]> err.no Git - linux-2.6/blob - drivers/net/wireless/ipw2100.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG        /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772                                            round_jiffies(HZ));
1773                 }
1774
1775                 deferred = 1;
1776         }
1777
1778         /* Turn on the interrupt so that commands can be processed */
1779         ipw2100_enable_interrupts(priv);
1780
1781         /* Send all of the commands that must be sent prior to
1782          * HOST_COMPLETE */
1783         if (ipw2100_adapter_setup(priv)) {
1784                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         if (!deferred) {
1791                 /* Enable the adapter - sends HOST_COMPLETE */
1792                 if (ipw2100_enable_adapter(priv)) {
1793                         printk(KERN_ERR DRV_NAME ": "
1794                                "%s: failed in call to enable adapter.\n",
1795                                priv->net_dev->name);
1796                         ipw2100_hw_stop_adapter(priv);
1797                         rc = 1;
1798                         goto exit;
1799                 }
1800
1801                 /* Start a scan . . . */
1802                 ipw2100_set_scan_options(priv);
1803                 ipw2100_start_scan(priv);
1804         }
1805
1806       exit:
1807         return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813         struct ipw2100_priv *priv = ieee80211_priv(dev);
1814         return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819         unsigned long flags;
1820         union iwreq_data wrqu = {
1821                 .ap_addr = {
1822                             .sa_family = ARPHRD_ETHER}
1823         };
1824         int associated = priv->status & STATUS_ASSOCIATED;
1825
1826         /* Kill the RF switch timer */
1827         if (!priv->stop_rf_kill) {
1828                 priv->stop_rf_kill = 1;
1829                 cancel_delayed_work(&priv->rf_kill);
1830         }
1831
1832         /* Kill the firmare hang check timer */
1833         if (!priv->stop_hang_check) {
1834                 priv->stop_hang_check = 1;
1835                 cancel_delayed_work(&priv->hang_check);
1836         }
1837
1838         /* Kill any pending resets */
1839         if (priv->status & STATUS_RESET_PENDING)
1840                 cancel_delayed_work(&priv->reset_work);
1841
1842         /* Make sure the interrupt is on so that FW commands will be
1843          * processed correctly */
1844         spin_lock_irqsave(&priv->low_lock, flags);
1845         ipw2100_enable_interrupts(priv);
1846         spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848         if (ipw2100_hw_stop_adapter(priv))
1849                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850                        priv->net_dev->name);
1851
1852         /* Do not disable the interrupt until _after_ we disable
1853          * the adaptor.  Otherwise the CARD_DISABLE command will never
1854          * be ack'd by the firmware */
1855         spin_lock_irqsave(&priv->low_lock, flags);
1856         ipw2100_disable_interrupts(priv);
1857         spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862         if (priv->config & CFG_C3_DISABLED) {
1863                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864                 acpi_set_cstate_limit(priv->cstate_limit);
1865                 priv->config &= ~CFG_C3_DISABLED;
1866         }
1867 #endif
1868
1869         /* We have to signal any supplicant if we are disassociating */
1870         if (associated)
1871                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874         netif_carrier_off(priv->net_dev);
1875         netif_stop_queue(priv->net_dev);
1876 }
1877
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1879 {
1880         struct ipw2100_priv *priv =
1881                 container_of(work, struct ipw2100_priv, reset_work.work);
1882         unsigned long flags;
1883         union iwreq_data wrqu = {
1884                 .ap_addr = {
1885                             .sa_family = ARPHRD_ETHER}
1886         };
1887         int associated = priv->status & STATUS_ASSOCIATED;
1888
1889         spin_lock_irqsave(&priv->low_lock, flags);
1890         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891         priv->resets++;
1892         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893         priv->status |= STATUS_SECURITY_UPDATED;
1894
1895         /* Force a power cycle even if interface hasn't been opened
1896          * yet */
1897         cancel_delayed_work(&priv->reset_work);
1898         priv->status |= STATUS_RESET_PENDING;
1899         spin_unlock_irqrestore(&priv->low_lock, flags);
1900
1901         mutex_lock(&priv->action_mutex);
1902         /* stop timed checks so that they don't interfere with reset */
1903         priv->stop_hang_check = 1;
1904         cancel_delayed_work(&priv->hang_check);
1905
1906         /* We have to signal any supplicant if we are disassociating */
1907         if (associated)
1908                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909
1910         ipw2100_up(priv, 0);
1911         mutex_unlock(&priv->action_mutex);
1912
1913 }
1914
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1916 {
1917
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919         int ret, len, essid_len;
1920         char essid[IW_ESSID_MAX_SIZE];
1921         u32 txrate;
1922         u32 chan;
1923         char *txratename;
1924         u8 bssid[ETH_ALEN];
1925         DECLARE_MAC_BUF(mac);
1926
1927         /*
1928          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1929          *      an actual MAC of the AP. Seems like FW sets this
1930          *      address too late. Read it later and expose through
1931          *      /proc or schedule a later task to query and update
1932          */
1933
1934         essid_len = IW_ESSID_MAX_SIZE;
1935         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1936                                   essid, &essid_len);
1937         if (ret) {
1938                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1939                                __LINE__);
1940                 return;
1941         }
1942
1943         len = sizeof(u32);
1944         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1945         if (ret) {
1946                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1947                                __LINE__);
1948                 return;
1949         }
1950
1951         len = sizeof(u32);
1952         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1953         if (ret) {
1954                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1955                                __LINE__);
1956                 return;
1957         }
1958         len = ETH_ALEN;
1959         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1960         if (ret) {
1961                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1962                                __LINE__);
1963                 return;
1964         }
1965         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1966
1967         switch (txrate) {
1968         case TX_RATE_1_MBIT:
1969                 txratename = "1Mbps";
1970                 break;
1971         case TX_RATE_2_MBIT:
1972                 txratename = "2Mbsp";
1973                 break;
1974         case TX_RATE_5_5_MBIT:
1975                 txratename = "5.5Mbps";
1976                 break;
1977         case TX_RATE_11_MBIT:
1978                 txratename = "11Mbps";
1979                 break;
1980         default:
1981                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1982                 txratename = "unknown rate";
1983                 break;
1984         }
1985
1986         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1987                        "%s)\n",
1988                        priv->net_dev->name, escape_essid(essid, essid_len),
1989                        txratename, chan, print_mac(mac, bssid));
1990
1991         /* now we copy read ssid into dev */
1992         if (!(priv->config & CFG_STATIC_ESSID)) {
1993                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1994                 memcpy(priv->essid, essid, priv->essid_len);
1995         }
1996         priv->channel = chan;
1997         memcpy(priv->bssid, bssid, ETH_ALEN);
1998
1999         priv->status |= STATUS_ASSOCIATING;
2000         priv->connect_start = get_seconds();
2001
2002         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 }
2004
2005 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2006                              int length, int batch_mode)
2007 {
2008         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2009         struct host_command cmd = {
2010                 .host_command = SSID,
2011                 .host_command_sequence = 0,
2012                 .host_command_length = ssid_len
2013         };
2014         int err;
2015
2016         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2017
2018         if (ssid_len)
2019                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2020
2021         if (!batch_mode) {
2022                 err = ipw2100_disable_adapter(priv);
2023                 if (err)
2024                         return err;
2025         }
2026
2027         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2028          * disable auto association -- so we cheat by setting a bogus SSID */
2029         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2030                 int i;
2031                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2032                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2033                         bogus[i] = 0x18 + i;
2034                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2035         }
2036
2037         /* NOTE:  We always send the SSID command even if the provided ESSID is
2038          * the same as what we currently think is set. */
2039
2040         err = ipw2100_hw_send_command(priv, &cmd);
2041         if (!err) {
2042                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2043                 memcpy(priv->essid, essid, ssid_len);
2044                 priv->essid_len = ssid_len;
2045         }
2046
2047         if (!batch_mode) {
2048                 if (ipw2100_enable_adapter(priv))
2049                         err = -EIO;
2050         }
2051
2052         return err;
2053 }
2054
2055 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2056 {
2057         DECLARE_MAC_BUF(mac);
2058
2059         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2060                   "disassociated: '%s' %s \n",
2061                   escape_essid(priv->essid, priv->essid_len),
2062                   print_mac(mac, priv->bssid));
2063
2064         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2065
2066         if (priv->status & STATUS_STOPPING) {
2067                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2068                 return;
2069         }
2070
2071         memset(priv->bssid, 0, ETH_ALEN);
2072         memset(priv->ieee->bssid, 0, ETH_ALEN);
2073
2074         netif_carrier_off(priv->net_dev);
2075         netif_stop_queue(priv->net_dev);
2076
2077         if (!(priv->status & STATUS_RUNNING))
2078                 return;
2079
2080         if (priv->status & STATUS_SECURITY_UPDATED)
2081                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2082
2083         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2084 }
2085
2086 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2087 {
2088         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2089                        priv->net_dev->name);
2090
2091         /* RF_KILL is now enabled (else we wouldn't be here) */
2092         priv->status |= STATUS_RF_KILL_HW;
2093
2094 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2095         if (priv->config & CFG_C3_DISABLED) {
2096                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2097                 acpi_set_cstate_limit(priv->cstate_limit);
2098                 priv->config &= ~CFG_C3_DISABLED;
2099         }
2100 #endif
2101
2102         /* Make sure the RF Kill check timer is running */
2103         priv->stop_rf_kill = 0;
2104         cancel_delayed_work(&priv->rf_kill);
2105         queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2106 }
2107
2108 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2109 {
2110         IPW_DEBUG_SCAN("scan complete\n");
2111         /* Age the scan results... */
2112         priv->ieee->scans++;
2113         priv->status &= ~STATUS_SCANNING;
2114 }
2115
2116 #ifdef CONFIG_IPW2100_DEBUG
2117 #define IPW2100_HANDLER(v, f) { v, f, # v }
2118 struct ipw2100_status_indicator {
2119         int status;
2120         void (*cb) (struct ipw2100_priv * priv, u32 status);
2121         char *name;
2122 };
2123 #else
2124 #define IPW2100_HANDLER(v, f) { v, f }
2125 struct ipw2100_status_indicator {
2126         int status;
2127         void (*cb) (struct ipw2100_priv * priv, u32 status);
2128 };
2129 #endif                          /* CONFIG_IPW2100_DEBUG */
2130
2131 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2132 {
2133         IPW_DEBUG_SCAN("Scanning...\n");
2134         priv->status |= STATUS_SCANNING;
2135 }
2136
2137 static const struct ipw2100_status_indicator status_handlers[] = {
2138         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2139         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2140         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2141         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2142         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2143         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2144         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2145         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2146         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2147         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2148         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2149         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2150         IPW2100_HANDLER(-1, NULL)
2151 };
2152
2153 static void isr_status_change(struct ipw2100_priv *priv, int status)
2154 {
2155         int i;
2156
2157         if (status == IPW_STATE_SCANNING &&
2158             priv->status & STATUS_ASSOCIATED &&
2159             !(priv->status & STATUS_SCANNING)) {
2160                 IPW_DEBUG_INFO("Scan detected while associated, with "
2161                                "no scan request.  Restarting firmware.\n");
2162
2163                 /* Wake up any sleeping jobs */
2164                 schedule_reset(priv);
2165         }
2166
2167         for (i = 0; status_handlers[i].status != -1; i++) {
2168                 if (status == status_handlers[i].status) {
2169                         IPW_DEBUG_NOTIF("Status change: %s\n",
2170                                         status_handlers[i].name);
2171                         if (status_handlers[i].cb)
2172                                 status_handlers[i].cb(priv, status);
2173                         priv->wstats.status = status;
2174                         return;
2175                 }
2176         }
2177
2178         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2179 }
2180
2181 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2182                                     struct ipw2100_cmd_header *cmd)
2183 {
2184 #ifdef CONFIG_IPW2100_DEBUG
2185         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2186                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2187                              command_types[cmd->host_command_reg],
2188                              cmd->host_command_reg);
2189         }
2190 #endif
2191         if (cmd->host_command_reg == HOST_COMPLETE)
2192                 priv->status |= STATUS_ENABLED;
2193
2194         if (cmd->host_command_reg == CARD_DISABLE)
2195                 priv->status &= ~STATUS_ENABLED;
2196
2197         priv->status &= ~STATUS_CMD_ACTIVE;
2198
2199         wake_up_interruptible(&priv->wait_command_queue);
2200 }
2201
2202 #ifdef CONFIG_IPW2100_DEBUG
2203 static const char *frame_types[] = {
2204         "COMMAND_STATUS_VAL",
2205         "STATUS_CHANGE_VAL",
2206         "P80211_DATA_VAL",
2207         "P8023_DATA_VAL",
2208         "HOST_NOTIFICATION_VAL"
2209 };
2210 #endif
2211
2212 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2213                                     struct ipw2100_rx_packet *packet)
2214 {
2215         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2216         if (!packet->skb)
2217                 return -ENOMEM;
2218
2219         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2220         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2221                                           sizeof(struct ipw2100_rx),
2222                                           PCI_DMA_FROMDEVICE);
2223         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2224          *       dma_addr */
2225
2226         return 0;
2227 }
2228
2229 #define SEARCH_ERROR   0xffffffff
2230 #define SEARCH_FAIL    0xfffffffe
2231 #define SEARCH_SUCCESS 0xfffffff0
2232 #define SEARCH_DISCARD 0
2233 #define SEARCH_SNAPSHOT 1
2234
2235 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2236 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2237 {
2238         int i;
2239         if (!priv->snapshot[0])
2240                 return;
2241         for (i = 0; i < 0x30; i++)
2242                 kfree(priv->snapshot[i]);
2243         priv->snapshot[0] = NULL;
2244 }
2245
2246 #ifdef IPW2100_DEBUG_C3
2247 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2248 {
2249         int i;
2250         if (priv->snapshot[0])
2251                 return 1;
2252         for (i = 0; i < 0x30; i++) {
2253                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2254                 if (!priv->snapshot[i]) {
2255                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2256                                        "buffer %d\n", priv->net_dev->name, i);
2257                         while (i > 0)
2258                                 kfree(priv->snapshot[--i]);
2259                         priv->snapshot[0] = NULL;
2260                         return 0;
2261                 }
2262         }
2263
2264         return 1;
2265 }
2266
2267 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2268                                     size_t len, int mode)
2269 {
2270         u32 i, j;
2271         u32 tmp;
2272         u8 *s, *d;
2273         u32 ret;
2274
2275         s = in_buf;
2276         if (mode == SEARCH_SNAPSHOT) {
2277                 if (!ipw2100_snapshot_alloc(priv))
2278                         mode = SEARCH_DISCARD;
2279         }
2280
2281         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2282                 read_nic_dword(priv->net_dev, i, &tmp);
2283                 if (mode == SEARCH_SNAPSHOT)
2284                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2285                 if (ret == SEARCH_FAIL) {
2286                         d = (u8 *) & tmp;
2287                         for (j = 0; j < 4; j++) {
2288                                 if (*s != *d) {
2289                                         s = in_buf;
2290                                         continue;
2291                                 }
2292
2293                                 s++;
2294                                 d++;
2295
2296                                 if ((s - in_buf) == len)
2297                                         ret = (i + j) - len + 1;
2298                         }
2299                 } else if (mode == SEARCH_DISCARD)
2300                         return ret;
2301         }
2302
2303         return ret;
2304 }
2305 #endif
2306
2307 /*
2308  *
2309  * 0) Disconnect the SKB from the firmware (just unmap)
2310  * 1) Pack the ETH header into the SKB
2311  * 2) Pass the SKB to the network stack
2312  *
2313  * When packet is provided by the firmware, it contains the following:
2314  *
2315  * .  ieee80211_hdr
2316  * .  ieee80211_snap_hdr
2317  *
2318  * The size of the constructed ethernet
2319  *
2320  */
2321 #ifdef IPW2100_RX_DEBUG
2322 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2323 #endif
2324
2325 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2326 {
2327 #ifdef IPW2100_DEBUG_C3
2328         struct ipw2100_status *status = &priv->status_queue.drv[i];
2329         u32 match, reg;
2330         int j;
2331 #endif
2332 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2333         int limit;
2334 #endif
2335
2336         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2337                        i * sizeof(struct ipw2100_status));
2338
2339 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2340         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2341         limit = acpi_get_cstate_limit();
2342         if (limit > 2) {
2343                 priv->cstate_limit = limit;
2344                 acpi_set_cstate_limit(2);
2345                 priv->config |= CFG_C3_DISABLED;
2346         }
2347 #endif
2348
2349 #ifdef IPW2100_DEBUG_C3
2350         /* Halt the fimrware so we can get a good image */
2351         write_register(priv->net_dev, IPW_REG_RESET_REG,
2352                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2353         j = 5;
2354         do {
2355                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2356                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2357
2358                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2359                         break;
2360         } while (j--);
2361
2362         match = ipw2100_match_buf(priv, (u8 *) status,
2363                                   sizeof(struct ipw2100_status),
2364                                   SEARCH_SNAPSHOT);
2365         if (match < SEARCH_SUCCESS)
2366                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2367                                "offset 0x%06X, length %d:\n",
2368                                priv->net_dev->name, match,
2369                                sizeof(struct ipw2100_status));
2370         else
2371                 IPW_DEBUG_INFO("%s: No DMA status match in "
2372                                "Firmware.\n", priv->net_dev->name);
2373
2374         printk_buf((u8 *) priv->status_queue.drv,
2375                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2376 #endif
2377
2378         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2379         priv->ieee->stats.rx_errors++;
2380         schedule_reset(priv);
2381 }
2382
2383 static void isr_rx(struct ipw2100_priv *priv, int i,
2384                           struct ieee80211_rx_stats *stats)
2385 {
2386         struct ipw2100_status *status = &priv->status_queue.drv[i];
2387         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2388
2389         IPW_DEBUG_RX("Handler...\n");
2390
2391         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2392                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2393                                "  Dropping.\n",
2394                                priv->net_dev->name,
2395                                status->frame_size, skb_tailroom(packet->skb));
2396                 priv->ieee->stats.rx_errors++;
2397                 return;
2398         }
2399
2400         if (unlikely(!netif_running(priv->net_dev))) {
2401                 priv->ieee->stats.rx_errors++;
2402                 priv->wstats.discard.misc++;
2403                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2404                 return;
2405         }
2406
2407         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2408                      !(priv->status & STATUS_ASSOCIATED))) {
2409                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2410                 priv->wstats.discard.misc++;
2411                 return;
2412         }
2413
2414         pci_unmap_single(priv->pci_dev,
2415                          packet->dma_addr,
2416                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2417
2418         skb_put(packet->skb, status->frame_size);
2419
2420 #ifdef IPW2100_RX_DEBUG
2421         /* Make a copy of the frame so we can dump it to the logs if
2422          * ieee80211_rx fails */
2423         skb_copy_from_linear_data(packet->skb, packet_data,
2424                                   min_t(u32, status->frame_size,
2425                                              IPW_RX_NIC_BUFFER_LENGTH));
2426 #endif
2427
2428         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2429 #ifdef IPW2100_RX_DEBUG
2430                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2431                                priv->net_dev->name);
2432                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2433 #endif
2434                 priv->ieee->stats.rx_errors++;
2435
2436                 /* ieee80211_rx failed, so it didn't free the SKB */
2437                 dev_kfree_skb_any(packet->skb);
2438                 packet->skb = NULL;
2439         }
2440
2441         /* We need to allocate a new SKB and attach it to the RDB. */
2442         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2443                 printk(KERN_WARNING DRV_NAME ": "
2444                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2445                        "adapter.\n", priv->net_dev->name);
2446                 /* TODO: schedule adapter shutdown */
2447                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2448         }
2449
2450         /* Update the RDB entry */
2451         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2452 }
2453
2454 #ifdef CONFIG_IPW2100_MONITOR
2455
2456 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2457                    struct ieee80211_rx_stats *stats)
2458 {
2459         struct ipw2100_status *status = &priv->status_queue.drv[i];
2460         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2461
2462         /* Magic struct that slots into the radiotap header -- no reason
2463          * to build this manually element by element, we can write it much
2464          * more efficiently than we can parse it. ORDER MATTERS HERE */
2465         struct ipw_rt_hdr {
2466                 struct ieee80211_radiotap_header rt_hdr;
2467                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2468         } *ipw_rt;
2469
2470         IPW_DEBUG_RX("Handler...\n");
2471
2472         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2473                                 sizeof(struct ipw_rt_hdr))) {
2474                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2475                                "  Dropping.\n",
2476                                priv->net_dev->name,
2477                                status->frame_size,
2478                                skb_tailroom(packet->skb));
2479                 priv->ieee->stats.rx_errors++;
2480                 return;
2481         }
2482
2483         if (unlikely(!netif_running(priv->net_dev))) {
2484                 priv->ieee->stats.rx_errors++;
2485                 priv->wstats.discard.misc++;
2486                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2487                 return;
2488         }
2489
2490         if (unlikely(priv->config & CFG_CRC_CHECK &&
2491                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2492                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2493                 priv->ieee->stats.rx_errors++;
2494                 return;
2495         }
2496
2497         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2498                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2499         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2500                 packet->skb->data, status->frame_size);
2501
2502         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2503
2504         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2505         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2506         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2507
2508         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2509
2510         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2511
2512         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2513
2514         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2515                 priv->ieee->stats.rx_errors++;
2516
2517                 /* ieee80211_rx failed, so it didn't free the SKB */
2518                 dev_kfree_skb_any(packet->skb);
2519                 packet->skb = NULL;
2520         }
2521
2522         /* We need to allocate a new SKB and attach it to the RDB. */
2523         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524                 IPW_DEBUG_WARNING(
2525                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2526                         "adapter.\n", priv->net_dev->name);
2527                 /* TODO: schedule adapter shutdown */
2528                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529         }
2530
2531         /* Update the RDB entry */
2532         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #endif
2536
2537 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2538 {
2539         struct ipw2100_status *status = &priv->status_queue.drv[i];
2540         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2541         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2542
2543         switch (frame_type) {
2544         case COMMAND_STATUS_VAL:
2545                 return (status->frame_size != sizeof(u->rx_data.command));
2546         case STATUS_CHANGE_VAL:
2547                 return (status->frame_size != sizeof(u->rx_data.status));
2548         case HOST_NOTIFICATION_VAL:
2549                 return (status->frame_size < sizeof(u->rx_data.notification));
2550         case P80211_DATA_VAL:
2551         case P8023_DATA_VAL:
2552 #ifdef CONFIG_IPW2100_MONITOR
2553                 return 0;
2554 #else
2555                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2556                 case IEEE80211_FTYPE_MGMT:
2557                 case IEEE80211_FTYPE_CTL:
2558                         return 0;
2559                 case IEEE80211_FTYPE_DATA:
2560                         return (status->frame_size >
2561                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2562                 }
2563 #endif
2564         }
2565
2566         return 1;
2567 }
2568
2569 /*
2570  * ipw2100 interrupts are disabled at this point, and the ISR
2571  * is the only code that calls this method.  So, we do not need
2572  * to play with any locks.
2573  *
2574  * RX Queue works as follows:
2575  *
2576  * Read index - firmware places packet in entry identified by the
2577  *              Read index and advances Read index.  In this manner,
2578  *              Read index will always point to the next packet to
2579  *              be filled--but not yet valid.
2580  *
2581  * Write index - driver fills this entry with an unused RBD entry.
2582  *               This entry has not filled by the firmware yet.
2583  *
2584  * In between the W and R indexes are the RBDs that have been received
2585  * but not yet processed.
2586  *
2587  * The process of handling packets will start at WRITE + 1 and advance
2588  * until it reaches the READ index.
