1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
42 #ifdef CONFIG_IPW2200_DEBUG
48 #ifdef CONFIG_IPW2200_MONITOR
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
60 #ifdef CONFIG_IPW2200_RADIOTAP
66 #ifdef CONFIG_IPW2200_QOS
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
84 static int cmdlog = 0;
86 static int channel = 0;
89 static u32 ipw_debug_level;
90 static int associate = 1;
91 static int auto_create = 1;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 #endif /* CONFIG_IPW2200_QOS */
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
183 static void ipw_tx_queue_free(struct ipw_priv *);
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
204 out = snprintf(buf, count, "%08X", ofs);
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
212 out += snprintf(buf + out, count - out, " ");
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
223 out += snprintf(buf + out, count - out, "%c", c);
227 out += snprintf(buf + out, count - out, " ");
233 static void printk_buf(int level, const u8 * data, u32 len)
237 if (!(ipw_debug_level & level))
241 snprint_line(line, sizeof(line), &data[ofs],
243 printk(KERN_DEBUG "%s\n", line);
245 len -= min(len, 16U);
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
262 len -= min_t(size_t, len, 16U);
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
303 /* 8-bit direct write (low 4K) */
304 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
307 #define ipw_write8(ipw, ofs, val) do { \
308 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
309 _ipw_write8(ipw, ofs, val); \
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
571 case IPW_FW_ERROR_OK:
573 case IPW_FW_ERROR_FAIL:
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
593 case IPW_FW_ERROR_DINO_ERROR:
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
747 priv->table2_addr + (ord << 3) +
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
923 if (priv->config & CFG_NO_LED)
926 if (priv->status & STATUS_RF_KILL_MASK)
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
954 void ipw_led_activity_on(struct ipw_priv *priv)
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
963 static void ipw_led_activity_off(struct ipw_priv *priv)
968 if (priv->config & CFG_NO_LED)
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1159 char *p = (char *)buf;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164 if (p[0] == 'x' || p[0] == 'X')
1166 val = simple_strtoul(p, &p, 16);
1168 val = simple_strtoul(p, &p, 10);
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1210 IPW_ERROR("Memory allocation for firmware error log "
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1237 struct ipw_event *log;
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1245 IPW_ERROR("Unable to allocate memory for log\n");
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1361 ipw_prom_free(priv);
1369 rc = ipw_prom_alloc(priv);
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1455 IPW_DEBUG_INFO("enter\n");
1457 strncpy(buffer, buf, len);
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1462 if (p[0] == 'x' || p[0] == 'X')
1464 val = simple_strtoul(p, &p, 16);
1466 val = simple_strtoul(p, &p, 10);
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1474 IPW_DEBUG_INFO("exit\n");
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1492 IPW_DEBUG_INFO("enter\n");
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1507 IPW_DEBUG_INFO("exit\n");
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1549 return sprintf(buf, "0x%08x\n", tmp);
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1569 * Add a device attribute to view/control the delay between eeprom
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1594 struct ipw_priv *p = d->driver_data;
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1604 struct ipw_priv *p = d->driver_data;
1606 sscanf(buf, "%x", ®);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1618 struct ipw_priv *p = d->driver_data;
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1628 struct ipw_priv *p = d->driver_data;
1630 sscanf(buf, "%x", ®);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1642 struct ipw_priv *priv = d->driver_data;
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1649 return sprintf(buf, "0x%08x\n", reg);
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1655 struct ipw_priv *priv = d->driver_data;
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1669 struct ipw_priv *priv = d->driver_data;
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1676 return sprintf(buf, "0x%02x\n", reg);
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1682 struct ipw_priv *priv = d->driver_data;
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1696 struct ipw_priv *priv = d->driver_data;
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1703 return sprintf(buf, "0x%08x\n", reg);
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1709 struct ipw_priv *priv = d->driver_data;
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1719 static int rf_kill_active(struct ipw_priv *priv)
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1724 priv->status &= ~STATUS_RF_KILL_HW;
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->request_direct_scan);
1757 cancel_delayed_work(&priv->request_passive_scan);
1758 cancel_delayed_work(&priv->scan_event);
1760 queue_work(priv->workqueue, &priv->down);
1762 priv->status &= ~STATUS_RF_KILL_SW;
1763 if (rf_kill_active(priv)) {
1764 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1765 "disabled by HW switch\n");
1766 /* Make sure the RF_KILL check timer is running */
1767 cancel_delayed_work(&priv->rf_kill);
1768 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1769 round_jiffies_relative(2 * HZ));
1771 queue_work(priv->workqueue, &priv->up);
1777 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1778 const char *buf, size_t count)
1780 struct ipw_priv *priv = d->driver_data;
1782 ipw_radio_kill_sw(priv, buf[0] == '1');
1787 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1789 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int pos = 0, len = 0;
1794 if (priv->config & CFG_SPEED_SCAN) {
1795 while (priv->speed_scan[pos] != 0)
1796 len += sprintf(&buf[len], "%d ",
1797 priv->speed_scan[pos++]);
1798 return len + sprintf(&buf[len], "\n");
1801 return sprintf(buf, "0\n");
1804 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1805 const char *buf, size_t count)
1807 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1808 int channel, pos = 0;
1809 const char *p = buf;
1811 /* list of space separated channels to scan, optionally ending with 0 */
1812 while ((channel = simple_strtol(p, NULL, 0))) {
1813 if (pos == MAX_SPEED_SCAN - 1) {
1814 priv->speed_scan[pos] = 0;
1818 if (ieee80211_is_valid_channel(priv->ieee, channel))
1819 priv->speed_scan[pos++] = channel;
1821 IPW_WARNING("Skipping invalid channel request: %d\n",
1826 while (*p == ' ' || *p == '\t')
1831 priv->config &= ~CFG_SPEED_SCAN;
1833 priv->speed_scan_pos = 0;
1834 priv->config |= CFG_SPEED_SCAN;
1840 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1843 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1846 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1847 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1850 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1851 const char *buf, size_t count)
1853 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1855 priv->config |= CFG_NET_STATS;
1857 priv->config &= ~CFG_NET_STATS;
1862 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1863 show_net_stats, store_net_stats);
1865 static ssize_t show_channels(struct device *d,
1866 struct device_attribute *attr,
1869 struct ipw_priv *priv = dev_get_drvdata(d);
1870 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1873 len = sprintf(&buf[len],
1874 "Displaying %d channels in 2.4Ghz band "
1875 "(802.11bg):\n", geo->bg_channels);
1877 for (i = 0; i < geo->bg_channels; i++) {
1878 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1880 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1881 " (radar spectrum)" : "",
1882 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1883 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1885 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1886 "passive only" : "active/passive",
1887 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1891 len += sprintf(&buf[len],
1892 "Displaying %d channels in 5.2Ghz band "
1893 "(802.11a):\n", geo->a_channels);
1894 for (i = 0; i < geo->a_channels; i++) {
1895 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1897 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1898 " (radar spectrum)" : "",
1899 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1900 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1902 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1903 "passive only" : "active/passive");
1909 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1911 static void notify_wx_assoc_event(struct ipw_priv *priv)
1913 union iwreq_data wrqu;
1914 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1915 if (priv->status & STATUS_ASSOCIATED)
1916 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1918 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1919 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1922 static void ipw_irq_tasklet(struct ipw_priv *priv)
1924 u32 inta, inta_mask, handled = 0;
1925 unsigned long flags;
1928 spin_lock_irqsave(&priv->irq_lock, flags);
1930 inta = ipw_read32(priv, IPW_INTA_RW);
1931 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1932 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1934 /* Add any cached INTA values that need to be handled */
1935 inta |= priv->isr_inta;
1937 spin_unlock_irqrestore(&priv->irq_lock, flags);
1939 spin_lock_irqsave(&priv->lock, flags);
1941 /* handle all the justifications for the interrupt */
1942 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1944 handled |= IPW_INTA_BIT_RX_TRANSFER;
1947 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1948 IPW_DEBUG_HC("Command completed.\n");
1949 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1950 priv->status &= ~STATUS_HCMD_ACTIVE;
1951 wake_up_interruptible(&priv->wait_command_queue);
1952 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1955 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1956 IPW_DEBUG_TX("TX_QUEUE_1\n");
1957 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1958 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1961 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1962 IPW_DEBUG_TX("TX_QUEUE_2\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1964 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1967 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1968 IPW_DEBUG_TX("TX_QUEUE_3\n");
1969 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1970 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1973 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1974 IPW_DEBUG_TX("TX_QUEUE_4\n");
1975 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1976 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1979 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1980 IPW_WARNING("STATUS_CHANGE\n");
1981 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1984 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1985 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1986 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1989 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1990 IPW_WARNING("HOST_CMD_DONE\n");
1991 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1994 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1995 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1996 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1999 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2000 IPW_WARNING("PHY_OFF_DONE\n");
2001 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2004 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2005 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2006 priv->status |= STATUS_RF_KILL_HW;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2009 cancel_delayed_work(&priv->request_scan);
2010 cancel_delayed_work(&priv->request_direct_scan);
2011 cancel_delayed_work(&priv->request_passive_scan);
2012 cancel_delayed_work(&priv->scan_event);
2013 schedule_work(&priv->link_down);
2014 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2015 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2018 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2019 IPW_WARNING("Firmware error detected. Restarting.\n");
2021 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2022 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2023 struct ipw_fw_error *error =
2024 ipw_alloc_error_log(priv);
2025 ipw_dump_error_log(priv, error);
2029 priv->error = ipw_alloc_error_log(priv);
2031 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2033 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2035 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2036 ipw_dump_error_log(priv, priv->error);
2039 /* XXX: If hardware encryption is for WPA/WPA2,
2040 * we have to notify the supplicant. */
2041 if (priv->ieee->sec.encrypt) {
2042 priv->status &= ~STATUS_ASSOCIATED;
2043 notify_wx_assoc_event(priv);
2046 /* Keep the restart process from trying to send host
2047 * commands by clearing the INIT status bit */
2048 priv->status &= ~STATUS_INIT;
2050 /* Cancel currently queued command. */
2051 priv->status &= ~STATUS_HCMD_ACTIVE;
2052 wake_up_interruptible(&priv->wait_command_queue);
2054 queue_work(priv->workqueue, &priv->adapter_restart);
2055 handled |= IPW_INTA_BIT_FATAL_ERROR;
2058 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2059 IPW_ERROR("Parity error\n");
2060 handled |= IPW_INTA_BIT_PARITY_ERROR;
2063 if (handled != inta) {
2064 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2067 spin_unlock_irqrestore(&priv->lock, flags);
2069 /* enable all interrupts */
2070 ipw_enable_interrupts(priv);
2073 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2074 static char *get_cmd_string(u8 cmd)
2077 IPW_CMD(HOST_COMPLETE);
2078 IPW_CMD(POWER_DOWN);
2079 IPW_CMD(SYSTEM_CONFIG);
2080 IPW_CMD(MULTICAST_ADDRESS);
2082 IPW_CMD(ADAPTER_ADDRESS);
2084 IPW_CMD(RTS_THRESHOLD);
2085 IPW_CMD(FRAG_THRESHOLD);
2086 IPW_CMD(POWER_MODE);
2088 IPW_CMD(TGI_TX_KEY);
2089 IPW_CMD(SCAN_REQUEST);
2090 IPW_CMD(SCAN_REQUEST_EXT);
2092 IPW_CMD(SUPPORTED_RATES);
2093 IPW_CMD(SCAN_ABORT);
2095 IPW_CMD(QOS_PARAMETERS);
2096 IPW_CMD(DINO_CONFIG);
2097 IPW_CMD(RSN_CAPABILITIES);
2099 IPW_CMD(CARD_DISABLE);
2100 IPW_CMD(SEED_NUMBER);
2102 IPW_CMD(COUNTRY_INFO);
2103 IPW_CMD(AIRONET_INFO);
2104 IPW_CMD(AP_TX_POWER);
2106 IPW_CMD(CCX_VER_INFO);
2107 IPW_CMD(SET_CALIBRATION);
2108 IPW_CMD(SENSITIVITY_CALIB);
2109 IPW_CMD(RETRY_LIMIT);
2110 IPW_CMD(IPW_PRE_POWER_DOWN);
2111 IPW_CMD(VAP_BEACON_TEMPLATE);
2112 IPW_CMD(VAP_DTIM_PERIOD);
2113 IPW_CMD(EXT_SUPPORTED_RATES);
2114 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2115 IPW_CMD(VAP_QUIET_INTERVALS);
2116 IPW_CMD(VAP_CHANNEL_SWITCH);
2117 IPW_CMD(VAP_MANDATORY_CHANNELS);
2118 IPW_CMD(VAP_CELL_PWR_LIMIT);
2119 IPW_CMD(VAP_CF_PARAM_SET);
2120 IPW_CMD(VAP_SET_BEACONING_STATE);
2121 IPW_CMD(MEASUREMENT);
2122 IPW_CMD(POWER_CAPABILITY);
2123 IPW_CMD(SUPPORTED_CHANNELS);
2124 IPW_CMD(TPC_REPORT);
2126 IPW_CMD(PRODUCTION_COMMAND);
2132 #define HOST_COMPLETE_TIMEOUT HZ
2134 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2137 unsigned long flags;
2139 spin_lock_irqsave(&priv->lock, flags);
2140 if (priv->status & STATUS_HCMD_ACTIVE) {
2141 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2142 get_cmd_string(cmd->cmd));
2143 spin_unlock_irqrestore(&priv->lock, flags);
2147 priv->status |= STATUS_HCMD_ACTIVE;
2150 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2151 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2152 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2153 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2155 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2158 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2159 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2162 #ifndef DEBUG_CMD_WEP_KEY
2163 if (cmd->cmd == IPW_CMD_WEP_KEY)
2164 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2167 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2169 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2171 priv->status &= ~STATUS_HCMD_ACTIVE;
2172 IPW_ERROR("Failed to send %s: Reason %d\n",
2173 get_cmd_string(cmd->cmd), rc);
2174 spin_unlock_irqrestore(&priv->lock, flags);
2177 spin_unlock_irqrestore(&priv->lock, flags);
2179 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2181 status & STATUS_HCMD_ACTIVE),
2182 HOST_COMPLETE_TIMEOUT);
2184 spin_lock_irqsave(&priv->lock, flags);
2185 if (priv->status & STATUS_HCMD_ACTIVE) {
2186 IPW_ERROR("Failed to send %s: Command timed out.\n",
2187 get_cmd_string(cmd->cmd));
2188 priv->status &= ~STATUS_HCMD_ACTIVE;
2189 spin_unlock_irqrestore(&priv->lock, flags);
2193 spin_unlock_irqrestore(&priv->lock, flags);
2197 if (priv->status & STATUS_RF_KILL_HW) {
2198 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2199 get_cmd_string(cmd->cmd));
2206 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2207 priv->cmdlog_pos %= priv->cmdlog_len;
2212 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2214 struct host_cmd cmd = {
2218 return __ipw_send_cmd(priv, &cmd);
2221 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2224 struct host_cmd cmd = {
2230 return __ipw_send_cmd(priv, &cmd);
2233 static int ipw_send_host_complete(struct ipw_priv *priv)
2236 IPW_ERROR("Invalid args\n");
2240 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2243 static int ipw_send_system_config(struct ipw_priv *priv)
2245 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2246 sizeof(priv->sys_config),
2250 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2252 if (!priv || !ssid) {
2253 IPW_ERROR("Invalid args\n");
2257 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2261 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2263 if (!priv || !mac) {
2264 IPW_ERROR("Invalid args\n");
2268 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2269 priv->net_dev->name, print_mac(mac, mac));
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2275 * NOTE: This must be executed from our workqueue as it results in udelay
2276 * being called which may corrupt the keyboard if executed on default
2279 static void ipw_adapter_restart(void *adapter)
2281 struct ipw_priv *priv = adapter;
2283 if (priv->status & STATUS_RF_KILL_MASK)
2288 if (priv->assoc_network &&
2289 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2290 ipw_remove_current_network(priv);
2293 IPW_ERROR("Failed to up device\n");
2298 static void ipw_bg_adapter_restart(struct work_struct *work)
2300 struct ipw_priv *priv =
2301 container_of(work, struct ipw_priv, adapter_restart);
2302 mutex_lock(&priv->mutex);
2303 ipw_adapter_restart(priv);
2304 mutex_unlock(&priv->mutex);
2307 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2309 static void ipw_scan_check(void *data)
2311 struct ipw_priv *priv = data;
2312 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2313 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2314 "adapter after (%dms).\n",
2315 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2316 queue_work(priv->workqueue, &priv->adapter_restart);
2320 static void ipw_bg_scan_check(struct work_struct *work)
2322 struct ipw_priv *priv =
2323 container_of(work, struct ipw_priv, scan_check.work);
2324 mutex_lock(&priv->mutex);
2325 ipw_scan_check(priv);
2326 mutex_unlock(&priv->mutex);
2329 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2330 struct ipw_scan_request_ext *request)
2332 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2333 sizeof(*request), request);
2336 static int ipw_send_scan_abort(struct ipw_priv *priv)
2339 IPW_ERROR("Invalid args\n");
2343 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2346 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2348 struct ipw_sensitivity_calib calib = {
2349 .beacon_rssi_raw = cpu_to_le16(sens),
2352 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2356 static int ipw_send_associate(struct ipw_priv *priv,
2357 struct ipw_associate *associate)
2359 if (!priv || !associate) {
2360 IPW_ERROR("Invalid args\n");
2364 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2368 static int ipw_send_supported_rates(struct ipw_priv *priv,
2369 struct ipw_supported_rates *rates)
2371 if (!priv || !rates) {
2372 IPW_ERROR("Invalid args\n");
2376 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2380 static int ipw_set_random_seed(struct ipw_priv *priv)
2385 IPW_ERROR("Invalid args\n");
2389 get_random_bytes(&val, sizeof(val));
2391 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2394 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2396 __le32 v = cpu_to_le32(phy_off);
2398 IPW_ERROR("Invalid args\n");
2402 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2405 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2407 if (!priv || !power) {
2408 IPW_ERROR("Invalid args\n");
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2415 static int ipw_set_tx_power(struct ipw_priv *priv)
2417 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2418 struct ipw_tx_power tx_power;
2422 memset(&tx_power, 0, sizeof(tx_power));
2424 /* configure device for 'G' band */
2425 tx_power.ieee_mode = IPW_G_MODE;
2426 tx_power.num_channels = geo->bg_channels;
2427 for (i = 0; i < geo->bg_channels; i++) {
2428 max_power = geo->bg[i].max_power;
2429 tx_power.channels_tx_power[i].channel_number =
2431 tx_power.channels_tx_power[i].tx_power = max_power ?
2432 min(max_power, priv->tx_power) : priv->tx_power;
2434 if (ipw_send_tx_power(priv, &tx_power))
2437 /* configure device to also handle 'B' band */
2438 tx_power.ieee_mode = IPW_B_MODE;
2439 if (ipw_send_tx_power(priv, &tx_power))
2442 /* configure device to also handle 'A' band */
2443 if (priv->ieee->abg_true) {
2444 tx_power.ieee_mode = IPW_A_MODE;
2445 tx_power.num_channels = geo->a_channels;
2446 for (i = 0; i < tx_power.num_channels; i++) {
2447 max_power = geo->a[i].max_power;
2448 tx_power.channels_tx_power[i].channel_number =
2450 tx_power.channels_tx_power[i].tx_power = max_power ?
2451 min(max_power, priv->tx_power) : priv->tx_power;
2453 if (ipw_send_tx_power(priv, &tx_power))
2459 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2461 struct ipw_rts_threshold rts_threshold = {
2462 .rts_threshold = cpu_to_le16(rts),
2466 IPW_ERROR("Invalid args\n");
2470 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2471 sizeof(rts_threshold), &rts_threshold);
2474 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2476 struct ipw_frag_threshold frag_threshold = {
2477 .frag_threshold = cpu_to_le16(frag),
2481 IPW_ERROR("Invalid args\n");
2485 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2486 sizeof(frag_threshold), &frag_threshold);
2489 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2494 IPW_ERROR("Invalid args\n");
2498 /* If on battery, set to 3, if AC set to CAM, else user
2501 case IPW_POWER_BATTERY:
2502 param = cpu_to_le32(IPW_POWER_INDEX_3);
2505 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2508 param = cpu_to_le32(mode);
2512 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2516 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2518 struct ipw_retry_limit retry_limit = {
2519 .short_retry_limit = slimit,
2520 .long_retry_limit = llimit
2524 IPW_ERROR("Invalid args\n");
2528 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2533 * The IPW device contains a Microwire compatible EEPROM that stores
2534 * various data like the MAC address. Usually the firmware has exclusive
2535 * access to the eeprom, but during device initialization (before the
2536 * device driver has sent the HostComplete command to the firmware) the
2537 * device driver has read access to the EEPROM by way of indirect addressing
2538 * through a couple of memory mapped registers.
2540 * The following is a simplified implementation for pulling data out of the
2541 * the eeprom, along with some helper functions to find information in
2542 * the per device private data's copy of the eeprom.
2544 * NOTE: To better understand how these functions work (i.e what is a chip
2545 * select and why do have to keep driving the eeprom clock?), read
2546 * just about any data sheet for a Microwire compatible EEPROM.
2549 /* write a 32 bit value into the indirect accessor register */
2550 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2552 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2554 /* the eeprom requires some time to complete the operation */
2555 udelay(p->eeprom_delay);
2560 /* perform a chip select operation */
2561 static void eeprom_cs(struct ipw_priv *priv)
2563 eeprom_write_reg(priv, 0);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2566 eeprom_write_reg(priv, EEPROM_BIT_CS);
2569 /* perform a chip select operation */
2570 static void eeprom_disable_cs(struct ipw_priv *priv)
2572 eeprom_write_reg(priv, EEPROM_BIT_CS);
2573 eeprom_write_reg(priv, 0);
2574 eeprom_write_reg(priv, EEPROM_BIT_SK);
2577 /* push a single bit down to the eeprom */
2578 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2580 int d = (bit ? EEPROM_BIT_DI : 0);
2581 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2582 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2585 /* push an opcode followed by an address down to the eeprom */
2586 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2591 eeprom_write_bit(priv, 1);
2592 eeprom_write_bit(priv, op & 2);
2593 eeprom_write_bit(priv, op & 1);
2594 for (i = 7; i >= 0; i--) {
2595 eeprom_write_bit(priv, addr & (1 << i));
2599 /* pull 16 bits off the eeprom, one bit at a time */
2600 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2605 /* Send READ Opcode */
2606 eeprom_op(priv, EEPROM_CMD_READ, addr);
2608 /* Send dummy bit */
2609 eeprom_write_reg(priv, EEPROM_BIT_CS);
2611 /* Read the byte off the eeprom one bit at a time */
2612 for (i = 0; i < 16; i++) {
2614 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2615 eeprom_write_reg(priv, EEPROM_BIT_CS);
2616 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2617 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2620 /* Send another dummy bit */
2621 eeprom_write_reg(priv, 0);
2622 eeprom_disable_cs(priv);
2627 /* helper function for pulling the mac address out of the private */
2628 /* data's copy of the eeprom data */
2629 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2631 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2635 * Either the device driver (i.e. the host) or the firmware can
2636 * load eeprom data into the designated region in SRAM. If neither
2637 * happens then the FW will shutdown with a fatal error.
2639 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2640 * bit needs region of shared SRAM needs to be non-zero.
2642 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2645 __le16 *eeprom = (__le16 *) priv->eeprom;
2647 IPW_DEBUG_TRACE(">>\n");
2649 /* read entire contents of eeprom into private buffer */
2650 for (i = 0; i < 128; i++)
2651 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2654 If the data looks correct, then copy it to our private
2655 copy. Otherwise let the firmware know to perform the operation
2658 if (priv->eeprom[EEPROM_VERSION] != 0) {
2659 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2661 /* write the eeprom data to sram */
2662 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2663 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2665 /* Do not load eeprom data on fatal error or suspend */
2666 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2668 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2670 /* Load eeprom data on fatal error or suspend */
2671 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2674 IPW_DEBUG_TRACE("<<\n");
2677 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2682 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2684 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2687 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2689 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2690 CB_NUMBER_OF_ELEMENTS_SMALL *
2691 sizeof(struct command_block));
2694 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2695 { /* start dma engine but no transfers yet */
2697 IPW_DEBUG_FW(">> : \n");
2700 ipw_fw_dma_reset_command_blocks(priv);
2702 /* Write CB base address */
2703 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2705 IPW_DEBUG_FW("<< : \n");
2709 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2713 IPW_DEBUG_FW(">> :\n");
2715 /* set the Stop and Abort bit */
2716 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2717 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2718 priv->sram_desc.last_cb_index = 0;
2720 IPW_DEBUG_FW("<< \n");
2723 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2724 struct command_block *cb)
2727 IPW_SHARED_SRAM_DMA_CONTROL +
2728 (sizeof(struct command_block) * index);
2729 IPW_DEBUG_FW(">> :\n");
2731 ipw_write_indirect(priv, address, (u8 *) cb,
2732 (int)sizeof(struct command_block));
2734 IPW_DEBUG_FW("<< :\n");
2739 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2744 IPW_DEBUG_FW(">> :\n");
2746 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2747 ipw_fw_dma_write_command_block(priv, index,
2748 &priv->sram_desc.cb_list[index]);
2750 /* Enable the DMA in the CSR register */
2751 ipw_clear_bit(priv, IPW_RESET_REG,
2752 IPW_RESET_REG_MASTER_DISABLED |
2753 IPW_RESET_REG_STOP_MASTER);
2755 /* Set the Start bit. */
2756 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2757 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2759 IPW_DEBUG_FW("<< :\n");
2763 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2766 u32 register_value = 0;
2767 u32 cb_fields_address = 0;
2769 IPW_DEBUG_FW(">> :\n");
2770 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2771 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2773 /* Read the DMA Controlor register */
2774 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2775 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2777 /* Print the CB values */
2778 cb_fields_address = address;
2779 register_value = ipw_read_reg32(priv, cb_fields_address);
2780 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2782 cb_fields_address += sizeof(u32);
2783 register_value = ipw_read_reg32(priv, cb_fields_address);
2784 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2786 cb_fields_address += sizeof(u32);
2787 register_value = ipw_read_reg32(priv, cb_fields_address);
2788 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2791 cb_fields_address += sizeof(u32);
2792 register_value = ipw_read_reg32(priv, cb_fields_address);
2793 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2795 IPW_DEBUG_FW(">> :\n");
2798 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2800 u32 current_cb_address = 0;
2801 u32 current_cb_index = 0;
2803 IPW_DEBUG_FW("<< :\n");
2804 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2806 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2807 sizeof(struct command_block);
2809 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2810 current_cb_index, current_cb_address);
2812 IPW_DEBUG_FW(">> :\n");
2813 return current_cb_index;
2817 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2821 int interrupt_enabled, int is_last)
2824 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2825 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2827 struct command_block *cb;
2828 u32 last_cb_element = 0;
2830 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2831 src_address, dest_address, length);
2833 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2836 last_cb_element = priv->sram_desc.last_cb_index;
2837 cb = &priv->sram_desc.cb_list[last_cb_element];
2838 priv->sram_desc.last_cb_index++;
2840 /* Calculate the new CB control word */
2841 if (interrupt_enabled)
2842 control |= CB_INT_ENABLED;
2845 control |= CB_LAST_VALID;
2849 /* Calculate the CB Element's checksum value */
2850 cb->status = control ^ src_address ^ dest_address;
2852 /* Copy the Source and Destination addresses */
2853 cb->dest_addr = dest_address;
2854 cb->source_addr = src_address;
2856 /* Copy the Control Word last */
2857 cb->control = control;
2862 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2863 u32 src_phys, u32 dest_address, u32 length)
2865 u32 bytes_left = length;
2867 u32 dest_offset = 0;
2869 IPW_DEBUG_FW(">> \n");
2870 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2871 src_phys, dest_address, length);
2872 while (bytes_left > CB_MAX_LENGTH) {
2873 status = ipw_fw_dma_add_command_block(priv,
2874 src_phys + src_offset,
2877 CB_MAX_LENGTH, 0, 0);
2879 IPW_DEBUG_FW_INFO(": Failed\n");
2882 IPW_DEBUG_FW_INFO(": Added new cb\n");
2884 src_offset += CB_MAX_LENGTH;
2885 dest_offset += CB_MAX_LENGTH;
2886 bytes_left -= CB_MAX_LENGTH;
2889 /* add the buffer tail */
2890 if (bytes_left > 0) {
2892 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2893 dest_address + dest_offset,
2896 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2900 (": Adding new cb - the buffer tail\n");
2903 IPW_DEBUG_FW("<< \n");
2907 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2909 u32 current_index = 0, previous_index;
2912 IPW_DEBUG_FW(">> : \n");
2914 current_index = ipw_fw_dma_command_block_index(priv);
2915 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2916 (int)priv->sram_desc.last_cb_index);
2918 while (current_index < priv->sram_desc.last_cb_index) {
2920 previous_index = current_index;
2921 current_index = ipw_fw_dma_command_block_index(priv);
2923 if (previous_index < current_index) {
2927 if (++watchdog > 400) {
2928 IPW_DEBUG_FW_INFO("Timeout\n");
2929 ipw_fw_dma_dump_command_block(priv);
2930 ipw_fw_dma_abort(priv);
2935 ipw_fw_dma_abort(priv);
2937 /*Disable the DMA in the CSR register */
2938 ipw_set_bit(priv, IPW_RESET_REG,
2939 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2941 IPW_DEBUG_FW("<< dmaWaitSync \n");
2945 static void ipw_remove_current_network(struct ipw_priv *priv)
2947 struct list_head *element, *safe;
2948 struct ieee80211_network *network = NULL;
2949 unsigned long flags;
2951 spin_lock_irqsave(&priv->ieee->lock, flags);
2952 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2953 network = list_entry(element, struct ieee80211_network, list);
2954 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2956 list_add_tail(&network->list,
2957 &priv->ieee->network_free_list);
2960 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2964 * Check that card is still alive.
2965 * Reads debug register from domain0.
