 IPW_CMD(WEP_KEY);
1828                 IPW_CMD(TGI_TX_KEY);
1829                 IPW_CMD(SCAN_REQUEST);
1830                 IPW_CMD(SCAN_REQUEST_EXT);
1831                 IPW_CMD(ASSOCIATE);
1832                 IPW_CMD(SUPPORTED_RATES);
1833                 IPW_CMD(SCAN_ABORT);
1834                 IPW_CMD(TX_FLUSH);
1835                 IPW_CMD(QOS_PARAMETERS);
1836                 IPW_CMD(DINO_CONFIG);
1837                 IPW_CMD(RSN_CAPABILITIES);
1838                 IPW_CMD(RX_KEY);
1839                 IPW_CMD(CARD_DISABLE);
1840                 IPW_CMD(SEED_NUMBER);
1841                 IPW_CMD(TX_POWER);
1842                 IPW_CMD(COUNTRY_INFO);
1843                 IPW_CMD(AIRONET_INFO);
1844                 IPW_CMD(AP_TX_POWER);
1845                 IPW_CMD(CCKM_INFO);
1846                 IPW_CMD(CCX_VER_INFO);
1847                 IPW_CMD(SET_CALIBRATION);
1848                 IPW_CMD(SENSITIVITY_CALIB);
1849                 IPW_CMD(RETRY_LIMIT);
1850                 IPW_CMD(IPW_PRE_POWER_DOWN);
1851                 IPW_CMD(VAP_BEACON_TEMPLATE);
1852                 IPW_CMD(VAP_DTIM_PERIOD);
1853                 IPW_CMD(EXT_SUPPORTED_RATES);
1854                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1855                 IPW_CMD(VAP_QUIET_INTERVALS);
1856                 IPW_CMD(VAP_CHANNEL_SWITCH);
1857                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1858                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1859                 IPW_CMD(VAP_CF_PARAM_SET);
1860                 IPW_CMD(VAP_SET_BEACONING_STATE);
1861                 IPW_CMD(MEASUREMENT);
1862                 IPW_CMD(POWER_CAPABILITY);
1863                 IPW_CMD(SUPPORTED_CHANNELS);
1864                 IPW_CMD(TPC_REPORT);
1865                 IPW_CMD(WME_INFO);
1866                 IPW_CMD(PRODUCTION_COMMAND);
1867         default:
1868                 return "UNKNOWN";
1869         }
1870 }
1871
1872 #define HOST_COMPLETE_TIMEOUT HZ
1873 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1874 {
1875         int rc = 0;
1876         unsigned long flags;
1877
1878         spin_lock_irqsave(&priv->lock, flags);
1879         if (priv->status & STATUS_HCMD_ACTIVE) {
1880                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1881                           get_cmd_string(cmd->cmd));
1882                 spin_unlock_irqrestore(&priv->lock, flags);
1883                 return -EAGAIN;
1884         }
1885
1886         priv->status |= STATUS_HCMD_ACTIVE;
1887
1888         if (priv->cmdlog) {
1889                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1890                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1891                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1892                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1893                        cmd->len);
1894                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1895         }
1896
1897         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1898                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1899                      priv->status);
1900         printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1901
1902         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1903         if (rc) {
1904                 priv->status &= ~STATUS_HCMD_ACTIVE;
1905                 IPW_ERROR("Failed to send %s: Reason %d\n",
1906                           get_cmd_string(cmd->cmd), rc);
1907                 spin_unlock_irqrestore(&priv->lock, flags);
1908                 goto exit;
1909         }
1910         spin_unlock_irqrestore(&priv->lock, flags);
1911
1912         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1913                                               !(priv->
1914                                                 status & STATUS_HCMD_ACTIVE),
1915                                               HOST_COMPLETE_TIMEOUT);
1916         if (rc == 0) {
1917                 spin_lock_irqsave(&priv->lock, flags);
1918                 if (priv->status & STATUS_HCMD_ACTIVE) {
1919                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1920                                   get_cmd_string(cmd->cmd));
1921                         priv->status &= ~STATUS_HCMD_ACTIVE;
1922                         spin_unlock_irqrestore(&priv->lock, flags);
1923                         rc = -EIO;
1924                         goto exit;
1925                 }
1926                 spin_unlock_irqrestore(&priv->lock, flags);
1927         } else
1928                 rc = 0;
1929
1930         if (priv->status & STATUS_RF_KILL_HW) {
1931                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1932                           get_cmd_string(cmd->cmd));
1933                 rc = -EIO;
1934                 goto exit;
1935         }
1936
1937       exit:
1938         if (priv->cmdlog) {
1939                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1940                 priv->cmdlog_pos %= priv->cmdlog_len;
1941         }
1942         return rc;
1943 }
1944
1945 static int ipw_send_host_complete(struct ipw_priv *priv)
1946 {
1947         struct host_cmd cmd = {
1948                 .cmd = IPW_CMD_HOST_COMPLETE,
1949                 .len = 0
1950         };
1951
1952         if (!priv) {
1953                 IPW_ERROR("Invalid args\n");
1954                 return -1;
1955         }
1956
1957         return ipw_send_cmd(priv, &cmd);
1958 }
1959
1960 static int ipw_send_system_config(struct ipw_priv *priv,
1961                                   struct ipw_sys_config *config)
1962 {
1963         struct host_cmd cmd = {
1964                 .cmd = IPW_CMD_SYSTEM_CONFIG,
1965                 .len = sizeof(*config)
1966         };
1967
1968         if (!priv || !config) {
1969                 IPW_ERROR("Invalid args\n");
1970                 return -1;
1971         }
1972
1973         memcpy(cmd.param, config, sizeof(*config));
1974         return ipw_send_cmd(priv, &cmd);
1975 }
1976
1977 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
1978 {
1979         struct host_cmd cmd = {
1980                 .cmd = IPW_CMD_SSID,
1981                 .len = min(len, IW_ESSID_MAX_SIZE)
1982         };
1983
1984         if (!priv || !ssid) {
1985                 IPW_ERROR("Invalid args\n");
1986                 return -1;
1987         }
1988
1989         memcpy(cmd.param, ssid, cmd.len);
1990         return ipw_send_cmd(priv, &cmd);
1991 }
1992
1993 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
1994 {
1995         struct host_cmd cmd = {
1996                 .cmd = IPW_CMD_ADAPTER_ADDRESS,
1997                 .len = ETH_ALEN
1998         };
1999
2000         if (!priv || !mac) {
2001                 IPW_ERROR("Invalid args\n");
2002                 return -1;
2003         }
2004
2005         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2006                        priv->net_dev->name, MAC_ARG(mac));
2007
2008         memcpy(cmd.param, mac, ETH_ALEN);
2009         return ipw_send_cmd(priv, &cmd);
2010 }
2011
2012 /*
2013  * NOTE: This must be executed from our workqueue as it results in udelay
2014  * being called which may corrupt the keyboard if executed on default
2015  * workqueue
2016  */
2017 static void ipw_adapter_restart(void *adapter)
2018 {
2019         struct ipw_priv *priv = adapter;
2020
2021         if (priv->status & STATUS_RF_KILL_MASK)
2022                 return;
2023
2024         ipw_down(priv);
2025
2026         if (priv->assoc_network &&
2027             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2028                 ipw_remove_current_network(priv);
2029
2030         if (ipw_up(priv)) {
2031                 IPW_ERROR("Failed to up device\n");
2032                 return;
2033         }
2034 }
2035
2036 static void ipw_bg_adapter_restart(void *data)
2037 {
2038         struct ipw_priv *priv = data;
2039         down(&priv->sem);
2040         ipw_adapter_restart(data);
2041         up(&priv->sem);
2042 }
2043
2044 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2045
2046 static void ipw_scan_check(void *data)
2047 {
2048         struct ipw_priv *priv = data;
2049         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2050                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2051                                "adapter (%dms).\n",
2052                                IPW_SCAN_CHECK_WATCHDOG / 100);
2053                 queue_work(priv->workqueue, &priv->adapter_restart);
2054         }
2055 }
2056
2057 static void ipw_bg_scan_check(void *data)
2058 {
2059         struct ipw_priv *priv = data;
2060         down(&priv->sem);
2061         ipw_scan_check(data);
2062         up(&priv->sem);
2063 }
2064
2065 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2066                                      struct ipw_scan_request_ext *request)
2067 {
2068         struct host_cmd cmd = {
2069                 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
2070                 .len = sizeof(*request)
2071         };
2072
2073         memcpy(cmd.param, request, sizeof(*request));
2074         return ipw_send_cmd(priv, &cmd);
2075 }
2076
2077 static int ipw_send_scan_abort(struct ipw_priv *priv)
2078 {
2079         struct host_cmd cmd = {
2080                 .cmd = IPW_CMD_SCAN_ABORT,
2081                 .len = 0
2082         };
2083
2084         if (!priv) {
2085                 IPW_ERROR("Invalid args\n");
2086                 return -1;
2087         }
2088
2089         return ipw_send_cmd(priv, &cmd);
2090 }
2091
2092 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2093 {
2094         struct host_cmd cmd = {
2095                 .cmd = IPW_CMD_SENSITIVITY_CALIB,
2096                 .len = sizeof(struct ipw_sensitivity_calib)
2097         };
2098         struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
2099             &cmd.param;
2100         calib->beacon_rssi_raw = sens;
2101         return ipw_send_cmd(priv, &cmd);
2102 }
2103
2104 static int ipw_send_associate(struct ipw_priv *priv,
2105                               struct ipw_associate *associate)
2106 {
2107         struct host_cmd cmd = {
2108                 .cmd = IPW_CMD_ASSOCIATE,
2109                 .len = sizeof(*associate)
2110         };
2111
2112         struct ipw_associate tmp_associate;
2113         memcpy(&tmp_associate, associate, sizeof(*associate));
2114         tmp_associate.policy_support =
2115             cpu_to_le16(tmp_associate.policy_support);
2116         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2117         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2118         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2119         tmp_associate.listen_interval =
2120             cpu_to_le16(tmp_associate.listen_interval);
2121         tmp_associate.beacon_interval =
2122             cpu_to_le16(tmp_associate.beacon_interval);
2123         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2124
2125         if (!priv || !associate) {
2126                 IPW_ERROR("Invalid args\n");
2127                 return -1;
2128         }
2129
2130         memcpy(cmd.param, &tmp_associate, sizeof(*associate));
2131         return ipw_send_cmd(priv, &cmd);
2132 }
2133
2134 static int ipw_send_supported_rates(struct ipw_priv *priv,
2135                                     struct ipw_supported_rates *rates)
2136 {
2137         struct host_cmd cmd = {
2138                 .cmd = IPW_CMD_SUPPORTED_RATES,
2139                 .len = sizeof(*rates)
2140         };
2141
2142         if (!priv || !rates) {
2143                 IPW_ERROR("Invalid args\n");
2144                 return -1;
2145         }
2146
2147         memcpy(cmd.param, rates, sizeof(*rates));
2148         return ipw_send_cmd(priv, &cmd);
2149 }
2150
2151 static int ipw_set_random_seed(struct ipw_priv *priv)
2152 {
2153         struct host_cmd cmd = {
2154                 .cmd = IPW_CMD_SEED_NUMBER,
2155                 .len = sizeof(u32)
2156         };
2157
2158         if (!priv) {
2159                 IPW_ERROR("Invalid args\n");
2160                 return -1;
2161         }
2162
2163         get_random_bytes(&cmd.param, sizeof(u32));
2164
2165         return ipw_send_cmd(priv, &cmd);
2166 }
2167
2168 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2169 {
2170         struct host_cmd cmd = {
2171                 .cmd = IPW_CMD_CARD_DISABLE,
2172                 .len = sizeof(u32)
2173         };
2174
2175         if (!priv) {
2176                 IPW_ERROR("Invalid args\n");
2177                 return -1;
2178         }
2179
2180         *((u32 *) & cmd.param) = phy_off;
2181
2182         return ipw_send_cmd(priv, &cmd);
2183 }
2184
2185 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2186 {
2187         struct host_cmd cmd = {
2188                 .cmd = IPW_CMD_TX_POWER,
2189                 .len = sizeof(*power)
2190         };
2191
2192         if (!priv || !power) {
2193                 IPW_ERROR("Invalid args\n");
2194                 return -1;
2195         }
2196
2197         memcpy(cmd.param, power, sizeof(*power));
2198         return ipw_send_cmd(priv, &cmd);
2199 }
2200
2201 static int ipw_set_tx_power(struct ipw_priv *priv)
2202 {
2203         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
2204         struct ipw_tx_power tx_power;
2205         s8 max_power;
2206         int i;
2207
2208         memset(&tx_power, 0, sizeof(tx_power));
2209
2210         /* configure device for 'G' band */
2211         tx_power.ieee_mode = IPW_G_MODE;
2212         tx_power.num_channels = geo->bg_channels;
2213         for (i = 0; i < geo->bg_channels; i++) {
2214                 max_power = geo->bg[i].max_power;
2215                 tx_power.channels_tx_power[i].channel_number =
2216                     geo->bg[i].channel;
2217                 tx_power.channels_tx_power[i].tx_power = max_power ?
2218                     min(max_power, priv->tx_power) : priv->tx_power;
2219         }
2220         if (ipw_send_tx_power(priv, &tx_power))
2221                 return -EIO;
2222
2223         /* configure device to also handle 'B' band */
2224         tx_power.ieee_mode = IPW_B_MODE;
2225         if (ipw_send_tx_power(priv, &tx_power))
2226                 return -EIO;
2227
2228         /* configure device to also handle 'A' band */
2229         if (priv->ieee->abg_true) {
2230                 tx_power.ieee_mode = IPW_A_MODE;
2231                 tx_power.num_channels = geo->a_channels;
2232                 for (i = 0; i < tx_power.num_channels; i++) {
2233                         max_power = geo->a[i].max_power;
2234                         tx_power.channels_tx_power[i].channel_number =
2235                             geo->a[i].channel;
2236                         tx_power.channels_tx_power[i].tx_power = max_power ?
2237                             min(max_power, priv->tx_power) : priv->tx_power;
2238                 }
2239                 if (ipw_send_tx_power(priv, &tx_power))
2240                         return -EIO;
2241         }
2242         return 0;
2243 }
2244
2245 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2246 {
2247         struct ipw_rts_threshold rts_threshold = {
2248                 .rts_threshold = rts,
2249         };
2250         struct host_cmd cmd = {
2251                 .cmd = IPW_CMD_RTS_THRESHOLD,
2252                 .len = sizeof(rts_threshold)
2253         };
2254
2255         if (!priv) {
2256                 IPW_ERROR("Invalid args\n");
2257                 return -1;
2258         }
2259
2260         memcpy(cmd.param, &rts_threshold, sizeof(rts_threshold));
2261         return ipw_send_cmd(priv, &cmd);
2262 }
2263
2264 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2265 {
2266         struct ipw_frag_threshold frag_threshold = {
2267                 .frag_threshold = frag,
2268         };
2269         struct host_cmd cmd = {
2270                 .cmd = IPW_CMD_FRAG_THRESHOLD,
2271                 .len = sizeof(frag_threshold)
2272         };
2273
2274         if (!priv) {
2275                 IPW_ERROR("Invalid args\n");
2276                 return -1;
2277         }
2278
2279         memcpy(cmd.param, &frag_threshold, sizeof(frag_threshold));
2280         return ipw_send_cmd(priv, &cmd);
2281 }
2282
2283 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2284 {
2285         struct host_cmd cmd = {
2286                 .cmd = IPW_CMD_POWER_MODE,
2287                 .len = sizeof(u32)
2288         };
2289         u32 *param = (u32 *) (&cmd.param);
2290
2291         if (!priv) {
2292                 IPW_ERROR("Invalid args\n");
2293                 return -1;
2294         }
2295
2296         /* If on battery, set to 3, if AC set to CAM, else user
2297          * level */
2298         switch (mode) {
2299         case IPW_POWER_BATTERY:
2300                 *param = IPW_POWER_INDEX_3;
2301                 break;
2302         case IPW_POWER_AC:
2303                 *param = IPW_POWER_MODE_CAM;
2304                 break;
2305         default:
2306                 *param = mode;
2307                 break;
2308         }
2309
2310         return ipw_send_cmd(priv, &cmd);
2311 }
2312
2313 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2314 {
2315         struct ipw_retry_limit retry_limit = {
2316                 .short_retry_limit = slimit,
2317                 .long_retry_limit = llimit
2318         };
2319         struct host_cmd cmd = {
2320                 .cmd = IPW_CMD_RETRY_LIMIT,
2321                 .len = sizeof(retry_limit)
2322         };
2323
2324         if (!priv) {
2325                 IPW_ERROR("Invalid args\n");
2326                 return -1;
2327         }
2328
2329         memcpy(cmd.param, &retry_limit, sizeof(retry_limit));
2330         return ipw_send_cmd(priv, &cmd);
2331 }
2332
2333 /*
2334  * The IPW device contains a Microwire compatible EEPROM that stores
2335  * various data like the MAC address.  Usually the firmware has exclusive
2336  * access to the eeprom, but during device initialization (before the
2337  * device driver has sent the HostComplete command to the firmware) the
2338  * device driver has read access to the EEPROM by way of indirect addressing
2339  * through a couple of memory mapped registers.
2340  *
2341  * The following is a simplified implementation for pulling data out of the
2342  * the eeprom, along with some helper functions to find information in
2343  * the per device private data's copy of the eeprom.
2344  *
2345  * NOTE: To better understand how these functions work (i.e what is a chip
2346  *       select and why do have to keep driving the eeprom clock?), read
2347  *       just about any data sheet for a Microwire compatible EEPROM.
2348  */
2349
2350 /* write a 32 bit value into the indirect accessor register */
2351 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2352 {
2353         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2354
2355         /* the eeprom requires some time to complete the operation */
2356         udelay(p->eeprom_delay);
2357
2358         return;
2359 }
2360
2361 /* perform a chip select operation */
2362 static inline void eeprom_cs(struct ipw_priv *priv)
2363 {
2364         eeprom_write_reg(priv, 0);
2365         eeprom_write_reg(priv, EEPROM_BIT_CS);
2366         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2367         eeprom_write_reg(priv, EEPROM_BIT_CS);
2368 }
2369
2370 /* perform a chip select operation */
2371 static inline void eeprom_disable_cs(struct ipw_priv *priv)
2372 {
2373         eeprom_write_reg(priv, EEPROM_BIT_CS);
2374         eeprom_write_reg(priv, 0);
2375         eeprom_write_reg(priv, EEPROM_BIT_SK);
2376 }
2377
2378 /* push a single bit down to the eeprom */
2379 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2380 {
2381         int d = (bit ? EEPROM_BIT_DI : 0);
2382         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2383         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2384 }
2385
2386 /* push an opcode followed by an address down to the eeprom */
2387 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2388 {
2389         int i;
2390
2391         eeprom_cs(priv);
2392         eeprom_write_bit(priv, 1);
2393         eeprom_write_bit(priv, op & 2);
2394         eeprom_write_bit(priv, op & 1);
2395         for (i = 7; i >= 0; i--) {
2396                 eeprom_write_bit(priv, addr & (1 << i));
2397         }
2398 }
2399
2400 /* pull 16 bits off the eeprom, one bit at a time */
2401 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2402 {
2403         int i;
2404         u16 r = 0;
2405
2406         /* Send READ Opcode */
2407         eeprom_op(priv, EEPROM_CMD_READ, addr);
2408
2409         /* Send dummy bit */
2410         eeprom_write_reg(priv, EEPROM_BIT_CS);
2411
2412         /* Read the byte off the eeprom one bit at a time */
2413         for (i = 0; i < 16; i++) {
2414                 u32 data = 0;
2415                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2416                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2417                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2418                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2419         }
2420
2421         /* Send another dummy bit */
2422         eeprom_write_reg(priv, 0);
2423         eeprom_disable_cs(priv);
2424
2425         return r;
2426 }
2427
2428 /* helper function for pulling the mac address out of the private */
2429 /* data's copy of the eeprom data                                 */
2430 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2431 {
2432         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2433 }
2434
2435 /*
2436  * Either the device driver (i.e. the host) or the firmware can
2437  * load eeprom data into the designated region in SRAM.  If neither
2438  * happens then the FW will shutdown with a fatal error.
2439  *
2440  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2441  * bit needs region of shared SRAM needs to be non-zero.
2442  */
2443 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2444 {
2445         int i;
2446         u16 *eeprom = (u16 *) priv->eeprom;
2447
2448         IPW_DEBUG_TRACE(">>\n");
2449
2450         /* read entire contents of eeprom into private buffer */
2451         for (i = 0; i < 128; i++)
2452                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2453
2454         /*
2455            If the data looks correct, then copy it to our private
2456            copy.  Otherwise let the firmware know to perform the operation
2457            on it's own
2458          */
2459         if ((priv->eeprom + EEPROM_VERSION) != 0) {
2460                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2461
2462                 /* write the eeprom data to sram */
2463                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2464                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2465
2466                 /* Do not load eeprom data on fatal error or suspend */
2467                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2468         } else {
2469                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2470
2471                 /* Load eeprom data on fatal error or suspend */
2472                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2473         }
2474
2475         IPW_DEBUG_TRACE("<<\n");
2476 }
2477
2478 static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2479 {
2480         count >>= 2;
2481         if (!count)
2482                 return;
2483         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2484         while (count--)
2485                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2486 }
2487
2488 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2489 {
2490         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2491                         CB_NUMBER_OF_ELEMENTS_SMALL *
2492                         sizeof(struct command_block));
2493 }
2494
2495 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2496 {                               /* start dma engine but no transfers yet */
2497
2498         IPW_DEBUG_FW(">> : \n");
2499
2500         /* Start the dma */
2501         ipw_fw_dma_reset_command_blocks(priv);
2502
2503         /* Write CB base address */
2504         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2505
2506         IPW_DEBUG_FW("<< : \n");
2507         return 0;
2508 }
2509
2510 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2511 {
2512         u32 control = 0;
2513
2514         IPW_DEBUG_FW(">> :\n");
2515
2516         //set the Stop and Abort bit
2517         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2518         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2519         priv->sram_desc.last_cb_index = 0;
2520
2521         IPW_DEBUG_FW("<< \n");
2522 }
2523
2524 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2525                                           struct command_block *cb)
2526 {
2527         u32 address =
2528             IPW_SHARED_SRAM_DMA_CONTROL +
2529             (sizeof(struct command_block) * index);
2530         IPW_DEBUG_FW(">> :\n");
2531
2532         ipw_write_indirect(priv, address, (u8 *) cb,
2533                            (int)sizeof(struct command_block));
2534
2535         IPW_DEBUG_FW("<< :\n");
2536         return 0;
2537
2538 }
2539
2540 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2541 {
2542         u32 control = 0;
2543         u32 index = 0;
2544
2545         IPW_DEBUG_FW(">> :\n");
2546
2547         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2548                 ipw_fw_dma_write_command_block(priv, index,
2549                                                &priv->sram_desc.cb_list[index]);
2550
2551         /* Enable the DMA in the CSR register */
2552         ipw_clear_bit(priv, IPW_RESET_REG,
2553                       IPW_RESET_REG_MASTER_DISABLED |
2554                       IPW_RESET_REG_STOP_MASTER);
2555
2556         /* Set the Start bit. */
2557         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2558         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2559
2560         IPW_DEBUG_FW("<< :\n");
2561         return 0;
2562 }
2563
2564 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2565 {
2566         u32 address;
2567         u32 register_value = 0;
2568         u32 cb_fields_address = 0;
2569
2570         IPW_DEBUG_FW(">> :\n");
2571         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2572         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2573
2574         /* Read the DMA Controlor register */
2575         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2576         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2577
2578         /* Print the CB values */
2579         cb_fields_address = address;
2580         register_value = ipw_read_reg32(priv, cb_fields_address);
2581         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2582
2583         cb_fields_address += sizeof(u32);
2584         register_value = ipw_read_reg32(priv, cb_fields_address);
2585         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2586
2587         cb_fields_address += sizeof(u32);
2588         register_value = ipw_read_reg32(priv, cb_fields_address);
2589         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2590                           register_value);
2591
2592         cb_fields_address += sizeof(u32);
2593         register_value = ipw_read_reg32(priv, cb_fields_address);
2594         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2595
2596         IPW_DEBUG_FW(">> :\n");
2597 }
2598
2599 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2600 {
2601         u32 current_cb_address = 0;
2602         u32 current_cb_index = 0;
2603
2604         IPW_DEBUG_FW("<< :\n");
2605         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2606
2607         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2608             sizeof(struct command_block);
2609
2610         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2611                           current_cb_index, current_cb_address);
2612
2613         IPW_DEBUG_FW(">> :\n");
2614         return current_cb_index;
2615
2616 }
2617
2618 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2619                                         u32 src_address,
2620                                         u32 dest_address,
2621                                         u32 length,
2622                                         int interrupt_enabled, int is_last)
2623 {
2624
2625         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2626             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2627             CB_DEST_SIZE_LONG;
2628         struct command_block *cb;
2629         u32 last_cb_element = 0;
2630
2631         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2632                           src_address, dest_address, length);
2633
2634         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2635                 return -1;
2636
2637         last_cb_element = priv->sram_desc.last_cb_index;
2638         cb = &priv->sram_desc.cb_list[last_cb_element];
2639         priv->sram_desc.last_cb_index++;
2640
2641         /* Calculate the new CB control word */
2642         if (interrupt_enabled)
2643                 control |= CB_INT_ENABLED;
2644
2645         if (is_last)
2646                 control |= CB_LAST_VALID;
2647
2648         control |= length;
2649
2650         /* Calculate the CB Element's checksum value */
2651         cb->status = control ^ src_address ^ dest_address;
2652
2653         /* Copy the Source and Destination addresses */
2654         cb->dest_addr = dest_address;
2655         cb->source_addr = src_address;
2656
2657         /* Copy the Control Word last */
2658         cb->control = control;
2659
2660         return 0;
2661 }
2662
2663 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2664                                  u32 src_phys, u32 dest_address, u32 length)
2665 {
2666         u32 bytes_left = length;
2667         u32 src_offset = 0;
2668         u32 dest_offset = 0;
2669         int status = 0;
2670         IPW_DEBUG_FW(">> \n");
2671         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2672                           src_phys, dest_address, length);
2673         while (bytes_left > CB_MAX_LENGTH) {
2674                 status = ipw_fw_dma_add_command_block(priv,
2675                                                       src_phys + src_offset,
2676                                                       dest_address +
2677                                                       dest_offset,
2678                                                       CB_MAX_LENGTH, 0, 0);
2679                 if (status) {
2680                         IPW_DEBUG_FW_INFO(": Failed\n");
2681                         return -1;
2682                 } else
2683                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2684
2685                 src_offset += CB_MAX_LENGTH;
2686                 dest_offset += CB_MAX_LENGTH;
2687                 bytes_left -= CB_MAX_LENGTH;
2688         }
2689
2690         /* add the buffer tail */
2691         if (bytes_left > 0) {
2692                 status =
2693                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2694                                                  dest_address + dest_offset,
2695                                                  bytes_left, 0, 0);
2696                 if (status) {
2697                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2698                         return -1;
2699                 } else
2700                         IPW_DEBUG_FW_INFO
2701                             (": Adding new cb - the buffer tail\n");
2702         }
2703
2704         IPW_DEBUG_FW("<< \n");
2705         return 0;
2706 }
2707
2708 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2709 {
2710         u32 current_index = 0;
2711         u32 watchdog = 0;
2712
2713         IPW_DEBUG_FW(">> : \n");
2714
2715         current_index = ipw_fw_dma_command_block_index(priv);
2716         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
2717                           (int)priv->sram_desc.last_cb_index);
2718
2719         while (current_index < priv->sram_desc.last_cb_index) {
2720                 udelay(50);
2721                 current_index = ipw_fw_dma_command_block_index(priv);
2722
2723                 watchdog++;
2724
2725                 if (watchdog > 400) {
2726                         IPW_DEBUG_FW_INFO("Timeout\n");
2727                         ipw_fw_dma_dump_command_block(priv);
2728                         ipw_fw_dma_abort(priv);
2729                         return -1;
2730                 }
2731         }
2732
2733         ipw_fw_dma_abort(priv);
2734
2735         /*Disable the DMA in the CSR register */
2736         ipw_set_bit(priv, IPW_RESET_REG,
2737                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2738
2739         IPW_DEBUG_FW("<< dmaWaitSync \n");
2740         return 0;
2741 }
2742
2743 static void ipw_remove_current_network(struct ipw_priv *priv)
2744 {
2745         struct list_head *element, *safe;
2746         struct ieee80211_network *network = NULL;
2747         unsigned long flags;
2748
2749         spin_lock_irqsave(&priv->ieee->lock, flags);
2750         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2751                 network = list_entry(element, struct ieee80211_network, list);
2752                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2753                         list_del(element);
2754                         list_add_tail(&network->list,
2755                                       &priv->ieee->network_free_list);
2756                 }
2757         }
2758         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2759 }
2760
2761 /**
2762  * Check that card is still alive.
2763  * Reads debug register from domain0.
2764  * If card is present, pre-defined value should
2765  * be found there.
2766  *
2767  * @param priv
2768  * @return 1 if card is present, 0 otherwise
2769  */
2770 static inline int ipw_alive(struct ipw_priv *priv)
2771 {
2772         return ipw_read32(priv, 0x90) == 0xd55555d5;
2773 }
2774
2775 static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2776                                int timeout)
2777 {
2778         int i = 0;
2779
2780         do {
2781                 if ((ipw_read32(priv, addr) & mask) == mask)
2782                         return i;
2783                 mdelay(10);
2784                 i += 10;
2785         } while (i < timeout);
2786
2787         return -ETIME;
2788 }
2789
2790 /* These functions load the firmware and micro code for the operation of
2791  * the ipw hardware.  It assumes the buffer has all the bits for the
2792  * image and the caller is handling the memory allocation and clean up.
2793  */
2794
2795 static int ipw_stop_master(struct ipw_priv *priv)
2796 {
2797         int rc;
2798
2799         IPW_DEBUG_TRACE(">> \n");
2800         /* stop master. typical delay - 0 */
2801         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2802
2803         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2804                           IPW_RESET_REG_MASTER_DISABLED, 100);
2805         if (rc < 0) {
2806                 IPW_ERROR("stop master failed in 10ms\n");
2807                 return -1;
2808         }
2809
2810         IPW_DEBUG_INFO("stop master %dms\n", rc);
2811
2812         return rc;
2813 }
2814
2815 static void ipw_arc_release(struct ipw_priv *priv)
2816 {
2817         IPW_DEBUG_TRACE(">> \n");
2818         mdelay(5);
2819
2820         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2821
2822         /* no one knows timing, for safety add some delay */
2823         mdelay(5);
2824 }
2825
2826 struct fw_header {
2827         u32 version;
2828         u32 mode;
2829 };
2830
2831 struct fw_chunk {
2832         u32 address;
2833         u32 length;
2834 };
2835
2836 #define IPW_FW_MAJOR_VERSION 2
2837 #define IPW_FW_MINOR_VERSION 3
2838
2839 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2840 #define IPW_FW_MAJOR(x) (x & 0xff)
2841
2842 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2843
2844 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2845 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2846
2847 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2848 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2849 #else
2850 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2851 #endif
2852
2853 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2854 {
2855         int rc = 0, i, addr;
2856         u8 cr = 0;
2857         u16 *image;
2858
2859         image = (u16 *) data;
2860
2861         IPW_DEBUG_TRACE(">> \n");
2862
2863         rc = ipw_stop_master(priv);
2864
2865         if (rc < 0)
2866                 return rc;
2867
2868 //      spin_lock_irqsave(&priv->lock, flags);
2869
2870         for (addr = IPW_SHARED_LOWER_BOUND;
2871              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2872                 ipw_write32(priv, addr, 0);
2873         }
2874
2875         /* no ucode (yet) */
2876         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2877         /* destroy DMA queues */
2878         /* reset sequence */
2879
2880         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2881         ipw_arc_release(priv);
2882         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2883         mdelay(1);
2884
2885         /* reset PHY */
2886         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2887         mdelay(1);
2888
2889         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2890         mdelay(1);
2891
2892         /* enable ucode store */
2893         ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2894         ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2895         mdelay(1);
2896
2897         /* write ucode */
2898         /**
2899          * @bug
2900          * Do NOT set indirect address register once and then
2901          * store data to indirect data register in the loop.
2902          * It seems very reasonable, but in this case DINO do not
2903          * accept ucode. It is essential to set address each time.
2904          */
2905         /* load new ipw uCode */
2906         for (i = 0; i < len / 2; i++)
2907                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2908                                 cpu_to_le16(image[i]));
2909
2910         /* enable DINO */
2911         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2912         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2913
2914         /* this is where the igx / win driver deveates from the VAP driver. */
2915
2916         /* wait for alive response */
2917         for (i = 0; i < 100; i++) {
2918                 /* poll for incoming data */
2919                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2920                 if (cr & DINO_RXFIFO_DATA)
2921                         break;
2922                 mdelay(1);
2923         }
2924
2925         if (cr & DINO_RXFIFO_DATA) {
2926                 /* alive_command_responce size is NOT multiple of 4 */
2927                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2928
2929                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2930                         response_buffer[i] =
2931                             le32_to_cpu(ipw_read_reg32(priv,
2932                                                        IPW_BASEBAND_RX_FIFO_READ));
2933                 memcpy(&priv->dino_alive, response_buffer,
2934                        sizeof(priv->dino_alive));
2935                 if (priv->dino_alive.alive_command == 1
2936                     && priv->dino_alive.ucode_valid == 1) {
2937                         rc = 0;
2938                         IPW_DEBUG_INFO
2939                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2940                              "of %02d/%02d/%02d %02d:%02d\n",
2941                              priv->dino_alive.software_revision,
2942                              priv->dino_alive.software_revision,
2943                              priv->dino_alive.device_identifier,
2944                              priv->dino_alive.device_identifier,
2945                              priv->dino_alive.time_stamp[0],
2946                              priv->dino_alive.time_stamp[1],
2947                              priv->dino_alive.time_stamp[2],
2948                              priv->dino_alive.time_stamp[3],
2949                              priv->dino_alive.time_stamp[4]);
2950                 } else {
2951                         IPW_DEBUG_INFO("Microcode is not alive\n");
2952                         rc = -EINVAL;
2953                 }
2954         } else {
2955                 IPW_DEBUG_INFO("No alive response from DINO\n");
2956                 rc = -ETIME;
2957         }
2958
2959         /* disable DINO, otherwise for some reason
2960            firmware have problem getting alive resp. */
2961         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2962
2963 //      spin_unlock_irqrestore(&priv->lock, flags);
2964
2965         return rc;
2966 }
2967
2968 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2969 {
2970         int rc = -1;
2971         int offset = 0;
2972         struct fw_chunk *chunk;
2973         dma_addr_t shared_phys;
2974         u8 *shared_virt;
2975
2976         IPW_DEBUG_TRACE("<< : \n");
2977         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2978
2979         if (!shared_virt)
2980                 return -ENOMEM;
2981
2982         memmove(shared_virt, data, len);
2983
2984         /* Start the Dma */
2985         rc = ipw_fw_dma_enable(priv);
2986
2987         if (priv->sram_desc.last_cb_index > 0) {
2988                 /* the DMA is already ready this would be a bug. */
2989                 BUG();
2990                 goto out;
2991         }
2992
2993         do {
2994                 chunk = (struct fw_chunk *)(data + offset);
2995                 offset += sizeof(struct fw_chunk);
2996                 /* build DMA packet and queue up for sending */
2997                 /* dma to chunk->address, the chunk->length bytes from data +
2998                  * offeset*/
2999                 /* Dma loading */
3000                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3001                                            le32_to_cpu(chunk->address),
3002                                            le32_to_cpu(chunk->length));
3003                 if (rc) {
3004                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3005                         goto out;
3006                 }
3007
3008                 offset += le32_to_cpu(chunk->length);
3009         } while (offset < len);
3010
3011         /* Run the DMA and wait for the answer */
3012         rc = ipw_fw_dma_kick(priv);
3013         if (rc) {
3014                 IPW_ERROR("dmaKick Failed\n");
3015                 goto out;
3016         }
3017
3018         rc = ipw_fw_dma_wait(priv);
3019         if (rc) {
3020                 IPW_ERROR("dmaWaitSync Failed\n");
3021                 goto out;
3022         }
3023       out:
3024         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3025         return rc;
3026 }
3027
3028 /* stop nic */
3029 static int ipw_stop_nic(struct ipw_priv *priv)
3030 {
3031         int rc = 0;
3032
3033         /* stop */
3034         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3035
3036         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3037                           IPW_RESET_REG_MASTER_DISABLED, 500);
3038         if (rc < 0) {
3039                 IPW_ERROR("wait for reg master disabled failed\n");
3040                 return rc;
3041         }
3042
3043         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3044
3045         return rc;
3046 }
3047
3048 static void ipw_start_nic(struct ipw_priv *priv)
3049 {
3050         IPW_DEBUG_TRACE(">>\n");
3051
3052         /* prvHwStartNic  release ARC */
3053         ipw_clear_bit(priv, IPW_RESET_REG,
3054                       IPW_RESET_REG_MASTER_DISABLED |
3055                       IPW_RESET_REG_STOP_MASTER |
3056                       CBD_RESET_REG_PRINCETON_RESET);
3057
3058         /* enable power management */
3059         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3060                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3061
3062         IPW_DEBUG_TRACE("<<\n");
3063 }
3064
3065 static int ipw_init_nic(struct ipw_priv *priv)
3066 {
3067         int rc;
3068
3069         IPW_DEBUG_TRACE(">>\n");
3070         /* reset */
3071         /*prvHwInitNic */
3072         /* set "initialization complete" bit to move adapter to D0 state */
3073         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3074
3075         /* low-level PLL activation */
3076         ipw_write32(priv, IPW_READ_INT_REGISTER,
3077                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3078
3079         /* wait for clock stabilization */
3080         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3081                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3082         if (rc < 0)
3083                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3084
3085         /* assert SW reset */
3086         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3087
3088         udelay(10);
3089
3090         /* set "initialization complete" bit to move adapter to D0 state */
3091         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3092
3093         IPW_DEBUG_TRACE(">>\n");
3094         return 0;
3095 }
3096
3097 /* Call this function from process context, it will sleep in request_firmware.