2589  *
2590  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2591  *
2592  */
2593 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2594 {
2595         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2596         struct ipw2100_status_queue *sq = &priv->status_queue;
2597         struct ipw2100_rx_packet *packet;
2598         u16 frame_type;
2599         u32 r, w, i, s;
2600         struct ipw2100_rx *u;
2601         struct ieee80211_rx_stats stats = {
2602                 .mac_time = jiffies,
2603         };
2604
2605         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2606         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2607
2608         if (r >= rxq->entries) {
2609                 IPW_DEBUG_RX("exit - bad read index\n");
2610                 return;
2611         }
2612
2613         i = (rxq->next + 1) % rxq->entries;
2614         s = i;
2615         while (i != r) {
2616                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2617                    r, rxq->next, i); */
2618
2619                 packet = &priv->rx_buffers[i];
2620
2621                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2622                  * the correct values */
2623                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2624                                             sq->nic +
2625                                             sizeof(struct ipw2100_status) * i,
2626                                             sizeof(struct ipw2100_status),
2627                                             PCI_DMA_FROMDEVICE);
2628
2629                 /* Sync the DMA for the RX buffer so CPU is sure to get
2630                  * the correct values */
2631                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2632                                             sizeof(struct ipw2100_rx),
2633                                             PCI_DMA_FROMDEVICE);
2634
2635                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2636                         ipw2100_corruption_detected(priv, i);
2637                         goto increment;
2638                 }
2639
2640                 u = packet->rxp;
2641                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2642                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2643                 stats.len = sq->drv[i].frame_size;
2644
2645                 stats.mask = 0;
2646                 if (stats.rssi != 0)
2647                         stats.mask |= IEEE80211_STATMASK_RSSI;
2648                 stats.freq = IEEE80211_24GHZ_BAND;
2649
2650                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2651                              priv->net_dev->name, frame_types[frame_type],
2652                              stats.len);
2653
2654                 switch (frame_type) {
2655                 case COMMAND_STATUS_VAL:
2656                         /* Reset Rx watchdog */
2657                         isr_rx_complete_command(priv, &u->rx_data.command);
2658                         break;
2659
2660                 case STATUS_CHANGE_VAL:
2661                         isr_status_change(priv, u->rx_data.status);
2662                         break;
2663
2664                 case P80211_DATA_VAL:
2665                 case P8023_DATA_VAL:
2666 #ifdef CONFIG_IPW2100_MONITOR
2667                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2668                                 isr_rx_monitor(priv, i, &stats);
2669                                 break;
2670                         }
2671 #endif
2672                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2673                                 break;
2674                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2675                         case IEEE80211_FTYPE_MGMT:
2676                                 ieee80211_rx_mgt(priv->ieee,
2677                                                  &u->rx_data.header, &stats);
2678                                 break;
2679
2680                         case IEEE80211_FTYPE_CTL:
2681                                 break;
2682
2683                         case IEEE80211_FTYPE_DATA:
2684                                 isr_rx(priv, i, &stats);
2685                                 break;
2686
2687                         }
2688                         break;
2689                 }
2690
2691               increment:
2692                 /* clear status field associated with this RBD */
2693                 rxq->drv[i].status.info.field = 0;
2694
2695                 i = (i + 1) % rxq->entries;
2696         }
2697
2698         if (i != s) {
2699                 /* backtrack one entry, wrapping to end if at 0 */
2700                 rxq->next = (i ? i : rxq->entries) - 1;
2701
2702                 write_register(priv->net_dev,
2703                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2704         }
2705 }
2706
2707 /*
2708  * __ipw2100_tx_process
2709  *
2710  * This routine will determine whether the next packet on
2711  * the fw_pend_list has been processed by the firmware yet.
2712  *
2713  * If not, then it does nothing and returns.
2714  *
2715  * If so, then it removes the item from the fw_pend_list, frees
2716  * any associated storage, and places the item back on the
2717  * free list of its source (either msg_free_list or tx_free_list)
2718  *
2719  * TX Queue works as follows:
2720  *
2721  * Read index - points to the next TBD that the firmware will
2722  *              process.  The firmware will read the data, and once
2723  *              done processing, it will advance the Read index.
2724  *
2725  * Write index - driver fills this entry with an constructed TBD
2726  *               entry.  The Write index is not advanced until the
2727  *               packet has been configured.
2728  *
2729  * In between the W and R indexes are the TBDs that have NOT been
2730  * processed.  Lagging behind the R index are packets that have
2731  * been processed but have not been freed by the driver.
2732  *
2733  * In order to free old storage, an internal index will be maintained
2734  * that points to the next packet to be freed.  When all used
2735  * packets have been freed, the oldest index will be the same as the
2736  * firmware's read index.
2737  *
2738  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2739  *
2740  * Because the TBD structure can not contain arbitrary data, the
2741  * driver must keep an internal queue of cached allocations such that
2742  * it can put that data back into the tx_free_list and msg_free_list
2743  * for use by future command and data packets.
2744  *
2745  */
2746 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2747 {
2748         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2749         struct ipw2100_bd *tbd;
2750         struct list_head *element;
2751         struct ipw2100_tx_packet *packet;
2752         int descriptors_used;
2753         int e, i;
2754         u32 r, w, frag_num = 0;
2755
2756         if (list_empty(&priv->fw_pend_list))
2757                 return 0;
2758
2759         element = priv->fw_pend_list.next;
2760
2761         packet = list_entry(element, struct ipw2100_tx_packet, list);
2762         tbd = &txq->drv[packet->index];
2763
2764         /* Determine how many TBD entries must be finished... */
2765         switch (packet->type) {
2766         case COMMAND:
2767                 /* COMMAND uses only one slot; don't advance */
2768                 descriptors_used = 1;
2769                 e = txq->oldest;
2770                 break;
2771
2772         case DATA:
2773                 /* DATA uses two slots; advance and loop position. */
2774                 descriptors_used = tbd->num_fragments;
2775                 frag_num = tbd->num_fragments - 1;
2776                 e = txq->oldest + frag_num;
2777                 e %= txq->entries;
2778                 break;
2779
2780         default:
2781                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2782                        priv->net_dev->name);
2783                 return 0;
2784         }
2785
2786         /* if the last TBD is not done by NIC yet, then packet is
2787          * not ready to be released.
2788          *
2789          */
2790         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2791                       &r);
2792         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2793                       &w);
2794         if (w != txq->next)
2795                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2796                        priv->net_dev->name);
2797
2798         /*
2799          * txq->next is the index of the last packet written txq->oldest is
2800          * the index of the r is the index of the next packet to be read by
2801          * firmware
2802          */
2803
2804         /*
2805          * Quick graphic to help you visualize the following
2806          * if / else statement
2807          *
2808          * ===>|                     s---->|===============
2809          *                               e>|
2810          * | a | b | c | d | e | f | g | h | i | j | k | l
2811          *       r---->|
2812          *               w
2813          *
2814          * w - updated by driver
2815          * r - updated by firmware
2816          * s - start of oldest BD entry (txq->oldest)
2817          * e - end of oldest BD entry
2818          *
2819          */
2820         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2821                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2822                 return 0;
2823         }
2824
2825         list_del(element);
2826         DEC_STAT(&priv->fw_pend_stat);
2827
2828 #ifdef CONFIG_IPW2100_DEBUG
2829         {
2830                 int i = txq->oldest;
2831                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2832                              &txq->drv[i],
2833                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2834                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2835
2836                 if (packet->type == DATA) {
2837                         i = (i + 1) % txq->entries;
2838
2839                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2840                                      &txq->drv[i],
2841                                      (u32) (txq->nic + i *
2842                                             sizeof(struct ipw2100_bd)),
2843                                      (u32) txq->drv[i].host_addr,
2844                                      txq->drv[i].buf_length);
2845                 }
2846         }
2847 #endif
2848
2849         switch (packet->type) {
2850         case DATA:
2851                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2852                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2853                                "Expecting DATA TBD but pulled "
2854                                "something else: ids %d=%d.\n",
2855                                priv->net_dev->name, txq->oldest, packet->index);
2856
2857                 /* DATA packet; we have to unmap and free the SKB */
2858                 for (i = 0; i < frag_num; i++) {
2859                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2860
2861                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2862                                      (packet->index + 1 + i) % txq->entries,
2863                                      tbd->host_addr, tbd->buf_length);
2864
2865                         pci_unmap_single(priv->pci_dev,
2866                                          tbd->host_addr,
2867                                          tbd->buf_length, PCI_DMA_TODEVICE);
2868                 }
2869
2870                 ieee80211_txb_free(packet->info.d_struct.txb);
2871                 packet->info.d_struct.txb = NULL;
2872
2873                 list_add_tail(element, &priv->tx_free_list);
2874                 INC_STAT(&priv->tx_free_stat);
2875
2876                 /* We have a free slot in the Tx queue, so wake up the
2877                  * transmit layer if it is stopped. */
2878                 if (priv->status & STATUS_ASSOCIATED)
2879                         netif_wake_queue(priv->net_dev);
2880
2881                 /* A packet was processed by the hardware, so update the
2882                  * watchdog */
2883                 priv->net_dev->trans_start = jiffies;
2884
2885                 break;
2886
2887         case COMMAND:
2888                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2889                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2890                                "Expecting COMMAND TBD but pulled "
2891                                "something else: ids %d=%d.\n",
2892                                priv->net_dev->name, txq->oldest, packet->index);
2893
2894 #ifdef CONFIG_IPW2100_DEBUG
2895                 if (packet->info.c_struct.cmd->host_command_reg <
2896                     ARRAY_SIZE(command_types))
2897                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2898                                      command_types[packet->info.c_struct.cmd->
2899                                                    host_command_reg],
2900                                      packet->info.c_struct.cmd->
2901                                      host_command_reg,
2902                                      packet->info.c_struct.cmd->cmd_status_reg);
2903 #endif
2904
2905                 list_add_tail(element, &priv->msg_free_list);
2906                 INC_STAT(&priv->msg_free_stat);
2907                 break;
2908         }
2909
2910         /* advance oldest used TBD pointer to start of next entry */
2911         txq->oldest = (e + 1) % txq->entries;
2912         /* increase available TBDs number */
2913         txq->available += descriptors_used;
2914         SET_STAT(&priv->txq_stat, txq->available);
2915
2916         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2917                      jiffies - packet->jiffy_start);
2918
2919         return (!list_empty(&priv->fw_pend_list));
2920 }
2921
2922 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2923 {
2924         int i = 0;
2925
2926         while (__ipw2100_tx_process(priv) && i < 200)
2927                 i++;
2928
2929         if (i == 200) {
2930                 printk(KERN_WARNING DRV_NAME ": "
2931                        "%s: Driver is running slow (%d iters).\n",
2932                        priv->net_dev->name, i);
2933         }
2934 }
2935
2936 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2937 {
2938         struct list_head *element;
2939         struct ipw2100_tx_packet *packet;
2940         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2941         struct ipw2100_bd *tbd;
2942         int next = txq->next;
2943
2944         while (!list_empty(&priv->msg_pend_list)) {
2945                 /* if there isn't enough space in TBD queue, then
2946                  * don't stuff a new one in.
2947                  * NOTE: 3 are needed as a command will take one,
2948                  *       and there is a minimum of 2 that must be
2949                  *       maintained between the r and w indexes
2950                  */
2951                 if (txq->available <= 3) {
2952                         IPW_DEBUG_TX("no room in tx_queue\n");
2953                         break;
2954                 }
2955
2956                 element = priv->msg_pend_list.next;
2957                 list_del(element);
2958                 DEC_STAT(&priv->msg_pend_stat);
2959
2960                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2961
2962                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2963                              &txq->drv[txq->next],
2964                              (void *)(txq->nic + txq->next *
2965                                       sizeof(struct ipw2100_bd)));
2966
2967                 packet->index = txq->next;
2968
2969                 tbd = &txq->drv[txq->next];
2970
2971                 /* initialize TBD */
2972                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2973                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2974                 /* not marking number of fragments causes problems
2975                  * with f/w debug version */
2976                 tbd->num_fragments = 1;
2977                 tbd->status.info.field =
2978                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2979                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2980
2981                 /* update TBD queue counters */
2982                 txq->next++;
2983                 txq->next %= txq->entries;
2984                 txq->available--;
2985                 DEC_STAT(&priv->txq_stat);
2986
2987                 list_add_tail(element, &priv->fw_pend_list);
2988                 INC_STAT(&priv->fw_pend_stat);
2989         }
2990
2991         if (txq->next != next) {
2992                 /* kick off the DMA by notifying firmware the
2993                  * write index has moved; make sure TBD stores are sync'd */
2994                 wmb();
2995                 write_register(priv->net_dev,
2996                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2997                                txq->next);
2998         }
2999 }
3000
3001 /*
3002  * ipw2100_tx_send_data
3003  *
3004  */
3005 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3006 {
3007         struct list_head *element;
3008         struct ipw2100_tx_packet *packet;
3009         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3010         struct ipw2100_bd *tbd;
3011         int next = txq->next;
3012         int i = 0;
3013         struct ipw2100_data_header *ipw_hdr;
3014         struct ieee80211_hdr_3addr *hdr;
3015
3016         while (!list_empty(&priv->tx_pend_list)) {
3017                 /* if there isn't enough space in TBD queue, then
3018                  * don't stuff a new one in.
3019                  * NOTE: 4 are needed as a data will take two,
3020                  *       and there is a minimum of 2 that must be
3021                  *       maintained between the r and w indexes
3022                  */
3023                 element = priv->tx_pend_list.next;
3024                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3025
3026                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3027                              IPW_MAX_BDS)) {
3028                         /* TODO: Support merging buffers if more than
3029                          * IPW_MAX_BDS are used */
3030                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3031                                        "Increase fragmentation level.\n",
3032                                        priv->net_dev->name);
3033                 }
3034
3035                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3036                         IPW_DEBUG_TX("no room in tx_queue\n");
3037                         break;
3038                 }
3039
3040                 list_del(element);
3041                 DEC_STAT(&priv->tx_pend_stat);
3042
3043                 tbd = &txq->drv[txq->next];
3044
3045                 packet->index = txq->next;
3046
3047                 ipw_hdr = packet->info.d_struct.data;
3048                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3049                     fragments[0]->data;
3050
3051                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3052                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3053                            Addr3 = DA */
3054                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3056                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3057                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3058                            Addr3 = BSSID */
3059                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3060                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3061                 }
3062
3063                 ipw_hdr->host_command_reg = SEND;
3064                 ipw_hdr->host_command_reg1 = 0;
3065
3066                 /* For now we only support host based encryption */
3067                 ipw_hdr->needs_encryption = 0;
3068                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3069                 if (packet->info.d_struct.txb->nr_frags > 1)
3070                         ipw_hdr->fragment_size =
3071                             packet->info.d_struct.txb->frag_size -
3072                             IEEE80211_3ADDR_LEN;
3073                 else
3074                         ipw_hdr->fragment_size = 0;
3075
3076                 tbd->host_addr = packet->info.d_struct.data_phys;
3077                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3078                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3079                 tbd->status.info.field =
3080                     IPW_BD_STATUS_TX_FRAME_802_3 |
3081                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3082                 txq->next++;
3083                 txq->next %= txq->entries;
3084
3085                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3086                              packet->index, tbd->host_addr, tbd->buf_length);
3087 #ifdef CONFIG_IPW2100_DEBUG
3088                 if (packet->info.d_struct.txb->nr_frags > 1)
3089                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3090                                        packet->info.d_struct.txb->nr_frags);
3091 #endif
3092
3093                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3094                         tbd = &txq->drv[txq->next];
3095                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3096                                 tbd->status.info.field =
3097                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3098                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3099                         else
3100                                 tbd->status.info.field =
3101                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3102                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3103
3104                         tbd->buf_length = packet->info.d_struct.txb->
3105                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3106
3107                         tbd->host_addr = pci_map_single(priv->pci_dev,
3108                                                         packet->info.d_struct.
3109                                                         txb->fragments[i]->
3110                                                         data +
3111                                                         IEEE80211_3ADDR_LEN,
3112                                                         tbd->buf_length,
3113                                                         PCI_DMA_TODEVICE);
3114
3115                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3116                                      txq->next, tbd->host_addr,
3117                                      tbd->buf_length);
3118
3119                         pci_dma_sync_single_for_device(priv->pci_dev,
3120                                                        tbd->host_addr,
3121                                                        tbd->buf_length,
3122                                                        PCI_DMA_TODEVICE);
3123
3124                         txq->next++;
3125                         txq->next %= txq->entries;
3126                 }
3127
3128                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3129                 SET_STAT(&priv->txq_stat, txq->available);
3130
3131                 list_add_tail(element, &priv->fw_pend_list);
3132                 INC_STAT(&priv->fw_pend_stat);
3133         }
3134
3135         if (txq->next != next) {
3136                 /* kick off the DMA by notifying firmware the
3137                  * write index has moved; make sure TBD stores are sync'd */
3138                 write_register(priv->net_dev,
3139                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3140                                txq->next);
3141         }
3142         return;
3143 }
3144
3145 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3146 {
3147         struct net_device *dev = priv->net_dev;
3148         unsigned long flags;
3149         u32 inta, tmp;
3150
3151         spin_lock_irqsave(&priv->low_lock, flags);
3152         ipw2100_disable_interrupts(priv);
3153
3154         read_register(dev, IPW_REG_INTA, &inta);
3155
3156         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3157                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3158
3159         priv->in_isr++;
3160         priv->interrupts++;
3161
3162         /* We do not loop and keep polling for more interrupts as this
3163          * is frowned upon and doesn't play nicely with other potentially
3164          * chained IRQs */
3165         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3166                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3167
3168         if (inta & IPW2100_INTA_FATAL_ERROR) {
3169                 printk(KERN_WARNING DRV_NAME
3170                        ": Fatal interrupt. Scheduling firmware restart.\n");
3171                 priv->inta_other++;
3172                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3173
3174                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3175                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3176                                priv->net_dev->name, priv->fatal_error);
3177
3178                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3179                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3180                                priv->net_dev->name, tmp);
3181
3182                 /* Wake up any sleeping jobs */
3183                 schedule_reset(priv);
3184         }
3185
3186         if (inta & IPW2100_INTA_PARITY_ERROR) {
3187                 printk(KERN_ERR DRV_NAME
3188                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3189                 priv->inta_other++;
3190                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3191         }
3192
3193         if (inta & IPW2100_INTA_RX_TRANSFER) {
3194                 IPW_DEBUG_ISR("RX interrupt\n");
3195
3196                 priv->rx_interrupts++;
3197
3198                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3199
3200                 __ipw2100_rx_process(priv);
3201                 __ipw2100_tx_complete(priv);
3202         }
3203
3204         if (inta & IPW2100_INTA_TX_TRANSFER) {
3205                 IPW_DEBUG_ISR("TX interrupt\n");
3206
3207                 priv->tx_interrupts++;
3208
3209                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3210
3211                 __ipw2100_tx_complete(priv);
3212                 ipw2100_tx_send_commands(priv);
3213                 ipw2100_tx_send_data(priv);
3214         }
3215
3216         if (inta & IPW2100_INTA_TX_COMPLETE) {
3217                 IPW_DEBUG_ISR("TX complete\n");
3218                 priv->inta_other++;
3219                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3220
3221                 __ipw2100_tx_complete(priv);
3222         }
3223
3224         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3225                 /* ipw2100_handle_event(dev); */
3226                 priv->inta_other++;
3227                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3228         }
3229
3230         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3231                 IPW_DEBUG_ISR("FW init done interrupt\n");
3232                 priv->inta_other++;
3233
3234                 read_register(dev, IPW_REG_INTA, &tmp);
3235                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3236                            IPW2100_INTA_PARITY_ERROR)) {
3237                         write_register(dev, IPW_REG_INTA,
3238                                        IPW2100_INTA_FATAL_ERROR |
3239                                        IPW2100_INTA_PARITY_ERROR);
3240                 }
3241
3242                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3243         }
3244
3245         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3246                 IPW_DEBUG_ISR("Status change interrupt\n");
3247                 priv->inta_other++;
3248                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3249         }
3250
3251         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3252                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3253                 priv->inta_other++;
3254                 write_register(dev, IPW_REG_INTA,
3255                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3256         }
3257
3258         priv->in_isr--;
3259         ipw2100_enable_interrupts(priv);
3260
3261         spin_unlock_irqrestore(&priv->low_lock, flags);
3262
3263         IPW_DEBUG_ISR("exit\n");
3264 }
3265
3266 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3267 {
3268         struct ipw2100_priv *priv = data;
3269         u32 inta, inta_mask;
3270
3271         if (!data)
3272                 return IRQ_NONE;
3273
3274         spin_lock(&priv->low_lock);
3275
3276         /* We check to see if we should be ignoring interrupts before
3277          * we touch the hardware.  During ucode load if we try and handle
3278          * an interrupt we can cause keyboard problems as well as cause
3279          * the ucode to fail to initialize */
3280         if (!(priv->status & STATUS_INT_ENABLED)) {
3281                 /* Shared IRQ */
3282                 goto none;
3283         }
3284
3285         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3286         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3287
3288         if (inta == 0xFFFFFFFF) {
3289                 /* Hardware disappeared */
3290                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3291                 goto none;
3292         }
3293
3294         inta &= IPW_INTERRUPT_MASK;
3295
3296         if (!(inta & inta_mask)) {
3297                 /* Shared interrupt */
3298                 goto none;
3299         }
3300
3301         /* We disable the hardware interrupt here just to prevent unneeded
3302          * calls to be made.  We disable this again within the actual
3303          * work tasklet, so if another part of the code re-enables the
3304          * interrupt, that is fine */
3305         ipw2100_disable_interrupts(priv);
3306
3307         tasklet_schedule(&priv->irq_tasklet);
3308         spin_unlock(&priv->low_lock);
3309
3310         return IRQ_HANDLED;
3311       none:
3312         spin_unlock(&priv->low_lock);
3313         return IRQ_NONE;
3314 }
3315
3316 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3317                       int pri)
3318 {
3319         struct ipw2100_priv *priv = ieee80211_priv(dev);
3320         struct list_head *element;
3321         struct ipw2100_tx_packet *packet;
3322         unsigned long flags;
3323
3324         spin_lock_irqsave(&priv->low_lock, flags);
3325
3326         if (!(priv->status & STATUS_ASSOCIATED)) {
3327                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3328                 priv->ieee->stats.tx_carrier_errors++;
3329                 netif_stop_queue(dev);
3330                 goto fail_unlock;
3331         }
3332
3333         if (list_empty(&priv->tx_free_list))
3334                 goto fail_unlock;
3335
3336         element = priv->tx_free_list.next;
3337         packet = list_entry(element, struct ipw2100_tx_packet, list);
3338
3339         packet->info.d_struct.txb = txb;
3340
3341         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3342         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3343
3344         packet->jiffy_start = jiffies;
3345
3346         list_del(element);
3347         DEC_STAT(&priv->tx_free_stat);
3348
3349         list_add_tail(element, &priv->tx_pend_list);
3350         INC_STAT(&priv->tx_pend_stat);
3351
3352         ipw2100_tx_send_data(priv);
3353
3354         spin_unlock_irqrestore(&priv->low_lock, flags);
3355         return 0;
3356
3357       fail_unlock:
3358         netif_stop_queue(dev);
3359         spin_unlock_irqrestore(&priv->low_lock, flags);
3360         return 1;
3361 }
3362
3363 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3364 {
3365         int i, j, err = -EINVAL;
3366         void *v;
3367         dma_addr_t p;
3368
3369         priv->msg_buffers =
3370             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3371                                                 sizeof(struct
3372                                                        ipw2100_tx_packet),
3373                                                 GFP_KERNEL);
3374         if (!priv->msg_buffers) {
3375                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3376                        "buffers.\n", priv->net_dev->name);
3377                 return -ENOMEM;
3378         }
3379
3380         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3381                 v = pci_alloc_consistent(priv->pci_dev,
3382                                          sizeof(struct ipw2100_cmd_header), &p);
3383                 if (!v) {
3384                         printk(KERN_ERR DRV_NAME ": "
3385                                "%s: PCI alloc failed for msg "
3386                                "buffers.\n", priv->net_dev->name);
3387                         err = -ENOMEM;
3388                         break;
3389                 }
3390
3391                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3392
3393                 priv->msg_buffers[i].type = COMMAND;
3394                 priv->msg_buffers[i].info.c_struct.cmd =
3395                     (struct ipw2100_cmd_header *)v;
3396                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3397         }
3398
3399         if (i == IPW_COMMAND_POOL_SIZE)
3400                 return 0;
3401
3402         for (j = 0; j < i; j++) {
3403                 pci_free_consistent(priv->pci_dev,
3404                                     sizeof(struct ipw2100_cmd_header),
3405                                     priv->msg_buffers[j].info.c_struct.cmd,
3406                                     priv->msg_buffers[j].info.c_struct.
3407                                     cmd_phys);
3408         }
3409
3410         kfree(priv->msg_buffers);
3411         priv->msg_buffers = NULL;
3412
3413         return err;
3414 }
3415
3416 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3417 {
3418         int i;
3419
3420         INIT_LIST_HEAD(&priv->msg_free_list);
3421         INIT_LIST_HEAD(&priv->msg_pend_list);
3422
3423         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3424                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3425         SET_STAT(&priv->msg_free_stat, i);
3426
3427         return 0;
3428 }
3429
3430 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3431 {
3432         int i;
3433
3434         if (!priv->msg_buffers)
3435                 return;
3436
3437         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3438                 pci_free_consistent(priv->pci_dev,
3439                                     sizeof(struct ipw2100_cmd_header),
3440                                     priv->msg_buffers[i].info.c_struct.cmd,
3441                                     priv->msg_buffers[i].info.c_struct.