2966 * If card is present, pre-defined value should
2970 * @return 1 if card is present, 0 otherwise
2972 static inline int ipw_alive(struct ipw_priv *priv)
2974 return ipw_read32(priv, 0x90) == 0xd55555d5;
2977 /* timeout in msec, attempted in 10-msec quanta */
2978 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2984 if ((ipw_read32(priv, addr) & mask) == mask)
2988 } while (i < timeout);
2993 /* These functions load the firmware and micro code for the operation of
2994 * the ipw hardware. It assumes the buffer has all the bits for the
2995 * image and the caller is handling the memory allocation and clean up.
2998 static int ipw_stop_master(struct ipw_priv *priv)
3002 IPW_DEBUG_TRACE(">> \n");
3003 /* stop master. typical delay - 0 */
3004 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3006 /* timeout is in msec, polled in 10-msec quanta */
3007 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3008 IPW_RESET_REG_MASTER_DISABLED, 100);
3010 IPW_ERROR("wait for stop master failed after 100ms\n");
3014 IPW_DEBUG_INFO("stop master %dms\n", rc);
3019 static void ipw_arc_release(struct ipw_priv *priv)
3021 IPW_DEBUG_TRACE(">> \n");
3024 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3026 /* no one knows timing, for safety add some delay */
3035 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3037 int rc = 0, i, addr;
3041 image = (__le16 *) data;
3043 IPW_DEBUG_TRACE(">> \n");
3045 rc = ipw_stop_master(priv);
3050 for (addr = IPW_SHARED_LOWER_BOUND;
3051 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3052 ipw_write32(priv, addr, 0);
3055 /* no ucode (yet) */
3056 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3057 /* destroy DMA queues */
3058 /* reset sequence */
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3061 ipw_arc_release(priv);
3062 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3066 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3069 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3072 /* enable ucode store */
3073 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3074 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3080 * Do NOT set indirect address register once and then
3081 * store data to indirect data register in the loop.
3082 * It seems very reasonable, but in this case DINO do not
3083 * accept ucode. It is essential to set address each time.
3085 /* load new ipw uCode */
3086 for (i = 0; i < len / 2; i++)
3087 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3088 le16_to_cpu(image[i]));
3091 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3092 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3094 /* this is where the igx / win driver deveates from the VAP driver. */
3096 /* wait for alive response */
3097 for (i = 0; i < 100; i++) {
3098 /* poll for incoming data */
3099 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3100 if (cr & DINO_RXFIFO_DATA)
3105 if (cr & DINO_RXFIFO_DATA) {
3106 /* alive_command_responce size is NOT multiple of 4 */
3107 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3109 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3110 response_buffer[i] =
3111 cpu_to_le32(ipw_read_reg32(priv,
3112 IPW_BASEBAND_RX_FIFO_READ));
3113 memcpy(&priv->dino_alive, response_buffer,
3114 sizeof(priv->dino_alive));
3115 if (priv->dino_alive.alive_command == 1
3116 && priv->dino_alive.ucode_valid == 1) {
3119 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3120 "of %02d/%02d/%02d %02d:%02d\n",
3121 priv->dino_alive.software_revision,
3122 priv->dino_alive.software_revision,
3123 priv->dino_alive.device_identifier,
3124 priv->dino_alive.device_identifier,
3125 priv->dino_alive.time_stamp[0],
3126 priv->dino_alive.time_stamp[1],
3127 priv->dino_alive.time_stamp[2],
3128 priv->dino_alive.time_stamp[3],
3129 priv->dino_alive.time_stamp[4]);
3131 IPW_DEBUG_INFO("Microcode is not alive\n");
3135 IPW_DEBUG_INFO("No alive response from DINO\n");
3139 /* disable DINO, otherwise for some reason
3140 firmware have problem getting alive resp. */
3141 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3146 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3150 struct fw_chunk *chunk;
3151 dma_addr_t shared_phys;
3154 IPW_DEBUG_TRACE("<< : \n");
3155 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3160 memmove(shared_virt, data, len);
3163 rc = ipw_fw_dma_enable(priv);
3165 if (priv->sram_desc.last_cb_index > 0) {
3166 /* the DMA is already ready this would be a bug. */
3172 chunk = (struct fw_chunk *)(data + offset);
3173 offset += sizeof(struct fw_chunk);
3174 /* build DMA packet and queue up for sending */
3175 /* dma to chunk->address, the chunk->length bytes from data +
3178 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3179 le32_to_cpu(chunk->address),
3180 le32_to_cpu(chunk->length));
3182 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3186 offset += le32_to_cpu(chunk->length);
3187 } while (offset < len);
3189 /* Run the DMA and wait for the answer */
3190 rc = ipw_fw_dma_kick(priv);
3192 IPW_ERROR("dmaKick Failed\n");
3196 rc = ipw_fw_dma_wait(priv);
3198 IPW_ERROR("dmaWaitSync Failed\n");
3202 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3207 static int ipw_stop_nic(struct ipw_priv *priv)
3212 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3214 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3215 IPW_RESET_REG_MASTER_DISABLED, 500);
3217 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3221 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3226 static void ipw_start_nic(struct ipw_priv *priv)
3228 IPW_DEBUG_TRACE(">>\n");
3230 /* prvHwStartNic release ARC */
3231 ipw_clear_bit(priv, IPW_RESET_REG,
3232 IPW_RESET_REG_MASTER_DISABLED |
3233 IPW_RESET_REG_STOP_MASTER |
3234 CBD_RESET_REG_PRINCETON_RESET);
3236 /* enable power management */
3237 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3238 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3240 IPW_DEBUG_TRACE("<<\n");
3243 static int ipw_init_nic(struct ipw_priv *priv)
3247 IPW_DEBUG_TRACE(">>\n");
3250 /* set "initialization complete" bit to move adapter to D0 state */
3251 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3253 /* low-level PLL activation */
3254 ipw_write32(priv, IPW_READ_INT_REGISTER,
3255 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3257 /* wait for clock stabilization */
3258 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3259 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3261 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3263 /* assert SW reset */
3264 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3268 /* set "initialization complete" bit to move adapter to D0 state */
3269 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3271 IPW_DEBUG_TRACE(">>\n");
3275 /* Call this function from process context, it will sleep in request_firmware.
3276 * Probe is an ok place to call this from.
3278 static int ipw_reset_nic(struct ipw_priv *priv)
3281 unsigned long flags;
3283 IPW_DEBUG_TRACE(">>\n");
3285 rc = ipw_init_nic(priv);
3287 spin_lock_irqsave(&priv->lock, flags);
3288 /* Clear the 'host command active' bit... */
3289 priv->status &= ~STATUS_HCMD_ACTIVE;
3290 wake_up_interruptible(&priv->wait_command_queue);
3291 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3292 wake_up_interruptible(&priv->wait_state);
3293 spin_unlock_irqrestore(&priv->lock, flags);
3295 IPW_DEBUG_TRACE("<<\n");
3308 static int ipw_get_fw(struct ipw_priv *priv,
3309 const struct firmware **raw, const char *name)
3314 /* ask firmware_class module to get the boot firmware off disk */
3315 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3317 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3321 if ((*raw)->size < sizeof(*fw)) {
3322 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3326 fw = (void *)(*raw)->data;
3328 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3329 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3330 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3331 name, (*raw)->size);
3335 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3337 le32_to_cpu(fw->ver) >> 16,
3338 le32_to_cpu(fw->ver) & 0xff,
3339 (*raw)->size - sizeof(*fw));
3343 #define IPW_RX_BUF_SIZE (3000)
3345 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3346 struct ipw_rx_queue *rxq)
3348 unsigned long flags;
3351 spin_lock_irqsave(&rxq->lock, flags);
3353 INIT_LIST_HEAD(&rxq->rx_free);
3354 INIT_LIST_HEAD(&rxq->rx_used);
3356 /* Fill the rx_used queue with _all_ of the Rx buffers */
3357 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3358 /* In the reset function, these buffers may have been allocated
3359 * to an SKB, so we need to unmap and free potential storage */
3360 if (rxq->pool[i].skb != NULL) {
3361 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3362 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3363 dev_kfree_skb(rxq->pool[i].skb);
3364 rxq->pool[i].skb = NULL;
3366 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3369 /* Set us so that we have processed and used all buffers, but have
3370 * not restocked the Rx queue with fresh buffers */
3371 rxq->read = rxq->write = 0;
3372 rxq->free_count = 0;
3373 spin_unlock_irqrestore(&rxq->lock, flags);
3377 static int fw_loaded = 0;
3378 static const struct firmware *raw = NULL;
3380 static void free_firmware(void)
3383 release_firmware(raw);
3389 #define free_firmware() do {} while (0)
3392 static int ipw_load(struct ipw_priv *priv)
3395 const struct firmware *raw = NULL;
3398 u8 *boot_img, *ucode_img, *fw_img;
3400 int rc = 0, retries = 3;
3402 switch (priv->ieee->iw_mode) {
3404 name = "ipw2200-ibss.fw";
3406 #ifdef CONFIG_IPW2200_MONITOR
3407 case IW_MODE_MONITOR:
3408 name = "ipw2200-sniffer.fw";
3412 name = "ipw2200-bss.fw";
3424 rc = ipw_get_fw(priv, &raw, name);
3431 fw = (void *)raw->data;
3432 boot_img = &fw->data[0];
3433 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3434 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3435 le32_to_cpu(fw->ucode_size)];
3441 priv->rxq = ipw_rx_queue_alloc(priv);
3443 ipw_rx_queue_reset(priv, priv->rxq);
3445 IPW_ERROR("Unable to initialize Rx queue\n");
3450 /* Ensure interrupts are disabled */
3451 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3452 priv->status &= ~STATUS_INT_ENABLED;
3454 /* ack pending interrupts */
3455 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3459 rc = ipw_reset_nic(priv);
3461 IPW_ERROR("Unable to reset NIC\n");
3465 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3466 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3468 /* DMA the initial boot firmware into the device */
3469 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3471 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3475 /* kick start the device */
3476 ipw_start_nic(priv);
3478 /* wait for the device to finish its initial startup sequence */
3479 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3480 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3482 IPW_ERROR("device failed to boot initial fw image\n");
3485 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3487 /* ack fw init done interrupt */
3488 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3490 /* DMA the ucode into the device */
3491 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3493 IPW_ERROR("Unable to load ucode: %d\n", rc);
3500 /* DMA bss firmware into the device */
3501 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3503 IPW_ERROR("Unable to load firmware: %d\n", rc);
3510 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3512 rc = ipw_queue_reset(priv);
3514 IPW_ERROR("Unable to initialize queues\n");
3518 /* Ensure interrupts are disabled */
3519 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3520 /* ack pending interrupts */
3521 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3523 /* kick start the device */
3524 ipw_start_nic(priv);
3526 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3528 IPW_WARNING("Parity error. Retrying init.\n");
3533 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3538 /* wait for the device */
3539 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3540 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3542 IPW_ERROR("device failed to start within 500ms\n");
3545 IPW_DEBUG_INFO("device response after %dms\n", rc);
3547 /* ack fw init done interrupt */
3548 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3550 /* read eeprom data and initialize the eeprom region of sram */
3551 priv->eeprom_delay = 1;
3552 ipw_eeprom_init_sram(priv);
3554 /* enable interrupts */
3555 ipw_enable_interrupts(priv);
3557 /* Ensure our queue has valid packets */
3558 ipw_rx_queue_replenish(priv);
3560 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3562 /* ack pending interrupts */
3563 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3566 release_firmware(raw);
3572 ipw_rx_queue_free(priv, priv->rxq);
3575 ipw_tx_queue_free(priv);
3577 release_firmware(raw);
3589 * Theory of operation
3591 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3592 * 2 empty entries always kept in the buffer to protect from overflow.
3594 * For Tx queue, there are low mark and high mark limits. If, after queuing
3595 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3596 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3599 * The IPW operates with six queues, one receive queue in the device's
3600 * sram, one transmit queue for sending commands to the device firmware,
3601 * and four transmit queues for data.
3603 * The four transmit queues allow for performing quality of service (qos)
3604 * transmissions as per the 802.11 protocol. Currently Linux does not
3605 * provide a mechanism to the user for utilizing prioritized queues, so
3606 * we only utilize the first data transmit queue (queue1).
3610 * Driver allocates buffers of this size for Rx
3614 * ipw_rx_queue_space - Return number of free slots available in queue.
3616 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3618 int s = q->read - q->write;
3621 /* keep some buffer to not confuse full and empty queue */
3628 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3630 int s = q->last_used - q->first_empty;
3633 s -= 2; /* keep some reserve to not confuse empty and full situations */
3639 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3641 return (++index == n_bd) ? 0 : index;
3645 * Initialize common DMA queue structure
3647 * @param q queue to init
3648 * @param count Number of BD's to allocate. Should be power of 2
3649 * @param read_register Address for 'read' register
3650 * (not offset within BAR, full address)
3651 * @param write_register Address for 'write' register
3652 * (not offset within BAR, full address)
3653 * @param base_register Address for 'base' register
3654 * (not offset within BAR, full address)
3655 * @param size Address for 'size' register
3656 * (not offset within BAR, full address)
3658 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3659 int count, u32 read, u32 write, u32 base, u32 size)
3663 q->low_mark = q->n_bd / 4;
3664 if (q->low_mark < 4)
3667 q->high_mark = q->n_bd / 8;
3668 if (q->high_mark < 2)
3671 q->first_empty = q->last_used = 0;
3675 ipw_write32(priv, base, q->dma_addr);
3676 ipw_write32(priv, size, count);
3677 ipw_write32(priv, read, 0);
3678 ipw_write32(priv, write, 0);
3680 _ipw_read32(priv, 0x90);
3683 static int ipw_queue_tx_init(struct ipw_priv *priv,
3684 struct clx2_tx_queue *q,
3685 int count, u32 read, u32 write, u32 base, u32 size)
3687 struct pci_dev *dev = priv->pci_dev;
3689 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3691 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3696 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3698 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3699 sizeof(q->bd[0]) * count);
3705 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3710 * Free one TFD, those at index [txq->q.last_used].
3711 * Do NOT advance any indexes
3716 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3717 struct clx2_tx_queue *txq)
3719 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3720 struct pci_dev *dev = priv->pci_dev;
3724 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3725 /* nothing to cleanup after for host commands */
3729 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3730 IPW_ERROR("Too many chunks: %i\n",
3731 le32_to_cpu(bd->u.data.num_chunks));
3732 /** @todo issue fatal error, it is quite serious situation */
3736 /* unmap chunks if any */
3737 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3738 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3739 le16_to_cpu(bd->u.data.chunk_len[i]),
3741 if (txq->txb[txq->q.last_used]) {
3742 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3743 txq->txb[txq->q.last_used] = NULL;
3749 * Deallocate DMA queue.
3751 * Empty queue by removing and destroying all BD's.
3757 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3759 struct clx2_queue *q = &txq->q;
3760 struct pci_dev *dev = priv->pci_dev;
3765 /* first, empty all BD's */
3766 for (; q->first_empty != q->last_used;
3767 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3768 ipw_queue_tx_free_tfd(priv, txq);
3771 /* free buffers belonging to queue itself */
3772 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3776 /* 0 fill whole structure */
3777 memset(txq, 0, sizeof(*txq));
3781 * Destroy all DMA queues and structures
3785 static void ipw_tx_queue_free(struct ipw_priv *priv)
3788 ipw_queue_tx_free(priv, &priv->txq_cmd);
3791 ipw_queue_tx_free(priv, &priv->txq[0]);
3792 ipw_queue_tx_free(priv, &priv->txq[1]);
3793 ipw_queue_tx_free(priv, &priv->txq[2]);
3794 ipw_queue_tx_free(priv, &priv->txq[3]);
3797 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3799 /* First 3 bytes are manufacturer */
3800 bssid[0] = priv->mac_addr[0];
3801 bssid[1] = priv->mac_addr[1];
3802 bssid[2] = priv->mac_addr[2];
3804 /* Last bytes are random */
3805 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3807 bssid[0] &= 0xfe; /* clear multicast bit */
3808 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3811 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3813 struct ipw_station_entry entry;
3815 DECLARE_MAC_BUF(mac);
3817 for (i = 0; i < priv->num_stations; i++) {
3818 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3819 /* Another node is active in network */
3820 priv->missed_adhoc_beacons = 0;
3821 if (!(priv->config & CFG_STATIC_CHANNEL))
3822 /* when other nodes drop out, we drop out */
3823 priv->config &= ~CFG_ADHOC_PERSIST;
3829 if (i == MAX_STATIONS)
3830 return IPW_INVALID_STATION;
3832 IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3835 entry.support_mode = 0;
3836 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3837 memcpy(priv->stations[i], bssid, ETH_ALEN);
3838 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3839 &entry, sizeof(entry));
3840 priv->num_stations++;
3845 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3849 for (i = 0; i < priv->num_stations; i++)
3850 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3853 return IPW_INVALID_STATION;
3856 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3859 DECLARE_MAC_BUF(mac);
3861 if (priv->status & STATUS_ASSOCIATING) {
3862 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3863 queue_work(priv->workqueue, &priv->disassociate);
3867 if (!(priv->status & STATUS_ASSOCIATED)) {
3868 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3872 IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3874 print_mac(mac, priv->assoc_request.bssid),
3875 priv->assoc_request.channel);
3877 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3878 priv->status |= STATUS_DISASSOCIATING;
3881 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3883 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3885 err = ipw_send_associate(priv, &priv->assoc_request);
3887 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3894 static int ipw_disassociate(void *data)
3896 struct ipw_priv *priv = data;
3897 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3899 ipw_send_disassociate(data, 0);
3903 static void ipw_bg_disassociate(struct work_struct *work)
3905 struct ipw_priv *priv =
3906 container_of(work, struct ipw_priv, disassociate);
3907 mutex_lock(&priv->mutex);
3908 ipw_disassociate(priv);
3909 mutex_unlock(&priv->mutex);
3912 static void ipw_system_config(struct work_struct *work)
3914 struct ipw_priv *priv =
3915 container_of(work, struct ipw_priv, system_config);
3917 #ifdef CONFIG_IPW2200_PROMISCUOUS
3918 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3919 priv->sys_config.accept_all_data_frames = 1;
3920 priv->sys_config.accept_non_directed_frames = 1;
3921 priv->sys_config.accept_all_mgmt_bcpr = 1;
3922 priv->sys_config.accept_all_mgmt_frames = 1;
3926 ipw_send_system_config(priv);
3929 struct ipw_status_code {
3934 static const struct ipw_status_code ipw_status_codes[] = {
3935 {0x00, "Successful"},
3936 {0x01, "Unspecified failure"},
3937 {0x0A, "Cannot support all requested capabilities in the "
3938 "Capability information field"},
3939 {0x0B, "Reassociation denied due to inability to confirm that "
3940 "association exists"},
3941 {0x0C, "Association denied due to reason outside the scope of this "
3944 "Responding station does not support the specified authentication "
3947 "Received an Authentication frame with authentication sequence "
3948 "transaction sequence number out of expected sequence"},
3949 {0x0F, "Authentication rejected because of challenge failure"},
3950 {0x10, "Authentication rejected due to timeout waiting for next "
3951 "frame in sequence"},
3952 {0x11, "Association denied because AP is unable to handle additional "
3953 "associated stations"},
3955 "Association denied due to requesting station not supporting all "
3956 "of the datarates in the BSSBasicServiceSet Parameter"},
3958 "Association denied due to requesting station not supporting "
3959 "short preamble operation"},
3961 "Association denied due to requesting station not supporting "
3964 "Association denied due to requesting station not supporting "
3967 "Association denied due to requesting station not supporting "
3968 "short slot operation"},
3970 "Association denied due to requesting station not supporting "
3971 "DSSS-OFDM operation"},
3972 {0x28, "Invalid Information Element"},
3973 {0x29, "Group Cipher is not valid"},
3974 {0x2A, "Pairwise Cipher is not valid"},
3975 {0x2B, "AKMP is not valid"},
3976 {0x2C, "Unsupported RSN IE version"},
3977 {0x2D, "Invalid RSN IE Capabilities"},
3978 {0x2E, "Cipher suite is rejected per security policy"},
3981 static const char *ipw_get_status_code(u16 status)
3984 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3985 if (ipw_status_codes[i].status == (status & 0xff))
3986 return ipw_status_codes[i].reason;
3987 return "Unknown status value.";
3990 static void inline average_init(struct average *avg)
3992 memset(avg, 0, sizeof(*avg));
3995 #define DEPTH_RSSI 8
3996 #define DEPTH_NOISE 16
3997 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3999 return ((depth-1)*prev_avg + val)/depth;
4002 static void average_add(struct average *avg, s16 val)
4004 avg->sum -= avg->entries[avg->pos];
4006 avg->entries[avg->pos++] = val;
4007 if (unlikely(avg->pos == AVG_ENTRIES)) {
4013 static s16 average_value(struct average *avg)
4015 if (!unlikely(avg->init)) {
4017 return avg->sum / avg->pos;
4021 return avg->sum / AVG_ENTRIES;
4024 static void ipw_reset_stats(struct ipw_priv *priv)
4026 u32 len = sizeof(u32);
4030 average_init(&priv->average_missed_beacons);
4031 priv->exp_avg_rssi = -60;
4032 priv->exp_avg_noise = -85 + 0x100;
4034 priv->last_rate = 0;
4035 priv->last_missed_beacons = 0;
4036 priv->last_rx_packets = 0;
4037 priv->last_tx_packets = 0;
4038 priv->last_tx_failures = 0;
4040 /* Firmware managed, reset only when NIC is restarted, so we have to
4041 * normalize on the current value */
4042 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4043 &priv->last_rx_err, &len);
4044 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4045 &priv->last_tx_failures, &len);
4047 /* Driver managed, reset with each association */
4048 priv->missed_adhoc_beacons = 0;
4049 priv->missed_beacons = 0;
4050 priv->tx_packets = 0;
4051 priv->rx_packets = 0;
4055 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4058 u32 mask = priv->rates_mask;
4059 /* If currently associated in B mode, restrict the maximum
4060 * rate match to B rates */
4061 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4062 mask &= IEEE80211_CCK_RATES_MASK;
4064 /* TODO: Verify that the rate is supported by the current rates
4067 while (i && !(mask & i))
4070 case IEEE80211_CCK_RATE_1MB_MASK:
4072 case IEEE80211_CCK_RATE_2MB_MASK:
4074 case IEEE80211_CCK_RATE_5MB_MASK:
4076 case IEEE80211_OFDM_RATE_6MB_MASK:
4078 case IEEE80211_OFDM_RATE_9MB_MASK:
4080 case IEEE80211_CCK_RATE_11MB_MASK:
4082 case IEEE80211_OFDM_RATE_12MB_MASK:
4084 case IEEE80211_OFDM_RATE_18MB_MASK:
4086 case IEEE80211_OFDM_RATE_24MB_MASK:
4088 case IEEE80211_OFDM_RATE_36MB_MASK:
4090 case IEEE80211_OFDM_RATE_48MB_MASK:
4092 case IEEE80211_OFDM_RATE_54MB_MASK:
4096 if (priv->ieee->mode == IEEE_B)
4102 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4104 u32 rate, len = sizeof(rate);
4107 if (!(priv->status & STATUS_ASSOCIATED))
4110 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4111 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4114 IPW_DEBUG_INFO("failed querying ordinals.\n");
4118 return ipw_get_max_rate(priv);
4121 case IPW_TX_RATE_1MB:
4123 case IPW_TX_RATE_2MB:
4125 case IPW_TX_RATE_5MB:
4127 case IPW_TX_RATE_6MB:
4129 case IPW_TX_RATE_9MB:
4131 case IPW_TX_RATE_11MB:
4133 case IPW_TX_RATE_12MB:
4135 case IPW_TX_RATE_18MB:
4137 case IPW_TX_RATE_24MB:
4139 case IPW_TX_RATE_36MB:
4141 case IPW_TX_RATE_48MB:
4143 case IPW_TX_RATE_54MB:
4150 #define IPW_STATS_INTERVAL (2 * HZ)
4151 static void ipw_gather_stats(struct ipw_priv *priv)
4153 u32 rx_err, rx_err_delta, rx_packets_delta;
4154 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4155 u32 missed_beacons_percent, missed_beacons_delta;
4157 u32 len = sizeof(u32);
4159 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4163 if (!(priv->status & STATUS_ASSOCIATED)) {
4168 /* Update the statistics */
4169 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4170 &priv->missed_beacons, &len);
4171 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4172 priv->last_missed_beacons = priv->missed_beacons;
4173 if (priv->assoc_request.beacon_interval) {
4174 missed_beacons_percent = missed_beacons_delta *
4175 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4176 (IPW_STATS_INTERVAL * 10);
4178 missed_beacons_percent = 0;
4180 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4182 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4183 rx_err_delta = rx_err - priv->last_rx_err;
4184 priv->last_rx_err = rx_err;
4186 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4187 tx_failures_delta = tx_failures - priv->last_tx_failures;
4188 priv->last_tx_failures = tx_failures;
4190 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4191 priv->last_rx_packets = priv->rx_packets;
4193 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4194 priv->last_tx_packets = priv->tx_packets;
4196 /* Calculate quality based on the following:
4198 * Missed beacon: 100% = 0, 0% = 70% missed
4199 * Rate: 60% = 1Mbs, 100% = Max
4200 * Rx and Tx errors represent a straight % of total Rx/Tx
4201 * RSSI: 100% = > -50, 0% = < -80
4202 * Rx errors: 100% = 0, 0% = 50% missed
4204 * The lowest computed quality is used.
4207 #define BEACON_THRESHOLD 5
4208 beacon_quality = 100 - missed_beacons_percent;
4209 if (beacon_quality < BEACON_THRESHOLD)
4212 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4213 (100 - BEACON_THRESHOLD);
4214 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4215 beacon_quality, missed_beacons_percent);
4217 priv->last_rate = ipw_get_current_rate(priv);
4218 max_rate = ipw_get_max_rate(priv);
4219 rate_quality = priv->last_rate * 40 / max_rate + 60;
4220 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4221 rate_quality, priv->last_rate / 1000000);
4223 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4224 rx_quality = 100 - (rx_err_delta * 100) /
4225 (rx_packets_delta + rx_err_delta);
4228 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4229 rx_quality, rx_err_delta, rx_packets_delta);
4231 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4232 tx_quality = 100 - (tx_failures_delta * 100) /
4233 (tx_packets_delta + tx_failures_delta);
4236 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4237 tx_quality, tx_failures_delta, tx_packets_delta);
4239 rssi = priv->exp_avg_rssi;
4242 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4243 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4244 (priv->ieee->perfect_rssi - rssi) *
4245 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4246 62 * (priv->ieee->perfect_rssi - rssi))) /
4247 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4248 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4249 if (signal_quality > 100)
4250 signal_quality = 100;
4251 else if (signal_quality < 1)
4254 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4255 signal_quality, rssi);
4257 quality = min(beacon_quality,
4259 min(tx_quality, min(rx_quality, signal_quality))));
4260 if (quality == beacon_quality)
4261 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4263 if (quality == rate_quality)
4264 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4266 if (quality == tx_quality)
4267 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4269 if (quality == rx_quality)
4270 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4272 if (quality == signal_quality)
4273 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4276 priv->quality = quality;
4278 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4279 IPW_STATS_INTERVAL);
4282 static void ipw_bg_gather_stats(struct work_struct *work)
4284 struct ipw_priv *priv =
4285 container_of(work, struct ipw_priv, gather_stats.work);
4286 mutex_lock(&priv->mutex);
4287 ipw_gather_stats(priv);
4288 mutex_unlock(&priv->mutex);
4291 /* Missed beacon behavior:
4292 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4293 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4294 * Above disassociate threshold, give up and stop scanning.
4295 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4296 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4299 priv->notif_missed_beacons = missed_count;
4301 if (missed_count > priv->disassociate_threshold &&
4302 priv->status & STATUS_ASSOCIATED) {
4303 /* If associated and we've hit the missed
4304 * beacon threshold, disassociate, turn
4305 * off roaming, and abort any active scans */
4306 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4307 IPW_DL_STATE | IPW_DL_ASSOC,
4308 "Missed beacon: %d - disassociate\n", missed_count);
4309 priv->status &= ~STATUS_ROAMING;
4310 if (priv->status & STATUS_SCANNING) {
4311 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4313 "Aborting scan with missed beacon.\n");
4314 queue_work(priv->workqueue, &priv->abort_scan);
4317 queue_work(priv->workqueue, &priv->disassociate);
4321 if (priv->status & STATUS_ROAMING) {
4322 /* If we are currently roaming, then just
4323 * print a debug statement... */
4324 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4325 "Missed beacon: %d - roam in progress\n",
4331 (missed_count > priv->roaming_threshold &&
4332 missed_count <= priv->disassociate_threshold)) {
4333 /* If we are not already roaming, set the ROAM
4334 * bit in the status and kick off a scan.
4335 * This can happen several times before we reach
4336 * disassociate_threshold. */
4337 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4338 "Missed beacon: %d - initiate "
4339 "roaming\n", missed_count);
4340 if (!(priv->status & STATUS_ROAMING)) {
4341 priv->status |= STATUS_ROAMING;
4342 if (!(priv->status & STATUS_SCANNING))
4343 queue_delayed_work(priv->workqueue,
4344 &priv->request_scan, 0);
4349 if (priv->status & STATUS_SCANNING) {
4350 /* Stop scan to keep fw from getting
4351 * stuck (only if we aren't roaming --
4352 * otherwise we'll never scan more than 2 or 3
4354 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4355 "Aborting scan with missed beacon.\n");
4356 queue_work(priv->workqueue, &priv->abort_scan);
4359 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4362 static void ipw_scan_event(struct work_struct *work)
4364 union iwreq_data wrqu;
4366 struct ipw_priv *priv =
4367 container_of(work, struct ipw_priv, scan_event.work);
4369 wrqu.data.length = 0;
4370 wrqu.data.flags = 0;
4371 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4374 static void handle_scan_event(struct ipw_priv *priv)
4376 /* Only userspace-requested scan completion events go out immediately */
4377 if (!priv->user_requested_scan) {
4378 if (!delayed_work_pending(&priv->scan_event))
4379 queue_delayed_work(priv->workqueue, &priv->scan_event,
4380 round_jiffies_relative(msecs_to_jiffies(4000)));
4382 union iwreq_data wrqu;
4384 priv->user_requested_scan = 0;
4385 cancel_delayed_work(&priv->scan_event);
4387 wrqu.data.length = 0;
4388 wrqu.data.flags = 0;
4389 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4394 * Handle host notification packet.