3098  * Probe is an ok place to call this from.
3099  */
3100 static int ipw_reset_nic(struct ipw_priv *priv)
3101 {
3102         int rc = 0;
3103         unsigned long flags;
3104
3105         IPW_DEBUG_TRACE(">>\n");
3106
3107         rc = ipw_init_nic(priv);
3108
3109         spin_lock_irqsave(&priv->lock, flags);
3110         /* Clear the 'host command active' bit... */
3111         priv->status &= ~STATUS_HCMD_ACTIVE;
3112         wake_up_interruptible(&priv->wait_command_queue);
3113         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3114         wake_up_interruptible(&priv->wait_state);
3115         spin_unlock_irqrestore(&priv->lock, flags);
3116
3117         IPW_DEBUG_TRACE("<<\n");
3118         return rc;
3119 }
3120
3121 static int ipw_get_fw(struct ipw_priv *priv,
3122                       const struct firmware **fw, const char *name)
3123 {
3124         struct fw_header *header;
3125         int rc;
3126
3127         /* ask firmware_class module to get the boot firmware off disk */
3128         rc = request_firmware(fw, name, &priv->pci_dev->dev);
3129         if (rc < 0) {
3130                 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3131                 return rc;
3132         }
3133
3134         header = (struct fw_header *)(*fw)->data;
3135         if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3136                 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3137                           name,
3138                           IPW_FW_MAJOR(le32_to_cpu(header->version)),
3139                           IPW_FW_MAJOR_VERSION);
3140                 return -EINVAL;
3141         }
3142
3143         IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3144                        name,
3145                        IPW_FW_MAJOR(le32_to_cpu(header->version)),
3146                        IPW_FW_MINOR(le32_to_cpu(header->version)),
3147                        (*fw)->size - sizeof(struct fw_header));
3148         return 0;
3149 }
3150
3151 #define IPW_RX_BUF_SIZE (3000)
3152
3153 static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
3154                                       struct ipw_rx_queue *rxq)
3155 {
3156         unsigned long flags;
3157         int i;
3158
3159         spin_lock_irqsave(&rxq->lock, flags);
3160
3161         INIT_LIST_HEAD(&rxq->rx_free);
3162         INIT_LIST_HEAD(&rxq->rx_used);
3163
3164         /* Fill the rx_used queue with _all_ of the Rx buffers */
3165         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3166                 /* In the reset function, these buffers may have been allocated
3167                  * to an SKB, so we need to unmap and free potential storage */
3168                 if (rxq->pool[i].skb != NULL) {
3169                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3170                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3171                         dev_kfree_skb(rxq->pool[i].skb);
3172                         rxq->pool[i].skb = NULL;
3173                 }
3174                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3175         }
3176
3177         /* Set us so that we have processed and used all buffers, but have
3178          * not restocked the Rx queue with fresh buffers */
3179         rxq->read = rxq->write = 0;
3180         rxq->processed = RX_QUEUE_SIZE - 1;
3181         rxq->free_count = 0;
3182         spin_unlock_irqrestore(&rxq->lock, flags);
3183 }
3184
3185 #ifdef CONFIG_PM
3186 static int fw_loaded = 0;
3187 static const struct firmware *bootfw = NULL;
3188 static const struct firmware *firmware = NULL;
3189 static const struct firmware *ucode = NULL;
3190
3191 static void free_firmware(void)
3192 {
3193         if (fw_loaded) {
3194                 release_firmware(bootfw);
3195                 release_firmware(ucode);
3196                 release_firmware(firmware);
3197                 bootfw = ucode = firmware = NULL;
3198                 fw_loaded = 0;
3199         }
3200 }
3201 #else
3202 #define free_firmware() do {} while (0)
3203 #endif
3204
3205 static int ipw_load(struct ipw_priv *priv)
3206 {
3207 #ifndef CONFIG_PM
3208         const struct firmware *bootfw = NULL;
3209         const struct firmware *firmware = NULL;
3210         const struct firmware *ucode = NULL;
3211 #endif
3212         int rc = 0, retries = 3;
3213
3214 #ifdef CONFIG_PM
3215         if (!fw_loaded) {
3216 #endif
3217                 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3218                 if (rc)
3219                         goto error;
3220
3221                 switch (priv->ieee->iw_mode) {
3222                 case IW_MODE_ADHOC:
3223                         rc = ipw_get_fw(priv, &ucode,
3224                                         IPW_FW_NAME("ibss_ucode"));
3225                         if (rc)
3226                                 goto error;
3227
3228                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
3229                         break;
3230
3231 #ifdef CONFIG_IPW2200_MONITOR
3232                 case IW_MODE_MONITOR:
3233                         rc = ipw_get_fw(priv, &ucode,
3234                                         IPW_FW_NAME("sniffer_ucode"));
3235                         if (rc)
3236                                 goto error;
3237
3238                         rc = ipw_get_fw(priv, &firmware,
3239                                         IPW_FW_NAME("sniffer"));
3240                         break;
3241 #endif
3242                 case IW_MODE_INFRA:
3243                         rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
3244                         if (rc)
3245                                 goto error;
3246
3247                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
3248                         break;
3249
3250                 default:
3251                         rc = -EINVAL;
3252                 }
3253
3254                 if (rc)
3255                         goto error;
3256
3257 #ifdef CONFIG_PM
3258                 fw_loaded = 1;
3259         }
3260 #endif
3261
3262         if (!priv->rxq)
3263                 priv->rxq = ipw_rx_queue_alloc(priv);
3264         else
3265                 ipw_rx_queue_reset(priv, priv->rxq);
3266         if (!priv->rxq) {
3267                 IPW_ERROR("Unable to initialize Rx queue\n");
3268                 goto error;
3269         }
3270
3271       retry:
3272         /* Ensure interrupts are disabled */
3273         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3274         priv->status &= ~STATUS_INT_ENABLED;
3275
3276         /* ack pending interrupts */
3277         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3278
3279         ipw_stop_nic(priv);
3280
3281         rc = ipw_reset_nic(priv);
3282         if (rc) {
3283                 IPW_ERROR("Unable to reset NIC\n");
3284                 goto error;
3285         }
3286
3287         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3288                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3289
3290         /* DMA the initial boot firmware into the device */
3291         rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3292                                bootfw->size - sizeof(struct fw_header));
3293         if (rc < 0) {
3294                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3295                 goto error;
3296         }
3297
3298         /* kick start the device */
3299         ipw_start_nic(priv);
3300
3301         /* wait for the device to finish it's initial startup sequence */
3302         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3303                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3304         if (rc < 0) {
3305                 IPW_ERROR("device failed to boot initial fw image\n");
3306                 goto error;
3307         }
3308         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3309
3310         /* ack fw init done interrupt */
3311         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3312
3313         /* DMA the ucode into the device */
3314         rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3315                             ucode->size - sizeof(struct fw_header));
3316         if (rc < 0) {
3317                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3318                 goto error;
3319         }
3320
3321         /* stop nic */
3322         ipw_stop_nic(priv);
3323
3324         /* DMA bss firmware into the device */
3325         rc = ipw_load_firmware(priv, firmware->data +
3326                                sizeof(struct fw_header),
3327                                firmware->size - sizeof(struct fw_header));
3328         if (rc < 0) {
3329                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3330                 goto error;
3331         }
3332
3333         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3334
3335         rc = ipw_queue_reset(priv);
3336         if (rc) {
3337                 IPW_ERROR("Unable to initialize queues\n");
3338                 goto error;
3339         }
3340
3341         /* Ensure interrupts are disabled */
3342         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3343         /* ack pending interrupts */
3344         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3345
3346         /* kick start the device */
3347         ipw_start_nic(priv);
3348
3349         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3350                 if (retries > 0) {
3351                         IPW_WARNING("Parity error.  Retrying init.\n");
3352                         retries--;
3353                         goto retry;
3354                 }
3355
3356                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3357                 rc = -EIO;
3358                 goto error;
3359         }
3360
3361         /* wait for the device */
3362         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3363                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3364         if (rc < 0) {
3365                 IPW_ERROR("device failed to start after 500ms\n");
3366                 goto error;
3367         }
3368         IPW_DEBUG_INFO("device response after %dms\n", rc);
3369
3370         /* ack fw init done interrupt */
3371         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3372
3373         /* read eeprom data and initialize the eeprom region of sram */
3374         priv->eeprom_delay = 1;
3375         ipw_eeprom_init_sram(priv);
3376
3377         /* enable interrupts */
3378         ipw_enable_interrupts(priv);
3379
3380         /* Ensure our queue has valid packets */
3381         ipw_rx_queue_replenish(priv);
3382
3383         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3384
3385         /* ack pending interrupts */
3386         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3387
3388 #ifndef CONFIG_PM
3389         release_firmware(bootfw);
3390         release_firmware(ucode);
3391         release_firmware(firmware);
3392 #endif
3393         return 0;
3394
3395       error:
3396         if (priv->rxq) {
3397                 ipw_rx_queue_free(priv, priv->rxq);
3398                 priv->rxq = NULL;
3399         }
3400         ipw_tx_queue_free(priv);
3401         if (bootfw)
3402                 release_firmware(bootfw);
3403         if (ucode)
3404                 release_firmware(ucode);
3405         if (firmware)
3406                 release_firmware(firmware);
3407 #ifdef CONFIG_PM
3408         fw_loaded = 0;
3409         bootfw = ucode = firmware = NULL;
3410 #endif
3411
3412         return rc;
3413 }
3414
3415 /**
3416  * DMA services
3417  *
3418  * Theory of operation
3419  *
3420  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3421  * 2 empty entries always kept in the buffer to protect from overflow.
3422  *
3423  * For Tx queue, there are low mark and high mark limits. If, after queuing
3424  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3425  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3426  * Tx queue resumed.
3427  *
3428  * The IPW operates with six queues, one receive queue in the device's
3429  * sram, one transmit queue for sending commands to the device firmware,
3430  * and four transmit queues for data.
3431  *
3432  * The four transmit queues allow for performing quality of service (qos)
3433  * transmissions as per the 802.11 protocol.  Currently Linux does not
3434  * provide a mechanism to the user for utilizing prioritized queues, so
3435  * we only utilize the first data transmit queue (queue1).
3436  */
3437
3438 /**
3439  * Driver allocates buffers of this size for Rx
3440  */
3441
3442 static inline int ipw_queue_space(const struct clx2_queue *q)
3443 {
3444         int s = q->last_used - q->first_empty;
3445         if (s <= 0)
3446                 s += q->n_bd;
3447         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3448         if (s < 0)
3449                 s = 0;
3450         return s;
3451 }
3452
3453 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3454 {
3455         return (++index == n_bd) ? 0 : index;
3456 }
3457
3458 /**
3459  * Initialize common DMA queue structure
3460  *
3461  * @param q                queue to init
3462  * @param count            Number of BD's to allocate. Should be power of 2
3463  * @param read_register    Address for 'read' register
3464  *                         (not offset within BAR, full address)
3465  * @param write_register   Address for 'write' register
3466  *                         (not offset within BAR, full address)
3467  * @param base_register    Address for 'base' register
3468  *                         (not offset within BAR, full address)
3469  * @param size             Address for 'size' register
3470  *                         (not offset within BAR, full address)
3471  */
3472 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3473                            int count, u32 read, u32 write, u32 base, u32 size)
3474 {
3475         q->n_bd = count;
3476
3477         q->low_mark = q->n_bd / 4;
3478         if (q->low_mark < 4)
3479                 q->low_mark = 4;
3480
3481         q->high_mark = q->n_bd / 8;
3482         if (q->high_mark < 2)
3483                 q->high_mark = 2;
3484
3485         q->first_empty = q->last_used = 0;
3486         q->reg_r = read;
3487         q->reg_w = write;
3488
3489         ipw_write32(priv, base, q->dma_addr);
3490         ipw_write32(priv, size, count);
3491         ipw_write32(priv, read, 0);
3492         ipw_write32(priv, write, 0);
3493
3494         _ipw_read32(priv, 0x90);
3495 }
3496
3497 static int ipw_queue_tx_init(struct ipw_priv *priv,
3498                              struct clx2_tx_queue *q,
3499                              int count, u32 read, u32 write, u32 base, u32 size)
3500 {
3501         struct pci_dev *dev = priv->pci_dev;
3502
3503         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3504         if (!q->txb) {
3505                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3506                 return -ENOMEM;
3507         }
3508
3509         q->bd =
3510             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3511         if (!q->bd) {
3512                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3513                           sizeof(q->bd[0]) * count);
3514                 kfree(q->txb);
3515                 q->txb = NULL;
3516                 return -ENOMEM;
3517         }
3518
3519         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3520         return 0;
3521 }
3522
3523 /**
3524  * Free one TFD, those at index [txq->q.last_used].
3525  * Do NOT advance any indexes
3526  *
3527  * @param dev
3528  * @param txq
3529  */
3530 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3531                                   struct clx2_tx_queue *txq)
3532 {
3533         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3534         struct pci_dev *dev = priv->pci_dev;
3535         int i;
3536
3537         /* classify bd */
3538         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3539                 /* nothing to cleanup after for host commands */
3540                 return;
3541
3542         /* sanity check */
3543         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3544                 IPW_ERROR("Too many chunks: %i\n",
3545                           le32_to_cpu(bd->u.data.num_chunks));
3546                 /** @todo issue fatal error, it is quite serious situation */
3547                 return;
3548         }
3549
3550         /* unmap chunks if any */
3551         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3552                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3553                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3554                                  PCI_DMA_TODEVICE);
3555                 if (txq->txb[txq->q.last_used]) {
3556                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3557                         txq->txb[txq->q.last_used] = NULL;
3558                 }
3559         }
3560 }
3561
3562 /**
3563  * Deallocate DMA queue.
3564  *
3565  * Empty queue by removing and destroying all BD's.
3566  * Free all buffers.
3567  *
3568  * @param dev
3569  * @param q
3570  */
3571 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3572 {
3573         struct clx2_queue *q = &txq->q;
3574         struct pci_dev *dev = priv->pci_dev;
3575
3576         if (q->n_bd == 0)
3577                 return;
3578
3579         /* first, empty all BD's */
3580         for (; q->first_empty != q->last_used;
3581              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3582                 ipw_queue_tx_free_tfd(priv, txq);
3583         }
3584
3585         /* free buffers belonging to queue itself */
3586         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3587                             q->dma_addr);
3588         kfree(txq->txb);
3589
3590         /* 0 fill whole structure */
3591         memset(txq, 0, sizeof(*txq));
3592 }
3593
3594 /**
3595  * Destroy all DMA queues and structures
3596  *
3597  * @param priv
3598  */
3599 static void ipw_tx_queue_free(struct ipw_priv *priv)
3600 {
3601         /* Tx CMD queue */
3602         ipw_queue_tx_free(priv, &priv->txq_cmd);
3603
3604         /* Tx queues */
3605         ipw_queue_tx_free(priv, &priv->txq[0]);
3606         ipw_queue_tx_free(priv, &priv->txq[1]);
3607         ipw_queue_tx_free(priv, &priv->txq[2]);
3608         ipw_queue_tx_free(priv, &priv->txq[3]);
3609 }
3610
3611 static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3612 {
3613         /* First 3 bytes are manufacturer */
3614         bssid[0] = priv->mac_addr[0];
3615         bssid[1] = priv->mac_addr[1];
3616         bssid[2] = priv->mac_addr[2];
3617
3618         /* Last bytes are random */
3619         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3620
3621         bssid[0] &= 0xfe;       /* clear multicast bit */
3622         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3623 }
3624
3625 static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3626 {
3627         struct ipw_station_entry entry;
3628         int i;
3629
3630         for (i = 0; i < priv->num_stations; i++) {
3631                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3632                         /* Another node is active in network */
3633                         priv->missed_adhoc_beacons = 0;
3634                         if (!(priv->config & CFG_STATIC_CHANNEL))
3635                                 /* when other nodes drop out, we drop out */
3636                                 priv->config &= ~CFG_ADHOC_PERSIST;
3637
3638                         return i;
3639                 }
3640         }
3641
3642         if (i == MAX_STATIONS)
3643                 return IPW_INVALID_STATION;
3644
3645         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3646
3647         entry.reserved = 0;
3648         entry.support_mode = 0;
3649         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3650         memcpy(priv->stations[i], bssid, ETH_ALEN);
3651         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3652                          &entry, sizeof(entry));
3653         priv->num_stations++;
3654
3655         return i;
3656 }
3657
3658 static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3659 {
3660         int i;
3661
3662         for (i = 0; i < priv->num_stations; i++)
3663                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3664                         return i;
3665
3666         return IPW_INVALID_STATION;
3667 }
3668
3669 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3670 {
3671         int err;
3672
3673         if (priv->status & STATUS_ASSOCIATING) {
3674                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3675                 queue_work(priv->workqueue, &priv->disassociate);
3676                 return;
3677         }
3678
3679         if (!(priv->status & STATUS_ASSOCIATED)) {
3680                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3681                 return;
3682         }
3683
3684         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3685                         "on channel %d.\n",
3686                         MAC_ARG(priv->assoc_request.bssid),
3687                         priv->assoc_request.channel);
3688
3689         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3690         priv->status |= STATUS_DISASSOCIATING;
3691
3692         if (quiet)
3693                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3694         else
3695                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3696
3697         err = ipw_send_associate(priv, &priv->assoc_request);
3698         if (err) {
3699                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3700                              "failed.\n");
3701                 return;
3702         }
3703
3704 }
3705
3706 static int ipw_disassociate(void *data)
3707 {
3708         struct ipw_priv *priv = data;
3709         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3710                 return 0;
3711         ipw_send_disassociate(data, 0);
3712         return 1;
3713 }
3714
3715 static void ipw_bg_disassociate(void *data)
3716 {
3717         struct ipw_priv *priv = data;
3718         down(&priv->sem);
3719         ipw_disassociate(data);
3720         up(&priv->sem);
3721 }
3722
3723 static void ipw_system_config(void *data)
3724 {
3725         struct ipw_priv *priv = data;
3726         ipw_send_system_config(priv, &priv->sys_config);
3727 }
3728
3729 struct ipw_status_code {
3730         u16 status;
3731         const char *reason;
3732 };
3733
3734 static const struct ipw_status_code ipw_status_codes[] = {
3735         {0x00, "Successful"},
3736         {0x01, "Unspecified failure"},
3737         {0x0A, "Cannot support all requested capabilities in the "
3738          "Capability information field"},
3739         {0x0B, "Reassociation denied due to inability to confirm that "
3740          "association exists"},
3741         {0x0C, "Association denied due to reason outside the scope of this "
3742          "standard"},
3743         {0x0D,
3744          "Responding station does not support the specified authentication "
3745          "algorithm"},
3746         {0x0E,
3747          "Received an Authentication frame with authentication sequence "
3748          "transaction sequence number out of expected sequence"},
3749         {0x0F, "Authentication rejected because of challenge failure"},
3750         {0x10, "Authentication rejected due to timeout waiting for next "
3751          "frame in sequence"},
3752         {0x11, "Association denied because AP is unable to handle additional "
3753          "associated stations"},
3754         {0x12,
3755          "Association denied due to requesting station not supporting all "
3756          "of the datarates in the BSSBasicServiceSet Parameter"},
3757         {0x13,
3758          "Association denied due to requesting station not supporting "
3759          "short preamble operation"},
3760         {0x14,
3761          "Association denied due to requesting station not supporting "
3762          "PBCC encoding"},
3763         {0x15,
3764          "Association denied due to requesting station not supporting "
3765          "channel agility"},
3766         {0x19,
3767          "Association denied due to requesting station not supporting "
3768          "short slot operation"},
3769         {0x1A,
3770          "Association denied due to requesting station not supporting "
3771          "DSSS-OFDM operation"},
3772         {0x28, "Invalid Information Element"},
3773         {0x29, "Group Cipher is not valid"},
3774         {0x2A, "Pairwise Cipher is not valid"},
3775         {0x2B, "AKMP is not valid"},
3776         {0x2C, "Unsupported RSN IE version"},
3777         {0x2D, "Invalid RSN IE Capabilities"},
3778         {0x2E, "Cipher suite is rejected per security policy"},
3779 };
3780
3781 #ifdef CONFIG_IPW_DEBUG
3782 static const char *ipw_get_status_code(u16 status)
3783 {
3784         int i;
3785         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3786                 if (ipw_status_codes[i].status == (status & 0xff))
3787                         return ipw_status_codes[i].reason;
3788         return "Unknown status value.";
3789 }
3790 #endif
3791
3792 static void inline average_init(struct average *avg)
3793 {
3794         memset(avg, 0, sizeof(*avg));
3795 }
3796
3797 static void inline average_add(struct average *avg, s16 val)
3798 {
3799         avg->sum -= avg->entries[avg->pos];
3800         avg->sum += val;
3801         avg->entries[avg->pos++] = val;
3802         if (unlikely(avg->pos == AVG_ENTRIES)) {
3803                 avg->init = 1;
3804                 avg->pos = 0;
3805         }
3806 }
3807
3808 static s16 inline average_value(struct average *avg)
3809 {
3810         if (!unlikely(avg->init)) {
3811                 if (avg->pos)
3812                         return avg->sum / avg->pos;
3813                 return 0;
3814         }
3815
3816         return avg->sum / AVG_ENTRIES;
3817 }
3818
3819 static void ipw_reset_stats(struct ipw_priv *priv)
3820 {
3821         u32 len = sizeof(u32);
3822
3823         priv->quality = 0;
3824
3825         average_init(&priv->average_missed_beacons);
3826         average_init(&priv->average_rssi);
3827         average_init(&priv->average_noise);
3828
3829         priv->last_rate = 0;
3830         priv->last_missed_beacons = 0;
3831         priv->last_rx_packets = 0;
3832         priv->last_tx_packets = 0;
3833         priv->last_tx_failures = 0;
3834
3835         /* Firmware managed, reset only when NIC is restarted, so we have to
3836          * normalize on the current value */
3837         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3838                         &priv->last_rx_err, &len);
3839         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3840                         &priv->last_tx_failures, &len);
3841
3842         /* Driver managed, reset with each association */
3843         priv->missed_adhoc_beacons = 0;
3844         priv->missed_beacons = 0;
3845         priv->tx_packets = 0;
3846         priv->rx_packets = 0;
3847
3848 }
3849
3850 static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3851 {
3852         u32 i = 0x80000000;
3853         u32 mask = priv->rates_mask;
3854         /* If currently associated in B mode, restrict the maximum
3855          * rate match to B rates */
3856         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3857                 mask &= IEEE80211_CCK_RATES_MASK;
3858
3859         /* TODO: Verify that the rate is supported by the current rates
3860          * list. */
3861
3862         while (i && !(mask & i))
3863                 i >>= 1;
3864         switch (i) {
3865         case IEEE80211_CCK_RATE_1MB_MASK:
3866                 return 1000000;
3867         case IEEE80211_CCK_RATE_2MB_MASK:
3868                 return 2000000;
3869         case IEEE80211_CCK_RATE_5MB_MASK:
3870                 return 5500000;
3871         case IEEE80211_OFDM_RATE_6MB_MASK:
3872                 return 6000000;
3873         case IEEE80211_OFDM_RATE_9MB_MASK:
3874                 return 9000000;
3875         case IEEE80211_CCK_RATE_11MB_MASK:
3876                 return 11000000;
3877         case IEEE80211_OFDM_RATE_12MB_MASK:
3878                 return 12000000;
3879         case IEEE80211_OFDM_RATE_18MB_MASK:
3880                 return 18000000;
3881         case IEEE80211_OFDM_RATE_24MB_MASK:
3882                 return 24000000;
3883         case IEEE80211_OFDM_RATE_36MB_MASK:
3884                 return 36000000;
3885         case IEEE80211_OFDM_RATE_48MB_MASK:
3886                 return 48000000;
3887         case IEEE80211_OFDM_RATE_54MB_MASK:
3888                 return 54000000;
3889         }
3890
3891         if (priv->ieee->mode == IEEE_B)
3892                 return 11000000;
3893         else
3894                 return 54000000;
3895 }
3896
3897 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3898 {
3899         u32 rate, len = sizeof(rate);
3900         int err;
3901
3902         if (!(priv->status & STATUS_ASSOCIATED))
3903                 return 0;
3904
3905         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3906                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3907                                       &len);
3908                 if (err) {
3909                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3910                         return 0;
3911                 }
3912         } else
3913                 return ipw_get_max_rate(priv);
3914
3915         switch (rate) {
3916         case IPW_TX_RATE_1MB:
3917                 return 1000000;
3918         case IPW_TX_RATE_2MB:
3919                 return 2000000;
3920         case IPW_TX_RATE_5MB:
3921                 return 5500000;
3922         case IPW_TX_RATE_6MB:
3923                 return 6000000;
3924         case IPW_TX_RATE_9MB:
3925                 return 9000000;
3926         case IPW_TX_RATE_11MB:
3927                 return 11000000;
3928         case IPW_TX_RATE_12MB:
3929                 return 12000000;
3930         case IPW_TX_RATE_18MB:
3931                 return 18000000;
3932         case IPW_TX_RATE_24MB:
3933                 return 24000000;
3934         case IPW_TX_RATE_36MB:
3935                 return 36000000;
3936         case IPW_TX_RATE_48MB:
3937                 return 48000000;
3938         case IPW_TX_RATE_54MB:
3939                 return 54000000;
3940         }
3941
3942         return 0;
3943 }
3944
3945 #define IPW_STATS_INTERVAL (2 * HZ)
3946 static void ipw_gather_stats(struct ipw_priv *priv)
3947 {
3948         u32 rx_err, rx_err_delta, rx_packets_delta;
3949         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3950         u32 missed_beacons_percent, missed_beacons_delta;
3951         u32 quality = 0;
3952         u32 len = sizeof(u32);
3953         s16 rssi;
3954         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3955             rate_quality;
3956         u32 max_rate;
3957
3958         if (!(priv->status & STATUS_ASSOCIATED)) {
3959                 priv->quality = 0;
3960                 return;
3961         }
3962
3963         /* Update the statistics */
3964         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3965                         &priv->missed_beacons, &len);
3966         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3967         priv->last_missed_beacons = priv->missed_beacons;
3968         if (priv->assoc_request.beacon_interval) {
3969                 missed_beacons_percent = missed_beacons_delta *
3970                     (HZ * priv->assoc_request.beacon_interval) /
3971                     (IPW_STATS_INTERVAL * 10);
3972         } else {
3973                 missed_beacons_percent = 0;
3974         }
3975         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3976
3977         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3978         rx_err_delta = rx_err - priv->last_rx_err;
3979         priv->last_rx_err = rx_err;
3980
3981         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3982         tx_failures_delta = tx_failures - priv->last_tx_failures;
3983         priv->last_tx_failures = tx_failures;
3984
3985         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3986         priv->last_rx_packets = priv->rx_packets;
3987
3988         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
3989         priv->last_tx_packets = priv->tx_packets;
3990
3991         /* Calculate quality based on the following:
3992          *
3993          * Missed beacon: 100% = 0, 0% = 70% missed
3994          * Rate: 60% = 1Mbs, 100% = Max
3995          * Rx and Tx errors represent a straight % of total Rx/Tx
3996          * RSSI: 100% = > -50,  0% = < -80
3997          * Rx errors: 100% = 0, 0% = 50% missed
3998          *
3999          * The lowest computed quality is used.
4000          *
4001          */
4002 #define BEACON_THRESHOLD 5
4003         beacon_quality = 100 - missed_beacons_percent;
4004         if (beacon_quality < BEACON_THRESHOLD)
4005                 beacon_quality = 0;
4006         else
4007                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4008                     (100 - BEACON_THRESHOLD);
4009         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4010                         beacon_quality, missed_beacons_percent);
4011
4012         priv->last_rate = ipw_get_current_rate(priv);
4013         max_rate = ipw_get_max_rate(priv);
4014         rate_quality = priv->last_rate * 40 / max_rate + 60;
4015         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4016                         rate_quality, priv->last_rate / 1000000);
4017
4018         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4019                 rx_quality = 100 - (rx_err_delta * 100) /
4020                     (rx_packets_delta + rx_err_delta);
4021         else
4022                 rx_quality = 100;
4023         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4024                         rx_quality, rx_err_delta, rx_packets_delta);
4025
4026         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4027                 tx_quality = 100 - (tx_failures_delta * 100) /
4028                     (tx_packets_delta + tx_failures_delta);
4029         else
4030                 tx_quality = 100;
4031         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4032                         tx_quality, tx_failures_delta, tx_packets_delta);
4033
4034         rssi = average_value(&priv->average_rssi);
4035         signal_quality =
4036             (100 *
4037              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4038              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4039              (priv->ieee->perfect_rssi - rssi) *
4040              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4041               62 * (priv->ieee->perfect_rssi - rssi))) /
4042             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4043              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4044         if (signal_quality > 100)
4045                 signal_quality = 100;
4046         else if (signal_quality < 1)
4047                 signal_quality = 0;
4048
4049         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4050                         signal_quality, rssi);
4051
4052         quality = min(beacon_quality,
4053                       min(rate_quality,
4054                           min(tx_quality, min(rx_quality, signal_quality))));
4055         if (quality == beacon_quality)
4056                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4057                                 quality);
4058         if (quality == rate_quality)
4059                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4060                                 quality);
4061         if (quality == tx_quality)
4062                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4063                                 quality);
4064         if (quality == rx_quality)
4065                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4066                                 quality);
4067         if (quality == signal_quality)
4068                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4069                                 quality);
4070
4071         priv->quality = quality;
4072
4073         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4074                            IPW_STATS_INTERVAL);
4075 }
4076
4077 static void ipw_bg_gather_stats(void *data)
4078 {
4079         struct ipw_priv *priv = data;
4080         down(&priv->sem);
4081         ipw_gather_stats(data);
4082         up(&priv->sem);
4083 }
4084
4085 static inline void ipw_handle_missed_beacon(struct ipw_priv *priv,
4086                                             int missed_count)
4087 {
4088         priv->notif_missed_beacons = missed_count;
4089
4090         if (missed_count > priv->disassociate_threshold &&
4091             priv->status & STATUS_ASSOCIATED) {
4092                 /* If associated and we've hit the missed
4093                  * beacon threshold, disassociate, turn
4094                  * off roaming, and abort any active scans */
4095                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4096                           IPW_DL_STATE | IPW_DL_ASSOC,
4097                           "Missed beacon: %d - disassociate\n", missed_count);
4098                 priv->status &= ~STATUS_ROAMING;
4099                 if (priv->status & STATUS_SCANNING) {
4100                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4101                                   IPW_DL_STATE,
4102                                   "Aborting scan with missed beacon.\n");
4103                         queue_work(priv->workqueue, &priv->abort_scan);
4104                 }
4105
4106                 queue_work(priv->workqueue, &priv->disassociate);
4107                 return;
4108         }
4109
4110         if (priv->status & STATUS_ROAMING) {
4111                 /* If we are currently roaming, then just
4112                  * print a debug statement... */
4113                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4114                           "Missed beacon: %d - roam in progress\n",
4115                           missed_count);
4116                 return;
4117         }
4118
4119         if (missed_count > priv->roaming_threshold) {
4120                 /* If we are not already roaming, set the ROAM
4121                  * bit in the status and kick off a scan */
4122                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4123                           "Missed beacon: %d - initiate "
4124                           "roaming\n", missed_count);
4125                 if (!(priv->status & STATUS_ROAMING)) {
4126                         priv->status |= STATUS_ROAMING;
4127                         if (!(priv->status & STATUS_SCANNING))
4128                                 queue_work(priv->workqueue,
4129                                            &priv->request_scan);
4130                 }
4131                 return;
4132         }
4133
4134         if (priv->status & STATUS_SCANNING) {
4135                 /* Stop scan to keep fw from getting
4136                  * stuck (only if we aren't roaming --
4137                  * otherwise we'll never scan more than 2 or 3
4138                  * channels..) */
4139                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4140                           "Aborting scan with missed beacon.\n");
4141                 queue_work(priv->workqueue, &priv->abort_scan);
4142         }
4143
4144         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4145
4146 }
4147
4148 /**
4149  * Handle host notification packet.
4150  * Called from interrupt routine
4151  */
4152 static inline void ipw_rx_notification(struct ipw_priv *priv,
4153                                        struct ipw_rx_notification *notif)
4154 {
4155         notif->size = le16_to_cpu(notif->size);
4156
4157         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4158
4159         switch (notif->subtype) {
4160         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4161                         struct notif_association *assoc = &notif->u.assoc;
4162
4163                         switch (assoc->state) {
4164                         case CMAS_ASSOCIATED:{
4165                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4166                                                   IPW_DL_ASSOC,
4167                                                   "associated: '%s' " MAC_FMT
4168                                                   " \n",
4169                                                   escape_essid(priv->essid,
4170                                                                priv->essid_len),
4171                                                   MAC_ARG(priv->bssid));
4172
4173                                         switch (priv->ieee->iw_mode) {
4174                                         case IW_MODE_INFRA:
4175                                                 memcpy(priv->ieee->bssid,
4176                                                        priv->bssid, ETH_ALEN);
4177                                                 break;
4178
4179                                         case IW_MODE_ADHOC:
4180                                                 memcpy(priv->ieee->bssid,
4181                                                        priv->bssid, ETH_ALEN);
4182
4183                                                 /* clear out the station table */
4184                                                 priv->num_stations = 0;
4185
4186                                                 IPW_DEBUG_ASSOC
4187                                                     ("queueing adhoc check\n");
4188                                                 queue_delayed_work(priv->
4189                                                                    workqueue,
4190                                                                    &priv->
4191                                                                    adhoc_check,
4192                                                                    priv->
4193                                                                    assoc_request.