3442                                     cmd_phys);
3443         }
3444
3445         kfree(priv->msg_buffers);
3446         priv->msg_buffers = NULL;
3447 }
3448
3449 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3450                         char *buf)
3451 {
3452         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3453         char *out = buf;
3454         int i, j;
3455         u32 val;
3456
3457         for (i = 0; i < 16; i++) {
3458                 out += sprintf(out, "[%08X] ", i * 16);
3459                 for (j = 0; j < 16; j += 4) {
3460                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3461                         out += sprintf(out, "%08X ", val);
3462                 }
3463                 out += sprintf(out, "\n");
3464         }
3465
3466         return out - buf;
3467 }
3468
3469 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3470
3471 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3472                         char *buf)
3473 {
3474         struct ipw2100_priv *p = d->driver_data;
3475         return sprintf(buf, "0x%08x\n", (int)p->config);
3476 }
3477
3478 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3479
3480 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3481                            char *buf)
3482 {
3483         struct ipw2100_priv *p = d->driver_data;
3484         return sprintf(buf, "0x%08x\n", (int)p->status);
3485 }
3486
3487 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3488
3489 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3490                                char *buf)
3491 {
3492         struct ipw2100_priv *p = d->driver_data;
3493         return sprintf(buf, "0x%08x\n", (int)p->capability);
3494 }
3495
3496 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3497
3498 #define IPW2100_REG(x) { IPW_ ##x, #x }
3499 static const struct {
3500         u32 addr;
3501         const char *name;
3502 } hw_data[] = {
3503 IPW2100_REG(REG_GP_CNTRL),
3504             IPW2100_REG(REG_GPIO),
3505             IPW2100_REG(REG_INTA),
3506             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3507 #define IPW2100_NIC(x, s) { x, #x, s }
3508 static const struct {
3509         u32 addr;
3510         const char *name;
3511         size_t size;
3512 } nic_data[] = {
3513 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3514             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3515 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3516 static const struct {
3517         u8 index;
3518         const char *name;
3519         const char *desc;
3520 } ord_data[] = {
3521 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3522             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3523                                 "successful Host Tx's (MSDU)"),
3524             IPW2100_ORD(STAT_TX_DIR_DATA,
3525                                 "successful Directed Tx's (MSDU)"),
3526             IPW2100_ORD(STAT_TX_DIR_DATA1,
3527                                 "successful Directed Tx's (MSDU) @ 1MB"),
3528             IPW2100_ORD(STAT_TX_DIR_DATA2,
3529                                 "successful Directed Tx's (MSDU) @ 2MB"),
3530             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3531                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3532             IPW2100_ORD(STAT_TX_DIR_DATA11,
3533                                 "successful Directed Tx's (MSDU) @ 11MB"),
3534             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3535                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3536             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3537                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3538             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3539                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3540             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3541                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3542             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3543             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3544             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3545             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3546             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3547             IPW2100_ORD(STAT_TX_ASSN_RESP,
3548                                 "successful Association response Tx's"),
3549             IPW2100_ORD(STAT_TX_REASSN,
3550                                 "successful Reassociation Tx's"),
3551             IPW2100_ORD(STAT_TX_REASSN_RESP,
3552                                 "successful Reassociation response Tx's"),
3553             IPW2100_ORD(STAT_TX_PROBE,
3554                                 "probes successfully transmitted"),
3555             IPW2100_ORD(STAT_TX_PROBE_RESP,
3556                                 "probe responses successfully transmitted"),
3557             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3558             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3559             IPW2100_ORD(STAT_TX_DISASSN,
3560                                 "successful Disassociation TX"),
3561             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3562             IPW2100_ORD(STAT_TX_DEAUTH,
3563                                 "successful Deauthentication TX"),
3564             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3565                                 "Total successful Tx data bytes"),
3566             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3567             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3568             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3569             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3570             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3571             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3572             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3573                                 "times max tries in a hop failed"),
3574             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3575                                 "times disassociation failed"),
3576             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3577             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3578             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3579             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3580             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3581             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3582             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3583                                 "directed packets at 5.5MB"),
3584             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3585             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3586             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3587                                 "nondirected packets at 1MB"),
3588             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3589                                 "nondirected packets at 2MB"),
3590             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3591                                 "nondirected packets at 5.5MB"),
3592             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3593                                 "nondirected packets at 11MB"),
3594             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3595             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3596                                                                     "Rx CTS"),
3597             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3598             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3599             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3600             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3601             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3602             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3603             IPW2100_ORD(STAT_RX_REASSN_RESP,
3604                                 "Reassociation response Rx's"),
3605             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3606             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3607             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3608             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3609             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3610             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3611             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3612             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3613                                 "Total rx data bytes received"),
3614             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3615             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3616             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3617             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3618             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3619             IPW2100_ORD(STAT_RX_DUPLICATE1,
3620                                 "duplicate rx packets at 1MB"),
3621             IPW2100_ORD(STAT_RX_DUPLICATE2,
3622                                 "duplicate rx packets at 2MB"),
3623             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3624                                 "duplicate rx packets at 5.5MB"),
3625             IPW2100_ORD(STAT_RX_DUPLICATE11,
3626                                 "duplicate rx packets at 11MB"),
3627             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3628             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3629             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3630             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3631             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3632                                 "rx frames with invalid protocol"),
3633             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3634             IPW2100_ORD(STAT_RX_NO_BUFFER,
3635                                 "rx frames rejected due to no buffer"),
3636             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3637                                 "rx frames dropped due to missing fragment"),
3638             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3639                                 "rx frames dropped due to non-sequential fragment"),
3640             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3641                                 "rx frames dropped due to unmatched 1st frame"),
3642             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3643                                 "rx frames dropped due to uncompleted frame"),
3644             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3645                                 "ICV errors during decryption"),
3646             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3647             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3648             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3649                                 "poll response timeouts"),
3650             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3651                                 "timeouts waiting for last {broad,multi}cast pkt"),
3652             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3653             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3654             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3655             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3656             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3657                                 "current calculation of % missed beacons"),
3658             IPW2100_ORD(STAT_PERCENT_RETRIES,
3659                                 "current calculation of % missed tx retries"),
3660             IPW2100_ORD(ASSOCIATED_AP_PTR,
3661                                 "0 if not associated, else pointer to AP table entry"),
3662             IPW2100_ORD(AVAILABLE_AP_CNT,
3663                                 "AP's decsribed in the AP table"),
3664             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3665             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3666             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3667             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3668                                 "failures due to response fail"),
3669             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3670             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3671             IPW2100_ORD(STAT_ROAM_INHIBIT,
3672                                 "times roaming was inhibited due to activity"),
3673             IPW2100_ORD(RSSI_AT_ASSN,
3674                                 "RSSI of associated AP at time of association"),
3675             IPW2100_ORD(STAT_ASSN_CAUSE1,
3676                                 "reassociation: no probe response or TX on hop"),
3677             IPW2100_ORD(STAT_ASSN_CAUSE2,
3678                                 "reassociation: poor tx/rx quality"),
3679             IPW2100_ORD(STAT_ASSN_CAUSE3,
3680                                 "reassociation: tx/rx quality (excessive AP load"),
3681             IPW2100_ORD(STAT_ASSN_CAUSE4,
3682                                 "reassociation: AP RSSI level"),
3683             IPW2100_ORD(STAT_ASSN_CAUSE5,
3684                                 "reassociations due to load leveling"),
3685             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3686             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3687                                 "times authentication response failed"),
3688             IPW2100_ORD(STATION_TABLE_CNT,
3689                                 "entries in association table"),
3690             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3691             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3692             IPW2100_ORD(COUNTRY_CODE,
3693                                 "IEEE country code as recv'd from beacon"),
3694             IPW2100_ORD(COUNTRY_CHANNELS,
3695                                 "channels suported by country"),
3696             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3697             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3698             IPW2100_ORD(ANTENNA_DIVERSITY,
3699                                 "TRUE if antenna diversity is disabled"),
3700             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3701             IPW2100_ORD(OUR_FREQ,
3702                                 "current radio freq lower digits - channel ID"),
3703             IPW2100_ORD(RTC_TIME, "current RTC time"),
3704             IPW2100_ORD(PORT_TYPE, "operating mode"),
3705             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3706             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3707             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3708             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3709             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3710             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3711             IPW2100_ORD(CAPABILITIES,
3712                                 "Management frame capability field"),
3713             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3714             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3715             IPW2100_ORD(RTS_THRESHOLD,
3716                                 "Min packet length for RTS handshaking"),
3717             IPW2100_ORD(INT_MODE, "International mode"),
3718             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3719                                 "protocol frag threshold"),
3720             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3721                                 "EEPROM offset in SRAM"),
3722             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3723                                 "EEPROM size in SRAM"),
3724             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3725             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3726                                 "EEPROM IBSS 11b channel set"),
3727             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3728             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3729             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3730             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3731             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3732
3733 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3734                               char *buf)
3735 {
3736         int i;
3737         struct ipw2100_priv *priv = dev_get_drvdata(d);
3738         struct net_device *dev = priv->net_dev;
3739         char *out = buf;
3740         u32 val = 0;
3741
3742         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3743
3744         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3745                 read_register(dev, hw_data[i].addr, &val);
3746                 out += sprintf(out, "%30s [%08X] : %08X\n",
3747                                hw_data[i].name, hw_data[i].addr, val);
3748         }
3749
3750         return out - buf;
3751 }
3752
3753 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3754
3755 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3756                              char *buf)
3757 {
3758         struct ipw2100_priv *priv = dev_get_drvdata(d);
3759         struct net_device *dev = priv->net_dev;
3760         char *out = buf;
3761         int i;
3762
3763         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3764
3765         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3766                 u8 tmp8;
3767                 u16 tmp16;
3768                 u32 tmp32;
3769
3770                 switch (nic_data[i].size) {
3771                 case 1:
3772                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3773                         out += sprintf(out, "%30s [%08X] : %02X\n",
3774                                        nic_data[i].name, nic_data[i].addr,
3775                                        tmp8);
3776                         break;
3777                 case 2:
3778                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3779                         out += sprintf(out, "%30s [%08X] : %04X\n",
3780                                        nic_data[i].name, nic_data[i].addr,
3781                                        tmp16);
3782                         break;
3783                 case 4:
3784                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3785                         out += sprintf(out, "%30s [%08X] : %08X\n",
3786                                        nic_data[i].name, nic_data[i].addr,
3787                                        tmp32);
3788                         break;
3789                 }
3790         }
3791         return out - buf;
3792 }
3793
3794 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3795
3796 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3797                            char *buf)
3798 {
3799         struct ipw2100_priv *priv = dev_get_drvdata(d);
3800         struct net_device *dev = priv->net_dev;
3801         static unsigned long loop = 0;
3802         int len = 0;
3803         u32 buffer[4];
3804         int i;
3805         char line[81];
3806
3807         if (loop >= 0x30000)
3808                 loop = 0;
3809
3810         /* sysfs provides us PAGE_SIZE buffer */
3811         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3812
3813                 if (priv->snapshot[0])
3814                         for (i = 0; i < 4; i++)
3815                                 buffer[i] =
3816                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3817                 else
3818                         for (i = 0; i < 4; i++)
3819                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3820
3821                 if (priv->dump_raw)
3822                         len += sprintf(buf + len,
3823                                        "%c%c%c%c"
3824                                        "%c%c%c%c"
3825                                        "%c%c%c%c"
3826                                        "%c%c%c%c",
3827                                        ((u8 *) buffer)[0x0],
3828                                        ((u8 *) buffer)[0x1],
3829                                        ((u8 *) buffer)[0x2],
3830                                        ((u8 *) buffer)[0x3],
3831                                        ((u8 *) buffer)[0x4],
3832                                        ((u8 *) buffer)[0x5],
3833                                        ((u8 *) buffer)[0x6],
3834                                        ((u8 *) buffer)[0x7],
3835                                        ((u8 *) buffer)[0x8],
3836                                        ((u8 *) buffer)[0x9],
3837                                        ((u8 *) buffer)[0xa],
3838                                        ((u8 *) buffer)[0xb],
3839                                        ((u8 *) buffer)[0xc],
3840                                        ((u8 *) buffer)[0xd],
3841                                        ((u8 *) buffer)[0xe],
3842                                        ((u8 *) buffer)[0xf]);
3843                 else
3844                         len += sprintf(buf + len, "%s\n",
3845                                        snprint_line(line, sizeof(line),
3846                                                     (u8 *) buffer, 16, loop));
3847                 loop += 16;
3848         }
3849
3850         return len;
3851 }
3852
3853 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3854                             const char *buf, size_t count)
3855 {
3856         struct ipw2100_priv *priv = dev_get_drvdata(d);
3857         struct net_device *dev = priv->net_dev;
3858         const char *p = buf;
3859
3860         (void)dev;              /* kill unused-var warning for debug-only code */
3861
3862         if (count < 1)
3863                 return count;
3864
3865         if (p[0] == '1' ||
3866             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3867                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3868                                dev->name);
3869                 priv->dump_raw = 1;
3870
3871         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3872                                    tolower(p[1]) == 'f')) {
3873                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3874                                dev->name);
3875                 priv->dump_raw = 0;
3876
3877         } else if (tolower(p[0]) == 'r') {
3878                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3879                 ipw2100_snapshot_free(priv);
3880
3881         } else
3882                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3883                                "reset = clear memory snapshot\n", dev->name);
3884
3885         return count;
3886 }
3887
3888 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3889
3890 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3891                              char *buf)
3892 {
3893         struct ipw2100_priv *priv = dev_get_drvdata(d);
3894         u32 val = 0;
3895         int len = 0;
3896         u32 val_len;
3897         static int loop = 0;
3898
3899         if (priv->status & STATUS_RF_KILL_MASK)
3900                 return 0;
3901
3902         if (loop >= ARRAY_SIZE(ord_data))
3903                 loop = 0;
3904
3905         /* sysfs provides us PAGE_SIZE buffer */
3906         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3907                 val_len = sizeof(u32);
3908
3909                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3910                                         &val_len))
3911                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3912                                        ord_data[loop].index,
3913                                        ord_data[loop].desc);
3914                 else
3915                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3916                                        ord_data[loop].index, val,
3917                                        ord_data[loop].desc);
3918                 loop++;
3919         }
3920
3921         return len;
3922 }
3923
3924 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3925
3926 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3927                           char *buf)
3928 {
3929         struct ipw2100_priv *priv = dev_get_drvdata(d);
3930         char *out = buf;
3931
3932         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3933                        priv->interrupts, priv->tx_interrupts,
3934                        priv->rx_interrupts, priv->inta_other);
3935         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3936         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3937 #ifdef CONFIG_IPW2100_DEBUG
3938         out += sprintf(out, "packet mismatch image: %s\n",
3939                        priv->snapshot[0] ? "YES" : "NO");
3940 #endif
3941
3942         return out - buf;
3943 }
3944
3945 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3946
3947 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3948 {
3949         int err;
3950
3951         if (mode == priv->ieee->iw_mode)
3952                 return 0;
3953
3954         err = ipw2100_disable_adapter(priv);
3955         if (err) {
3956                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3957                        priv->net_dev->name, err);
3958                 return err;
3959         }
3960
3961         switch (mode) {
3962         case IW_MODE_INFRA:
3963                 priv->net_dev->type = ARPHRD_ETHER;
3964                 break;
3965         case IW_MODE_ADHOC:
3966                 priv->net_dev->type = ARPHRD_ETHER;
3967                 break;
3968 #ifdef CONFIG_IPW2100_MONITOR
3969         case IW_MODE_MONITOR:
3970                 priv->last_mode = priv->ieee->iw_mode;
3971                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3972                 break;
3973 #endif                          /* CONFIG_IPW2100_MONITOR */
3974         }
3975
3976         priv->ieee->iw_mode = mode;
3977
3978 #ifdef CONFIG_PM
3979         /* Indicate ipw2100_download_firmware download firmware
3980          * from disk instead of memory. */
3981         ipw2100_firmware.version = 0;
3982 #endif
3983
3984         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3985         priv->reset_backoff = 0;
3986         schedule_reset(priv);
3987
3988         return 0;
3989 }
3990
3991 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3992                               char *buf)
3993 {
3994         struct ipw2100_priv *priv = dev_get_drvdata(d);
3995         int len = 0;
3996
3997 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3998
3999         if (priv->status & STATUS_ASSOCIATED)
4000                 len += sprintf(buf + len, "connected: %lu\n",
4001                                get_seconds() - priv->connect_start);
4002         else
4003                 len += sprintf(buf + len, "not connected\n");
4004
4005         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4006         DUMP_VAR(status, "08lx");
4007         DUMP_VAR(config, "08lx");
4008         DUMP_VAR(capability, "08lx");
4009
4010         len +=
4011             sprintf(buf + len, "last_rtc: %lu\n",
4012                     (unsigned long)priv->last_rtc);
4013
4014         DUMP_VAR(fatal_error, "d");
4015         DUMP_VAR(stop_hang_check, "d");
4016         DUMP_VAR(stop_rf_kill, "d");
4017         DUMP_VAR(messages_sent, "d");
4018
4019         DUMP_VAR(tx_pend_stat.value, "d");
4020         DUMP_VAR(tx_pend_stat.hi, "d");
4021
4022         DUMP_VAR(tx_free_stat.value, "d");
4023         DUMP_VAR(tx_free_stat.lo, "d");
4024
4025         DUMP_VAR(msg_free_stat.value, "d");
4026         DUMP_VAR(msg_free_stat.lo, "d");
4027
4028         DUMP_VAR(msg_pend_stat.value, "d");
4029         DUMP_VAR(msg_pend_stat.hi, "d");
4030
4031         DUMP_VAR(fw_pend_stat.value, "d");
4032         DUMP_VAR(fw_pend_stat.hi, "d");
4033
4034         DUMP_VAR(txq_stat.value, "d");
4035         DUMP_VAR(txq_stat.lo, "d");
4036
4037         DUMP_VAR(ieee->scans, "d");
4038         DUMP_VAR(reset_backoff, "d");
4039
4040         return len;
4041 }
4042
4043 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4044
4045 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4046                             char *buf)
4047 {
4048         struct ipw2100_priv *priv = dev_get_drvdata(d);
4049         char essid[IW_ESSID_MAX_SIZE + 1];
4050         u8 bssid[ETH_ALEN];
4051         u32 chan = 0;
4052         char *out = buf;
4053         int length;
4054         int ret;
4055         DECLARE_MAC_BUF(mac);
4056
4057         if (priv->status & STATUS_RF_KILL_MASK)
4058                 return 0;
4059
4060         memset(essid, 0, sizeof(essid));
4061         memset(bssid, 0, sizeof(bssid));
4062
4063         length = IW_ESSID_MAX_SIZE;
4064         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4065         if (ret)
4066                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4067                                __LINE__);
4068
4069         length = sizeof(bssid);
4070         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4071                                   bssid, &length);
4072         if (ret)
4073                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4074                                __LINE__);
4075
4076         length = sizeof(u32);
4077         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4078         if (ret)
4079                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4080                                __LINE__);
4081
4082         out += sprintf(out, "ESSID: %s\n", essid);
4083         out += sprintf(out, "BSSID:   %s\n", print_mac(mac, bssid));
4084         out += sprintf(out, "Channel: %d\n", chan);
4085
4086         return out - buf;
4087 }
4088
4089 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4090
4091 #ifdef CONFIG_IPW2100_DEBUG
4092 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4093 {
4094         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4095 }
4096
4097 static ssize_t store_debug_level(struct device_driver *d,
4098                                  const char *buf, size_t count)
4099 {
4100         char *p = (char *)buf;
4101         u32 val;
4102
4103         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4104                 p++;
4105                 if (p[0] == 'x' || p[0] == 'X')
4106                         p++;
4107                 val = simple_strtoul(p, &p, 16);
4108         } else
4109                 val = simple_strtoul(p, &p, 10);
4110         if (p == buf)
4111                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4112         else
4113                 ipw2100_debug_level = val;
4114
4115         return strnlen(buf, count);
4116 }
4117
4118 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4119                    store_debug_level);
4120 #endif                          /* CONFIG_IPW2100_DEBUG */
4121
4122 static ssize_t show_fatal_error(struct device *d,
4123                                 struct device_attribute *attr, char *buf)
4124 {
4125         struct ipw2100_priv *priv = dev_get_drvdata(d);
4126         char *out = buf;
4127         int i;
4128
4129         if (priv->fatal_error)
4130                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4131         else
4132                 out += sprintf(out, "0\n");
4133
4134         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4135                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4136                                         IPW2100_ERROR_QUEUE])
4137                         continue;
4138
4139                 out += sprintf(out, "%d. 0x%08X\n", i,
4140                                priv->fatal_errors[(priv->fatal_index - i) %
4141                                                   IPW2100_ERROR_QUEUE]);
4142         }
4143
4144         return out - buf;
4145 }
4146
4147 static ssize_t store_fatal_error(struct device *d,
4148                                  struct device_attribute *attr, const char *buf,
4149                                  size_t count)
4150 {
4151         struct ipw2100_priv *priv = dev_get_drvdata(d);
4152         schedule_reset(priv);
4153         return count;
4154 }
4155
4156 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4157                    store_fatal_error);
4158
4159 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4160                              char *buf)
4161 {
4162         struct ipw2100_priv *priv = dev_get_drvdata(d);
4163         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4164 }
4165
4166 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4167                               const char *buf, size_t count)
4168 {
4169         struct ipw2100_priv *priv = dev_get_drvdata(d);
4170         struct net_device *dev = priv->net_dev;
4171         char buffer[] = "00000000";
4172         unsigned long len =
4173             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4174         unsigned long val;
4175         char *p = buffer;
4176
4177         (void)dev;              /* kill unused-var warning for debug-only code */
4178
4179         IPW_DEBUG_INFO("enter\n");
4180
4181         strncpy(buffer, buf, len);
4182         buffer[len] = 0;
4183
4184         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4185                 p++;
4186                 if (p[0] == 'x' || p[0] == 'X')
4187                         p++;
4188                 val = simple_strtoul(p, &p, 16);
4189         } else
4190                 val = simple_strtoul(p, &p, 10);
4191         if (p == buffer) {
4192                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4193         } else {
4194                 priv->ieee->scan_age = val;
4195                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4196         }
4197
4198         IPW_DEBUG_INFO("exit\n");
4199         return len;
4200 }
4201
4202 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4203
4204 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4205                             char *buf)
4206 {
4207         /* 0 - RF kill not enabled
4208            1 - SW based RF kill active (sysfs)
4209            2 - HW based RF kill active
4210            3 - Both HW and SW baed RF kill active */
4211         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4212         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4213             (rf_kill_active(priv) ? 0x2 : 0x0);
4214         return sprintf(buf, "%i\n", val);
4215 }
4216
4217 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4218 {
4219         if ((disable_radio ? 1 : 0) ==
4220             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4221                 return 0;
4222
4223         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4224                           disable_radio ? "OFF" : "ON");
4225
4226         mutex_lock(&priv->action_mutex);
4227
4228         if (disable_radio) {
4229                 priv->status |= STATUS_RF_KILL_SW;
4230                 ipw2100_down(priv);
4231         } else {
4232                 priv->status &= ~STATUS_RF_KILL_SW;
4233                 if (rf_kill_active(priv)) {
4234                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4235                                           "disabled by HW switch\n");
4236                         /* Make sure the RF_KILL check timer is running */
4237                         priv->stop_rf_kill = 0;
4238                         cancel_delayed_work(&priv->rf_kill);
4239                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4240                                            round_jiffies(HZ));
4241                 } else
4242                         schedule_reset(priv);
4243         }
4244
4245         mutex_unlock(&priv->action_mutex);
4246         return 1;
4247 }
4248
4249 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4250                              const char *buf, size_t count)
4251 {
4252         struct ipw2100_priv *priv = dev_get_drvdata(d);
4253         ipw_radio_kill_sw(priv, buf[0] == '1');
4254         return count;
4255 }
4256
4257 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4258
4259 static struct attribute *ipw2100_sysfs_entries[] = {
4260         &dev_attr_hardware.attr,
4261         &dev_attr_registers.attr,
4262         &dev_attr_ordinals.attr,
4263         &dev_attr_pci.attr,
4264         &dev_attr_stats.attr,
4265         &dev_attr_internals.attr,
4266         &dev_attr_bssinfo.attr,
4267         &dev_attr_memory.attr,
4268         &dev_attr_scan_age.attr,
4269         &dev_attr_fatal_error.attr,
4270         &dev_attr_rf_kill.attr,
4271         &dev_attr_cfg.attr,
4272         &dev_attr_status.attr,
4273         &dev_attr_capability.attr,
4274         NULL,
4275 };
4276
4277 static struct attribute_group ipw2100_attribute_group = {
4278         .attrs = ipw2100_sysfs_entries,
4279 };
4280
4281 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4282 {
4283         struct ipw2100_status_queue *q = &priv->status_queue;
4284
4285         IPW_DEBUG_INFO("enter\n");
4286
4287         q->size = entries * sizeof(struct ipw2100_status);
4288         q->drv =
4289             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4290                                                           q->size, &q->nic);
4291         if (!q->drv) {
4292                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4293                 return -ENOMEM;
4294         }
4295
4296         memset(q->drv, 0, q->size);
4297
4298         IPW_DEBUG_INFO("exit\n");
4299
4300         return 0;
4301 }
4302
4303 static void status_queue_free(struct ipw2100_priv *priv)
4304 {
4305         IPW_DEBUG_INFO("enter\n");
4306
4307         if (priv->status_queue.drv) {
4308                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4309                                     priv->status_queue.drv,
4310                                     priv->status_queue.nic);
4311                 priv->status_queue.drv = NULL;
4312         }
4313
4314         IPW_DEBUG_INFO("exit\n");
4315 }
4316
4317 static int bd_queue_allocate(struct ipw2100_priv *priv,
4318                              struct ipw2100_bd_queue *q, int entries)
4319 {
4320         IPW_DEBUG_INFO("enter\n");
4321
4322         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4323
4324         q->entries = entries;
4325         q->size = entries * sizeof(struct ipw2100_bd);
4326         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4327         if (!q->drv) {
4328                 IPW_DEBUG_INFO
4329                     ("can't allocate shared memory for buffer descriptors\n");
4330                 return -ENOMEM;
4331         }
4332         memset(q->drv, 0, q->size);
4333
4334         IPW_DEBUG_INFO("exit\n");
4335
4336         return 0;
4337 }
4338
4339 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4340 {
4341         IPW_DEBUG_INFO("enter\n");
4342
4343         if (!q)
4344                 return;
4345
4346         if (q->drv) {
4347                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4348                 q->drv = NULL;
4349         }
4350
4351         IPW_DEBUG_INFO("exit\n");
4352 }
4353
4354 static void bd_queue_initialize(struct ipw2100_priv *priv,
4355                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4356                                 u32 r, u32 w)
4357 {
4358         IPW_DEBUG_INFO("enter\n");
4359
4360         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4361                        (u32) q->nic);
4362
4363         write_register(priv->net_dev, base, q->nic);
4364         write_register(priv->net_dev, size, q->entries);
4365         write_register(priv->net_dev, r, q->oldest);
4366         write_register(priv->net_dev, w, q->next);
4367
4368         IPW_DEBUG_INFO("exit\n");
4369 }
4370
4371 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4372 {
4373         if (priv->workqueue) {
4374                 priv->stop_rf_kill = 1;
4375                 priv->stop_hang_check = 1;
4376                 cancel_delayed_work(&priv->reset_work);
4377                 cancel_delayed_work(&priv->security_work);
4378                 cancel_delayed_work(&priv->wx_event_work);
4379                 cancel_delayed_work(&priv->hang_check);
4380                 cancel_delayed_work(&priv->rf_kill);
4381                 destroy_workqueue(priv->workqueue);
4382                 priv->workqueue = NULL;
4383         }
4384 }
4385
4386 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4387 {
4388         int i, j, err = -EINVAL;
4389         void *v;
4390         dma_addr_t p;
4391
4392         IPW_DEBUG_INFO("enter\n");
4393
4394         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4395         if (err) {
4396                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4397                                 priv->net_dev->name);
4398                 return err;
4399         }
4400
4401         priv->tx_buffers =
4402             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4403                                                 sizeof(struct
4404                                                        ipw2100_tx_packet),
4405                                                 GFP_ATOMIC);
4406         if (!priv->tx_buffers) {
4407                 printk(KERN_ERR DRV_NAME
4408                        ": %s: alloc failed form tx buffers.\n",
4409                        priv->net_dev->name);
4410                 bd_queue_free(priv, &priv->tx_queue);
4411                 return -ENOMEM;
4412         }
4413
4414         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4415                 v = pci_alloc_consistent(priv->pci_dev,
4416                                          sizeof(struct ipw2100_data_header),
4417                                          &p);
4418                 if (!v) {
4419                         printk(KERN_ERR DRV_NAME
4420                                ": %s: PCI alloc failed for tx " "buffers.\n",
4421                                priv->net_dev->name);
4422                         err = -ENOMEM;
4423                         break;
4424                 }
4425
4426                 priv->tx_buffers[i].type = DATA;
4427                 priv->tx_buffers[i].info.d_struct.data =
4428                     (struct ipw2100_data_header *)v;
4429                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4430                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4431         }
4432
4433         if (i == TX_PENDED_QUEUE_LENGTH)
4434                 return 0;
4435
4436         for (j = 0; j < i; j++) {
4437                 pci_free_consistent(priv->pci_dev,
4438                                     sizeof(struct ipw2100_data_header),
4439                                     priv->tx_buffers[j].info.d_struct.data,
4440                                     priv->tx_buffers[j].info.d_struct.