4395 * Called from interrupt routine
4397 static void ipw_rx_notification(struct ipw_priv *priv,
4398 struct ipw_rx_notification *notif)
4400 DECLARE_MAC_BUF(mac);
4401 u16 size = le16_to_cpu(notif->size);
4402 notif->size = le16_to_cpu(notif->size);
4404 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4406 switch (notif->subtype) {
4407 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4408 struct notif_association *assoc = ¬if->u.assoc;
4410 switch (assoc->state) {
4411 case CMAS_ASSOCIATED:{
4412 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4414 "associated: '%s' %s"
4416 escape_essid(priv->essid,
4418 print_mac(mac, priv->bssid));
4420 switch (priv->ieee->iw_mode) {
4422 memcpy(priv->ieee->bssid,
4423 priv->bssid, ETH_ALEN);
4427 memcpy(priv->ieee->bssid,
4428 priv->bssid, ETH_ALEN);
4430 /* clear out the station table */
4431 priv->num_stations = 0;
4434 ("queueing adhoc check\n");
4435 queue_delayed_work(priv->
4445 priv->status &= ~STATUS_ASSOCIATING;
4446 priv->status |= STATUS_ASSOCIATED;
4447 queue_work(priv->workqueue,
4448 &priv->system_config);
4450 #ifdef CONFIG_IPW2200_QOS
4451 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4452 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4453 if ((priv->status & STATUS_AUTH) &&
4454 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4455 == IEEE80211_STYPE_ASSOC_RESP)) {
4458 ieee80211_assoc_response)
4460 && (size <= 2314)) {
4470 ieee80211_rx_mgt(priv->
4475 ¬if->u.raw, &stats);
4480 schedule_work(&priv->link_up);
4485 case CMAS_AUTHENTICATED:{
4487 status & (STATUS_ASSOCIATED |
4489 struct notif_authenticate *auth
4491 IPW_DEBUG(IPW_DL_NOTIF |
4494 "deauthenticated: '%s' "
4496 ": (0x%04X) - %s \n",
4501 print_mac(mac, priv->bssid),
4502 le16_to_cpu(auth->status),
4508 ~(STATUS_ASSOCIATING |
4512 schedule_work(&priv->link_down);
4516 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4518 "authenticated: '%s' %s"
4520 escape_essid(priv->essid,
4522 print_mac(mac, priv->bssid));
4527 if (priv->status & STATUS_AUTH) {
4529 ieee80211_assoc_response
4533 ieee80211_assoc_response
4535 IPW_DEBUG(IPW_DL_NOTIF |
4538 "association failed (0x%04X): %s\n",
4539 le16_to_cpu(resp->status),
4545 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4547 "disassociated: '%s' %s"
4549 escape_essid(priv->essid,
4551 print_mac(mac, priv->bssid));
4554 ~(STATUS_DISASSOCIATING |
4555 STATUS_ASSOCIATING |
4556 STATUS_ASSOCIATED | STATUS_AUTH);
4557 if (priv->assoc_network
4558 && (priv->assoc_network->
4560 WLAN_CAPABILITY_IBSS))
4561 ipw_remove_current_network
4564 schedule_work(&priv->link_down);
4569 case CMAS_RX_ASSOC_RESP:
4573 IPW_ERROR("assoc: unknown (%d)\n",
4581 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4582 struct notif_authenticate *auth = ¬if->u.auth;
4583 switch (auth->state) {
4584 case CMAS_AUTHENTICATED:
4585 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4586 "authenticated: '%s' %s \n",
4587 escape_essid(priv->essid,
4589 print_mac(mac, priv->bssid));
4590 priv->status |= STATUS_AUTH;
4594 if (priv->status & STATUS_AUTH) {
4595 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4597 "authentication failed (0x%04X): %s\n",
4598 le16_to_cpu(auth->status),
4599 ipw_get_status_code(le16_to_cpu
4603 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605 "deauthenticated: '%s' %s\n",
4606 escape_essid(priv->essid,
4608 print_mac(mac, priv->bssid));
4610 priv->status &= ~(STATUS_ASSOCIATING |
4614 schedule_work(&priv->link_down);
4617 case CMAS_TX_AUTH_SEQ_1:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4621 case CMAS_RX_AUTH_SEQ_2:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4625 case CMAS_AUTH_SEQ_1_PASS:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4629 case CMAS_AUTH_SEQ_1_FAIL:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4633 case CMAS_TX_AUTH_SEQ_3:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4637 case CMAS_RX_AUTH_SEQ_4:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4641 case CMAS_AUTH_SEQ_2_PASS:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4645 case CMAS_AUTH_SEQ_2_FAIL:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "TX_ASSOC\n");
4653 case CMAS_RX_ASSOC_RESP:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4658 case CMAS_ASSOCIATED:
4659 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660 IPW_DL_ASSOC, "ASSOCIATED\n");
4663 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4670 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4671 struct notif_channel_result *x =
4672 ¬if->u.channel_result;
4674 if (size == sizeof(*x)) {
4675 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4678 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4679 "(should be %zd)\n",
4685 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4686 struct notif_scan_complete *x = ¬if->u.scan_complete;
4687 if (size == sizeof(*x)) {
4689 ("Scan completed: type %d, %d channels, "
4690 "%d status\n", x->scan_type,
4691 x->num_channels, x->status);
4693 IPW_ERROR("Scan completed of wrong size %d "
4694 "(should be %zd)\n",
4699 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4701 wake_up_interruptible(&priv->wait_state);
4702 cancel_delayed_work(&priv->scan_check);
4704 if (priv->status & STATUS_EXIT_PENDING)
4707 priv->ieee->scans++;
4709 #ifdef CONFIG_IPW2200_MONITOR
4710 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4711 priv->status |= STATUS_SCAN_FORCED;
4712 queue_delayed_work(priv->workqueue,
4713 &priv->request_scan, 0);
4716 priv->status &= ~STATUS_SCAN_FORCED;
4717 #endif /* CONFIG_IPW2200_MONITOR */
4719 /* Do queued direct scans first */
4720 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4721 queue_delayed_work(priv->workqueue,
4722 &priv->request_direct_scan, 0);
4725 if (!(priv->status & (STATUS_ASSOCIATED |
4726 STATUS_ASSOCIATING |
4728 STATUS_DISASSOCIATING)))
4729 queue_work(priv->workqueue, &priv->associate);
4730 else if (priv->status & STATUS_ROAMING) {
4731 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4732 /* If a scan completed and we are in roam mode, then
4733 * the scan that completed was the one requested as a
4734 * result of entering roam... so, schedule the
4736 queue_work(priv->workqueue,
4739 /* Don't schedule if we aborted the scan */
4740 priv->status &= ~STATUS_ROAMING;
4741 } else if (priv->status & STATUS_SCAN_PENDING)
4742 queue_delayed_work(priv->workqueue,
4743 &priv->request_scan, 0);
4744 else if (priv->config & CFG_BACKGROUND_SCAN
4745 && priv->status & STATUS_ASSOCIATED)
4746 queue_delayed_work(priv->workqueue,
4747 &priv->request_scan,
4748 round_jiffies_relative(HZ));
4750 /* Send an empty event to user space.
4751 * We don't send the received data on the event because
4752 * it would require us to do complex transcoding, and
4753 * we want to minimise the work done in the irq handler
4754 * Use a request to extract the data.
4755 * Also, we generate this even for any scan, regardless
4756 * on how the scan was initiated. User space can just
4757 * sync on periodic scan to get fresh data...
4759 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4760 handle_scan_event(priv);
4764 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4765 struct notif_frag_length *x = ¬if->u.frag_len;
4767 if (size == sizeof(*x))
4768 IPW_ERROR("Frag length: %d\n",
4769 le16_to_cpu(x->frag_length));
4771 IPW_ERROR("Frag length of wrong size %d "
4772 "(should be %zd)\n",
4777 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4778 struct notif_link_deterioration *x =
4779 ¬if->u.link_deterioration;
4781 if (size == sizeof(*x)) {
4782 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4783 "link deterioration: type %d, cnt %d\n",
4784 x->silence_notification_type,
4786 memcpy(&priv->last_link_deterioration, x,
4789 IPW_ERROR("Link Deterioration of wrong size %d "
4790 "(should be %zd)\n",
4796 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4797 IPW_ERROR("Dino config\n");
4799 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4800 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4805 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4806 struct notif_beacon_state *x = ¬if->u.beacon_state;
4807 if (size != sizeof(*x)) {
4809 ("Beacon state of wrong size %d (should "
4810 "be %zd)\n", size, sizeof(*x));
4814 if (le32_to_cpu(x->state) ==
4815 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4816 ipw_handle_missed_beacon(priv,
4823 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4824 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4825 if (size == sizeof(*x)) {
4826 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4827 "0x%02x station %d\n",
4828 x->key_state, x->security_type,
4834 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4839 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4840 struct notif_calibration *x = ¬if->u.calibration;
4842 if (size == sizeof(*x)) {
4843 memcpy(&priv->calib, x, sizeof(*x));
4844 IPW_DEBUG_INFO("TODO: Calibration\n");
4849 ("Calibration of wrong size %d (should be %zd)\n",
4854 case HOST_NOTIFICATION_NOISE_STATS:{
4855 if (size == sizeof(u32)) {
4856 priv->exp_avg_noise =
4857 exponential_average(priv->exp_avg_noise,
4858 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4864 ("Noise stat is wrong size %d (should be %zd)\n",
4870 IPW_DEBUG_NOTIF("Unknown notification: "
4871 "subtype=%d,flags=0x%2x,size=%d\n",
4872 notif->subtype, notif->flags, size);
4877 * Destroys all DMA structures and initialise them again
4880 * @return error code
4882 static int ipw_queue_reset(struct ipw_priv *priv)
4885 /** @todo customize queue sizes */
4886 int nTx = 64, nTxCmd = 8;
4887 ipw_tx_queue_free(priv);
4889 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4890 IPW_TX_CMD_QUEUE_READ_INDEX,
4891 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4892 IPW_TX_CMD_QUEUE_BD_BASE,
4893 IPW_TX_CMD_QUEUE_BD_SIZE);
4895 IPW_ERROR("Tx Cmd queue init failed\n");
4899 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4900 IPW_TX_QUEUE_0_READ_INDEX,
4901 IPW_TX_QUEUE_0_WRITE_INDEX,
4902 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4904 IPW_ERROR("Tx 0 queue init failed\n");
4907 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4908 IPW_TX_QUEUE_1_READ_INDEX,
4909 IPW_TX_QUEUE_1_WRITE_INDEX,
4910 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4912 IPW_ERROR("Tx 1 queue init failed\n");
4915 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4916 IPW_TX_QUEUE_2_READ_INDEX,
4917 IPW_TX_QUEUE_2_WRITE_INDEX,
4918 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4920 IPW_ERROR("Tx 2 queue init failed\n");
4923 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4924 IPW_TX_QUEUE_3_READ_INDEX,
4925 IPW_TX_QUEUE_3_WRITE_INDEX,
4926 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4928 IPW_ERROR("Tx 3 queue init failed\n");
4932 priv->rx_bufs_min = 0;
4933 priv->rx_pend_max = 0;
4937 ipw_tx_queue_free(priv);
4942 * Reclaim Tx queue entries no more used by NIC.
4944 * When FW advances 'R' index, all entries between old and
4945 * new 'R' index need to be reclaimed. As result, some free space
4946 * forms. If there is enough free space (> low mark), wake Tx queue.
4948 * @note Need to protect against garbage in 'R' index
4952 * @return Number of used entries remains in the queue
4954 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4955 struct clx2_tx_queue *txq, int qindex)
4959 struct clx2_queue *q = &txq->q;
4961 hw_tail = ipw_read32(priv, q->reg_r);
4962 if (hw_tail >= q->n_bd) {
4964 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4968 for (; q->last_used != hw_tail;
4969 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4970 ipw_queue_tx_free_tfd(priv, txq);
4974 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4976 netif_wake_queue(priv->net_dev);
4977 used = q->first_empty - q->last_used;
4984 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4987 struct clx2_tx_queue *txq = &priv->txq_cmd;
4988 struct clx2_queue *q = &txq->q;
4989 struct tfd_frame *tfd;
4991 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4992 IPW_ERROR("No space for Tx\n");
4996 tfd = &txq->bd[q->first_empty];
4997 txq->txb[q->first_empty] = NULL;
4999 memset(tfd, 0, sizeof(*tfd));
5000 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5001 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5003 tfd->u.cmd.index = hcmd;
5004 tfd->u.cmd.length = len;
5005 memcpy(tfd->u.cmd.payload, buf, len);
5006 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5007 ipw_write32(priv, q->reg_w, q->first_empty);
5008 _ipw_read32(priv, 0x90);
5014 * Rx theory of operation
5016 * The host allocates 32 DMA target addresses and passes the host address
5017 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5021 * The host/firmware share two index registers for managing the Rx buffers.
5023 * The READ index maps to the first position that the firmware may be writing
5024 * to -- the driver can read up to (but not including) this position and get
5026 * The READ index is managed by the firmware once the card is enabled.
5028 * The WRITE index maps to the last position the driver has read from -- the
5029 * position preceding WRITE is the last slot the firmware can place a packet.
5031 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5034 * During initialization the host sets up the READ queue position to the first
5035 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5037 * When the firmware places a packet in a buffer it will advance the READ index
5038 * and fire the RX interrupt. The driver can then query the READ index and
5039 * process as many packets as possible, moving the WRITE index forward as it
5040 * resets the Rx queue buffers with new memory.
5042 * The management in the driver is as follows:
5043 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5044 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5045 * to replensish the ipw->rxq->rx_free.
5046 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5047 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5048 * 'processed' and 'read' driver indexes as well)
5049 * + A received packet is processed and handed to the kernel network stack,
5050 * detached from the ipw->rxq. The driver 'processed' index is updated.
5051 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5052 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5053 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5054 * were enough free buffers and RX_STALLED is set it is cleared.
5059 * ipw_rx_queue_alloc() Allocates rx_free
5060 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5061 * ipw_rx_queue_restock
5062 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5063 * queue, updates firmware pointers, and updates
5064 * the WRITE index. If insufficient rx_free buffers
5065 * are available, schedules ipw_rx_queue_replenish
5067 * -- enable interrupts --
5068 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5069 * READ INDEX, detaching the SKB from the pool.
5070 * Moves the packet buffer from queue to rx_used.
5071 * Calls ipw_rx_queue_restock to refill any empty
5078 * If there are slots in the RX queue that need to be restocked,
5079 * and we have free pre-allocated buffers, fill the ranks as much
5080 * as we can pulling from rx_free.
5082 * This moves the 'write' index forward to catch up with 'processed', and
5083 * also updates the memory address in the firmware to reference the new
5086 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5088 struct ipw_rx_queue *rxq = priv->rxq;
5089 struct list_head *element;
5090 struct ipw_rx_mem_buffer *rxb;
5091 unsigned long flags;
5094 spin_lock_irqsave(&rxq->lock, flags);
5096 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5097 element = rxq->rx_free.next;
5098 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5101 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5103 rxq->queue[rxq->write] = rxb;
5104 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5107 spin_unlock_irqrestore(&rxq->lock, flags);
5109 /* If the pre-allocated buffer pool is dropping low, schedule to
5111 if (rxq->free_count <= RX_LOW_WATERMARK)
5112 queue_work(priv->workqueue, &priv->rx_replenish);
5114 /* If we've added more space for the firmware to place data, tell it */
5115 if (write != rxq->write)
5116 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5120 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5121 * Also restock the Rx queue via ipw_rx_queue_restock.
5123 * This is called as a scheduled work item (except for during intialization)
5125 static void ipw_rx_queue_replenish(void *data)
5127 struct ipw_priv *priv = data;
5128 struct ipw_rx_queue *rxq = priv->rxq;
5129 struct list_head *element;
5130 struct ipw_rx_mem_buffer *rxb;
5131 unsigned long flags;
5133 spin_lock_irqsave(&rxq->lock, flags);
5134 while (!list_empty(&rxq->rx_used)) {
5135 element = rxq->rx_used.next;
5136 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5137 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5139 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5140 priv->net_dev->name);
5141 /* We don't reschedule replenish work here -- we will
5142 * call the restock method and if it still needs
5143 * more buffers it will schedule replenish */
5149 pci_map_single(priv->pci_dev, rxb->skb->data,
5150 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5152 list_add_tail(&rxb->list, &rxq->rx_free);
5155 spin_unlock_irqrestore(&rxq->lock, flags);
5157 ipw_rx_queue_restock(priv);
5160 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5162 struct ipw_priv *priv =
5163 container_of(work, struct ipw_priv, rx_replenish);
5164 mutex_lock(&priv->mutex);
5165 ipw_rx_queue_replenish(priv);
5166 mutex_unlock(&priv->mutex);
5169 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5170 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5171 * This free routine walks the list of POOL entries and if SKB is set to
5172 * non NULL it is unmapped and freed
5174 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5181 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5182 if (rxq->pool[i].skb != NULL) {
5183 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5184 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5185 dev_kfree_skb(rxq->pool[i].skb);
5192 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5194 struct ipw_rx_queue *rxq;
5197 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5198 if (unlikely(!rxq)) {
5199 IPW_ERROR("memory allocation failed\n");
5202 spin_lock_init(&rxq->lock);
5203 INIT_LIST_HEAD(&rxq->rx_free);
5204 INIT_LIST_HEAD(&rxq->rx_used);
5206 /* Fill the rx_used queue with _all_ of the Rx buffers */
5207 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5208 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5210 /* Set us so that we have processed and used all buffers, but have
5211 * not restocked the Rx queue with fresh buffers */
5212 rxq->read = rxq->write = 0;
5213 rxq->free_count = 0;
5218 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5220 rate &= ~IEEE80211_BASIC_RATE_MASK;
5221 if (ieee_mode == IEEE_A) {
5223 case IEEE80211_OFDM_RATE_6MB:
5224 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5226 case IEEE80211_OFDM_RATE_9MB:
5227 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5229 case IEEE80211_OFDM_RATE_12MB:
5231 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5232 case IEEE80211_OFDM_RATE_18MB:
5234 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5235 case IEEE80211_OFDM_RATE_24MB:
5237 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5238 case IEEE80211_OFDM_RATE_36MB:
5240 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5241 case IEEE80211_OFDM_RATE_48MB:
5243 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5244 case IEEE80211_OFDM_RATE_54MB:
5246 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5254 case IEEE80211_CCK_RATE_1MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5256 case IEEE80211_CCK_RATE_2MB:
5257 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5258 case IEEE80211_CCK_RATE_5MB:
5259 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5260 case IEEE80211_CCK_RATE_11MB:
5261 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5264 /* If we are limited to B modulations, bail at this point */
5265 if (ieee_mode == IEEE_B)
5270 case IEEE80211_OFDM_RATE_6MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_9MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_12MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_18MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_24MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5280 case IEEE80211_OFDM_RATE_36MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5282 case IEEE80211_OFDM_RATE_48MB:
5283 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5284 case IEEE80211_OFDM_RATE_54MB:
5285 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5291 static int ipw_compatible_rates(struct ipw_priv *priv,
5292 const struct ieee80211_network *network,
5293 struct ipw_supported_rates *rates)
5297 memset(rates, 0, sizeof(*rates));
5298 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5299 rates->num_rates = 0;
5300 for (i = 0; i < num_rates; i++) {
5301 if (!ipw_is_rate_in_mask(priv, network->mode,
5302 network->rates[i])) {
5304 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5305 IPW_DEBUG_SCAN("Adding masked mandatory "
5308 rates->supported_rates[rates->num_rates++] =
5313 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5314 network->rates[i], priv->rates_mask);
5318 rates->supported_rates[rates->num_rates++] = network->rates[i];
5321 num_rates = min(network->rates_ex_len,
5322 (u8) (IPW_MAX_RATES - num_rates));
5323 for (i = 0; i < num_rates; i++) {
5324 if (!ipw_is_rate_in_mask(priv, network->mode,
5325 network->rates_ex[i])) {
5326 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5327 IPW_DEBUG_SCAN("Adding masked mandatory "
5329 network->rates_ex[i]);
5330 rates->supported_rates[rates->num_rates++] =
5335 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5336 network->rates_ex[i], priv->rates_mask);
5340 rates->supported_rates[rates->num_rates++] =
5341 network->rates_ex[i];
5347 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5348 const struct ipw_supported_rates *src)
5351 for (i = 0; i < src->num_rates; i++)
5352 dest->supported_rates[i] = src->supported_rates[i];
5353 dest->num_rates = src->num_rates;
5356 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5357 * mask should ever be used -- right now all callers to add the scan rates are
5358 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5359 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5360 u8 modulation, u32 rate_mask)
5362 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5363 IEEE80211_BASIC_RATE_MASK : 0;
5365 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5369 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5370 rates->supported_rates[rates->num_rates++] =
5371 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5373 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5374 rates->supported_rates[rates->num_rates++] = basic_mask |
5375 IEEE80211_CCK_RATE_5MB;
5377 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5378 rates->supported_rates[rates->num_rates++] = basic_mask |
5379 IEEE80211_CCK_RATE_11MB;
5382 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5383 u8 modulation, u32 rate_mask)
5385 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5386 IEEE80211_BASIC_RATE_MASK : 0;
5388 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5389 rates->supported_rates[rates->num_rates++] = basic_mask |
5390 IEEE80211_OFDM_RATE_6MB;
5392 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5393 rates->supported_rates[rates->num_rates++] =
5394 IEEE80211_OFDM_RATE_9MB;
5396 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5397 rates->supported_rates[rates->num_rates++] = basic_mask |
5398 IEEE80211_OFDM_RATE_12MB;
5400 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5401 rates->supported_rates[rates->num_rates++] =
5402 IEEE80211_OFDM_RATE_18MB;
5404 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5405 rates->supported_rates[rates->num_rates++] = basic_mask |
5406 IEEE80211_OFDM_RATE_24MB;
5408 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5409 rates->supported_rates[rates->num_rates++] =
5410 IEEE80211_OFDM_RATE_36MB;
5412 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_48MB;
5416 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5417 rates->supported_rates[rates->num_rates++] =
5418 IEEE80211_OFDM_RATE_54MB;
5421 struct ipw_network_match {
5422 struct ieee80211_network *network;
5423 struct ipw_supported_rates rates;
5426 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5427 struct ipw_network_match *match,
5428 struct ieee80211_network *network,
5431 struct ipw_supported_rates rates;
5432 DECLARE_MAC_BUF(mac);
5433 DECLARE_MAC_BUF(mac2);
5435 /* Verify that this network's capability is compatible with the
5436 * current mode (AdHoc or Infrastructure) */
5437 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5438 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5439 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5440 "capability mismatch.\n",
5441 escape_essid(network->ssid, network->ssid_len),
5442 print_mac(mac, network->bssid));
5446 /* If we do not have an ESSID for this AP, we can not associate with
5448 if (network->flags & NETWORK_EMPTY_ESSID) {
5449 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5450 "because of hidden ESSID.\n",
5451 escape_essid(network->ssid, network->ssid_len),
5452 print_mac(mac, network->bssid));
5456 if (unlikely(roaming)) {
5457 /* If we are roaming, then ensure check if this is a valid
5458 * network to try and roam to */
5459 if ((network->ssid_len != match->network->ssid_len) ||
5460 memcmp(network->ssid, match->network->ssid,
5461 network->ssid_len)) {
5462 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5463 "because of non-network ESSID.\n",
5464 escape_essid(network->ssid,
5466 print_mac(mac, network->bssid));
5470 /* If an ESSID has been configured then compare the broadcast
5472 if ((priv->config & CFG_STATIC_ESSID) &&
5473 ((network->ssid_len != priv->essid_len) ||
5474 memcmp(network->ssid, priv->essid,
5475 min(network->ssid_len, priv->essid_len)))) {
5476 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5479 escape_essid(network->ssid, network->ssid_len),
5481 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5482 "because of ESSID mismatch: '%s'.\n",
5483 escaped, print_mac(mac, network->bssid),
5484 escape_essid(priv->essid,
5490 /* If the old network rate is better than this one, don't bother
5491 * testing everything else. */
5493 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5494 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5495 "current network.\n",
5496 escape_essid(match->network->ssid,
5497 match->network->ssid_len));
5499 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5500 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5501 "current network.\n",
5502 escape_essid(match->network->ssid,
5503 match->network->ssid_len));
5507 /* Now go through and see if the requested network is valid... */
5508 if (priv->ieee->scan_age != 0 &&
5509 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5510 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5511 "because of age: %ums.\n",
5512 escape_essid(network->ssid, network->ssid_len),
5513 print_mac(mac, network->bssid),
5514 jiffies_to_msecs(jiffies -
5515 network->last_scanned));
5519 if ((priv->config & CFG_STATIC_CHANNEL) &&
5520 (network->channel != priv->channel)) {
5521 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5522 "because of channel mismatch: %d != %d.\n",
5523 escape_essid(network->ssid, network->ssid_len),
5524 print_mac(mac, network->bssid),
5525 network->channel, priv->channel);
5529 /* Verify privacy compatability */
5530 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5531 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5532 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5533 "because of privacy mismatch: %s != %s.\n",
5534 escape_essid(network->ssid, network->ssid_len),
5535 print_mac(mac, network->bssid),
5537 capability & CAP_PRIVACY_ON ? "on" : "off",
5539 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5544 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5545 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5546 "because of the same BSSID match: %s"
5547 ".\n", escape_essid(network->ssid,
5549 print_mac(mac, network->bssid),
5550 print_mac(mac2, priv->bssid));
5554 /* Filter out any incompatible freq / mode combinations */
5555 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5556 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5557 "because of invalid frequency/mode "
5559 escape_essid(network->ssid, network->ssid_len),
5560 print_mac(mac, network->bssid));
5564 /* Ensure that the rates supported by the driver are compatible with
5565 * this AP, including verification of basic rates (mandatory) */
5566 if (!ipw_compatible_rates(priv, network, &rates)) {
5567 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5568 "because configured rate mask excludes "
5569 "AP mandatory rate.\n",
5570 escape_essid(network->ssid, network->ssid_len),
5571 print_mac(mac, network->bssid));
5575 if (rates.num_rates == 0) {
5576 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5577 "because of no compatible rates.\n",
5578 escape_essid(network->ssid, network->ssid_len),
5579 print_mac(mac, network->bssid));
5583 /* TODO: Perform any further minimal comparititive tests. We do not
5584 * want to put too much policy logic here; intelligent scan selection
5585 * should occur within a generic IEEE 802.11 user space tool. */
5587 /* Set up 'new' AP to this network */
5588 ipw_copy_rates(&match->rates, &rates);
5589 match->network = network;
5590 IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5591 escape_essid(network->ssid, network->ssid_len),
5592 print_mac(mac, network->bssid));
5597 static void ipw_merge_adhoc_network(struct work_struct *work)
5599 struct ipw_priv *priv =
5600 container_of(work, struct ipw_priv, merge_networks);
5601 struct ieee80211_network *network = NULL;
5602 struct ipw_network_match match = {
5603 .network = priv->assoc_network
5606 if ((priv->status & STATUS_ASSOCIATED) &&
5607 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5608 /* First pass through ROAM process -- look for a better
5610 unsigned long flags;
5612 spin_lock_irqsave(&priv->ieee->lock, flags);
5613 list_for_each_entry(network, &priv->ieee->network_list, list) {
5614 if (network != priv->assoc_network)
5615 ipw_find_adhoc_network(priv, &match, network,
5618 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5620 if (match.network == priv->assoc_network) {
5621 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5626 mutex_lock(&priv->mutex);
5627 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5628 IPW_DEBUG_MERGE("remove network %s\n",
5629 escape_essid(priv->essid,
5631 ipw_remove_current_network(priv);
5634 ipw_disassociate(priv);
5635 priv->assoc_network = match.network;
5636 mutex_unlock(&priv->mutex);
5641 static int ipw_best_network(struct ipw_priv *priv,
5642 struct ipw_network_match *match,
5643 struct ieee80211_network *network, int roaming)
5645 struct ipw_supported_rates rates;
5646 DECLARE_MAC_BUF(mac);
5648 /* Verify that this network's capability is compatible with the
5649 * current mode (AdHoc or Infrastructure) */
5650 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5651 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5652 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5653 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5654 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5655 "capability mismatch.\n",
5656 escape_essid(network->ssid, network->ssid_len),
5657 print_mac(mac, network->bssid));
5661 /* If we do not have an ESSID for this AP, we can not associate with
5663 if (network->flags & NETWORK_EMPTY_ESSID) {
5664 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5665 "because of hidden ESSID.\n",
5666 escape_essid(network->ssid, network->ssid_len),
5667 print_mac(mac, network->bssid));
5671 if (unlikely(roaming)) {
5672 /* If we are roaming, then ensure check if this is a valid
5673 * network to try and roam to */
5674 if ((network->ssid_len != match->network->ssid_len) ||
5675 memcmp(network->ssid, match->network->ssid,
5676 network->ssid_len)) {
5677 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5678 "because of non-network ESSID.\n",
5679 escape_essid(network->ssid,
5681 print_mac(mac, network->bssid));
5685 /* If an ESSID has been configured then compare the broadcast
5687 if ((priv->config & CFG_STATIC_ESSID) &&
5688 ((network->ssid_len != priv->essid_len) ||
5689 memcmp(network->ssid, priv->essid,
5690 min(network->ssid_len, priv->essid_len)))) {
5691 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5693 escape_essid(network->ssid, network->ssid_len),
5695 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5696 "because of ESSID mismatch: '%s'.\n",
5697 escaped, print_mac(mac, network->bssid),
5698 escape_essid(priv->essid,
5704 /* If the old network rate is better than this one, don't bother
5705 * testing everything else. */
5706 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5707 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5709 escape_essid(network->ssid, network->ssid_len),
5711 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5712 "'%s (%s)' has a stronger signal.\n",
5713 escaped, print_mac(mac, network->bssid),
5714 escape_essid(match->network->ssid,
5715 match->network->ssid_len),
5716 print_mac(mac, match->network->bssid));
5720 /* If this network has already had an association attempt within the
5721 * last 3 seconds, do not try and associate again... */
5722 if (network->last_associate &&
5723 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5724 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5725 "because of storming (%ums since last "
5726 "assoc attempt).\n",
5727 escape_essid(network->ssid, network->ssid_len),
5728 print_mac(mac, network->bssid),
5729 jiffies_to_msecs(jiffies -
5730 network->last_associate));
5734 /* Now go through and see if the requested network is valid... */
5735 if (priv->ieee->scan_age != 0 &&
5736 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5737 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5738 "because of age: %ums.\n",
5739 escape_essid(network->ssid, network->ssid_len),
5740 print_mac(mac, network->bssid),
5741 jiffies_to_msecs(jiffies -
5742 network->last_scanned));
5746 if ((priv->config & CFG_STATIC_CHANNEL) &&
5747 (network->channel != priv->channel)) {
5748 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5749 "because of channel mismatch: %d != %d.\n",
5750 escape_essid(network->ssid, network->ssid_len),
5751 print_mac(mac, network->bssid),
5752 network->channel, priv->channel);
5756 /* Verify privacy compatability */
5757 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5758 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5759 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5760 "because of privacy mismatch: %s != %s.\n",
5761 escape_essid(network->ssid, network->ssid_len),
5762 print_mac(mac, network->bssid),
5763 priv->capability & CAP_PRIVACY_ON ? "on" :
5765 network->capability &
5766 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5770 if ((priv->config & CFG_STATIC_BSSID) &&
5771 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5772 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5773 "because of BSSID mismatch: %s.\n",
5774 escape_essid(network->ssid, network->ssid_len),
5775 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5779 /* Filter out any incompatible freq / mode combinations */
5780 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5781 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5782 "because of invalid frequency/mode "
5784 escape_essid(network->ssid, network->ssid_len),
5785 print_mac(mac, network->bssid));
5789 /* Filter out invalid channel in current GEO */
5790 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5791 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5792 "because of invalid channel in current GEO\n",
5793 escape_essid(network->ssid, network->ssid_len),
5794 print_mac(mac, network->bssid));
5798 /* Ensure that the rates supported by the driver are compatible with
5799 * this AP, including verification of basic rates (mandatory) */
5800 if (!ipw_compatible_rates(priv, network, &rates)) {
5801 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5802 "because configured rate mask excludes "
5803 "AP mandatory rate.\n",
5804 escape_essid(network->ssid, network->ssid_len),
5805 print_mac(mac, network->bssid));
5809 if (rates.num_rates == 0) {
5810 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5811 "because of no compatible rates.\n",
5812 escape_essid(network->ssid, network->ssid_len),
5813 print_mac(mac, network->bssid));
5817 /* TODO: Perform any further minimal comparititive tests. We do not
5818 * want to put too much policy logic here; intelligent scan selection
5819 * should occur within a generic IEEE 802.11 user space tool. */
5821 /* Set up 'new' AP to this network */
5822 ipw_copy_rates(&match->rates, &rates);
5823 match->network = network;
5825 IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5826 escape_essid(network->ssid, network->ssid_len),
5827 print_mac(mac, network->bssid));
5832 static void ipw_adhoc_create(struct ipw_priv *priv,
5833 struct ieee80211_network *network)
5835 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5839 * For the purposes of scanning, we can set our wireless mode
5840 * to trigger scans across combinations of bands, but when it
5841 * comes to creating a new ad-hoc network, we have tell the FW
5842 * exactly which band to use.