4194                                                                    beacon_interval);
4195                                                 break;
4196                                         }
4197
4198                                         priv->status &= ~STATUS_ASSOCIATING;
4199                                         priv->status |= STATUS_ASSOCIATED;
4200                                         queue_work(priv->workqueue,
4201                                                    &priv->system_config);
4202
4203 #ifdef CONFIG_IPW_QOS
4204 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4205                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4206                                         if ((priv->status & STATUS_AUTH) &&
4207                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4208                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4209                                                 if ((sizeof
4210                                                      (struct
4211                                                       ieee80211_assoc_response)
4212                                                      <= notif->size)
4213                                                     && (notif->size <= 2314)) {
4214                                                         struct
4215                                                         ieee80211_rx_stats
4216                                                             stats = {
4217                                                                 .len =
4218                                                                     notif->
4219                                                                     size - 1,
4220                                                         };
4221
4222                                                         IPW_DEBUG_QOS
4223                                                             ("QoS Associate "
4224                                                              "size %d\n",
4225                                                              notif->size);
4226                                                         ieee80211_rx_mgt(priv->
4227                                                                          ieee,
4228                                                                          (struct
4229                                                                           ieee80211_hdr_4addr
4230                                                                           *)
4231                                                                          &notif->u.raw, &stats);
4232                                                 }
4233                                         }
4234 #endif
4235
4236                                         schedule_work(&priv->link_up);
4237
4238                                         break;
4239                                 }
4240
4241                         case CMAS_AUTHENTICATED:{
4242                                         if (priv->
4243                                             status & (STATUS_ASSOCIATED |
4244                                                       STATUS_AUTH)) {
4245 #ifdef CONFIG_IPW_DEBUG
4246                                                 struct notif_authenticate *auth
4247                                                     = &notif->u.auth;
4248                                                 IPW_DEBUG(IPW_DL_NOTIF |
4249                                                           IPW_DL_STATE |
4250                                                           IPW_DL_ASSOC,
4251                                                           "deauthenticated: '%s' "
4252                                                           MAC_FMT
4253                                                           ": (0x%04X) - %s \n",
4254                                                           escape_essid(priv->
4255                                                                        essid,
4256                                                                        priv->
4257                                                                        essid_len),
4258                                                           MAC_ARG(priv->bssid),
4259                                                           ntohs(auth->status),
4260                                                           ipw_get_status_code
4261                                                           (ntohs
4262                                                            (auth->status)));
4263 #endif
4264
4265                                                 priv->status &=
4266                                                     ~(STATUS_ASSOCIATING |
4267                                                       STATUS_AUTH |
4268                                                       STATUS_ASSOCIATED);
4269
4270                                                 schedule_work(&priv->link_down);
4271                                                 break;
4272                                         }
4273
4274                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4275                                                   IPW_DL_ASSOC,
4276                                                   "authenticated: '%s' " MAC_FMT
4277                                                   "\n",
4278                                                   escape_essid(priv->essid,
4279                                                                priv->essid_len),
4280                                                   MAC_ARG(priv->bssid));
4281                                         break;
4282                                 }
4283
4284                         case CMAS_INIT:{
4285                                         if (priv->status & STATUS_AUTH) {
4286                                                 struct
4287                                                     ieee80211_assoc_response
4288                                                 *resp;
4289                                                 resp =
4290                                                     (struct
4291                                                      ieee80211_assoc_response
4292                                                      *)&notif->u.raw;
4293                                                 IPW_DEBUG(IPW_DL_NOTIF |
4294                                                           IPW_DL_STATE |
4295                                                           IPW_DL_ASSOC,
4296                                                           "association failed (0x%04X): %s\n",
4297                                                           ntohs(resp->status),
4298                                                           ipw_get_status_code
4299                                                           (ntohs
4300                                                            (resp->status)));
4301                                         }
4302
4303                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4304                                                   IPW_DL_ASSOC,
4305                                                   "disassociated: '%s' " MAC_FMT
4306                                                   " \n",
4307                                                   escape_essid(priv->essid,
4308                                                                priv->essid_len),
4309                                                   MAC_ARG(priv->bssid));
4310
4311                                         priv->status &=
4312                                             ~(STATUS_DISASSOCIATING |
4313                                               STATUS_ASSOCIATING |
4314                                               STATUS_ASSOCIATED | STATUS_AUTH);
4315                                         if (priv->assoc_network
4316                                             && (priv->assoc_network->
4317                                                 capability &
4318                                                 WLAN_CAPABILITY_IBSS))
4319                                                 ipw_remove_current_network
4320                                                     (priv);
4321
4322                                         schedule_work(&priv->link_down);
4323
4324                                         break;
4325                                 }
4326
4327                         case CMAS_RX_ASSOC_RESP:
4328                                 break;
4329
4330                         default:
4331                                 IPW_ERROR("assoc: unknown (%d)\n",
4332                                           assoc->state);
4333                                 break;
4334                         }
4335
4336                         break;
4337                 }
4338
4339         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4340                         struct notif_authenticate *auth = &notif->u.auth;
4341                         switch (auth->state) {
4342                         case CMAS_AUTHENTICATED:
4343                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4344                                           "authenticated: '%s' " MAC_FMT " \n",
4345                                           escape_essid(priv->essid,
4346                                                        priv->essid_len),
4347                                           MAC_ARG(priv->bssid));
4348                                 priv->status |= STATUS_AUTH;
4349                                 break;
4350
4351                         case CMAS_INIT:
4352                                 if (priv->status & STATUS_AUTH) {
4353                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4354                                                   IPW_DL_ASSOC,
4355                                                   "authentication failed (0x%04X): %s\n",
4356                                                   ntohs(auth->status),
4357                                                   ipw_get_status_code(ntohs
4358                                                                       (auth->
4359                                                                        status)));
4360                                 }
4361                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4362                                           IPW_DL_ASSOC,
4363                                           "deauthenticated: '%s' " MAC_FMT "\n",
4364                                           escape_essid(priv->essid,
4365                                                        priv->essid_len),
4366                                           MAC_ARG(priv->bssid));
4367
4368                                 priv->status &= ~(STATUS_ASSOCIATING |
4369                                                   STATUS_AUTH |
4370                                                   STATUS_ASSOCIATED);
4371
4372                                 schedule_work(&priv->link_down);
4373                                 break;
4374
4375                         case CMAS_TX_AUTH_SEQ_1:
4376                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4377                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4378                                 break;
4379                         case CMAS_RX_AUTH_SEQ_2:
4380                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4381                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4382                                 break;
4383                         case CMAS_AUTH_SEQ_1_PASS:
4384                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4385                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4386                                 break;
4387                         case CMAS_AUTH_SEQ_1_FAIL:
4388                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4389                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4390                                 break;
4391                         case CMAS_TX_AUTH_SEQ_3:
4392                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4393                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4394                                 break;
4395                         case CMAS_RX_AUTH_SEQ_4:
4396                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4397                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4398                                 break;
4399                         case CMAS_AUTH_SEQ_2_PASS:
4400                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4401                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4402                                 break;
4403                         case CMAS_AUTH_SEQ_2_FAIL:
4404                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4405                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4406                                 break;
4407                         case CMAS_TX_ASSOC:
4408                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4409                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4410                                 break;
4411                         case CMAS_RX_ASSOC_RESP:
4412                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4414
4415                                 break;
4416                         case CMAS_ASSOCIATED:
4417                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4418                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4419                                 break;
4420                         default:
4421                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4422                                                 auth->state);
4423                                 break;
4424                         }
4425                         break;
4426                 }
4427
4428         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4429                         struct notif_channel_result *x =
4430                             &notif->u.channel_result;
4431
4432                         if (notif->size == sizeof(*x)) {
4433                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4434                                                x->channel_num);
4435                         } else {
4436                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4437                                                "(should be %zd)\n",
4438                                                notif->size, sizeof(*x));
4439                         }
4440                         break;
4441                 }
4442
4443         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4444                         struct notif_scan_complete *x = &notif->u.scan_complete;
4445                         if (notif->size == sizeof(*x)) {
4446                                 IPW_DEBUG_SCAN
4447                                     ("Scan completed: type %d, %d channels, "
4448                                      "%d status\n", x->scan_type,
4449                                      x->num_channels, x->status);
4450                         } else {
4451                                 IPW_ERROR("Scan completed of wrong size %d "
4452                                           "(should be %zd)\n",
4453                                           notif->size, sizeof(*x));
4454                         }
4455
4456                         priv->status &=
4457                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4458
4459                         wake_up_interruptible(&priv->wait_state);
4460                         cancel_delayed_work(&priv->scan_check);
4461
4462                         if (priv->status & STATUS_EXIT_PENDING)
4463                                 break;
4464
4465                         priv->ieee->scans++;
4466
4467 #ifdef CONFIG_IPW2200_MONITOR
4468                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4469                                 priv->status |= STATUS_SCAN_FORCED;
4470                                 queue_work(priv->workqueue,
4471                                            &priv->request_scan);
4472                                 break;
4473                         }
4474                         priv->status &= ~STATUS_SCAN_FORCED;
4475 #endif                          /* CONFIG_IPW2200_MONITOR */
4476
4477                         if (!(priv->status & (STATUS_ASSOCIATED |
4478                                               STATUS_ASSOCIATING |
4479                                               STATUS_ROAMING |
4480                                               STATUS_DISASSOCIATING)))
4481                                 queue_work(priv->workqueue, &priv->associate);
4482                         else if (priv->status & STATUS_ROAMING) {
4483                                 /* If a scan completed and we are in roam mode, then
4484                                  * the scan that completed was the one requested as a
4485                                  * result of entering roam... so, schedule the
4486                                  * roam work */
4487                                 queue_work(priv->workqueue, &priv->roam);
4488                         } else if (priv->status & STATUS_SCAN_PENDING)
4489                                 queue_work(priv->workqueue,
4490                                            &priv->request_scan);
4491                         else if (priv->config & CFG_BACKGROUND_SCAN
4492                                  && priv->status & STATUS_ASSOCIATED)
4493                                 queue_delayed_work(priv->workqueue,
4494                                                    &priv->request_scan, HZ);
4495                         break;
4496                 }
4497
4498         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4499                         struct notif_frag_length *x = &notif->u.frag_len;
4500
4501                         if (notif->size == sizeof(*x))
4502                                 IPW_ERROR("Frag length: %d\n",
4503                                           le16_to_cpu(x->frag_length));
4504                         else
4505                                 IPW_ERROR("Frag length of wrong size %d "
4506                                           "(should be %zd)\n",
4507                                           notif->size, sizeof(*x));
4508                         break;
4509                 }
4510
4511         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4512                         struct notif_link_deterioration *x =
4513                             &notif->u.link_deterioration;
4514
4515                         if (notif->size == sizeof(*x)) {
4516                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4517                                           "link deterioration: '%s' " MAC_FMT
4518                                           " \n", escape_essid(priv->essid,
4519                                                               priv->essid_len),
4520                                           MAC_ARG(priv->bssid));
4521                                 memcpy(&priv->last_link_deterioration, x,
4522                                        sizeof(*x));
4523                         } else {
4524                                 IPW_ERROR("Link Deterioration of wrong size %d "
4525                                           "(should be %zd)\n",
4526                                           notif->size, sizeof(*x));
4527                         }
4528                         break;
4529                 }
4530
4531         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4532                         IPW_ERROR("Dino config\n");
4533                         if (priv->hcmd
4534                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4535                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4536
4537                         break;
4538                 }
4539
4540         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4541                         struct notif_beacon_state *x = &notif->u.beacon_state;
4542                         if (notif->size != sizeof(*x)) {
4543                                 IPW_ERROR
4544                                     ("Beacon state of wrong size %d (should "
4545                                      "be %zd)\n", notif->size, sizeof(*x));
4546                                 break;
4547                         }
4548
4549                         if (le32_to_cpu(x->state) ==
4550                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4551                                 ipw_handle_missed_beacon(priv,
4552                                                          le32_to_cpu(x->
4553                                                                      number));
4554
4555                         break;
4556                 }
4557
4558         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4559                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4560                         if (notif->size == sizeof(*x)) {
4561                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4562                                           "0x%02x station %d\n",
4563                                           x->key_state, x->security_type,
4564                                           x->station_index);
4565                                 break;
4566                         }
4567
4568                         IPW_ERROR
4569                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4570                              notif->size, sizeof(*x));
4571                         break;
4572                 }
4573
4574         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4575                         struct notif_calibration *x = &notif->u.calibration;
4576
4577                         if (notif->size == sizeof(*x)) {
4578                                 memcpy(&priv->calib, x, sizeof(*x));
4579                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4580                                 break;
4581                         }
4582
4583                         IPW_ERROR
4584                             ("Calibration of wrong size %d (should be %zd)\n",
4585                              notif->size, sizeof(*x));
4586                         break;
4587                 }
4588
4589         case HOST_NOTIFICATION_NOISE_STATS:{
4590                         if (notif->size == sizeof(u32)) {
4591                                 priv->last_noise =
4592                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4593                                           0xff);
4594                                 average_add(&priv->average_noise,
4595                                             priv->last_noise);
4596                                 break;
4597                         }
4598
4599                         IPW_ERROR
4600                             ("Noise stat is wrong size %d (should be %zd)\n",
4601                              notif->size, sizeof(u32));
4602                         break;
4603                 }
4604
4605         default:
4606                 IPW_ERROR("Unknown notification: "
4607                           "subtype=%d,flags=0x%2x,size=%d\n",
4608                           notif->subtype, notif->flags, notif->size);
4609         }
4610 }
4611
4612 /**
4613  * Destroys all DMA structures and initialise them again
4614  *
4615  * @param priv
4616  * @return error code
4617  */
4618 static int ipw_queue_reset(struct ipw_priv *priv)
4619 {
4620         int rc = 0;
4621         /** @todo customize queue sizes */
4622         int nTx = 64, nTxCmd = 8;
4623         ipw_tx_queue_free(priv);
4624         /* Tx CMD queue */
4625         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4626                                IPW_TX_CMD_QUEUE_READ_INDEX,
4627                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4628                                IPW_TX_CMD_QUEUE_BD_BASE,
4629                                IPW_TX_CMD_QUEUE_BD_SIZE);
4630         if (rc) {
4631                 IPW_ERROR("Tx Cmd queue init failed\n");
4632                 goto error;
4633         }
4634         /* Tx queue(s) */
4635         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4636                                IPW_TX_QUEUE_0_READ_INDEX,
4637                                IPW_TX_QUEUE_0_WRITE_INDEX,
4638                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4639         if (rc) {
4640                 IPW_ERROR("Tx 0 queue init failed\n");
4641                 goto error;
4642         }
4643         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4644                                IPW_TX_QUEUE_1_READ_INDEX,
4645                                IPW_TX_QUEUE_1_WRITE_INDEX,
4646                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4647         if (rc) {
4648                 IPW_ERROR("Tx 1 queue init failed\n");
4649                 goto error;
4650         }
4651         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4652                                IPW_TX_QUEUE_2_READ_INDEX,
4653                                IPW_TX_QUEUE_2_WRITE_INDEX,
4654                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4655         if (rc) {
4656                 IPW_ERROR("Tx 2 queue init failed\n");
4657                 goto error;
4658         }
4659         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4660                                IPW_TX_QUEUE_3_READ_INDEX,
4661                                IPW_TX_QUEUE_3_WRITE_INDEX,
4662                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4663         if (rc) {
4664                 IPW_ERROR("Tx 3 queue init failed\n");
4665                 goto error;
4666         }
4667         /* statistics */
4668         priv->rx_bufs_min = 0;
4669         priv->rx_pend_max = 0;
4670         return rc;
4671
4672       error:
4673         ipw_tx_queue_free(priv);
4674         return rc;
4675 }
4676
4677 /**
4678  * Reclaim Tx queue entries no more used by NIC.
4679  *
4680  * When FW adwances 'R' index, all entries between old and
4681  * new 'R' index need to be reclaimed. As result, some free space
4682  * forms. If there is enough free space (> low mark), wake Tx queue.
4683  *
4684  * @note Need to protect against garbage in 'R' index
4685  * @param priv
4686  * @param txq
4687  * @param qindex
4688  * @return Number of used entries remains in the queue
4689  */
4690 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4691                                 struct clx2_tx_queue *txq, int qindex)
4692 {
4693         u32 hw_tail;
4694         int used;
4695         struct clx2_queue *q = &txq->q;
4696
4697         hw_tail = ipw_read32(priv, q->reg_r);
4698         if (hw_tail >= q->n_bd) {
4699                 IPW_ERROR
4700                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4701                      hw_tail, q->n_bd);
4702                 goto done;
4703         }
4704         for (; q->last_used != hw_tail;
4705              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4706                 ipw_queue_tx_free_tfd(priv, txq);
4707                 priv->tx_packets++;
4708         }
4709       done:
4710         if ((ipw_queue_space(q) > q->low_mark) &&
4711             (qindex >= 0) &&
4712             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4713                 netif_wake_queue(priv->net_dev);
4714         used = q->first_empty - q->last_used;
4715         if (used < 0)
4716                 used += q->n_bd;
4717
4718         return used;
4719 }
4720
4721 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4722                              int len, int sync)
4723 {
4724         struct clx2_tx_queue *txq = &priv->txq_cmd;
4725         struct clx2_queue *q = &txq->q;
4726         struct tfd_frame *tfd;
4727
4728         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4729                 IPW_ERROR("No space for Tx\n");
4730                 return -EBUSY;
4731         }
4732
4733         tfd = &txq->bd[q->first_empty];
4734         txq->txb[q->first_empty] = NULL;
4735
4736         memset(tfd, 0, sizeof(*tfd));
4737         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4738         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4739         priv->hcmd_seq++;
4740         tfd->u.cmd.index = hcmd;
4741         tfd->u.cmd.length = len;
4742         memcpy(tfd->u.cmd.payload, buf, len);
4743         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4744         ipw_write32(priv, q->reg_w, q->first_empty);
4745         _ipw_read32(priv, 0x90);
4746
4747         return 0;
4748 }
4749
4750 /*
4751  * Rx theory of operation
4752  *
4753  * The host allocates 32 DMA target addresses and passes the host address
4754  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4755  * 0 to 31
4756  *
4757  * Rx Queue Indexes
4758  * The host/firmware share two index registers for managing the Rx buffers.
4759  *
4760  * The READ index maps to the first position that the firmware may be writing
4761  * to -- the driver can read up to (but not including) this position and get
4762  * good data.
4763  * The READ index is managed by the firmware once the card is enabled.
4764  *
4765  * The WRITE index maps to the last position the driver has read from -- the
4766  * position preceding WRITE is the last slot the firmware can place a packet.
4767  *
4768  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4769  * WRITE = READ.
4770  *
4771  * During initialization the host sets up the READ queue position to the first
4772  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4773  *
4774  * When the firmware places a packet in a buffer it will advance the READ index
4775  * and fire the RX interrupt.  The driver can then query the READ index and
4776  * process as many packets as possible, moving the WRITE index forward as it
4777  * resets the Rx queue buffers with new memory.
4778  *
4779  * The management in the driver is as follows:
4780  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4781  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4782  *   to replensish the ipw->rxq->rx_free.
4783  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4784  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4785  *   'processed' and 'read' driver indexes as well)
4786  * + A received packet is processed and handed to the kernel network stack,
4787  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4788  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4789  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4790  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4791  *   were enough free buffers and RX_STALLED is set it is cleared.
4792  *
4793  *
4794  * Driver sequence:
4795  *
4796  * ipw_rx_queue_alloc()       Allocates rx_free
4797  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4798  *                            ipw_rx_queue_restock
4799  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4800  *                            queue, updates firmware pointers, and updates
4801  *                            the WRITE index.  If insufficient rx_free buffers
4802  *                            are available, schedules ipw_rx_queue_replenish
4803  *
4804  * -- enable interrupts --
4805  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4806  *                            READ INDEX, detaching the SKB from the pool.
4807  *                            Moves the packet buffer from queue to rx_used.
4808  *                            Calls ipw_rx_queue_restock to refill any empty
4809  *                            slots.
4810  * ...
4811  *
4812  */
4813
4814 /*
4815  * If there are slots in the RX queue that  need to be restocked,
4816  * and we have free pre-allocated buffers, fill the ranks as much
4817  * as we can pulling from rx_free.
4818  *
4819  * This moves the 'write' index forward to catch up with 'processed', and
4820  * also updates the memory address in the firmware to reference the new
4821  * target buffer.
4822  */
4823 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4824 {
4825         struct ipw_rx_queue *rxq = priv->rxq;
4826         struct list_head *element;
4827         struct ipw_rx_mem_buffer *rxb;
4828         unsigned long flags;
4829         int write;
4830
4831         spin_lock_irqsave(&rxq->lock, flags);
4832         write = rxq->write;
4833         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4834                 element = rxq->rx_free.next;
4835                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4836                 list_del(element);
4837
4838                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4839                             rxb->dma_addr);
4840                 rxq->queue[rxq->write] = rxb;
4841                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4842                 rxq->free_count--;
4843         }
4844         spin_unlock_irqrestore(&rxq->lock, flags);
4845
4846         /* If the pre-allocated buffer pool is dropping low, schedule to
4847          * refill it */
4848         if (rxq->free_count <= RX_LOW_WATERMARK)
4849                 queue_work(priv->workqueue, &priv->rx_replenish);
4850
4851         /* If we've added more space for the firmware to place data, tell it */
4852         if (write != rxq->write)
4853                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4854 }
4855
4856 /*
4857  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4858  * Also restock the Rx queue via ipw_rx_queue_restock.
4859  *
4860  * This is called as a scheduled work item (except for during intialization)
4861  */
4862 static void ipw_rx_queue_replenish(void *data)
4863 {
4864         struct ipw_priv *priv = data;
4865         struct ipw_rx_queue *rxq = priv->rxq;
4866         struct list_head *element;
4867         struct ipw_rx_mem_buffer *rxb;
4868         unsigned long flags;
4869
4870         spin_lock_irqsave(&rxq->lock, flags);
4871         while (!list_empty(&rxq->rx_used)) {
4872                 element = rxq->rx_used.next;
4873                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4874                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4875                 if (!rxb->skb) {
4876                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4877                                priv->net_dev->name);
4878                         /* We don't reschedule replenish work here -- we will
4879                          * call the restock method and if it still needs
4880                          * more buffers it will schedule replenish */
4881                         break;
4882                 }
4883                 list_del(element);
4884
4885                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4886                 rxb->dma_addr =
4887                     pci_map_single(priv->pci_dev, rxb->skb->data,
4888                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4889
4890                 list_add_tail(&rxb->list, &rxq->rx_free);
4891                 rxq->free_count++;
4892         }
4893         spin_unlock_irqrestore(&rxq->lock, flags);
4894
4895         ipw_rx_queue_restock(priv);
4896 }
4897
4898 static void ipw_bg_rx_queue_replenish(void *data)
4899 {
4900         struct ipw_priv *priv = data;
4901         down(&priv->sem);
4902         ipw_rx_queue_replenish(data);
4903         up(&priv->sem);
4904 }
4905
4906 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4907  * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4908  * This free routine walks the list of POOL entries and if SKB is set to
4909  * non NULL it is unmapped and freed
4910  */
4911 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4912 {
4913         int i;
4914
4915         if (!rxq)
4916                 return;
4917
4918         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4919                 if (rxq->pool[i].skb != NULL) {
4920                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4921                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4922                         dev_kfree_skb(rxq->pool[i].skb);
4923                 }
4924         }
4925
4926         kfree(rxq);
4927 }
4928
4929 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4930 {
4931         struct ipw_rx_queue *rxq;
4932         int i;
4933
4934         rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
4935         if (unlikely(!rxq)) {
4936                 IPW_ERROR("memory allocation failed\n");
4937                 return NULL;
4938         }
4939         memset(rxq, 0, sizeof(*rxq));
4940         spin_lock_init(&rxq->lock);
4941         INIT_LIST_HEAD(&rxq->rx_free);
4942         INIT_LIST_HEAD(&rxq->rx_used);
4943
4944         /* Fill the rx_used queue with _all_ of the Rx buffers */
4945         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4946                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4947
4948         /* Set us so that we have processed and used all buffers, but have
4949          * not restocked the Rx queue with fresh buffers */
4950         rxq->read = rxq->write = 0;
4951         rxq->processed = RX_QUEUE_SIZE - 1;
4952         rxq->free_count = 0;
4953
4954         return rxq;
4955 }
4956
4957 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4958 {
4959         rate &= ~IEEE80211_BASIC_RATE_MASK;
4960         if (ieee_mode == IEEE_A) {
4961                 switch (rate) {
4962                 case IEEE80211_OFDM_RATE_6MB:
4963                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4964                             1 : 0;
4965                 case IEEE80211_OFDM_RATE_9MB:
4966                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4967                             1 : 0;
4968                 case IEEE80211_OFDM_RATE_12MB:
4969                         return priv->
4970                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4971                 case IEEE80211_OFDM_RATE_18MB:
4972                         return priv->
4973                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4974                 case IEEE80211_OFDM_RATE_24MB:
4975                         return priv->
4976                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4977                 case IEEE80211_OFDM_RATE_36MB:
4978                         return priv->
4979                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4980                 case IEEE80211_OFDM_RATE_48MB:
4981                         return priv->
4982                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4983                 case IEEE80211_OFDM_RATE_54MB:
4984                         return priv->
4985                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4986                 default:
4987                         return 0;
4988                 }
4989         }
4990
4991         /* B and G mixed */
4992         switch (rate) {
4993         case IEEE80211_CCK_RATE_1MB:
4994                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
4995         case IEEE80211_CCK_RATE_2MB:
4996                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
4997         case IEEE80211_CCK_RATE_5MB:
4998                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
4999         case IEEE80211_CCK_RATE_11MB:
5000                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5001         }
5002
5003         /* If we are limited to B modulations, bail at this point */
5004         if (ieee_mode == IEEE_B)
5005                 return 0;
5006
5007         /* G */
5008         switch (rate) {
5009         case IEEE80211_OFDM_RATE_6MB:
5010                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5011         case IEEE80211_OFDM_RATE_9MB:
5012                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5013         case IEEE80211_OFDM_RATE_12MB:
5014                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5015         case IEEE80211_OFDM_RATE_18MB:
5016                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5017         case IEEE80211_OFDM_RATE_24MB:
5018                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5019         case IEEE80211_OFDM_RATE_36MB:
5020                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5021         case IEEE80211_OFDM_RATE_48MB:
5022                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5023         case IEEE80211_OFDM_RATE_54MB:
5024                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5025         }
5026
5027         return 0;
5028 }
5029
5030 static int ipw_compatible_rates(struct ipw_priv *priv,
5031                                 const struct ieee80211_network *network,
5032                                 struct ipw_supported_rates *rates)
5033 {
5034         int num_rates, i;
5035
5036         memset(rates, 0, sizeof(*rates));
5037         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5038         rates->num_rates = 0;
5039         for (i = 0; i < num_rates; i++) {
5040                 if (!ipw_is_rate_in_mask(priv, network->mode,
5041                                          network->rates[i])) {
5042
5043                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5044                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5045                                                "rate %02X\n",
5046                                                network->rates[i]);
5047                                 rates->supported_rates[rates->num_rates++] =
5048                                     network->rates[i];
5049                                 continue;
5050                         }
5051
5052                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5053                                        network->rates[i], priv->rates_mask);
5054                         continue;
5055                 }
5056
5057                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5058         }
5059
5060         num_rates = min(network->rates_ex_len,
5061                         (u8) (IPW_MAX_RATES - num_rates));
5062         for (i = 0; i < num_rates; i++) {
5063                 if (!ipw_is_rate_in_mask(priv, network->mode,
5064                                          network->rates_ex[i])) {
5065                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5066                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5067                                                "rate %02X\n",
5068                                                network->rates_ex[i]);
5069                                 rates->supported_rates[rates->num_rates++] =
5070                                     network->rates[i];
5071                                 continue;
5072                         }
5073
5074                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5075                                        network->rates_ex[i], priv->rates_mask);
5076                         continue;
5077                 }
5078
5079                 rates->supported_rates[rates->num_rates++] =
5080                     network->rates_ex[i];
5081         }
5082
5083         return 1;
5084 }
5085
5086 static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
5087                                   const struct ipw_supported_rates *src)
5088 {
5089         u8 i;
5090         for (i = 0; i < src->num_rates; i++)
5091                 dest->supported_rates[i] = src->supported_rates[i];
5092         dest->num_rates = src->num_rates;
5093 }
5094
5095 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5096  * mask should ever be used -- right now all callers to add the scan rates are
5097  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5098 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5099                                    u8 modulation, u32 rate_mask)
5100 {
5101         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5102             IEEE80211_BASIC_RATE_MASK : 0;
5103
5104         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5105                 rates->supported_rates[rates->num_rates++] =
5106                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5107
5108         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5109                 rates->supported_rates[rates->num_rates++] =
5110                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5111
5112         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5113                 rates->supported_rates[rates->num_rates++] = basic_mask |
5114                     IEEE80211_CCK_RATE_5MB;
5115
5116         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5117                 rates->supported_rates[rates->num_rates++] = basic_mask |
5118                     IEEE80211_CCK_RATE_11MB;
5119 }
5120
5121 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5122                                     u8 modulation, u32 rate_mask)
5123 {
5124         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5125             IEEE80211_BASIC_RATE_MASK : 0;
5126
5127         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5128                 rates->supported_rates[rates->num_rates++] = basic_mask |
5129                     IEEE80211_OFDM_RATE_6MB;
5130
5131         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5132                 rates->supported_rates[rates->num_rates++] =
5133                     IEEE80211_OFDM_RATE_9MB;
5134
5135         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5136                 rates->supported_rates[rates->num_rates++] = basic_mask |
5137                     IEEE80211_OFDM_RATE_12MB;
5138
5139         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5140                 rates->supported_rates[rates->num_rates++] =
5141                     IEEE80211_OFDM_RATE_18MB;
5142
5143         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5144                 rates->supported_rates[rates->num_rates++] = basic_mask |
5145                     IEEE80211_OFDM_RATE_24MB;
5146
5147         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5148                 rates->supported_rates[rates->num_rates++] =
5149                     IEEE80211_OFDM_RATE_36MB;
5150
5151         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5152                 rates->supported_rates[rates->num_rates++] =
5153                     IEEE80211_OFDM_RATE_48MB;
5154
5155         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5156                 rates->supported_rates[rates->num_rates++] =
5157                     IEEE80211_OFDM_RATE_54MB;
5158 }
5159
5160 struct ipw_network_match {
5161         struct ieee80211_network *network;
5162         struct ipw_supported_rates rates;
5163 };
5164
5165 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5166                                   struct ipw_network_match *match,
5167                                   struct ieee80211_network *network,
5168                                   int roaming)
5169 {
5170         struct ipw_supported_rates rates;
5171
5172         /* Verify that this network's capability is compatible with the
5173          * current mode (AdHoc or Infrastructure) */
5174         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5175              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5176                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5177                                 "capability mismatch.\n",
5178                                 escape_essid(network->ssid, network->ssid_len),
5179                                 MAC_ARG(network->bssid));
5180                 return 0;
5181         }
5182
5183         /* If we do not have an ESSID for this AP, we can not associate with
5184          * it */
5185         if (network->flags & NETWORK_EMPTY_ESSID) {
5186                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5187                                 "because of hidden ESSID.\n",
5188                                 escape_essid(network->ssid, network->ssid_len),
5189                                 MAC_ARG(network->bssid));
5190                 return 0;
5191         }
5192
5193         if (unlikely(roaming)) {
5194                 /* If we are roaming, then ensure check if this is a valid
5195                  * network to try and roam to */
5196                 if ((network->ssid_len != match->network->ssid_len) ||
5197                     memcmp(network->ssid, match->network->ssid,
5198                            network->ssid_len)) {
5199                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5200                                         "because of non-network ESSID.\n",
5201                                         escape_essid(network->ssid,
5202                                                      network->ssid_len),
5203                                         MAC_ARG(network->bssid));
5204                         return 0;
5205                 }
5206         } else {
5207                 /* If an ESSID has been configured then compare the broadcast
5208                  * ESSID to ours */
5209                 if ((priv->config & CFG_STATIC_ESSID) &&
5210                     ((network->ssid_len != priv->essid_len) ||
5211                      memcmp(network->ssid, priv->essid,
5212                             min(network->ssid_len, priv->essid_len)))) {
5213                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5214
5215                         strncpy(escaped,
5216                                 escape_essid(network->ssid, network->ssid_len),
5217                                 sizeof(escaped));
5218                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5219                                         "because of ESSID mismatch: '%s'.\n",
5220                                         escaped, MAC_ARG(network->bssid),
5221                                         escape_essid(priv->essid,
5222                                                      priv->essid_len));
5223                         return 0;
5224                 }
5225         }
5226
5227         /* If the old network rate is better than this one, don't bother
5228          * testing everything else. */
5229
5230         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5231                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5232                                 "current network.\n",
5233                                 escape_essid(match->network->ssid,
5234                                              match->network->ssid_len));
5235                 return 0;
5236         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5237                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5238                                 "current network.\n",
5239                                 escape_essid(match->network->ssid,
5240                                              match->network->ssid_len));
5241                 return 0;
5242         }
5243
5244         /* Now go through and see if the requested network is valid... */
5245         if (priv->ieee->scan_age != 0 &&
5246             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5247                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5248                                 "because of age: %lums.\n",
5249                                 escape_essid(network->ssid, network->ssid_len),
5250                                 MAC_ARG(network->bssid),
5251                                 1000 * (jiffies - network->last_scanned) / HZ);
5252                 return 0;
5253         }
5254
5255         if ((priv->config & CFG_STATIC_CHANNEL) &&
5256             (network->channel != priv->channel)) {
5257                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5258                                 "because of channel mismatch: %d != %d.\n",
5259                                 escape_essid(network->ssid, network->ssid_len),
5260                                 MAC_ARG(network->bssid),
5261                                 network->channel, priv->channel);
5262                 return 0;
5263         }
5264
5265         /* Verify privacy compatability */
5266         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5267             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5268                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5269                                 "because of privacy mismatch: %s != %s.\n",
5270                                 escape_essid(network->ssid, network->ssid_len),
5271                                 MAC_ARG(network->bssid),
5272                                 priv->
5273                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5274                                 network->
5275                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5276                                 "off");
5277                 return 0;
5278         }
5279
5280         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5281                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5282                                 "because of the same BSSID match: " MAC_FMT
5283                                 ".\n", escape_essid(network->ssid,
5284                                                     network->ssid_len),
5285                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5286                 return 0;
5287         }
5288
5289         /* Filter out any incompatible freq / mode combinations */
5290         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5291                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5292                                 "because of invalid frequency/mode "
5293                                 "combination.\n",
5294                                 escape_essid(network->ssid, network->ssid_len),
5295                                 MAC_ARG(network->bssid));
5296                 return 0;
5297         }
5298
5299         /* Ensure that the rates supported by the driver are compatible with
5300          * this AP, including verification of basic rates (mandatory) */
5301         if (!ipw_compatible_rates(priv, network, &rates)) {
5302                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5303                                 "because configured rate mask excludes "
5304                                 "AP mandatory rate.\n",
5305                                 escape_essid(network->ssid, network->ssid_len),
5306                                 MAC_ARG(network->bssid));
5307                 return 0;
5308         }
5309
5310         if (rates.num_rates == 0) {
5311                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5312                                 "because of no compatible rates.\n",
5313                                 escape_essid(network->ssid, network->ssid_len),
5314                                 MAC_ARG(network->bssid));
5315                 return 0;
5316         }
5317
5318         /* TODO: Perform any further minimal comparititive tests.  We do not
5319          * want to put too much policy logic here; intelligent scan selection
5320          * should occur within a generic IEEE 802.11 user space tool.  */
5321
5322         /* Set up 'new' AP to this network */
5323         ipw_copy_rates(&match->rates, &rates);
5324         match->network = network;
5325         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5326                         escape_essid(network->ssid, network->ssid_len),
5327                         MAC_ARG(network->bssid));
5328
5329         return 1;
5330 }
5331
5332 static void ipw_merge_adhoc_network(void *data)
5333 {
5334         struct ipw_priv *priv = data;
5335         struct ieee80211_network *network = NULL;
5336         struct ipw_network_match match = {
5337                 .network = priv->assoc_network
5338         };
5339
5340         if ((priv->status & STATUS_ASSOCIATED) &&
5341             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5342                 /* First pass through ROAM process -- look for a better
5343                  * network */
5344                 unsigned long flags;
5345
5346                 spin_lock_irqsave(&priv->ieee->lock, flags);
5347                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5348                         if (network != priv->assoc_network)
5349                                 ipw_find_adhoc_network(priv, &match, network,
5350                                                        1);
5351                 }
5352                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5353
5354                 if (match.network == priv->assoc_network) {
5355                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5356                                         "merge to.\n");
5357                         return;
5358                 }
5359
5360                 down(&priv->sem);
5361                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5362                         IPW_DEBUG_MERGE("remove network %s\n",
5363                                         escape_essid(priv->essid,
5364                                                      priv->essid_len));
5365                         ipw_remove_current_network(priv);
5366                 }
5367
5368                 ipw_disassociate(priv);
5369                 priv->assoc_network = match.network;
5370                 up(&priv->sem);
5371                 return;
5372         }
5373 }
5374
5375 static int ipw_best_network(struct ipw_priv *priv,
5376                             struct ipw_network_match *match,
5377                             struct ieee80211_network *network, int roaming)
5378 {
5379         struct ipw_supported_rates rates;
5380
5381         /* Verify that this network's capability is compatible with the
5382          * current mode (AdHoc or Infrastructure) */
5383         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5384              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5385             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5386              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5387                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5388                                 "capability mismatch.\n",
5389                                 escape_essid(network->ssid, network->ssid_len),
5390                                 MAC_ARG(network->bssid));
5391                 return 0;
5392         }
5393
5394         /* If we do not have an ESSID for this AP, we can not associate with
5395          * it */
5396         if (network->flags & NETWORK_EMPTY_ESSID) {
5397                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5398                                 "because of hidden ESSID.\n",
5399                                 escape_essid(network->ssid, network->ssid_len),
5400                                 MAC_ARG(network->bssid));
5401                 return 0;
5402         }
5403
5404         if (unlikely(roaming)) {
5405                 /* If we are roaming, then ensure check if this is a valid
5406                  * network to try and roam to */
5407                 if ((network->ssid_len != match->network->ssid_len) ||
5408                     memcmp(network->ssid, match->network->ssid,
5409                            network->ssid_len)) {
5410                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5411                                         "because of non-network ESSID.\n",
5412                                         escape_essid(network->ssid,
5413                                                      network->ssid_len),
5414                                         MAC_ARG(network->bssid));
5415                         return 0;
5416                 }
5417         } else {
5418                 /* If an ESSID has been configured then compare the broadcast
5419                  * ESSID to ours */
5420                 if ((priv->config & CFG_STATIC_ESSID) &&
5421                     ((network->ssid_len != priv->essid_len) ||
5422                      memcmp(network->ssid, priv->essid,
5423                             min(network->ssid_len, priv->essid_len)))) {
5424                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5425                         strncpy(escaped,
5426                                 escape_essid(network->ssid, network->ssid_len),
5427                                 sizeof(escaped));
5428                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5429                                         "because of ESSID mismatch: '%s'.\n",
5430                                         escaped, MAC_ARG(network->bssid),
5431                                         escape_essid(priv->essid,
5432                                                      priv->essid_len));
5433                         return 0;
5434                 }
5435         }
5436
5437         /* If the old network rate is better than this one, don't bother
5438          * testing everything else. */
5439         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5440                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5441                 strncpy(escaped,
5442                         escape_essid(network->ssid, network->ssid_len),
5443                         sizeof(escaped));
5444                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5445                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5446                                 escaped, MAC_ARG(network->bssid),
5447                                 escape_essid(match->network->ssid,
5448                                              match->network->ssid_len),
5449                                 MAC_ARG(match->network->bssid));
5450                 return 0;
5451         }
5452
5453         /* If this network has already had an association attempt within the
5454          * last 3 seconds, do not try and associate again... */
5455         if (network->last_associate &&
5456             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5457                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5458                                 "because of storming (%lus since last "
5459                                 "assoc attempt).\n",
5460                                 escape_essid(network->ssid, network->ssid_len),
5461                                 MAC_ARG(network->bssid),
5462                                 (jiffies - network->last_associate) / HZ);
5463                 return 0;
5464         }
5465
5466         /* Now go through and see if the requested network is valid... */
5467         if (priv->ieee->scan_age != 0 &&
5468             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5469                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5470                                 "because of age: %lums.\n",
5471                                 escape_essid(network->ssid, network->ssid_len),
5472                                 MAC_ARG(network->bssid),
5473                                 1000 * (jiffies - network->last_scanned) / HZ);
5474                 return 0;
5475         }
5476
5477         if ((priv->config & CFG_STATIC_CHANNEL) &&
5478             (network->channel != priv->channel)) {
5479                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5480                                 "because of channel mismatch: %d != %d.\n",
5481                                 escape_essid(network->ssid, network->ssid_len),
5482                                 MAC_ARG(network->bssid),
5483                                 network->channel, priv->channel);
5484                 return 0;
5485         }
5486
5487         /* Verify privacy compatability */
5488         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5489             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5490                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5491                                 "because of privacy mismatch: %s != %s.\n",
5492                                 escape_essid(network->ssid, network->ssid_len),
5493                                 MAC_ARG(network->bssid),
5494                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5495                                 "off",
5496                                 network->capability &
5497                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5498                 return 0;
5499         }
5500
5501         if (!priv->ieee->wpa_enabled && (network->wpa_ie_len > 0 ||
5502                                          network->rsn_ie_len > 0)) {
5503                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5504                                 "because of WPA capability mismatch.\n",
5505                                 escape_essid(network->ssid, network->ssid_len),
5506                                 MAC_ARG(network->bssid));
5507                 return 0;
5508         }
5509
5510         if ((priv->config & CFG_STATIC_BSSID) &&
5511             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5512                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5513                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5514                                 escape_essid(network->ssid, network->ssid_len),
5515                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5516                 return 0;
5517         }
5518
5519         /* Filter out any incompatible freq / mode combinations */
5520         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5521                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5522                                 "because of invalid frequency/mode "
5523                                 "combination.\n",
5524                                 escape_essid(network->ssid, network->ssid_len),
5525                                 MAC_ARG(network->bssid));
5526                 return 0;
5527         }
5528
5529         /* Filter out invalid channel in current GEO */
5530         if (!ipw_is_valid_channel(priv->ieee, network->channel)) {
5531                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5532                                 "because of invalid channel in current GEO\n",
5533                                 escape_essid(network->ssid, network->ssid_len),
5534                                 MAC_ARG(network->bssid));
5535                 return 0;
5536         }
5537
5538         /* Ensure that the rates supported by the driver are compatible with
5539          * this AP, including verification of basic rates (mandatory) */
5540         if (!ipw_compatible_rates(priv, network, &rates)) {
5541                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5542                                 "because configured rate mask excludes "
5543                                 "AP mandatory rate.\n",
5544                                 escape_essid(network->ssid, network->ssid_len),
5545                                 MAC_ARG(network->bssid));
5546                 return 0;
5547         }
5548
5549         if (rates.num_rates == 0) {
5550                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5551                                 "because of no compatible rates.\n",
5552                                 escape_essid(network->ssid, network->ssid_len),
5553                                 MAC_ARG(network->bssid));
5554                 return 0;
5555         }
5556
5557         /* TODO: Perform any further minimal comparititive tests.  We do not
5558          * want to put too much policy logic here; intelligent scan selection
5559          * should occur within a generic IEEE 802.11 user space tool.  */
5560
5561         /* Set up 'new' AP to this network */
5562         ipw_copy_rates(&match->rates, &rates);
5563         match->network = network;
5564
5565         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5566                         escape_essid(network->ssid, network->ssid_len),
5567                         MAC_ARG(network->bssid));
5568
5569         return 1;
5570 }
5571
5572 static void ipw_adhoc_create(struct ipw_priv *priv,
5573                              struct ieee80211_network *network)
5574 {
5575         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
5576         int i;
5577
5578         /*
5579          * For the purposes of scanning, we can set our wireless mode
5580          * to trigger scans across combinations of bands, but when it
5581          * comes to creating a new ad-hoc network, we have tell the FW
5582          * exactly which band to use.