4441                                     data_phys);
4442         }
4443
4444         kfree(priv->tx_buffers);
4445         priv->tx_buffers = NULL;
4446
4447         return err;
4448 }
4449
4450 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4451 {
4452         int i;
4453
4454         IPW_DEBUG_INFO("enter\n");
4455
4456         /*
4457          * reinitialize packet info lists
4458          */
4459         INIT_LIST_HEAD(&priv->fw_pend_list);
4460         INIT_STAT(&priv->fw_pend_stat);
4461
4462         /*
4463          * reinitialize lists
4464          */
4465         INIT_LIST_HEAD(&priv->tx_pend_list);
4466         INIT_LIST_HEAD(&priv->tx_free_list);
4467         INIT_STAT(&priv->tx_pend_stat);
4468         INIT_STAT(&priv->tx_free_stat);
4469
4470         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4471                 /* We simply drop any SKBs that have been queued for
4472                  * transmit */
4473                 if (priv->tx_buffers[i].info.d_struct.txb) {
4474                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4475                                            txb);
4476                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4477                 }
4478
4479                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4480         }
4481
4482         SET_STAT(&priv->tx_free_stat, i);
4483
4484         priv->tx_queue.oldest = 0;
4485         priv->tx_queue.available = priv->tx_queue.entries;
4486         priv->tx_queue.next = 0;
4487         INIT_STAT(&priv->txq_stat);
4488         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4489
4490         bd_queue_initialize(priv, &priv->tx_queue,
4491                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4492                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4493                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4494                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4495
4496         IPW_DEBUG_INFO("exit\n");
4497
4498 }
4499
4500 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4501 {
4502         int i;
4503
4504         IPW_DEBUG_INFO("enter\n");
4505
4506         bd_queue_free(priv, &priv->tx_queue);
4507
4508         if (!priv->tx_buffers)
4509                 return;
4510
4511         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4512                 if (priv->tx_buffers[i].info.d_struct.txb) {
4513                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4514                                            txb);
4515                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4516                 }
4517                 if (priv->tx_buffers[i].info.d_struct.data)
4518                         pci_free_consistent(priv->pci_dev,
4519                                             sizeof(struct ipw2100_data_header),
4520                                             priv->tx_buffers[i].info.d_struct.
4521                                             data,
4522                                             priv->tx_buffers[i].info.d_struct.
4523                                             data_phys);
4524         }
4525
4526         kfree(priv->tx_buffers);
4527         priv->tx_buffers = NULL;
4528
4529         IPW_DEBUG_INFO("exit\n");
4530 }
4531
4532 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4533 {
4534         int i, j, err = -EINVAL;
4535
4536         IPW_DEBUG_INFO("enter\n");
4537
4538         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4539         if (err) {
4540                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4541                 return err;
4542         }
4543
4544         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4545         if (err) {
4546                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4547                 bd_queue_free(priv, &priv->rx_queue);
4548                 return err;
4549         }
4550
4551         /*
4552          * allocate packets
4553          */
4554         priv->rx_buffers = (struct ipw2100_rx_packet *)
4555             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4556                     GFP_KERNEL);
4557         if (!priv->rx_buffers) {
4558                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4559
4560                 bd_queue_free(priv, &priv->rx_queue);
4561
4562                 status_queue_free(priv);
4563
4564                 return -ENOMEM;
4565         }
4566
4567         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4568                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4569
4570                 err = ipw2100_alloc_skb(priv, packet);
4571                 if (unlikely(err)) {
4572                         err = -ENOMEM;
4573                         break;
4574                 }
4575
4576                 /* The BD holds the cache aligned address */
4577                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4578                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4579                 priv->status_queue.drv[i].status_fields = 0;
4580         }
4581
4582         if (i == RX_QUEUE_LENGTH)
4583                 return 0;
4584
4585         for (j = 0; j < i; j++) {
4586                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4587                                  sizeof(struct ipw2100_rx_packet),
4588                                  PCI_DMA_FROMDEVICE);
4589                 dev_kfree_skb(priv->rx_buffers[j].skb);
4590         }
4591
4592         kfree(priv->rx_buffers);
4593         priv->rx_buffers = NULL;
4594
4595         bd_queue_free(priv, &priv->rx_queue);
4596
4597         status_queue_free(priv);
4598
4599         return err;
4600 }
4601
4602 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4603 {
4604         IPW_DEBUG_INFO("enter\n");
4605
4606         priv->rx_queue.oldest = 0;
4607         priv->rx_queue.available = priv->rx_queue.entries - 1;
4608         priv->rx_queue.next = priv->rx_queue.entries - 1;
4609
4610         INIT_STAT(&priv->rxq_stat);
4611         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4612
4613         bd_queue_initialize(priv, &priv->rx_queue,
4614                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4615                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4616                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4617                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4618
4619         /* set up the status queue */
4620         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4621                        priv->status_queue.nic);
4622
4623         IPW_DEBUG_INFO("exit\n");
4624 }
4625
4626 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4627 {
4628         int i;
4629
4630         IPW_DEBUG_INFO("enter\n");
4631
4632         bd_queue_free(priv, &priv->rx_queue);
4633         status_queue_free(priv);
4634
4635         if (!priv->rx_buffers)
4636                 return;
4637
4638         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4639                 if (priv->rx_buffers[i].rxp) {
4640                         pci_unmap_single(priv->pci_dev,
4641                                          priv->rx_buffers[i].dma_addr,
4642                                          sizeof(struct ipw2100_rx),
4643                                          PCI_DMA_FROMDEVICE);
4644                         dev_kfree_skb(priv->rx_buffers[i].skb);
4645                 }
4646         }
4647
4648         kfree(priv->rx_buffers);
4649         priv->rx_buffers = NULL;
4650
4651         IPW_DEBUG_INFO("exit\n");
4652 }
4653
4654 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4655 {
4656         u32 length = ETH_ALEN;
4657         u8 addr[ETH_ALEN];
4658         DECLARE_MAC_BUF(mac);
4659
4660         int err;
4661
4662         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4663         if (err) {
4664                 IPW_DEBUG_INFO("MAC address read failed\n");
4665                 return -EIO;
4666         }
4667
4668         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4669         IPW_DEBUG_INFO("card MAC is %s\n",
4670                        print_mac(mac, priv->net_dev->dev_addr));
4671
4672         return 0;
4673 }
4674
4675 /********************************************************************
4676  *
4677  * Firmware Commands
4678  *
4679  ********************************************************************/
4680
4681 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4682 {
4683         struct host_command cmd = {
4684                 .host_command = ADAPTER_ADDRESS,
4685                 .host_command_sequence = 0,
4686                 .host_command_length = ETH_ALEN
4687         };
4688         int err;
4689
4690         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4691
4692         IPW_DEBUG_INFO("enter\n");
4693
4694         if (priv->config & CFG_CUSTOM_MAC) {
4695                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4696                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4697         } else
4698                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4699                        ETH_ALEN);
4700
4701         err = ipw2100_hw_send_command(priv, &cmd);
4702
4703         IPW_DEBUG_INFO("exit\n");
4704         return err;
4705 }
4706
4707 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4708                                  int batch_mode)
4709 {
4710         struct host_command cmd = {
4711                 .host_command = PORT_TYPE,
4712                 .host_command_sequence = 0,
4713                 .host_command_length = sizeof(u32)
4714         };
4715         int err;
4716
4717         switch (port_type) {
4718         case IW_MODE_INFRA:
4719                 cmd.host_command_parameters[0] = IPW_BSS;
4720                 break;
4721         case IW_MODE_ADHOC:
4722                 cmd.host_command_parameters[0] = IPW_IBSS;
4723                 break;
4724         }
4725
4726         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4727                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4728
4729         if (!batch_mode) {
4730                 err = ipw2100_disable_adapter(priv);
4731                 if (err) {
4732                         printk(KERN_ERR DRV_NAME
4733                                ": %s: Could not disable adapter %d\n",
4734                                priv->net_dev->name, err);
4735                         return err;
4736                 }
4737         }
4738
4739         /* send cmd to firmware */
4740         err = ipw2100_hw_send_command(priv, &cmd);
4741
4742         if (!batch_mode)
4743                 ipw2100_enable_adapter(priv);
4744
4745         return err;
4746 }
4747
4748 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4749                                int batch_mode)
4750 {
4751         struct host_command cmd = {
4752                 .host_command = CHANNEL,
4753                 .host_command_sequence = 0,
4754                 .host_command_length = sizeof(u32)
4755         };
4756         int err;
4757
4758         cmd.host_command_parameters[0] = channel;
4759
4760         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4761
4762         /* If BSS then we don't support channel selection */
4763         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4764                 return 0;
4765
4766         if ((channel != 0) &&
4767             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4768                 return -EINVAL;
4769
4770         if (!batch_mode) {
4771                 err = ipw2100_disable_adapter(priv);
4772                 if (err)
4773                         return err;
4774         }
4775
4776         err = ipw2100_hw_send_command(priv, &cmd);
4777         if (err) {
4778                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4779                 return err;
4780         }
4781
4782         if (channel)
4783                 priv->config |= CFG_STATIC_CHANNEL;
4784         else
4785                 priv->config &= ~CFG_STATIC_CHANNEL;
4786
4787         priv->channel = channel;
4788
4789         if (!batch_mode) {
4790                 err = ipw2100_enable_adapter(priv);
4791                 if (err)
4792                         return err;
4793         }
4794
4795         return 0;
4796 }
4797
4798 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4799 {
4800         struct host_command cmd = {
4801                 .host_command = SYSTEM_CONFIG,
4802                 .host_command_sequence = 0,
4803                 .host_command_length = 12,
4804         };
4805         u32 ibss_mask, len = sizeof(u32);
4806         int err;
4807
4808         /* Set system configuration */
4809
4810         if (!batch_mode) {
4811                 err = ipw2100_disable_adapter(priv);
4812                 if (err)
4813                         return err;
4814         }
4815
4816         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4817                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4818
4819         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4820             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4821
4822         if (!(priv->config & CFG_LONG_PREAMBLE))
4823                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4824
4825         err = ipw2100_get_ordinal(priv,
4826                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4827                                   &ibss_mask, &len);
4828         if (err)
4829                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4830
4831         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4832         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4833
4834         /* 11b only */
4835         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4836
4837         err = ipw2100_hw_send_command(priv, &cmd);
4838         if (err)
4839                 return err;
4840
4841 /* If IPv6 is configured in the kernel then we don't want to filter out all
4842  * of the multicast packets as IPv6 needs some. */
4843 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4844         cmd.host_command = ADD_MULTICAST;
4845         cmd.host_command_sequence = 0;
4846         cmd.host_command_length = 0;
4847
4848         ipw2100_hw_send_command(priv, &cmd);
4849 #endif
4850         if (!batch_mode) {
4851                 err = ipw2100_enable_adapter(priv);
4852                 if (err)
4853                         return err;
4854         }
4855
4856         return 0;
4857 }
4858
4859 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4860                                 int batch_mode)
4861 {
4862         struct host_command cmd = {
4863                 .host_command = BASIC_TX_RATES,
4864                 .host_command_sequence = 0,
4865                 .host_command_length = 4
4866         };
4867         int err;
4868
4869         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4870
4871         if (!batch_mode) {
4872                 err = ipw2100_disable_adapter(priv);
4873                 if (err)
4874                         return err;
4875         }
4876
4877         /* Set BASIC TX Rate first */
4878         ipw2100_hw_send_command(priv, &cmd);
4879
4880         /* Set TX Rate */
4881         cmd.host_command = TX_RATES;
4882         ipw2100_hw_send_command(priv, &cmd);
4883
4884         /* Set MSDU TX Rate */
4885         cmd.host_command = MSDU_TX_RATES;
4886         ipw2100_hw_send_command(priv, &cmd);
4887
4888         if (!batch_mode) {
4889                 err = ipw2100_enable_adapter(priv);
4890                 if (err)
4891                         return err;
4892         }
4893
4894         priv->tx_rates = rate;
4895
4896         return 0;
4897 }
4898
4899 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4900 {
4901         struct host_command cmd = {
4902                 .host_command = POWER_MODE,
4903                 .host_command_sequence = 0,
4904                 .host_command_length = 4
4905         };
4906         int err;
4907
4908         cmd.host_command_parameters[0] = power_level;
4909
4910         err = ipw2100_hw_send_command(priv, &cmd);
4911         if (err)
4912                 return err;
4913
4914         if (power_level == IPW_POWER_MODE_CAM)
4915                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4916         else
4917                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4918
4919 #ifdef IPW2100_TX_POWER
4920         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4921                 /* Set beacon interval */
4922                 cmd.host_command = TX_POWER_INDEX;
4923                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4924
4925                 err = ipw2100_hw_send_command(priv, &cmd);
4926                 if (err)
4927                         return err;
4928         }
4929 #endif
4930
4931         return 0;
4932 }
4933
4934 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4935 {
4936         struct host_command cmd = {
4937                 .host_command = RTS_THRESHOLD,
4938                 .host_command_sequence = 0,
4939                 .host_command_length = 4
4940         };
4941         int err;
4942
4943         if (threshold & RTS_DISABLED)
4944                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4945         else
4946                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4947
4948         err = ipw2100_hw_send_command(priv, &cmd);
4949         if (err)
4950                 return err;
4951
4952         priv->rts_threshold = threshold;
4953
4954         return 0;
4955 }
4956
4957 #if 0
4958 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4959                                         u32 threshold, int batch_mode)
4960 {
4961         struct host_command cmd = {
4962                 .host_command = FRAG_THRESHOLD,
4963                 .host_command_sequence = 0,
4964                 .host_command_length = 4,
4965                 .host_command_parameters[0] = 0,
4966         };
4967         int err;
4968
4969         if (!batch_mode) {
4970                 err = ipw2100_disable_adapter(priv);
4971                 if (err)
4972                         return err;
4973         }
4974
4975         if (threshold == 0)
4976                 threshold = DEFAULT_FRAG_THRESHOLD;
4977         else {
4978                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4979                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4980         }
4981
4982         cmd.host_command_parameters[0] = threshold;
4983
4984         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4985
4986         err = ipw2100_hw_send_command(priv, &cmd);
4987
4988         if (!batch_mode)
4989                 ipw2100_enable_adapter(priv);
4990
4991         if (!err)
4992                 priv->frag_threshold = threshold;
4993
4994         return err;
4995 }
4996 #endif
4997
4998 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4999 {
5000         struct host_command cmd = {
5001                 .host_command = SHORT_RETRY_LIMIT,
5002                 .host_command_sequence = 0,
5003                 .host_command_length = 4
5004         };
5005         int err;
5006
5007         cmd.host_command_parameters[0] = retry;
5008
5009         err = ipw2100_hw_send_command(priv, &cmd);
5010         if (err)
5011                 return err;
5012
5013         priv->short_retry_limit = retry;
5014
5015         return 0;
5016 }
5017
5018 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5019 {
5020         struct host_command cmd = {
5021                 .host_command = LONG_RETRY_LIMIT,
5022                 .host_command_sequence = 0,
5023                 .host_command_length = 4
5024         };
5025         int err;
5026
5027         cmd.host_command_parameters[0] = retry;
5028
5029         err = ipw2100_hw_send_command(priv, &cmd);
5030         if (err)
5031                 return err;
5032
5033         priv->long_retry_limit = retry;
5034
5035         return 0;
5036 }
5037
5038 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5039                                        int batch_mode)
5040 {
5041         struct host_command cmd = {
5042                 .host_command = MANDATORY_BSSID,
5043                 .host_command_sequence = 0,
5044                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5045         };
5046         int err;
5047
5048 #ifdef CONFIG_IPW2100_DEBUG
5049         DECLARE_MAC_BUF(mac);
5050         if (bssid != NULL)
5051                 IPW_DEBUG_HC("MANDATORY_BSSID: %s\n",
5052                              print_mac(mac, bssid));
5053         else
5054                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5055 #endif
5056         /* if BSSID is empty then we disable mandatory bssid mode */
5057         if (bssid != NULL)
5058                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5059
5060         if (!batch_mode) {
5061                 err = ipw2100_disable_adapter(priv);
5062                 if (err)
5063                         return err;
5064         }
5065
5066         err = ipw2100_hw_send_command(priv, &cmd);
5067
5068         if (!batch_mode)
5069                 ipw2100_enable_adapter(priv);
5070
5071         return err;
5072 }
5073
5074 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5075 {
5076         struct host_command cmd = {
5077                 .host_command = DISASSOCIATION_BSSID,
5078                 .host_command_sequence = 0,
5079                 .host_command_length = ETH_ALEN
5080         };
5081         int err;
5082         int len;
5083
5084         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5085
5086         len = ETH_ALEN;
5087         /* The Firmware currently ignores the BSSID and just disassociates from
5088          * the currently associated AP -- but in the off chance that a future
5089          * firmware does use the BSSID provided here, we go ahead and try and
5090          * set it to the currently associated AP's BSSID */
5091         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5092
5093         err = ipw2100_hw_send_command(priv, &cmd);
5094
5095         return err;
5096 }
5097
5098 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5099                               struct ipw2100_wpa_assoc_frame *, int)
5100     __attribute__ ((unused));
5101
5102 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5103                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5104                               int batch_mode)
5105 {
5106         struct host_command cmd = {
5107                 .host_command = SET_WPA_IE,
5108                 .host_command_sequence = 0,
5109                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5110         };
5111         int err;
5112
5113         IPW_DEBUG_HC("SET_WPA_IE\n");
5114
5115         if (!batch_mode) {
5116                 err = ipw2100_disable_adapter(priv);
5117                 if (err)
5118                         return err;
5119         }
5120
5121         memcpy(cmd.host_command_parameters, wpa_frame,
5122                sizeof(struct ipw2100_wpa_assoc_frame));
5123
5124         err = ipw2100_hw_send_command(priv, &cmd);
5125
5126         if (!batch_mode) {
5127                 if (ipw2100_enable_adapter(priv))
5128                         err = -EIO;
5129         }
5130
5131         return err;
5132 }
5133
5134 struct security_info_params {
5135         u32 allowed_ciphers;
5136         u16 version;
5137         u8 auth_mode;
5138         u8 replay_counters_number;
5139         u8 unicast_using_group;
5140 } __attribute__ ((packed));
5141
5142 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5143                                             int auth_mode,
5144                                             int security_level,
5145                                             int unicast_using_group,
5146                                             int batch_mode)
5147 {
5148         struct host_command cmd = {
5149                 .host_command = SET_SECURITY_INFORMATION,
5150                 .host_command_sequence = 0,
5151                 .host_command_length = sizeof(struct security_info_params)
5152         };
5153         struct security_info_params *security =
5154             (struct security_info_params *)&cmd.host_command_parameters;
5155         int err;
5156         memset(security, 0, sizeof(*security));
5157
5158         /* If shared key AP authentication is turned on, then we need to
5159          * configure the firmware to try and use it.
5160          *
5161          * Actual data encryption/decryption is handled by the host. */
5162         security->auth_mode = auth_mode;
5163         security->unicast_using_group = unicast_using_group;
5164
5165         switch (security_level) {
5166         default:
5167         case SEC_LEVEL_0:
5168                 security->allowed_ciphers = IPW_NONE_CIPHER;
5169                 break;
5170         case SEC_LEVEL_1:
5171                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5172                     IPW_WEP104_CIPHER;
5173                 break;
5174         case SEC_LEVEL_2:
5175                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5177                 break;
5178         case SEC_LEVEL_2_CKIP:
5179                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5181                 break;
5182         case SEC_LEVEL_3:
5183                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5184                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5185                 break;
5186         }
5187
5188         IPW_DEBUG_HC
5189             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5190              security->auth_mode, security->allowed_ciphers, security_level);
5191
5192         security->replay_counters_number = 0;
5193
5194         if (!batch_mode) {
5195                 err = ipw2100_disable_adapter(priv);
5196                 if (err)
5197                         return err;
5198         }
5199
5200         err = ipw2100_hw_send_command(priv, &cmd);
5201
5202         if (!batch_mode)
5203                 ipw2100_enable_adapter(priv);
5204
5205         return err;
5206 }
5207
5208 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5209 {
5210         struct host_command cmd = {
5211                 .host_command = TX_POWER_INDEX,
5212                 .host_command_sequence = 0,
5213                 .host_command_length = 4
5214         };
5215         int err = 0;
5216         u32 tmp = tx_power;
5217
5218         if (tx_power != IPW_TX_POWER_DEFAULT)
5219                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5220                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5221
5222         cmd.host_command_parameters[0] = tmp;
5223
5224         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5225                 err = ipw2100_hw_send_command(priv, &cmd);
5226         if (!err)
5227                 priv->tx_power = tx_power;
5228
5229         return 0;
5230 }
5231
5232 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5233                                             u32 interval, int batch_mode)
5234 {
5235         struct host_command cmd = {
5236                 .host_command = BEACON_INTERVAL,
5237                 .host_command_sequence = 0,
5238                 .host_command_length = 4
5239         };
5240         int err;
5241
5242         cmd.host_command_parameters[0] = interval;
5243
5244         IPW_DEBUG_INFO("enter\n");
5245
5246         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5247                 if (!batch_mode) {
5248                         err = ipw2100_disable_adapter(priv);
5249                         if (err)
5250                                 return err;
5251                 }
5252
5253                 ipw2100_hw_send_command(priv, &cmd);
5254
5255                 if (!batch_mode) {
5256                         err = ipw2100_enable_adapter(priv);
5257                         if (err)
5258                                 return err;
5259                 }
5260         }
5261
5262         IPW_DEBUG_INFO("exit\n");
5263
5264         return 0;
5265 }
5266
5267 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5268 {
5269         ipw2100_tx_initialize(priv);
5270         ipw2100_rx_initialize(priv);
5271         ipw2100_msg_initialize(priv);
5272 }
5273
5274 void ipw2100_queues_free(struct ipw2100_priv *priv)
5275 {
5276         ipw2100_tx_free(priv);
5277         ipw2100_rx_free(priv);
5278         ipw2100_msg_free(priv);
5279 }
5280
5281 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5282 {
5283         if (ipw2100_tx_allocate(priv) ||
5284             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5285                 goto fail;
5286
5287         return 0;
5288
5289       fail:
5290         ipw2100_tx_free(priv);
5291         ipw2100_rx_free(priv);
5292         ipw2100_msg_free(priv);
5293         return -ENOMEM;
5294 }
5295
5296 #define IPW_PRIVACY_CAPABLE 0x0008
5297
5298 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5299                                  int batch_mode)
5300 {
5301         struct host_command cmd = {
5302                 .host_command = WEP_FLAGS,
5303                 .host_command_sequence = 0,
5304                 .host_command_length = 4
5305         };
5306         int err;
5307
5308         cmd.host_command_parameters[0] = flags;
5309
5310         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5311
5312         if (!batch_mode) {
5313                 err = ipw2100_disable_adapter(priv);
5314                 if (err) {
5315                         printk(KERN_ERR DRV_NAME
5316                                ": %s: Could not disable adapter %d\n",
5317                                priv->net_dev->name, err);
5318                         return err;
5319                 }
5320         }
5321
5322         /* send cmd to firmware */
5323         err = ipw2100_hw_send_command(priv, &cmd);
5324
5325         if (!batch_mode)
5326                 ipw2100_enable_adapter(priv);
5327
5328         return err;
5329 }
5330
5331 struct ipw2100_wep_key {
5332         u8 idx;
5333         u8 len;
5334         u8 key[13];
5335 };
5336
5337 /* Macros to ease up priting WEP keys */
5338 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5339 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5340 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5341 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5342
5343 /**
5344  * Set a the wep key
5345  *
5346  * @priv: struct to work on
5347  * @idx: index of the key we want to set
5348  * @key: ptr to the key data to set
5349  * @len: length of the buffer at @key
5350  * @batch_mode: FIXME perform the operation in batch mode, not
5351  *              disabling the device.