5844 * We also have the possibility of an invalid channel for the
5845 * chossen band. Attempting to create a new ad-hoc network
5846 * with an invalid channel for wireless mode will trigger a
5850 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5851 case IEEE80211_52GHZ_BAND:
5852 network->mode = IEEE_A;
5853 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5855 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5856 IPW_WARNING("Overriding invalid channel\n");
5857 priv->channel = geo->a[0].channel;
5861 case IEEE80211_24GHZ_BAND:
5862 if (priv->ieee->mode & IEEE_G)
5863 network->mode = IEEE_G;
5865 network->mode = IEEE_B;
5866 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5868 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5869 IPW_WARNING("Overriding invalid channel\n");
5870 priv->channel = geo->bg[0].channel;
5875 IPW_WARNING("Overriding invalid channel\n");
5876 if (priv->ieee->mode & IEEE_A) {
5877 network->mode = IEEE_A;
5878 priv->channel = geo->a[0].channel;
5879 } else if (priv->ieee->mode & IEEE_G) {
5880 network->mode = IEEE_G;
5881 priv->channel = geo->bg[0].channel;
5883 network->mode = IEEE_B;
5884 priv->channel = geo->bg[0].channel;
5889 network->channel = priv->channel;
5890 priv->config |= CFG_ADHOC_PERSIST;
5891 ipw_create_bssid(priv, network->bssid);
5892 network->ssid_len = priv->essid_len;
5893 memcpy(network->ssid, priv->essid, priv->essid_len);
5894 memset(&network->stats, 0, sizeof(network->stats));
5895 network->capability = WLAN_CAPABILITY_IBSS;
5896 if (!(priv->config & CFG_PREAMBLE_LONG))
5897 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5898 if (priv->capability & CAP_PRIVACY_ON)
5899 network->capability |= WLAN_CAPABILITY_PRIVACY;
5900 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5901 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5902 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5903 memcpy(network->rates_ex,
5904 &priv->rates.supported_rates[network->rates_len],
5905 network->rates_ex_len);
5906 network->last_scanned = 0;
5908 network->last_associate = 0;
5909 network->time_stamp[0] = 0;
5910 network->time_stamp[1] = 0;
5911 network->beacon_interval = 100; /* Default */
5912 network->listen_interval = 10; /* Default */
5913 network->atim_window = 0; /* Default */
5914 network->wpa_ie_len = 0;
5915 network->rsn_ie_len = 0;
5918 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5920 struct ipw_tgi_tx_key key;
5922 if (!(priv->ieee->sec.flags & (1 << index)))
5926 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5927 key.security_type = type;
5928 key.station_index = 0; /* always 0 for BSS */
5930 /* 0 for new key; previous value of counter (after fatal error) */
5931 key.tx_counter[0] = cpu_to_le32(0);
5932 key.tx_counter[1] = cpu_to_le32(0);
5934 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5937 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5939 struct ipw_wep_key key;
5942 key.cmd_id = DINO_CMD_WEP_KEY;
5945 /* Note: AES keys cannot be set for multiple times.
5946 * Only set it at the first time. */
5947 for (i = 0; i < 4; i++) {
5948 key.key_index = i | type;
5949 if (!(priv->ieee->sec.flags & (1 << i))) {
5954 key.key_size = priv->ieee->sec.key_sizes[i];
5955 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5957 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5961 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5963 if (priv->ieee->host_encrypt)
5968 priv->sys_config.disable_unicast_decryption = 0;
5969 priv->ieee->host_decrypt = 0;
5972 priv->sys_config.disable_unicast_decryption = 1;
5973 priv->ieee->host_decrypt = 1;
5976 priv->sys_config.disable_unicast_decryption = 0;
5977 priv->ieee->host_decrypt = 0;
5980 priv->sys_config.disable_unicast_decryption = 1;
5987 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5989 if (priv->ieee->host_encrypt)
5994 priv->sys_config.disable_multicast_decryption = 0;
5997 priv->sys_config.disable_multicast_decryption = 1;
6000 priv->sys_config.disable_multicast_decryption = 0;
6003 priv->sys_config.disable_multicast_decryption = 1;
6010 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6012 switch (priv->ieee->sec.level) {
6014 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6015 ipw_send_tgi_tx_key(priv,
6016 DCT_FLAG_EXT_SECURITY_CCM,
6017 priv->ieee->sec.active_key);
6019 if (!priv->ieee->host_mc_decrypt)
6020 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6023 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6024 ipw_send_tgi_tx_key(priv,
6025 DCT_FLAG_EXT_SECURITY_TKIP,
6026 priv->ieee->sec.active_key);
6029 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6030 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6031 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6039 static void ipw_adhoc_check(void *data)
6041 struct ipw_priv *priv = data;
6043 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6044 !(priv->config & CFG_ADHOC_PERSIST)) {
6045 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6046 IPW_DL_STATE | IPW_DL_ASSOC,
6047 "Missed beacon: %d - disassociate\n",
6048 priv->missed_adhoc_beacons);
6049 ipw_remove_current_network(priv);
6050 ipw_disassociate(priv);
6054 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6055 le16_to_cpu(priv->assoc_request.beacon_interval));
6058 static void ipw_bg_adhoc_check(struct work_struct *work)
6060 struct ipw_priv *priv =
6061 container_of(work, struct ipw_priv, adhoc_check.work);
6062 mutex_lock(&priv->mutex);
6063 ipw_adhoc_check(priv);
6064 mutex_unlock(&priv->mutex);
6067 static void ipw_debug_config(struct ipw_priv *priv)
6069 DECLARE_MAC_BUF(mac);
6070 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6071 "[CFG 0x%08X]\n", priv->config);
6072 if (priv->config & CFG_STATIC_CHANNEL)
6073 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6075 IPW_DEBUG_INFO("Channel unlocked.\n");
6076 if (priv->config & CFG_STATIC_ESSID)
6077 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6078 escape_essid(priv->essid, priv->essid_len));
6080 IPW_DEBUG_INFO("ESSID unlocked.\n");
6081 if (priv->config & CFG_STATIC_BSSID)
6082 IPW_DEBUG_INFO("BSSID locked to %s\n",
6083 print_mac(mac, priv->bssid));
6085 IPW_DEBUG_INFO("BSSID unlocked.\n");
6086 if (priv->capability & CAP_PRIVACY_ON)
6087 IPW_DEBUG_INFO("PRIVACY on\n");
6089 IPW_DEBUG_INFO("PRIVACY off\n");
6090 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6093 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6095 /* TODO: Verify that this works... */
6096 struct ipw_fixed_rate fr = {
6097 .tx_rates = priv->rates_mask
6102 /* Identify 'current FW band' and match it with the fixed
6105 switch (priv->ieee->freq_band) {
6106 case IEEE80211_52GHZ_BAND: /* A only */
6108 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6109 /* Invalid fixed rate mask */
6111 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6116 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6119 default: /* 2.4Ghz or Mixed */
6121 if (mode == IEEE_B) {
6122 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6123 /* Invalid fixed rate mask */
6125 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6132 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6133 IEEE80211_OFDM_RATES_MASK)) {
6134 /* Invalid fixed rate mask */
6136 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6141 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6142 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6143 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6146 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6147 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6148 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6151 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6152 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6153 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6156 fr.tx_rates |= mask;
6160 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6161 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6164 static void ipw_abort_scan(struct ipw_priv *priv)
6168 if (priv->status & STATUS_SCAN_ABORTING) {
6169 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6172 priv->status |= STATUS_SCAN_ABORTING;
6174 err = ipw_send_scan_abort(priv);
6176 IPW_DEBUG_HC("Request to abort scan failed.\n");
6179 static void ipw_add_scan_channels(struct ipw_priv *priv,
6180 struct ipw_scan_request_ext *scan,
6183 int channel_index = 0;
6184 const struct ieee80211_geo *geo;
6187 geo = ieee80211_get_geo(priv->ieee);
6189 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6190 int start = channel_index;
6191 for (i = 0; i < geo->a_channels; i++) {
6192 if ((priv->status & STATUS_ASSOCIATED) &&
6193 geo->a[i].channel == priv->channel)
6196 scan->channels_list[channel_index] = geo->a[i].channel;
6197 ipw_set_scan_type(scan, channel_index,
6199 flags & IEEE80211_CH_PASSIVE_ONLY ?
6200 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6204 if (start != channel_index) {
6205 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6206 (channel_index - start);
6211 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6212 int start = channel_index;
6213 if (priv->config & CFG_SPEED_SCAN) {
6215 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6216 /* nop out the list */
6221 while (channel_index < IPW_SCAN_CHANNELS) {
6223 priv->speed_scan[priv->speed_scan_pos];
6225 priv->speed_scan_pos = 0;
6226 channel = priv->speed_scan[0];
6228 if ((priv->status & STATUS_ASSOCIATED) &&
6229 channel == priv->channel) {
6230 priv->speed_scan_pos++;
6234 /* If this channel has already been
6235 * added in scan, break from loop
6236 * and this will be the first channel
6239 if (channels[channel - 1] != 0)
6242 channels[channel - 1] = 1;
6243 priv->speed_scan_pos++;
6245 scan->channels_list[channel_index] = channel;
6247 ieee80211_channel_to_index(priv->ieee, channel);
6248 ipw_set_scan_type(scan, channel_index,
6251 IEEE80211_CH_PASSIVE_ONLY ?
6252 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6256 for (i = 0; i < geo->bg_channels; i++) {
6257 if ((priv->status & STATUS_ASSOCIATED) &&
6258 geo->bg[i].channel == priv->channel)
6261 scan->channels_list[channel_index] =
6263 ipw_set_scan_type(scan, channel_index,
6266 IEEE80211_CH_PASSIVE_ONLY ?
6267 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6272 if (start != channel_index) {
6273 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6274 (channel_index - start);
6279 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6281 struct ipw_scan_request_ext scan;
6282 int err = 0, scan_type;
6284 if (!(priv->status & STATUS_INIT) ||
6285 (priv->status & STATUS_EXIT_PENDING))
6288 mutex_lock(&priv->mutex);
6290 if (direct && (priv->direct_scan_ssid_len == 0)) {
6291 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6292 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6296 if (priv->status & STATUS_SCANNING) {
6297 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6298 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6299 STATUS_SCAN_PENDING;
6303 if (!(priv->status & STATUS_SCAN_FORCED) &&
6304 priv->status & STATUS_SCAN_ABORTING) {
6305 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6306 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6307 STATUS_SCAN_PENDING;
6311 if (priv->status & STATUS_RF_KILL_MASK) {
6312 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6313 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6314 STATUS_SCAN_PENDING;
6318 memset(&scan, 0, sizeof(scan));
6319 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6321 if (type == IW_SCAN_TYPE_PASSIVE) {
6322 IPW_DEBUG_WX("use passive scanning\n");
6323 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6324 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6326 ipw_add_scan_channels(priv, &scan, scan_type);
6330 /* Use active scan by default. */
6331 if (priv->config & CFG_SPEED_SCAN)
6332 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6335 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6338 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6341 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6342 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6344 #ifdef CONFIG_IPW2200_MONITOR
6345 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6349 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6350 case IEEE80211_52GHZ_BAND:
6351 band = (u8) (IPW_A_MODE << 6) | 1;
6352 channel = priv->channel;
6355 case IEEE80211_24GHZ_BAND:
6356 band = (u8) (IPW_B_MODE << 6) | 1;
6357 channel = priv->channel;
6361 band = (u8) (IPW_B_MODE << 6) | 1;
6366 scan.channels_list[0] = band;
6367 scan.channels_list[1] = channel;
6368 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6370 /* NOTE: The card will sit on this channel for this time
6371 * period. Scan aborts are timing sensitive and frequently
6372 * result in firmware restarts. As such, it is best to
6373 * set a small dwell_time here and just keep re-issuing
6374 * scans. Otherwise fast channel hopping will not actually
6377 * TODO: Move SPEED SCAN support to all modes and bands */
6378 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6381 #endif /* CONFIG_IPW2200_MONITOR */
6382 /* Honor direct scans first, otherwise if we are roaming make
6383 * this a direct scan for the current network. Finally,
6384 * ensure that every other scan is a fast channel hop scan */
6386 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6387 priv->direct_scan_ssid_len);
6389 IPW_DEBUG_HC("Attempt to send SSID command "
6394 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6395 } else if ((priv->status & STATUS_ROAMING)
6396 || (!(priv->status & STATUS_ASSOCIATED)
6397 && (priv->config & CFG_STATIC_ESSID)
6398 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6399 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6401 IPW_DEBUG_HC("Attempt to send SSID command "
6406 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6408 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6410 ipw_add_scan_channels(priv, &scan, scan_type);
6411 #ifdef CONFIG_IPW2200_MONITOR
6416 err = ipw_send_scan_request_ext(priv, &scan);
6418 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6422 priv->status |= STATUS_SCANNING;
6424 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6425 priv->direct_scan_ssid_len = 0;
6427 priv->status &= ~STATUS_SCAN_PENDING;
6429 queue_delayed_work(priv->workqueue, &priv->scan_check,
6430 IPW_SCAN_CHECK_WATCHDOG);
6432 mutex_unlock(&priv->mutex);
6436 static void ipw_request_passive_scan(struct work_struct *work)
6438 struct ipw_priv *priv =
6439 container_of(work, struct ipw_priv, request_passive_scan.work);
6440 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6443 static void ipw_request_scan(struct work_struct *work)
6445 struct ipw_priv *priv =
6446 container_of(work, struct ipw_priv, request_scan.work);
6447 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6450 static void ipw_request_direct_scan(struct work_struct *work)
6452 struct ipw_priv *priv =
6453 container_of(work, struct ipw_priv, request_direct_scan.work);
6454 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6457 static void ipw_bg_abort_scan(struct work_struct *work)
6459 struct ipw_priv *priv =
6460 container_of(work, struct ipw_priv, abort_scan);
6461 mutex_lock(&priv->mutex);
6462 ipw_abort_scan(priv);
6463 mutex_unlock(&priv->mutex);
6466 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6468 /* This is called when wpa_supplicant loads and closes the driver
6470 priv->ieee->wpa_enabled = value;
6474 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6476 struct ieee80211_device *ieee = priv->ieee;
6477 struct ieee80211_security sec = {
6478 .flags = SEC_AUTH_MODE,
6482 if (value & IW_AUTH_ALG_SHARED_KEY) {
6483 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6485 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6486 sec.auth_mode = WLAN_AUTH_OPEN;
6488 } else if (value & IW_AUTH_ALG_LEAP) {
6489 sec.auth_mode = WLAN_AUTH_LEAP;
6494 if (ieee->set_security)
6495 ieee->set_security(ieee->dev, &sec);
6502 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6505 /* make sure WPA is enabled */
6506 ipw_wpa_enable(priv, 1);
6509 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6510 char *capabilities, int length)
6512 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6514 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6523 static int ipw_wx_set_genie(struct net_device *dev,
6524 struct iw_request_info *info,
6525 union iwreq_data *wrqu, char *extra)
6527 struct ipw_priv *priv = ieee80211_priv(dev);
6528 struct ieee80211_device *ieee = priv->ieee;
6532 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6533 (wrqu->data.length && extra == NULL))
6536 if (wrqu->data.length) {
6537 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6543 memcpy(buf, extra, wrqu->data.length);
6544 kfree(ieee->wpa_ie);
6546 ieee->wpa_ie_len = wrqu->data.length;
6548 kfree(ieee->wpa_ie);
6549 ieee->wpa_ie = NULL;
6550 ieee->wpa_ie_len = 0;
6553 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6559 static int ipw_wx_get_genie(struct net_device *dev,
6560 struct iw_request_info *info,
6561 union iwreq_data *wrqu, char *extra)
6563 struct ipw_priv *priv = ieee80211_priv(dev);
6564 struct ieee80211_device *ieee = priv->ieee;
6567 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6568 wrqu->data.length = 0;
6572 if (wrqu->data.length < ieee->wpa_ie_len) {
6577 wrqu->data.length = ieee->wpa_ie_len;
6578 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6584 static int wext_cipher2level(int cipher)
6587 case IW_AUTH_CIPHER_NONE:
6589 case IW_AUTH_CIPHER_WEP40:
6590 case IW_AUTH_CIPHER_WEP104:
6592 case IW_AUTH_CIPHER_TKIP:
6594 case IW_AUTH_CIPHER_CCMP:
6602 static int ipw_wx_set_auth(struct net_device *dev,
6603 struct iw_request_info *info,
6604 union iwreq_data *wrqu, char *extra)
6606 struct ipw_priv *priv = ieee80211_priv(dev);
6607 struct ieee80211_device *ieee = priv->ieee;
6608 struct iw_param *param = &wrqu->param;
6609 struct ieee80211_crypt_data *crypt;
6610 unsigned long flags;
6613 switch (param->flags & IW_AUTH_INDEX) {
6614 case IW_AUTH_WPA_VERSION:
6616 case IW_AUTH_CIPHER_PAIRWISE:
6617 ipw_set_hw_decrypt_unicast(priv,
6618 wext_cipher2level(param->value));
6620 case IW_AUTH_CIPHER_GROUP:
6621 ipw_set_hw_decrypt_multicast(priv,
6622 wext_cipher2level(param->value));
6624 case IW_AUTH_KEY_MGMT:
6626 * ipw2200 does not use these parameters
6630 case IW_AUTH_TKIP_COUNTERMEASURES:
6631 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6632 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6635 flags = crypt->ops->get_flags(crypt->priv);
6638 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6640 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6642 crypt->ops->set_flags(flags, crypt->priv);
6646 case IW_AUTH_DROP_UNENCRYPTED:{
6649 * wpa_supplicant calls set_wpa_enabled when the driver
6650 * is loaded and unloaded, regardless of if WPA is being
6651 * used. No other calls are made which can be used to
6652 * determine if encryption will be used or not prior to
6653 * association being expected. If encryption is not being
6654 * used, drop_unencrypted is set to false, else true -- we
6655 * can use this to determine if the CAP_PRIVACY_ON bit should
6658 struct ieee80211_security sec = {
6659 .flags = SEC_ENABLED,
6660 .enabled = param->value,
6662 priv->ieee->drop_unencrypted = param->value;
6663 /* We only change SEC_LEVEL for open mode. Others
6664 * are set by ipw_wpa_set_encryption.
6666 if (!param->value) {
6667 sec.flags |= SEC_LEVEL;
6668 sec.level = SEC_LEVEL_0;
6670 sec.flags |= SEC_LEVEL;
6671 sec.level = SEC_LEVEL_1;
6673 if (priv->ieee->set_security)
6674 priv->ieee->set_security(priv->ieee->dev, &sec);
6678 case IW_AUTH_80211_AUTH_ALG:
6679 ret = ipw_wpa_set_auth_algs(priv, param->value);
6682 case IW_AUTH_WPA_ENABLED:
6683 ret = ipw_wpa_enable(priv, param->value);
6684 ipw_disassociate(priv);
6687 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6688 ieee->ieee802_1x = param->value;
6691 case IW_AUTH_PRIVACY_INVOKED:
6692 ieee->privacy_invoked = param->value;
6702 static int ipw_wx_get_auth(struct net_device *dev,
6703 struct iw_request_info *info,
6704 union iwreq_data *wrqu, char *extra)
6706 struct ipw_priv *priv = ieee80211_priv(dev);
6707 struct ieee80211_device *ieee = priv->ieee;
6708 struct ieee80211_crypt_data *crypt;
6709 struct iw_param *param = &wrqu->param;
6712 switch (param->flags & IW_AUTH_INDEX) {
6713 case IW_AUTH_WPA_VERSION:
6714 case IW_AUTH_CIPHER_PAIRWISE:
6715 case IW_AUTH_CIPHER_GROUP:
6716 case IW_AUTH_KEY_MGMT:
6718 * wpa_supplicant will control these internally
6723 case IW_AUTH_TKIP_COUNTERMEASURES:
6724 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6725 if (!crypt || !crypt->ops->get_flags)
6728 param->value = (crypt->ops->get_flags(crypt->priv) &
6729 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6733 case IW_AUTH_DROP_UNENCRYPTED:
6734 param->value = ieee->drop_unencrypted;
6737 case IW_AUTH_80211_AUTH_ALG:
6738 param->value = ieee->sec.auth_mode;
6741 case IW_AUTH_WPA_ENABLED:
6742 param->value = ieee->wpa_enabled;
6745 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6746 param->value = ieee->ieee802_1x;
6749 case IW_AUTH_ROAMING_CONTROL:
6750 case IW_AUTH_PRIVACY_INVOKED:
6751 param->value = ieee->privacy_invoked;
6760 /* SIOCSIWENCODEEXT */
6761 static int ipw_wx_set_encodeext(struct net_device *dev,
6762 struct iw_request_info *info,
6763 union iwreq_data *wrqu, char *extra)
6765 struct ipw_priv *priv = ieee80211_priv(dev);
6766 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6769 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6770 /* IPW HW can't build TKIP MIC,
6771 host decryption still needed */
6772 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6773 priv->ieee->host_mc_decrypt = 1;
6775 priv->ieee->host_encrypt = 0;
6776 priv->ieee->host_encrypt_msdu = 1;
6777 priv->ieee->host_decrypt = 1;
6780 priv->ieee->host_encrypt = 0;
6781 priv->ieee->host_encrypt_msdu = 0;
6782 priv->ieee->host_decrypt = 0;
6783 priv->ieee->host_mc_decrypt = 0;
6787 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6790 /* SIOCGIWENCODEEXT */
6791 static int ipw_wx_get_encodeext(struct net_device *dev,
6792 struct iw_request_info *info,
6793 union iwreq_data *wrqu, char *extra)
6795 struct ipw_priv *priv = ieee80211_priv(dev);
6796 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6800 static int ipw_wx_set_mlme(struct net_device *dev,
6801 struct iw_request_info *info,
6802 union iwreq_data *wrqu, char *extra)
6804 struct ipw_priv *priv = ieee80211_priv(dev);
6805 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6808 reason = cpu_to_le16(mlme->reason_code);
6810 switch (mlme->cmd) {
6811 case IW_MLME_DEAUTH:
6812 /* silently ignore */
6815 case IW_MLME_DISASSOC:
6816 ipw_disassociate(priv);
6825 #ifdef CONFIG_IPW2200_QOS
6829 * get the modulation type of the current network or
6830 * the card current mode
6832 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6836 if (priv->status & STATUS_ASSOCIATED) {
6837 unsigned long flags;
6839 spin_lock_irqsave(&priv->ieee->lock, flags);
6840 mode = priv->assoc_network->mode;
6841 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6843 mode = priv->ieee->mode;
6845 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6850 * Handle management frame beacon and probe response
6852 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6854 struct ieee80211_network *network)
6856 u32 size = sizeof(struct ieee80211_qos_parameters);
6858 if (network->capability & WLAN_CAPABILITY_IBSS)
6859 network->qos_data.active = network->qos_data.supported;
6861 if (network->flags & NETWORK_HAS_QOS_MASK) {
6862 if (active_network &&
6863 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6864 network->qos_data.active = network->qos_data.supported;
6866 if ((network->qos_data.active == 1) && (active_network == 1) &&
6867 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6868 (network->qos_data.old_param_count !=
6869 network->qos_data.param_count)) {
6870 network->qos_data.old_param_count =
6871 network->qos_data.param_count;
6872 schedule_work(&priv->qos_activate);
6873 IPW_DEBUG_QOS("QoS parameters change call "
6877 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6878 memcpy(&network->qos_data.parameters,
6879 &def_parameters_CCK, size);
6881 memcpy(&network->qos_data.parameters,
6882 &def_parameters_OFDM, size);
6884 if ((network->qos_data.active == 1) && (active_network == 1)) {
6885 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6886 schedule_work(&priv->qos_activate);
6889 network->qos_data.active = 0;
6890 network->qos_data.supported = 0;
6892 if ((priv->status & STATUS_ASSOCIATED) &&
6893 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6894 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6895 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6896 !(network->flags & NETWORK_EMPTY_ESSID))
6897 if ((network->ssid_len ==
6898 priv->assoc_network->ssid_len) &&
6899 !memcmp(network->ssid,
6900 priv->assoc_network->ssid,
6901 network->ssid_len)) {
6902 queue_work(priv->workqueue,
6903 &priv->merge_networks);
6911 * This function set up the firmware to support QoS. It sends
6912 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6914 static int ipw_qos_activate(struct ipw_priv *priv,
6915 struct ieee80211_qos_data *qos_network_data)
6918 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6919 struct ieee80211_qos_parameters *active_one = NULL;
6920 u32 size = sizeof(struct ieee80211_qos_parameters);
6925 type = ipw_qos_current_mode(priv);
6927 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6928 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6929 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6930 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6932 if (qos_network_data == NULL) {
6933 if (type == IEEE_B) {
6934 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6935 active_one = &def_parameters_CCK;
6937 active_one = &def_parameters_OFDM;
6939 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6940 burst_duration = ipw_qos_get_burst_duration(priv);
6941 for (i = 0; i < QOS_QUEUE_NUM; i++)
6942 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6943 cpu_to_le16(burst_duration);
6944 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6945 if (type == IEEE_B) {
6946 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6948 if (priv->qos_data.qos_enable == 0)
6949 active_one = &def_parameters_CCK;
6951 active_one = priv->qos_data.def_qos_parm_CCK;
6953 if (priv->qos_data.qos_enable == 0)
6954 active_one = &def_parameters_OFDM;
6956 active_one = priv->qos_data.def_qos_parm_OFDM;
6958 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6960 unsigned long flags;
6963 spin_lock_irqsave(&priv->ieee->lock, flags);
6964 active_one = &(qos_network_data->parameters);
6965 qos_network_data->old_param_count =
6966 qos_network_data->param_count;
6967 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6968 active = qos_network_data->supported;
6969 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6972 burst_duration = ipw_qos_get_burst_duration(priv);
6973 for (i = 0; i < QOS_QUEUE_NUM; i++)
6974 qos_parameters[QOS_PARAM_SET_ACTIVE].