5583          *
5584          * We also have the possibility of an invalid channel for the
5585          * chossen band.  Attempting to create a new ad-hoc network
5586          * with an invalid channel for wireless mode will trigger a
5587          * FW fatal error.
5588          *
5589          */
5590         switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
5591         case IEEE80211_52GHZ_BAND:
5592                 network->mode = IEEE_A;
5593                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5594                 if (i == -1)
5595                         BUG();
5596                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5597                         IPW_WARNING("Overriding invalid channel\n");
5598                         priv->channel = geo->a[0].channel;
5599                 }
5600                 break;
5601
5602         case IEEE80211_24GHZ_BAND:
5603                 if (priv->ieee->mode & IEEE_G)
5604                         network->mode = IEEE_G;
5605                 else
5606                         network->mode = IEEE_B;
5607                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5608                 if (i == -1)
5609                         BUG();
5610                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5611                         IPW_WARNING("Overriding invalid channel\n");
5612                         priv->channel = geo->bg[0].channel;
5613                 }
5614                 break;
5615
5616         default:
5617                 IPW_WARNING("Overriding invalid channel\n");
5618                 if (priv->ieee->mode & IEEE_A) {
5619                         network->mode = IEEE_A;
5620                         priv->channel = geo->a[0].channel;
5621                 } else if (priv->ieee->mode & IEEE_G) {
5622                         network->mode = IEEE_G;
5623                         priv->channel = geo->bg[0].channel;
5624                 } else {
5625                         network->mode = IEEE_B;
5626                         priv->channel = geo->bg[0].channel;
5627                 }
5628                 break;
5629         }
5630
5631         network->channel = priv->channel;
5632         priv->config |= CFG_ADHOC_PERSIST;
5633         ipw_create_bssid(priv, network->bssid);
5634         network->ssid_len = priv->essid_len;
5635         memcpy(network->ssid, priv->essid, priv->essid_len);
5636         memset(&network->stats, 0, sizeof(network->stats));
5637         network->capability = WLAN_CAPABILITY_IBSS;
5638         if (!(priv->config & CFG_PREAMBLE_LONG))
5639                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5640         if (priv->capability & CAP_PRIVACY_ON)
5641                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5642         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5643         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5644         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5645         memcpy(network->rates_ex,
5646                &priv->rates.supported_rates[network->rates_len],
5647                network->rates_ex_len);
5648         network->last_scanned = 0;
5649         network->flags = 0;
5650         network->last_associate = 0;
5651         network->time_stamp[0] = 0;
5652         network->time_stamp[1] = 0;
5653         network->beacon_interval = 100; /* Default */
5654         network->listen_interval = 10;  /* Default */
5655         network->atim_window = 0;       /* Default */
5656         network->wpa_ie_len = 0;
5657         network->rsn_ie_len = 0;
5658 }
5659
5660 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5661 {
5662         struct ipw_tgi_tx_key *key;
5663         struct host_cmd cmd = {
5664                 .cmd = IPW_CMD_TGI_TX_KEY,
5665                 .len = sizeof(*key)
5666         };
5667
5668         if (!(priv->ieee->sec.flags & (1 << index)))
5669                 return;
5670
5671         key = (struct ipw_tgi_tx_key *)&cmd.param;
5672         key->key_id = index;
5673         memcpy(key->key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5674         key->security_type = type;
5675         key->station_index = 0; /* always 0 for BSS */
5676         key->flags = 0;
5677         /* 0 for new key; previous value of counter (after fatal error) */
5678         key->tx_counter[0] = 0;
5679         key->tx_counter[1] = 0;
5680
5681         ipw_send_cmd(priv, &cmd);
5682 }
5683
5684 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5685 {
5686         struct ipw_wep_key *key;
5687         int i;
5688         struct host_cmd cmd = {
5689                 .cmd = IPW_CMD_WEP_KEY,
5690                 .len = sizeof(*key)
5691         };
5692
5693         key = (struct ipw_wep_key *)&cmd.param;
5694         key->cmd_id = DINO_CMD_WEP_KEY;
5695         key->seq_num = 0;
5696
5697         /* Note: AES keys cannot be set for multiple times.
5698          * Only set it at the first time. */
5699         for (i = 0; i < 4; i++) {
5700                 key->key_index = i | type;
5701                 if (!(priv->ieee->sec.flags & (1 << i))) {
5702                         key->key_size = 0;
5703                         continue;
5704                 }
5705
5706                 key->key_size = priv->ieee->sec.key_sizes[i];
5707                 memcpy(key->key, priv->ieee->sec.keys[i], key->key_size);
5708
5709                 ipw_send_cmd(priv, &cmd);
5710         }
5711 }
5712
5713 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5714 {
5715         if (priv->ieee->host_encrypt)
5716                 return;
5717
5718         switch (level) {
5719         case SEC_LEVEL_3:
5720                 priv->sys_config.disable_unicast_decryption = 0;
5721                 priv->ieee->host_decrypt = 0;
5722                 break;
5723         case SEC_LEVEL_2:
5724                 priv->sys_config.disable_unicast_decryption = 1;
5725                 priv->ieee->host_decrypt = 1;
5726                 break;
5727         case SEC_LEVEL_1:
5728                 priv->sys_config.disable_unicast_decryption = 0;
5729                 priv->ieee->host_decrypt = 0;
5730                 break;
5731         case SEC_LEVEL_0:
5732                 priv->sys_config.disable_unicast_decryption = 1;
5733                 break;
5734         default:
5735                 break;
5736         }
5737 }
5738
5739 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5740 {
5741         if (priv->ieee->host_encrypt)
5742                 return;
5743
5744         switch (level) {
5745         case SEC_LEVEL_3:
5746                 priv->sys_config.disable_multicast_decryption = 0;
5747                 break;
5748         case SEC_LEVEL_2:
5749                 priv->sys_config.disable_multicast_decryption = 1;
5750                 break;
5751         case SEC_LEVEL_1:
5752                 priv->sys_config.disable_multicast_decryption = 0;
5753                 break;
5754         case SEC_LEVEL_0:
5755                 priv->sys_config.disable_multicast_decryption = 1;
5756                 break;
5757         default:
5758                 break;
5759         }
5760 }
5761
5762 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5763 {
5764         switch (priv->ieee->sec.level) {
5765         case SEC_LEVEL_3:
5766                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5767                         ipw_send_tgi_tx_key(priv,
5768                                             DCT_FLAG_EXT_SECURITY_CCM,
5769                                             priv->ieee->sec.active_key);
5770
5771                 if (!priv->ieee->host_mc_decrypt)
5772                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5773                 break;
5774         case SEC_LEVEL_2:
5775                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5776                         ipw_send_tgi_tx_key(priv,
5777                                             DCT_FLAG_EXT_SECURITY_TKIP,
5778                                             priv->ieee->sec.active_key);
5779                 break;
5780         case SEC_LEVEL_1:
5781                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5782                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5783                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5784                 break;
5785         case SEC_LEVEL_0:
5786         default:
5787                 break;
5788         }
5789 }
5790
5791 static void ipw_adhoc_check(void *data)
5792 {
5793         struct ipw_priv *priv = data;
5794
5795         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5796             !(priv->config & CFG_ADHOC_PERSIST)) {
5797                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5798                           IPW_DL_STATE | IPW_DL_ASSOC,
5799                           "Missed beacon: %d - disassociate\n",
5800                           priv->missed_adhoc_beacons);
5801                 ipw_remove_current_network(priv);
5802                 ipw_disassociate(priv);
5803                 return;
5804         }
5805
5806         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5807                            priv->assoc_request.beacon_interval);
5808 }
5809
5810 static void ipw_bg_adhoc_check(void *data)
5811 {
5812         struct ipw_priv *priv = data;
5813         down(&priv->sem);
5814         ipw_adhoc_check(data);
5815         up(&priv->sem);
5816 }
5817
5818 #ifdef CONFIG_IPW_DEBUG
5819 static void ipw_debug_config(struct ipw_priv *priv)
5820 {
5821         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5822                        "[CFG 0x%08X]\n", priv->config);
5823         if (priv->config & CFG_STATIC_CHANNEL)
5824                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5825         else
5826                 IPW_DEBUG_INFO("Channel unlocked.\n");
5827         if (priv->config & CFG_STATIC_ESSID)
5828                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5829                                escape_essid(priv->essid, priv->essid_len));
5830         else
5831                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5832         if (priv->config & CFG_STATIC_BSSID)
5833                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5834                                MAC_ARG(priv->bssid));
5835         else
5836                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5837         if (priv->capability & CAP_PRIVACY_ON)
5838                 IPW_DEBUG_INFO("PRIVACY on\n");
5839         else
5840                 IPW_DEBUG_INFO("PRIVACY off\n");
5841         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5842 }
5843 #else
5844 #define ipw_debug_config(x) do {} while (0)
5845 #endif
5846
5847 static inline void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5848 {
5849         /* TODO: Verify that this works... */
5850         struct ipw_fixed_rate fr = {
5851                 .tx_rates = priv->rates_mask
5852         };
5853         u32 reg;
5854         u16 mask = 0;
5855
5856         /* Identify 'current FW band' and match it with the fixed
5857          * Tx rates */
5858
5859         switch (priv->ieee->freq_band) {
5860         case IEEE80211_52GHZ_BAND:      /* A only */
5861                 /* IEEE_A */
5862                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5863                         /* Invalid fixed rate mask */
5864                         IPW_DEBUG_WX
5865                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5866                         fr.tx_rates = 0;
5867                         break;
5868                 }
5869
5870                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5871                 break;
5872
5873         default:                /* 2.4Ghz or Mixed */
5874                 /* IEEE_B */
5875                 if (mode == IEEE_B) {
5876                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5877                                 /* Invalid fixed rate mask */
5878                                 IPW_DEBUG_WX
5879                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5880                                 fr.tx_rates = 0;
5881                         }
5882                         break;
5883                 }
5884
5885                 /* IEEE_G */
5886                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5887                                     IEEE80211_OFDM_RATES_MASK)) {
5888                         /* Invalid fixed rate mask */
5889                         IPW_DEBUG_WX
5890                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5891                         fr.tx_rates = 0;
5892                         break;
5893                 }
5894
5895                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5896                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5897                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5898                 }
5899
5900                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5901                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5902                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5903                 }
5904
5905                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5906                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5907                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5908                 }
5909
5910                 fr.tx_rates |= mask;
5911                 break;
5912         }
5913
5914         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5915         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5916 }
5917
5918 static void ipw_abort_scan(struct ipw_priv *priv)
5919 {
5920         int err;
5921
5922         if (priv->status & STATUS_SCAN_ABORTING) {
5923                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5924                 return;
5925         }
5926         priv->status |= STATUS_SCAN_ABORTING;
5927
5928         err = ipw_send_scan_abort(priv);
5929         if (err)
5930                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5931 }
5932
5933 static void ipw_add_scan_channels(struct ipw_priv *priv,
5934                                   struct ipw_scan_request_ext *scan,
5935                                   int scan_type)
5936 {
5937         int channel_index = 0;
5938         const struct ieee80211_geo *geo;
5939         int i;
5940
5941         geo = ipw_get_geo(priv->ieee);
5942
5943         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5944                 int start = channel_index;
5945                 for (i = 0; i < geo->a_channels; i++) {
5946                         if ((priv->status & STATUS_ASSOCIATED) &&
5947                             geo->a[i].channel == priv->channel)
5948                                 continue;
5949                         channel_index++;
5950                         scan->channels_list[channel_index] = geo->a[i].channel;
5951                         ipw_set_scan_type(scan, channel_index,
5952                                           geo->a[i].
5953                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5954                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5955                                           scan_type);
5956                 }
5957
5958                 if (start != channel_index) {
5959                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5960                             (channel_index - start);
5961                         channel_index++;
5962                 }
5963         }
5964
5965         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5966                 int start = channel_index;
5967                 if (priv->config & CFG_SPEED_SCAN) {
5968                         int index;
5969                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5970                                 /* nop out the list */
5971                                 [0] = 0
5972                         };
5973
5974                         u8 channel;
5975                         while (channel_index < IPW_SCAN_CHANNELS) {
5976                                 channel =
5977                                     priv->speed_scan[priv->speed_scan_pos];
5978                                 if (channel == 0) {
5979                                         priv->speed_scan_pos = 0;
5980                                         channel = priv->speed_scan[0];
5981                                 }
5982                                 if ((priv->status & STATUS_ASSOCIATED) &&
5983                                     channel == priv->channel) {
5984                                         priv->speed_scan_pos++;
5985                                         continue;
5986                                 }
5987
5988                                 /* If this channel has already been
5989                                  * added in scan, break from loop
5990                                  * and this will be the first channel
5991                                  * in the next scan.
5992                                  */
5993                                 if (channels[channel - 1] != 0)
5994                                         break;
5995
5996                                 channels[channel - 1] = 1;
5997                                 priv->speed_scan_pos++;
5998                                 channel_index++;
5999                                 scan->channels_list[channel_index] = channel;
6000                                 index =
6001                                     ipw_channel_to_index(priv->ieee, channel);
6002                                 ipw_set_scan_type(scan, channel_index,
6003                                                   geo->bg[index].
6004                                                   flags &
6005                                                   IEEE80211_CH_PASSIVE_ONLY ?
6006                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6007                                                   : scan_type);
6008                         }
6009                 } else {
6010                         for (i = 0; i < geo->bg_channels; i++) {
6011                                 if ((priv->status & STATUS_ASSOCIATED) &&
6012                                     geo->bg[i].channel == priv->channel)
6013                                         continue;
6014                                 channel_index++;
6015                                 scan->channels_list[channel_index] =
6016                                     geo->bg[i].channel;
6017                                 ipw_set_scan_type(scan, channel_index,
6018                                                   geo->bg[i].
6019                                                   flags &
6020                                                   IEEE80211_CH_PASSIVE_ONLY ?
6021                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6022                                                   : scan_type);
6023                         }
6024                 }
6025
6026                 if (start != channel_index) {
6027                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6028                             (channel_index - start);
6029                 }
6030         }
6031 }
6032
6033 static int ipw_request_scan(struct ipw_priv *priv)
6034 {
6035         struct ipw_scan_request_ext scan;
6036         int err = 0, scan_type;
6037
6038         if (!(priv->status & STATUS_INIT) ||
6039             (priv->status & STATUS_EXIT_PENDING))
6040                 return 0;
6041
6042         down(&priv->sem);
6043
6044         if (priv->status & STATUS_SCANNING) {
6045                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6046                 priv->status |= STATUS_SCAN_PENDING;
6047                 goto done;
6048         }
6049
6050         if (!(priv->status & STATUS_SCAN_FORCED) &&
6051             priv->status & STATUS_SCAN_ABORTING) {
6052                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6053                 priv->status |= STATUS_SCAN_PENDING;
6054                 goto done;
6055         }
6056
6057         if (priv->status & STATUS_RF_KILL_MASK) {
6058                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6059                 priv->status |= STATUS_SCAN_PENDING;
6060                 goto done;
6061         }
6062
6063         memset(&scan, 0, sizeof(scan));
6064
6065         if (priv->config & CFG_SPEED_SCAN)
6066                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6067                     cpu_to_le16(30);
6068         else
6069                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6070                     cpu_to_le16(20);
6071
6072         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6073             cpu_to_le16(20);
6074         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6075
6076         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6077
6078 #ifdef CONFIG_IPW2200_MONITOR
6079         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6080                 u8 channel;
6081                 u8 band = 0;
6082
6083                 switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
6084                 case IEEE80211_52GHZ_BAND:
6085                         band = (u8) (IPW_A_MODE << 6) | 1;
6086                         channel = priv->channel;
6087                         break;
6088
6089                 case IEEE80211_24GHZ_BAND:
6090                         band = (u8) (IPW_B_MODE << 6) | 1;
6091                         channel = priv->channel;
6092                         break;
6093
6094                 default:
6095                         band = (u8) (IPW_B_MODE << 6) | 1;
6096                         channel = 9;
6097                         break;
6098                 }
6099
6100                 scan.channels_list[0] = band;
6101                 scan.channels_list[1] = channel;
6102                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6103
6104                 /* NOTE:  The card will sit on this channel for this time
6105                  * period.  Scan aborts are timing sensitive and frequently
6106                  * result in firmware restarts.  As such, it is best to
6107                  * set a small dwell_time here and just keep re-issuing
6108                  * scans.  Otherwise fast channel hopping will not actually
6109                  * hop channels.
6110                  *
6111                  * TODO: Move SPEED SCAN support to all modes and bands */
6112                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6113                     cpu_to_le16(2000);
6114         } else {
6115 #endif                          /* CONFIG_IPW2200_MONITOR */
6116                 /* If we are roaming, then make this a directed scan for the
6117                  * current network.  Otherwise, ensure that every other scan
6118                  * is a fast channel hop scan */
6119                 if ((priv->status & STATUS_ROAMING)
6120                     || (!(priv->status & STATUS_ASSOCIATED)
6121                         && (priv->config & CFG_STATIC_ESSID)
6122                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6123                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6124                         if (err) {
6125                                 IPW_DEBUG_HC("Attempt to send SSID command "
6126                                              "failed.\n");
6127                                 goto done;
6128                         }
6129
6130                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6131                 } else
6132                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6133
6134                 ipw_add_scan_channels(priv, &scan, scan_type);
6135 #ifdef CONFIG_IPW2200_MONITOR
6136         }
6137 #endif
6138
6139         err = ipw_send_scan_request_ext(priv, &scan);
6140         if (err) {
6141                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6142                 goto done;
6143         }
6144
6145         priv->status |= STATUS_SCANNING;
6146         priv->status &= ~STATUS_SCAN_PENDING;
6147         queue_delayed_work(priv->workqueue, &priv->scan_check,
6148                            IPW_SCAN_CHECK_WATCHDOG);
6149       done:
6150         up(&priv->sem);
6151         return err;
6152 }
6153
6154 static void ipw_bg_abort_scan(void *data)
6155 {
6156         struct ipw_priv *priv = data;
6157         down(&priv->sem);
6158         ipw_abort_scan(data);
6159         up(&priv->sem);
6160 }
6161
6162 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6163 {
6164         /* This is called when wpa_supplicant loads and closes the driver
6165          * interface. */
6166         priv->ieee->wpa_enabled = value;
6167         return 0;
6168 }
6169
6170 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6171 {
6172         struct ieee80211_device *ieee = priv->ieee;
6173         struct ieee80211_security sec = {
6174                 .flags = SEC_AUTH_MODE,
6175         };
6176         int ret = 0;
6177
6178         if (value & IW_AUTH_ALG_SHARED_KEY) {
6179                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6180                 ieee->open_wep = 0;
6181         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6182                 sec.auth_mode = WLAN_AUTH_OPEN;
6183                 ieee->open_wep = 1;
6184         } else
6185                 return -EINVAL;
6186
6187         if (ieee->set_security)
6188                 ieee->set_security(ieee->dev, &sec);
6189         else
6190                 ret = -EOPNOTSUPP;
6191
6192         return ret;
6193 }
6194
6195 void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, int wpa_ie_len)
6196 {
6197         /* make sure WPA is enabled */
6198         ipw_wpa_enable(priv, 1);
6199
6200         ipw_disassociate(priv);
6201 }
6202
6203 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6204                             char *capabilities, int length)
6205 {
6206         struct host_cmd cmd = {
6207                 .cmd = IPW_CMD_RSN_CAPABILITIES,
6208                 .len = length,
6209         };
6210
6211         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6212
6213         memcpy(cmd.param, capabilities, length);
6214         return ipw_send_cmd(priv, &cmd);
6215 }
6216
6217 /*
6218  * WE-18 support
6219  */
6220
6221 /* SIOCSIWGENIE */
6222 static int ipw_wx_set_genie(struct net_device *dev,
6223                             struct iw_request_info *info,
6224                             union iwreq_data *wrqu, char *extra)
6225 {
6226         struct ipw_priv *priv = ieee80211_priv(dev);
6227         struct ieee80211_device *ieee = priv->ieee;
6228         u8 *buf;
6229         int err = 0;
6230
6231         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6232             (wrqu->data.length && extra == NULL))
6233                 return -EINVAL;
6234
6235         //down(&priv->sem);
6236
6237         //if (!ieee->wpa_enabled) {
6238         //      err = -EOPNOTSUPP;
6239         //      goto out;
6240         //}
6241
6242         if (wrqu->data.length) {
6243                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6244                 if (buf == NULL) {
6245                         err = -ENOMEM;
6246                         goto out;
6247                 }
6248
6249                 memcpy(buf, extra, wrqu->data.length);
6250                 kfree(ieee->wpa_ie);
6251                 ieee->wpa_ie = buf;
6252                 ieee->wpa_ie_len = wrqu->data.length;
6253         } else {
6254                 kfree(ieee->wpa_ie);
6255                 ieee->wpa_ie = NULL;
6256                 ieee->wpa_ie_len = 0;
6257         }
6258
6259         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6260       out:
6261         //up(&priv->sem);
6262         return err;
6263 }
6264
6265 /* SIOCGIWGENIE */
6266 static int ipw_wx_get_genie(struct net_device *dev,
6267                             struct iw_request_info *info,
6268                             union iwreq_data *wrqu, char *extra)
6269 {
6270         struct ipw_priv *priv = ieee80211_priv(dev);
6271         struct ieee80211_device *ieee = priv->ieee;
6272         int err = 0;
6273
6274         //down(&priv->sem);
6275
6276         //if (!ieee->wpa_enabled) {
6277         //      err = -EOPNOTSUPP;
6278         //      goto out;
6279         //}
6280
6281         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6282                 wrqu->data.length = 0;
6283                 goto out;
6284         }
6285
6286         if (wrqu->data.length < ieee->wpa_ie_len) {
6287                 err = -E2BIG;
6288                 goto out;
6289         }
6290
6291         wrqu->data.length = ieee->wpa_ie_len;
6292         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6293
6294       out:
6295         //up(&priv->sem);
6296         return err;
6297 }
6298
6299 static int wext_cipher2level(int cipher)
6300 {
6301         switch (cipher) {
6302         case IW_AUTH_CIPHER_NONE:
6303                 return SEC_LEVEL_0;
6304         case IW_AUTH_CIPHER_WEP40:
6305         case IW_AUTH_CIPHER_WEP104:
6306                 return SEC_LEVEL_1;
6307         case IW_AUTH_CIPHER_TKIP:
6308                 return SEC_LEVEL_2;
6309         case IW_AUTH_CIPHER_CCMP:
6310                 return SEC_LEVEL_3;
6311         default:
6312                 return -1;
6313         }
6314 }
6315
6316 /* SIOCSIWAUTH */
6317 static int ipw_wx_set_auth(struct net_device *dev,
6318                            struct iw_request_info *info,
6319                            union iwreq_data *wrqu, char *extra)
6320 {
6321         struct ipw_priv *priv = ieee80211_priv(dev);
6322         struct ieee80211_device *ieee = priv->ieee;
6323         struct iw_param *param = &wrqu->param;
6324         struct ieee80211_crypt_data *crypt;
6325         unsigned long flags;
6326         int ret = 0;
6327
6328         switch (param->flags & IW_AUTH_INDEX) {
6329         case IW_AUTH_WPA_VERSION:
6330                 break;
6331         case IW_AUTH_CIPHER_PAIRWISE:
6332                 ipw_set_hw_decrypt_unicast(priv,
6333                                            wext_cipher2level(param->value));
6334                 break;
6335         case IW_AUTH_CIPHER_GROUP:
6336                 ipw_set_hw_decrypt_multicast(priv,
6337                                              wext_cipher2level(param->value));
6338                 break;
6339         case IW_AUTH_KEY_MGMT:
6340                 /*
6341                  * ipw2200 does not use these parameters
6342                  */
6343                 break;
6344
6345         case IW_AUTH_TKIP_COUNTERMEASURES:
6346                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6347                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
6348                         IPW_WARNING("Can't set TKIP countermeasures: "
6349                                     "crypt not set!\n");
6350                         break;
6351                 }
6352
6353                 flags = crypt->ops->get_flags(crypt->priv);
6354
6355                 if (param->value)
6356                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6357                 else
6358                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6359
6360                 crypt->ops->set_flags(flags, crypt->priv);
6361
6362                 break;
6363
6364         case IW_AUTH_DROP_UNENCRYPTED:{
6365                         /* HACK:
6366                          *
6367                          * wpa_supplicant calls set_wpa_enabled when the driver
6368                          * is loaded and unloaded, regardless of if WPA is being
6369                          * used.  No other calls are made which can be used to
6370                          * determine if encryption will be used or not prior to
6371                          * association being expected.  If encryption is not being
6372                          * used, drop_unencrypted is set to false, else true -- we
6373                          * can use this to determine if the CAP_PRIVACY_ON bit should
6374                          * be set.
6375                          */
6376                         struct ieee80211_security sec = {
6377                                 .flags = SEC_ENABLED,
6378                                 .enabled = param->value,
6379                         };
6380                         priv->ieee->drop_unencrypted = param->value;
6381                         /* We only change SEC_LEVEL for open mode. Others
6382                          * are set by ipw_wpa_set_encryption.