5352  *
5353  * @returns 0 if OK, < 0 errno code on error.
5354  *
5355  * Fill out a command structure with the new wep key, length an
5356  * index and send it down the wire.
5357  */
5358 static int ipw2100_set_key(struct ipw2100_priv *priv,
5359                            int idx, char *key, int len, int batch_mode)
5360 {
5361         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5362         struct host_command cmd = {
5363                 .host_command = WEP_KEY_INFO,
5364                 .host_command_sequence = 0,
5365                 .host_command_length = sizeof(struct ipw2100_wep_key),
5366         };
5367         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5368         int err;
5369
5370         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5371                      idx, keylen, len);
5372
5373         /* NOTE: We don't check cached values in case the firmware was reset
5374          * or some other problem is occurring.  If the user is setting the key,
5375          * then we push the change */
5376
5377         wep_key->idx = idx;
5378         wep_key->len = keylen;
5379
5380         if (keylen) {
5381                 memcpy(wep_key->key, key, len);
5382                 memset(wep_key->key + len, 0, keylen - len);
5383         }
5384
5385         /* Will be optimized out on debug not being configured in */
5386         if (keylen == 0)
5387                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5388                               priv->net_dev->name, wep_key->idx);
5389         else if (keylen == 5)
5390                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5391                               priv->net_dev->name, wep_key->idx, wep_key->len,
5392                               WEP_STR_64(wep_key->key));
5393         else
5394                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5395                               "\n",
5396                               priv->net_dev->name, wep_key->idx, wep_key->len,
5397                               WEP_STR_128(wep_key->key));
5398
5399         if (!batch_mode) {
5400                 err = ipw2100_disable_adapter(priv);
5401                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5402                 if (err) {
5403                         printk(KERN_ERR DRV_NAME
5404                                ": %s: Could not disable adapter %d\n",
5405                                priv->net_dev->name, err);
5406                         return err;
5407                 }
5408         }
5409
5410         /* send cmd to firmware */
5411         err = ipw2100_hw_send_command(priv, &cmd);
5412
5413         if (!batch_mode) {
5414                 int err2 = ipw2100_enable_adapter(priv);
5415                 if (err == 0)
5416                         err = err2;
5417         }
5418         return err;
5419 }
5420
5421 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5422                                  int idx, int batch_mode)
5423 {
5424         struct host_command cmd = {
5425                 .host_command = WEP_KEY_INDEX,
5426                 .host_command_sequence = 0,
5427                 .host_command_length = 4,
5428                 .host_command_parameters = {idx},
5429         };
5430         int err;
5431
5432         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5433
5434         if (idx < 0 || idx > 3)
5435                 return -EINVAL;
5436
5437         if (!batch_mode) {
5438                 err = ipw2100_disable_adapter(priv);
5439                 if (err) {
5440                         printk(KERN_ERR DRV_NAME
5441                                ": %s: Could not disable adapter %d\n",
5442                                priv->net_dev->name, err);
5443                         return err;
5444                 }
5445         }
5446
5447         /* send cmd to firmware */
5448         err = ipw2100_hw_send_command(priv, &cmd);
5449
5450         if (!batch_mode)
5451                 ipw2100_enable_adapter(priv);
5452
5453         return err;
5454 }
5455
5456 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5457 {
5458         int i, err, auth_mode, sec_level, use_group;
5459
5460         if (!(priv->status & STATUS_RUNNING))
5461                 return 0;
5462
5463         if (!batch_mode) {
5464                 err = ipw2100_disable_adapter(priv);
5465                 if (err)
5466                         return err;
5467         }
5468
5469         if (!priv->ieee->sec.enabled) {
5470                 err =
5471                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5472                                                      SEC_LEVEL_0, 0, 1);
5473         } else {
5474                 auth_mode = IPW_AUTH_OPEN;
5475                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5476                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5477                                 auth_mode = IPW_AUTH_SHARED;
5478                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5479                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5480                 }
5481
5482                 sec_level = SEC_LEVEL_0;
5483                 if (priv->ieee->sec.flags & SEC_LEVEL)
5484                         sec_level = priv->ieee->sec.level;
5485
5486                 use_group = 0;
5487                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5488                         use_group = priv->ieee->sec.unicast_uses_group;
5489
5490                 err =
5491                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5492                                                      use_group, 1);
5493         }
5494
5495         if (err)
5496                 goto exit;
5497
5498         if (priv->ieee->sec.enabled) {
5499                 for (i = 0; i < 4; i++) {
5500                         if (!(priv->ieee->sec.flags & (1 << i))) {
5501                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5502                                 priv->ieee->sec.key_sizes[i] = 0;
5503                         } else {
5504                                 err = ipw2100_set_key(priv, i,
5505                                                       priv->ieee->sec.keys[i],
5506                                                       priv->ieee->sec.
5507                                                       key_sizes[i], 1);
5508                                 if (err)
5509                                         goto exit;
5510                         }
5511                 }
5512
5513                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5514         }
5515
5516         /* Always enable privacy so the Host can filter WEP packets if
5517          * encrypted data is sent up */
5518         err =
5519             ipw2100_set_wep_flags(priv,
5520                                   priv->ieee->sec.
5521                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5522         if (err)
5523                 goto exit;
5524
5525         priv->status &= ~STATUS_SECURITY_UPDATED;
5526
5527       exit:
5528         if (!batch_mode)
5529                 ipw2100_enable_adapter(priv);
5530
5531         return err;
5532 }
5533
5534 static void ipw2100_security_work(struct work_struct *work)
5535 {
5536         struct ipw2100_priv *priv =
5537                 container_of(work, struct ipw2100_priv, security_work.work);
5538
5539         /* If we happen to have reconnected before we get a chance to
5540          * process this, then update the security settings--which causes
5541          * a disassociation to occur */
5542         if (!(priv->status & STATUS_ASSOCIATED) &&
5543             priv->status & STATUS_SECURITY_UPDATED)
5544                 ipw2100_configure_security(priv, 0);
5545 }
5546
5547 static void shim__set_security(struct net_device *dev,
5548                                struct ieee80211_security *sec)
5549 {
5550         struct ipw2100_priv *priv = ieee80211_priv(dev);
5551         int i, force_update = 0;
5552
5553         mutex_lock(&priv->action_mutex);
5554         if (!(priv->status & STATUS_INITIALIZED))
5555                 goto done;
5556
5557         for (i = 0; i < 4; i++) {
5558                 if (sec->flags & (1 << i)) {
5559                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5560                         if (sec->key_sizes[i] == 0)
5561                                 priv->ieee->sec.flags &= ~(1 << i);
5562                         else
5563                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5564                                        sec->key_sizes[i]);
5565                         if (sec->level == SEC_LEVEL_1) {
5566                                 priv->ieee->sec.flags |= (1 << i);
5567                                 priv->status |= STATUS_SECURITY_UPDATED;
5568                         } else
5569                                 priv->ieee->sec.flags &= ~(1 << i);
5570                 }
5571         }
5572
5573         if ((sec->flags & SEC_ACTIVE_KEY) &&
5574             priv->ieee->sec.active_key != sec->active_key) {
5575                 if (sec->active_key <= 3) {
5576                         priv->ieee->sec.active_key = sec->active_key;
5577                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5578                 } else
5579                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5580
5581                 priv->status |= STATUS_SECURITY_UPDATED;
5582         }
5583
5584         if ((sec->flags & SEC_AUTH_MODE) &&
5585             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5586                 priv->ieee->sec.auth_mode = sec->auth_mode;
5587                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5588                 priv->status |= STATUS_SECURITY_UPDATED;
5589         }
5590
5591         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5592                 priv->ieee->sec.flags |= SEC_ENABLED;
5593                 priv->ieee->sec.enabled = sec->enabled;
5594                 priv->status |= STATUS_SECURITY_UPDATED;
5595                 force_update = 1;
5596         }
5597
5598         if (sec->flags & SEC_ENCRYPT)
5599                 priv->ieee->sec.encrypt = sec->encrypt;
5600
5601         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5602                 priv->ieee->sec.level = sec->level;
5603                 priv->ieee->sec.flags |= SEC_LEVEL;
5604                 priv->status |= STATUS_SECURITY_UPDATED;
5605         }
5606
5607         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5608                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5609                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5610                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5611                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5612                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5613                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5614                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5615                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5616                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5617
5618 /* As a temporary work around to enable WPA until we figure out why
5619  * wpa_supplicant toggles the security capability of the driver, which
5620  * forces a disassocation with force_update...
5621  *
5622  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5623         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5624                 ipw2100_configure_security(priv, 0);
5625       done:
5626         mutex_unlock(&priv->action_mutex);
5627 }
5628
5629 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5630 {
5631         int err;
5632         int batch_mode = 1;
5633         u8 *bssid;
5634
5635         IPW_DEBUG_INFO("enter\n");
5636
5637         err = ipw2100_disable_adapter(priv);
5638         if (err)
5639                 return err;
5640 #ifdef CONFIG_IPW2100_MONITOR
5641         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5642                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5643                 if (err)
5644                         return err;
5645
5646                 IPW_DEBUG_INFO("exit\n");
5647
5648                 return 0;
5649         }
5650 #endif                          /* CONFIG_IPW2100_MONITOR */
5651
5652         err = ipw2100_read_mac_address(priv);
5653         if (err)
5654                 return -EIO;
5655
5656         err = ipw2100_set_mac_address(priv, batch_mode);
5657         if (err)
5658                 return err;
5659
5660         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5661         if (err)
5662                 return err;
5663
5664         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5665                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5666                 if (err)
5667                         return err;
5668         }
5669
5670         err = ipw2100_system_config(priv, batch_mode);
5671         if (err)
5672                 return err;
5673
5674         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5675         if (err)
5676                 return err;
5677
5678         /* Default to power mode OFF */
5679         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5680         if (err)
5681                 return err;
5682
5683         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5684         if (err)
5685                 return err;
5686
5687         if (priv->config & CFG_STATIC_BSSID)
5688                 bssid = priv->bssid;
5689         else
5690                 bssid = NULL;
5691         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5692         if (err)
5693                 return err;
5694
5695         if (priv->config & CFG_STATIC_ESSID)
5696                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5697                                         batch_mode);
5698         else
5699                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5700         if (err)
5701                 return err;
5702
5703         err = ipw2100_configure_security(priv, batch_mode);
5704         if (err)
5705                 return err;
5706
5707         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5708                 err =
5709                     ipw2100_set_ibss_beacon_interval(priv,
5710                                                      priv->beacon_interval,
5711                                                      batch_mode);
5712                 if (err)
5713                         return err;
5714
5715                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5716                 if (err)
5717                         return err;
5718         }
5719
5720         /*
5721            err = ipw2100_set_fragmentation_threshold(
5722            priv, priv->frag_threshold, batch_mode);
5723            if (err)
5724            return err;
5725          */
5726
5727         IPW_DEBUG_INFO("exit\n");
5728
5729         return 0;
5730 }
5731
5732 /*************************************************************************
5733  *
5734  * EXTERNALLY CALLED METHODS
5735  *
5736  *************************************************************************/
5737
5738 /* This method is called by the network layer -- not to be confused with
5739  * ipw2100_set_mac_address() declared above called by this driver (and this
5740  * method as well) to talk to the firmware */
5741 static int ipw2100_set_address(struct net_device *dev, void *p)
5742 {
5743         struct ipw2100_priv *priv = ieee80211_priv(dev);
5744         struct sockaddr *addr = p;
5745         int err = 0;
5746
5747         if (!is_valid_ether_addr(addr->sa_data))
5748                 return -EADDRNOTAVAIL;
5749
5750         mutex_lock(&priv->action_mutex);
5751
5752         priv->config |= CFG_CUSTOM_MAC;
5753         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5754
5755         err = ipw2100_set_mac_address(priv, 0);
5756         if (err)
5757                 goto done;
5758
5759         priv->reset_backoff = 0;
5760         mutex_unlock(&priv->action_mutex);
5761         ipw2100_reset_adapter(&priv->reset_work.work);
5762         return 0;
5763
5764       done:
5765         mutex_unlock(&priv->action_mutex);
5766         return err;
5767 }
5768
5769 static int ipw2100_open(struct net_device *dev)
5770 {
5771         struct ipw2100_priv *priv = ieee80211_priv(dev);
5772         unsigned long flags;
5773         IPW_DEBUG_INFO("dev->open\n");
5774
5775         spin_lock_irqsave(&priv->low_lock, flags);
5776         if (priv->status & STATUS_ASSOCIATED) {
5777                 netif_carrier_on(dev);
5778                 netif_start_queue(dev);
5779         }
5780         spin_unlock_irqrestore(&priv->low_lock, flags);
5781
5782         return 0;
5783 }
5784
5785 static int ipw2100_close(struct net_device *dev)
5786 {
5787         struct ipw2100_priv *priv = ieee80211_priv(dev);
5788         unsigned long flags;
5789         struct list_head *element;
5790         struct ipw2100_tx_packet *packet;
5791
5792         IPW_DEBUG_INFO("enter\n");
5793
5794         spin_lock_irqsave(&priv->low_lock, flags);
5795
5796         if (priv->status & STATUS_ASSOCIATED)
5797                 netif_carrier_off(dev);
5798         netif_stop_queue(dev);
5799
5800         /* Flush the TX queue ... */
5801         while (!list_empty(&priv->tx_pend_list)) {
5802                 element = priv->tx_pend_list.next;
5803                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5804
5805                 list_del(element);
5806                 DEC_STAT(&priv->tx_pend_stat);
5807
5808                 ieee80211_txb_free(packet->info.d_struct.txb);
5809                 packet->info.d_struct.txb = NULL;
5810
5811                 list_add_tail(element, &priv->tx_free_list);
5812                 INC_STAT(&priv->tx_free_stat);
5813         }
5814         spin_unlock_irqrestore(&priv->low_lock, flags);
5815
5816         IPW_DEBUG_INFO("exit\n");
5817
5818         return 0;
5819 }
5820
5821 /*
5822  * TODO:  Fix this function... its just wrong
5823  */
5824 static void ipw2100_tx_timeout(struct net_device *dev)
5825 {
5826         struct ipw2100_priv *priv = ieee80211_priv(dev);
5827
5828         priv->ieee->stats.tx_errors++;
5829
5830 #ifdef CONFIG_IPW2100_MONITOR
5831         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5832                 return;
5833 #endif
5834
5835         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5836                        dev->name);
5837         schedule_reset(priv);
5838 }
5839
5840 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5841 {
5842         /* This is called when wpa_supplicant loads and closes the driver
5843          * interface. */
5844         priv->ieee->wpa_enabled = value;
5845         return 0;
5846 }
5847
5848 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5849 {
5850
5851         struct ieee80211_device *ieee = priv->ieee;
5852         struct ieee80211_security sec = {
5853                 .flags = SEC_AUTH_MODE,
5854         };
5855         int ret = 0;
5856
5857         if (value & IW_AUTH_ALG_SHARED_KEY) {
5858                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5859                 ieee->open_wep = 0;
5860         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5861                 sec.auth_mode = WLAN_AUTH_OPEN;
5862                 ieee->open_wep = 1;
5863         } else if (value & IW_AUTH_ALG_LEAP) {
5864                 sec.auth_mode = WLAN_AUTH_LEAP;
5865                 ieee->open_wep = 1;
5866         } else
5867                 return -EINVAL;
5868
5869         if (ieee->set_security)
5870                 ieee->set_security(ieee->dev, &sec);
5871         else
5872                 ret = -EOPNOTSUPP;
5873
5874         return ret;
5875 }
5876
5877 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5878                                     char *wpa_ie, int wpa_ie_len)
5879 {
5880
5881         struct ipw2100_wpa_assoc_frame frame;
5882
5883         frame.fixed_ie_mask = 0;
5884
5885         /* copy WPA IE */
5886         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5887         frame.var_ie_len = wpa_ie_len;
5888
5889         /* make sure WPA is enabled */
5890         ipw2100_wpa_enable(priv, 1);
5891         ipw2100_set_wpa_ie(priv, &frame, 0);
5892 }
5893
5894 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5895                                     struct ethtool_drvinfo *info)
5896 {
5897         struct ipw2100_priv *priv = ieee80211_priv(dev);
5898         char fw_ver[64], ucode_ver[64];
5899
5900         strcpy(info->driver, DRV_NAME);
5901         strcpy(info->version, DRV_VERSION);
5902
5903         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5904         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5905
5906         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5907                  fw_ver, priv->eeprom_version, ucode_ver);
5908
5909         strcpy(info->bus_info, pci_name(priv->pci_dev));
5910 }
5911
5912 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5913 {
5914         struct ipw2100_priv *priv = ieee80211_priv(dev);
5915         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5916 }
5917
5918 static const struct ethtool_ops ipw2100_ethtool_ops = {
5919         .get_link = ipw2100_ethtool_get_link,
5920         .get_drvinfo = ipw_ethtool_get_drvinfo,
5921 };
5922
5923 static void ipw2100_hang_check(struct work_struct *work)
5924 {
5925         struct ipw2100_priv *priv =
5926                 container_of(work, struct ipw2100_priv, hang_check.work);
5927         unsigned long flags;
5928         u32 rtc = 0xa5a5a5a5;
5929         u32 len = sizeof(rtc);
5930         int restart = 0;
5931
5932         spin_lock_irqsave(&priv->low_lock, flags);
5933
5934         if (priv->fatal_error != 0) {
5935                 /* If fatal_error is set then we need to restart */
5936                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5937                                priv->net_dev->name);
5938
5939                 restart = 1;
5940         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5941                    (rtc == priv->last_rtc)) {
5942                 /* Check if firmware is hung */
5943                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5944                                priv->net_dev->name);
5945
5946                 restart = 1;
5947         }
5948
5949         if (restart) {
5950                 /* Kill timer */
5951                 priv->stop_hang_check = 1;
5952                 priv->hangs++;
5953
5954                 /* Restart the NIC */
5955                 schedule_reset(priv);
5956         }
5957
5958         priv->last_rtc = rtc;
5959
5960         if (!priv->stop_hang_check)
5961                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5962
5963         spin_unlock_irqrestore(&priv->low_lock, flags);
5964 }
5965
5966 static void ipw2100_rf_kill(struct work_struct *work)
5967 {
5968         struct ipw2100_priv *priv =
5969                 container_of(work, struct ipw2100_priv, rf_kill.work);
5970         unsigned long flags;
5971
5972         spin_lock_irqsave(&priv->low_lock, flags);
5973
5974         if (rf_kill_active(priv)) {
5975                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5976                 if (!priv->stop_rf_kill)
5977                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
5978                                            round_jiffies(HZ));
5979                 goto exit_unlock;
5980         }
5981
5982         /* RF Kill is now disabled, so bring the device back up */
5983
5984         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5985                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5986                                   "device\n");
5987                 schedule_reset(priv);
5988         } else
5989                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5990                                   "enabled\n");
5991
5992       exit_unlock:
5993         spin_unlock_irqrestore(&priv->low_lock, flags);
5994 }
5995
5996 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5997
5998 /* Look into using netdev destructor to shutdown ieee80211? */
5999
6000 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6001                                                void __iomem * base_addr,
6002                                                unsigned long mem_start,
6003                                                unsigned long mem_len)
6004 {
6005         struct ipw2100_priv *priv;
6006         struct net_device *dev;
6007
6008         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6009         if (!dev)
6010                 return NULL;
6011         priv = ieee80211_priv(dev);
6012         priv->ieee = netdev_priv(dev);
6013         priv->pci_dev = pci_dev;
6014         priv->net_dev = dev;
6015
6016         priv->ieee->hard_start_xmit = ipw2100_tx;
6017         priv->ieee->set_security = shim__set_security;
6018
6019         priv->ieee->perfect_rssi = -20;
6020         priv->ieee->worst_rssi = -85;
6021
6022         dev->open = ipw2100_open;
6023         dev->stop = ipw2100_close;
6024         dev->init = ipw2100_net_init;
6025         dev->ethtool_ops = &ipw2100_ethtool_ops;
6026         dev->tx_timeout = ipw2100_tx_timeout;
6027         dev->wireless_handlers = &ipw2100_wx_handler_def;
6028         priv->wireless_data.ieee80211 = priv->ieee;
6029         dev->wireless_data = &priv->wireless_data;
6030         dev->set_mac_address = ipw2100_set_address;
6031         dev->watchdog_timeo = 3 * HZ;
6032         dev->irq = 0;
6033
6034         dev->base_addr = (unsigned long)base_addr;
6035         dev->mem_start = mem_start;
6036         dev->mem_end = dev->mem_start + mem_len - 1;
6037
6038         /* NOTE: We don't use the wireless_handlers hook
6039          * in dev as the system will start throwing WX requests
6040          * to us before we're actually initialized and it just
6041          * ends up causing problems.  So, we just handle
6042          * the WX extensions through the ipw2100_ioctl interface */
6043
6044         /* memset() puts everything to 0, so we only have explicitely set
6045          * those values that need to be something else */
6046
6047         /* If power management is turned on, default to AUTO mode */
6048         priv->power_mode = IPW_POWER_AUTO;
6049
6050 #ifdef CONFIG_IPW2100_MONITOR
6051         priv->config |= CFG_CRC_CHECK;
6052 #endif
6053         priv->ieee->wpa_enabled = 0;
6054         priv->ieee->drop_unencrypted = 0;
6055         priv->ieee->privacy_invoked = 0;
6056         priv->ieee->ieee802_1x = 1;
6057
6058         /* Set module parameters */
6059         switch (mode) {
6060         case 1:
6061                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6062                 break;
6063 #ifdef CONFIG_IPW2100_MONITOR
6064         case 2:
6065                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6066                 break;
6067 #endif
6068         default:
6069         case 0:
6070                 priv->ieee->iw_mode = IW_MODE_INFRA;
6071                 break;
6072         }
6073
6074         if (disable == 1)
6075                 priv->status |= STATUS_RF_KILL_SW;
6076
6077         if (channel != 0 &&
6078             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6079                 priv->config |= CFG_STATIC_CHANNEL;
6080                 priv->channel = channel;
6081         }
6082
6083         if (associate)
6084                 priv->config |= CFG_ASSOCIATE;
6085
6086         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6087         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6088         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6089         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6090         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6091         priv->tx_power = IPW_TX_POWER_DEFAULT;
6092         priv->tx_rates = DEFAULT_TX_RATES;
6093
6094         strcpy(priv->nick, "ipw2100");
6095
6096         spin_lock_init(&priv->low_lock);
6097         mutex_init(&priv->action_mutex);
6098         mutex_init(&priv->adapter_mutex);
6099
6100         init_waitqueue_head(&priv->wait_command_queue);
6101
6102         netif_carrier_off(dev);
6103
6104         INIT_LIST_HEAD(&priv->msg_free_list);
6105         INIT_LIST_HEAD(&priv->msg_pend_list);
6106         INIT_STAT(&priv->msg_free_stat);
6107         INIT_STAT(&priv->msg_pend_stat);
6108
6109         INIT_LIST_HEAD(&priv->tx_free_list);
6110         INIT_LIST_HEAD(&priv->tx_pend_list);
6111         INIT_STAT(&priv->tx_free_stat);
6112         INIT_STAT(&priv->tx_pend_stat);
6113
6114         INIT_LIST_HEAD(&priv->fw_pend_list);
6115         INIT_STAT(&priv->fw_pend_stat);
6116
6117         priv->workqueue = create_workqueue(DRV_NAME);
6118
6119         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6120         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6121         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6122         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6123         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6124
6125         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6126                      ipw2100_irq_tasklet, (unsigned long)priv);
6127
6128         /* NOTE:  We do not start the deferred work for status checks yet */
6129         priv->stop_rf_kill = 1;
6130         priv->stop_hang_check = 1;
6131
6132         return dev;
6133 }
6134
6135 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6136                                 const struct pci_device_id *ent)
6137 {
6138         unsigned long mem_start, mem_len, mem_flags;
6139         void __iomem *base_addr = NULL;
6140         struct net_device *dev = NULL;
6141         struct ipw2100_priv *priv = NULL;
6142         int err = 0;
6143         int registered = 0;
6144         u32 val;
6145
6146         IPW_DEBUG_INFO("enter\n");
6147
6148         mem_start = pci_resource_start(pci_dev, 0);
6149         mem_len = pci_resource_len(pci_dev, 0);
6150         mem_flags = pci_resource_flags(pci_dev, 0);
6151
6152         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6153                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6154                 err = -ENODEV;
6155                 goto fail;
6156         }
6157
6158         base_addr = ioremap_nocache(mem_start, mem_len);
6159         if (!base_addr) {
6160                 printk(KERN_WARNING DRV_NAME
6161                        "Error calling ioremap_nocache.\n");
6162                 err = -EIO;
6163                 goto fail;
6164         }
6165
6166         /* allocate and initialize our net_device */
6167         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6168         if (!dev) {
6169                 printk(KERN_WARNING DRV_NAME
6170                        "Error calling ipw2100_alloc_device.\n");
6171                 err = -ENOMEM;
6172                 goto fail;
6173         }
6174
6175         /* set up PCI mappings for device */
6176         err = pci_enable_device(pci_dev);
6177         if (err) {
6178                 printk(KERN_WARNING DRV_NAME
6179                        "Error calling pci_enable_device.\n");
6180                 return err;
6181         }
6182
6183         priv = ieee80211_priv(dev);
6184
6185         pci_set_master(pci_dev);
6186         pci_set_drvdata(pci_dev, priv);
6187
6188         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6189         if (err) {
6190                 printk(KERN_WARNING DRV_NAME
6191                        "Error calling pci_set_dma_mask.\n");
6192                 pci_disable_device(pci_dev);
6193                 return err;
6194         }
6195
6196         err = pci_request_regions(pci_dev, DRV_NAME);
6197         if (err) {
6198                 printk(KERN_WARNING DRV_NAME
6199                        "Error calling pci_request_regions.\n");
6200                 pci_disable_device(pci_dev);
6201                 return err;
6202         }
6203
6204         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6205          * PCI Tx retries from interfering with C3 CPU state */
6206         pci_read_config_dword(pci_dev, 0x40, &val);
6207         if ((val & 0x0000ff00) != 0)
6208                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6209
6210         pci_set_power_state(pci_dev, PCI_D0);
6211
6212         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6213                 printk(KERN_WARNING DRV_NAME
6214                        "Device not found via register read.\n");
6215                 err = -ENODEV;
6216                 goto fail;
6217         }
6218
6219         SET_NETDEV_DEV(dev, &pci_dev->dev);
6220
6221         /* Force interrupts to be shut off on the device */
6222         priv->status |= STATUS_INT_ENABLED;
6223         ipw2100_disable_interrupts(priv);
6224
6225         /* Allocate and initialize the Tx/Rx queues and lists */
6226         if (ipw2100_queues_allocate(priv)) {
6227                 printk(KERN_WARNING DRV_NAME
6228                        "Error calling ipw2100_queues_allocate.\n");
6229                 err = -ENOMEM;
6230                 goto fail;
6231         }
6232         ipw2100_queues_initialize(priv);
6233
6234         err = request_irq(pci_dev->irq,
6235                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6236         if (err) {
6237                 printk(KERN_WARNING DRV_NAME
6238                        "Error calling request_irq: %d.\n", pci_dev->irq);
6239                 goto fail;
6240         }
6241         dev->irq = pci_dev->irq;
6242
6243         IPW_DEBUG_INFO("Attempting to register device...\n");
6244
6245         printk(KERN_INFO DRV_NAME
6246                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6247
6248         /* Bring up the interface.  Pre 0.46, after we registered the
6249          * network device we would call ipw2100_up.  This introduced a race
6250          * condition with newer hotplug configurations (network was coming
6251          * up and making calls before the device was initialized).