6975 tx_op_limit[i] = cpu_to_le16(burst_duration);
6979 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6980 err = ipw_send_qos_params_command(priv,
6981 (struct ieee80211_qos_parameters *)
6982 &(qos_parameters[0]));
6984 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6990 * send IPW_CMD_WME_INFO to the firmware
6992 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6995 struct ieee80211_qos_information_element qos_info;
7000 qos_info.elementID = QOS_ELEMENT_ID;
7001 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7003 qos_info.version = QOS_VERSION_1;
7004 qos_info.ac_info = 0;
7006 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7007 qos_info.qui_type = QOS_OUI_TYPE;
7008 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7010 ret = ipw_send_qos_info_command(priv, &qos_info);
7012 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7018 * Set the QoS parameter with the association request structure
7020 static int ipw_qos_association(struct ipw_priv *priv,
7021 struct ieee80211_network *network)
7024 struct ieee80211_qos_data *qos_data = NULL;
7025 struct ieee80211_qos_data ibss_data = {
7030 switch (priv->ieee->iw_mode) {
7032 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7034 qos_data = &ibss_data;
7038 qos_data = &network->qos_data;
7046 err = ipw_qos_activate(priv, qos_data);
7048 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7052 if (priv->qos_data.qos_enable && qos_data->supported) {
7053 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7054 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7055 return ipw_qos_set_info_element(priv);
7062 * handling the beaconing responses. if we get different QoS setting
7063 * off the network from the associated setting, adjust the QoS
7066 static int ipw_qos_association_resp(struct ipw_priv *priv,
7067 struct ieee80211_network *network)
7070 unsigned long flags;
7071 u32 size = sizeof(struct ieee80211_qos_parameters);
7072 int set_qos_param = 0;
7074 if ((priv == NULL) || (network == NULL) ||
7075 (priv->assoc_network == NULL))
7078 if (!(priv->status & STATUS_ASSOCIATED))
7081 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7084 spin_lock_irqsave(&priv->ieee->lock, flags);
7085 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7086 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7087 sizeof(struct ieee80211_qos_data));
7088 priv->assoc_network->qos_data.active = 1;
7089 if ((network->qos_data.old_param_count !=
7090 network->qos_data.param_count)) {
7092 network->qos_data.old_param_count =
7093 network->qos_data.param_count;
7097 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7098 memcpy(&priv->assoc_network->qos_data.parameters,
7099 &def_parameters_CCK, size);
7101 memcpy(&priv->assoc_network->qos_data.parameters,
7102 &def_parameters_OFDM, size);
7103 priv->assoc_network->qos_data.active = 0;
7104 priv->assoc_network->qos_data.supported = 0;
7108 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7110 if (set_qos_param == 1)
7111 schedule_work(&priv->qos_activate);
7116 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7123 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7124 ret = priv->qos_data.burst_duration_CCK;
7126 ret = priv->qos_data.burst_duration_OFDM;
7132 * Initialize the setting of QoS global
7134 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7135 int burst_enable, u32 burst_duration_CCK,
7136 u32 burst_duration_OFDM)
7138 priv->qos_data.qos_enable = enable;
7140 if (priv->qos_data.qos_enable) {
7141 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7142 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7143 IPW_DEBUG_QOS("QoS is enabled\n");
7145 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7146 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7147 IPW_DEBUG_QOS("QoS is not enabled\n");
7150 priv->qos_data.burst_enable = burst_enable;
7153 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7154 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7156 priv->qos_data.burst_duration_CCK = 0;
7157 priv->qos_data.burst_duration_OFDM = 0;
7162 * map the packet priority to the right TX Queue
7164 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7166 if (priority > 7 || !priv->qos_data.qos_enable)
7169 return from_priority_to_tx_queue[priority] - 1;
7172 static int ipw_is_qos_active(struct net_device *dev,
7173 struct sk_buff *skb)
7175 struct ipw_priv *priv = ieee80211_priv(dev);
7176 struct ieee80211_qos_data *qos_data = NULL;
7177 int active, supported;
7178 u8 *daddr = skb->data + ETH_ALEN;
7179 int unicast = !is_multicast_ether_addr(daddr);
7181 if (!(priv->status & STATUS_ASSOCIATED))
7184 qos_data = &priv->assoc_network->qos_data;
7186 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7188 qos_data->active = 0;
7190 qos_data->active = qos_data->supported;
7192 active = qos_data->active;
7193 supported = qos_data->supported;
7194 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7196 priv->qos_data.qos_enable, active, supported, unicast);
7197 if (active && priv->qos_data.qos_enable)
7204 * add QoS parameter to the TX command
7206 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7208 struct tfd_data *tfd)
7210 int tx_queue_id = 0;
7213 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7214 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7216 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7217 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7218 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7224 * background support to run QoS activate functionality
7226 static void ipw_bg_qos_activate(struct work_struct *work)
7228 struct ipw_priv *priv =
7229 container_of(work, struct ipw_priv, qos_activate);
7234 mutex_lock(&priv->mutex);
7236 if (priv->status & STATUS_ASSOCIATED)
7237 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7239 mutex_unlock(&priv->mutex);
7242 static int ipw_handle_probe_response(struct net_device *dev,
7243 struct ieee80211_probe_response *resp,
7244 struct ieee80211_network *network)
7246 struct ipw_priv *priv = ieee80211_priv(dev);
7247 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7248 (network == priv->assoc_network));
7250 ipw_qos_handle_probe_response(priv, active_network, network);
7255 static int ipw_handle_beacon(struct net_device *dev,
7256 struct ieee80211_beacon *resp,
7257 struct ieee80211_network *network)
7259 struct ipw_priv *priv = ieee80211_priv(dev);
7260 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7261 (network == priv->assoc_network));
7263 ipw_qos_handle_probe_response(priv, active_network, network);
7268 static int ipw_handle_assoc_response(struct net_device *dev,
7269 struct ieee80211_assoc_response *resp,
7270 struct ieee80211_network *network)
7272 struct ipw_priv *priv = ieee80211_priv(dev);
7273 ipw_qos_association_resp(priv, network);
7277 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7280 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7281 sizeof(*qos_param) * 3, qos_param);
7284 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7287 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7291 #endif /* CONFIG_IPW2200_QOS */
7293 static int ipw_associate_network(struct ipw_priv *priv,
7294 struct ieee80211_network *network,
7295 struct ipw_supported_rates *rates, int roaming)
7298 DECLARE_MAC_BUF(mac);
7300 if (priv->config & CFG_FIXED_RATE)
7301 ipw_set_fixed_rate(priv, network->mode);
7303 if (!(priv->config & CFG_STATIC_ESSID)) {
7304 priv->essid_len = min(network->ssid_len,
7305 (u8) IW_ESSID_MAX_SIZE);
7306 memcpy(priv->essid, network->ssid, priv->essid_len);
7309 network->last_associate = jiffies;
7311 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7312 priv->assoc_request.channel = network->channel;
7313 priv->assoc_request.auth_key = 0;
7315 if ((priv->capability & CAP_PRIVACY_ON) &&
7316 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7317 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7318 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7320 if (priv->ieee->sec.level == SEC_LEVEL_1)
7321 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7323 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7324 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7325 priv->assoc_request.auth_type = AUTH_LEAP;
7327 priv->assoc_request.auth_type = AUTH_OPEN;
7329 if (priv->ieee->wpa_ie_len) {
7330 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7331 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7332 priv->ieee->wpa_ie_len);
7336 * It is valid for our ieee device to support multiple modes, but
7337 * when it comes to associating to a given network we have to choose
7340 if (network->mode & priv->ieee->mode & IEEE_A)
7341 priv->assoc_request.ieee_mode = IPW_A_MODE;
7342 else if (network->mode & priv->ieee->mode & IEEE_G)
7343 priv->assoc_request.ieee_mode = IPW_G_MODE;
7344 else if (network->mode & priv->ieee->mode & IEEE_B)
7345 priv->assoc_request.ieee_mode = IPW_B_MODE;
7347 priv->assoc_request.capability = cpu_to_le16(network->capability);
7348 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7349 && !(priv->config & CFG_PREAMBLE_LONG)) {
7350 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7352 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7354 /* Clear the short preamble if we won't be supporting it */
7355 priv->assoc_request.capability &=
7356 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7359 /* Clear capability bits that aren't used in Ad Hoc */
7360 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7361 priv->assoc_request.capability &=
7362 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7364 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7365 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7366 roaming ? "Rea" : "A",
7367 escape_essid(priv->essid, priv->essid_len),
7369 ipw_modes[priv->assoc_request.ieee_mode],
7371 (priv->assoc_request.preamble_length ==
7372 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7373 network->capability &
7374 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7375 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7376 priv->capability & CAP_PRIVACY_ON ?
7377 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7379 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7380 priv->capability & CAP_PRIVACY_ON ?
7381 '1' + priv->ieee->sec.active_key : '.',
7382 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7384 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7385 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7386 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7387 priv->assoc_request.assoc_type = HC_IBSS_START;
7388 priv->assoc_request.assoc_tsf_msw = 0;
7389 priv->assoc_request.assoc_tsf_lsw = 0;
7391 if (unlikely(roaming))
7392 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7394 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7395 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7396 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7399 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7401 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7402 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7403 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7405 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7406 priv->assoc_request.atim_window = 0;
7409 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7411 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7413 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7417 rates->ieee_mode = priv->assoc_request.ieee_mode;
7418 rates->purpose = IPW_RATE_CONNECT;
7419 ipw_send_supported_rates(priv, rates);
7421 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7422 priv->sys_config.dot11g_auto_detection = 1;
7424 priv->sys_config.dot11g_auto_detection = 0;
7426 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7427 priv->sys_config.answer_broadcast_ssid_probe = 1;
7429 priv->sys_config.answer_broadcast_ssid_probe = 0;
7431 err = ipw_send_system_config(priv);
7433 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7437 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7438 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7440 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7445 * If preemption is enabled, it is possible for the association
7446 * to complete before we return from ipw_send_associate. Therefore
7447 * we have to be sure and update our priviate data first.
7449 priv->channel = network->channel;
7450 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7451 priv->status |= STATUS_ASSOCIATING;
7452 priv->status &= ~STATUS_SECURITY_UPDATED;
7454 priv->assoc_network = network;
7456 #ifdef CONFIG_IPW2200_QOS
7457 ipw_qos_association(priv, network);
7460 err = ipw_send_associate(priv, &priv->assoc_request);
7462 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7466 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7467 escape_essid(priv->essid, priv->essid_len),
7468 print_mac(mac, priv->bssid));
7473 static void ipw_roam(void *data)
7475 struct ipw_priv *priv = data;
7476 struct ieee80211_network *network = NULL;
7477 struct ipw_network_match match = {
7478 .network = priv->assoc_network
7481 /* The roaming process is as follows:
7483 * 1. Missed beacon threshold triggers the roaming process by
7484 * setting the status ROAM bit and requesting a scan.
7485 * 2. When the scan completes, it schedules the ROAM work
7486 * 3. The ROAM work looks at all of the known networks for one that
7487 * is a better network than the currently associated. If none
7488 * found, the ROAM process is over (ROAM bit cleared)
7489 * 4. If a better network is found, a disassociation request is
7491 * 5. When the disassociation completes, the roam work is again
7492 * scheduled. The second time through, the driver is no longer
7493 * associated, and the newly selected network is sent an
7494 * association request.
7495 * 6. At this point ,the roaming process is complete and the ROAM
7496 * status bit is cleared.
7499 /* If we are no longer associated, and the roaming bit is no longer
7500 * set, then we are not actively roaming, so just return */
7501 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7504 if (priv->status & STATUS_ASSOCIATED) {
7505 /* First pass through ROAM process -- look for a better
7507 unsigned long flags;
7508 u8 rssi = priv->assoc_network->stats.rssi;
7509 priv->assoc_network->stats.rssi = -128;
7510 spin_lock_irqsave(&priv->ieee->lock, flags);
7511 list_for_each_entry(network, &priv->ieee->network_list, list) {
7512 if (network != priv->assoc_network)
7513 ipw_best_network(priv, &match, network, 1);
7515 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7516 priv->assoc_network->stats.rssi = rssi;
7518 if (match.network == priv->assoc_network) {
7519 IPW_DEBUG_ASSOC("No better APs in this network to "
7521 priv->status &= ~STATUS_ROAMING;
7522 ipw_debug_config(priv);
7526 ipw_send_disassociate(priv, 1);
7527 priv->assoc_network = match.network;
7532 /* Second pass through ROAM process -- request association */
7533 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7534 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7535 priv->status &= ~STATUS_ROAMING;
7538 static void ipw_bg_roam(struct work_struct *work)
7540 struct ipw_priv *priv =
7541 container_of(work, struct ipw_priv, roam);
7542 mutex_lock(&priv->mutex);
7544 mutex_unlock(&priv->mutex);
7547 static int ipw_associate(void *data)
7549 struct ipw_priv *priv = data;
7551 struct ieee80211_network *network = NULL;
7552 struct ipw_network_match match = {
7555 struct ipw_supported_rates *rates;
7556 struct list_head *element;
7557 unsigned long flags;
7559 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7560 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7564 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7565 IPW_DEBUG_ASSOC("Not attempting association (already in "
7570 if (priv->status & STATUS_DISASSOCIATING) {
7571 IPW_DEBUG_ASSOC("Not attempting association (in "
7572 "disassociating)\n ");
7573 queue_work(priv->workqueue, &priv->associate);
7577 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7578 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7583 if (!(priv->config & CFG_ASSOCIATE) &&
7584 !(priv->config & (CFG_STATIC_ESSID |
7585 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7586 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7590 /* Protect our use of the network_list */
7591 spin_lock_irqsave(&priv->ieee->lock, flags);
7592 list_for_each_entry(network, &priv->ieee->network_list, list)
7593 ipw_best_network(priv, &match, network, 0);
7595 network = match.network;
7596 rates = &match.rates;
7598 if (network == NULL &&
7599 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7600 priv->config & CFG_ADHOC_CREATE &&
7601 priv->config & CFG_STATIC_ESSID &&
7602 priv->config & CFG_STATIC_CHANNEL) {
7603 /* Use oldest network if the free list is empty */
7604 if (list_empty(&priv->ieee->network_free_list)) {
7605 struct ieee80211_network *oldest = NULL;
7606 struct ieee80211_network *target;
7607 DECLARE_MAC_BUF(mac);
7609 list_for_each_entry(target, &priv->ieee->network_list, list) {
7610 if ((oldest == NULL) ||
7611 (target->last_scanned < oldest->last_scanned))
7615 /* If there are no more slots, expire the oldest */
7616 list_del(&oldest->list);
7618 IPW_DEBUG_ASSOC("Expired '%s' (%s) from "
7620 escape_essid(target->ssid,
7622 print_mac(mac, target->bssid));
7623 list_add_tail(&target->list,
7624 &priv->ieee->network_free_list);
7627 element = priv->ieee->network_free_list.next;
7628 network = list_entry(element, struct ieee80211_network, list);
7629 ipw_adhoc_create(priv, network);
7630 rates = &priv->rates;
7632 list_add_tail(&network->list, &priv->ieee->network_list);
7634 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7636 /* If we reached the end of the list, then we don't have any valid
7639 ipw_debug_config(priv);
7641 if (!(priv->status & STATUS_SCANNING)) {
7642 if (!(priv->config & CFG_SPEED_SCAN))
7643 queue_delayed_work(priv->workqueue,
7644 &priv->request_scan,
7647 queue_delayed_work(priv->workqueue,
7648 &priv->request_scan, 0);
7654 ipw_associate_network(priv, network, rates, 0);
7659 static void ipw_bg_associate(struct work_struct *work)
7661 struct ipw_priv *priv =
7662 container_of(work, struct ipw_priv, associate);
7663 mutex_lock(&priv->mutex);
7664 ipw_associate(priv);
7665 mutex_unlock(&priv->mutex);
7668 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7669 struct sk_buff *skb)
7671 struct ieee80211_hdr *hdr;
7674 hdr = (struct ieee80211_hdr *)skb->data;
7675 fc = le16_to_cpu(hdr->frame_ctl);
7676 if (!(fc & IEEE80211_FCTL_PROTECTED))
7679 fc &= ~IEEE80211_FCTL_PROTECTED;
7680 hdr->frame_ctl = cpu_to_le16(fc);
7681 switch (priv->ieee->sec.level) {
7683 /* Remove CCMP HDR */
7684 memmove(skb->data + IEEE80211_3ADDR_LEN,
7685 skb->data + IEEE80211_3ADDR_LEN + 8,
7686 skb->len - IEEE80211_3ADDR_LEN - 8);
7687 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7693 memmove(skb->data + IEEE80211_3ADDR_LEN,
7694 skb->data + IEEE80211_3ADDR_LEN + 4,
7695 skb->len - IEEE80211_3ADDR_LEN - 4);
7696 skb_trim(skb, skb->len - 8); /* IV + ICV */
7701 printk(KERN_ERR "Unknow security level %d\n",
7702 priv->ieee->sec.level);
7707 static void ipw_handle_data_packet(struct ipw_priv *priv,
7708 struct ipw_rx_mem_buffer *rxb,
7709 struct ieee80211_rx_stats *stats)
7711 struct ieee80211_hdr_4addr *hdr;
7712 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7714 /* We received data from the HW, so stop the watchdog */
7715 priv->net_dev->trans_start = jiffies;
7717 /* We only process data packets if the
7718 * interface is open */
7719 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7720 skb_tailroom(rxb->skb))) {
7721 priv->ieee->stats.rx_errors++;
7722 priv->wstats.discard.misc++;
7723 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7725 } else if (unlikely(!netif_running(priv->net_dev))) {
7726 priv->ieee->stats.rx_dropped++;
7727 priv->wstats.discard.misc++;
7728 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7732 /* Advance skb->data to the start of the actual payload */
7733 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7735 /* Set the size of the skb to the size of the frame */
7736 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7738 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7740 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7741 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7742 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7743 (is_multicast_ether_addr(hdr->addr1) ?
7744 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7745 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7747 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7748 priv->ieee->stats.rx_errors++;
7749 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7751 __ipw_led_activity_on(priv);
7755 #ifdef CONFIG_IPW2200_RADIOTAP
7756 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7757 struct ipw_rx_mem_buffer *rxb,
7758 struct ieee80211_rx_stats *stats)
7760 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7761 struct ipw_rx_frame *frame = &pkt->u.frame;
7763 /* initial pull of some data */
7764 u16 received_channel = frame->received_channel;
7765 u8 antennaAndPhy = frame->antennaAndPhy;
7766 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7767 u16 pktrate = frame->rate;
7769 /* Magic struct that slots into the radiotap header -- no reason
7770 * to build this manually element by element, we can write it much
7771 * more efficiently than we can parse it. ORDER MATTERS HERE */
7772 struct ipw_rt_hdr *ipw_rt;
7774 short len = le16_to_cpu(pkt->u.frame.length);
7776 /* We received data from the HW, so stop the watchdog */
7777 priv->net_dev->trans_start = jiffies;
7779 /* We only process data packets if the
7780 * interface is open */
7781 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7782 skb_tailroom(rxb->skb))) {
7783 priv->ieee->stats.rx_errors++;
7784 priv->wstats.discard.misc++;
7785 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7787 } else if (unlikely(!netif_running(priv->net_dev))) {
7788 priv->ieee->stats.rx_dropped++;
7789 priv->wstats.discard.misc++;
7790 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7794 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7796 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7797 /* FIXME: Should alloc bigger skb instead */
7798 priv->ieee->stats.rx_dropped++;
7799 priv->wstats.discard.misc++;
7800 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7804 /* copy the frame itself */
7805 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7806 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7808 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7809 * part of our real header, saves a little time.
7811 * No longer necessary since we fill in all our data. Purge before merging
7813 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7814 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7817 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7819 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7820 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7821 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7823 /* Big bitfield of all the fields we provide in radiotap */
7824 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7825 (1 << IEEE80211_RADIOTAP_TSFT) |
7826 (1 << IEEE80211_RADIOTAP_FLAGS) |
7827 (1 << IEEE80211_RADIOTAP_RATE) |
7828 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7829 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7830 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7831 (1 << IEEE80211_RADIOTAP_ANTENNA));
7833 /* Zero the flags, we'll add to them as we go */
7834 ipw_rt->rt_flags = 0;
7835 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7836 frame->parent_tsf[2] << 16 |
7837 frame->parent_tsf[1] << 8 |
7838 frame->parent_tsf[0]);
7840 /* Convert signal to DBM */
7841 ipw_rt->rt_dbmsignal = antsignal;
7842 ipw_rt->rt_dbmnoise = frame->noise;
7844 /* Convert the channel data and set the flags */
7845 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7846 if (received_channel > 14) { /* 802.11a */
7847 ipw_rt->rt_chbitmask =
7848 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7849 } else if (antennaAndPhy & 32) { /* 802.11b */
7850 ipw_rt->rt_chbitmask =
7851 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7852 } else { /* 802.11g */
7853 ipw_rt->rt_chbitmask =
7854 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7857 /* set the rate in multiples of 500k/s */
7859 case IPW_TX_RATE_1MB:
7860 ipw_rt->rt_rate = 2;
7862 case IPW_TX_RATE_2MB:
7863 ipw_rt->rt_rate = 4;
7865 case IPW_TX_RATE_5MB:
7866 ipw_rt->rt_rate = 10;
7868 case IPW_TX_RATE_6MB:
7869 ipw_rt->rt_rate = 12;
7871 case IPW_TX_RATE_9MB:
7872 ipw_rt->rt_rate = 18;
7874 case IPW_TX_RATE_11MB:
7875 ipw_rt->rt_rate = 22;
7877 case IPW_TX_RATE_12MB:
7878 ipw_rt->rt_rate = 24;
7880 case IPW_TX_RATE_18MB:
7881 ipw_rt->rt_rate = 36;
7883 case IPW_TX_RATE_24MB:
7884 ipw_rt->rt_rate = 48;
7886 case IPW_TX_RATE_36MB:
7887 ipw_rt->rt_rate = 72;
7889 case IPW_TX_RATE_48MB:
7890 ipw_rt->rt_rate = 96;
7892 case IPW_TX_RATE_54MB:
7893 ipw_rt->rt_rate = 108;
7896 ipw_rt->rt_rate = 0;
7900 /* antenna number */
7901 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7903 /* set the preamble flag if we have it */
7904 if ((antennaAndPhy & 64))
7905 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7907 /* Set the size of the skb to the size of the frame */
7908 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7910 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7912 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7913 priv->ieee->stats.rx_errors++;
7914 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7916 /* no LED during capture */
7921 #ifdef CONFIG_IPW2200_PROMISCUOUS
7922 #define ieee80211_is_probe_response(fc) \
7923 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7924 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7926 #define ieee80211_is_management(fc) \
7927 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7929 #define ieee80211_is_control(fc) \
7930 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7932 #define ieee80211_is_data(fc) \
7933 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7935 #define ieee80211_is_assoc_request(fc) \
7936 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7938 #define ieee80211_is_reassoc_request(fc) \
7939 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7941 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7942 struct ipw_rx_mem_buffer *rxb,
7943 struct ieee80211_rx_stats *stats)
7945 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7946 struct ipw_rx_frame *frame = &pkt->u.frame;
7947 struct ipw_rt_hdr *ipw_rt;
7949 /* First cache any information we need before we overwrite
7950 * the information provided in the skb from the hardware */
7951 struct ieee80211_hdr *hdr;
7952 u16 channel = frame->received_channel;
7953 u8 phy_flags = frame->antennaAndPhy;
7954 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7955 s8 noise = frame->noise;
7956 u8 rate = frame->rate;
7957 short len = le16_to_cpu(pkt->u.frame.length);
7958 struct sk_buff *skb;
7960 u16 filter = priv->prom_priv->filter;
7962 /* If the filter is set to not include Rx frames then return */
7963 if (filter & IPW_PROM_NO_RX)
7966 /* We received data from the HW, so stop the watchdog */
7967 priv->prom_net_dev->trans_start = jiffies;
7969 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7970 priv->prom_priv->ieee->stats.rx_errors++;
7971 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7975 /* We only process data packets if the interface is open */
7976 if (unlikely(!netif_running(priv->prom_net_dev))) {
7977 priv->prom_priv->ieee->stats.rx_dropped++;
7978 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7982 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7984 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7985 /* FIXME: Should alloc bigger skb instead */
7986 priv->prom_priv->ieee->stats.rx_dropped++;
7987 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7991 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7992 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7993 if (filter & IPW_PROM_NO_MGMT)
7995 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7997 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7998 if (filter & IPW_PROM_NO_CTL)
8000 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8002 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
8003 if (filter & IPW_PROM_NO_DATA)
8005 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8009 /* Copy the SKB since this is for the promiscuous side */
8010 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8012 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8016 /* copy the frame data to write after where the radiotap header goes */
8017 ipw_rt = (void *)skb->data;
8020 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
8022 memcpy(ipw_rt->payload, hdr, len);
8024 /* Zero the radiotap static buffer ... We only need to zero the bytes
8025 * NOT part of our real header, saves a little time.
8027 * No longer necessary since we fill in all our data. Purge before
8028 * merging patch officially.
8029 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8030 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8033 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8034 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8035 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8037 /* Set the size of the skb to the size of the frame */
8038 skb_put(skb, sizeof(*ipw_rt) + len);
8040 /* Big bitfield of all the fields we provide in radiotap */
8041 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8042 (1 << IEEE80211_RADIOTAP_TSFT) |
8043 (1 << IEEE80211_RADIOTAP_FLAGS) |
8044 (1 << IEEE80211_RADIOTAP_RATE) |
8045 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8046 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8047 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8048 (1 << IEEE80211_RADIOTAP_ANTENNA));
8050 /* Zero the flags, we'll add to them as we go */
8051 ipw_rt->rt_flags = 0;
8052 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8053 frame->parent_tsf[2] << 16 |
8054 frame->parent_tsf[1] << 8 |
8055 frame->parent_tsf[0]);
8057 /* Convert to DBM */
8058 ipw_rt->rt_dbmsignal = signal;
8059 ipw_rt->rt_dbmnoise = noise;
8061 /* Convert the channel data and set the flags */
8062 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8063 if (channel > 14) { /* 802.11a */
8064 ipw_rt->rt_chbitmask =
8065 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8066 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8067 ipw_rt->rt_chbitmask =
8068 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8069 } else { /* 802.11g */
8070 ipw_rt->rt_chbitmask =
8071 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8074 /* set the rate in multiples of 500k/s */
8076 case IPW_TX_RATE_1MB:
8077 ipw_rt->rt_rate = 2;
8079 case IPW_TX_RATE_2MB:
8080 ipw_rt->rt_rate = 4;
8082 case IPW_TX_RATE_5MB:
8083 ipw_rt->rt_rate = 10;
8085 case IPW_TX_RATE_6MB:
8086 ipw_rt->rt_rate = 12;
8088 case IPW_TX_RATE_9MB:
8089 ipw_rt->rt_rate = 18;
8091 case IPW_TX_RATE_11MB:
8092 ipw_rt->rt_rate = 22;
8094 case IPW_TX_RATE_12MB:
8095 ipw_rt->rt_rate = 24;
8097 case IPW_TX_RATE_18MB:
8098 ipw_rt->rt_rate = 36;
8100 case IPW_TX_RATE_24MB:
8101 ipw_rt->rt_rate = 48;
8103 case IPW_TX_RATE_36MB:
8104 ipw_rt->rt_rate = 72;
8106 case IPW_TX_RATE_48MB:
8107 ipw_rt->rt_rate = 96;
8109 case IPW_TX_RATE_54MB:
8110 ipw_rt->rt_rate = 108;
8113 ipw_rt->rt_rate = 0;
8117 /* antenna number */
8118 ipw_rt->rt_antenna = (phy_flags & 3);
8120 /* set the preamble flag if we have it */
8121 if (phy_flags & (1 << 6))
8122 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8124 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8126 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8127 priv->prom_priv->ieee->stats.rx_errors++;
8128 dev_kfree_skb_any(skb);
8133 static int is_network_packet(struct ipw_priv *priv,
8134 struct ieee80211_hdr_4addr *header)
8136 /* Filter incoming packets to determine if they are targetted toward
8137 * this network, discarding packets coming from ourselves */
8138 switch (priv->ieee->iw_mode) {
8139 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8140 /* packets from our adapter are dropped (echo) */
8141 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8144 /* {broad,multi}cast packets to our BSSID go through */
8145 if (is_multicast_ether_addr(header->addr1))
8146 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8148 /* packets to our adapter go through */
8149 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8152 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8153 /* packets from our adapter are dropped (echo) */
8154 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8157 /* {broad,multi}cast packets to our BSS go through */
8158 if (is_multicast_ether_addr(header->addr1))
8159 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8161 /* packets to our adapter go through */
8162 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8169 #define IPW_PACKET_RETRY_TIME HZ
8171 static int is_duplicate_packet(struct ipw_priv *priv,
8172 struct ieee80211_hdr_4addr *header)
8174 u16 sc = le16_to_cpu(header->seq_ctl);
8175 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8176 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8177 u16 *last_seq, *last_frag;
8178 unsigned long *last_time;
8180 switch (priv->ieee->iw_mode) {
8183 struct list_head *p;
8184 struct ipw_ibss_seq *entry = NULL;
8185 u8 *mac = header->addr2;
8186 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8188 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8190 list_entry(p, struct ipw_ibss_seq, list);
8191 if (!memcmp(entry->mac, mac, ETH_ALEN))
8194 if (p == &priv->ibss_mac_hash[index]) {
8195 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8198 ("Cannot malloc new mac entry\n");
8201 memcpy(entry->mac, mac, ETH_ALEN);
8202 entry->seq_num = seq;
8203 entry->frag_num = frag;
8204 entry->packet_time = jiffies;
8205 list_add(&entry->list,
8206 &priv->ibss_mac_hash[index]);
8209 last_seq = &entry->seq_num;
8210 last_frag = &entry->frag_num;
8211 last_time = &entry->packet_time;
8215 last_seq = &priv->last_seq_num;
8216 last_frag = &priv->last_frag_num;
8217 last_time = &priv->last_packet_time;
8222 if ((*last_seq == seq) &&
8223 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8224 if (*last_frag == frag)
8226 if (*last_frag + 1 != frag)
8227 /* out-of-order fragment */
8233 *last_time = jiffies;
8237 /* Comment this line now since we observed the card receives
8238 * duplicate packets but the FCTL_RETRY bit is not set in the
8239 * IBSS mode with fragmentation enabled.