6383                          */
6384                         if (!param->value) {
6385                                 sec.flags |= SEC_LEVEL;
6386                                 sec.level = SEC_LEVEL_0;
6387                         } else {
6388                                 sec.flags |= SEC_LEVEL;
6389                                 sec.level = SEC_LEVEL_1;
6390                         }
6391                         if (priv->ieee->set_security)
6392                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6393                         break;
6394                 }
6395
6396         case IW_AUTH_80211_AUTH_ALG:
6397                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6398                 break;
6399
6400         case IW_AUTH_WPA_ENABLED:
6401                 ret = ipw_wpa_enable(priv, param->value);
6402                 break;
6403
6404         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6405                 ieee->ieee802_1x = param->value;
6406                 break;
6407
6408                 //case IW_AUTH_ROAMING_CONTROL:
6409         case IW_AUTH_PRIVACY_INVOKED:
6410                 ieee->privacy_invoked = param->value;
6411                 break;
6412
6413         default:
6414                 return -EOPNOTSUPP;
6415         }
6416         return ret;
6417 }
6418
6419 /* SIOCGIWAUTH */
6420 static int ipw_wx_get_auth(struct net_device *dev,
6421                            struct iw_request_info *info,
6422                            union iwreq_data *wrqu, char *extra)
6423 {
6424         struct ipw_priv *priv = ieee80211_priv(dev);
6425         struct ieee80211_device *ieee = priv->ieee;
6426         struct ieee80211_crypt_data *crypt;
6427         struct iw_param *param = &wrqu->param;
6428         int ret = 0;
6429
6430         switch (param->flags & IW_AUTH_INDEX) {
6431         case IW_AUTH_WPA_VERSION:
6432         case IW_AUTH_CIPHER_PAIRWISE:
6433         case IW_AUTH_CIPHER_GROUP:
6434         case IW_AUTH_KEY_MGMT:
6435                 /*
6436                  * wpa_supplicant will control these internally
6437                  */
6438                 ret = -EOPNOTSUPP;
6439                 break;
6440
6441         case IW_AUTH_TKIP_COUNTERMEASURES:
6442                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6443                 if (!crypt || !crypt->ops->get_flags) {
6444                         IPW_WARNING("Can't get TKIP countermeasures: "
6445                                     "crypt not set!\n");
6446                         break;
6447                 }
6448
6449                 param->value = (crypt->ops->get_flags(crypt->priv) &
6450                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6451
6452                 break;
6453
6454         case IW_AUTH_DROP_UNENCRYPTED:
6455                 param->value = ieee->drop_unencrypted;
6456                 break;
6457
6458         case IW_AUTH_80211_AUTH_ALG:
6459                 param->value = ieee->sec.auth_mode;
6460                 break;
6461
6462         case IW_AUTH_WPA_ENABLED:
6463                 param->value = ieee->wpa_enabled;
6464                 break;
6465
6466         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6467                 param->value = ieee->ieee802_1x;
6468                 break;
6469
6470         case IW_AUTH_ROAMING_CONTROL:
6471         case IW_AUTH_PRIVACY_INVOKED:
6472                 param->value = ieee->privacy_invoked;
6473                 break;
6474
6475         default:
6476                 return -EOPNOTSUPP;
6477         }
6478         return 0;
6479 }
6480
6481 /* SIOCSIWENCODEEXT */
6482 static int ipw_wx_set_encodeext(struct net_device *dev,
6483                                 struct iw_request_info *info,
6484                                 union iwreq_data *wrqu, char *extra)
6485 {
6486         struct ipw_priv *priv = ieee80211_priv(dev);
6487         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6488
6489         if (hwcrypto) {
6490                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6491                         /* IPW HW can't build TKIP MIC,
6492                            host decryption still needed */
6493                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6494                                 priv->ieee->host_mc_decrypt = 1;
6495                         else {
6496                                 priv->ieee->host_encrypt = 0;
6497                                 priv->ieee->host_encrypt_msdu = 1;
6498                                 priv->ieee->host_decrypt = 1;
6499                         }
6500                 } else {
6501                         priv->ieee->host_encrypt = 0;
6502                         priv->ieee->host_encrypt_msdu = 0;
6503                         priv->ieee->host_decrypt = 0;
6504                         priv->ieee->host_mc_decrypt = 0;
6505                 }
6506         }
6507
6508         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6509 }
6510
6511 /* SIOCGIWENCODEEXT */
6512 static int ipw_wx_get_encodeext(struct net_device *dev,
6513                                 struct iw_request_info *info,
6514                                 union iwreq_data *wrqu, char *extra)
6515 {
6516         struct ipw_priv *priv = ieee80211_priv(dev);
6517         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6518 }
6519
6520 /* SIOCSIWMLME */
6521 static int ipw_wx_set_mlme(struct net_device *dev,
6522                            struct iw_request_info *info,
6523                            union iwreq_data *wrqu, char *extra)
6524 {
6525         struct ipw_priv *priv = ieee80211_priv(dev);
6526         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6527         u16 reason;
6528
6529         reason = cpu_to_le16(mlme->reason_code);
6530
6531         switch (mlme->cmd) {
6532         case IW_MLME_DEAUTH:
6533                 // silently ignore
6534                 break;
6535
6536         case IW_MLME_DISASSOC:
6537                 ipw_disassociate(priv);
6538                 break;
6539
6540         default:
6541                 return -EOPNOTSUPP;
6542         }
6543         return 0;
6544 }
6545
6546 #ifdef CONFIG_IPW_QOS
6547
6548 /* QoS */
6549 /*
6550 * get the modulation type of the current network or
6551 * the card current mode
6552 */
6553 u8 ipw_qos_current_mode(struct ipw_priv * priv)
6554 {
6555         u8 mode = 0;
6556
6557         if (priv->status & STATUS_ASSOCIATED) {
6558                 unsigned long flags;
6559
6560                 spin_lock_irqsave(&priv->ieee->lock, flags);
6561                 mode = priv->assoc_network->mode;
6562                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6563         } else {
6564                 mode = priv->ieee->mode;
6565         }
6566         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6567         return mode;
6568 }
6569
6570 /*
6571 * Handle management frame beacon and probe response
6572 */
6573 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6574                                          int active_network,
6575                                          struct ieee80211_network *network)
6576 {
6577         u32 size = sizeof(struct ieee80211_qos_parameters);
6578
6579         if (network->capability & WLAN_CAPABILITY_IBSS)
6580                 network->qos_data.active = network->qos_data.supported;
6581
6582         if (network->flags & NETWORK_HAS_QOS_MASK) {
6583                 if (active_network &&
6584                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6585                         network->qos_data.active = network->qos_data.supported;
6586
6587                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6588                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6589                     (network->qos_data.old_param_count !=
6590                      network->qos_data.param_count)) {
6591                         network->qos_data.old_param_count =
6592                             network->qos_data.param_count;
6593                         schedule_work(&priv->qos_activate);
6594                         IPW_DEBUG_QOS("QoS parameters change call "
6595                                       "qos_activate\n");
6596                 }
6597         } else {
6598                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6599                         memcpy(&network->qos_data.parameters,
6600                                &def_parameters_CCK, size);
6601                 else
6602                         memcpy(&network->qos_data.parameters,
6603                                &def_parameters_OFDM, size);
6604
6605                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6606                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6607                         schedule_work(&priv->qos_activate);
6608                 }
6609
6610                 network->qos_data.active = 0;
6611                 network->qos_data.supported = 0;
6612         }
6613         if ((priv->status & STATUS_ASSOCIATED) &&
6614             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6615                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6616                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6617                             !(network->flags & NETWORK_EMPTY_ESSID))
6618                                 if ((network->ssid_len ==
6619                                      priv->assoc_network->ssid_len) &&
6620                                     !memcmp(network->ssid,
6621                                             priv->assoc_network->ssid,
6622                                             network->ssid_len)) {
6623                                         queue_work(priv->workqueue,
6624                                                    &priv->merge_networks);
6625                                 }
6626         }
6627
6628         return 0;
6629 }
6630
6631 /*
6632 * This function set up the firmware to support QoS. It sends
6633 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6634 */
6635 static int ipw_qos_activate(struct ipw_priv *priv,
6636                             struct ieee80211_qos_data *qos_network_data)
6637 {
6638         int err;
6639         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6640         struct ieee80211_qos_parameters *active_one = NULL;
6641         u32 size = sizeof(struct ieee80211_qos_parameters);
6642         u32 burst_duration;
6643         int i;
6644         u8 type;
6645
6646         type = ipw_qos_current_mode(priv);
6647
6648         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6649         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6650         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6651         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6652
6653         if (qos_network_data == NULL) {
6654                 if (type == IEEE_B) {
6655                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6656                         active_one = &def_parameters_CCK;
6657                 } else
6658                         active_one = &def_parameters_OFDM;
6659
6660                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6661                 burst_duration = ipw_qos_get_burst_duration(priv);
6662                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6663                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6664                             (u16) burst_duration;
6665         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6666                 if (type == IEEE_B) {
6667                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6668                                       type);
6669                         if (priv->qos_data.qos_enable == 0)
6670                                 active_one = &def_parameters_CCK;
6671                         else
6672                                 active_one = priv->qos_data.def_qos_parm_CCK;
6673                 } else {
6674                         if (priv->qos_data.qos_enable == 0)
6675                                 active_one = &def_parameters_OFDM;
6676                         else
6677                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6678                 }
6679                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6680         } else {
6681                 unsigned long flags;
6682                 int active;
6683
6684                 spin_lock_irqsave(&priv->ieee->lock, flags);
6685                 active_one = &(qos_network_data->parameters);
6686                 qos_network_data->old_param_count =
6687                     qos_network_data->param_count;
6688                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6689                 active = qos_network_data->supported;
6690                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6691
6692                 if (active == 0) {
6693                         burst_duration = ipw_qos_get_burst_duration(priv);
6694                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6695                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6696                                     tx_op_limit[i] = (u16) burst_duration;
6697                 }
6698         }
6699
6700         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6701         err = ipw_send_qos_params_command(priv,
6702                                           (struct ieee80211_qos_parameters *)
6703                                           &(qos_parameters[0]));
6704         if (err)
6705                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6706
6707         return err;
6708 }
6709
6710 /*
6711 * send IPW_CMD_WME_INFO to the firmware
6712 */
6713 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6714 {
6715         int ret = 0;
6716         struct ieee80211_qos_information_element qos_info;
6717
6718         if (priv == NULL)
6719                 return -1;
6720
6721         qos_info.elementID = QOS_ELEMENT_ID;
6722         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6723
6724         qos_info.version = QOS_VERSION_1;
6725         qos_info.ac_info = 0;
6726
6727         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6728         qos_info.qui_type = QOS_OUI_TYPE;
6729         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6730
6731         ret = ipw_send_qos_info_command(priv, &qos_info);
6732         if (ret != 0) {
6733                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6734         }
6735         return ret;
6736 }
6737
6738 /*
6739 * Set the QoS parameter with the association request structure
6740 */
6741 static int ipw_qos_association(struct ipw_priv *priv,
6742                                struct ieee80211_network *network)
6743 {
6744         int err = 0;
6745         struct ieee80211_qos_data *qos_data = NULL;
6746         struct ieee80211_qos_data ibss_data = {
6747                 .supported = 1,
6748                 .active = 1,
6749         };
6750
6751         switch (priv->ieee->iw_mode) {
6752         case IW_MODE_ADHOC:
6753                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
6754                         BUG();
6755
6756                 qos_data = &ibss_data;
6757                 break;
6758
6759         case IW_MODE_INFRA:
6760                 qos_data = &network->qos_data;
6761                 break;
6762
6763         default:
6764                 BUG();
6765                 break;
6766         }
6767
6768         err = ipw_qos_activate(priv, qos_data);
6769         if (err) {
6770                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6771                 return err;
6772         }
6773
6774         if (priv->qos_data.qos_enable && qos_data->supported) {
6775                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6776                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6777                 return ipw_qos_set_info_element(priv);
6778         }
6779
6780         return 0;
6781 }
6782
6783 /*
6784 * handling the beaconing responces. if we get different QoS setting
6785 * of the network from the the associated setting adjust the QoS
6786 * setting
6787 */
6788 static int ipw_qos_association_resp(struct ipw_priv *priv,
6789                                     struct ieee80211_network *network)
6790 {
6791         int ret = 0;
6792         unsigned long flags;
6793         u32 size = sizeof(struct ieee80211_qos_parameters);
6794         int set_qos_param = 0;
6795
6796         if ((priv == NULL) || (network == NULL) ||
6797             (priv->assoc_network == NULL))
6798                 return ret;
6799
6800         if (!(priv->status & STATUS_ASSOCIATED))
6801                 return ret;
6802
6803         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6804                 return ret;
6805
6806         spin_lock_irqsave(&priv->ieee->lock, flags);
6807         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6808                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6809                        sizeof(struct ieee80211_qos_data));
6810                 priv->assoc_network->qos_data.active = 1;
6811                 if ((network->qos_data.old_param_count !=
6812                      network->qos_data.param_count)) {
6813                         set_qos_param = 1;
6814                         network->qos_data.old_param_count =
6815                             network->qos_data.param_count;
6816                 }
6817
6818         } else {
6819                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6820                         memcpy(&priv->assoc_network->qos_data.parameters,
6821                                &def_parameters_CCK, size);
6822                 else
6823                         memcpy(&priv->assoc_network->qos_data.parameters,
6824                                &def_parameters_OFDM, size);
6825                 priv->assoc_network->qos_data.active = 0;
6826                 priv->assoc_network->qos_data.supported = 0;
6827                 set_qos_param = 1;
6828         }
6829
6830         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6831
6832         if (set_qos_param == 1)
6833                 schedule_work(&priv->qos_activate);
6834
6835         return ret;
6836 }
6837
6838 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6839 {
6840         u32 ret = 0;
6841
6842         if ((priv == NULL))
6843                 return 0;
6844
6845         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6846                 ret = priv->qos_data.burst_duration_CCK;
6847         else
6848                 ret = priv->qos_data.burst_duration_OFDM;
6849
6850         return ret;
6851 }
6852
6853 /*
6854 * Initialize the setting of QoS global
6855 */
6856 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6857                          int burst_enable, u32 burst_duration_CCK,
6858                          u32 burst_duration_OFDM)
6859 {
6860         priv->qos_data.qos_enable = enable;
6861
6862         if (priv->qos_data.qos_enable) {
6863                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6864                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6865                 IPW_DEBUG_QOS("QoS is enabled\n");
6866         } else {
6867                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6868                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6869                 IPW_DEBUG_QOS("QoS is not enabled\n");
6870         }
6871
6872         priv->qos_data.burst_enable = burst_enable;
6873
6874         if (burst_enable) {
6875                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6876                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6877         } else {
6878                 priv->qos_data.burst_duration_CCK = 0;
6879                 priv->qos_data.burst_duration_OFDM = 0;
6880         }
6881 }
6882
6883 /*
6884 * map the packet priority to the right TX Queue
6885 */
6886 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6887 {
6888         if (priority > 7 || !priv->qos_data.qos_enable)
6889                 priority = 0;
6890
6891         return from_priority_to_tx_queue[priority] - 1;
6892 }
6893
6894 /*
6895 * add QoS parameter to the TX command
6896 */
6897 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6898                                         u16 priority,
6899                                         struct tfd_data *tfd, u8 unicast)
6900 {
6901         int ret = 0;
6902         int tx_queue_id = 0;
6903         struct ieee80211_qos_data *qos_data = NULL;
6904         int active, supported;
6905         unsigned long flags;
6906
6907         if (!(priv->status & STATUS_ASSOCIATED))
6908                 return 0;
6909
6910         qos_data = &priv->assoc_network->qos_data;
6911
6912         spin_lock_irqsave(&priv->ieee->lock, flags);
6913
6914         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6915                 if (unicast == 0)
6916                         qos_data->active = 0;
6917                 else
6918                         qos_data->active = qos_data->supported;
6919         }
6920
6921         active = qos_data->active;
6922         supported = qos_data->supported;
6923
6924         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6925
6926         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
6927                       "unicast %d\n",
6928                       priv->qos_data.qos_enable, active, supported, unicast);
6929         if (active && priv->qos_data.qos_enable) {
6930                 ret = from_priority_to_tx_queue[priority];
6931                 tx_queue_id = ret - 1;
6932                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
6933                 if (priority <= 7) {
6934                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
6935                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
6936                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
6937                             IEEE80211_STYPE_QOS_DATA;
6938
6939                         if (priv->qos_data.qos_no_ack_mask &
6940                             (1UL << tx_queue_id)) {
6941                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
6942                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
6943                                     CTRL_QOS_NO_ACK;
6944                         }
6945                 }
6946         }
6947
6948         return ret;
6949 }
6950
6951 /*
6952 * background support to run QoS activate functionality
6953 */
6954 static void ipw_bg_qos_activate(void *data)
6955 {
6956         struct ipw_priv *priv = data;
6957
6958         if (priv == NULL)
6959                 return;
6960
6961         down(&priv->sem);
6962
6963         if (priv->status & STATUS_ASSOCIATED)
6964                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
6965
6966         up(&priv->sem);
6967 }
6968
6969 static int ipw_handle_probe_response(struct net_device *dev,
6970                                      struct ieee80211_probe_response *resp,
6971                                      struct ieee80211_network *network)
6972 {
6973         struct ipw_priv *priv = ieee80211_priv(dev);
6974         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6975                               (network == priv->assoc_network));
6976
6977         ipw_qos_handle_probe_response(priv, active_network, network);
6978
6979         return 0;
6980 }
6981
6982 static int ipw_handle_beacon(struct net_device *dev,
6983                              struct ieee80211_beacon *resp,
6984                              struct ieee80211_network *network)
6985 {
6986         struct ipw_priv *priv = ieee80211_priv(dev);
6987         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6988                               (network == priv->assoc_network));
6989
6990         ipw_qos_handle_probe_response(priv, active_network, network);
6991
6992         return 0;
6993 }
6994
6995 static int ipw_handle_assoc_response(struct net_device *dev,
6996                                      struct ieee80211_assoc_response *resp,
6997                                      struct ieee80211_network *network)
6998 {
6999         struct ipw_priv *priv = ieee80211_priv(dev);
7000         ipw_qos_association_resp(priv, network);
7001         return 0;
7002 }
7003
7004 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7005                                        *qos_param)
7006 {
7007         struct host_cmd cmd = {
7008                 .cmd = IPW_CMD_QOS_PARAMETERS,
7009                 .len = (sizeof(struct ieee80211_qos_parameters) * 3)
7010         };
7011
7012         memcpy(cmd.param, qos_param, sizeof(*qos_param) * 3);
7013         return ipw_send_cmd(priv, &cmd);
7014 }
7015
7016 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7017                                      *qos_param)
7018 {
7019         struct host_cmd cmd = {
7020                 .cmd = IPW_CMD_WME_INFO,
7021                 .len = sizeof(*qos_param)
7022         };
7023
7024         memcpy(cmd.param, qos_param, sizeof(*qos_param));
7025         return ipw_send_cmd(priv, &cmd);
7026 }
7027
7028 #endif                          /* CONFIG_IPW_QOS */
7029
7030 static int ipw_associate_network(struct ipw_priv *priv,
7031                                  struct ieee80211_network *network,
7032                                  struct ipw_supported_rates *rates, int roaming)
7033 {
7034         int err;
7035
7036         if (priv->config & CFG_FIXED_RATE)
7037                 ipw_set_fixed_rate(priv, network->mode);
7038
7039         if (!(priv->config & CFG_STATIC_ESSID)) {
7040                 priv->essid_len = min(network->ssid_len,
7041                                       (u8) IW_ESSID_MAX_SIZE);
7042                 memcpy(priv->essid, network->ssid, priv->essid_len);
7043         }
7044
7045         network->last_associate = jiffies;
7046
7047         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7048         priv->assoc_request.channel = network->channel;
7049         if ((priv->capability & CAP_PRIVACY_ON) &&
7050             (priv->capability & CAP_SHARED_KEY)) {
7051                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7052                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7053
7054                 if ((priv->capability & CAP_PRIVACY_ON) &&
7055                     (priv->ieee->sec.level == SEC_LEVEL_1) &&
7056                     !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
7057                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7058         } else {
7059                 priv->assoc_request.auth_type = AUTH_OPEN;
7060                 priv->assoc_request.auth_key = 0;
7061         }
7062
7063         if (priv->ieee->wpa_ie_len) {
7064                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7065                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7066                                  priv->ieee->wpa_ie_len);
7067         }
7068
7069         /*
7070          * It is valid for our ieee device to support multiple modes, but
7071          * when it comes to associating to a given network we have to choose
7072          * just one mode.
7073          */
7074         if (network->mode & priv->ieee->mode & IEEE_A)
7075                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7076         else if (network->mode & priv->ieee->mode & IEEE_G)
7077                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7078         else if (network->mode & priv->ieee->mode & IEEE_B)
7079                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7080
7081         priv->assoc_request.capability = network->capability;
7082         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7083             && !(priv->config & CFG_PREAMBLE_LONG)) {
7084                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7085         } else {
7086                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7087
7088                 /* Clear the short preamble if we won't be supporting it */
7089                 priv->assoc_request.capability &=
7090                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7091         }
7092
7093         /* Clear capability bits that aren't used in Ad Hoc */
7094         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7095                 priv->assoc_request.capability &=
7096                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7097
7098         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7099                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7100                         roaming ? "Rea" : "A",
7101                         escape_essid(priv->essid, priv->essid_len),
7102                         network->channel,
7103                         ipw_modes[priv->assoc_request.ieee_mode],
7104                         rates->num_rates,
7105                         (priv->assoc_request.preamble_length ==
7106                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7107                         network->capability &
7108                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7109                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7110                         priv->capability & CAP_PRIVACY_ON ?
7111                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7112                          "(open)") : "",
7113                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7114                         priv->capability & CAP_PRIVACY_ON ?
7115                         '1' + priv->ieee->sec.active_key : '.',
7116                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7117
7118         priv->assoc_request.beacon_interval = network->beacon_interval;
7119         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7120             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7121                 priv->assoc_request.assoc_type = HC_IBSS_START;
7122                 priv->assoc_request.assoc_tsf_msw = 0;
7123                 priv->assoc_request.assoc_tsf_lsw = 0;
7124         } else {
7125                 if (unlikely(roaming))
7126                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7127                 else
7128                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7129                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7130                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7131         }
7132
7133         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7134
7135         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7136                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7137                 priv->assoc_request.atim_window = network->atim_window;
7138         } else {
7139                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7140                 priv->assoc_request.atim_window = 0;
7141         }
7142
7143         priv->assoc_request.listen_interval = network->listen_interval;
7144
7145         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7146         if (err) {
7147                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7148                 return err;
7149         }
7150
7151         rates->ieee_mode = priv->assoc_request.ieee_mode;
7152         rates->purpose = IPW_RATE_CONNECT;
7153         ipw_send_supported_rates(priv, rates);
7154
7155         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7156                 priv->sys_config.dot11g_auto_detection = 1;
7157         else
7158                 priv->sys_config.dot11g_auto_detection = 0;
7159
7160         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7161                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7162         else
7163                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7164
7165         err = ipw_send_system_config(priv, &priv->sys_config);
7166         if (err) {
7167                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7168                 return err;
7169         }
7170
7171         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7172         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7173         if (err) {
7174                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7175                 return err;
7176         }
7177
7178         /*
7179          * If preemption is enabled, it is possible for the association
7180          * to complete before we return from ipw_send_associate.  Therefore
7181          * we have to be sure and update our priviate data first.
7182          */
7183         priv->channel = network->channel;
7184         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7185         priv->status |= STATUS_ASSOCIATING;
7186         priv->status &= ~STATUS_SECURITY_UPDATED;
7187
7188         priv->assoc_network = network;
7189
7190 #ifdef CONFIG_IPW_QOS
7191         ipw_qos_association(priv, network);
7192 #endif
7193
7194         err = ipw_send_associate(priv, &priv->assoc_request);
7195         if (err) {
7196                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7197                 return err;
7198         }
7199
7200         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7201                   escape_essid(priv->essid, priv->essid_len),
7202                   MAC_ARG(priv->bssid));
7203
7204         return 0;
7205 }
7206
7207 static void ipw_roam(void *data)
7208 {
7209         struct ipw_priv *priv = data;
7210         struct ieee80211_network *network = NULL;
7211         struct ipw_network_match match = {
7212                 .network = priv->assoc_network
7213         };
7214
7215         /* The roaming process is as follows:
7216          *
7217          * 1.  Missed beacon threshold triggers the roaming process by
7218          *     setting the status ROAM bit and requesting a scan.
7219          * 2.  When the scan completes, it schedules the ROAM work
7220          * 3.  The ROAM work looks at all of the known networks for one that
7221          *     is a better network than the currently associated.  If none
7222          *     found, the ROAM process is over (ROAM bit cleared)
7223          * 4.  If a better network is found, a disassociation request is
7224          *     sent.
7225          * 5.  When the disassociation completes, the roam work is again
7226          *     scheduled.  The second time through, the driver is no longer
7227          *     associated, and the newly selected network is sent an
7228          *     association request.
7229          * 6.  At this point ,the roaming process is complete and the ROAM
7230          *     status bit is cleared.
7231          */
7232
7233         /* If we are no longer associated, and the roaming bit is no longer
7234          * set, then we are not actively roaming, so just return */
7235         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7236                 return;
7237
7238         if (priv->status & STATUS_ASSOCIATED) {
7239                 /* First pass through ROAM process -- look for a better
7240                  * network */
7241                 unsigned long flags;
7242                 u8 rssi = priv->assoc_network->stats.rssi;
7243                 priv->assoc_network->stats.rssi = -128;
7244                 spin_lock_irqsave(&priv->ieee->lock, flags);
7245                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7246                         if (network != priv->assoc_network)
7247                                 ipw_best_network(priv, &match, network, 1);
7248                 }
7249                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7250                 priv->assoc_network->stats.rssi = rssi;
7251
7252                 if (match.network == priv->assoc_network) {
7253                         IPW_DEBUG_ASSOC("No better APs in this network to "
7254                                         "roam to.\n");
7255                         priv->status &= ~STATUS_ROAMING;
7256                         ipw_debug_config(priv);
7257                         return;
7258                 }
7259
7260                 ipw_send_disassociate(priv, 1);
7261                 priv->assoc_network = match.network;
7262
7263                 return;
7264         }
7265
7266         /* Second pass through ROAM process -- request association */
7267         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7268         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7269         priv->status &= ~STATUS_ROAMING;
7270 }
7271
7272 static void ipw_bg_roam(void *data)
7273 {
7274         struct ipw_priv *priv = data;
7275         down(&priv->sem);
7276         ipw_roam(data);
7277         up(&priv->sem);
7278 }
7279
7280 static int ipw_associate(void *data)
7281 {
7282         struct ipw_priv *priv = data;
7283
7284         struct ieee80211_network *network = NULL;
7285         struct ipw_network_match match = {
7286                 .network = NULL
7287         };
7288         struct ipw_supported_rates *rates;
7289         struct list_head *element;
7290         unsigned long flags;
7291
7292         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7293                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7294                 return 0;
7295         }
7296
7297         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7298                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7299                                 "progress)\n");
7300                 return 0;
7301         }
7302
7303         if (priv->status & STATUS_DISASSOCIATING) {
7304                 IPW_DEBUG_ASSOC("Not attempting association (in "
7305                                 "disassociating)\n ");
7306                 queue_work(priv->workqueue, &priv->associate);
7307                 return 0;
7308         }
7309
7310         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7311                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7312                                 "initialized)\n");
7313                 return 0;
7314         }
7315
7316         if (!(priv->config & CFG_ASSOCIATE) &&
7317             !(priv->config & (CFG_STATIC_ESSID |
7318                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7319                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7320                 return 0;
7321         }
7322
7323         /* Protect our use of the network_list */
7324         spin_lock_irqsave(&priv->ieee->lock, flags);
7325         list_for_each_entry(network, &priv->ieee->network_list, list)
7326             ipw_best_network(priv, &match, network, 0);
7327
7328         network = match.network;
7329         rates = &match.rates;
7330
7331         if (network == NULL &&
7332             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7333             priv->config & CFG_ADHOC_CREATE &&
7334             priv->config & CFG_STATIC_ESSID &&
7335             priv->config & CFG_STATIC_CHANNEL &&
7336             !list_empty(&priv->ieee->network_free_list)) {
7337                 element = priv->ieee->network_free_list.next;
7338                 network = list_entry(element, struct ieee80211_network, list);
7339                 ipw_adhoc_create(priv, network);
7340                 rates = &priv->rates;
7341                 list_del(element);
7342                 list_add_tail(&network->list, &priv->ieee->network_list);
7343         }
7344         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7345
7346         /* If we reached the end of the list, then we don't have any valid
7347          * matching APs */
7348         if (!network) {
7349                 ipw_debug_config(priv);
7350
7351                 if (!(priv->status & STATUS_SCANNING)) {
7352                         if (!(priv->config & CFG_SPEED_SCAN))
7353                                 queue_delayed_work(priv->workqueue,
7354                                                    &priv->request_scan,
7355                                                    SCAN_INTERVAL);
7356                         else
7357                                 queue_work(priv->workqueue,
7358                                            &priv->request_scan);
7359                 }
7360
7361                 return 0;
7362         }
7363
7364         ipw_associate_network(priv, network, rates, 0);
7365
7366         return 1;
7367 }
7368
7369 static void ipw_bg_associate(void *data)
7370 {
7371         struct ipw_priv *priv = data;
7372         down(&priv->sem);
7373         ipw_associate(data);
7374         up(&priv->sem);
7375 }
7376
7377 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7378                                       struct sk_buff *skb)
7379 {
7380         struct ieee80211_hdr *hdr;
7381         u16 fc;
7382
7383         hdr = (struct ieee80211_hdr *)skb->data;
7384         fc = le16_to_cpu(hdr->frame_ctl);
7385         if (!(fc & IEEE80211_FCTL_PROTECTED))
7386                 return;
7387
7388         fc &= ~IEEE80211_FCTL_PROTECTED;
7389         hdr->frame_ctl = cpu_to_le16(fc);
7390         switch (priv->ieee->sec.level) {
7391         case SEC_LEVEL_3:
7392                 /* Remove CCMP HDR */
7393                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7394                         skb->data + IEEE80211_3ADDR_LEN + 8,
7395                         skb->len - IEEE80211_3ADDR_LEN - 8);
7396                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7397                 break;
7398         case SEC_LEVEL_2:
7399                 break;
7400         case SEC_LEVEL_1:
7401                 /* Remove IV */
7402                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7403                         skb->data + IEEE80211_3ADDR_LEN + 4,
7404                         skb->len - IEEE80211_3ADDR_LEN - 4);
7405                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7406                 break;
7407         case SEC_LEVEL_0:
7408                 break;
7409         default:
7410                 printk(KERN_ERR "Unknow security level %d\n",
7411                        priv->ieee->sec.level);
7412                 break;
7413         }
7414 }
7415
7416 static void ipw_handle_data_packet(struct ipw_priv *priv,
7417                                    struct ipw_rx_mem_buffer *rxb,
7418                                    struct ieee80211_rx_stats *stats)
7419 {
7420         struct ieee80211_hdr_4addr *hdr;
7421         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7422
7423         /* We received data from the HW, so stop the watchdog */
7424         priv->net_dev->trans_start = jiffies;
7425
7426         /* We only process data packets if the
7427          * interface is open */
7428         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7429                      skb_tailroom(rxb->skb))) {
7430                 priv->ieee->stats.rx_errors++;
7431                 priv->wstats.discard.misc++;
7432                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7433                 return;
7434         } else if (unlikely(!netif_running(priv->net_dev))) {
7435                 priv->ieee->stats.rx_dropped++;
7436                 priv->wstats.discard.misc++;
7437                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7438                 return;
7439         }
7440
7441         /* Advance skb->data to the start of the actual payload */
7442         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7443
7444         /* Set the size of the skb to the size of the frame */
7445         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7446
7447         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7448
7449         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7450         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7451         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7452             (is_multicast_ether_addr(hdr->addr1) ?
7453              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7454                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7455
7456         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7457                 priv->ieee->stats.rx_errors++;
7458         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7459                 rxb->skb = NULL;
7460                 __ipw_led_activity_on(priv);
7461         }
7462 }
7463
7464 #ifdef CONFIG_IEEE80211_RADIOTAP
7465 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7466                                            struct ipw_rx_mem_buffer *rxb,
7467                                            struct ieee80211_rx_stats *stats)
7468 {
7469         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7470         struct ipw_rx_frame *frame = &pkt->u.frame;
7471
7472         /* initial pull of some data */
7473         u16 received_channel = frame->received_channel;
7474         u8 antennaAndPhy = frame->antennaAndPhy;
7475         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7476         u16 pktrate = frame->rate;
7477
7478         /* Magic struct that slots into the radiotap header -- no reason
7479          * to build this manually element by element, we can write it much
7480          * more efficiently than we can parse it. ORDER MATTERS HERE */
7481         struct ipw_rt_hdr {
7482                 struct ieee80211_radiotap_header rt_hdr;
7483                 u8 rt_flags;    /* radiotap packet flags */
7484                 u8 rt_rate;     /* rate in 500kb/s */
7485                 u16 rt_channel; /* channel in mhz */
7486                 u16 rt_chbitmask;       /* channel bitfield */
7487                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7488                 u8 rt_antenna;  /* antenna number */
7489         } *ipw_rt;
7490
7491         short len = le16_to_cpu(pkt->u.frame.length);
7492
7493         /* We received data from the HW, so stop the watchdog */
7494         priv->net_dev->trans_start = jiffies;
7495
7496         /* We only process data packets if the
7497          * interface is open */
7498         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7499                      skb_tailroom(rxb->skb))) {
7500                 priv->ieee->stats.rx_errors++;
7501                 priv->wstats.discard.misc++;
7502                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7503                 return;
7504         } else if (unlikely(!netif_running(priv->net_dev))) {
7505                 priv->ieee->stats.rx_dropped++;
7506                 priv->wstats.discard.misc++;
7507                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7508                 return;
7509         }
7510
7511         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7512          * that now */
7513         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7514                 /* FIXME: Should alloc bigger skb instead */
7515                 priv->ieee->stats.rx_dropped++;
7516                 priv->wstats.discard.misc++;
7517                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7518                 return;
7519         }
7520
7521         /* copy the frame itself */
7522         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7523                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7524
7525         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7526          * part of our real header, saves a little time.
7527          *
7528          * No longer necessary since we fill in all our data.  Purge before merging
7529          * patch officially.
7530          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7531          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7532          */
7533
7534         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7535
7536         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7537         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7538         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7539
7540         /* Big bitfield of all the fields we provide in radiotap */
7541         ipw_rt->rt_hdr.it_present =
7542             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7543              (1 << IEEE80211_RADIOTAP_RATE) |
7544              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7545              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7546              (1 << IEEE80211_RADIOTAP_ANTENNA));
7547
7548         /* Zero the flags, we'll add to them as we go */
7549         ipw_rt->rt_flags = 0;
7550
7551         /* Convert signal to DBM */
7552         ipw_rt->rt_dbmsignal = antsignal;
7553
7554         /* Convert the channel data and set the flags */
7555         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7556         if (received_channel > 14) {    /* 802.11a */
7557                 ipw_rt->rt_chbitmask =
7558                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7559         } else if (antennaAndPhy & 32) {        /* 802.11b */
7560                 ipw_rt->rt_chbitmask =
7561                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7562         } else {                /* 802.11g */
7563                 ipw_rt->rt_chbitmask =
7564                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7565         }
7566
7567         /* set the rate in multiples of 500k/s */
7568         switch (pktrate) {
7569         case IPW_TX_RATE_1MB:
7570                 ipw_rt->rt_rate = 2;
7571                 break;
7572         case IPW_TX_RATE_2MB:
7573                 ipw_rt->rt_rate = 4;
7574                 break;
7575         case IPW_TX_RATE_5MB:
7576                 ipw_rt->rt_rate = 10;
7577                 break;
7578         case IPW_TX_RATE_6MB:
7579                 ipw_rt->rt_rate = 12;
7580                 break;
7581         case IPW_TX_RATE_9MB:
7582                 ipw_rt->rt_rate = 18;
7583                 break;
7584         case IPW_TX_RATE_11MB:
7585                 ipw_rt->rt_rate = 22;
7586                 break;
7587         case IPW_TX_RATE_12MB:
7588                 ipw_rt->rt_rate = 24;
7589                 break;
7590         case IPW_TX_RATE_18MB:
7591                 ipw_rt->rt_rate = 36;
7592                 break;
7593         case IPW_TX_RATE_24MB:
7594                 ipw_rt->rt_rate = 48;
7595                 break;
7596         case IPW_TX_RATE_36MB:
7597                 ipw_rt->rt_rate = 72;
7598                 break;
7599         case IPW_TX_RATE_48MB:
7600                 ipw_rt->rt_rate = 96;
7601                 break;
7602         case IPW_TX_RATE_54MB:
7603                 ipw_rt->rt_rate = 108;
7604                 break;
7605         default:
7606                 ipw_rt->rt_rate = 0;
7607                 break;
7608         }
7609
7610         /* antenna number */
7611         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7612
7613         /* set the preamble flag if we have it */
7614         if ((antennaAndPhy & 64))
7615                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7616
7617         /* Set the size of the skb to the size of the frame */
7618         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7619
7620         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7621
7622         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7623                 priv->ieee->stats.rx_errors++;
7624         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7625                 rxb->skb = NULL;
7626                 /* no LED during capture */
7627         }
7628 }
7629 #endif
7630
7631 static inline int is_network_packet(struct ipw_priv *priv,
7632                                     struct ieee80211_hdr_4addr *header)
7633 {
7634         /* Filter incoming packets to determine if they are targetted toward
7635          * this network, discarding packets coming from ourselves */
7636         switch (priv->ieee->iw_mode) {
7637         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7638                 /* packets from our adapter are dropped (echo) */
7639                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7640                         return 0;
7641
7642                 /* {broad,multi}cast packets to our BSSID go through */
7643                 if (is_multicast_ether_addr(header->addr1) ||
7644                     is_broadcast_ether_addr(header->addr1))
7645                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7646
7647                 /* packets to our adapter go through */
7648                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7649                                ETH_ALEN);
7650
7651         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7652                 /* packets from our adapter are dropped (echo) */
7653                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7654                         return 0;
7655
7656                 /* {broad,multi}cast packets to our BSS go through */
7657                 if (is_multicast_ether_addr(header->addr1) ||
7658                     is_broadcast_ether_addr(header->addr1))
7659                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7660
7661                 /* packets to our adapter go through */
7662                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7663                                ETH_ALEN);
7664         }
7665
7666         return 1;
7667 }
7668
7669 #define IPW_PACKET_RETRY_TIME HZ
7670
7671 static inline int is_duplicate_packet(struct ipw_priv *priv,
7672                                       struct ieee80211_hdr_4addr *header)
7673 {
7674         u16 sc = le16_to_cpu(header->seq_ctl);
7675         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7676         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7677         u16 *last_seq, *last_frag;
7678         unsigned long *last_time;
7679
7680         switch (priv->ieee->iw_mode) {
7681         case IW_MODE_ADHOC:
7682                 {
7683                         struct list_head *p;
7684                         struct ipw_ibss_seq *entry = NULL;
7685                         u8 *mac = header->addr2;
7686                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7687
7688                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7689                                 entry =
7690                                     list_entry(p, struct ipw_ibss_seq, list);
7691                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7692                                         break;
7693                         }
7694                         if (p == &priv->ibss_mac_hash[index]) {
7695                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7696                                 if (!entry) {
7697                                         IPW_ERROR
7698                                             ("Cannot malloc new mac entry\n");
7699                                         return 0;
7700                                 }
7701                                 memcpy(entry->mac, mac, ETH_ALEN);
7702                                 entry->seq_num = seq;
7703                                 entry->frag_num = frag;
7704                                 entry->packet_time = jiffies;
7705                                 list_add(&entry->list,
7706                                          &priv->ibss_mac_hash[index]);
7707                                 return 0;
7708                         }
7709                         last_seq = &entry->seq_num;
7710                         last_frag = &entry->frag_num;
7711                         last_time = &entry->packet_time;
7712                         break;
7713                 }
7714         case IW_MODE_INFRA:
7715                 last_seq = &priv->last_seq_num;
7716                 last_frag = &priv->last_frag_num;
7717                 last_time = &priv->last_packet_time;
7718                 break;
7719         default:
7720                 return 0;
7721         }
7722         if ((*last_seq == seq) &&
7723             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
7724                 if (*last_frag == frag)
7725                         goto drop;
7726                 if (*last_frag + 1 != frag)
7727                         /* out-of-order fragment */
7728                         goto drop;
7729         } else
7730                 *last_seq = seq;
7731
7732         *last_frag = frag;
7733         *last_time = jiffies;
7734         return 0;
7735
7736       drop:
7737         /* Comment this line now since we observed the card receives
7738          * duplicate packets but the FCTL_RETRY bit is not set in the
7739          * IBSS mode with fragmentation enabled.