6252          *
6253          * If we called ipw2100_up before we registered the device, then the
6254          * device name wasn't registered.  So, we instead use the net_dev->init
6255          * member to call a function that then just turns and calls ipw2100_up.
6256          * net_dev->init is called after name allocation but before the
6257          * notifier chain is called */
6258         err = register_netdev(dev);
6259         if (err) {
6260                 printk(KERN_WARNING DRV_NAME
6261                        "Error calling register_netdev.\n");
6262                 goto fail;
6263         }
6264
6265         mutex_lock(&priv->action_mutex);
6266         registered = 1;
6267
6268         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6269
6270         /* perform this after register_netdev so that dev->name is set */
6271         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6272         if (err)
6273                 goto fail_unlock;
6274
6275         /* If the RF Kill switch is disabled, go ahead and complete the
6276          * startup sequence */
6277         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6278                 /* Enable the adapter - sends HOST_COMPLETE */
6279                 if (ipw2100_enable_adapter(priv)) {
6280                         printk(KERN_WARNING DRV_NAME
6281                                ": %s: failed in call to enable adapter.\n",
6282                                priv->net_dev->name);
6283                         ipw2100_hw_stop_adapter(priv);
6284                         err = -EIO;
6285                         goto fail_unlock;
6286                 }
6287
6288                 /* Start a scan . . . */
6289                 ipw2100_set_scan_options(priv);
6290                 ipw2100_start_scan(priv);
6291         }
6292
6293         IPW_DEBUG_INFO("exit\n");
6294
6295         priv->status |= STATUS_INITIALIZED;
6296
6297         mutex_unlock(&priv->action_mutex);
6298
6299         return 0;
6300
6301       fail_unlock:
6302         mutex_unlock(&priv->action_mutex);
6303
6304       fail:
6305         if (dev) {
6306                 if (registered)
6307                         unregister_netdev(dev);
6308
6309                 ipw2100_hw_stop_adapter(priv);
6310
6311                 ipw2100_disable_interrupts(priv);
6312
6313                 if (dev->irq)
6314                         free_irq(dev->irq, priv);
6315
6316                 ipw2100_kill_workqueue(priv);
6317
6318                 /* These are safe to call even if they weren't allocated */
6319                 ipw2100_queues_free(priv);
6320                 sysfs_remove_group(&pci_dev->dev.kobj,
6321                                    &ipw2100_attribute_group);
6322
6323                 free_ieee80211(dev);
6324                 pci_set_drvdata(pci_dev, NULL);
6325         }
6326
6327         if (base_addr)
6328                 iounmap(base_addr);
6329
6330         pci_release_regions(pci_dev);
6331         pci_disable_device(pci_dev);
6332
6333         return err;
6334 }
6335
6336 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6337 {
6338         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6339         struct net_device *dev;
6340
6341         if (priv) {
6342                 mutex_lock(&priv->action_mutex);
6343
6344                 priv->status &= ~STATUS_INITIALIZED;
6345
6346                 dev = priv->net_dev;
6347                 sysfs_remove_group(&pci_dev->dev.kobj,
6348                                    &ipw2100_attribute_group);
6349
6350 #ifdef CONFIG_PM
6351                 if (ipw2100_firmware.version)
6352                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6353 #endif
6354                 /* Take down the hardware */
6355                 ipw2100_down(priv);
6356
6357                 /* Release the mutex so that the network subsystem can
6358                  * complete any needed calls into the driver... */
6359                 mutex_unlock(&priv->action_mutex);
6360
6361                 /* Unregister the device first - this results in close()
6362                  * being called if the device is open.  If we free storage
6363                  * first, then close() will crash. */
6364                 unregister_netdev(dev);
6365
6366                 /* ipw2100_down will ensure that there is no more pending work
6367                  * in the workqueue's, so we can safely remove them now. */
6368                 ipw2100_kill_workqueue(priv);
6369
6370                 ipw2100_queues_free(priv);
6371
6372                 /* Free potential debugging firmware snapshot */
6373                 ipw2100_snapshot_free(priv);
6374
6375                 if (dev->irq)
6376                         free_irq(dev->irq, priv);
6377
6378                 if (dev->base_addr)
6379                         iounmap((void __iomem *)dev->base_addr);
6380
6381                 free_ieee80211(dev);
6382         }
6383
6384         pci_release_regions(pci_dev);
6385         pci_disable_device(pci_dev);
6386
6387         IPW_DEBUG_INFO("exit\n");
6388 }
6389
6390 #ifdef CONFIG_PM
6391 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6392 {
6393         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6394         struct net_device *dev = priv->net_dev;
6395
6396         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6397
6398         mutex_lock(&priv->action_mutex);
6399         if (priv->status & STATUS_INITIALIZED) {
6400                 /* Take down the device; powers it off, etc. */
6401                 ipw2100_down(priv);
6402         }
6403
6404         /* Remove the PRESENT state of the device */
6405         netif_device_detach(dev);
6406
6407         pci_save_state(pci_dev);
6408         pci_disable_device(pci_dev);
6409         pci_set_power_state(pci_dev, PCI_D3hot);
6410
6411         mutex_unlock(&priv->action_mutex);
6412
6413         return 0;
6414 }
6415
6416 static int ipw2100_resume(struct pci_dev *pci_dev)
6417 {
6418         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6419         struct net_device *dev = priv->net_dev;
6420         int err;
6421         u32 val;
6422
6423         if (IPW2100_PM_DISABLED)
6424                 return 0;
6425
6426         mutex_lock(&priv->action_mutex);
6427
6428         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6429
6430         pci_set_power_state(pci_dev, PCI_D0);
6431         err = pci_enable_device(pci_dev);
6432         if (err) {
6433                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6434                        dev->name);
6435                 return err;
6436         }
6437         pci_restore_state(pci_dev);
6438
6439         /*
6440          * Suspend/Resume resets the PCI configuration space, so we have to
6441          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6442          * from interfering with C3 CPU state. pci_restore_state won't help
6443          * here since it only restores the first 64 bytes pci config header.
6444          */
6445         pci_read_config_dword(pci_dev, 0x40, &val);
6446         if ((val & 0x0000ff00) != 0)
6447                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6448
6449         /* Set the device back into the PRESENT state; this will also wake
6450          * the queue of needed */
6451         netif_device_attach(dev);
6452
6453         /* Bring the device back up */
6454         if (!(priv->status & STATUS_RF_KILL_SW))
6455                 ipw2100_up(priv, 0);
6456
6457         mutex_unlock(&priv->action_mutex);
6458
6459         return 0;
6460 }
6461 #endif
6462
6463 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6464
6465 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6466         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6467         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6468         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6469         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6470         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6471         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6472         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6473         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6474         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6475         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6476         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6477         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6478         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6479
6480         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6481         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6482         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6483         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6484         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6485
6486         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6487         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6488         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6489         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6490         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6491         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6492         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6493
6494         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6495
6496         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6497         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6498         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6499         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6500         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6501         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6502         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6503
6504         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6505         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6506         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6507         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6508         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6509         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6510
6511         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6512         {0,},
6513 };
6514
6515 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6516
6517 static struct pci_driver ipw2100_pci_driver = {
6518         .name = DRV_NAME,
6519         .id_table = ipw2100_pci_id_table,
6520         .probe = ipw2100_pci_init_one,
6521         .remove = __devexit_p(ipw2100_pci_remove_one),
6522 #ifdef CONFIG_PM
6523         .suspend = ipw2100_suspend,
6524         .resume = ipw2100_resume,
6525 #endif
6526 };
6527
6528 /**
6529  * Initialize the ipw2100 driver/module
6530  *
6531  * @returns 0 if ok, < 0 errno node con error.
6532  *
6533  * Note: we cannot init the /proc stuff until the PCI driver is there,
6534  * or we risk an unlikely race condition on someone accessing
6535  * uninitialized data in the PCI dev struct through /proc.
6536  */
6537 static int __init ipw2100_init(void)
6538 {
6539         int ret;
6540
6541         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6542         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6543
6544         ret = pci_register_driver(&ipw2100_pci_driver);
6545         if (ret)
6546                 goto out;
6547
6548         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6549 #ifdef CONFIG_IPW2100_DEBUG
6550         ipw2100_debug_level = debug;
6551         ret = driver_create_file(&ipw2100_pci_driver.driver,
6552                                  &driver_attr_debug_level);
6553 #endif
6554
6555 out:
6556         return ret;
6557 }
6558
6559 /**
6560  * Cleanup ipw2100 driver registration
6561  */
6562 static void __exit ipw2100_exit(void)
6563 {
6564         /* FIXME: IPG: check that we have no instances of the devices open */
6565 #ifdef CONFIG_IPW2100_DEBUG
6566         driver_remove_file(&ipw2100_pci_driver.driver,
6567                            &driver_attr_debug_level);
6568 #endif
6569         pci_unregister_driver(&ipw2100_pci_driver);
6570         remove_acceptable_latency("ipw2100");
6571 }
6572
6573 module_init(ipw2100_init);
6574 module_exit(ipw2100_exit);
6575
6576 #define WEXT_USECHANNELS 1
6577
6578 static const long ipw2100_frequencies[] = {
6579         2412, 2417, 2422, 2427,
6580         2432, 2437, 2442, 2447,
6581         2452, 2457, 2462, 2467,
6582         2472, 2484
6583 };
6584
6585 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6586                     sizeof(ipw2100_frequencies[0]))
6587
6588 static const long ipw2100_rates_11b[] = {
6589         1000000,
6590         2000000,
6591         5500000,
6592         11000000
6593 };
6594
6595 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6596
6597 static int ipw2100_wx_get_name(struct net_device *dev,
6598                                struct iw_request_info *info,
6599                                union iwreq_data *wrqu, char *extra)
6600 {
6601         /*
6602          * This can be called at any time.  No action lock required
6603          */
6604
6605         struct ipw2100_priv *priv = ieee80211_priv(dev);
6606         if (!(priv->status & STATUS_ASSOCIATED))
6607                 strcpy(wrqu->name, "unassociated");
6608         else
6609                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6610
6611         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6612         return 0;
6613 }
6614
6615 static int ipw2100_wx_set_freq(struct net_device *dev,
6616                                struct iw_request_info *info,
6617                                union iwreq_data *wrqu, char *extra)
6618 {
6619         struct ipw2100_priv *priv = ieee80211_priv(dev);
6620         struct iw_freq *fwrq = &wrqu->freq;
6621         int err = 0;
6622
6623         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6624                 return -EOPNOTSUPP;
6625
6626         mutex_lock(&priv->action_mutex);
6627         if (!(priv->status & STATUS_INITIALIZED)) {
6628                 err = -EIO;
6629                 goto done;
6630         }
6631
6632         /* if setting by freq convert to channel */
6633         if (fwrq->e == 1) {
6634                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6635                         int f = fwrq->m / 100000;
6636                         int c = 0;
6637
6638                         while ((c < REG_MAX_CHANNEL) &&
6639                                (f != ipw2100_frequencies[c]))
6640                                 c++;
6641
6642                         /* hack to fall through */
6643                         fwrq->e = 0;
6644                         fwrq->m = c + 1;
6645                 }
6646         }
6647
6648         if (fwrq->e > 0 || fwrq->m > 1000) {
6649                 err = -EOPNOTSUPP;
6650                 goto done;
6651         } else {                /* Set the channel */
6652                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6653                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6654         }
6655
6656       done:
6657         mutex_unlock(&priv->action_mutex);
6658         return err;
6659 }
6660
6661 static int ipw2100_wx_get_freq(struct net_device *dev,
6662                                struct iw_request_info *info,
6663                                union iwreq_data *wrqu, char *extra)
6664 {
6665         /*
6666          * This can be called at any time.  No action lock required
6667          */
6668
6669         struct ipw2100_priv *priv = ieee80211_priv(dev);
6670
6671         wrqu->freq.e = 0;
6672
6673         /* If we are associated, trying to associate, or have a statically
6674          * configured CHANNEL then return that; otherwise return ANY */
6675         if (priv->config & CFG_STATIC_CHANNEL ||
6676             priv->status & STATUS_ASSOCIATED)
6677                 wrqu->freq.m = priv->channel;
6678         else
6679                 wrqu->freq.m = 0;
6680
6681         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6682         return 0;
6683
6684 }
6685
6686 static int ipw2100_wx_set_mode(struct net_device *dev,
6687                                struct iw_request_info *info,
6688                                union iwreq_data *wrqu, char *extra)
6689 {
6690         struct ipw2100_priv *priv = ieee80211_priv(dev);
6691         int err = 0;
6692
6693         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6694
6695         if (wrqu->mode == priv->ieee->iw_mode)
6696                 return 0;
6697
6698         mutex_lock(&priv->action_mutex);
6699         if (!(priv->status & STATUS_INITIALIZED)) {
6700                 err = -EIO;
6701                 goto done;
6702         }
6703
6704         switch (wrqu->mode) {
6705 #ifdef CONFIG_IPW2100_MONITOR
6706         case IW_MODE_MONITOR:
6707                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6708                 break;
6709 #endif                          /* CONFIG_IPW2100_MONITOR */
6710         case IW_MODE_ADHOC:
6711                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6712                 break;
6713         case IW_MODE_INFRA:
6714         case IW_MODE_AUTO:
6715         default:
6716                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6717                 break;
6718         }
6719
6720       done:
6721         mutex_unlock(&priv->action_mutex);
6722         return err;
6723 }
6724
6725 static int ipw2100_wx_get_mode(struct net_device *dev,
6726                                struct iw_request_info *info,
6727                                union iwreq_data *wrqu, char *extra)
6728 {
6729         /*
6730          * This can be called at any time.  No action lock required
6731          */
6732
6733         struct ipw2100_priv *priv = ieee80211_priv(dev);
6734
6735         wrqu->mode = priv->ieee->iw_mode;
6736         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6737
6738         return 0;
6739 }
6740
6741 #define POWER_MODES 5
6742
6743 /* Values are in microsecond */
6744 static const s32 timeout_duration[POWER_MODES] = {
6745         350000,
6746         250000,
6747         75000,
6748         37000,
6749         25000,
6750 };
6751
6752 static const s32 period_duration[POWER_MODES] = {
6753         400000,
6754         700000,
6755         1000000,
6756         1000000,
6757         1000000
6758 };
6759
6760 static int ipw2100_wx_get_range(struct net_device *dev,
6761                                 struct iw_request_info *info,
6762                                 union iwreq_data *wrqu, char *extra)
6763 {
6764         /*
6765          * This can be called at any time.  No action lock required
6766          */
6767
6768         struct ipw2100_priv *priv = ieee80211_priv(dev);
6769         struct iw_range *range = (struct iw_range *)extra;
6770         u16 val;
6771         int i, level;
6772
6773         wrqu->data.length = sizeof(*range);
6774         memset(range, 0, sizeof(*range));
6775
6776         /* Let's try to keep this struct in the same order as in
6777          * linux/include/wireless.h
6778          */
6779
6780         /* TODO: See what values we can set, and remove the ones we can't
6781          * set, or fill them with some default data.