8240 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8244 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8245 struct ipw_rx_mem_buffer *rxb,
8246 struct ieee80211_rx_stats *stats)
8248 struct sk_buff *skb = rxb->skb;
8249 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8250 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8251 (skb->data + IPW_RX_FRAME_SIZE);
8253 ieee80211_rx_mgt(priv->ieee, header, stats);
8255 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8256 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8257 IEEE80211_STYPE_PROBE_RESP) ||
8258 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8259 IEEE80211_STYPE_BEACON))) {
8260 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8261 ipw_add_station(priv, header->addr2);
8264 if (priv->config & CFG_NET_STATS) {
8265 IPW_DEBUG_HC("sending stat packet\n");
8267 /* Set the size of the skb to the size of the full
8268 * ipw header and 802.11 frame */
8269 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8272 /* Advance past the ipw packet header to the 802.11 frame */
8273 skb_pull(skb, IPW_RX_FRAME_SIZE);
8275 /* Push the ieee80211_rx_stats before the 802.11 frame */
8276 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8278 skb->dev = priv->ieee->dev;
8280 /* Point raw at the ieee80211_stats */
8281 skb_reset_mac_header(skb);
8283 skb->pkt_type = PACKET_OTHERHOST;
8284 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8285 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8292 * Main entry function for recieving a packet with 80211 headers. This
8293 * should be called when ever the FW has notified us that there is a new
8294 * skb in the recieve queue.
8296 static void ipw_rx(struct ipw_priv *priv)
8298 struct ipw_rx_mem_buffer *rxb;
8299 struct ipw_rx_packet *pkt;
8300 struct ieee80211_hdr_4addr *header;
8304 DECLARE_MAC_BUF(mac);
8305 DECLARE_MAC_BUF(mac2);
8306 DECLARE_MAC_BUF(mac3);
8308 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8309 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8310 i = priv->rxq->read;
8312 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8316 rxb = priv->rxq->queue[i];
8317 if (unlikely(rxb == NULL)) {
8318 printk(KERN_CRIT "Queue not allocated!\n");
8321 priv->rxq->queue[i] = NULL;
8323 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8325 PCI_DMA_FROMDEVICE);
8327 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8328 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8329 pkt->header.message_type,
8330 pkt->header.rx_seq_num, pkt->header.control_bits);
8332 switch (pkt->header.message_type) {
8333 case RX_FRAME_TYPE: /* 802.11 frame */ {
8334 struct ieee80211_rx_stats stats = {
8335 .rssi = pkt->u.frame.rssi_dbm -
8338 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8339 IPW_RSSI_TO_DBM + 0x100,
8341 le16_to_cpu(pkt->u.frame.noise),
8342 .rate = pkt->u.frame.rate,
8343 .mac_time = jiffies,
8345 pkt->u.frame.received_channel,
8348 control & (1 << 0)) ?
8349 IEEE80211_24GHZ_BAND :
8350 IEEE80211_52GHZ_BAND,
8351 .len = le16_to_cpu(pkt->u.frame.length),
8354 if (stats.rssi != 0)
8355 stats.mask |= IEEE80211_STATMASK_RSSI;
8356 if (stats.signal != 0)
8357 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8358 if (stats.noise != 0)
8359 stats.mask |= IEEE80211_STATMASK_NOISE;
8360 if (stats.rate != 0)
8361 stats.mask |= IEEE80211_STATMASK_RATE;
8365 #ifdef CONFIG_IPW2200_PROMISCUOUS
8366 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8367 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8370 #ifdef CONFIG_IPW2200_MONITOR
8371 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8372 #ifdef CONFIG_IPW2200_RADIOTAP
8374 ipw_handle_data_packet_monitor(priv,
8378 ipw_handle_data_packet(priv, rxb,
8386 (struct ieee80211_hdr_4addr *)(rxb->skb->
8389 /* TODO: Check Ad-Hoc dest/source and make sure
8390 * that we are actually parsing these packets
8391 * correctly -- we should probably use the
8392 * frame control of the packet and disregard
8393 * the current iw_mode */
8396 is_network_packet(priv, header);
8397 if (network_packet && priv->assoc_network) {
8398 priv->assoc_network->stats.rssi =
8400 priv->exp_avg_rssi =
8401 exponential_average(priv->exp_avg_rssi,
8402 stats.rssi, DEPTH_RSSI);
8405 IPW_DEBUG_RX("Frame: len=%u\n",
8406 le16_to_cpu(pkt->u.frame.length));
8408 if (le16_to_cpu(pkt->u.frame.length) <
8409 ieee80211_get_hdrlen(le16_to_cpu(
8410 header->frame_ctl))) {
8412 ("Received packet is too small. "
8414 priv->ieee->stats.rx_errors++;
8415 priv->wstats.discard.misc++;
8419 switch (WLAN_FC_GET_TYPE
8420 (le16_to_cpu(header->frame_ctl))) {
8422 case IEEE80211_FTYPE_MGMT:
8423 ipw_handle_mgmt_packet(priv, rxb,
8427 case IEEE80211_FTYPE_CTL:
8430 case IEEE80211_FTYPE_DATA:
8431 if (unlikely(!network_packet ||
8432 is_duplicate_packet(priv,
8435 IPW_DEBUG_DROP("Dropping: "
8451 ipw_handle_data_packet(priv, rxb,
8459 case RX_HOST_NOTIFICATION_TYPE:{
8461 ("Notification: subtype=%02X flags=%02X size=%d\n",
8462 pkt->u.notification.subtype,
8463 pkt->u.notification.flags,
8464 le16_to_cpu(pkt->u.notification.size));
8465 ipw_rx_notification(priv, &pkt->u.notification);
8470 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8471 pkt->header.message_type);
8475 /* For now we just don't re-use anything. We can tweak this
8476 * later to try and re-use notification packets and SKBs that
8477 * fail to Rx correctly */
8478 if (rxb->skb != NULL) {
8479 dev_kfree_skb_any(rxb->skb);
8483 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8484 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8485 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8487 i = (i + 1) % RX_QUEUE_SIZE;
8489 /* If there are a lot of unsued frames, restock the Rx queue
8490 * so the ucode won't assert */
8492 priv->rxq->read = i;
8493 ipw_rx_queue_replenish(priv);
8497 /* Backtrack one entry */
8498 priv->rxq->read = i;
8499 ipw_rx_queue_restock(priv);
8502 #define DEFAULT_RTS_THRESHOLD 2304U
8503 #define MIN_RTS_THRESHOLD 1U
8504 #define MAX_RTS_THRESHOLD 2304U
8505 #define DEFAULT_BEACON_INTERVAL 100U
8506 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8507 #define DEFAULT_LONG_RETRY_LIMIT 4U
8511 * @option: options to control different reset behaviour
8512 * 0 = reset everything except the 'disable' module_param
8513 * 1 = reset everything and print out driver info (for probe only)
8514 * 2 = reset everything
8516 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8518 int band, modulation;
8519 int old_mode = priv->ieee->iw_mode;
8521 /* Initialize module parameter values here */
8524 /* We default to disabling the LED code as right now it causes
8525 * too many systems to lock up... */
8527 priv->config |= CFG_NO_LED;
8530 priv->config |= CFG_ASSOCIATE;
8532 IPW_DEBUG_INFO("Auto associate disabled.\n");
8535 priv->config |= CFG_ADHOC_CREATE;
8537 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8539 priv->config &= ~CFG_STATIC_ESSID;
8540 priv->essid_len = 0;
8541 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8543 if (disable && option) {
8544 priv->status |= STATUS_RF_KILL_SW;
8545 IPW_DEBUG_INFO("Radio disabled.\n");
8549 priv->config |= CFG_STATIC_CHANNEL;
8550 priv->channel = channel;
8551 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8552 /* TODO: Validate that provided channel is in range */
8554 #ifdef CONFIG_IPW2200_QOS
8555 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8556 burst_duration_CCK, burst_duration_OFDM);
8557 #endif /* CONFIG_IPW2200_QOS */
8561 priv->ieee->iw_mode = IW_MODE_ADHOC;
8562 priv->net_dev->type = ARPHRD_ETHER;
8565 #ifdef CONFIG_IPW2200_MONITOR
8567 priv->ieee->iw_mode = IW_MODE_MONITOR;
8568 #ifdef CONFIG_IPW2200_RADIOTAP
8569 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8571 priv->net_dev->type = ARPHRD_IEEE80211;
8577 priv->net_dev->type = ARPHRD_ETHER;
8578 priv->ieee->iw_mode = IW_MODE_INFRA;
8583 priv->ieee->host_encrypt = 0;
8584 priv->ieee->host_encrypt_msdu = 0;
8585 priv->ieee->host_decrypt = 0;
8586 priv->ieee->host_mc_decrypt = 0;
8588 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8590 /* IPW2200/2915 is abled to do hardware fragmentation. */
8591 priv->ieee->host_open_frag = 0;
8593 if ((priv->pci_dev->device == 0x4223) ||
8594 (priv->pci_dev->device == 0x4224)) {
8596 printk(KERN_INFO DRV_NAME
8597 ": Detected Intel PRO/Wireless 2915ABG Network "
8599 priv->ieee->abg_true = 1;
8600 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8601 modulation = IEEE80211_OFDM_MODULATION |
8602 IEEE80211_CCK_MODULATION;
8603 priv->adapter = IPW_2915ABG;
8604 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8607 printk(KERN_INFO DRV_NAME
8608 ": Detected Intel PRO/Wireless 2200BG Network "
8611 priv->ieee->abg_true = 0;
8612 band = IEEE80211_24GHZ_BAND;
8613 modulation = IEEE80211_OFDM_MODULATION |
8614 IEEE80211_CCK_MODULATION;
8615 priv->adapter = IPW_2200BG;
8616 priv->ieee->mode = IEEE_G | IEEE_B;
8619 priv->ieee->freq_band = band;
8620 priv->ieee->modulation = modulation;
8622 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8624 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8625 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8627 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8628 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8629 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8631 /* If power management is turned on, default to AC mode */
8632 priv->power_mode = IPW_POWER_AC;
8633 priv->tx_power = IPW_TX_POWER_DEFAULT;
8635 return old_mode == priv->ieee->iw_mode;
8639 * This file defines the Wireless Extension handlers. It does not
8640 * define any methods of hardware manipulation and relies on the
8641 * functions defined in ipw_main to provide the HW interaction.
8643 * The exception to this is the use of the ipw_get_ordinal()
8644 * function used to poll the hardware vs. making unecessary calls.
8648 static int ipw_wx_get_name(struct net_device *dev,
8649 struct iw_request_info *info,
8650 union iwreq_data *wrqu, char *extra)
8652 struct ipw_priv *priv = ieee80211_priv(dev);
8653 mutex_lock(&priv->mutex);
8654 if (priv->status & STATUS_RF_KILL_MASK)
8655 strcpy(wrqu->name, "radio off");
8656 else if (!(priv->status & STATUS_ASSOCIATED))
8657 strcpy(wrqu->name, "unassociated");
8659 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8660 ipw_modes[priv->assoc_request.ieee_mode]);
8661 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8662 mutex_unlock(&priv->mutex);
8666 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8669 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8670 priv->config &= ~CFG_STATIC_CHANNEL;
8671 IPW_DEBUG_ASSOC("Attempting to associate with new "
8673 ipw_associate(priv);
8677 priv->config |= CFG_STATIC_CHANNEL;
8679 if (priv->channel == channel) {
8680 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8685 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8686 priv->channel = channel;
8688 #ifdef CONFIG_IPW2200_MONITOR
8689 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8691 if (priv->status & STATUS_SCANNING) {
8692 IPW_DEBUG_SCAN("Scan abort triggered due to "
8693 "channel change.\n");
8694 ipw_abort_scan(priv);
8697 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8700 if (priv->status & STATUS_SCANNING)
8701 IPW_DEBUG_SCAN("Still scanning...\n");
8703 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8708 #endif /* CONFIG_IPW2200_MONITOR */
8710 /* Network configuration changed -- force [re]association */
8711 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8712 if (!ipw_disassociate(priv))
8713 ipw_associate(priv);
8718 static int ipw_wx_set_freq(struct net_device *dev,
8719 struct iw_request_info *info,
8720 union iwreq_data *wrqu, char *extra)
8722 struct ipw_priv *priv = ieee80211_priv(dev);
8723 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8724 struct iw_freq *fwrq = &wrqu->freq;
8730 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8731 mutex_lock(&priv->mutex);
8732 ret = ipw_set_channel(priv, 0);
8733 mutex_unlock(&priv->mutex);
8736 /* if setting by freq convert to channel */
8738 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8744 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8747 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8748 i = ieee80211_channel_to_index(priv->ieee, channel);
8752 flags = (band == IEEE80211_24GHZ_BAND) ?
8753 geo->bg[i].flags : geo->a[i].flags;
8754 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8755 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8760 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8761 mutex_lock(&priv->mutex);
8762 ret = ipw_set_channel(priv, channel);
8763 mutex_unlock(&priv->mutex);
8767 static int ipw_wx_get_freq(struct net_device *dev,
8768 struct iw_request_info *info,
8769 union iwreq_data *wrqu, char *extra)
8771 struct ipw_priv *priv = ieee80211_priv(dev);
8775 /* If we are associated, trying to associate, or have a statically
8776 * configured CHANNEL then return that; otherwise return ANY */
8777 mutex_lock(&priv->mutex);
8778 if (priv->config & CFG_STATIC_CHANNEL ||
8779 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8782 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8786 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8787 case IEEE80211_52GHZ_BAND:
8788 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8791 case IEEE80211_24GHZ_BAND:
8792 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8801 mutex_unlock(&priv->mutex);
8802 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8806 static int ipw_wx_set_mode(struct net_device *dev,
8807 struct iw_request_info *info,
8808 union iwreq_data *wrqu, char *extra)
8810 struct ipw_priv *priv = ieee80211_priv(dev);
8813 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8815 switch (wrqu->mode) {
8816 #ifdef CONFIG_IPW2200_MONITOR
8817 case IW_MODE_MONITOR:
8823 wrqu->mode = IW_MODE_INFRA;
8828 if (wrqu->mode == priv->ieee->iw_mode)
8831 mutex_lock(&priv->mutex);
8833 ipw_sw_reset(priv, 0);
8835 #ifdef CONFIG_IPW2200_MONITOR
8836 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8837 priv->net_dev->type = ARPHRD_ETHER;
8839 if (wrqu->mode == IW_MODE_MONITOR)
8840 #ifdef CONFIG_IPW2200_RADIOTAP
8841 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8843 priv->net_dev->type = ARPHRD_IEEE80211;
8845 #endif /* CONFIG_IPW2200_MONITOR */
8847 /* Free the existing firmware and reset the fw_loaded
8848 * flag so ipw_load() will bring in the new firmawre */
8851 priv->ieee->iw_mode = wrqu->mode;
8853 queue_work(priv->workqueue, &priv->adapter_restart);
8854 mutex_unlock(&priv->mutex);
8858 static int ipw_wx_get_mode(struct net_device *dev,
8859 struct iw_request_info *info,
8860 union iwreq_data *wrqu, char *extra)
8862 struct ipw_priv *priv = ieee80211_priv(dev);
8863 mutex_lock(&priv->mutex);
8864 wrqu->mode = priv->ieee->iw_mode;
8865 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8866 mutex_unlock(&priv->mutex);
8870 /* Values are in microsecond */
8871 static const s32 timeout_duration[] = {
8879 static const s32 period_duration[] = {
8887 static int ipw_wx_get_range(struct net_device *dev,
8888 struct iw_request_info *info,
8889 union iwreq_data *wrqu, char *extra)
8891 struct ipw_priv *priv = ieee80211_priv(dev);
8892 struct iw_range *range = (struct iw_range *)extra;
8893 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8896 wrqu->data.length = sizeof(*range);
8897 memset(range, 0, sizeof(*range));
8899 /* 54Mbs == ~27 Mb/s real (802.11g) */
8900 range->throughput = 27 * 1000 * 1000;
8902 range->max_qual.qual = 100;
8903 /* TODO: Find real max RSSI and stick here */
8904 range->max_qual.level = 0;
8905 range->max_qual.noise = 0;
8906 range->max_qual.updated = 7; /* Updated all three */
8908 range->avg_qual.qual = 70;
8909 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8910 range->avg_qual.level = 0; /* FIXME to real average level */
8911 range->avg_qual.noise = 0;
8912 range->avg_qual.updated = 7; /* Updated all three */
8913 mutex_lock(&priv->mutex);
8914 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8916 for (i = 0; i < range->num_bitrates; i++)
8917 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8920 range->max_rts = DEFAULT_RTS_THRESHOLD;
8921 range->min_frag = MIN_FRAG_THRESHOLD;
8922 range->max_frag = MAX_FRAG_THRESHOLD;
8924 range->encoding_size[0] = 5;
8925 range->encoding_size[1] = 13;
8926 range->num_encoding_sizes = 2;
8927 range->max_encoding_tokens = WEP_KEYS;
8929 /* Set the Wireless Extension versions */
8930 range->we_version_compiled = WIRELESS_EXT;
8931 range->we_version_source = 18;
8934 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8935 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8936 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8937 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8940 range->freq[i].i = geo->bg[j].channel;
8941 range->freq[i].m = geo->bg[j].freq * 100000;
8942 range->freq[i].e = 1;
8947 if (priv->ieee->mode & IEEE_A) {
8948 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8949 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8950 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8953 range->freq[i].i = geo->a[j].channel;
8954 range->freq[i].m = geo->a[j].freq * 100000;
8955 range->freq[i].e = 1;
8960 range->num_channels = i;
8961 range->num_frequency = i;
8963 mutex_unlock(&priv->mutex);
8965 /* Event capability (kernel + driver) */
8966 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8967 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8968 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8969 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8970 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8972 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8973 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8975 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8977 IPW_DEBUG_WX("GET Range\n");
8981 static int ipw_wx_set_wap(struct net_device *dev,
8982 struct iw_request_info *info,
8983 union iwreq_data *wrqu, char *extra)
8985 struct ipw_priv *priv = ieee80211_priv(dev);
8986 DECLARE_MAC_BUF(mac);
8988 static const unsigned char any[] = {
8989 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8991 static const unsigned char off[] = {
8992 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8995 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8997 mutex_lock(&priv->mutex);
8998 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8999 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9000 /* we disable mandatory BSSID association */
9001 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9002 priv->config &= ~CFG_STATIC_BSSID;
9003 IPW_DEBUG_ASSOC("Attempting to associate with new "
9005 ipw_associate(priv);
9006 mutex_unlock(&priv->mutex);
9010 priv->config |= CFG_STATIC_BSSID;
9011 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9012 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9013 mutex_unlock(&priv->mutex);
9017 IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
9018 print_mac(mac, wrqu->ap_addr.sa_data));
9020 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9022 /* Network configuration changed -- force [re]association */
9023 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9024 if (!ipw_disassociate(priv))
9025 ipw_associate(priv);
9027 mutex_unlock(&priv->mutex);
9031 static int ipw_wx_get_wap(struct net_device *dev,
9032 struct iw_request_info *info,
9033 union iwreq_data *wrqu, char *extra)
9035 struct ipw_priv *priv = ieee80211_priv(dev);
9036 DECLARE_MAC_BUF(mac);
9038 /* If we are associated, trying to associate, or have a statically
9039 * configured BSSID then return that; otherwise return ANY */
9040 mutex_lock(&priv->mutex);
9041 if (priv->config & CFG_STATIC_BSSID ||
9042 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9043 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9044 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9046 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9048 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
9049 print_mac(mac, wrqu->ap_addr.sa_data));
9050 mutex_unlock(&priv->mutex);
9054 static int ipw_wx_set_essid(struct net_device *dev,
9055 struct iw_request_info *info,
9056 union iwreq_data *wrqu, char *extra)
9058 struct ipw_priv *priv = ieee80211_priv(dev);
9061 mutex_lock(&priv->mutex);
9063 if (!wrqu->essid.flags)
9065 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9066 ipw_disassociate(priv);
9067 priv->config &= ~CFG_STATIC_ESSID;
9068 ipw_associate(priv);
9069 mutex_unlock(&priv->mutex);
9073 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9075 priv->config |= CFG_STATIC_ESSID;
9077 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9078 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9079 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9080 mutex_unlock(&priv->mutex);
9084 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9087 priv->essid_len = length;
9088 memcpy(priv->essid, extra, priv->essid_len);
9090 /* Network configuration changed -- force [re]association */
9091 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9092 if (!ipw_disassociate(priv))
9093 ipw_associate(priv);
9095 mutex_unlock(&priv->mutex);
9099 static int ipw_wx_get_essid(struct net_device *dev,
9100 struct iw_request_info *info,
9101 union iwreq_data *wrqu, char *extra)
9103 struct ipw_priv *priv = ieee80211_priv(dev);
9105 /* If we are associated, trying to associate, or have a statically
9106 * configured ESSID then return that; otherwise return ANY */
9107 mutex_lock(&priv->mutex);
9108 if (priv->config & CFG_STATIC_ESSID ||
9109 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9110 IPW_DEBUG_WX("Getting essid: '%s'\n",
9111 escape_essid(priv->essid, priv->essid_len));
9112 memcpy(extra, priv->essid, priv->essid_len);
9113 wrqu->essid.length = priv->essid_len;
9114 wrqu->essid.flags = 1; /* active */
9116 IPW_DEBUG_WX("Getting essid: ANY\n");
9117 wrqu->essid.length = 0;
9118 wrqu->essid.flags = 0; /* active */
9120 mutex_unlock(&priv->mutex);
9124 static int ipw_wx_set_nick(struct net_device *dev,
9125 struct iw_request_info *info,
9126 union iwreq_data *wrqu, char *extra)
9128 struct ipw_priv *priv = ieee80211_priv(dev);
9130 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9131 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9133 mutex_lock(&priv->mutex);
9134 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9135 memset(priv->nick, 0, sizeof(priv->nick));
9136 memcpy(priv->nick, extra, wrqu->data.length);
9137 IPW_DEBUG_TRACE("<<\n");
9138 mutex_unlock(&priv->mutex);
9143 static int ipw_wx_get_nick(struct net_device *dev,
9144 struct iw_request_info *info,
9145 union iwreq_data *wrqu, char *extra)
9147 struct ipw_priv *priv = ieee80211_priv(dev);
9148 IPW_DEBUG_WX("Getting nick\n");
9149 mutex_lock(&priv->mutex);
9150 wrqu->data.length = strlen(priv->nick);
9151 memcpy(extra, priv->nick, wrqu->data.length);
9152 wrqu->data.flags = 1; /* active */
9153 mutex_unlock(&priv->mutex);
9157 static int ipw_wx_set_sens(struct net_device *dev,
9158 struct iw_request_info *info,
9159 union iwreq_data *wrqu, char *extra)
9161 struct ipw_priv *priv = ieee80211_priv(dev);
9164 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9165 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9166 mutex_lock(&priv->mutex);
9168 if (wrqu->sens.fixed == 0)
9170 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9171 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9174 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9175 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9180 priv->roaming_threshold = wrqu->sens.value;
9181 priv->disassociate_threshold = 3*wrqu->sens.value;
9183 mutex_unlock(&priv->mutex);
9187 static int ipw_wx_get_sens(struct net_device *dev,
9188 struct iw_request_info *info,
9189 union iwreq_data *wrqu, char *extra)
9191 struct ipw_priv *priv = ieee80211_priv(dev);
9192 mutex_lock(&priv->mutex);
9193 wrqu->sens.fixed = 1;
9194 wrqu->sens.value = priv->roaming_threshold;
9195 mutex_unlock(&priv->mutex);
9197 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9198 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9203 static int ipw_wx_set_rate(struct net_device *dev,
9204 struct iw_request_info *info,
9205 union iwreq_data *wrqu, char *extra)
9207 /* TODO: We should use semaphores or locks for access to priv */
9208 struct ipw_priv *priv = ieee80211_priv(dev);
9209 u32 target_rate = wrqu->bitrate.value;
9212 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9213 /* value = X, fixed = 1 means only rate X */
9214 /* value = X, fixed = 0 means all rates lower equal X */
9216 if (target_rate == -1) {
9218 mask = IEEE80211_DEFAULT_RATES_MASK;
9219 /* Now we should reassociate */
9224 fixed = wrqu->bitrate.fixed;
9226 if (target_rate == 1000000 || !fixed)
9227 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9228 if (target_rate == 1000000)
9231 if (target_rate == 2000000 || !fixed)
9232 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9233 if (target_rate == 2000000)
9236 if (target_rate == 5500000 || !fixed)
9237 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9238 if (target_rate == 5500000)
9241 if (target_rate == 6000000 || !fixed)
9242 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9243 if (target_rate == 6000000)
9246 if (target_rate == 9000000 || !fixed)
9247 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9248 if (target_rate == 9000000)
9251 if (target_rate == 11000000 || !fixed)
9252 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9253 if (target_rate == 11000000)
9256 if (target_rate == 12000000 || !fixed)
9257 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9258 if (target_rate == 12000000)
9261 if (target_rate == 18000000 || !fixed)
9262 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9263 if (target_rate == 18000000)
9266 if (target_rate == 24000000 || !fixed)
9267 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9268 if (target_rate == 24000000)
9271 if (target_rate == 36000000 || !fixed)
9272 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9273 if (target_rate == 36000000)
9276 if (target_rate == 48000000 || !fixed)
9277 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9278 if (target_rate == 48000000)
9281 if (target_rate == 54000000 || !fixed)
9282 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9283 if (target_rate == 54000000)
9286 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9290 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9291 mask, fixed ? "fixed" : "sub-rates");
9292 mutex_lock(&priv->mutex);
9293 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9294 priv->config &= ~CFG_FIXED_RATE;
9295 ipw_set_fixed_rate(priv, priv->ieee->mode);
9297 priv->config |= CFG_FIXED_RATE;
9299 if (priv->rates_mask == mask) {
9300 IPW_DEBUG_WX("Mask set to current mask.\n");
9301 mutex_unlock(&priv->mutex);
9305 priv->rates_mask = mask;
9307 /* Network configuration changed -- force [re]association */
9308 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9309 if (!ipw_disassociate(priv))
9310 ipw_associate(priv);
9312 mutex_unlock(&priv->mutex);
9316 static int ipw_wx_get_rate(struct net_device *dev,
9317 struct iw_request_info *info,
9318 union iwreq_data *wrqu, char *extra)
9320 struct ipw_priv *priv = ieee80211_priv(dev);
9321 mutex_lock(&priv->mutex);
9322 wrqu->bitrate.value = priv->last_rate;
9323 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9324 mutex_unlock(&priv->mutex);
9325 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9329 static int ipw_wx_set_rts(struct net_device *dev,
9330 struct iw_request_info *info,
9331 union iwreq_data *wrqu, char *extra)
9333 struct ipw_priv *priv = ieee80211_priv(dev);
9334 mutex_lock(&priv->mutex);
9335 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9336 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9338 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9339 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9340 mutex_unlock(&priv->mutex);
9343 priv->rts_threshold = wrqu->rts.value;
9346 ipw_send_rts_threshold(priv, priv->rts_threshold);
9347 mutex_unlock(&priv->mutex);
9348 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9352 static int ipw_wx_get_rts(struct net_device *dev,
9353 struct iw_request_info *info,
9354 union iwreq_data *wrqu, char *extra)
9356 struct ipw_priv *priv = ieee80211_priv(dev);
9357 mutex_lock(&priv->mutex);
9358 wrqu->rts.value = priv->rts_threshold;
9359 wrqu->rts.fixed = 0; /* no auto select */
9360 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9361 mutex_unlock(&priv->mutex);
9362 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9366 static int ipw_wx_set_txpow(struct net_device *dev,
9367 struct iw_request_info *info,
9368 union iwreq_data *wrqu, char *extra)
9370 struct ipw_priv *priv = ieee80211_priv(dev);
9373 mutex_lock(&priv->mutex);
9374 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9379 if (!wrqu->power.fixed)
9380 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9382 if (wrqu->power.flags != IW_TXPOW_DBM) {
9387 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9388 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9393 priv->tx_power = wrqu->power.value;
9394 err = ipw_set_tx_power(priv);
9396 mutex_unlock(&priv->mutex);
9400 static int ipw_wx_get_txpow(struct net_device *dev,
9401 struct iw_request_info *info,
9402 union iwreq_data *wrqu, char *extra)
9404 struct ipw_priv *priv = ieee80211_priv(dev);
9405 mutex_lock(&priv->mutex);
9406 wrqu->power.value = priv->tx_power;
9407 wrqu->power.fixed = 1;
9408 wrqu->power.flags = IW_TXPOW_DBM;
9409 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9410 mutex_unlock(&priv->mutex);
9412 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9413 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9418 static int ipw_wx_set_frag(struct net_device *dev,
9419 struct iw_request_info *info,
9420 union iwreq_data *wrqu, char *extra)
9422 struct ipw_priv *priv = ieee80211_priv(dev);
9423 mutex_lock(&priv->mutex);
9424 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9425 priv->ieee->fts = DEFAULT_FTS;
9427 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9428 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9429 mutex_unlock(&priv->mutex);
9433 priv->ieee->fts = wrqu->frag.value & ~0x1;
9436 ipw_send_frag_threshold(priv, wrqu->frag.value);
9437 mutex_unlock(&priv->mutex);
9438 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9442 static int ipw_wx_get_frag(struct net_device *dev,
9443 struct iw_request_info *info,
9444 union iwreq_data *wrqu, char *extra)
9446 struct ipw_priv *priv = ieee80211_priv(dev);
9447 mutex_lock(&priv->mutex);
9448 wrqu->frag.value = priv->ieee->fts;
9449 wrqu->frag.fixed = 0; /* no auto select */
9450 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9451 mutex_unlock(&priv->mutex);
9452 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9457 static int ipw_wx_set_retry(struct net_device *dev,
9458 struct iw_request_info *info,
9459 union iwreq_data *wrqu, char *extra)
9461 struct ipw_priv *priv = ieee80211_priv(dev);
9463 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9466 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9469 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9472 mutex_lock(&priv->mutex);
9473 if (wrqu->retry.flags & IW_RETRY_SHORT)
9474 priv->short_retry_limit = (u8) wrqu->retry.value;
9475 else if (wrqu->retry.flags & IW_RETRY_LONG)
9476 priv->long_retry_limit = (u8) wrqu->retry.value;
9478 priv->short_retry_limit = (u8) wrqu->retry.value;
9479 priv->long_retry_limit = (u8) wrqu->retry.value;
9482 ipw_send_retry_limit(priv, priv->short_retry_limit,
9483 priv->long_retry_limit);
9484 mutex_unlock(&priv->mutex);
9485 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9486 priv->short_retry_limit, priv->long_retry_limit);
9490 static int ipw_wx_get_retry(struct net_device *dev,
9491 struct iw_request_info *info,
9492 union iwreq_data *wrqu, char *extra)
9494 struct ipw_priv *priv = ieee80211_priv(dev);
9496 mutex_lock(&priv->mutex);
9497 wrqu->retry.disabled = 0;
9499 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9500 mutex_unlock(&priv->mutex);
9504 if (wrqu->retry.flags & IW_RETRY_LONG) {
9505 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9506 wrqu->retry.value = priv->long_retry_limit;
9507 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9508 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9509 wrqu->retry.value = priv->short_retry_limit;
9511 wrqu->retry.flags = IW_RETRY_LIMIT;
9512 wrqu->retry.value = priv->short_retry_limit;
9514 mutex_unlock(&priv->mutex);
9516 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9521 static int ipw_wx_set_scan(struct net_device *dev,
9522 struct iw_request_info *info,
9523 union iwreq_data *wrqu, char *extra)
9525 struct ipw_priv *priv = ieee80211_priv(dev);
9526 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9527 struct delayed_work *work = NULL;
9529 mutex_lock(&priv->mutex);
9531 priv->user_requested_scan = 1;
9533 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9534 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9535 int len = min((int)req->essid_len,
9536 (int)sizeof(priv->direct_scan_ssid));
9537 memcpy(priv->direct_scan_ssid, req->essid, len);
9538 priv->direct_scan_ssid_len = len;
9539 work = &priv->request_direct_scan;
9540 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9541 work = &priv->request_passive_scan;
9544 /* Normal active broadcast scan */
9545 work = &priv->request_scan;
9548 mutex_unlock(&priv->mutex);
9550 IPW_DEBUG_WX("Start scan\n");
9552 queue_delayed_work(priv->workqueue, work, 0);
9557 static int ipw_wx_get_scan(struct net_device *dev,
9558 struct iw_request_info *info,
9559 union iwreq_data *wrqu, char *extra)
9561 struct ipw_priv *priv = ieee80211_priv(dev);