7740          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7741         return 1;
7742 }
7743
7744 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
7745                                    struct ipw_rx_mem_buffer *rxb,
7746                                    struct ieee80211_rx_stats *stats)
7747 {
7748         struct sk_buff *skb = rxb->skb;
7749         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
7750         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
7751             (skb->data + IPW_RX_FRAME_SIZE);
7752
7753         ieee80211_rx_mgt(priv->ieee, header, stats);
7754
7755         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
7756             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7757               IEEE80211_STYPE_PROBE_RESP) ||
7758              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7759               IEEE80211_STYPE_BEACON))) {
7760                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
7761                         ipw_add_station(priv, header->addr2);
7762         }
7763
7764         if (priv->config & CFG_NET_STATS) {
7765                 IPW_DEBUG_HC("sending stat packet\n");
7766
7767                 /* Set the size of the skb to the size of the full
7768                  * ipw header and 802.11 frame */
7769                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
7770                         IPW_RX_FRAME_SIZE);
7771
7772                 /* Advance past the ipw packet header to the 802.11 frame */
7773                 skb_pull(skb, IPW_RX_FRAME_SIZE);
7774
7775                 /* Push the ieee80211_rx_stats before the 802.11 frame */
7776                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
7777
7778                 skb->dev = priv->ieee->dev;
7779
7780                 /* Point raw at the ieee80211_stats */
7781                 skb->mac.raw = skb->data;
7782
7783                 skb->pkt_type = PACKET_OTHERHOST;
7784                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
7785                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
7786                 netif_rx(skb);
7787                 rxb->skb = NULL;
7788         }
7789 }
7790
7791 /*
7792  * Main entry function for recieving a packet with 80211 headers.  This
7793  * should be called when ever the FW has notified us that there is a new
7794  * skb in the recieve queue.
7795  */
7796 static void ipw_rx(struct ipw_priv *priv)
7797 {
7798         struct ipw_rx_mem_buffer *rxb;
7799         struct ipw_rx_packet *pkt;
7800         struct ieee80211_hdr_4addr *header;
7801         u32 r, w, i;
7802         u8 network_packet;
7803
7804         r = ipw_read32(priv, IPW_RX_READ_INDEX);
7805         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
7806         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
7807
7808         while (i != r) {
7809                 rxb = priv->rxq->queue[i];
7810 #ifdef CONFIG_IPW_DEBUG
7811                 if (unlikely(rxb == NULL)) {
7812                         printk(KERN_CRIT "Queue not allocated!\n");
7813                         break;
7814                 }
7815 #endif
7816                 priv->rxq->queue[i] = NULL;
7817
7818                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
7819                                             IPW_RX_BUF_SIZE,
7820                                             PCI_DMA_FROMDEVICE);
7821
7822                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
7823                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7824                              pkt->header.message_type,
7825                              pkt->header.rx_seq_num, pkt->header.control_bits);
7826
7827                 switch (pkt->header.message_type) {
7828                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
7829                                 struct ieee80211_rx_stats stats = {
7830                                         .rssi =
7831                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7832                                             IPW_RSSI_TO_DBM,
7833                                         .signal =
7834                                             le16_to_cpu(pkt->u.frame.signal),
7835                                         .noise =
7836                                             le16_to_cpu(pkt->u.frame.noise),
7837                                         .rate = pkt->u.frame.rate,
7838                                         .mac_time = jiffies,
7839                                         .received_channel =
7840                                             pkt->u.frame.received_channel,
7841                                         .freq =
7842                                             (pkt->u.frame.
7843                                              control & (1 << 0)) ?
7844                                             IEEE80211_24GHZ_BAND :
7845                                             IEEE80211_52GHZ_BAND,
7846                                         .len = le16_to_cpu(pkt->u.frame.length),
7847                                 };
7848
7849                                 if (stats.rssi != 0)
7850                                         stats.mask |= IEEE80211_STATMASK_RSSI;
7851                                 if (stats.signal != 0)
7852                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
7853                                 if (stats.noise != 0)
7854                                         stats.mask |= IEEE80211_STATMASK_NOISE;
7855                                 if (stats.rate != 0)
7856                                         stats.mask |= IEEE80211_STATMASK_RATE;
7857
7858                                 priv->rx_packets++;
7859
7860 #ifdef CONFIG_IPW2200_MONITOR
7861                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7862 #ifdef CONFIG_IEEE80211_RADIOTAP
7863                                         ipw_handle_data_packet_monitor(priv,
7864                                                                        rxb,
7865                                                                        &stats);
7866 #else
7867                                         ipw_handle_data_packet(priv, rxb,
7868                                                                &stats);
7869 #endif
7870                                         break;
7871                                 }
7872 #endif
7873
7874                                 header =
7875                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
7876                                                                    data +
7877                                                                    IPW_RX_FRAME_SIZE);
7878                                 /* TODO: Check Ad-Hoc dest/source and make sure
7879                                  * that we are actually parsing these packets
7880                                  * correctly -- we should probably use the
7881                                  * frame control of the packet and disregard
7882                                  * the current iw_mode */
7883
7884                                 network_packet =
7885                                     is_network_packet(priv, header);
7886                                 if (network_packet && priv->assoc_network) {
7887                                         priv->assoc_network->stats.rssi =
7888                                             stats.rssi;
7889                                         average_add(&priv->average_rssi,
7890                                                     stats.rssi);
7891                                         priv->last_rx_rssi = stats.rssi;
7892                                 }
7893
7894                                 IPW_DEBUG_RX("Frame: len=%u\n",
7895                                              le16_to_cpu(pkt->u.frame.length));
7896
7897                                 if (le16_to_cpu(pkt->u.frame.length) <
7898                                     frame_hdr_len(header)) {
7899                                         IPW_DEBUG_DROP
7900                                             ("Received packet is too small. "
7901                                              "Dropping.\n");
7902                                         priv->ieee->stats.rx_errors++;
7903                                         priv->wstats.discard.misc++;
7904                                         break;
7905                                 }
7906
7907                                 switch (WLAN_FC_GET_TYPE
7908                                         (le16_to_cpu(header->frame_ctl))) {
7909
7910                                 case IEEE80211_FTYPE_MGMT:
7911                                         ipw_handle_mgmt_packet(priv, rxb,
7912                                                                &stats);
7913                                         break;
7914
7915                                 case IEEE80211_FTYPE_CTL:
7916                                         break;
7917
7918                                 case IEEE80211_FTYPE_DATA:
7919                                         if (unlikely(!network_packet ||
7920                                                      is_duplicate_packet(priv,
7921                                                                          header)))
7922                                         {
7923                                                 IPW_DEBUG_DROP("Dropping: "
7924                                                                MAC_FMT ", "
7925                                                                MAC_FMT ", "
7926                                                                MAC_FMT "\n",
7927                                                                MAC_ARG(header->
7928                                                                        addr1),
7929                                                                MAC_ARG(header->
7930                                                                        addr2),
7931                                                                MAC_ARG(header->
7932                                                                        addr3));
7933                                                 break;
7934                                         }
7935
7936                                         ipw_handle_data_packet(priv, rxb,
7937                                                                &stats);
7938
7939                                         break;
7940                                 }
7941                                 break;
7942                         }
7943
7944                 case RX_HOST_NOTIFICATION_TYPE:{
7945                                 IPW_DEBUG_RX
7946                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
7947                                      pkt->u.notification.subtype,
7948                                      pkt->u.notification.flags,
7949                                      pkt->u.notification.size);
7950                                 ipw_rx_notification(priv, &pkt->u.notification);
7951                                 break;
7952                         }
7953
7954                 default:
7955                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
7956                                      pkt->header.message_type);
7957                         break;
7958                 }
7959
7960                 /* For now we just don't re-use anything.  We can tweak this
7961                  * later to try and re-use notification packets and SKBs that
7962                  * fail to Rx correctly */
7963                 if (rxb->skb != NULL) {
7964                         dev_kfree_skb_any(rxb->skb);
7965                         rxb->skb = NULL;
7966                 }
7967
7968                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
7969                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
7970                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
7971
7972                 i = (i + 1) % RX_QUEUE_SIZE;
7973         }
7974
7975         /* Backtrack one entry */
7976         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
7977
7978         ipw_rx_queue_restock(priv);
7979 }
7980
7981 #define DEFAULT_RTS_THRESHOLD     2304U
7982 #define MIN_RTS_THRESHOLD         1U
7983 #define MAX_RTS_THRESHOLD         2304U
7984 #define DEFAULT_BEACON_INTERVAL   100U
7985 #define DEFAULT_SHORT_RETRY_LIMIT 7U
7986 #define DEFAULT_LONG_RETRY_LIMIT  4U
7987
7988 static int ipw_sw_reset(struct ipw_priv *priv, int init)
7989 {
7990         int band, modulation;
7991         int old_mode = priv->ieee->iw_mode;
7992
7993         /* Initialize module parameter values here */
7994         priv->config = 0;
7995
7996         /* We default to disabling the LED code as right now it causes
7997          * too many systems to lock up... */
7998         if (!led)
7999                 priv->config |= CFG_NO_LED;
8000
8001         if (associate)
8002                 priv->config |= CFG_ASSOCIATE;
8003         else
8004                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8005
8006         if (auto_create)
8007                 priv->config |= CFG_ADHOC_CREATE;
8008         else
8009                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8010
8011         if (disable) {
8012                 priv->status |= STATUS_RF_KILL_SW;
8013                 IPW_DEBUG_INFO("Radio disabled.\n");
8014         }
8015
8016         if (channel != 0) {
8017                 priv->config |= CFG_STATIC_CHANNEL;
8018                 priv->channel = channel;
8019                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8020                 /* TODO: Validate that provided channel is in range */
8021         }
8022 #ifdef CONFIG_IPW_QOS
8023         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8024                      burst_duration_CCK, burst_duration_OFDM);
8025 #endif                          /* CONFIG_IPW_QOS */
8026
8027         switch (mode) {
8028         case 1:
8029                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8030                 priv->net_dev->type = ARPHRD_ETHER;
8031
8032                 break;
8033 #ifdef CONFIG_IPW2200_MONITOR
8034         case 2:
8035                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8036 #ifdef CONFIG_IEEE80211_RADIOTAP
8037                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8038 #else
8039                 priv->net_dev->type = ARPHRD_IEEE80211;
8040 #endif
8041                 break;
8042 #endif
8043         default:
8044         case 0:
8045                 priv->net_dev->type = ARPHRD_ETHER;
8046                 priv->ieee->iw_mode = IW_MODE_INFRA;
8047                 break;
8048         }
8049
8050         if (hwcrypto) {
8051                 priv->ieee->host_encrypt = 0;
8052                 priv->ieee->host_encrypt_msdu = 0;
8053                 priv->ieee->host_decrypt = 0;
8054                 priv->ieee->host_mc_decrypt = 0;
8055         }
8056         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8057
8058         /* IPW2200/2915 is abled to do hardware fragmentation. */
8059         priv->ieee->host_open_frag = 0;
8060
8061         if ((priv->pci_dev->device == 0x4223) ||
8062             (priv->pci_dev->device == 0x4224)) {
8063                 if (init)
8064                         printk(KERN_INFO DRV_NAME
8065                                ": Detected Intel PRO/Wireless 2915ABG Network "
8066                                "Connection\n");
8067                 priv->ieee->abg_true = 1;
8068                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8069                 modulation = IEEE80211_OFDM_MODULATION |
8070                     IEEE80211_CCK_MODULATION;
8071                 priv->adapter = IPW_2915ABG;
8072                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8073         } else {
8074                 if (init)
8075                         printk(KERN_INFO DRV_NAME
8076                                ": Detected Intel PRO/Wireless 2200BG Network "
8077                                "Connection\n");
8078
8079                 priv->ieee->abg_true = 0;
8080                 band = IEEE80211_24GHZ_BAND;
8081                 modulation = IEEE80211_OFDM_MODULATION |
8082                     IEEE80211_CCK_MODULATION;
8083                 priv->adapter = IPW_2200BG;
8084                 priv->ieee->mode = IEEE_G | IEEE_B;
8085         }
8086
8087         priv->ieee->freq_band = band;
8088         priv->ieee->modulation = modulation;
8089
8090         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8091
8092         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8093         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8094
8095         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8096         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8097         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8098
8099         /* If power management is turned on, default to AC mode */
8100         priv->power_mode = IPW_POWER_AC;
8101         priv->tx_power = IPW_TX_POWER_DEFAULT;
8102
8103         return old_mode == priv->ieee->iw_mode;
8104 }
8105
8106 /*
8107  * This file defines the Wireless Extension handlers.  It does not
8108  * define any methods of hardware manipulation and relies on the
8109  * functions defined in ipw_main to provide the HW interaction.
8110  *
8111  * The exception to this is the use of the ipw_get_ordinal()
8112  * function used to poll the hardware vs. making unecessary calls.
8113  *
8114  */
8115
8116 static int ipw_wx_get_name(struct net_device *dev,
8117                            struct iw_request_info *info,
8118                            union iwreq_data *wrqu, char *extra)
8119 {
8120         struct ipw_priv *priv = ieee80211_priv(dev);
8121         down(&priv->sem);
8122         if (priv->status & STATUS_RF_KILL_MASK)
8123                 strcpy(wrqu->name, "radio off");
8124         else if (!(priv->status & STATUS_ASSOCIATED))
8125                 strcpy(wrqu->name, "unassociated");
8126         else
8127                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8128                          ipw_modes[priv->assoc_request.ieee_mode]);
8129         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8130         up(&priv->sem);
8131         return 0;
8132 }
8133
8134 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8135 {
8136         if (channel == 0) {
8137                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8138                 priv->config &= ~CFG_STATIC_CHANNEL;
8139                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8140                                 "parameters.\n");
8141                 ipw_associate(priv);
8142                 return 0;
8143         }
8144
8145         priv->config |= CFG_STATIC_CHANNEL;
8146
8147         if (priv->channel == channel) {
8148                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8149                                channel);
8150                 return 0;
8151         }
8152
8153         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8154         priv->channel = channel;
8155
8156 #ifdef CONFIG_IPW2200_MONITOR
8157         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8158                 int i;
8159                 if (priv->status & STATUS_SCANNING) {
8160                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8161                                        "channel change.\n");
8162                         ipw_abort_scan(priv);
8163                 }
8164
8165                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8166                         udelay(10);
8167
8168                 if (priv->status & STATUS_SCANNING)
8169                         IPW_DEBUG_SCAN("Still scanning...\n");
8170                 else
8171                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8172                                        1000 - i);
8173
8174                 return 0;
8175         }
8176 #endif                          /* CONFIG_IPW2200_MONITOR */
8177
8178         /* Network configuration changed -- force [re]association */
8179         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8180         if (!ipw_disassociate(priv))
8181                 ipw_associate(priv);
8182
8183         return 0;
8184 }
8185
8186 static int ipw_wx_set_freq(struct net_device *dev,
8187                            struct iw_request_info *info,
8188                            union iwreq_data *wrqu, char *extra)
8189 {
8190         struct ipw_priv *priv = ieee80211_priv(dev);
8191         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8192         struct iw_freq *fwrq = &wrqu->freq;
8193         int ret = 0, i;
8194         u8 channel, flags;
8195         int band;
8196
8197         if (fwrq->m == 0) {
8198                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8199                 down(&priv->sem);
8200                 ret = ipw_set_channel(priv, 0);
8201                 up(&priv->sem);
8202                 return ret;
8203         }
8204         /* if setting by freq convert to channel */
8205         if (fwrq->e == 1) {
8206                 channel = ipw_freq_to_channel(priv->ieee, fwrq->m);
8207                 if (channel == 0)
8208                         return -EINVAL;
8209         } else
8210                 channel = fwrq->m;
8211
8212         if (!(band = ipw_is_valid_channel(priv->ieee, channel)))
8213                 return -EINVAL;
8214
8215         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8216                 i = ipw_channel_to_index(priv->ieee, channel);
8217                 if (i == -1)
8218                         return -EINVAL;
8219
8220                 flags = (band == IEEE80211_24GHZ_BAND) ?
8221                     geo->bg[i].flags : geo->a[i].flags;
8222                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8223                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8224                         return -EINVAL;
8225                 }
8226         }
8227
8228         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8229         down(&priv->sem);
8230         ret = ipw_set_channel(priv, channel);
8231         up(&priv->sem);
8232         return ret;
8233 }
8234
8235 static int ipw_wx_get_freq(struct net_device *dev,
8236                            struct iw_request_info *info,
8237                            union iwreq_data *wrqu, char *extra)
8238 {
8239         struct ipw_priv *priv = ieee80211_priv(dev);
8240
8241         wrqu->freq.e = 0;
8242
8243         /* If we are associated, trying to associate, or have a statically
8244          * configured CHANNEL then return that; otherwise return ANY */
8245         down(&priv->sem);
8246         if (priv->config & CFG_STATIC_CHANNEL ||
8247             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8248                 wrqu->freq.m = priv->channel;
8249         else
8250                 wrqu->freq.m = 0;
8251
8252         up(&priv->sem);
8253         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8254         return 0;
8255 }
8256
8257 static int ipw_wx_set_mode(struct net_device *dev,
8258                            struct iw_request_info *info,
8259                            union iwreq_data *wrqu, char *extra)
8260 {
8261         struct ipw_priv *priv = ieee80211_priv(dev);
8262         int err = 0;
8263
8264         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8265
8266         switch (wrqu->mode) {
8267 #ifdef CONFIG_IPW2200_MONITOR
8268         case IW_MODE_MONITOR:
8269 #endif
8270         case IW_MODE_ADHOC:
8271         case IW_MODE_INFRA:
8272                 break;
8273         case IW_MODE_AUTO:
8274                 wrqu->mode = IW_MODE_INFRA;
8275                 break;
8276         default:
8277                 return -EINVAL;
8278         }
8279         if (wrqu->mode == priv->ieee->iw_mode)
8280                 return 0;
8281
8282         down(&priv->sem);
8283
8284         ipw_sw_reset(priv, 0);
8285
8286 #ifdef CONFIG_IPW2200_MONITOR
8287         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8288                 priv->net_dev->type = ARPHRD_ETHER;
8289
8290         if (wrqu->mode == IW_MODE_MONITOR)
8291 #ifdef CONFIG_IEEE80211_RADIOTAP
8292                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8293 #else
8294                 priv->net_dev->type = ARPHRD_IEEE80211;
8295 #endif
8296 #endif                          /* CONFIG_IPW2200_MONITOR */
8297
8298         /* Free the existing firmware and reset the fw_loaded
8299          * flag so ipw_load() will bring in the new firmawre */
8300         free_firmware();
8301
8302         priv->ieee->iw_mode = wrqu->mode;
8303
8304         queue_work(priv->workqueue, &priv->adapter_restart);
8305         up(&priv->sem);
8306         return err;
8307 }
8308
8309 static int ipw_wx_get_mode(struct net_device *dev,
8310                            struct iw_request_info *info,
8311                            union iwreq_data *wrqu, char *extra)
8312 {
8313         struct ipw_priv *priv = ieee80211_priv(dev);
8314         down(&priv->sem);
8315         wrqu->mode = priv->ieee->iw_mode;
8316         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8317         up(&priv->sem);
8318         return 0;
8319 }
8320
8321 /* Values are in microsecond */
8322 static const s32 timeout_duration[] = {
8323         350000,
8324         250000,
8325         75000,
8326         37000,
8327         25000,
8328 };
8329
8330 static const s32 period_duration[] = {
8331         400000,
8332         700000,
8333         1000000,
8334         1000000,
8335         1000000
8336 };
8337
8338 static int ipw_wx_get_range(struct net_device *dev,
8339                             struct iw_request_info *info,
8340                             union iwreq_data *wrqu, char *extra)
8341 {
8342         struct ipw_priv *priv = ieee80211_priv(dev);
8343         struct iw_range *range = (struct iw_range *)extra;
8344         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8345         int i = 0, j;
8346
8347         wrqu->data.length = sizeof(*range);
8348         memset(range, 0, sizeof(*range));
8349
8350         /* 54Mbs == ~27 Mb/s real (802.11g) */
8351         range->throughput = 27 * 1000 * 1000;
8352
8353         range->max_qual.qual = 100;
8354         /* TODO: Find real max RSSI and stick here */
8355         range->max_qual.level = 0;
8356         range->max_qual.noise = priv->ieee->worst_rssi + 0x100;
8357         range->max_qual.updated = 7;    /* Updated all three */
8358
8359         range->avg_qual.qual = 70;
8360         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8361         range->avg_qual.level = 0;      /* FIXME to real average level */
8362         range->avg_qual.noise = 0;
8363         range->avg_qual.updated = 7;    /* Updated all three */
8364         down(&priv->sem);
8365         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8366
8367         for (i = 0; i < range->num_bitrates; i++)
8368                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8369                     500000;
8370
8371         range->max_rts = DEFAULT_RTS_THRESHOLD;
8372         range->min_frag = MIN_FRAG_THRESHOLD;
8373         range->max_frag = MAX_FRAG_THRESHOLD;
8374
8375         range->encoding_size[0] = 5;
8376         range->encoding_size[1] = 13;
8377         range->num_encoding_sizes = 2;
8378         range->max_encoding_tokens = WEP_KEYS;
8379
8380         /* Set the Wireless Extension versions */
8381         range->we_version_compiled = WIRELESS_EXT;
8382         range->we_version_source = 16;
8383
8384         i = 0;
8385         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8386                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8387                      i++, j++) {
8388                         range->freq[i].i = geo->bg[j].channel;
8389                         range->freq[i].m = geo->bg[j].freq * 100000;
8390                         range->freq[i].e = 1;
8391                 }
8392         }
8393
8394         if (priv->ieee->mode & IEEE_A) {
8395                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8396                      i++, j++) {
8397                         range->freq[i].i = geo->a[j].channel;
8398                         range->freq[i].m = geo->a[j].freq * 100000;
8399                         range->freq[i].e = 1;
8400                 }
8401         }
8402
8403         range->num_channels = i;
8404         range->num_frequency = i;
8405
8406         up(&priv->sem);
8407
8408         /* Event capability (kernel + driver) */
8409         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8410                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8411                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
8412         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8413
8414         IPW_DEBUG_WX("GET Range\n");
8415         return 0;
8416 }
8417
8418 static int ipw_wx_set_wap(struct net_device *dev,
8419                           struct iw_request_info *info,
8420                           union iwreq_data *wrqu, char *extra)
8421 {
8422         struct ipw_priv *priv = ieee80211_priv(dev);
8423
8424         static const unsigned char any[] = {
8425                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8426         };
8427         static const unsigned char off[] = {
8428                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8429         };
8430
8431         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8432                 return -EINVAL;
8433         down(&priv->sem);
8434         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8435             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8436                 /* we disable mandatory BSSID association */
8437                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8438                 priv->config &= ~CFG_STATIC_BSSID;
8439                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8440                                 "parameters.\n");
8441                 ipw_associate(priv);
8442                 up(&priv->sem);
8443                 return 0;
8444         }
8445
8446         priv->config |= CFG_STATIC_BSSID;
8447         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8448                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8449                 up(&priv->sem);
8450                 return 0;
8451         }
8452
8453         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8454                      MAC_ARG(wrqu->ap_addr.sa_data));
8455
8456         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8457
8458         /* Network configuration changed -- force [re]association */
8459         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8460         if (!ipw_disassociate(priv))
8461                 ipw_associate(priv);
8462
8463         up(&priv->sem);
8464         return 0;
8465 }
8466
8467 static int ipw_wx_get_wap(struct net_device *dev,
8468                           struct iw_request_info *info,
8469                           union iwreq_data *wrqu, char *extra)
8470 {
8471         struct ipw_priv *priv = ieee80211_priv(dev);
8472         /* If we are associated, trying to associate, or have a statically
8473          * configured BSSID then return that; otherwise return ANY */
8474         down(&priv->sem);
8475         if (priv->config & CFG_STATIC_BSSID ||
8476             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8477                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8478                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8479         } else
8480                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8481
8482         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8483                      MAC_ARG(wrqu->ap_addr.sa_data));
8484         up(&priv->sem);
8485         return 0;
8486 }
8487
8488 static int ipw_wx_set_essid(struct net_device *dev,
8489                             struct iw_request_info *info,
8490                             union iwreq_data *wrqu, char *extra)
8491 {
8492         struct ipw_priv *priv = ieee80211_priv(dev);
8493         char *essid = "";       /* ANY */
8494         int length = 0;
8495         down(&priv->sem);
8496         if (wrqu->essid.flags && wrqu->essid.length) {
8497                 length = wrqu->essid.length - 1;
8498                 essid = extra;
8499         }
8500         if (length == 0) {
8501                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8502                 if ((priv->config & CFG_STATIC_ESSID) &&
8503                     !(priv->status & (STATUS_ASSOCIATED |
8504                                       STATUS_ASSOCIATING))) {
8505                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8506                                         "parameters.\n");
8507                         priv->config &= ~CFG_STATIC_ESSID;
8508                         ipw_associate(priv);
8509                 }
8510                 up(&priv->sem);
8511                 return 0;
8512         }
8513
8514         length = min(length, IW_ESSID_MAX_SIZE);
8515
8516         priv->config |= CFG_STATIC_ESSID;
8517
8518         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8519                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8520                 up(&priv->sem);
8521                 return 0;
8522         }
8523
8524         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8525                      length);
8526
8527         priv->essid_len = length;
8528         memcpy(priv->essid, essid, priv->essid_len);
8529
8530         /* Network configuration changed -- force [re]association */
8531         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8532         if (!ipw_disassociate(priv))
8533                 ipw_associate(priv);
8534
8535         up(&priv->sem);
8536         return 0;
8537 }
8538
8539 static int ipw_wx_get_essid(struct net_device *dev,
8540                             struct iw_request_info *info,
8541                             union iwreq_data *wrqu, char *extra)
8542 {
8543         struct ipw_priv *priv = ieee80211_priv(dev);
8544
8545         /* If we are associated, trying to associate, or have a statically
8546          * configured ESSID then return that; otherwise return ANY */
8547         down(&priv->sem);
8548         if (priv->config & CFG_STATIC_ESSID ||
8549             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8550                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8551                              escape_essid(priv->essid, priv->essid_len));
8552                 memcpy(extra, priv->essid, priv->essid_len);
8553                 wrqu->essid.length = priv->essid_len;
8554                 wrqu->essid.flags = 1;  /* active */
8555         } else {
8556                 IPW_DEBUG_WX("Getting essid: ANY\n");
8557                 wrqu->essid.length = 0;
8558                 wrqu->essid.flags = 0;  /* active */
8559         }
8560         up(&priv->sem);
8561         return 0;
8562 }
8563
8564 static int ipw_wx_set_nick(struct net_device *dev,
8565                            struct iw_request_info *info,
8566                            union iwreq_data *wrqu, char *extra)
8567 {
8568         struct ipw_priv *priv = ieee80211_priv(dev);
8569
8570         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8571         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8572                 return -E2BIG;
8573         down(&priv->sem);
8574         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8575         memset(priv->nick, 0, sizeof(priv->nick));
8576         memcpy(priv->nick, extra, wrqu->data.length);
8577         IPW_DEBUG_TRACE("<<\n");
8578         up(&priv->sem);
8579         return 0;
8580
8581 }
8582
8583 static int ipw_wx_get_nick(struct net_device *dev,
8584                            struct iw_request_info *info,
8585                            union iwreq_data *wrqu, char *extra)
8586 {
8587         struct ipw_priv *priv = ieee80211_priv(dev);
8588         IPW_DEBUG_WX("Getting nick\n");
8589         down(&priv->sem);
8590         wrqu->data.length = strlen(priv->nick) + 1;
8591         memcpy(extra, priv->nick, wrqu->data.length);
8592         wrqu->data.flags = 1;   /* active */
8593         up(&priv->sem);
8594         return 0;
8595 }
8596
8597 static int ipw_wx_set_rate(struct net_device *dev,
8598                            struct iw_request_info *info,
8599                            union iwreq_data *wrqu, char *extra)
8600 {
8601         /* TODO: We should use semaphores or locks for access to priv */
8602         struct ipw_priv *priv = ieee80211_priv(dev);
8603         u32 target_rate = wrqu->bitrate.value;
8604         u32 fixed, mask;
8605
8606         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8607         /* value = X, fixed = 1 means only rate X */
8608         /* value = X, fixed = 0 means all rates lower equal X */
8609
8610         if (target_rate == -1) {
8611                 fixed = 0;
8612                 mask = IEEE80211_DEFAULT_RATES_MASK;
8613                 /* Now we should reassociate */
8614                 goto apply;
8615         }
8616
8617         mask = 0;
8618         fixed = wrqu->bitrate.fixed;
8619
8620         if (target_rate == 1000000 || !fixed)
8621                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8622         if (target_rate == 1000000)
8623                 goto apply;
8624
8625         if (target_rate == 2000000 || !fixed)
8626                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8627         if (target_rate == 2000000)
8628                 goto apply;
8629
8630         if (target_rate == 5500000 || !fixed)
8631                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8632         if (target_rate == 5500000)
8633                 goto apply;
8634
8635         if (target_rate == 6000000 || !fixed)
8636                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8637         if (target_rate == 6000000)
8638                 goto apply;
8639
8640         if (target_rate == 9000000 || !fixed)
8641                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8642         if (target_rate == 9000000)
8643                 goto apply;
8644
8645         if (target_rate == 11000000 || !fixed)
8646                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8647         if (target_rate == 11000000)
8648                 goto apply;
8649
8650         if (target_rate == 12000000 || !fixed)
8651                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8652         if (target_rate == 12000000)
8653                 goto apply;
8654
8655         if (target_rate == 18000000 || !fixed)
8656                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8657         if (target_rate == 18000000)
8658                 goto apply;
8659
8660         if (target_rate == 24000000 || !fixed)
8661                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8662         if (target_rate == 24000000)
8663                 goto apply;
8664
8665         if (target_rate == 36000000 || !fixed)
8666                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8667         if (target_rate == 36000000)
8668                 goto apply;
8669
8670         if (target_rate == 48000000 || !fixed)
8671                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8672         if (target_rate == 48000000)
8673                 goto apply;
8674
8675         if (target_rate == 54000000 || !fixed)
8676                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8677         if (target_rate == 54000000)
8678                 goto apply;
8679
8680         IPW_DEBUG_WX("invalid rate specified, returning error\n");
8681         return -EINVAL;
8682
8683       apply:
8684         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8685                      mask, fixed ? "fixed" : "sub-rates");
8686         down(&priv->sem);
8687         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8688                 priv->config &= ~CFG_FIXED_RATE;
8689                 ipw_set_fixed_rate(priv, priv->ieee->mode);
8690         } else
8691                 priv->config |= CFG_FIXED_RATE;
8692
8693         if (priv->rates_mask == mask) {
8694                 IPW_DEBUG_WX("Mask set to current mask.\n");
8695                 up(&priv->sem);
8696                 return 0;
8697         }
8698
8699         priv->rates_mask = mask;
8700
8701         /* Network configuration changed -- force [re]association */
8702         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8703         if (!ipw_disassociate(priv))
8704                 ipw_associate(priv);
8705
8706         up(&priv->sem);
8707         return 0;
8708 }
8709
8710 static int ipw_wx_get_rate(struct net_device *dev,
8711                            struct iw_request_info *info,
8712                            union iwreq_data *wrqu, char *extra)
8713 {
8714         struct ipw_priv *priv = ieee80211_priv(dev);
8715         down(&priv->sem);
8716         wrqu->bitrate.value = priv->last_rate;
8717         up(&priv->sem);
8718         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8719         return 0;
8720 }
8721
8722 static int ipw_wx_set_rts(struct net_device *dev,
8723                           struct iw_request_info *info,
8724                           union iwreq_data *wrqu, char *extra)
8725 {
8726         struct ipw_priv *priv = ieee80211_priv(dev);
8727         down(&priv->sem);
8728         if (wrqu->rts.disabled)
8729                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8730         else {
8731                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8732                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
8733                         up(&priv->sem);
8734                         return -EINVAL;
8735                 }
8736                 priv->rts_threshold = wrqu->rts.value;
8737         }
8738
8739         ipw_send_rts_threshold(priv, priv->rts_threshold);
8740         up(&priv->sem);
8741         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
8742         return 0;
8743 }
8744
8745 static int ipw_wx_get_rts(struct net_device *dev,
8746                           struct iw_request_info *info,
8747                           union iwreq_data *wrqu, char *extra)
8748 {
8749         struct ipw_priv *priv = ieee80211_priv(dev);
8750         down(&priv->sem);
8751         wrqu->rts.value = priv->rts_threshold;
8752         wrqu->rts.fixed = 0;    /* no auto select */
8753         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
8754         up(&priv->sem);
8755         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
8756         return 0;
8757 }
8758
8759 static int ipw_wx_set_txpow(struct net_device *dev,
8760                             struct iw_request_info *info,
8761                             union iwreq_data *wrqu, char *extra)
8762 {
8763         struct ipw_priv *priv = ieee80211_priv(dev);
8764         int err = 0;
8765
8766         down(&priv->sem);
8767         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
8768                 err = -EINPROGRESS;
8769                 goto out;
8770         }
8771
8772         if (!wrqu->power.fixed)
8773                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
8774
8775         if (wrqu->power.flags != IW_TXPOW_DBM) {
8776                 err = -EINVAL;
8777                 goto out;
8778         }
8779
8780         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
8781             (wrqu->power.value < IPW_TX_POWER_MIN)) {
8782                 err = -EINVAL;
8783                 goto out;
8784         }
8785
8786         priv->tx_power = wrqu->power.value;
8787         err = ipw_set_tx_power(priv);
8788       out:
8789         up(&priv->sem);
8790         return err;
8791 }
8792
8793 static int ipw_wx_get_txpow(struct net_device *dev,
8794                             struct iw_request_info *info,
8795                             union iwreq_data *wrqu, char *extra)
8796 {
8797         struct ipw_priv *priv = ieee80211_priv(dev);
8798         down(&priv->sem);
8799         wrqu->power.value = priv->tx_power;
8800         wrqu->power.fixed = 1;
8801         wrqu->power.flags = IW_TXPOW_DBM;
8802         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
8803         up(&priv->sem);
8804
8805         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8806                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8807
8808         return 0;
8809 }
8810
8811 static int ipw_wx_set_frag(struct net_device *dev,
8812                            struct iw_request_info *info,
8813                            union iwreq_data *wrqu, char *extra)
8814 {
8815         struct ipw_priv *priv = ieee80211_priv(dev);
8816         down(&priv->sem);
8817         if (wrqu->frag.disabled)
8818                 priv->ieee->fts = DEFAULT_FTS;
8819         else {
8820                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
8821                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
8822                         up(&priv->sem);
8823                         return -EINVAL;
8824                 }
8825
8826                 priv->ieee->fts = wrqu->frag.value & ~0x1;
8827         }
8828
8829         ipw_send_frag_threshold(priv, wrqu->frag.value);
8830         up(&priv->sem);
8831         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
8832         return 0;
8833 }
8834
8835 static int ipw_wx_get_frag(struct net_device *dev,
8836                            struct iw_request_info *info,
8837                            union iwreq_data *wrqu, char *extra)
8838 {
8839         struct ipw_priv *priv = ieee80211_priv(dev);
8840         down(&priv->sem);
8841         wrqu->frag.value = priv->ieee->fts;
8842         wrqu->frag.fixed = 0;   /* no auto select */
8843         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
8844         up(&priv->sem);
8845         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
8846
8847         return 0;
8848 }
8849
8850 static int ipw_wx_set_retry(struct net_device *dev,
8851                             struct iw_request_info *info,
8852                             union iwreq_data *wrqu, char *extra)
8853 {
8854         struct ipw_priv *priv = ieee80211_priv(dev);
8855
8856         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
8857                 return -EINVAL;
8858
8859         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
8860                 return 0;
8861
8862         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
8863                 return -EINVAL;
8864
8865         down(&priv->sem);
8866         if (wrqu->retry.flags & IW_RETRY_MIN)
8867                 priv->short_retry_limit = (u8) wrqu->retry.value;
8868         else if (wrqu->retry.flags & IW_RETRY_MAX)
8869                 priv->long_retry_limit = (u8) wrqu->retry.value;
8870         else {
8871                 priv->short_retry_limit = (u8) wrqu->retry.value;
8872                 priv->long_retry_limit = (u8) wrqu->retry.value;
8873         }
8874
8875         ipw_send_retry_limit(priv, priv->short_retry_limit,
8876                              priv->long_retry_limit);
8877         up(&priv->sem);
8878         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8879                      priv->short_retry_limit, priv->long_retry_limit);
8880         return 0;
8881 }
8882
8883 static int ipw_wx_get_retry(struct net_device *dev,
8884                             struct iw_request_info *info,
8885                             union iwreq_data *wrqu, char *extra)
8886 {
8887         struct ipw_priv *priv = ieee80211_priv(dev);
8888
8889         down(&priv->sem);
8890         wrqu->retry.disabled = 0;
8891
8892         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
8893                 up(&priv->sem);
8894                 return -EINVAL;
8895         }
8896
8897         if (wrqu->retry.flags & IW_RETRY_MAX) {
8898                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
8899                 wrqu->retry.value = priv->long_retry_limit;
8900         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
8901                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
8902                 wrqu->retry.value = priv->short_retry_limit;
8903         } else {
8904                 wrqu->retry.flags = IW_RETRY_LIMIT;
8905                 wrqu->retry.value = priv->short_retry_limit;
8906         }
8907         up(&priv->sem);
8908
8909         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
8910
8911         return 0;
8912 }
8913
8914 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
8915                                    int essid_len)
8916 {
8917         struct ipw_scan_request_ext scan;
8918         int err = 0, scan_type;
8919
8920         down(&priv->sem);
8921
8922         if (priv->status & STATUS_RF_KILL_MASK) {
8923                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
8924                 priv->status |= STATUS_SCAN_PENDING;
8925                 goto done;
8926         }
8927
8928         IPW_DEBUG_HC("starting request direct scan!\n");
8929
8930         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
8931                 err = wait_event_interruptible(priv->wait_state,
8932                                                !(priv->
8933                                                  status & (STATUS_SCANNING |
8934                                                            STATUS_SCAN_ABORTING)));
8935                 if (err) {
8936                         IPW_DEBUG_HC("aborting direct scan");
8937                         goto done;
8938                 }
8939         }
8940         memset(&scan, 0, sizeof(scan));
8941
8942         if (priv->config & CFG_SPEED_SCAN)
8943                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8944                     cpu_to_le16(30);
8945         else
8946                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8947                     cpu_to_le16(20);
8948
8949         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
8950             cpu_to_le16(20);
8951         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
8952         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
8953
8954         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
8955
8956         err = ipw_send_ssid(priv, essid, essid_len);
8957         if (err) {
8958                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
8959                 goto done;
8960         }
8961         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
8962
8963         ipw_add_scan_channels(priv, &scan, scan_type);
8964
8965         err = ipw_send_scan_request_ext(priv, &scan);
8966         if (err) {
8967                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
8968                 goto done;
8969         }
8970
8971         priv->status |= STATUS_SCANNING;
8972
8973       done:
8974         up(&priv->sem);
8975         return err;
8976 }
8977
8978 static int ipw_wx_set_scan(struct net_device *dev,
8979                            struct iw_request_info *info,
8980                            union iwreq_data *wrqu, char *extra)
8981 {
8982         struct ipw_priv *priv = ieee80211_priv(dev);
8983         struct iw_scan_req *req = NULL;
8984         if (wrqu->data.length
8985             && wrqu->data.length == sizeof(struct iw_scan_req)) {
8986                 req = (struct iw_scan_req *)extra;
8987                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
8988                         ipw_request_direct_scan(priv, req->essid,
8989                                                 req->essid_len);
8990                         return 0;
8991                 }
8992         }
8993
8994         IPW_DEBUG_WX("Start scan\n");
8995
8996         queue_work(priv->workqueue, &priv->request_scan);
8997
8998         return 0;
8999 }
9000
9001 static int ipw_wx_get_scan(struct net_device *dev,
9002                            struct iw_request_info *info,
9003                            union iwreq_data *wrqu, char *extra)
9004 {
9005         struct ipw_priv *priv = ieee80211_priv(dev);
9006         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9007 }
9008
9009 static int ipw_wx_set_encode(struct net_device *dev,
9010                              struct iw_request_info *info,
9011                              union iwreq_data *wrqu, char *key)
9012 {
9013         struct ipw_priv *priv = ieee80211_priv(dev);
9014         int ret;
9015         u32 cap = priv->capability;
9016
9017         down(&priv->sem);
9018         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9019
9020         /* In IBSS mode, we need to notify the firmware to update
9021          * the beacon info after we changed the capability. */
9022         if (cap != priv->capability &&
9023             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9024             priv->status & STATUS_ASSOCIATED)
9025                 ipw_disassociate(priv);
9026
9027         up(&priv->sem);
9028         return ret;
9029 }
9030
9031 static int ipw_wx_get_encode(struct net_device *dev,
9032                              struct iw_request_info *info,