6782          */
6783
6784         /* ~5 Mb/s real (802.11b) */
6785         range->throughput = 5 * 1000 * 1000;
6786
6787 //      range->sensitivity;     /* signal level threshold range */
6788
6789         range->max_qual.qual = 100;
6790         /* TODO: Find real max RSSI and stick here */
6791         range->max_qual.level = 0;
6792         range->max_qual.noise = 0;
6793         range->max_qual.updated = 7;    /* Updated all three */
6794
6795         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6796         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6797         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6798         range->avg_qual.noise = 0;
6799         range->avg_qual.updated = 7;    /* Updated all three */
6800
6801         range->num_bitrates = RATE_COUNT;
6802
6803         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6804                 range->bitrate[i] = ipw2100_rates_11b[i];
6805         }
6806
6807         range->min_rts = MIN_RTS_THRESHOLD;
6808         range->max_rts = MAX_RTS_THRESHOLD;
6809         range->min_frag = MIN_FRAG_THRESHOLD;
6810         range->max_frag = MAX_FRAG_THRESHOLD;
6811
6812         range->min_pmp = period_duration[0];    /* Minimal PM period */
6813         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6814         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6815         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6816
6817         /* How to decode max/min PM period */
6818         range->pmp_flags = IW_POWER_PERIOD;
6819         /* How to decode max/min PM period */
6820         range->pmt_flags = IW_POWER_TIMEOUT;
6821         /* What PM options are supported */
6822         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6823
6824         range->encoding_size[0] = 5;
6825         range->encoding_size[1] = 13;   /* Different token sizes */
6826         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6827         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6828 //      range->encoding_login_index;            /* token index for login token */
6829
6830         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6831                 range->txpower_capa = IW_TXPOW_DBM;
6832                 range->num_txpower = IW_MAX_TXPOWER;
6833                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6834                      i < IW_MAX_TXPOWER;
6835                      i++, level -=
6836                      ((IPW_TX_POWER_MAX_DBM -
6837                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6838                         range->txpower[i] = level / 16;
6839         } else {
6840                 range->txpower_capa = 0;
6841                 range->num_txpower = 0;
6842         }
6843
6844         /* Set the Wireless Extension versions */
6845         range->we_version_compiled = WIRELESS_EXT;
6846         range->we_version_source = 18;
6847
6848 //      range->retry_capa;      /* What retry options are supported */
6849 //      range->retry_flags;     /* How to decode max/min retry limit */
6850 //      range->r_time_flags;    /* How to decode max/min retry life */
6851 //      range->min_retry;       /* Minimal number of retries */
6852 //      range->max_retry;       /* Maximal number of retries */
6853 //      range->min_r_time;      /* Minimal retry lifetime */
6854 //      range->max_r_time;      /* Maximal retry lifetime */
6855
6856         range->num_channels = FREQ_COUNT;
6857
6858         val = 0;
6859         for (i = 0; i < FREQ_COUNT; i++) {
6860                 // TODO: Include only legal frequencies for some countries
6861 //              if (local->channel_mask & (1 << i)) {
6862                 range->freq[val].i = i + 1;
6863                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6864                 range->freq[val].e = 1;
6865                 val++;
6866 //              }
6867                 if (val == IW_MAX_FREQUENCIES)
6868                         break;
6869         }
6870         range->num_frequency = val;
6871
6872         /* Event capability (kernel + driver) */
6873         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6874                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6875         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6876
6877         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6878                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6879
6880         IPW_DEBUG_WX("GET Range\n");
6881
6882         return 0;
6883 }
6884
6885 static int ipw2100_wx_set_wap(struct net_device *dev,
6886                               struct iw_request_info *info,
6887                               union iwreq_data *wrqu, char *extra)
6888 {
6889         struct ipw2100_priv *priv = ieee80211_priv(dev);
6890         int err = 0;
6891
6892         static const unsigned char any[] = {
6893                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6894         };
6895         static const unsigned char off[] = {
6896                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6897         };
6898         DECLARE_MAC_BUF(mac);
6899
6900         // sanity checks
6901         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6902                 return -EINVAL;
6903
6904         mutex_lock(&priv->action_mutex);
6905         if (!(priv->status & STATUS_INITIALIZED)) {
6906                 err = -EIO;
6907                 goto done;
6908         }
6909
6910         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6911             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6912                 /* we disable mandatory BSSID association */
6913                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6914                 priv->config &= ~CFG_STATIC_BSSID;
6915                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6916                 goto done;
6917         }
6918
6919         priv->config |= CFG_STATIC_BSSID;
6920         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6921
6922         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6923
6924         IPW_DEBUG_WX("SET BSSID -> %s\n",
6925                      print_mac(mac, wrqu->ap_addr.sa_data));
6926
6927       done:
6928         mutex_unlock(&priv->action_mutex);
6929         return err;
6930 }
6931
6932 static int ipw2100_wx_get_wap(struct net_device *dev,
6933                               struct iw_request_info *info,
6934                               union iwreq_data *wrqu, char *extra)
6935 {
6936         /*
6937          * This can be called at any time.  No action lock required
6938          */
6939
6940         struct ipw2100_priv *priv = ieee80211_priv(dev);
6941         DECLARE_MAC_BUF(mac);
6942
6943         /* If we are associated, trying to associate, or have a statically
6944          * configured BSSID then return that; otherwise return ANY */
6945         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6946                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6947                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6948         } else
6949                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6950
6951         IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
6952                      print_mac(mac, wrqu->ap_addr.sa_data));
6953         return 0;
6954 }
6955
6956 static int ipw2100_wx_set_essid(struct net_device *dev,
6957                                 struct iw_request_info *info,
6958                                 union iwreq_data *wrqu, char *extra)
6959 {
6960         struct ipw2100_priv *priv = ieee80211_priv(dev);
6961         char *essid = "";       /* ANY */
6962         int length = 0;
6963         int err = 0;
6964
6965         mutex_lock(&priv->action_mutex);
6966         if (!(priv->status & STATUS_INITIALIZED)) {
6967                 err = -EIO;
6968                 goto done;
6969         }
6970
6971         if (wrqu->essid.flags && wrqu->essid.length) {
6972                 length = wrqu->essid.length;
6973                 essid = extra;
6974         }
6975
6976         if (length == 0) {
6977                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6978                 priv->config &= ~CFG_STATIC_ESSID;
6979                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6980                 goto done;
6981         }
6982
6983         length = min(length, IW_ESSID_MAX_SIZE);
6984
6985         priv->config |= CFG_STATIC_ESSID;
6986
6987         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6988                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6989                 err = 0;
6990                 goto done;
6991         }
6992
6993         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6994                      length);
6995
6996         priv->essid_len = length;
6997         memcpy(priv->essid, essid, priv->essid_len);
6998
6999         err = ipw2100_set_essid(priv, essid, length, 0);
7000
7001       done:
7002         mutex_unlock(&priv->action_mutex);
7003         return err;
7004 }
7005
7006 static int ipw2100_wx_get_essid(struct net_device *dev,
7007                                 struct iw_request_info *info,
7008                                 union iwreq_data *wrqu, char *extra)
7009 {
7010         /*
7011          * This can be called at any time.  No action lock required
7012          */
7013
7014         struct ipw2100_priv *priv = ieee80211_priv(dev);
7015
7016         /* If we are associated, trying to associate, or have a statically
7017          * configured ESSID then return that; otherwise return ANY */
7018         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7019                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7020                              escape_essid(priv->essid, priv->essid_len));
7021                 memcpy(extra, priv->essid, priv->essid_len);
7022                 wrqu->essid.length = priv->essid_len;
7023                 wrqu->essid.flags = 1;  /* active */
7024         } else {
7025                 IPW_DEBUG_WX("Getting essid: ANY\n");
7026                 wrqu->essid.length = 0;
7027                 wrqu->essid.flags = 0;  /* active */
7028         }
7029
7030         return 0;
7031 }
7032
7033 static int ipw2100_wx_set_nick(struct net_device *dev,
7034                                struct iw_request_info *info,
7035                                union iwreq_data *wrqu, char *extra)
7036 {
7037         /*
7038          * This can be called at any time.  No action lock required
7039          */
7040
7041         struct ipw2100_priv *priv = ieee80211_priv(dev);
7042
7043         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7044                 return -E2BIG;
7045
7046         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7047         memset(priv->nick, 0, sizeof(priv->nick));
7048         memcpy(priv->nick, extra, wrqu->data.length);
7049
7050         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7051
7052         return 0;
7053 }
7054
7055 static int ipw2100_wx_get_nick(struct net_device *dev,
7056                                struct iw_request_info *info,
7057                                union iwreq_data *wrqu, char *extra)
7058 {
7059         /*
7060          * This can be called at any time.  No action lock required
7061          */
7062
7063         struct ipw2100_priv *priv = ieee80211_priv(dev);
7064
7065         wrqu->data.length = strlen(priv->nick);
7066         memcpy(extra, priv->nick, wrqu->data.length);
7067         wrqu->data.flags = 1;   /* active */
7068
7069         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7070
7071         return 0;
7072 }
7073
7074 static int ipw2100_wx_set_rate(struct net_device *dev,
7075                                struct iw_request_info *info,
7076                                union iwreq_data *wrqu, char *extra)
7077 {
7078         struct ipw2100_priv *priv = ieee80211_priv(dev);
7079         u32 target_rate = wrqu->bitrate.value;
7080         u32 rate;
7081         int err = 0;
7082
7083         mutex_lock(&priv->action_mutex);
7084         if (!(priv->status & STATUS_INITIALIZED)) {
7085                 err = -EIO;
7086                 goto done;
7087         }
7088
7089         rate = 0;
7090
7091         if (target_rate == 1000000 ||
7092             (!wrqu->bitrate.fixed && target_rate > 1000000))
7093                 rate |= TX_RATE_1_MBIT;
7094         if (target_rate == 2000000 ||
7095             (!wrqu->bitrate.fixed && target_rate > 2000000))
7096                 rate |= TX_RATE_2_MBIT;
7097         if (target_rate == 5500000 ||
7098             (!wrqu->bitrate.fixed && target_rate > 5500000))
7099                 rate |= TX_RATE_5_5_MBIT;
7100         if (target_rate == 11000000 ||
7101             (!wrqu->bitrate.fixed && target_rate > 11000000))
7102                 rate |= TX_RATE_11_MBIT;
7103         if (rate == 0)
7104                 rate = DEFAULT_TX_RATES;
7105
7106         err = ipw2100_set_tx_rates(priv, rate, 0);
7107
7108         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7109       done:
7110         mutex_unlock(&priv->action_mutex);
7111         return err;
7112 }
7113
7114 static int ipw2100_wx_get_rate(struct net_device *dev,
7115                                struct iw_request_info *info,
7116                                union iwreq_data *wrqu, char *extra)
7117 {
7118         struct ipw2100_priv *priv = ieee80211_priv(dev);
7119         int val;
7120         int len = sizeof(val);
7121         int err = 0;
7122
7123         if (!(priv->status & STATUS_ENABLED) ||
7124             priv->status & STATUS_RF_KILL_MASK ||
7125             !(priv->status & STATUS_ASSOCIATED)) {
7126                 wrqu->bitrate.value = 0;
7127                 return 0;
7128         }
7129
7130         mutex_lock(&priv->action_mutex);
7131         if (!(priv->status & STATUS_INITIALIZED)) {
7132                 err = -EIO;
7133                 goto done;
7134         }
7135
7136         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7137         if (err) {
7138                 IPW_DEBUG_WX("failed querying ordinals.\n");
7139                 return err;
7140         }
7141
7142         switch (val & TX_RATE_MASK) {
7143         case TX_RATE_1_MBIT:
7144                 wrqu->bitrate.value = 1000000;
7145                 break;
7146         case TX_RATE_2_MBIT:
7147                 wrqu->bitrate.value = 2000000;
7148                 break;
7149         case TX_RATE_5_5_MBIT:
7150                 wrqu->bitrate.value = 5500000;
7151                 break;
7152         case TX_RATE_11_MBIT:
7153                 wrqu->bitrate.value = 11000000;
7154                 break;
7155         default:
7156                 wrqu->bitrate.value = 0;
7157         }
7158
7159         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7160
7161       done:
7162         mutex_unlock(&priv->action_mutex);
7163         return err;
7164 }
7165
7166 static int ipw2100_wx_set_rts(struct net_device *dev,
7167                               struct iw_request_info *info,
7168                               union iwreq_data *wrqu, char *extra)
7169 {
7170         struct ipw2100_priv *priv = ieee80211_priv(dev);
7171         int value, err;
7172
7173         /* Auto RTS not yet supported */
7174         if (wrqu->rts.fixed == 0)
7175                 return -EINVAL;
7176
7177         mutex_lock(&priv->action_mutex);
7178         if (!(priv->status & STATUS_INITIALIZED)) {
7179                 err = -EIO;
7180                 goto done;
7181         }
7182
7183         if (wrqu->rts.disabled)
7184                 value = priv->rts_threshold | RTS_DISABLED;
7185         else {
7186                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7187                         err = -EINVAL;
7188                         goto done;
7189                 }
7190                 value = wrqu->rts.value;
7191         }
7192
7193         err = ipw2100_set_rts_threshold(priv, value);
7194
7195         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7196       done:
7197         mutex_unlock(&priv->action_mutex);
7198         return err;
7199 }
7200
7201 static int ipw2100_wx_get_rts(struct net_device *dev,
7202                               struct iw_request_info *info,
7203                               union iwreq_data *wrqu, char *extra)
7204 {
7205         /*
7206          * This can be called at any time.  No action lock required
7207          */
7208
7209         struct ipw2100_priv *priv = ieee80211_priv(dev);
7210
7211         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7212         wrqu->rts.fixed = 1;    /* no auto select */
7213
7214         /* If RTS is set to the default value, then it is disabled */
7215         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7216
7217         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7218
7219         return 0;
7220 }
7221
7222 static int ipw2100_wx_set_txpow(struct net_device *dev,
7223                                 struct iw_request_info *info,
7224                                 union iwreq_data *wrqu, char *extra)
7225 {
7226         struct ipw2100_priv *priv = ieee80211_priv(dev);
7227         int err = 0, value;
7228         
7229         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7230                 return -EINPROGRESS;
7231
7232         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7233                 return 0;
7234
7235         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7236                 return -EINVAL;
7237
7238         if (wrqu->txpower.fixed == 0)
7239                 value = IPW_TX_POWER_DEFAULT;
7240         else {
7241                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7242                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7243                         return -EINVAL;
7244
7245                 value = wrqu->txpower.value;
7246         }
7247
7248         mutex_lock(&priv->action_mutex);
7249         if (!(priv->status & STATUS_INITIALIZED)) {
7250                 err = -EIO;
7251                 goto done;
7252         }
7253
7254         err = ipw2100_set_tx_power(priv, value);
7255
7256         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7257
7258       done:
7259         mutex_unlock(&priv->action_mutex);
7260         return err;
7261 }
7262
7263 static int ipw2100_wx_get_txpow(struct net_device *dev,
7264                                 struct iw_request_info *info,
7265                                 union iwreq_data *wrqu, char *extra)
7266 {
7267         /*
7268          * This can be called at any time.  No action lock required
7269          */
7270
7271         struct ipw2100_priv *priv = ieee80211_priv(dev);
7272
7273         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7274
7275         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7276                 wrqu->txpower.fixed = 0;
7277                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7278         } else {
7279                 wrqu->txpower.fixed = 1;
7280                 wrqu->txpower.value = priv->tx_power;
7281         }
7282
7283         wrqu->txpower.flags = IW_TXPOW_DBM;
7284
7285         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7286
7287         return 0;
7288 }
7289
7290 static int ipw2100_wx_set_frag(struct net_device *dev,
7291                                struct iw_request_info *info,
7292                                union iwreq_data *wrqu, char *extra)
7293 {
7294         /*
7295          * This can be called at any time.  No action lock required
7296          */
7297
7298         struct ipw2100_priv *priv = ieee80211_priv(dev);
7299
7300         if (!wrqu->frag.fixed)
7301                 return -EINVAL;
7302
7303         if (wrqu->frag.disabled) {
7304                 priv->frag_threshold |= FRAG_DISABLED;
7305                 priv->ieee->fts = DEFAULT_FTS;
7306         } else {
7307                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7308                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7309                         return -EINVAL;
7310
7311                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7312                 priv->frag_threshold = priv->ieee->fts;
7313         }
7314
7315         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7316
7317         return 0;
7318 }
7319
7320 static int ipw2100_wx_get_frag(struct net_device *dev,
7321                                struct iw_request_info *info,
7322                                union iwreq_data *wrqu, char *extra)
7323 {
7324         /*
7325          * This can be called at any time.  No action lock required
7326          */
7327
7328         struct ipw2100_priv *priv = ieee80211_priv(dev);
7329         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7330         wrqu->frag.fixed = 0;   /* no auto select */
7331         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7332
7333         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7334
7335         return 0;
7336 }
7337
7338 static int ipw2100_wx_set_retry(struct net_device *dev,
7339                                 struct iw_request_info *info,
7340                                 union iwreq_data *wrqu, char *extra)
7341 {
7342         struct ipw2100_priv *priv = ieee80211_priv(dev);
7343         int err = 0;
7344
7345         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7346                 return -EINVAL;
7347
7348         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7349                 return 0;
7350
7351         mutex_lock(&priv->action_mutex);
7352         if (!(priv->status & STATUS_INITIALIZED)) {
7353                 err = -EIO;
7354                 goto done;
7355         }
7356
7357         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7358                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7359                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7360                              wrqu->retry.value);
7361                 goto done;
7362         }
7363
7364         if (wrqu->retry.flags & IW_RETRY_LONG) {
7365                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7366                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7367                              wrqu->retry.value);
7368                 goto done;
7369         }
7370
7371         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7372         if (!err)
7373                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374
7375         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7376
7377       done:
7378         mutex_unlock(&priv->action_mutex);
7379         return err;
7380 }
7381
7382 static int ipw2100_wx_get_retry(struct net_device *dev,
7383                                 struct iw_request_info *info,
7384                                 union iwreq_data *wrqu, char *extra)
7385 {
7386         /*
7387          * This can be called at any time.  No action lock required
7388          */
7389
7390         struct ipw2100_priv *priv = ieee80211_priv(dev);
7391
7392         wrqu->retry.disabled = 0;       /* can't be disabled */
7393
7394         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7395                 return -EINVAL;
7396
7397         if (wrqu->retry.flags & IW_RETRY_LONG) {
7398                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7399                 wrqu->retry.value = priv->long_retry_limit;
7400         } else {
7401                 wrqu->retry.flags =
7402                     (priv->short_retry_limit !=
7403                      priv->long_retry_limit) ?
7404                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7405
7406                 wrqu->retry.value = priv->short_retry_limit;
7407         }
7408
7409         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7410
7411         return 0;
7412 }
7413
7414 static int ipw2100_wx_set_scan(struct net_device *dev,
7415                                struct iw_request_info *info,
7416                                union iwreq_data *wrqu, char *extra)
7417 {
7418         struct ipw2100_priv *priv = ieee80211_priv(dev);
7419         int err = 0;
7420
7421         mutex_lock(&priv->action_mutex);
7422         if (!(priv->status & STATUS_INITIALIZED)) {
7423                 err = -EIO;
7424                 goto done;
7425         }
7426
7427         IPW_DEBUG_WX("Initiating scan...\n");
7428         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7429                 IPW_DEBUG_WX("Start scan failed.\n");
7430
7431                 /* TODO: Mark a scan as pending so when hardware initialized
7432                  *       a scan starts */
7433         }
7434
7435       done:
7436         mutex_unlock(&priv->action_mutex);
7437         return err;
7438 }
7439
7440 static int ipw2100_wx_get_scan(struct net_device *dev,
7441                                struct iw_request_info *info,
7442                                union iwreq_data *wrqu, char *extra)
7443 {
7444         /*
7445          * This can be called at any time.  No action lock required
7446          */
7447
7448         struct ipw2100_priv *priv = ieee80211_priv(dev);
7449         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7450 }
7451
7452 /*
7453  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7454  */
7455 static int ipw2100_wx_set_encode(struct net_device *dev,
7456                                  struct iw_request_info *info,
7457                                  union iwreq_data *wrqu, char *key)
7458 {
7459         /*
7460          * No check of STATUS_INITIALIZED required
7461          */
7462
7463         struct ipw2100_priv *priv = ieee80211_priv(dev);
7464         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7465 }
7466
7467 static int ipw2100_wx_get_encode(struct net_device *dev,
7468                                  struct iw_request_info *info,
7469                                  union iwreq_data *wrqu, char *key)
7470 {
7471         /*
7472          * This can be called at any time.  No action lock required
7473          */
7474
7475         struct ipw2100_priv *priv = ieee80211_priv(dev);
7476         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7477 }
7478
7479 static int ipw2100_wx_set_power(struct net_device *dev,
7480                                 struct iw_request_info *info,
7481                                 union iwreq_data *wrqu, char *extra)
7482 {
7483         struct ipw2100_priv *priv = ieee80211_priv(dev);
7484         int err = 0;
7485
7486         mutex_lock(&priv->action_mutex);
7487         if (!(priv->status & STATUS_INITIALIZED)) {
7488                 err = -EIO;
7489                 goto done;
7490         }
7491
7492         if (wrqu->power.disabled) {
7493                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7494                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7495                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7496                 goto done;
7497         }
7498
7499         switch (wrqu->power.flags & IW_POWER_MODE) {
7500         case IW_POWER_ON:       /* If not specified */
7501         case IW_POWER_MODE:     /* If set all mask */
7502         case IW_POWER_ALL_R:    /* If explicitely state all */
7503                 break;
7504         default:                /* Otherwise we don't support it */
7505                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7506                              wrqu->power.flags);
7507                 err = -EOPNOTSUPP;
7508                 goto done;
7509         }
7510
7511         /* If the user hasn't specified a power management mode yet, default
7512          * to BATTERY */
7513         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7514         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7515
7516         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7517
7518       done:
7519         mutex_unlock(&priv->action_mutex);
7520         return err;
7521
7522 }
7523
7524 static int ipw2100_wx_get_power(struct net_device *dev,
7525                                 struct iw_request_info *info,
7526                                 union iwreq_data *wrqu, char *extra)
7527 {
7528         /*
7529          * This can be called at any time.  No action lock required
7530          */
7531
7532         struct ipw2100_priv *priv = ieee80211_priv(dev);
7533
7534         if (!(priv->power_mode & IPW_POWER_ENABLED))
7535                 wrqu->power.disabled = 1;
7536         else {
7537                 wrqu->power.disabled = 0;
7538                 wrqu->power.flags = 0;
7539         }
7540
7541         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7542
7543         return 0;
7544 }
7545
7546 /*
7547  * WE-18 WPA support
7548  */
7549
7550 /* SIOCSIWGENIE */
7551 static int ipw2100_wx_set_genie(struct net_device *dev,
7552                                 struct iw_request_info *info,
7553                                 union iwreq_data *wrqu, char *extra)
7554 {
7555
7556         struct ipw2100_priv *priv = ieee80211_priv(dev);
7557         struct ieee80211_device *ieee = priv->ieee;
7558         u8 *buf;
7559
7560         if (!ieee->wpa_enabled)
7561                 return -EOPNOTSUPP;
7562
7563         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7564             (wrqu->data.length && extra == NULL))
7565                 return -EINVAL;
7566
7567         if (wrqu->data.length) {
7568                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7569                 if (buf == NULL)
7570                         return -ENOMEM;
7571
7572                 kfree(ieee->wpa_ie);
7573                 ieee->wpa_ie = buf;
7574                 ieee->wpa_ie_len = wrqu->data.length;
7575         } else {
7576                 kfree(ieee->wpa_ie);
7577                 ieee->wpa_ie = NULL;
7578                 ieee->wpa_ie_len = 0;
7579         }
7580
7581         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7582
7583         return 0;
7584 }
7585
7586 /* SIOCGIWGENIE */
7587 static int ipw2100_wx_get_genie(struct net_device *dev,
7588                                 struct iw_request_info *info,
7589                                 union iwreq_data *wrqu, char *extra)
7590 {
7591         struct ipw2100_priv *priv = ieee80211_priv(dev);
7592         struct ieee80211_device *ieee = priv->ieee;
7593
7594         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7595                 wrqu->data.length = 0;
7596                 return 0;
7597         }
7598
7599         if (wrqu->data.length < ieee->wpa_ie_len)
7600                 return -E2BIG;
7601
7602         wrqu->data.length = ieee->wpa_ie_len;
7603         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7604
7605         return 0;
7606 }
7607
7608 /* SIOCSIWAUTH */
7609 static int ipw2100_wx_set_auth(struct net_device *dev,
7610                                struct iw_request_info *info,
7611                                union iwreq_data *wrqu, char *extra)
7612 {
7613         struct ipw2100_priv *priv = ieee80211_priv(dev);
7614         struct ieee80211_device *ieee = priv->ieee;
7615         struct iw_param *param = &wrqu->param;
7616         struct ieee80211_crypt_data *crypt;
7617         unsigned long flags;
7618         int ret = 0;
7619
7620         switch (param->flags & IW_AUTH_INDEX) {
7621         case IW_AUTH_WPA_VERSION:
7622         case IW_AUTH_CIPHER_PAIRWISE:
7623         case IW_AUTH_CIPHER_GROUP:
7624         case IW_AUTH_KEY_MGMT:
7625                 /*
7626                  * ipw2200 does not use these parameters
7627                  */
7628                 break;
7629
7630         case IW_AUTH_TKIP_COUNTERMEASURES:
7631                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7632                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7633                         break;
7634
7635                 flags = crypt->ops->get_flags(crypt->priv);
7636
7637                 if (param->value)
7638                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7639                 else
7640                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7641
7642                 crypt->ops->set_flags(flags, crypt->priv);
7643
7644                 break;
7645
7646         case IW_AUTH_DROP_UNENCRYPTED:{
7647                         /* HACK:
7648                          *
7649                          * wpa_supplicant calls set_wpa_enabled when the driver
7650                          * is loaded and unloaded, regardless of if WPA is being
7651                          * used.  No other calls are made which can be used to
7652                          * determine if encryption will be used or not prior to
7653                          * association being expected.  If encryption is not being
7654                          * used, drop_unencrypted is set to false, else true -- we
7655                          * can use this to determine if the CAP_PRIVACY_ON bit should
7656                          * be set.
7657                          */
7658                         struct ieee80211_security sec = {
7659                                 .flags = SEC_ENABLED,
7660                                 .enabled = param->value,
7661                         };
7662                         priv->ieee->drop_unencrypted = param->value;
7663                         /* We only change SEC_LEVEL for open mode. Others
7664                          * are set by ipw_wpa_set_encryption.