9562 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9565 static int ipw_wx_set_encode(struct net_device *dev,
9566 struct iw_request_info *info,
9567 union iwreq_data *wrqu, char *key)
9569 struct ipw_priv *priv = ieee80211_priv(dev);
9571 u32 cap = priv->capability;
9573 mutex_lock(&priv->mutex);
9574 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9576 /* In IBSS mode, we need to notify the firmware to update
9577 * the beacon info after we changed the capability. */
9578 if (cap != priv->capability &&
9579 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9580 priv->status & STATUS_ASSOCIATED)
9581 ipw_disassociate(priv);
9583 mutex_unlock(&priv->mutex);
9587 static int ipw_wx_get_encode(struct net_device *dev,
9588 struct iw_request_info *info,
9589 union iwreq_data *wrqu, char *key)
9591 struct ipw_priv *priv = ieee80211_priv(dev);
9592 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9595 static int ipw_wx_set_power(struct net_device *dev,
9596 struct iw_request_info *info,
9597 union iwreq_data *wrqu, char *extra)
9599 struct ipw_priv *priv = ieee80211_priv(dev);
9601 mutex_lock(&priv->mutex);
9602 if (wrqu->power.disabled) {
9603 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9604 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9606 IPW_DEBUG_WX("failed setting power mode.\n");
9607 mutex_unlock(&priv->mutex);
9610 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9611 mutex_unlock(&priv->mutex);
9615 switch (wrqu->power.flags & IW_POWER_MODE) {
9616 case IW_POWER_ON: /* If not specified */
9617 case IW_POWER_MODE: /* If set all mask */
9618 case IW_POWER_ALL_R: /* If explicitly state all */
9620 default: /* Otherwise we don't support it */
9621 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9623 mutex_unlock(&priv->mutex);
9627 /* If the user hasn't specified a power management mode yet, default
9629 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9630 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9632 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9634 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9636 IPW_DEBUG_WX("failed setting power mode.\n");
9637 mutex_unlock(&priv->mutex);
9641 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9642 mutex_unlock(&priv->mutex);
9646 static int ipw_wx_get_power(struct net_device *dev,
9647 struct iw_request_info *info,
9648 union iwreq_data *wrqu, char *extra)
9650 struct ipw_priv *priv = ieee80211_priv(dev);
9651 mutex_lock(&priv->mutex);
9652 if (!(priv->power_mode & IPW_POWER_ENABLED))
9653 wrqu->power.disabled = 1;
9655 wrqu->power.disabled = 0;
9657 mutex_unlock(&priv->mutex);
9658 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9663 static int ipw_wx_set_powermode(struct net_device *dev,
9664 struct iw_request_info *info,
9665 union iwreq_data *wrqu, char *extra)
9667 struct ipw_priv *priv = ieee80211_priv(dev);
9668 int mode = *(int *)extra;
9671 mutex_lock(&priv->mutex);
9672 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9673 mode = IPW_POWER_AC;
9675 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9676 err = ipw_send_power_mode(priv, mode);
9678 IPW_DEBUG_WX("failed setting power mode.\n");
9679 mutex_unlock(&priv->mutex);
9682 priv->power_mode = IPW_POWER_ENABLED | mode;
9684 mutex_unlock(&priv->mutex);
9688 #define MAX_WX_STRING 80
9689 static int ipw_wx_get_powermode(struct net_device *dev,
9690 struct iw_request_info *info,
9691 union iwreq_data *wrqu, char *extra)
9693 struct ipw_priv *priv = ieee80211_priv(dev);
9694 int level = IPW_POWER_LEVEL(priv->power_mode);
9697 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9701 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9703 case IPW_POWER_BATTERY:
9704 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9707 p += snprintf(p, MAX_WX_STRING - (p - extra),
9708 "(Timeout %dms, Period %dms)",
9709 timeout_duration[level - 1] / 1000,
9710 period_duration[level - 1] / 1000);
9713 if (!(priv->power_mode & IPW_POWER_ENABLED))
9714 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9716 wrqu->data.length = p - extra + 1;
9721 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9722 struct iw_request_info *info,
9723 union iwreq_data *wrqu, char *extra)
9725 struct ipw_priv *priv = ieee80211_priv(dev);
9726 int mode = *(int *)extra;
9727 u8 band = 0, modulation = 0;
9729 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9730 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9733 mutex_lock(&priv->mutex);
9734 if (priv->adapter == IPW_2915ABG) {
9735 priv->ieee->abg_true = 1;
9736 if (mode & IEEE_A) {
9737 band |= IEEE80211_52GHZ_BAND;
9738 modulation |= IEEE80211_OFDM_MODULATION;
9740 priv->ieee->abg_true = 0;
9742 if (mode & IEEE_A) {
9743 IPW_WARNING("Attempt to set 2200BG into "
9745 mutex_unlock(&priv->mutex);
9749 priv->ieee->abg_true = 0;
9752 if (mode & IEEE_B) {
9753 band |= IEEE80211_24GHZ_BAND;
9754 modulation |= IEEE80211_CCK_MODULATION;
9756 priv->ieee->abg_true = 0;
9758 if (mode & IEEE_G) {
9759 band |= IEEE80211_24GHZ_BAND;
9760 modulation |= IEEE80211_OFDM_MODULATION;
9762 priv->ieee->abg_true = 0;
9764 priv->ieee->mode = mode;
9765 priv->ieee->freq_band = band;
9766 priv->ieee->modulation = modulation;
9767 init_supported_rates(priv, &priv->rates);
9769 /* Network configuration changed -- force [re]association */
9770 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9771 if (!ipw_disassociate(priv)) {
9772 ipw_send_supported_rates(priv, &priv->rates);
9773 ipw_associate(priv);
9776 /* Update the band LEDs */
9777 ipw_led_band_on(priv);
9779 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9780 mode & IEEE_A ? 'a' : '.',
9781 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9782 mutex_unlock(&priv->mutex);
9786 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9787 struct iw_request_info *info,
9788 union iwreq_data *wrqu, char *extra)
9790 struct ipw_priv *priv = ieee80211_priv(dev);
9791 mutex_lock(&priv->mutex);
9792 switch (priv->ieee->mode) {
9794 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9797 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9799 case IEEE_A | IEEE_B:
9800 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9803 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9805 case IEEE_A | IEEE_G:
9806 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9808 case IEEE_B | IEEE_G:
9809 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9811 case IEEE_A | IEEE_B | IEEE_G:
9812 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9815 strncpy(extra, "unknown", MAX_WX_STRING);
9819 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9821 wrqu->data.length = strlen(extra) + 1;
9822 mutex_unlock(&priv->mutex);
9827 static int ipw_wx_set_preamble(struct net_device *dev,
9828 struct iw_request_info *info,
9829 union iwreq_data *wrqu, char *extra)
9831 struct ipw_priv *priv = ieee80211_priv(dev);
9832 int mode = *(int *)extra;
9833 mutex_lock(&priv->mutex);
9834 /* Switching from SHORT -> LONG requires a disassociation */
9836 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9837 priv->config |= CFG_PREAMBLE_LONG;
9839 /* Network configuration changed -- force [re]association */
9841 ("[re]association triggered due to preamble change.\n");
9842 if (!ipw_disassociate(priv))
9843 ipw_associate(priv);
9849 priv->config &= ~CFG_PREAMBLE_LONG;
9852 mutex_unlock(&priv->mutex);
9856 mutex_unlock(&priv->mutex);
9860 static int ipw_wx_get_preamble(struct net_device *dev,
9861 struct iw_request_info *info,
9862 union iwreq_data *wrqu, char *extra)
9864 struct ipw_priv *priv = ieee80211_priv(dev);
9865 mutex_lock(&priv->mutex);
9866 if (priv->config & CFG_PREAMBLE_LONG)
9867 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9869 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9870 mutex_unlock(&priv->mutex);
9874 #ifdef CONFIG_IPW2200_MONITOR
9875 static int ipw_wx_set_monitor(struct net_device *dev,
9876 struct iw_request_info *info,
9877 union iwreq_data *wrqu, char *extra)
9879 struct ipw_priv *priv = ieee80211_priv(dev);
9880 int *parms = (int *)extra;
9881 int enable = (parms[0] > 0);
9882 mutex_lock(&priv->mutex);
9883 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9885 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9886 #ifdef CONFIG_IPW2200_RADIOTAP
9887 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9889 priv->net_dev->type = ARPHRD_IEEE80211;
9891 queue_work(priv->workqueue, &priv->adapter_restart);
9894 ipw_set_channel(priv, parms[1]);
9896 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9897 mutex_unlock(&priv->mutex);
9900 priv->net_dev->type = ARPHRD_ETHER;
9901 queue_work(priv->workqueue, &priv->adapter_restart);
9903 mutex_unlock(&priv->mutex);
9907 #endif /* CONFIG_IPW2200_MONITOR */
9909 static int ipw_wx_reset(struct net_device *dev,
9910 struct iw_request_info *info,
9911 union iwreq_data *wrqu, char *extra)
9913 struct ipw_priv *priv = ieee80211_priv(dev);
9914 IPW_DEBUG_WX("RESET\n");
9915 queue_work(priv->workqueue, &priv->adapter_restart);
9919 static int ipw_wx_sw_reset(struct net_device *dev,
9920 struct iw_request_info *info,
9921 union iwreq_data *wrqu, char *extra)
9923 struct ipw_priv *priv = ieee80211_priv(dev);
9924 union iwreq_data wrqu_sec = {
9926 .flags = IW_ENCODE_DISABLED,
9931 IPW_DEBUG_WX("SW_RESET\n");
9933 mutex_lock(&priv->mutex);
9935 ret = ipw_sw_reset(priv, 2);
9938 ipw_adapter_restart(priv);
9941 /* The SW reset bit might have been toggled on by the 'disable'
9942 * module parameter, so take appropriate action */
9943 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9945 mutex_unlock(&priv->mutex);
9946 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9947 mutex_lock(&priv->mutex);
9949 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9950 /* Configuration likely changed -- force [re]association */
9951 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9953 if (!ipw_disassociate(priv))
9954 ipw_associate(priv);
9957 mutex_unlock(&priv->mutex);
9962 /* Rebase the WE IOCTLs to zero for the handler array */
9963 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9964 static iw_handler ipw_wx_handlers[] = {
9965 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9966 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9967 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9968 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9969 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9970 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9971 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9972 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9973 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9974 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9975 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9976 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9977 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9978 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9979 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9980 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9981 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9982 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9983 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9984 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9985 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9986 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9987 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9988 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9989 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9990 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9991 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9992 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9993 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9994 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9995 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9996 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9997 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9998 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9999 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10000 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10001 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10002 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10003 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10004 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10005 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10009 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10010 IPW_PRIV_GET_POWER,
10013 IPW_PRIV_SET_PREAMBLE,
10014 IPW_PRIV_GET_PREAMBLE,
10017 #ifdef CONFIG_IPW2200_MONITOR
10018 IPW_PRIV_SET_MONITOR,
10022 static struct iw_priv_args ipw_priv_args[] = {
10024 .cmd = IPW_PRIV_SET_POWER,
10025 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10026 .name = "set_power"},
10028 .cmd = IPW_PRIV_GET_POWER,
10029 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10030 .name = "get_power"},
10032 .cmd = IPW_PRIV_SET_MODE,
10033 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10034 .name = "set_mode"},
10036 .cmd = IPW_PRIV_GET_MODE,
10037 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10038 .name = "get_mode"},
10040 .cmd = IPW_PRIV_SET_PREAMBLE,
10041 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10042 .name = "set_preamble"},
10044 .cmd = IPW_PRIV_GET_PREAMBLE,
10045 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10046 .name = "get_preamble"},
10049 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10052 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10053 #ifdef CONFIG_IPW2200_MONITOR
10055 IPW_PRIV_SET_MONITOR,
10056 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10057 #endif /* CONFIG_IPW2200_MONITOR */
10060 static iw_handler ipw_priv_handler[] = {
10061 ipw_wx_set_powermode,
10062 ipw_wx_get_powermode,
10063 ipw_wx_set_wireless_mode,
10064 ipw_wx_get_wireless_mode,
10065 ipw_wx_set_preamble,
10066 ipw_wx_get_preamble,
10069 #ifdef CONFIG_IPW2200_MONITOR
10070 ipw_wx_set_monitor,
10074 static struct iw_handler_def ipw_wx_handler_def = {
10075 .standard = ipw_wx_handlers,
10076 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10077 .num_private = ARRAY_SIZE(ipw_priv_handler),
10078 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10079 .private = ipw_priv_handler,
10080 .private_args = ipw_priv_args,
10081 .get_wireless_stats = ipw_get_wireless_stats,
10085 * Get wireless statistics.
10086 * Called by /proc/net/wireless
10087 * Also called by SIOCGIWSTATS
10089 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10091 struct ipw_priv *priv = ieee80211_priv(dev);
10092 struct iw_statistics *wstats;
10094 wstats = &priv->wstats;
10096 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10097 * netdev->get_wireless_stats seems to be called before fw is
10098 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10099 * and associated; if not associcated, the values are all meaningless
10100 * anyway, so set them all to NULL and INVALID */
10101 if (!(priv->status & STATUS_ASSOCIATED)) {
10102 wstats->miss.beacon = 0;
10103 wstats->discard.retries = 0;
10104 wstats->qual.qual = 0;
10105 wstats->qual.level = 0;
10106 wstats->qual.noise = 0;
10107 wstats->qual.updated = 7;
10108 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10109 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10113 wstats->qual.qual = priv->quality;
10114 wstats->qual.level = priv->exp_avg_rssi;
10115 wstats->qual.noise = priv->exp_avg_noise;
10116 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10117 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10119 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10120 wstats->discard.retries = priv->last_tx_failures;
10121 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10123 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10124 goto fail_get_ordinal;
10125 wstats->discard.retries += tx_retry; */
10130 /* net device stuff */
10132 static void init_sys_config(struct ipw_sys_config *sys_config)
10134 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10135 sys_config->bt_coexistence = 0;
10136 sys_config->answer_broadcast_ssid_probe = 0;
10137 sys_config->accept_all_data_frames = 0;
10138 sys_config->accept_non_directed_frames = 1;
10139 sys_config->exclude_unicast_unencrypted = 0;
10140 sys_config->disable_unicast_decryption = 1;
10141 sys_config->exclude_multicast_unencrypted = 0;
10142 sys_config->disable_multicast_decryption = 1;
10143 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10144 antenna = CFG_SYS_ANTENNA_BOTH;
10145 sys_config->antenna_diversity = antenna;
10146 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10147 sys_config->dot11g_auto_detection = 0;
10148 sys_config->enable_cts_to_self = 0;
10149 sys_config->bt_coexist_collision_thr = 0;
10150 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10151 sys_config->silence_threshold = 0x1e;
10154 static int ipw_net_open(struct net_device *dev)
10156 IPW_DEBUG_INFO("dev->open\n");
10157 netif_start_queue(dev);
10161 static int ipw_net_stop(struct net_device *dev)
10163 IPW_DEBUG_INFO("dev->close\n");
10164 netif_stop_queue(dev);
10171 modify to send one tfd per fragment instead of using chunking. otherwise
10172 we need to heavily modify the ieee80211_skb_to_txb.
10175 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10178 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10179 txb->fragments[0]->data;
10181 struct tfd_frame *tfd;
10182 #ifdef CONFIG_IPW2200_QOS
10183 int tx_id = ipw_get_tx_queue_number(priv, pri);
10184 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10186 struct clx2_tx_queue *txq = &priv->txq[0];
10188 struct clx2_queue *q = &txq->q;
10189 u8 id, hdr_len, unicast;
10190 u16 remaining_bytes;
10193 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10194 switch (priv->ieee->iw_mode) {
10195 case IW_MODE_ADHOC:
10196 unicast = !is_multicast_ether_addr(hdr->addr1);
10197 id = ipw_find_station(priv, hdr->addr1);
10198 if (id == IPW_INVALID_STATION) {
10199 id = ipw_add_station(priv, hdr->addr1);
10200 if (id == IPW_INVALID_STATION) {
10201 IPW_WARNING("Attempt to send data to "
10202 "invalid cell: " MAC_FMT "\n",
10203 hdr->addr1[0], hdr->addr1[1],
10204 hdr->addr1[2], hdr->addr1[3],
10205 hdr->addr1[4], hdr->addr1[5]);
10211 case IW_MODE_INFRA:
10213 unicast = !is_multicast_ether_addr(hdr->addr3);
10218 tfd = &txq->bd[q->first_empty];
10219 txq->txb[q->first_empty] = txb;
10220 memset(tfd, 0, sizeof(*tfd));
10221 tfd->u.data.station_number = id;
10223 tfd->control_flags.message_type = TX_FRAME_TYPE;
10224 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10226 tfd->u.data.cmd_id = DINO_CMD_TX;
10227 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10228 remaining_bytes = txb->payload_size;
10230 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10231 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10233 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10235 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10236 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10238 fc = le16_to_cpu(hdr->frame_ctl);
10239 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10241 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10243 if (likely(unicast))
10244 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10246 if (txb->encrypted && !priv->ieee->host_encrypt) {
10247 switch (priv->ieee->sec.level) {
10249 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10250 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10251 /* XXX: ACK flag must be set for CCMP even if it
10252 * is a multicast/broadcast packet, because CCMP
10253 * group communication encrypted by GTK is
10254 * actually done by the AP. */
10256 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10258 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10259 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10260 tfd->u.data.key_index = 0;
10261 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10264 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10265 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10266 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10267 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10268 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10271 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10272 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10273 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10274 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10276 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10278 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10283 printk(KERN_ERR "Unknow security level %d\n",
10284 priv->ieee->sec.level);
10288 /* No hardware encryption */
10289 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10291 #ifdef CONFIG_IPW2200_QOS
10292 if (fc & IEEE80211_STYPE_QOS_DATA)
10293 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10294 #endif /* CONFIG_IPW2200_QOS */
10297 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10299 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10300 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10301 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10302 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10303 i, le32_to_cpu(tfd->u.data.num_chunks),
10304 txb->fragments[i]->len - hdr_len);
10305 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10306 i, tfd->u.data.num_chunks,
10307 txb->fragments[i]->len - hdr_len);
10308 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10309 txb->fragments[i]->len - hdr_len);
10311 tfd->u.data.chunk_ptr[i] =
10312 cpu_to_le32(pci_map_single
10314 txb->fragments[i]->data + hdr_len,
10315 txb->fragments[i]->len - hdr_len,
10316 PCI_DMA_TODEVICE));
10317 tfd->u.data.chunk_len[i] =
10318 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10321 if (i != txb->nr_frags) {
10322 struct sk_buff *skb;
10323 u16 remaining_bytes = 0;
10326 for (j = i; j < txb->nr_frags; j++)
10327 remaining_bytes += txb->fragments[j]->len - hdr_len;
10329 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10331 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10333 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10334 for (j = i; j < txb->nr_frags; j++) {
10335 int size = txb->fragments[j]->len - hdr_len;
10337 printk(KERN_INFO "Adding frag %d %d...\n",
10339 memcpy(skb_put(skb, size),
10340 txb->fragments[j]->data + hdr_len, size);
10342 dev_kfree_skb_any(txb->fragments[i]);
10343 txb->fragments[i] = skb;
10344 tfd->u.data.chunk_ptr[i] =
10345 cpu_to_le32(pci_map_single
10346 (priv->pci_dev, skb->data,
10348 PCI_DMA_TODEVICE));
10350 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10355 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10356 ipw_write32(priv, q->reg_w, q->first_empty);
10358 if (ipw_tx_queue_space(q) < q->high_mark)
10359 netif_stop_queue(priv->net_dev);
10361 return NETDEV_TX_OK;
10364 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10365 ieee80211_txb_free(txb);
10366 return NETDEV_TX_OK;
10369 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10371 struct ipw_priv *priv = ieee80211_priv(dev);
10372 #ifdef CONFIG_IPW2200_QOS
10373 int tx_id = ipw_get_tx_queue_number(priv, pri);
10374 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10376 struct clx2_tx_queue *txq = &priv->txq[0];
10377 #endif /* CONFIG_IPW2200_QOS */
10379 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10385 #ifdef CONFIG_IPW2200_PROMISCUOUS
10386 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10387 struct ieee80211_txb *txb)
10389 struct ieee80211_rx_stats dummystats;
10390 struct ieee80211_hdr *hdr;
10392 u16 filter = priv->prom_priv->filter;
10395 if (filter & IPW_PROM_NO_TX)
10398 memset(&dummystats, 0, sizeof(dummystats));
10400 /* Filtering of fragment chains is done agains the first fragment */
10401 hdr = (void *)txb->fragments[0]->data;
10402 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10403 if (filter & IPW_PROM_NO_MGMT)
10405 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10407 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10408 if (filter & IPW_PROM_NO_CTL)
10410 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10412 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10413 if (filter & IPW_PROM_NO_DATA)
10415 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10419 for(n=0; n<txb->nr_frags; ++n) {
10420 struct sk_buff *src = txb->fragments[n];
10421 struct sk_buff *dst;
10422 struct ieee80211_radiotap_header *rt_hdr;
10426 hdr = (void *)src->data;
10427 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10432 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10433 if (!dst) continue;
10435 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10437 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10438 rt_hdr->it_pad = 0;
10439 rt_hdr->it_present = 0; /* after all, it's just an idea */
10440 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10442 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10443 ieee80211chan2mhz(priv->channel));
10444 if (priv->channel > 14) /* 802.11a */
10445 *(__le16*)skb_put(dst, sizeof(u16)) =
10446 cpu_to_le16(IEEE80211_CHAN_OFDM |
10447 IEEE80211_CHAN_5GHZ);
10448 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10449 *(__le16*)skb_put(dst, sizeof(u16)) =
10450 cpu_to_le16(IEEE80211_CHAN_CCK |
10451 IEEE80211_CHAN_2GHZ);
10453 *(__le16*)skb_put(dst, sizeof(u16)) =
10454 cpu_to_le16(IEEE80211_CHAN_OFDM |
10455 IEEE80211_CHAN_2GHZ);
10457 rt_hdr->it_len = cpu_to_le16(dst->len);
10459 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10461 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10462 dev_kfree_skb_any(dst);
10467 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10468 struct net_device *dev, int pri)
10470 struct ipw_priv *priv = ieee80211_priv(dev);
10471 unsigned long flags;
10474 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10475 spin_lock_irqsave(&priv->lock, flags);
10477 #ifdef CONFIG_IPW2200_PROMISCUOUS
10478 if (rtap_iface && netif_running(priv->prom_net_dev))
10479 ipw_handle_promiscuous_tx(priv, txb);
10482 ret = ipw_tx_skb(priv, txb, pri);
10483 if (ret == NETDEV_TX_OK)
10484 __ipw_led_activity_on(priv);
10485 spin_unlock_irqrestore(&priv->lock, flags);
10490 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10492 struct ipw_priv *priv = ieee80211_priv(dev);
10494 priv->ieee->stats.tx_packets = priv->tx_packets;
10495 priv->ieee->stats.rx_packets = priv->rx_packets;
10496 return &priv->ieee->stats;
10499 static void ipw_net_set_multicast_list(struct net_device *dev)
10504 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10506 struct ipw_priv *priv = ieee80211_priv(dev);
10507 struct sockaddr *addr = p;
10508 DECLARE_MAC_BUF(mac);
10510 if (!is_valid_ether_addr(addr->sa_data))
10511 return -EADDRNOTAVAIL;
10512 mutex_lock(&priv->mutex);
10513 priv->config |= CFG_CUSTOM_MAC;
10514 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10515 printk(KERN_INFO "%s: Setting MAC to %s\n",
10516 priv->net_dev->name, print_mac(mac, priv->mac_addr));
10517 queue_work(priv->workqueue, &priv->adapter_restart);
10518 mutex_unlock(&priv->mutex);
10522 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10523 struct ethtool_drvinfo *info)
10525 struct ipw_priv *p = ieee80211_priv(dev);
10530 strcpy(info->driver, DRV_NAME);
10531 strcpy(info->version, DRV_VERSION);
10533 len = sizeof(vers);
10534 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10535 len = sizeof(date);
10536 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10538 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10540 strcpy(info->bus_info, pci_name(p->pci_dev));
10541 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10544 static u32 ipw_ethtool_get_link(struct net_device *dev)
10546 struct ipw_priv *priv = ieee80211_priv(dev);
10547 return (priv->status & STATUS_ASSOCIATED) != 0;
10550 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10552 return IPW_EEPROM_IMAGE_SIZE;
10555 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10556 struct ethtool_eeprom *eeprom, u8 * bytes)
10558 struct ipw_priv *p = ieee80211_priv(dev);
10560 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10562 mutex_lock(&p->mutex);
10563 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10564 mutex_unlock(&p->mutex);
10568 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10569 struct ethtool_eeprom *eeprom, u8 * bytes)
10571 struct ipw_priv *p = ieee80211_priv(dev);
10574 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10576 mutex_lock(&p->mutex);
10577 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10578 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10579 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10580 mutex_unlock(&p->mutex);
10584 static const struct ethtool_ops ipw_ethtool_ops = {
10585 .get_link = ipw_ethtool_get_link,
10586 .get_drvinfo = ipw_ethtool_get_drvinfo,
10587 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10588 .get_eeprom = ipw_ethtool_get_eeprom,
10589 .set_eeprom = ipw_ethtool_set_eeprom,
10592 static irqreturn_t ipw_isr(int irq, void *data)
10594 struct ipw_priv *priv = data;
10595 u32 inta, inta_mask;
10600 spin_lock(&priv->irq_lock);
10602 if (!(priv->status & STATUS_INT_ENABLED)) {
10603 /* IRQ is disabled */
10607 inta = ipw_read32(priv, IPW_INTA_RW);
10608 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10610 if (inta == 0xFFFFFFFF) {
10611 /* Hardware disappeared */
10612 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10616 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10617 /* Shared interrupt */
10621 /* tell the device to stop sending interrupts */
10622 __ipw_disable_interrupts(priv);
10624 /* ack current interrupts */
10625 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10626 ipw_write32(priv, IPW_INTA_RW, inta);
10628 /* Cache INTA value for our tasklet */
10629 priv->isr_inta = inta;
10631 tasklet_schedule(&priv->irq_tasklet);
10633 spin_unlock(&priv->irq_lock);
10635 return IRQ_HANDLED;
10637 spin_unlock(&priv->irq_lock);
10641 static void ipw_rf_kill(void *adapter)
10643 struct ipw_priv *priv = adapter;
10644 unsigned long flags;
10646 spin_lock_irqsave(&priv->lock, flags);
10648 if (rf_kill_active(priv)) {
10649 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10650 if (priv->workqueue)
10651 queue_delayed_work(priv->workqueue,
10652 &priv->rf_kill, 2 * HZ);
10656 /* RF Kill is now disabled, so bring the device back up */
10658 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10659 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10662 /* we can not do an adapter restart while inside an irq lock */
10663 queue_work(priv->workqueue, &priv->adapter_restart);
10665 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10669 spin_unlock_irqrestore(&priv->lock, flags);
10672 static void ipw_bg_rf_kill(struct work_struct *work)
10674 struct ipw_priv *priv =
10675 container_of(work, struct ipw_priv, rf_kill.work);
10676 mutex_lock(&priv->mutex);
10678 mutex_unlock(&priv->mutex);
10681 static void ipw_link_up(struct ipw_priv *priv)
10683 priv->last_seq_num = -1;
10684 priv->last_frag_num = -1;
10685 priv->last_packet_time = 0;
10687 netif_carrier_on(priv->net_dev);
10689 cancel_delayed_work(&priv->request_scan);
10690 cancel_delayed_work(&priv->request_direct_scan);
10691 cancel_delayed_work(&priv->request_passive_scan);
10692 cancel_delayed_work(&priv->scan_event);
10693 ipw_reset_stats(priv);
10694 /* Ensure the rate is updated immediately */
10695 priv->last_rate = ipw_get_current_rate(priv);
10696 ipw_gather_stats(priv);
10697 ipw_led_link_up(priv);
10698 notify_wx_assoc_event(priv);
10700 if (priv->config & CFG_BACKGROUND_SCAN)
10701 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10704 static void ipw_bg_link_up(struct work_struct *work)
10706 struct ipw_priv *priv =
10707 container_of(work, struct ipw_priv, link_up);
10708 mutex_lock(&priv->mutex);
10710 mutex_unlock(&priv->mutex);
10713 static void ipw_link_down(struct ipw_priv *priv)
10715 ipw_led_link_down(priv);
10716 netif_carrier_off(priv->net_dev);
10717 notify_wx_assoc_event(priv);
10719 /* Cancel any queued work ... */
10720 cancel_delayed_work(&priv->request_scan);
10721 cancel_delayed_work(&priv->request_direct_scan);
10722 cancel_delayed_work(&priv->request_passive_scan);
10723 cancel_delayed_work(&priv->adhoc_check);
10724 cancel_delayed_work(&priv->gather_stats);
10726 ipw_reset_stats(priv);
10728 if (!(priv->status & STATUS_EXIT_PENDING)) {
10729 /* Queue up another scan... */
10730 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10732 cancel_delayed_work(&priv->scan_event);
10735 static void ipw_bg_link_down(struct work_struct *work)
10737 struct ipw_priv *priv =
10738 container_of(work, struct ipw_priv, link_down);
10739 mutex_lock(&priv->mutex);
10740 ipw_link_down(priv);
10741 mutex_unlock(&priv->mutex);
10744 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10748 priv->workqueue = create_workqueue(DRV_NAME);
10749 init_waitqueue_head(&priv->wait_command_queue);
10750 init_waitqueue_head(&priv->wait_state);
10752 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10753 INIT_WORK(&priv->associate, ipw_bg_associate);
10754 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10755 INIT_WORK(&priv->system_config, ipw_system_config);
10756 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10757 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10758 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10759 INIT_WORK(&priv->up, ipw_bg_up);
10760 INIT_WORK(&priv->down, ipw_bg_down);
10761 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10762 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10763 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10764 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10765 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10766 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10767 INIT_WORK(&priv->roam, ipw_bg_roam);