9033                              union iwreq_data *wrqu, char *key)
9034 {
9035         struct ipw_priv *priv = ieee80211_priv(dev);
9036         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9037 }
9038
9039 static int ipw_wx_set_power(struct net_device *dev,
9040                             struct iw_request_info *info,
9041                             union iwreq_data *wrqu, char *extra)
9042 {
9043         struct ipw_priv *priv = ieee80211_priv(dev);
9044         int err;
9045         down(&priv->sem);
9046         if (wrqu->power.disabled) {
9047                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9048                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9049                 if (err) {
9050                         IPW_DEBUG_WX("failed setting power mode.\n");
9051                         up(&priv->sem);
9052                         return err;
9053                 }
9054                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9055                 up(&priv->sem);
9056                 return 0;
9057         }
9058
9059         switch (wrqu->power.flags & IW_POWER_MODE) {
9060         case IW_POWER_ON:       /* If not specified */
9061         case IW_POWER_MODE:     /* If set all mask */
9062         case IW_POWER_ALL_R:    /* If explicitely state all */
9063                 break;
9064         default:                /* Otherwise we don't support it */
9065                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9066                              wrqu->power.flags);
9067                 up(&priv->sem);
9068                 return -EOPNOTSUPP;
9069         }
9070
9071         /* If the user hasn't specified a power management mode yet, default
9072          * to BATTERY */
9073         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9074                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9075         else
9076                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9077         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9078         if (err) {
9079                 IPW_DEBUG_WX("failed setting power mode.\n");
9080                 up(&priv->sem);
9081                 return err;
9082         }
9083
9084         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9085         up(&priv->sem);
9086         return 0;
9087 }
9088
9089 static int ipw_wx_get_power(struct net_device *dev,
9090                             struct iw_request_info *info,
9091                             union iwreq_data *wrqu, char *extra)
9092 {
9093         struct ipw_priv *priv = ieee80211_priv(dev);
9094         down(&priv->sem);
9095         if (!(priv->power_mode & IPW_POWER_ENABLED))
9096                 wrqu->power.disabled = 1;
9097         else
9098                 wrqu->power.disabled = 0;
9099
9100         up(&priv->sem);
9101         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9102
9103         return 0;
9104 }
9105
9106 static int ipw_wx_set_powermode(struct net_device *dev,
9107                                 struct iw_request_info *info,
9108                                 union iwreq_data *wrqu, char *extra)
9109 {
9110         struct ipw_priv *priv = ieee80211_priv(dev);
9111         int mode = *(int *)extra;
9112         int err;
9113         down(&priv->sem);
9114         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9115                 mode = IPW_POWER_AC;
9116                 priv->power_mode = mode;
9117         } else {
9118                 priv->power_mode = IPW_POWER_ENABLED | mode;
9119         }
9120
9121         if (priv->power_mode != mode) {
9122                 err = ipw_send_power_mode(priv, mode);
9123
9124                 if (err) {
9125                         IPW_DEBUG_WX("failed setting power mode.\n");
9126                         up(&priv->sem);
9127                         return err;
9128                 }
9129         }
9130         up(&priv->sem);
9131         return 0;
9132 }
9133
9134 #define MAX_WX_STRING 80
9135 static int ipw_wx_get_powermode(struct net_device *dev,
9136                                 struct iw_request_info *info,
9137                                 union iwreq_data *wrqu, char *extra)
9138 {
9139         struct ipw_priv *priv = ieee80211_priv(dev);
9140         int level = IPW_POWER_LEVEL(priv->power_mode);
9141         char *p = extra;
9142
9143         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9144
9145         switch (level) {
9146         case IPW_POWER_AC:
9147                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9148                 break;
9149         case IPW_POWER_BATTERY:
9150                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9151                 break;
9152         default:
9153                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9154                               "(Timeout %dms, Period %dms)",
9155                               timeout_duration[level - 1] / 1000,
9156                               period_duration[level - 1] / 1000);
9157         }
9158
9159         if (!(priv->power_mode & IPW_POWER_ENABLED))
9160                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9161
9162         wrqu->data.length = p - extra + 1;
9163
9164         return 0;
9165 }
9166
9167 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9168                                     struct iw_request_info *info,
9169                                     union iwreq_data *wrqu, char *extra)
9170 {
9171         struct ipw_priv *priv = ieee80211_priv(dev);
9172         int mode = *(int *)extra;
9173         u8 band = 0, modulation = 0;
9174
9175         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9176                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9177                 return -EINVAL;
9178         }
9179         down(&priv->sem);
9180         if (priv->adapter == IPW_2915ABG) {
9181                 priv->ieee->abg_true = 1;
9182                 if (mode & IEEE_A) {
9183                         band |= IEEE80211_52GHZ_BAND;
9184                         modulation |= IEEE80211_OFDM_MODULATION;
9185                 } else
9186                         priv->ieee->abg_true = 0;
9187         } else {
9188                 if (mode & IEEE_A) {
9189                         IPW_WARNING("Attempt to set 2200BG into "
9190                                     "802.11a mode\n");
9191                         up(&priv->sem);
9192                         return -EINVAL;
9193                 }
9194
9195                 priv->ieee->abg_true = 0;
9196         }
9197
9198         if (mode & IEEE_B) {
9199                 band |= IEEE80211_24GHZ_BAND;
9200                 modulation |= IEEE80211_CCK_MODULATION;
9201         } else
9202                 priv->ieee->abg_true = 0;
9203
9204         if (mode & IEEE_G) {
9205                 band |= IEEE80211_24GHZ_BAND;
9206                 modulation |= IEEE80211_OFDM_MODULATION;
9207         } else
9208                 priv->ieee->abg_true = 0;
9209
9210         priv->ieee->mode = mode;
9211         priv->ieee->freq_band = band;
9212         priv->ieee->modulation = modulation;
9213         init_supported_rates(priv, &priv->rates);
9214
9215         /* Network configuration changed -- force [re]association */
9216         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9217         if (!ipw_disassociate(priv)) {
9218                 ipw_send_supported_rates(priv, &priv->rates);
9219                 ipw_associate(priv);
9220         }
9221
9222         /* Update the band LEDs */
9223         ipw_led_band_on(priv);
9224
9225         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9226                      mode & IEEE_A ? 'a' : '.',
9227                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9228         up(&priv->sem);
9229         return 0;
9230 }
9231
9232 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9233                                     struct iw_request_info *info,
9234                                     union iwreq_data *wrqu, char *extra)
9235 {
9236         struct ipw_priv *priv = ieee80211_priv(dev);
9237         down(&priv->sem);
9238         switch (priv->ieee->mode) {
9239         case IEEE_A:
9240                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9241                 break;
9242         case IEEE_B:
9243                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9244                 break;
9245         case IEEE_A | IEEE_B:
9246                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9247                 break;
9248         case IEEE_G:
9249                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9250                 break;
9251         case IEEE_A | IEEE_G:
9252                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9253                 break;
9254         case IEEE_B | IEEE_G:
9255                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9256                 break;
9257         case IEEE_A | IEEE_B | IEEE_G:
9258                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9259                 break;
9260         default:
9261                 strncpy(extra, "unknown", MAX_WX_STRING);
9262                 break;
9263         }
9264
9265         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9266
9267         wrqu->data.length = strlen(extra) + 1;
9268         up(&priv->sem);
9269
9270         return 0;
9271 }
9272
9273 static int ipw_wx_set_preamble(struct net_device *dev,
9274                                struct iw_request_info *info,
9275                                union iwreq_data *wrqu, char *extra)
9276 {
9277         struct ipw_priv *priv = ieee80211_priv(dev);
9278         int mode = *(int *)extra;
9279         down(&priv->sem);
9280         /* Switching from SHORT -> LONG requires a disassociation */
9281         if (mode == 1) {
9282                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9283                         priv->config |= CFG_PREAMBLE_LONG;
9284
9285                         /* Network configuration changed -- force [re]association */
9286                         IPW_DEBUG_ASSOC
9287                             ("[re]association triggered due to preamble change.\n");
9288                         if (!ipw_disassociate(priv))
9289                                 ipw_associate(priv);
9290                 }
9291                 goto done;
9292         }
9293
9294         if (mode == 0) {
9295                 priv->config &= ~CFG_PREAMBLE_LONG;
9296                 goto done;
9297         }
9298         up(&priv->sem);
9299         return -EINVAL;
9300
9301       done:
9302         up(&priv->sem);
9303         return 0;
9304 }
9305
9306 static int ipw_wx_get_preamble(struct net_device *dev,
9307                                struct iw_request_info *info,
9308                                union iwreq_data *wrqu, char *extra)
9309 {
9310         struct ipw_priv *priv = ieee80211_priv(dev);
9311         down(&priv->sem);
9312         if (priv->config & CFG_PREAMBLE_LONG)
9313                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9314         else
9315                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9316         up(&priv->sem);
9317         return 0;
9318 }
9319
9320 #ifdef CONFIG_IPW2200_MONITOR
9321 static int ipw_wx_set_monitor(struct net_device *dev,
9322                               struct iw_request_info *info,
9323                               union iwreq_data *wrqu, char *extra)
9324 {
9325         struct ipw_priv *priv = ieee80211_priv(dev);
9326         int *parms = (int *)extra;
9327         int enable = (parms[0] > 0);
9328         down(&priv->sem);
9329         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9330         if (enable) {
9331                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9332 #ifdef CONFIG_IEEE80211_RADIOTAP
9333                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9334 #else
9335                         priv->net_dev->type = ARPHRD_IEEE80211;
9336 #endif
9337                         queue_work(priv->workqueue, &priv->adapter_restart);
9338                 }
9339
9340                 ipw_set_channel(priv, parms[1]);
9341         } else {
9342                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9343                         up(&priv->sem);
9344                         return 0;
9345                 }
9346                 priv->net_dev->type = ARPHRD_ETHER;
9347                 queue_work(priv->workqueue, &priv->adapter_restart);
9348         }
9349         up(&priv->sem);
9350         return 0;
9351 }
9352
9353 #endif                          // CONFIG_IPW2200_MONITOR
9354
9355 static int ipw_wx_reset(struct net_device *dev,
9356                         struct iw_request_info *info,
9357                         union iwreq_data *wrqu, char *extra)
9358 {
9359         struct ipw_priv *priv = ieee80211_priv(dev);
9360         IPW_DEBUG_WX("RESET\n");
9361         queue_work(priv->workqueue, &priv->adapter_restart);
9362         return 0;
9363 }
9364
9365 static int ipw_wx_sw_reset(struct net_device *dev,
9366                            struct iw_request_info *info,
9367                            union iwreq_data *wrqu, char *extra)
9368 {
9369         struct ipw_priv *priv = ieee80211_priv(dev);
9370         union iwreq_data wrqu_sec = {
9371                 .encoding = {
9372                              .flags = IW_ENCODE_DISABLED,
9373                              },
9374         };
9375         int ret;
9376
9377         IPW_DEBUG_WX("SW_RESET\n");
9378
9379         down(&priv->sem);
9380
9381         ret = ipw_sw_reset(priv, 0);
9382         if (!ret) {
9383                 free_firmware();
9384                 ipw_adapter_restart(priv);
9385         }
9386
9387         /* The SW reset bit might have been toggled on by the 'disable'
9388          * module parameter, so take appropriate action */
9389         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9390
9391         up(&priv->sem);
9392         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9393         down(&priv->sem);
9394
9395         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9396                 /* Configuration likely changed -- force [re]association */
9397                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9398                                 "reset.\n");
9399                 if (!ipw_disassociate(priv))
9400                         ipw_associate(priv);
9401         }
9402
9403         up(&priv->sem);
9404
9405         return 0;
9406 }
9407
9408 /* Rebase the WE IOCTLs to zero for the handler array */
9409 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9410 static iw_handler ipw_wx_handlers[] = {
9411         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9412         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9413         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9414         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9415         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9416         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9417         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9418         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9419         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9420         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9421         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9422         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9423         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9424         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9425         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9426         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9427         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9428         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9429         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9430         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9431         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9432         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9433         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9434         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9435         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9436         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9437         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9438         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9439         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9440         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9441         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9442         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9443         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9444         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9445         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9446         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9447         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9448         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9449         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9450 };
9451
9452 enum {
9453         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9454         IPW_PRIV_GET_POWER,
9455         IPW_PRIV_SET_MODE,
9456         IPW_PRIV_GET_MODE,
9457         IPW_PRIV_SET_PREAMBLE,
9458         IPW_PRIV_GET_PREAMBLE,
9459         IPW_PRIV_RESET,
9460         IPW_PRIV_SW_RESET,
9461 #ifdef CONFIG_IPW2200_MONITOR
9462         IPW_PRIV_SET_MONITOR,
9463 #endif
9464 };
9465
9466 static struct iw_priv_args ipw_priv_args[] = {
9467         {
9468          .cmd = IPW_PRIV_SET_POWER,
9469          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9470          .name = "set_power"},
9471         {
9472          .cmd = IPW_PRIV_GET_POWER,
9473          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9474          .name = "get_power"},
9475         {
9476          .cmd = IPW_PRIV_SET_MODE,
9477          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9478          .name = "set_mode"},
9479         {
9480          .cmd = IPW_PRIV_GET_MODE,
9481          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9482          .name = "get_mode"},
9483         {
9484          .cmd = IPW_PRIV_SET_PREAMBLE,
9485          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9486          .name = "set_preamble"},
9487         {
9488          .cmd = IPW_PRIV_GET_PREAMBLE,
9489          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9490          .name = "get_preamble"},
9491         {
9492          IPW_PRIV_RESET,
9493          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9494         {
9495          IPW_PRIV_SW_RESET,
9496          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9497 #ifdef CONFIG_IPW2200_MONITOR
9498         {
9499          IPW_PRIV_SET_MONITOR,
9500          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9501 #endif                          /* CONFIG_IPW2200_MONITOR */
9502 };
9503
9504 static iw_handler ipw_priv_handler[] = {
9505         ipw_wx_set_powermode,
9506         ipw_wx_get_powermode,
9507         ipw_wx_set_wireless_mode,
9508         ipw_wx_get_wireless_mode,
9509         ipw_wx_set_preamble,
9510         ipw_wx_get_preamble,
9511         ipw_wx_reset,
9512         ipw_wx_sw_reset,
9513 #ifdef CONFIG_IPW2200_MONITOR
9514         ipw_wx_set_monitor,
9515 #endif
9516 };
9517
9518 static struct iw_handler_def ipw_wx_handler_def = {
9519         .standard = ipw_wx_handlers,
9520         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9521         .num_private = ARRAY_SIZE(ipw_priv_handler),
9522         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9523         .private = ipw_priv_handler,
9524         .private_args = ipw_priv_args,
9525         .get_wireless_stats = ipw_get_wireless_stats,
9526 };
9527
9528 /*
9529  * Get wireless statistics.
9530  * Called by /proc/net/wireless
9531  * Also called by SIOCGIWSTATS
9532  */
9533 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9534 {
9535         struct ipw_priv *priv = ieee80211_priv(dev);
9536         struct iw_statistics *wstats;
9537
9538         wstats = &priv->wstats;
9539
9540         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9541          * netdev->get_wireless_stats seems to be called before fw is
9542          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9543          * and associated; if not associcated, the values are all meaningless
9544          * anyway, so set them all to NULL and INVALID */
9545         if (!(priv->status & STATUS_ASSOCIATED)) {
9546                 wstats->miss.beacon = 0;
9547                 wstats->discard.retries = 0;
9548                 wstats->qual.qual = 0;
9549                 wstats->qual.level = 0;
9550                 wstats->qual.noise = 0;
9551                 wstats->qual.updated = 7;
9552                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9553                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9554                 return wstats;
9555         }
9556
9557         wstats->qual.qual = priv->quality;
9558         wstats->qual.level = average_value(&priv->average_rssi);
9559         wstats->qual.noise = average_value(&priv->average_noise);
9560         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9561             IW_QUAL_NOISE_UPDATED;
9562
9563         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9564         wstats->discard.retries = priv->last_tx_failures;
9565         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9566
9567 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9568         goto fail_get_ordinal;
9569         wstats->discard.retries += tx_retry; */
9570
9571         return wstats;
9572 }
9573
9574 /* net device stuff */
9575
9576 static inline void init_sys_config(struct ipw_sys_config *sys_config)
9577 {
9578         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9579         sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
9580         sys_config->answer_broadcast_ssid_probe = 0;
9581         sys_config->accept_all_data_frames = 0;
9582         sys_config->accept_non_directed_frames = 1;
9583         sys_config->exclude_unicast_unencrypted = 0;
9584         sys_config->disable_unicast_decryption = 1;
9585         sys_config->exclude_multicast_unencrypted = 0;
9586         sys_config->disable_multicast_decryption = 1;
9587         sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
9588         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9589         sys_config->dot11g_auto_detection = 0;
9590         sys_config->enable_cts_to_self = 0;
9591         sys_config->bt_coexist_collision_thr = 0;
9592         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
9593 }
9594
9595 static int ipw_net_open(struct net_device *dev)
9596 {
9597         struct ipw_priv *priv = ieee80211_priv(dev);
9598         IPW_DEBUG_INFO("dev->open\n");
9599         /* we should be verifying the device is ready to be opened */
9600         down(&priv->sem);
9601         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9602             (priv->status & STATUS_ASSOCIATED))
9603                 netif_start_queue(dev);
9604         up(&priv->sem);
9605         return 0;
9606 }
9607
9608 static int ipw_net_stop(struct net_device *dev)
9609 {
9610         IPW_DEBUG_INFO("dev->close\n");
9611         netif_stop_queue(dev);
9612         return 0;
9613 }
9614
9615 /*
9616 todo:
9617
9618 modify to send one tfd per fragment instead of using chunking.  otherwise
9619 we need to heavily modify the ieee80211_skb_to_txb.
9620 */
9621
9622 static inline int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9623                              int pri)
9624 {
9625         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9626             txb->fragments[0]->data;
9627         int i = 0;
9628         struct tfd_frame *tfd;
9629 #ifdef CONFIG_IPW_QOS
9630         int tx_id = ipw_get_tx_queue_number(priv, pri);
9631         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9632 #else
9633         struct clx2_tx_queue *txq = &priv->txq[0];
9634 #endif
9635         struct clx2_queue *q = &txq->q;
9636         u8 id, hdr_len, unicast;
9637         u16 remaining_bytes;
9638         int fc;
9639
9640         /* If there isn't room in the queue, we return busy and let the
9641          * network stack requeue the packet for us */
9642         if (ipw_queue_space(q) < q->high_mark)
9643                 return NETDEV_TX_BUSY;
9644
9645         switch (priv->ieee->iw_mode) {
9646         case IW_MODE_ADHOC:
9647                 hdr_len = IEEE80211_3ADDR_LEN;
9648                 unicast = !is_multicast_ether_addr(hdr->addr1);
9649                 id = ipw_find_station(priv, hdr->addr1);
9650                 if (id == IPW_INVALID_STATION) {
9651                         id = ipw_add_station(priv, hdr->addr1);
9652                         if (id == IPW_INVALID_STATION) {
9653                                 IPW_WARNING("Attempt to send data to "
9654                                             "invalid cell: " MAC_FMT "\n",
9655                                             MAC_ARG(hdr->addr1));
9656                                 goto drop;
9657                         }
9658                 }
9659                 break;
9660
9661         case IW_MODE_INFRA:
9662         default:
9663                 unicast = !is_multicast_ether_addr(hdr->addr3);
9664                 hdr_len = IEEE80211_3ADDR_LEN;
9665                 id = 0;
9666                 break;
9667         }
9668
9669         tfd = &txq->bd[q->first_empty];
9670         txq->txb[q->first_empty] = txb;
9671         memset(tfd, 0, sizeof(*tfd));
9672         tfd->u.data.station_number = id;
9673
9674         tfd->control_flags.message_type = TX_FRAME_TYPE;
9675         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9676
9677         tfd->u.data.cmd_id = DINO_CMD_TX;
9678         tfd->u.data.len = cpu_to_le16(txb->payload_size);
9679         remaining_bytes = txb->payload_size;
9680
9681         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9682                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9683         else
9684                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9685
9686         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9687                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9688
9689         fc = le16_to_cpu(hdr->frame_ctl);
9690         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9691
9692         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9693
9694         if (likely(unicast))
9695                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9696
9697         if (txb->encrypted && !priv->ieee->host_encrypt) {
9698                 switch (priv->ieee->sec.level) {
9699                 case SEC_LEVEL_3:
9700                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9701                             IEEE80211_FCTL_PROTECTED;
9702                         /* XXX: ACK flag must be set for CCMP even if it
9703                          * is a multicast/broadcast packet, because CCMP
9704                          * group communication encrypted by GTK is
9705                          * actually done by the AP. */
9706                         if (!unicast)
9707                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9708
9709                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9710                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9711                         tfd->u.data.key_index = 0;
9712                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9713                         break;
9714                 case SEC_LEVEL_2:
9715                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9716                             IEEE80211_FCTL_PROTECTED;
9717                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9718                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9719                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9720                         break;
9721                 case SEC_LEVEL_1:
9722                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9723                             IEEE80211_FCTL_PROTECTED;
9724                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
9725                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9726                             40)
9727                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9728                         else
9729                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9730                         break;
9731                 case SEC_LEVEL_0:
9732                         break;
9733                 default:
9734                         printk(KERN_ERR "Unknow security level %d\n",
9735                                priv->ieee->sec.level);
9736                         break;
9737                 }
9738         } else
9739                 /* No hardware encryption */
9740                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9741
9742 #ifdef CONFIG_IPW_QOS
9743         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
9744 #endif                          /* CONFIG_IPW_QOS */
9745
9746         /* payload */
9747         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
9748                                                  txb->nr_frags));
9749         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9750                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
9751         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
9752                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9753                                i, le32_to_cpu(tfd->u.data.num_chunks),
9754                                txb->fragments[i]->len - hdr_len);
9755                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9756                              i, tfd->u.data.num_chunks,
9757                              txb->fragments[i]->len - hdr_len);
9758                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
9759                            txb->fragments[i]->len - hdr_len);
9760
9761                 tfd->u.data.chunk_ptr[i] =
9762                     cpu_to_le32(pci_map_single
9763                                 (priv->pci_dev,
9764                                  txb->fragments[i]->data + hdr_len,
9765                                  txb->fragments[i]->len - hdr_len,
9766                                  PCI_DMA_TODEVICE));
9767                 tfd->u.data.chunk_len[i] =
9768                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
9769         }
9770
9771         if (i != txb->nr_frags) {
9772                 struct sk_buff *skb;
9773                 u16 remaining_bytes = 0;
9774                 int j;
9775
9776                 for (j = i; j < txb->nr_frags; j++)
9777                         remaining_bytes += txb->fragments[j]->len - hdr_len;
9778
9779                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
9780                        remaining_bytes);
9781                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
9782                 if (skb != NULL) {
9783                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
9784                         for (j = i; j < txb->nr_frags; j++) {
9785                                 int size = txb->fragments[j]->len - hdr_len;
9786
9787                                 printk(KERN_INFO "Adding frag %d %d...\n",
9788                                        j, size);
9789                                 memcpy(skb_put(skb, size),
9790                                        txb->fragments[j]->data + hdr_len, size);
9791                         }
9792                         dev_kfree_skb_any(txb->fragments[i]);
9793                         txb->fragments[i] = skb;
9794                         tfd->u.data.chunk_ptr[i] =
9795                             cpu_to_le32(pci_map_single
9796                                         (priv->pci_dev, skb->data,
9797                                          tfd->u.data.chunk_len[i],
9798                                          PCI_DMA_TODEVICE));
9799
9800                         tfd->u.data.num_chunks =
9801                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
9802                                         1);
9803                 }
9804         }
9805
9806         /* kick DMA */
9807         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
9808         ipw_write32(priv, q->reg_w, q->first_empty);
9809
9810         return NETDEV_TX_OK;
9811
9812       drop:
9813         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9814         ieee80211_txb_free(txb);
9815         return NETDEV_TX_OK;
9816 }
9817
9818 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9819 {
9820         struct ipw_priv *priv = ieee80211_priv(dev);
9821 #ifdef CONFIG_IPW_QOS
9822         int tx_id = ipw_get_tx_queue_number(priv, pri);
9823         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9824 #else
9825         struct clx2_tx_queue *txq = &priv->txq[0];
9826 #endif                          /* CONFIG_IPW_QOS */
9827
9828         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9829                 return 1;
9830
9831         return 0;
9832 }
9833
9834 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9835                                    struct net_device *dev, int pri)
9836 {
9837         struct ipw_priv *priv = ieee80211_priv(dev);
9838         unsigned long flags;
9839         int ret;
9840
9841         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
9842         spin_lock_irqsave(&priv->lock, flags);
9843
9844         if (!(priv->status & STATUS_ASSOCIATED)) {
9845                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9846                 priv->ieee->stats.tx_carrier_errors++;
9847                 netif_stop_queue(dev);
9848                 goto fail_unlock;
9849         }
9850
9851         ret = ipw_tx_skb(priv, txb, pri);
9852         if (ret == NETDEV_TX_OK)
9853                 __ipw_led_activity_on(priv);
9854         spin_unlock_irqrestore(&priv->lock, flags);
9855
9856         return ret;
9857
9858       fail_unlock:
9859         spin_unlock_irqrestore(&priv->lock, flags);
9860         return 1;
9861 }
9862
9863 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
9864 {
9865         struct ipw_priv *priv = ieee80211_priv(dev);
9866
9867         priv->ieee->stats.tx_packets = priv->tx_packets;
9868         priv->ieee->stats.rx_packets = priv->rx_packets;
9869         return &priv->ieee->stats;
9870 }
9871
9872 static void ipw_net_set_multicast_list(struct net_device *dev)
9873 {
9874
9875 }
9876
9877 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
9878 {
9879         struct ipw_priv *priv = ieee80211_priv(dev);
9880         struct sockaddr *addr = p;
9881         if (!is_valid_ether_addr(addr->sa_data))
9882                 return -EADDRNOTAVAIL;
9883         down(&priv->sem);
9884         priv->config |= CFG_CUSTOM_MAC;
9885         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
9886         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
9887                priv->net_dev->name, MAC_ARG(priv->mac_addr));
9888         queue_work(priv->workqueue, &priv->adapter_restart);
9889         up(&priv->sem);
9890         return 0;
9891 }
9892
9893 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
9894                                     struct ethtool_drvinfo *info)
9895 {
9896         struct ipw_priv *p = ieee80211_priv(dev);
9897         char vers[64];
9898         char date[32];
9899         u32 len;
9900
9901         strcpy(info->driver, DRV_NAME);
9902         strcpy(info->version, DRV_VERSION);
9903
9904         len = sizeof(vers);
9905         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
9906         len = sizeof(date);
9907         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
9908
9909         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
9910                  vers, date);
9911         strcpy(info->bus_info, pci_name(p->pci_dev));
9912         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
9913 }
9914
9915 static u32 ipw_ethtool_get_link(struct net_device *dev)
9916 {
9917         struct ipw_priv *priv = ieee80211_priv(dev);
9918         return (priv->status & STATUS_ASSOCIATED) != 0;
9919 }
9920
9921 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
9922 {
9923         return IPW_EEPROM_IMAGE_SIZE;
9924 }
9925
9926 static int ipw_ethtool_get_eeprom(struct net_device *dev,
9927                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9928 {
9929         struct ipw_priv *p = ieee80211_priv(dev);
9930
9931         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9932                 return -EINVAL;
9933         down(&p->sem);
9934         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
9935         up(&p->sem);
9936         return 0;
9937 }
9938
9939 static int ipw_ethtool_set_eeprom(struct net_device *dev,
9940                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9941 {
9942         struct ipw_priv *p = ieee80211_priv(dev);
9943         int i;
9944
9945         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9946                 return -EINVAL;
9947         down(&p->sem);
9948         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
9949         for (i = IPW_EEPROM_DATA;
9950              i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
9951                 ipw_write8(p, i, p->eeprom[i]);
9952         up(&p->sem);
9953         return 0;
9954 }
9955
9956 static struct ethtool_ops ipw_ethtool_ops = {
9957         .get_link = ipw_ethtool_get_link,
9958         .get_drvinfo = ipw_ethtool_get_drvinfo,
9959         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
9960         .get_eeprom = ipw_ethtool_get_eeprom,
9961         .set_eeprom = ipw_ethtool_set_eeprom,
9962 };
9963
9964 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
9965 {
9966         struct ipw_priv *priv = data;
9967         u32 inta, inta_mask;
9968
9969         if (!priv)
9970                 return IRQ_NONE;
9971
9972         spin_lock(&priv->lock);
9973
9974         if (!(priv->status & STATUS_INT_ENABLED)) {
9975                 /* Shared IRQ */
9976                 goto none;
9977         }
9978
9979         inta = ipw_read32(priv, IPW_INTA_RW);
9980         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
9981
9982         if (inta == 0xFFFFFFFF) {
9983                 /* Hardware disappeared */
9984                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
9985                 goto none;
9986         }
9987
9988         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
9989                 /* Shared interrupt */
9990                 goto none;
9991         }
9992
9993         /* tell the device to stop sending interrupts */
9994         ipw_disable_interrupts(priv);
9995
9996         /* ack current interrupts */
9997         inta &= (IPW_INTA_MASK_ALL & inta_mask);
9998         ipw_write32(priv, IPW_INTA_RW, inta);
9999
10000         /* Cache INTA value for our tasklet */
10001         priv->isr_inta = inta;
10002
10003         tasklet_schedule(&priv->irq_tasklet);
10004
10005         spin_unlock(&priv->lock);
10006
10007         return IRQ_HANDLED;
10008       none:
10009         spin_unlock(&priv->lock);
10010         return IRQ_NONE;
10011 }
10012
10013 static void ipw_rf_kill(void *adapter)
10014 {
10015         struct ipw_priv *priv = adapter;
10016         unsigned long flags;
10017
10018         spin_lock_irqsave(&priv->lock, flags);
10019
10020         if (rf_kill_active(priv)) {
10021                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10022                 if (priv->workqueue)
10023                         queue_delayed_work(priv->workqueue,
10024                                            &priv->rf_kill, 2 * HZ);
10025                 goto exit_unlock;
10026         }
10027
10028         /* RF Kill is now disabled, so bring the device back up */
10029
10030         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10031                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10032                                   "device\n");
10033
10034                 /* we can not do an adapter restart while inside an irq lock */
10035                 queue_work(priv->workqueue, &priv->adapter_restart);
10036         } else
10037                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10038                                   "enabled\n");
10039
10040       exit_unlock:
10041         spin_unlock_irqrestore(&priv->lock, flags);
10042 }
10043
10044 static void ipw_bg_rf_kill(void *data)
10045 {
10046         struct ipw_priv *priv = data;
10047         down(&priv->sem);
10048         ipw_rf_kill(data);
10049         up(&priv->sem);
10050 }
10051
10052 void ipw_link_up(struct ipw_priv *priv)
10053 {
10054         priv->last_seq_num = -1;
10055         priv->last_frag_num = -1;
10056         priv->last_packet_time = 0;
10057
10058         netif_carrier_on(priv->net_dev);
10059         if (netif_queue_stopped(priv->net_dev)) {
10060                 IPW_DEBUG_NOTIF("waking queue\n");
10061                 netif_wake_queue(priv->net_dev);
10062         } else {
10063                 IPW_DEBUG_NOTIF("starting queue\n");
10064                 netif_start_queue(priv->net_dev);
10065         }
10066
10067         cancel_delayed_work(&priv->request_scan);
10068         ipw_reset_stats(priv);
10069         /* Ensure the rate is updated immediately */
10070         priv->last_rate = ipw_get_current_rate(priv);
10071         ipw_gather_stats(priv);
10072         ipw_led_link_up(priv);
10073         notify_wx_assoc_event(priv);
10074
10075         if (priv->config & CFG_BACKGROUND_SCAN)
10076                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10077 }
10078
10079 static void ipw_bg_link_up(void *data)
10080 {
10081         struct ipw_priv *priv = data;
10082         down(&priv->sem);
10083         ipw_link_up(data);
10084         up(&priv->sem);
10085 }
10086
10087 void ipw_link_down(struct ipw_priv *priv)
10088 {
10089         ipw_led_link_down(priv);
10090         netif_carrier_off(priv->net_dev);
10091         netif_stop_queue(priv->net_dev);
10092         notify_wx_assoc_event(priv);
10093
10094         /* Cancel any queued work ... */
10095         cancel_delayed_work(&priv->request_scan);
10096         cancel_delayed_work(&priv->adhoc_check);
10097         cancel_delayed_work(&priv->gather_stats);
10098
10099         ipw_reset_stats(priv);
10100
10101         if (!(priv->status & STATUS_EXIT_PENDING)) {
10102                 /* Queue up another scan... */
10103                 queue_work(priv->workqueue, &priv->request_scan);
10104         }
10105 }
10106
10107 static void ipw_bg_link_down(void *data)
10108 {
10109         struct ipw_priv *priv = data;
10110         down(&priv->sem);
10111         ipw_link_down(data);
10112         up(&priv->sem);
10113 }
10114
10115 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10116 {
10117         int ret = 0;
10118
10119         priv->workqueue = create_workqueue(DRV_NAME);
10120         init_waitqueue_head(&priv->wait_command_queue);
10121         init_waitqueue_head(&priv->wait_state);
10122
10123         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10124         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10125         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10126         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10127         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10128         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10129         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10130         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10131         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10132         INIT_WORK(&priv->request_scan,
10133                   (void (*)(void *))ipw_request_scan, priv);
10134         INIT_WORK(&priv->gather_stats,
10135                   (void (*)(void *))ipw_bg_gather_stats, priv);
10136         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10137         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10138         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10139         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10140         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10141         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10142                   priv);
10143         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10144                   priv);
10145         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10146                   priv);
10147         INIT_WORK(&priv->merge_networks,
10148                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10149
10150 #ifdef CONFIG_IPW_QOS
10151         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10152                   priv);
10153 #endif                          /* CONFIG_IPW_QOS */
10154
10155         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10156                      ipw_irq_tasklet, (unsigned long)priv);
10157
10158         return ret;
10159 }
10160
10161 static void shim__set_security(struct net_device *dev,
10162                                struct ieee80211_security *sec)
10163 {
10164         struct ipw_priv *priv = ieee80211_priv(dev);
10165         int i;
10166         for (i = 0; i < 4; i++) {
10167                 if (sec->flags & (1 << i)) {
10168                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10169                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10170                         if (sec->key_sizes[i] == 0)
10171                                 priv->ieee->sec.flags &= ~(1 << i);
10172                         else {
10173                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10174                                        sec->key_sizes[i]);
10175                                 priv->ieee->sec.flags |= (1 << i);
10176                         }
10177                         priv->status |= STATUS_SECURITY_UPDATED;
10178                 } else if (sec->level != SEC_LEVEL_1)
10179                         priv->ieee->sec.flags &= ~(1 << i);
10180         }
10181
10182         if (sec->flags & SEC_ACTIVE_KEY) {
10183                 if (sec->active_key <= 3) {
10184                         priv->ieee->sec.active_key = sec->active_key;
10185                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10186                 } else
10187                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10188                 priv->status |= STATUS_SECURITY_UPDATED;
10189         } else
10190                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10191
10192         if ((sec->flags & SEC_AUTH_MODE) &&
10193             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10194                 priv->ieee->sec.auth_mode = sec->auth_mode;
10195                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10196                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10197                         priv->capability |= CAP_SHARED_KEY;
10198                 else
10199                         priv->capability &= ~CAP_SHARED_KEY;
10200                 priv->status |= STATUS_SECURITY_UPDATED;
10201         }
10202
10203         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10204                 priv->ieee->sec.flags |= SEC_ENABLED;
10205                 priv->ieee->sec.enabled = sec->enabled;
10206                 priv->status |= STATUS_SECURITY_UPDATED;
10207                 if (sec->enabled)
10208                         priv->capability |= CAP_PRIVACY_ON;
10209                 else
10210                         priv->capability &= ~CAP_PRIVACY_ON;
10211         }
10212
10213         if (sec->flags & SEC_ENCRYPT)
10214                 priv->ieee->sec.encrypt = sec->encrypt;
10215
10216         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10217                 priv->ieee->sec.level = sec->level;
10218                 priv->ieee->sec.flags |= SEC_LEVEL;
10219                 priv->status |= STATUS_SECURITY_UPDATED;
10220         }
10221
10222         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10223                 ipw_set_hwcrypto_keys(priv);
10224
10225         /* To match current functionality of ipw2100 (which works well w/
10226          * various supplicants, we don't force a disassociate if the
10227          * privacy capability changes ... */
10228 #if 0
10229         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10230             (((priv->assoc_request.capability &
10231                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10232              (!(priv->assoc_request.capability &
10233                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10234                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10235                                 "change.\n");
10236                 ipw_disassociate(priv);
10237         }
10238 #endif
10239 }
10240
10241 static int init_supported_rates(struct ipw_priv *priv,
10242                                 struct ipw_supported_rates *rates)
10243 {
10244         /* TODO: Mask out rates based on priv->rates_mask */
10245
10246         memset(rates, 0, sizeof(*rates));
10247         /* configure supported rates */
10248         switch (priv->ieee->freq_band) {
10249         case IEEE80211_52GHZ_BAND:
10250                 rates->ieee_mode = IPW_A_MODE;
10251                 rates->purpose = IPW_RATE_CAPABILITIES;
10252                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10253                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10254                 break;
10255
10256         default:                /* Mixed or 2.4Ghz */
10257                 rates->ieee_mode = IPW_G_MODE;
10258                 rates->purpose = IPW_RATE_CAPABILITIES;
10259                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10260                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10261                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10262                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10263                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10264                 }
10265                 break;
10266         }
10267
10268         return 0;
10269 }
10270
10271 static int ipw_config(struct ipw_priv *priv)
10272 {
10273         /* This is only called from ipw_up, which resets/reloads the firmware
10274            so, we don't need to first disable the card before we configure
10275            it */
10276         if (ipw_set_tx_power(priv))
10277                 goto error;
10278
10279         /* initialize adapter address */
10280         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10281                 goto error;
10282
10283         /* set basic system config settings */
10284         init_sys_config(&priv->sys_config);
10285         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10286                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10287         else
10288                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10289
10290         if (ipw_send_system_config(priv, &priv->sys_config))
10291                 goto error;
10292
10293         init_supported_rates(priv, &priv->rates);
10294         if (ipw_send_supported_rates(priv, &priv->rates))
10295                 goto error;
10296
10297         /* Set request-to-send threshold */
10298         if (priv->rts_threshold) {
10299                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10300                         goto error;
10301         }
10302 #ifdef CONFIG_IPW_QOS
10303         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10304         ipw_qos_activate(priv, NULL);
10305 #endif                          /* CONFIG_IPW_QOS */
10306
10307         if (ipw_set_random_seed(priv))
10308                 goto error;
10309
10310         /* final state transition to the RUN state */
10311         if (ipw_send_host_complete(priv))
10312                 goto error;
10313
10314         priv->status |= STATUS_INIT;
10315
10316         ipw_led_init(priv);
10317         ipw_led_radio_on(priv);
10318         priv->notif_missed_beacons = 0;
10319
10320         /* Set hardware WEP key if it is configured. */
10321         if ((priv->capability & CAP_PRIVACY_ON) &&
10322             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10323             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10324                 ipw_set_hwcrypto_keys(priv);
10325
10326         return 0;
10327
10328       error:
10329         return -EIO;
10330 }
10331
10332 /*
10333  * NOTE:
10334  *
10335  * These tables have been tested in conjunction with the
10336  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10337  *
10338  * Altering this values, using it on other hardware, or in geographies
10339  * not intended for resale of the above mentioned Intel adapters has
10340  * not been tested.