7665                          */
7666                         if (!param->value) {
7667                                 sec.flags |= SEC_LEVEL;
7668                                 sec.level = SEC_LEVEL_0;
7669                         } else {
7670                                 sec.flags |= SEC_LEVEL;
7671                                 sec.level = SEC_LEVEL_1;
7672                         }
7673                         if (priv->ieee->set_security)
7674                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7675                         break;
7676                 }
7677
7678         case IW_AUTH_80211_AUTH_ALG:
7679                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7680                 break;
7681
7682         case IW_AUTH_WPA_ENABLED:
7683                 ret = ipw2100_wpa_enable(priv, param->value);
7684                 break;
7685
7686         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7687                 ieee->ieee802_1x = param->value;
7688                 break;
7689
7690                 //case IW_AUTH_ROAMING_CONTROL:
7691         case IW_AUTH_PRIVACY_INVOKED:
7692                 ieee->privacy_invoked = param->value;
7693                 break;
7694
7695         default:
7696                 return -EOPNOTSUPP;
7697         }
7698         return ret;
7699 }
7700
7701 /* SIOCGIWAUTH */
7702 static int ipw2100_wx_get_auth(struct net_device *dev,
7703                                struct iw_request_info *info,
7704                                union iwreq_data *wrqu, char *extra)
7705 {
7706         struct ipw2100_priv *priv = ieee80211_priv(dev);
7707         struct ieee80211_device *ieee = priv->ieee;
7708         struct ieee80211_crypt_data *crypt;
7709         struct iw_param *param = &wrqu->param;
7710         int ret = 0;
7711
7712         switch (param->flags & IW_AUTH_INDEX) {
7713         case IW_AUTH_WPA_VERSION:
7714         case IW_AUTH_CIPHER_PAIRWISE:
7715         case IW_AUTH_CIPHER_GROUP:
7716         case IW_AUTH_KEY_MGMT:
7717                 /*
7718                  * wpa_supplicant will control these internally
7719                  */
7720                 ret = -EOPNOTSUPP;
7721                 break;
7722
7723         case IW_AUTH_TKIP_COUNTERMEASURES:
7724                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7725                 if (!crypt || !crypt->ops->get_flags) {
7726                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7727                                           "crypt not set!\n");
7728                         break;
7729                 }
7730
7731                 param->value = (crypt->ops->get_flags(crypt->priv) &
7732                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7733
7734                 break;
7735
7736         case IW_AUTH_DROP_UNENCRYPTED:
7737                 param->value = ieee->drop_unencrypted;
7738                 break;
7739
7740         case IW_AUTH_80211_AUTH_ALG:
7741                 param->value = priv->ieee->sec.auth_mode;
7742                 break;
7743
7744         case IW_AUTH_WPA_ENABLED:
7745                 param->value = ieee->wpa_enabled;
7746                 break;
7747
7748         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7749                 param->value = ieee->ieee802_1x;
7750                 break;
7751
7752         case IW_AUTH_ROAMING_CONTROL:
7753         case IW_AUTH_PRIVACY_INVOKED:
7754                 param->value = ieee->privacy_invoked;
7755                 break;
7756
7757         default:
7758                 return -EOPNOTSUPP;
7759         }
7760         return 0;
7761 }
7762
7763 /* SIOCSIWENCODEEXT */
7764 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7765                                     struct iw_request_info *info,
7766                                     union iwreq_data *wrqu, char *extra)
7767 {
7768         struct ipw2100_priv *priv = ieee80211_priv(dev);
7769         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7770 }
7771
7772 /* SIOCGIWENCODEEXT */
7773 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7774                                     struct iw_request_info *info,
7775                                     union iwreq_data *wrqu, char *extra)
7776 {
7777         struct ipw2100_priv *priv = ieee80211_priv(dev);
7778         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7779 }
7780
7781 /* SIOCSIWMLME */
7782 static int ipw2100_wx_set_mlme(struct net_device *dev,
7783                                struct iw_request_info *info,
7784                                union iwreq_data *wrqu, char *extra)
7785 {
7786         struct ipw2100_priv *priv = ieee80211_priv(dev);
7787         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7788         u16 reason;
7789
7790         reason = cpu_to_le16(mlme->reason_code);
7791
7792         switch (mlme->cmd) {
7793         case IW_MLME_DEAUTH:
7794                 // silently ignore
7795                 break;
7796
7797         case IW_MLME_DISASSOC:
7798                 ipw2100_disassociate_bssid(priv);
7799                 break;
7800
7801         default:
7802                 return -EOPNOTSUPP;
7803         }
7804         return 0;
7805 }
7806
7807 /*
7808  *
7809  * IWPRIV handlers
7810  *
7811  */
7812 #ifdef CONFIG_IPW2100_MONITOR
7813 static int ipw2100_wx_set_promisc(struct net_device *dev,
7814                                   struct iw_request_info *info,
7815                                   union iwreq_data *wrqu, char *extra)
7816 {
7817         struct ipw2100_priv *priv = ieee80211_priv(dev);
7818         int *parms = (int *)extra;
7819         int enable = (parms[0] > 0);
7820         int err = 0;
7821
7822         mutex_lock(&priv->action_mutex);
7823         if (!(priv->status & STATUS_INITIALIZED)) {
7824                 err = -EIO;
7825                 goto done;
7826         }
7827
7828         if (enable) {
7829                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7830                         err = ipw2100_set_channel(priv, parms[1], 0);
7831                         goto done;
7832                 }
7833                 priv->channel = parms[1];
7834                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7835         } else {
7836                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7837                         err = ipw2100_switch_mode(priv, priv->last_mode);
7838         }
7839       done:
7840         mutex_unlock(&priv->action_mutex);
7841         return err;
7842 }
7843
7844 static int ipw2100_wx_reset(struct net_device *dev,
7845                             struct iw_request_info *info,
7846                             union iwreq_data *wrqu, char *extra)
7847 {
7848         struct ipw2100_priv *priv = ieee80211_priv(dev);
7849         if (priv->status & STATUS_INITIALIZED)
7850                 schedule_reset(priv);
7851         return 0;
7852 }
7853
7854 #endif
7855
7856 static int ipw2100_wx_set_powermode(struct net_device *dev,
7857                                     struct iw_request_info *info,
7858                                     union iwreq_data *wrqu, char *extra)
7859 {
7860         struct ipw2100_priv *priv = ieee80211_priv(dev);
7861         int err = 0, mode = *(int *)extra;
7862
7863         mutex_lock(&priv->action_mutex);
7864         if (!(priv->status & STATUS_INITIALIZED)) {
7865                 err = -EIO;
7866                 goto done;
7867         }
7868
7869         if ((mode < 0) || (mode > POWER_MODES))
7870                 mode = IPW_POWER_AUTO;
7871
7872         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7873                 err = ipw2100_set_power_mode(priv, mode);
7874       done:
7875         mutex_unlock(&priv->action_mutex);
7876         return err;
7877 }
7878
7879 #define MAX_POWER_STRING 80
7880 static int ipw2100_wx_get_powermode(struct net_device *dev,
7881                                     struct iw_request_info *info,
7882                                     union iwreq_data *wrqu, char *extra)
7883 {
7884         /*
7885          * This can be called at any time.  No action lock required
7886          */
7887
7888         struct ipw2100_priv *priv = ieee80211_priv(dev);
7889         int level = IPW_POWER_LEVEL(priv->power_mode);
7890         s32 timeout, period;
7891
7892         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7893                 snprintf(extra, MAX_POWER_STRING,
7894                          "Power save level: %d (Off)", level);
7895         } else {
7896                 switch (level) {
7897                 case IPW_POWER_MODE_CAM:
7898                         snprintf(extra, MAX_POWER_STRING,
7899                                  "Power save level: %d (None)", level);
7900                         break;
7901                 case IPW_POWER_AUTO:
7902                         snprintf(extra, MAX_POWER_STRING,
7903                                  "Power save level: %d (Auto)", level);
7904                         break;
7905                 default:
7906                         timeout = timeout_duration[level - 1] / 1000;
7907                         period = period_duration[level - 1] / 1000;
7908                         snprintf(extra, MAX_POWER_STRING,
7909                                  "Power save level: %d "
7910                                  "(Timeout %dms, Period %dms)",
7911                                  level, timeout, period);
7912                 }
7913         }
7914
7915         wrqu->data.length = strlen(extra) + 1;
7916
7917         return 0;
7918 }
7919
7920 static int ipw2100_wx_set_preamble(struct net_device *dev,
7921                                    struct iw_request_info *info,
7922                                    union iwreq_data *wrqu, char *extra)
7923 {
7924         struct ipw2100_priv *priv = ieee80211_priv(dev);
7925         int err, mode = *(int *)extra;
7926
7927         mutex_lock(&priv->action_mutex);
7928         if (!(priv->status & STATUS_INITIALIZED)) {
7929                 err = -EIO;
7930                 goto done;
7931         }
7932
7933         if (mode == 1)
7934                 priv->config |= CFG_LONG_PREAMBLE;
7935         else if (mode == 0)
7936                 priv->config &= ~CFG_LONG_PREAMBLE;
7937         else {
7938                 err = -EINVAL;
7939                 goto done;
7940         }
7941
7942         err = ipw2100_system_config(priv, 0);
7943
7944       done:
7945         mutex_unlock(&priv->action_mutex);
7946         return err;
7947 }
7948
7949 static int ipw2100_wx_get_preamble(struct net_device *dev,
7950                                    struct iw_request_info *info,
7951                                    union iwreq_data *wrqu, char *extra)
7952 {
7953         /*
7954          * This can be called at any time.  No action lock required
7955          */
7956
7957         struct ipw2100_priv *priv = ieee80211_priv(dev);
7958
7959         if (priv->config & CFG_LONG_PREAMBLE)
7960                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7961         else
7962                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7963
7964         return 0;
7965 }
7966
7967 #ifdef CONFIG_IPW2100_MONITOR
7968 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7969                                     struct iw_request_info *info,
7970                                     union iwreq_data *wrqu, char *extra)
7971 {
7972         struct ipw2100_priv *priv = ieee80211_priv(dev);
7973         int err, mode = *(int *)extra;
7974
7975         mutex_lock(&priv->action_mutex);
7976         if (!(priv->status & STATUS_INITIALIZED)) {
7977                 err = -EIO;
7978                 goto done;
7979         }
7980
7981         if (mode == 1)
7982                 priv->config |= CFG_CRC_CHECK;
7983         else if (mode == 0)
7984                 priv->config &= ~CFG_CRC_CHECK;
7985         else {
7986                 err = -EINVAL;
7987                 goto done;
7988         }
7989         err = 0;
7990
7991       done:
7992         mutex_unlock(&priv->action_mutex);
7993         return err;
7994 }
7995
7996 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7997                                     struct iw_request_info *info,
7998                                     union iwreq_data *wrqu, char *extra)
7999 {
8000         /*
8001          * This can be called at any time.  No action lock required
8002          */
8003
8004         struct ipw2100_priv *priv = ieee80211_priv(dev);
8005
8006         if (priv->config & CFG_CRC_CHECK)
8007                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8008         else
8009                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8010
8011         return 0;
8012 }
8013 #endif                          /* CONFIG_IPW2100_MONITOR */
8014
8015 static iw_handler ipw2100_wx_handlers[] = {
8016         NULL,                   /* SIOCSIWCOMMIT */
8017         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8018         NULL,                   /* SIOCSIWNWID */
8019         NULL,                   /* SIOCGIWNWID */
8020         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8021         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8022         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8023         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8024         NULL,                   /* SIOCSIWSENS */
8025         NULL,                   /* SIOCGIWSENS */
8026         NULL,                   /* SIOCSIWRANGE */
8027         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8028         NULL,                   /* SIOCSIWPRIV */
8029         NULL,                   /* SIOCGIWPRIV */
8030         NULL,                   /* SIOCSIWSTATS */
8031         NULL,                   /* SIOCGIWSTATS */
8032         NULL,                   /* SIOCSIWSPY */
8033         NULL,                   /* SIOCGIWSPY */
8034         NULL,                   /* SIOCGIWTHRSPY */
8035         NULL,                   /* SIOCWIWTHRSPY */
8036         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8037         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8038         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8039         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8040         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8041         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8042         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8043         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8044         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8045         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8046         NULL,                   /* -- hole -- */
8047         NULL,                   /* -- hole -- */
8048         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8049         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8050         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8051         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8052         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8053         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8054         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8055         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8056         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8057         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8058         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8059         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8060         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8061         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8062         NULL,                   /* -- hole -- */
8063         NULL,                   /* -- hole -- */
8064         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8065         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8066         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8067         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8068         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8069         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8070         NULL,                   /* SIOCSIWPMKSA */
8071 };
8072
8073 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8074 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8075 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8076 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8077 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8078 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8079 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8080 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8081
8082 static const struct iw_priv_args ipw2100_private_args[] = {
8083
8084 #ifdef CONFIG_IPW2100_MONITOR
8085         {
8086          IPW2100_PRIV_SET_MONITOR,
8087          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8088         {
8089          IPW2100_PRIV_RESET,
8090          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8091 #endif                          /* CONFIG_IPW2100_MONITOR */
8092
8093         {
8094          IPW2100_PRIV_SET_POWER,
8095          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8096         {
8097          IPW2100_PRIV_GET_POWER,
8098          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8099          "get_power"},
8100         {
8101          IPW2100_PRIV_SET_LONGPREAMBLE,
8102          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8103         {
8104          IPW2100_PRIV_GET_LONGPREAMBLE,
8105          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8106 #ifdef CONFIG_IPW2100_MONITOR
8107         {
8108          IPW2100_PRIV_SET_CRC_CHECK,
8109          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8110         {
8111          IPW2100_PRIV_GET_CRC_CHECK,
8112          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8113 #endif                          /* CONFIG_IPW2100_MONITOR */
8114 };
8115
8116 static iw_handler ipw2100_private_handler[] = {
8117 #ifdef CONFIG_IPW2100_MONITOR
8118         ipw2100_wx_set_promisc,
8119         ipw2100_wx_reset,
8120 #else                           /* CONFIG_IPW2100_MONITOR */
8121         NULL,
8122         NULL,
8123 #endif                          /* CONFIG_IPW2100_MONITOR */
8124         ipw2100_wx_set_powermode,
8125         ipw2100_wx_get_powermode,
8126         ipw2100_wx_set_preamble,
8127         ipw2100_wx_get_preamble,
8128 #ifdef CONFIG_IPW2100_MONITOR
8129         ipw2100_wx_set_crc_check,
8130         ipw2100_wx_get_crc_check,
8131 #else                           /* CONFIG_IPW2100_MONITOR */
8132         NULL,
8133         NULL,
8134 #endif                          /* CONFIG_IPW2100_MONITOR */
8135 };
8136
8137 /*
8138  * Get wireless statistics.
8139  * Called by /proc/net/wireless
8140  * Also called by SIOCGIWSTATS
8141  */
8142 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8143 {
8144         enum {
8145                 POOR = 30,
8146                 FAIR = 60,
8147                 GOOD = 80,
8148                 VERY_GOOD = 90,
8149                 EXCELLENT = 95,
8150                 PERFECT = 100
8151         };
8152         int rssi_qual;
8153         int tx_qual;
8154         int beacon_qual;
8155
8156         struct ipw2100_priv *priv = ieee80211_priv(dev);
8157         struct iw_statistics *wstats;
8158         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8159         u32 ord_len = sizeof(u32);
8160
8161         if (!priv)
8162                 return (struct iw_statistics *)NULL;
8163
8164         wstats = &priv->wstats;
8165
8166         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8167          * ipw2100_wx_wireless_stats seems to be called before fw is
8168          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8169          * and associated; if not associcated, the values are all meaningless
8170          * anyway, so set them all to NULL and INVALID */
8171         if (!(priv->status & STATUS_ASSOCIATED)) {
8172                 wstats->miss.beacon = 0;
8173                 wstats->discard.retries = 0;
8174                 wstats->qual.qual = 0;
8175                 wstats->qual.level = 0;
8176                 wstats->qual.noise = 0;
8177                 wstats->qual.updated = 7;
8178                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8179                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8180                 return wstats;
8181         }
8182
8183         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8184                                 &missed_beacons, &ord_len))
8185                 goto fail_get_ordinal;
8186
8187         /* If we don't have a connection the quality and level is 0 */
8188         if (!(priv->status & STATUS_ASSOCIATED)) {
8189                 wstats->qual.qual = 0;
8190                 wstats->qual.level = 0;
8191         } else {
8192                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8193                                         &rssi, &ord_len))
8194                         goto fail_get_ordinal;
8195                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8196                 if (rssi < 10)
8197                         rssi_qual = rssi * POOR / 10;
8198                 else if (rssi < 15)
8199                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8200                 else if (rssi < 20)
8201                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8202                 else if (rssi < 30)
8203                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8204                             10 + GOOD;
8205                 else
8206                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8207                             10 + VERY_GOOD;
8208
8209                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8210                                         &tx_retries, &ord_len))
8211                         goto fail_get_ordinal;
8212
8213                 if (tx_retries > 75)
8214                         tx_qual = (90 - tx_retries) * POOR / 15;
8215                 else if (tx_retries > 70)
8216                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8217                 else if (tx_retries > 65)
8218                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8219                 else if (tx_retries > 50)
8220                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8221                             15 + GOOD;
8222                 else
8223                         tx_qual = (50 - tx_retries) *
8224                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8225
8226                 if (missed_beacons > 50)
8227                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8228                 else if (missed_beacons > 40)
8229                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8230                             10 + POOR;
8231                 else if (missed_beacons > 32)
8232                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8233                             18 + FAIR;
8234                 else if (missed_beacons > 20)
8235                         beacon_qual = (32 - missed_beacons) *
8236                             (VERY_GOOD - GOOD) / 20 + GOOD;
8237                 else
8238                         beacon_qual = (20 - missed_beacons) *
8239                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8240
8241                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8242
8243 #ifdef CONFIG_IPW2100_DEBUG
8244                 if (beacon_qual == quality)
8245                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8246                 else if (tx_qual == quality)
8247                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8248                 else if (quality != 100)
8249                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8250                 else
8251                         IPW_DEBUG_WX("Quality not clamped.\n");
8252 #endif
8253
8254                 wstats->qual.qual = quality;
8255                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8256         }
8257
8258         wstats->qual.noise = 0;
8259         wstats->qual.updated = 7;
8260         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8261
8262         /* FIXME: this is percent and not a # */
8263         wstats->miss.beacon = missed_beacons;
8264
8265         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8266                                 &tx_failures, &ord_len))
8267                 goto fail_get_ordinal;
8268         wstats->discard.retries = tx_failures;
8269
8270         return wstats;
8271
8272       fail_get_ordinal:
8273         IPW_DEBUG_WX("failed querying ordinals.\n");
8274
8275         return (struct iw_statistics *)NULL;
8276 }
8277
8278 static struct iw_handler_def ipw2100_wx_handler_def = {
8279         .standard = ipw2100_wx_handlers,
8280         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8281         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8282         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8283         .private = (iw_handler *) ipw2100_private_handler,
8284         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8285         .get_wireless_stats = ipw2100_wx_wireless_stats,
8286 };
8287
8288 static void ipw2100_wx_event_work(struct work_struct *work)
8289 {
8290         struct ipw2100_priv *priv =
8291                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8292         union iwreq_data wrqu;
8293         int len = ETH_ALEN;
8294
8295         if (priv->status & STATUS_STOPPING)
8296                 return;
8297
8298         mutex_lock(&priv->action_mutex);
8299
8300         IPW_DEBUG_WX("enter\n");
8301
8302         mutex_unlock(&priv->action_mutex);
8303
8304         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8305
8306         /* Fetch BSSID from the hardware */
8307         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8308             priv->status & STATUS_RF_KILL_MASK ||
8309             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8310                                 &priv->bssid, &len)) {
8311                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8312         } else {
8313                 /* We now have the BSSID, so can finish setting to the full
8314                  * associated state */
8315                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8316                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8317                 priv->status &= ~STATUS_ASSOCIATING;
8318                 priv->status |= STATUS_ASSOCIATED;
8319                 netif_carrier_on(priv->net_dev);
8320                 netif_wake_queue(priv->net_dev);
8321         }
8322
8323         if (!(priv->status & STATUS_ASSOCIATED)) {
8324                 IPW_DEBUG_WX("Configuring ESSID\n");
8325                 mutex_lock(&priv->action_mutex);
8326                 /* This is a disassociation event, so kick the firmware to
8327                  * look for another AP */
8328                 if (priv->config & CFG_STATIC_ESSID)
8329                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8330                                           0);
8331                 else
8332                         ipw2100_set_essid(priv, NULL, 0, 0);
8333                 mutex_unlock(&priv->action_mutex);
8334         }
8335
8336         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8337 }
8338
8339 #define IPW2100_FW_MAJOR_VERSION 1
8340 #define IPW2100_FW_MINOR_VERSION 3
8341
8342 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8343 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8344
8345 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8346                              IPW2100_FW_MAJOR_VERSION)
8347
8348 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8349 "." __stringify(IPW2100_FW_MINOR_VERSION)
8350
8351 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8352
8353 /*
8354
8355 BINARY FIRMWARE HEADER FORMAT
8356
8357 offset      length   desc
8358 0           2        version
8359 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8360 4           4        fw_len
8361 8           4        uc_len
8362 C           fw_len   firmware data
8363 12 + fw_len uc_len   microcode data
8364
8365 */
8366
8367 struct ipw2100_fw_header {
8368         short version;
8369         short mode;
8370         unsigned int fw_size;
8371         unsigned int uc_size;
8372 } __attribute__ ((packed));
8373
8374 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8375 {
8376         struct ipw2100_fw_header *h =
8377             (struct ipw2100_fw_header *)fw->fw_entry->data;
8378
8379         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8380                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8381                        "(detected version id of %u). "
8382                        "See Documentation/networking/README.ipw2100\n",
8383                        h->version);
8384                 return 1;
8385         }
8386
8387         fw->version = h->version;
8388         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8389         fw->fw.size = h->fw_size;
8390         fw->uc.data = fw->fw.data + h->fw_size;
8391         fw->uc.size = h->uc_size;
8392
8393         return 0;
8394 }
8395
8396 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8397                                 struct ipw2100_fw *fw)
8398 {
8399         char *fw_name;
8400         int rc;
8401
8402         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8403                        priv->net_dev->name);
8404
8405         switch (priv->ieee->iw_mode) {
8406         case IW_MODE_ADHOC:
8407                 fw_name = IPW2100_FW_NAME("-i");
8408                 break;
8409 #ifdef CONFIG_IPW2100_MONITOR
8410         case IW_MODE_MONITOR:
8411                 fw_name = IPW2100_FW_NAME("-p");
8412                 break;
8413 #endif
8414         case IW_MODE_INFRA:
8415         default:
8416                 fw_name = IPW2100_FW_NAME("");
8417                 break;
8418         }
8419
8420         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8421
8422         if (rc < 0) {
8423                 printk(KERN_ERR DRV_NAME ": "
8424                        "%s: Firmware '%s' not available or load failed.\n",
8425                        priv->net_dev->name, fw_name);
8426                 return rc;
8427         }
8428         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8429                        fw->fw_entry->size);
8430
8431         ipw2100_mod_firmware_load(fw);
8432
8433         return 0;
8434 }
8435
8436 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8437                                      struct ipw2100_fw *fw)
8438 {
8439         fw->version = 0;
8440         if (fw->fw_entry)
8441                 release_firmware(fw->fw_entry);
8442         fw->fw_entry = NULL;
8443 }
8444
8445 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8446                                  size_t max)
8447 {
8448         char ver[MAX_FW_VERSION_LEN];
8449         u32 len = MAX_FW_VERSION_LEN;
8450         u32 tmp;
8451         int i;
8452         /* firmware version is an ascii string (max len of 14) */
8453         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8454                 return -EIO;
8455         tmp = max;
8456         if (len >= max)
8457                 len = max - 1;
8458         for (i = 0; i < len; i++)
8459                 buf[i] = ver[i];
8460         buf[i] = '\0';
8461         return tmp;
8462 }
8463
8464 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8465                                     size_t max)
8466 {
8467         u32 ver;
8468         u32 len = sizeof(ver);
8469         /* microcode version is a 32 bit integer */
8470         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8471                 return -EIO;
8472         return snprintf(buf, max, "%08X", ver);
8473 }
8474
8475 /*
8476  * On exit, the firmware will have been freed from the fw list
8477  */
8478 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8479 {
8480         /* firmware is constructed of N contiguous entries, each entry is
8481          * structured as:
8482          *
8483          * offset    sie         desc
8484          * 0         4           address to write to
8485          * 4         2           length of data run
8486          * 6         length      data
8487          */
8488         unsigned int addr;
8489         unsigned short len;
8490
8491         const unsigned char *firmware_data = fw->fw.data;
8492         unsigned int firmware_data_left = fw->fw.size;
8493
8494         while (firmware_data_left > 0) {
8495                 addr = *(u32 *) (firmware_data);
8496                 firmware_data += 4;
8497                 firmware_data_left -= 4;
8498
8499                 len = *(u16 *) (firmware_data);
8500                 firmware_data += 2;
8501                 firmware_data_left -= 2;
8502
8503                 if (len > 32) {
8504                         printk(KERN_ERR DRV_NAME ": "
8505                                "Invalid firmware run-length of %d bytes\n",
8506                                len);
8507                         return -EINVAL;
8508                 }
8509
8510                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8511                 firmware_data += len;
8512                 firmware_data_left -= len;
8513         }
8514
8515         return 0;
8516 }
8517
8518 struct symbol_alive_response {
8519         u8 cmd_id;
8520         u8 seq_num;
8521         u8 ucode_rev;
8522         u8 eeprom_valid;
8523         u16 valid_flags;
8524         u8 IEEE_addr[6];
8525         u16 flags;
8526         u16 pcb_rev;
8527         u16 clock_settle_time;  // 1us LSB
8528         u16 powerup_settle_time;        // 1us LSB
8529         u16 hop_settle_time;    // 1us LSB
8530         u8 date[3];             // month, day, year
8531         u8 time[2];             // hours, minutes
8532         u8 ucode_valid;
8533 };
8534
8535 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8536                                   struct ipw2100_fw *fw)
8537 {
8538         struct net_device *dev = priv->net_dev;
8539         const unsigned char *microcode_data = fw->uc.data;
8540         unsigned int microcode_data_left = fw->uc.size;
8541         void __iomem *reg = (void __iomem *)dev->base_addr;
8542
8543         struct symbol_alive_response response;
8544         int i, j;
8545         u8 data;
8546
8547         /* Symbol control */
8548         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8549         readl(reg);
8550         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8551         readl(reg);
8552
8553         /* HW config */
8554         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8555         readl(reg);
8556         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8557         readl(reg);
8558
8559         /* EN_CS_ACCESS bit to reset control store pointer */
8560         write_nic_byte(dev, 0x210000, 0x40);
8561         readl(reg);
8562         write_nic_byte(dev, 0x210000, 0x0);
8563         readl(reg);
8564         write_nic_byte(dev, 0x210000, 0x40);
8565         readl(reg);
8566
8567         /* copy microcode from buffer into Symbol */
8568
8569         while (microcode_data_left > 0) {
8570                 write_nic_byte(dev, 0x210010, *microcode_data++);
8571                 write_nic_byte(dev, 0x210010, *microcode_data++);
8572                 microcode_data_left -= 2;
8573         }
8574
8575         /* EN_CS_ACCESS bit to reset the control store pointer */
8576         write_nic_byte(dev, 0x210000, 0x0);
8577         readl(reg);
8578
8579         /* Enable System (Reg 0)
8580          * first enable causes garbage in RX FIFO */
8581         write_nic_byte(dev, 0x210000, 0x0);
8582         readl(reg);
8583         write_nic_byte(dev, 0x210000, 0x80);
8584         readl(reg);
8585
8586         /* Reset External Baseband Reg */
8587         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8588         readl(reg);
8589         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8590         readl(reg);
8591
8592         /* HW Config (Reg 5) */
8593         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8594         readl(reg);
8595         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8596         readl(reg);
8597
8598         /* Enable System (Reg 0)
8599          * second enable should be OK */
8600         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8601         readl(reg);
8602         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8603
8604         /* check Symbol is enabled - upped this from 5 as it wasn't always
8605          * catching the update */
8606         for (i = 0; i < 10; i++) {
8607                 udelay(10);
8608
8609                 /* check Dino is enabled bit */
8610                 read_nic_byte(dev, 0x210000, &data);
8611                 if (data & 0x1)
8612                         break;
8613         }
8614
8615         if (i == 10) {
8616                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8617                        dev->name);
8618                 return -EIO;
8619         }
8620
8621         /* Get Symbol alive response */
8622         for (i = 0; i < 30; i++) {
8623                 /* Read alive response structure */
8624                 for (j = 0;
8625                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8626                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8627
8628                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8629                         break;
8630                 udelay(10);
8631         }
8632
8633         if (i == 30) {
8634                 printk(KERN_ERR DRV_NAME
8635                        ": %s: No response from Symbol - hw not alive\n",
8636                        dev->name);
8637                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8638                 return -EIO;
8639         }
8640
8641         return 0;
8642 }