10768 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10769 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10770 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10771 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10772 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10773 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10774 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10776 #ifdef CONFIG_IPW2200_QOS
10777 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10778 #endif /* CONFIG_IPW2200_QOS */
10780 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10781 ipw_irq_tasklet, (unsigned long)priv);
10786 static void shim__set_security(struct net_device *dev,
10787 struct ieee80211_security *sec)
10789 struct ipw_priv *priv = ieee80211_priv(dev);
10791 for (i = 0; i < 4; i++) {
10792 if (sec->flags & (1 << i)) {
10793 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10794 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10795 if (sec->key_sizes[i] == 0)
10796 priv->ieee->sec.flags &= ~(1 << i);
10798 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10799 sec->key_sizes[i]);
10800 priv->ieee->sec.flags |= (1 << i);
10802 priv->status |= STATUS_SECURITY_UPDATED;
10803 } else if (sec->level != SEC_LEVEL_1)
10804 priv->ieee->sec.flags &= ~(1 << i);
10807 if (sec->flags & SEC_ACTIVE_KEY) {
10808 if (sec->active_key <= 3) {
10809 priv->ieee->sec.active_key = sec->active_key;
10810 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10812 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10813 priv->status |= STATUS_SECURITY_UPDATED;
10815 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10817 if ((sec->flags & SEC_AUTH_MODE) &&
10818 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10819 priv->ieee->sec.auth_mode = sec->auth_mode;
10820 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10821 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10822 priv->capability |= CAP_SHARED_KEY;
10824 priv->capability &= ~CAP_SHARED_KEY;
10825 priv->status |= STATUS_SECURITY_UPDATED;
10828 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10829 priv->ieee->sec.flags |= SEC_ENABLED;
10830 priv->ieee->sec.enabled = sec->enabled;
10831 priv->status |= STATUS_SECURITY_UPDATED;
10833 priv->capability |= CAP_PRIVACY_ON;
10835 priv->capability &= ~CAP_PRIVACY_ON;
10838 if (sec->flags & SEC_ENCRYPT)
10839 priv->ieee->sec.encrypt = sec->encrypt;
10841 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10842 priv->ieee->sec.level = sec->level;
10843 priv->ieee->sec.flags |= SEC_LEVEL;
10844 priv->status |= STATUS_SECURITY_UPDATED;
10847 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10848 ipw_set_hwcrypto_keys(priv);
10850 /* To match current functionality of ipw2100 (which works well w/
10851 * various supplicants, we don't force a disassociate if the
10852 * privacy capability changes ... */
10854 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10855 (((priv->assoc_request.capability &
10856 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10857 (!(priv->assoc_request.capability &
10858 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10859 IPW_DEBUG_ASSOC("Disassociating due to capability "
10861 ipw_disassociate(priv);
10866 static int init_supported_rates(struct ipw_priv *priv,
10867 struct ipw_supported_rates *rates)
10869 /* TODO: Mask out rates based on priv->rates_mask */
10871 memset(rates, 0, sizeof(*rates));
10872 /* configure supported rates */
10873 switch (priv->ieee->freq_band) {
10874 case IEEE80211_52GHZ_BAND:
10875 rates->ieee_mode = IPW_A_MODE;
10876 rates->purpose = IPW_RATE_CAPABILITIES;
10877 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10878 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10881 default: /* Mixed or 2.4Ghz */
10882 rates->ieee_mode = IPW_G_MODE;
10883 rates->purpose = IPW_RATE_CAPABILITIES;
10884 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10885 IEEE80211_CCK_DEFAULT_RATES_MASK);
10886 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10887 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10888 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10896 static int ipw_config(struct ipw_priv *priv)
10898 /* This is only called from ipw_up, which resets/reloads the firmware
10899 so, we don't need to first disable the card before we configure
10901 if (ipw_set_tx_power(priv))
10904 /* initialize adapter address */
10905 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10908 /* set basic system config settings */
10909 init_sys_config(&priv->sys_config);
10911 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10912 * Does not support BT priority yet (don't abort or defer our Tx) */
10914 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10916 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10917 priv->sys_config.bt_coexistence
10918 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10919 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10920 priv->sys_config.bt_coexistence
10921 |= CFG_BT_COEXISTENCE_OOB;
10924 #ifdef CONFIG_IPW2200_PROMISCUOUS
10925 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10926 priv->sys_config.accept_all_data_frames = 1;
10927 priv->sys_config.accept_non_directed_frames = 1;
10928 priv->sys_config.accept_all_mgmt_bcpr = 1;
10929 priv->sys_config.accept_all_mgmt_frames = 1;
10933 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10934 priv->sys_config.answer_broadcast_ssid_probe = 1;
10936 priv->sys_config.answer_broadcast_ssid_probe = 0;
10938 if (ipw_send_system_config(priv))
10941 init_supported_rates(priv, &priv->rates);
10942 if (ipw_send_supported_rates(priv, &priv->rates))
10945 /* Set request-to-send threshold */
10946 if (priv->rts_threshold) {
10947 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10950 #ifdef CONFIG_IPW2200_QOS
10951 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10952 ipw_qos_activate(priv, NULL);
10953 #endif /* CONFIG_IPW2200_QOS */
10955 if (ipw_set_random_seed(priv))
10958 /* final state transition to the RUN state */
10959 if (ipw_send_host_complete(priv))
10962 priv->status |= STATUS_INIT;
10964 ipw_led_init(priv);
10965 ipw_led_radio_on(priv);
10966 priv->notif_missed_beacons = 0;
10968 /* Set hardware WEP key if it is configured. */
10969 if ((priv->capability & CAP_PRIVACY_ON) &&
10970 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10971 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10972 ipw_set_hwcrypto_keys(priv);
10983 * These tables have been tested in conjunction with the
10984 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10986 * Altering this values, using it on other hardware, or in geographies
10987 * not intended for resale of the above mentioned Intel adapters has
10990 * Remember to update the table in README.ipw2200 when changing this
10994 static const struct ieee80211_geo ipw_geos[] = {
10998 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10999 {2427, 4}, {2432, 5}, {2437, 6},
11000 {2442, 7}, {2447, 8}, {2452, 9},
11001 {2457, 10}, {2462, 11}},
11004 { /* Custom US/Canada */
11007 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11008 {2427, 4}, {2432, 5}, {2437, 6},
11009 {2442, 7}, {2447, 8}, {2452, 9},
11010 {2457, 10}, {2462, 11}},
11016 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11017 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11018 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11019 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11022 { /* Rest of World */
11025 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11026 {2427, 4}, {2432, 5}, {2437, 6},
11027 {2442, 7}, {2447, 8}, {2452, 9},
11028 {2457, 10}, {2462, 11}, {2467, 12},
11032 { /* Custom USA & Europe & High */
11035 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11036 {2427, 4}, {2432, 5}, {2437, 6},
11037 {2442, 7}, {2447, 8}, {2452, 9},
11038 {2457, 10}, {2462, 11}},
11044 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11045 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11046 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11047 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11055 { /* Custom NA & Europe */
11058 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11059 {2427, 4}, {2432, 5}, {2437, 6},
11060 {2442, 7}, {2447, 8}, {2452, 9},
11061 {2457, 10}, {2462, 11}},
11067 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11068 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11069 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11070 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11071 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11072 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11073 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11074 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11075 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11078 { /* Custom Japan */
11081 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082 {2427, 4}, {2432, 5}, {2437, 6},
11083 {2442, 7}, {2447, 8}, {2452, 9},
11084 {2457, 10}, {2462, 11}},
11086 .a = {{5170, 34}, {5190, 38},
11087 {5210, 42}, {5230, 46}},
11093 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11094 {2427, 4}, {2432, 5}, {2437, 6},
11095 {2442, 7}, {2447, 8}, {2452, 9},
11096 {2457, 10}, {2462, 11}},
11102 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11103 {2427, 4}, {2432, 5}, {2437, 6},
11104 {2442, 7}, {2447, 8}, {2452, 9},
11105 {2457, 10}, {2462, 11}, {2467, 12},
11112 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11113 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11114 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11115 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11116 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11117 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11118 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11119 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11120 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11121 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11122 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11123 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11124 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11125 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11126 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11129 { /* Custom Japan */
11132 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11133 {2427, 4}, {2432, 5}, {2437, 6},
11134 {2442, 7}, {2447, 8}, {2452, 9},
11135 {2457, 10}, {2462, 11}, {2467, 12},
11136 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11138 .a = {{5170, 34}, {5190, 38},
11139 {5210, 42}, {5230, 46}},
11142 { /* Rest of World */
11145 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11146 {2427, 4}, {2432, 5}, {2437, 6},
11147 {2442, 7}, {2447, 8}, {2452, 9},
11148 {2457, 10}, {2462, 11}, {2467, 12},
11149 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11150 IEEE80211_CH_PASSIVE_ONLY}},
11156 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11157 {2427, 4}, {2432, 5}, {2437, 6},
11158 {2442, 7}, {2447, 8}, {2452, 9},
11159 {2457, 10}, {2462, 11},
11160 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11161 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11163 .a = {{5745, 149}, {5765, 153},
11164 {5785, 157}, {5805, 161}},
11167 { /* Custom Europe */
11170 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11171 {2427, 4}, {2432, 5}, {2437, 6},
11172 {2442, 7}, {2447, 8}, {2452, 9},
11173 {2457, 10}, {2462, 11},
11174 {2467, 12}, {2472, 13}},
11176 .a = {{5180, 36}, {5200, 40},
11177 {5220, 44}, {5240, 48}},
11183 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11184 {2427, 4}, {2432, 5}, {2437, 6},
11185 {2442, 7}, {2447, 8}, {2452, 9},
11186 {2457, 10}, {2462, 11},
11187 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11188 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11190 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11191 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11192 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11193 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11194 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11195 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11196 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11197 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11198 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11199 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11200 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11201 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11202 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11203 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11204 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11205 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11206 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11207 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11208 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11209 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11210 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11211 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11212 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11213 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11219 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11220 {2427, 4}, {2432, 5}, {2437, 6},
11221 {2442, 7}, {2447, 8}, {2452, 9},
11222 {2457, 10}, {2462, 11}},
11224 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11225 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11226 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11227 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11228 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11229 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11230 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11231 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11232 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11233 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11234 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11235 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11236 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11240 #define MAX_HW_RESTARTS 5
11241 static int ipw_up(struct ipw_priv *priv)
11245 if (priv->status & STATUS_EXIT_PENDING)
11248 if (cmdlog && !priv->cmdlog) {
11249 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11251 if (priv->cmdlog == NULL) {
11252 IPW_ERROR("Error allocating %d command log entries.\n",
11256 priv->cmdlog_len = cmdlog;
11260 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11261 /* Load the microcode, firmware, and eeprom.
11262 * Also start the clocks. */
11263 rc = ipw_load(priv);
11265 IPW_ERROR("Unable to load firmware: %d\n", rc);
11269 ipw_init_ordinals(priv);
11270 if (!(priv->config & CFG_CUSTOM_MAC))
11271 eeprom_parse_mac(priv, priv->mac_addr);
11272 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11274 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11275 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11276 ipw_geos[j].name, 3))
11279 if (j == ARRAY_SIZE(ipw_geos)) {
11280 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11281 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11282 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11283 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11286 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11287 IPW_WARNING("Could not set geography.");
11291 if (priv->status & STATUS_RF_KILL_SW) {
11292 IPW_WARNING("Radio disabled by module parameter.\n");
11294 } else if (rf_kill_active(priv)) {
11295 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11296 "Kill switch must be turned off for "
11297 "wireless networking to work.\n");
11298 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11303 rc = ipw_config(priv);
11305 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11307 /* If configure to try and auto-associate, kick
11309 queue_delayed_work(priv->workqueue,
11310 &priv->request_scan, 0);
11315 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11316 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11317 i, MAX_HW_RESTARTS);
11319 /* We had an error bringing up the hardware, so take it
11320 * all the way back down so we can try again */
11324 /* tried to restart and config the device for as long as our
11325 * patience could withstand */
11326 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11331 static void ipw_bg_up(struct work_struct *work)
11333 struct ipw_priv *priv =
11334 container_of(work, struct ipw_priv, up);
11335 mutex_lock(&priv->mutex);
11337 mutex_unlock(&priv->mutex);
11340 static void ipw_deinit(struct ipw_priv *priv)
11344 if (priv->status & STATUS_SCANNING) {
11345 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11346 ipw_abort_scan(priv);
11349 if (priv->status & STATUS_ASSOCIATED) {
11350 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11351 ipw_disassociate(priv);
11354 ipw_led_shutdown(priv);
11356 /* Wait up to 1s for status to change to not scanning and not
11357 * associated (disassociation can take a while for a ful 802.11
11359 for (i = 1000; i && (priv->status &
11360 (STATUS_DISASSOCIATING |
11361 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11364 if (priv->status & (STATUS_DISASSOCIATING |
11365 STATUS_ASSOCIATED | STATUS_SCANNING))
11366 IPW_DEBUG_INFO("Still associated or scanning...\n");
11368 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11370 /* Attempt to disable the card */
11371 ipw_send_card_disable(priv, 0);
11373 priv->status &= ~STATUS_INIT;
11376 static void ipw_down(struct ipw_priv *priv)
11378 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11380 priv->status |= STATUS_EXIT_PENDING;
11382 if (ipw_is_init(priv))
11385 /* Wipe out the EXIT_PENDING status bit if we are not actually
11386 * exiting the module */
11388 priv->status &= ~STATUS_EXIT_PENDING;
11390 /* tell the device to stop sending interrupts */
11391 ipw_disable_interrupts(priv);
11393 /* Clear all bits but the RF Kill */
11394 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11395 netif_carrier_off(priv->net_dev);
11397 ipw_stop_nic(priv);
11399 ipw_led_radio_off(priv);
11402 static void ipw_bg_down(struct work_struct *work)
11404 struct ipw_priv *priv =
11405 container_of(work, struct ipw_priv, down);
11406 mutex_lock(&priv->mutex);
11408 mutex_unlock(&priv->mutex);
11411 /* Called by register_netdev() */
11412 static int ipw_net_init(struct net_device *dev)
11414 struct ipw_priv *priv = ieee80211_priv(dev);
11415 mutex_lock(&priv->mutex);
11417 if (ipw_up(priv)) {
11418 mutex_unlock(&priv->mutex);
11422 mutex_unlock(&priv->mutex);
11426 /* PCI driver stuff */
11427 static struct pci_device_id card_ids[] = {
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11440 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11441 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11442 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11443 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11444 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11445 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11446 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11447 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11448 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11449 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11451 /* required last entry */
11455 MODULE_DEVICE_TABLE(pci, card_ids);
11457 static struct attribute *ipw_sysfs_entries[] = {
11458 &dev_attr_rf_kill.attr,
11459 &dev_attr_direct_dword.attr,
11460 &dev_attr_indirect_byte.attr,
11461 &dev_attr_indirect_dword.attr,
11462 &dev_attr_mem_gpio_reg.attr,
11463 &dev_attr_command_event_reg.attr,
11464 &dev_attr_nic_type.attr,
11465 &dev_attr_status.attr,
11466 &dev_attr_cfg.attr,
11467 &dev_attr_error.attr,
11468 &dev_attr_event_log.attr,
11469 &dev_attr_cmd_log.attr,
11470 &dev_attr_eeprom_delay.attr,
11471 &dev_attr_ucode_version.attr,
11472 &dev_attr_rtc.attr,
11473 &dev_attr_scan_age.attr,
11474 &dev_attr_led.attr,
11475 &dev_attr_speed_scan.attr,
11476 &dev_attr_net_stats.attr,
11477 &dev_attr_channels.attr,
11478 #ifdef CONFIG_IPW2200_PROMISCUOUS
11479 &dev_attr_rtap_iface.attr,
11480 &dev_attr_rtap_filter.attr,
11485 static struct attribute_group ipw_attribute_group = {
11486 .name = NULL, /* put in device directory */
11487 .attrs = ipw_sysfs_entries,
11490 #ifdef CONFIG_IPW2200_PROMISCUOUS
11491 static int ipw_prom_open(struct net_device *dev)
11493 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11494 struct ipw_priv *priv = prom_priv->priv;
11496 IPW_DEBUG_INFO("prom dev->open\n");
11497 netif_carrier_off(dev);
11499 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11500 priv->sys_config.accept_all_data_frames = 1;
11501 priv->sys_config.accept_non_directed_frames = 1;
11502 priv->sys_config.accept_all_mgmt_bcpr = 1;
11503 priv->sys_config.accept_all_mgmt_frames = 1;
11505 ipw_send_system_config(priv);
11511 static int ipw_prom_stop(struct net_device *dev)
11513 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11514 struct ipw_priv *priv = prom_priv->priv;
11516 IPW_DEBUG_INFO("prom dev->stop\n");
11518 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11519 priv->sys_config.accept_all_data_frames = 0;
11520 priv->sys_config.accept_non_directed_frames = 0;
11521 priv->sys_config.accept_all_mgmt_bcpr = 0;
11522 priv->sys_config.accept_all_mgmt_frames = 0;
11524 ipw_send_system_config(priv);
11530 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11532 IPW_DEBUG_INFO("prom dev->xmit\n");
11533 return -EOPNOTSUPP;
11536 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11538 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11539 return &prom_priv->ieee->stats;
11542 static int ipw_prom_alloc(struct ipw_priv *priv)
11546 if (priv->prom_net_dev)
11549 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11550 if (priv->prom_net_dev == NULL)
11553 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11554 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11555 priv->prom_priv->priv = priv;
11557 strcpy(priv->prom_net_dev->name, "rtap%d");
11558 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11560 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11561 priv->prom_net_dev->open = ipw_prom_open;
11562 priv->prom_net_dev->stop = ipw_prom_stop;
11563 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11564 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11566 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11567 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11569 rc = register_netdev(priv->prom_net_dev);
11571 free_ieee80211(priv->prom_net_dev);
11572 priv->prom_net_dev = NULL;
11579 static void ipw_prom_free(struct ipw_priv *priv)
11581 if (!priv->prom_net_dev)
11584 unregister_netdev(priv->prom_net_dev);
11585 free_ieee80211(priv->prom_net_dev);
11587 priv->prom_net_dev = NULL;
11593 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11594 const struct pci_device_id *ent)
11597 struct net_device *net_dev;
11598 void __iomem *base;
11600 struct ipw_priv *priv;
11603 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11604 if (net_dev == NULL) {
11609 priv = ieee80211_priv(net_dev);
11610 priv->ieee = netdev_priv(net_dev);
11612 priv->net_dev = net_dev;
11613 priv->pci_dev = pdev;
11614 ipw_debug_level = debug;
11615 spin_lock_init(&priv->irq_lock);
11616 spin_lock_init(&priv->lock);
11617 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11618 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11620 mutex_init(&priv->mutex);
11621 if (pci_enable_device(pdev)) {
11623 goto out_free_ieee80211;
11626 pci_set_master(pdev);
11628 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11630 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11632 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11633 goto out_pci_disable_device;
11636 pci_set_drvdata(pdev, priv);
11638 err = pci_request_regions(pdev, DRV_NAME);
11640 goto out_pci_disable_device;
11642 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11643 * PCI Tx retries from interfering with C3 CPU state */
11644 pci_read_config_dword(pdev, 0x40, &val);
11645 if ((val & 0x0000ff00) != 0)
11646 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11648 length = pci_resource_len(pdev, 0);
11649 priv->hw_len = length;
11651 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11654 goto out_pci_release_regions;
11657 priv->hw_base = base;
11658 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11659 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11661 err = ipw_setup_deferred_work(priv);
11663 IPW_ERROR("Unable to setup deferred work\n");
11667 ipw_sw_reset(priv, 1);
11669 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11671 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11672 goto out_destroy_workqueue;
11675 SET_NETDEV_DEV(net_dev, &pdev->dev);
11677 mutex_lock(&priv->mutex);
11679 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11680 priv->ieee->set_security = shim__set_security;
11681 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11683 #ifdef CONFIG_IPW2200_QOS
11684 priv->ieee->is_qos_active = ipw_is_qos_active;
11685 priv->ieee->handle_probe_response = ipw_handle_beacon;
11686 priv->ieee->handle_beacon = ipw_handle_probe_response;
11687 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11688 #endif /* CONFIG_IPW2200_QOS */
11690 priv->ieee->perfect_rssi = -20;
11691 priv->ieee->worst_rssi = -85;
11693 net_dev->open = ipw_net_open;
11694 net_dev->stop = ipw_net_stop;
11695 net_dev->init = ipw_net_init;
11696 net_dev->get_stats = ipw_net_get_stats;
11697 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11698 net_dev->set_mac_address = ipw_net_set_mac_address;
11699 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11700 net_dev->wireless_data = &priv->wireless_data;
11701 net_dev->wireless_handlers = &ipw_wx_handler_def;
11702 net_dev->ethtool_ops = &ipw_ethtool_ops;
11703 net_dev->irq = pdev->irq;
11704 net_dev->base_addr = (unsigned long)priv->hw_base;
11705 net_dev->mem_start = pci_resource_start(pdev, 0);
11706 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11708 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11710 IPW_ERROR("failed to create sysfs device attributes\n");
11711 mutex_unlock(&priv->mutex);
11712 goto out_release_irq;
11715 mutex_unlock(&priv->mutex);
11716 err = register_netdev(net_dev);
11718 IPW_ERROR("failed to register network device\n");
11719 goto out_remove_sysfs;
11722 #ifdef CONFIG_IPW2200_PROMISCUOUS
11724 err = ipw_prom_alloc(priv);
11726 IPW_ERROR("Failed to register promiscuous network "
11727 "device (error %d).\n", err);
11728 unregister_netdev(priv->net_dev);
11729 goto out_remove_sysfs;
11734 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11735 "channels, %d 802.11a channels)\n",
11736 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11737 priv->ieee->geo.a_channels);
11742 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11744 free_irq(pdev->irq, priv);
11745 out_destroy_workqueue:
11746 destroy_workqueue(priv->workqueue);
11747 priv->workqueue = NULL;
11749 iounmap(priv->hw_base);
11750 out_pci_release_regions:
11751 pci_release_regions(pdev);
11752 out_pci_disable_device:
11753 pci_disable_device(pdev);
11754 pci_set_drvdata(pdev, NULL);
11755 out_free_ieee80211:
11756 free_ieee80211(priv->net_dev);
11761 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11763 struct ipw_priv *priv = pci_get_drvdata(pdev);
11764 struct list_head *p, *q;
11770 mutex_lock(&priv->mutex);
11772 priv->status |= STATUS_EXIT_PENDING;
11774 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11776 mutex_unlock(&priv->mutex);
11778 unregister_netdev(priv->net_dev);
11781 ipw_rx_queue_free(priv, priv->rxq);
11784 ipw_tx_queue_free(priv);
11786 if (priv->cmdlog) {
11787 kfree(priv->cmdlog);
11788 priv->cmdlog = NULL;
11790 /* ipw_down will ensure that there is no more pending work
11791 * in the workqueue's, so we can safely remove them now. */
11792 cancel_delayed_work(&priv->adhoc_check);
11793 cancel_delayed_work(&priv->gather_stats);
11794 cancel_delayed_work(&priv->request_scan);
11795 cancel_delayed_work(&priv->request_direct_scan);
11796 cancel_delayed_work(&priv->request_passive_scan);
11797 cancel_delayed_work(&priv->scan_event);
11798 cancel_delayed_work(&priv->rf_kill);
11799 cancel_delayed_work(&priv->scan_check);
11800 destroy_workqueue(priv->workqueue);
11801 priv->workqueue = NULL;
11803 /* Free MAC hash list for ADHOC */
11804 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11805 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11807 kfree(list_entry(p, struct ipw_ibss_seq, list));
11811 kfree(priv->error);
11812 priv->error = NULL;
11814 #ifdef CONFIG_IPW2200_PROMISCUOUS
11815 ipw_prom_free(priv);
11818 free_irq(pdev->irq, priv);
11819 iounmap(priv->hw_base);
11820 pci_release_regions(pdev);
11821 pci_disable_device(pdev);
11822 pci_set_drvdata(pdev, NULL);
11823 free_ieee80211(priv->net_dev);
11828 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11830 struct ipw_priv *priv = pci_get_drvdata(pdev);
11831 struct net_device *dev = priv->net_dev;
11833 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11835 /* Take down the device; powers it off, etc. */
11838 /* Remove the PRESENT state of the device */
11839 netif_device_detach(dev);
11841 pci_save_state(pdev);
11842 pci_disable_device(pdev);
11843 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11848 static int ipw_pci_resume(struct pci_dev *pdev)
11850 struct ipw_priv *priv = pci_get_drvdata(pdev);
11851 struct net_device *dev = priv->net_dev;
11855 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11857 pci_set_power_state(pdev, PCI_D0);
11858 err = pci_enable_device(pdev);
11860 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11864 pci_restore_state(pdev);
11867 * Suspend/Resume resets the PCI configuration space, so we have to
11868 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11869 * from interfering with C3 CPU state. pci_restore_state won't help
11870 * here since it only restores the first 64 bytes pci config header.
11872 pci_read_config_dword(pdev, 0x40, &val);
11873 if ((val & 0x0000ff00) != 0)
11874 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11876 /* Set the device back into the PRESENT state; this will also wake
11877 * the queue of needed */
11878 netif_device_attach(dev);
11880 /* Bring the device back up */
11881 queue_work(priv->workqueue, &priv->up);
11887 static void ipw_pci_shutdown(struct pci_dev *pdev)
11889 struct ipw_priv *priv = pci_get_drvdata(pdev);
11891 /* Take down the device; powers it off, etc. */
11894 pci_disable_device(pdev);
11897 /* driver initialization stuff */
11898 static struct pci_driver ipw_driver = {
11900 .id_table = card_ids,
11901 .probe = ipw_pci_probe,
11902 .remove = __devexit_p(ipw_pci_remove),
11904 .suspend = ipw_pci_suspend,
11905 .resume = ipw_pci_resume,
11907 .shutdown = ipw_pci_shutdown,
11910 static int __init ipw_init(void)
11914 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11915 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11917 ret = pci_register_driver(&ipw_driver);
11919 IPW_ERROR("Unable to initialize PCI module\n");
11923 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11925 IPW_ERROR("Unable to create driver sysfs file\n");
11926 pci_unregister_driver(&ipw_driver);
11933 static void __exit ipw_exit(void)
11935 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11936 pci_unregister_driver(&ipw_driver);
11939 module_param(disable, int, 0444);
11940 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11942 module_param(associate, int, 0444);
11943 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11945 module_param(auto_create, int, 0444);
11946 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11948 module_param(led, int, 0444);
11949 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11951 module_param(debug, int, 0444);
11952 MODULE_PARM_DESC(debug, "debug output mask");
11954 module_param(channel, int, 0444);
11955 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11957 #ifdef CONFIG_IPW2200_PROMISCUOUS
11958 module_param(rtap_iface, int, 0444);
11959 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11962 #ifdef CONFIG_IPW2200_QOS
11963 module_param(qos_enable, int, 0444);
11964 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11966 module_param(qos_burst_enable, int, 0444);
11967 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11969 module_param(qos_no_ack_mask, int, 0444);
11970 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11972 module_param(burst_duration_CCK, int, 0444);
11973 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11975 module_param(burst_duration_OFDM, int, 0444);
11976 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11977 #endif /* CONFIG_IPW2200_QOS */
11979 #ifdef CONFIG_IPW2200_MONITOR
11980 module_param(mode, int, 0444);
11981 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11983 module_param(mode, int, 0444);
11984 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11987 module_param(bt_coexist, int, 0444);
11988 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11990 module_param(hwcrypto, int, 0444);
11991 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11993 module_param(cmdlog, int, 0444);
11994 MODULE_PARM_DESC(cmdlog,
11995 "allocate a ring buffer for logging firmware commands");
11997 module_param(roaming, int, 0444);
11998 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12000 module_param(antenna, int, 0444);
12001 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12003 module_exit(ipw_exit);
12004 module_init(ipw_init);