10341  *
10342  */
10343 static const struct ieee80211_geo ipw_geos[] = {
10344         {                       /* Restricted */
10345          "---",
10346          .bg_channels = 11,
10347          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10348                 {2427, 4}, {2432, 5}, {2437, 6},
10349                 {2442, 7}, {2447, 8}, {2452, 9},
10350                 {2457, 10}, {2462, 11}},
10351          },
10352
10353         {                       /* Custom US/Canada */
10354          "ZZF",
10355          .bg_channels = 11,
10356          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10357                 {2427, 4}, {2432, 5}, {2437, 6},
10358                 {2442, 7}, {2447, 8}, {2452, 9},
10359                 {2457, 10}, {2462, 11}},
10360          .a_channels = 8,
10361          .a = {{5180, 36},
10362                {5200, 40},
10363                {5220, 44},
10364                {5240, 48},
10365                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10366                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10367                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10368                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10369          },
10370
10371         {                       /* Rest of World */
10372          "ZZD",
10373          .bg_channels = 13,
10374          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10375                 {2427, 4}, {2432, 5}, {2437, 6},
10376                 {2442, 7}, {2447, 8}, {2452, 9},
10377                 {2457, 10}, {2462, 11}, {2467, 12},
10378                 {2472, 13}},
10379          },
10380
10381         {                       /* Custom USA & Europe & High */
10382          "ZZA",
10383          .bg_channels = 11,
10384          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10385                 {2427, 4}, {2432, 5}, {2437, 6},
10386                 {2442, 7}, {2447, 8}, {2452, 9},
10387                 {2457, 10}, {2462, 11}},
10388          .a_channels = 13,
10389          .a = {{5180, 36},
10390                {5200, 40},
10391                {5220, 44},
10392                {5240, 48},
10393                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10394                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10395                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10396                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10397                {5745, 149},
10398                {5765, 153},
10399                {5785, 157},
10400                {5805, 161},
10401                {5825, 165}},
10402          },
10403
10404         {                       /* Custom NA & Europe */
10405          "ZZB",
10406          .bg_channels = 11,
10407          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10408                 {2427, 4}, {2432, 5}, {2437, 6},
10409                 {2442, 7}, {2447, 8}, {2452, 9},
10410                 {2457, 10}, {2462, 11}},
10411          .a_channels = 13,
10412          .a = {{5180, 36},
10413                {5200, 40},
10414                {5220, 44},
10415                {5240, 48},
10416                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10417                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10418                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10419                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10420                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10421                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10422                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10423                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10424                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10425          },
10426
10427         {                       /* Custom Japan */
10428          "ZZC",
10429          .bg_channels = 11,
10430          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10431                 {2427, 4}, {2432, 5}, {2437, 6},
10432                 {2442, 7}, {2447, 8}, {2452, 9},
10433                 {2457, 10}, {2462, 11}},
10434          .a_channels = 4,
10435          .a = {{5170, 34}, {5190, 38},
10436                {5210, 42}, {5230, 46}},
10437          },
10438
10439         {                       /* Custom */
10440          "ZZM",
10441          .bg_channels = 11,
10442          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10443                 {2427, 4}, {2432, 5}, {2437, 6},
10444                 {2442, 7}, {2447, 8}, {2452, 9},
10445                 {2457, 10}, {2462, 11}},
10446          },
10447
10448         {                       /* Europe */
10449          "ZZE",
10450          .bg_channels = 13,
10451          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10452                 {2427, 4}, {2432, 5}, {2437, 6},
10453                 {2442, 7}, {2447, 8}, {2452, 9},
10454                 {2457, 10}, {2462, 11}, {2467, 12},
10455                 {2472, 13}},
10456          .a_channels = 19,
10457          .a = {{5180, 36},
10458                {5200, 40},
10459                {5220, 44},
10460                {5240, 48},
10461                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10462                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10463                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10464                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10465                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10466                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10467                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10468                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10469                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10470                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10471                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10472                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10473                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10474                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10475                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10476          },
10477
10478         {                       /* Custom Japan */
10479          "ZZJ",
10480          .bg_channels = 14,
10481          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10482                 {2427, 4}, {2432, 5}, {2437, 6},
10483                 {2442, 7}, {2447, 8}, {2452, 9},
10484                 {2457, 10}, {2462, 11}, {2467, 12},
10485                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10486          .a_channels = 4,
10487          .a = {{5170, 34}, {5190, 38},
10488                {5210, 42}, {5230, 46}},
10489          },
10490
10491         {                       /* High Band */
10492          "ZZH",
10493          .bg_channels = 13,
10494          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10495                 {2427, 4}, {2432, 5}, {2437, 6},
10496                 {2442, 7}, {2447, 8}, {2452, 9},
10497                 {2457, 10}, {2462, 11},
10498                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10499                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10500          .a_channels = 4,
10501          .a = {{5745, 149}, {5765, 153},
10502                {5785, 157}, {5805, 161}},
10503          },
10504
10505         {                       /* Custom Europe */
10506          "ZZG",
10507          .bg_channels = 13,
10508          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10509                 {2427, 4}, {2432, 5}, {2437, 6},
10510                 {2442, 7}, {2447, 8}, {2452, 9},
10511                 {2457, 10}, {2462, 11},
10512                 {2467, 12}, {2472, 13}},
10513          .a_channels = 4,
10514          .a = {{5180, 36}, {5200, 40},
10515                {5220, 44}, {5240, 48}},
10516          },
10517
10518         {                       /* Europe */
10519          "ZZK",
10520          .bg_channels = 13,
10521          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10522                 {2427, 4}, {2432, 5}, {2437, 6},
10523                 {2442, 7}, {2447, 8}, {2452, 9},
10524                 {2457, 10}, {2462, 11},
10525                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10526                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10527          .a_channels = 24,
10528          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10529                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10530                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10531                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10532                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10533                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10534                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10535                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10536                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10537                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10538                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10539                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10540                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10541                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10542                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10543                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10544                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10545                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10546                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10547                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10548                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10549                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10550                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10551                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10552          },
10553
10554         {                       /* Europe */
10555          "ZZL",
10556          .bg_channels = 11,
10557          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10558                 {2427, 4}, {2432, 5}, {2437, 6},
10559                 {2442, 7}, {2447, 8}, {2452, 9},
10560                 {2457, 10}, {2462, 11}},
10561          .a_channels = 13,
10562          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10563                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10564                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10565                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10566                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10567                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10568                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10569                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10570                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10571                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10572                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10573                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10574                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10575          }
10576 };
10577
10578 /* GEO code borrowed from ieee80211_geo.c */
10579 static int ipw_is_valid_channel(struct ieee80211_device *ieee, u8 channel)
10580 {
10581         int i;
10582
10583         /* Driver needs to initialize the geography map before using
10584          * these helper functions */
10585         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10586
10587         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10588                 for (i = 0; i < ieee->geo.bg_channels; i++)
10589                         /* NOTE: If G mode is currently supported but
10590                          * this is a B only channel, we don't see it
10591                          * as valid. */
10592                         if ((ieee->geo.bg[i].channel == channel) &&
10593                             (!(ieee->mode & IEEE_G) ||
10594                              !(ieee->geo.bg[i].flags & IEEE80211_CH_B_ONLY)))
10595                                 return IEEE80211_24GHZ_BAND;
10596
10597         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10598                 for (i = 0; i < ieee->geo.a_channels; i++)
10599                         if (ieee->geo.a[i].channel == channel)
10600                                 return IEEE80211_52GHZ_BAND;
10601
10602         return 0;
10603 }
10604
10605 static int ipw_channel_to_index(struct ieee80211_device *ieee, u8 channel)
10606 {
10607         int i;
10608
10609         /* Driver needs to initialize the geography map before using
10610          * these helper functions */
10611         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10612
10613         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10614                 for (i = 0; i < ieee->geo.bg_channels; i++)
10615                         if (ieee->geo.bg[i].channel == channel)
10616                                 return i;
10617
10618         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10619                 for (i = 0; i < ieee->geo.a_channels; i++)
10620                         if (ieee->geo.a[i].channel == channel)
10621                                 return i;
10622
10623         return -1;
10624 }
10625
10626 static u8 ipw_freq_to_channel(struct ieee80211_device *ieee, u32 freq)
10627 {
10628         int i;
10629
10630         /* Driver needs to initialize the geography map before using
10631          * these helper functions */
10632         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10633
10634         freq /= 100000;
10635
10636         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10637                 for (i = 0; i < ieee->geo.bg_channels; i++)
10638                         if (ieee->geo.bg[i].freq == freq)
10639                                 return ieee->geo.bg[i].channel;
10640
10641         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10642                 for (i = 0; i < ieee->geo.a_channels; i++)
10643                         if (ieee->geo.a[i].freq == freq)
10644                                 return ieee->geo.a[i].channel;
10645
10646         return 0;
10647 }
10648
10649 static int ipw_set_geo(struct ieee80211_device *ieee,
10650                        const struct ieee80211_geo *geo)
10651 {
10652         memcpy(ieee->geo.name, geo->name, 3);
10653         ieee->geo.name[3] = '\0';
10654         ieee->geo.bg_channels = geo->bg_channels;
10655         ieee->geo.a_channels = geo->a_channels;
10656         memcpy(ieee->geo.bg, geo->bg, geo->bg_channels *
10657                sizeof(struct ieee80211_channel));
10658         memcpy(ieee->geo.a, geo->a, ieee->geo.a_channels *
10659                sizeof(struct ieee80211_channel));
10660         return 0;
10661 }
10662
10663 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *ieee)
10664 {
10665         return &ieee->geo;
10666 }
10667
10668 #define MAX_HW_RESTARTS 5
10669 static int ipw_up(struct ipw_priv *priv)
10670 {
10671         int rc, i, j;
10672
10673         if (priv->status & STATUS_EXIT_PENDING)
10674                 return -EIO;
10675
10676         if (cmdlog && !priv->cmdlog) {
10677                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10678                                        GFP_KERNEL);
10679                 if (priv->cmdlog == NULL) {
10680                         IPW_ERROR("Error allocating %d command log entries.\n",
10681                                   cmdlog);
10682                 } else {
10683                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10684                         priv->cmdlog_len = cmdlog;
10685                 }
10686         }
10687
10688         for (i = 0; i < MAX_HW_RESTARTS; i++) {
10689                 /* Load the microcode, firmware, and eeprom.
10690                  * Also start the clocks. */
10691                 rc = ipw_load(priv);
10692                 if (rc) {
10693                         IPW_ERROR("Unable to load firmware: %d\n", rc);
10694                         return rc;
10695                 }
10696
10697                 ipw_init_ordinals(priv);
10698                 if (!(priv->config & CFG_CUSTOM_MAC))
10699                         eeprom_parse_mac(priv, priv->mac_addr);
10700                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10701
10702                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10703                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10704                                     ipw_geos[j].name, 3))
10705                                 break;
10706                 }
10707                 if (j == ARRAY_SIZE(ipw_geos))
10708                         j = 0;
10709                 if (ipw_set_geo(priv->ieee, &ipw_geos[j])) {
10710                         IPW_WARNING("Could not set geography.");
10711                         return 0;
10712                 }
10713
10714                 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
10715                                j, priv->ieee->geo.name);
10716
10717                 if (priv->status & STATUS_RF_KILL_SW) {
10718                         IPW_WARNING("Radio disabled by module parameter.\n");
10719                         return 0;
10720                 } else if (rf_kill_active(priv)) {
10721                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10722                                     "Kill switch must be turned off for "
10723                                     "wireless networking to work.\n");
10724                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
10725                                            2 * HZ);
10726                         return 0;
10727                 }
10728
10729                 rc = ipw_config(priv);
10730                 if (!rc) {
10731                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
10732
10733                         /* If configure to try and auto-associate, kick
10734                          * off a scan. */
10735                         queue_work(priv->workqueue, &priv->request_scan);
10736
10737                         return 0;
10738                 }
10739
10740                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
10741                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10742                                i, MAX_HW_RESTARTS);
10743
10744                 /* We had an error bringing up the hardware, so take it
10745                  * all the way back down so we can try again */
10746                 ipw_down(priv);
10747         }
10748
10749         /* tried to restart and config the device for as long as our
10750          * patience could withstand */
10751         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
10752
10753         return -EIO;
10754 }
10755
10756 static void ipw_bg_up(void *data)
10757 {
10758         struct ipw_priv *priv = data;
10759         down(&priv->sem);
10760         ipw_up(data);
10761         up(&priv->sem);
10762 }
10763
10764 static void ipw_deinit(struct ipw_priv *priv)
10765 {
10766         int i;
10767
10768         if (priv->status & STATUS_SCANNING) {
10769                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10770                 ipw_abort_scan(priv);
10771         }
10772
10773         if (priv->status & STATUS_ASSOCIATED) {
10774                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10775                 ipw_disassociate(priv);
10776         }
10777
10778         ipw_led_shutdown(priv);
10779
10780         /* Wait up to 1s for status to change to not scanning and not
10781          * associated (disassociation can take a while for a ful 802.11
10782          * exchange */
10783         for (i = 1000; i && (priv->status &
10784                              (STATUS_DISASSOCIATING |
10785                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
10786                 udelay(10);
10787
10788         if (priv->status & (STATUS_DISASSOCIATING |
10789                             STATUS_ASSOCIATED | STATUS_SCANNING))
10790                 IPW_DEBUG_INFO("Still associated or scanning...\n");
10791         else
10792                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
10793
10794         /* Attempt to disable the card */
10795         ipw_send_card_disable(priv, 0);
10796
10797         priv->status &= ~STATUS_INIT;
10798 }
10799
10800 static void ipw_down(struct ipw_priv *priv)
10801 {
10802         int exit_pending = priv->status & STATUS_EXIT_PENDING;
10803
10804         priv->status |= STATUS_EXIT_PENDING;
10805
10806         if (ipw_is_init(priv))
10807                 ipw_deinit(priv);
10808
10809         /* Wipe out the EXIT_PENDING status bit if we are not actually
10810          * exiting the module */
10811         if (!exit_pending)
10812                 priv->status &= ~STATUS_EXIT_PENDING;
10813
10814         /* tell the device to stop sending interrupts */
10815         ipw_disable_interrupts(priv);
10816
10817         /* Clear all bits but the RF Kill */
10818         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
10819         netif_carrier_off(priv->net_dev);
10820         netif_stop_queue(priv->net_dev);
10821
10822         ipw_stop_nic(priv);
10823
10824         ipw_led_radio_off(priv);
10825 }
10826
10827 static void ipw_bg_down(void *data)
10828 {
10829         struct ipw_priv *priv = data;
10830         down(&priv->sem);
10831         ipw_down(data);
10832         up(&priv->sem);
10833 }
10834
10835 /* Called by register_netdev() */
10836 static int ipw_net_init(struct net_device *dev)
10837 {
10838         struct ipw_priv *priv = ieee80211_priv(dev);
10839         down(&priv->sem);
10840
10841         if (ipw_up(priv)) {
10842                 up(&priv->sem);
10843                 return -EIO;
10844         }
10845
10846         up(&priv->sem);
10847         return 0;
10848 }
10849
10850 /* PCI driver stuff */
10851 static struct pci_device_id card_ids[] = {
10852         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10853         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10854         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10855         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10856         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10857         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10858         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10859         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10860         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10861         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10862         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10863         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10864         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10865         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10866         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10867         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10868         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10869         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
10870         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10871         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10872         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10873         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10874
10875         /* required last entry */
10876         {0,}
10877 };
10878
10879 MODULE_DEVICE_TABLE(pci, card_ids);
10880
10881 static struct attribute *ipw_sysfs_entries[] = {
10882         &dev_attr_rf_kill.attr,
10883         &dev_attr_direct_dword.attr,
10884         &dev_attr_indirect_byte.attr,
10885         &dev_attr_indirect_dword.attr,
10886         &dev_attr_mem_gpio_reg.attr,
10887         &dev_attr_command_event_reg.attr,
10888         &dev_attr_nic_type.attr,
10889         &dev_attr_status.attr,
10890         &dev_attr_cfg.attr,
10891         &dev_attr_error.attr,
10892         &dev_attr_event_log.attr,
10893         &dev_attr_cmd_log.attr,
10894         &dev_attr_eeprom_delay.attr,
10895         &dev_attr_ucode_version.attr,
10896         &dev_attr_rtc.attr,
10897         &dev_attr_scan_age.attr,
10898         &dev_attr_led.attr,
10899         &dev_attr_speed_scan.attr,
10900         &dev_attr_net_stats.attr,
10901         NULL
10902 };
10903
10904 static struct attribute_group ipw_attribute_group = {
10905         .name = NULL,           /* put in device directory */
10906         .attrs = ipw_sysfs_entries,
10907 };
10908
10909 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10910 {
10911         int err = 0;
10912         struct net_device *net_dev;
10913         void __iomem *base;
10914         u32 length, val;
10915         struct ipw_priv *priv;
10916         int i;
10917
10918         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
10919         if (net_dev == NULL) {
10920                 err = -ENOMEM;
10921                 goto out;
10922         }
10923
10924         priv = ieee80211_priv(net_dev);
10925         priv->ieee = netdev_priv(net_dev);
10926
10927         priv->net_dev = net_dev;
10928         priv->pci_dev = pdev;
10929 #ifdef CONFIG_IPW_DEBUG
10930         ipw_debug_level = debug;
10931 #endif
10932         spin_lock_init(&priv->lock);
10933         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
10934                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
10935
10936         init_MUTEX(&priv->sem);
10937         if (pci_enable_device(pdev)) {
10938                 err = -ENODEV;
10939                 goto out_free_ieee80211;
10940         }
10941
10942         pci_set_master(pdev);
10943
10944         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
10945         if (!err)
10946                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
10947         if (err) {
10948                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
10949                 goto out_pci_disable_device;
10950         }
10951
10952         pci_set_drvdata(pdev, priv);
10953
10954         err = pci_request_regions(pdev, DRV_NAME);
10955         if (err)
10956                 goto out_pci_disable_device;
10957
10958         /* We disable the RETRY_TIMEOUT register (0x41) to keep
10959          * PCI Tx retries from interfering with C3 CPU state */
10960         pci_read_config_dword(pdev, 0x40, &val);
10961         if ((val & 0x0000ff00) != 0)
10962                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
10963
10964         length = pci_resource_len(pdev, 0);
10965         priv->hw_len = length;
10966
10967         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
10968         if (!base) {
10969                 err = -ENODEV;
10970                 goto out_pci_release_regions;
10971         }
10972
10973         priv->hw_base = base;
10974         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
10975         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
10976
10977         err = ipw_setup_deferred_work(priv);
10978         if (err) {
10979                 IPW_ERROR("Unable to setup deferred work\n");
10980                 goto out_iounmap;
10981         }
10982
10983         ipw_sw_reset(priv, 1);
10984
10985         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
10986         if (err) {
10987                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
10988                 goto out_destroy_workqueue;
10989         }
10990
10991         SET_MODULE_OWNER(net_dev);
10992         SET_NETDEV_DEV(net_dev, &pdev->dev);
10993
10994         down(&priv->sem);
10995
10996         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
10997         priv->ieee->set_security = shim__set_security;
10998         priv->ieee->is_queue_full = ipw_net_is_queue_full;
10999
11000 #ifdef CONFIG_IPW_QOS
11001         priv->ieee->handle_probe_response = ipw_handle_beacon;
11002         priv->ieee->handle_beacon = ipw_handle_probe_response;
11003         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11004 #endif                          /* CONFIG_IPW_QOS */
11005
11006         priv->ieee->perfect_rssi = -20;
11007         priv->ieee->worst_rssi = -85;
11008
11009         net_dev->open = ipw_net_open;
11010         net_dev->stop = ipw_net_stop;
11011         net_dev->init = ipw_net_init;
11012         net_dev->get_stats = ipw_net_get_stats;
11013         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11014         net_dev->set_mac_address = ipw_net_set_mac_address;
11015         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11016         priv->wireless_data.ieee80211 = priv->ieee;
11017         net_dev->wireless_data = &priv->wireless_data;
11018         net_dev->wireless_handlers = &ipw_wx_handler_def;
11019         net_dev->ethtool_ops = &ipw_ethtool_ops;
11020         net_dev->irq = pdev->irq;
11021         net_dev->base_addr = (unsigned long)priv->hw_base;
11022         net_dev->mem_start = pci_resource_start(pdev, 0);
11023         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11024
11025         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11026         if (err) {
11027                 IPW_ERROR("failed to create sysfs device attributes\n");
11028                 up(&priv->sem);
11029                 goto out_release_irq;
11030         }
11031
11032         up(&priv->sem);
11033         err = register_netdev(net_dev);
11034         if (err) {
11035                 IPW_ERROR("failed to register network device\n");
11036                 goto out_remove_sysfs;
11037         }
11038         return 0;
11039
11040       out_remove_sysfs:
11041         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11042       out_release_irq:
11043         free_irq(pdev->irq, priv);
11044       out_destroy_workqueue:
11045         destroy_workqueue(priv->workqueue);
11046         priv->workqueue = NULL;
11047       out_iounmap:
11048         iounmap(priv->hw_base);
11049       out_pci_release_regions:
11050         pci_release_regions(pdev);
11051       out_pci_disable_device:
11052         pci_disable_device(pdev);
11053         pci_set_drvdata(pdev, NULL);
11054       out_free_ieee80211:
11055         free_ieee80211(priv->net_dev);
11056       out:
11057         return err;
11058 }
11059
11060 static void ipw_pci_remove(struct pci_dev *pdev)
11061 {
11062         struct ipw_priv *priv = pci_get_drvdata(pdev);
11063         struct list_head *p, *q;
11064         int i;
11065
11066         if (!priv)
11067                 return;
11068
11069         down(&priv->sem);
11070
11071         priv->status |= STATUS_EXIT_PENDING;
11072         ipw_down(priv);
11073         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11074
11075         up(&priv->sem);
11076
11077         unregister_netdev(priv->net_dev);
11078
11079         if (priv->rxq) {
11080                 ipw_rx_queue_free(priv, priv->rxq);
11081                 priv->rxq = NULL;
11082         }
11083         ipw_tx_queue_free(priv);
11084
11085         if (priv->cmdlog) {
11086                 kfree(priv->cmdlog);
11087                 priv->cmdlog = NULL;
11088         }
11089         /* ipw_down will ensure that there is no more pending work
11090          * in the workqueue's, so we can safely remove them now. */
11091         cancel_delayed_work(&priv->adhoc_check);
11092         cancel_delayed_work(&priv->gather_stats);
11093         cancel_delayed_work(&priv->request_scan);
11094         cancel_delayed_work(&priv->rf_kill);
11095         cancel_delayed_work(&priv->scan_check);
11096         destroy_workqueue(priv->workqueue);
11097         priv->workqueue = NULL;
11098
11099         /* Free MAC hash list for ADHOC */
11100         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11101                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11102                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11103                         list_del(p);
11104                 }
11105         }
11106
11107         if (priv->error) {
11108                 ipw_free_error_log(priv->error);
11109                 priv->error = NULL;
11110         }
11111
11112         free_irq(pdev->irq, priv);
11113         iounmap(priv->hw_base);
11114         pci_release_regions(pdev);
11115         pci_disable_device(pdev);
11116         pci_set_drvdata(pdev, NULL);
11117         free_ieee80211(priv->net_dev);
11118         free_firmware();
11119 }
11120
11121 #ifdef CONFIG_PM
11122 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11123 {
11124         struct ipw_priv *priv = pci_get_drvdata(pdev);
11125         struct net_device *dev = priv->net_dev;
11126
11127         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11128
11129         /* Take down the device; powers it off, etc. */
11130         ipw_down(priv);
11131
11132         /* Remove the PRESENT state of the device */
11133         netif_device_detach(dev);
11134
11135         pci_save_state(pdev);
11136         pci_disable_device(pdev);
11137         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11138
11139         return 0;
11140 }
11141
11142 static int ipw_pci_resume(struct pci_dev *pdev)
11143 {
11144         struct ipw_priv *priv = pci_get_drvdata(pdev);
11145         struct net_device *dev = priv->net_dev;
11146         u32 val;
11147
11148         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11149
11150         pci_set_power_state(pdev, PCI_D0);
11151         pci_enable_device(pdev);
11152         pci_restore_state(pdev);
11153
11154         /*
11155          * Suspend/Resume resets the PCI configuration space, so we have to
11156          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11157          * from interfering with C3 CPU state. pci_restore_state won't help
11158          * here since it only restores the first 64 bytes pci config header.
11159          */
11160         pci_read_config_dword(pdev, 0x40, &val);
11161         if ((val & 0x0000ff00) != 0)
11162                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11163
11164         /* Set the device back into the PRESENT state; this will also wake
11165          * the queue of needed */
11166         netif_device_attach(dev);
11167
11168         /* Bring the device back up */
11169         queue_work(priv->workqueue, &priv->up);
11170
11171         return 0;
11172 }
11173 #endif
11174
11175 /* driver initialization stuff */
11176 static struct pci_driver ipw_driver = {
11177         .name = DRV_NAME,
11178         .id_table = card_ids,
11179         .probe = ipw_pci_probe,
11180         .remove = __devexit_p(ipw_pci_remove),
11181 #ifdef CONFIG_PM
11182         .suspend = ipw_pci_suspend,
11183         .resume = ipw_pci_resume,
11184 #endif
11185 };
11186
11187 static int __init ipw_init(void)
11188 {
11189         int ret;
11190
11191         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11192         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11193
11194         ret = pci_module_init(&ipw_driver);
11195         if (ret) {
11196                 IPW_ERROR("Unable to initialize PCI module\n");
11197                 return ret;
11198         }
11199
11200         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11201         if (ret) {
11202                 IPW_ERROR("Unable to create driver sysfs file\n");
11203                 pci_unregister_driver(&ipw_driver);
11204                 return ret;
11205         }
11206
11207         return ret;
11208 }
11209
11210 static void __exit ipw_exit(void)
11211 {
11212         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11213         pci_unregister_driver(&ipw_driver);
11214 }
11215
11216 module_param(disable, int, 0444);
11217 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11218
11219 module_param(associate, int, 0444);
11220 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11221
11222 module_param(auto_create, int, 0444);
11223 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11224
11225 module_param(led, int, 0444);
11226 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11227
11228 module_param(debug, int, 0444);
11229 MODULE_PARM_DESC(debug, "debug output mask");
11230
11231 module_param(channel, int, 0444);
11232 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11233
11234 #ifdef CONFIG_IPW_QOS
11235 module_param(qos_enable, int, 0444);
11236 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11237
11238 module_param(qos_burst_enable, int, 0444);
11239 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11240
11241 module_param(qos_no_ack_mask, int, 0444);
11242 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11243
11244 module_param(burst_duration_CCK, int, 0444);
11245 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11246
11247 module_param(burst_duration_OFDM, int, 0444);
11248 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11249 #endif                          /* CONFIG_IPW_QOS */
11250
11251 #ifdef CONFIG_IPW2200_MONITOR
11252 module_param(mode, int, 0444);
11253 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11254 #else
11255 module_param(mode, int, 0444);
11256 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11257 #endif
11258
11259 module_param(hwcrypto, int, 0444);
11260 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default on)");
11261
11262 module_param(cmdlog, int, 0444);
11263 MODULE_PARM_DESC(cmdlog,
11264                  "allocate a ring buffer for logging firmware commands");
11265
11266 module_exit(ipw_exit);
11267 module_init(ipw_init);