]> err.no Git - linux-2.6/blob - drivers/net/wireless/ipw2100.c
[POWERPC] mpc512x: Add MPC512x PSC support to MPC52xx psc driver
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG        /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (--i);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (--i);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772                                            round_jiffies_relative(HZ));
1773                 }
1774
1775                 deferred = 1;
1776         }
1777
1778         /* Turn on the interrupt so that commands can be processed */
1779         ipw2100_enable_interrupts(priv);
1780
1781         /* Send all of the commands that must be sent prior to
1782          * HOST_COMPLETE */
1783         if (ipw2100_adapter_setup(priv)) {
1784                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         if (!deferred) {
1791                 /* Enable the adapter - sends HOST_COMPLETE */
1792                 if (ipw2100_enable_adapter(priv)) {
1793                         printk(KERN_ERR DRV_NAME ": "
1794                                "%s: failed in call to enable adapter.\n",
1795                                priv->net_dev->name);
1796                         ipw2100_hw_stop_adapter(priv);
1797                         rc = 1;
1798                         goto exit;
1799                 }
1800
1801                 /* Start a scan . . . */
1802                 ipw2100_set_scan_options(priv);
1803                 ipw2100_start_scan(priv);
1804         }
1805
1806       exit:
1807         return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813         struct ipw2100_priv *priv = ieee80211_priv(dev);
1814         return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819         unsigned long flags;
1820         union iwreq_data wrqu = {
1821                 .ap_addr = {
1822                             .sa_family = ARPHRD_ETHER}
1823         };
1824         int associated = priv->status & STATUS_ASSOCIATED;
1825
1826         /* Kill the RF switch timer */
1827         if (!priv->stop_rf_kill) {
1828                 priv->stop_rf_kill = 1;
1829                 cancel_delayed_work(&priv->rf_kill);
1830         }
1831
1832         /* Kill the firmare hang check timer */
1833         if (!priv->stop_hang_check) {
1834                 priv->stop_hang_check = 1;
1835                 cancel_delayed_work(&priv->hang_check);
1836         }
1837
1838         /* Kill any pending resets */
1839         if (priv->status & STATUS_RESET_PENDING)
1840                 cancel_delayed_work(&priv->reset_work);
1841
1842         /* Make sure the interrupt is on so that FW commands will be
1843          * processed correctly */
1844         spin_lock_irqsave(&priv->low_lock, flags);
1845         ipw2100_enable_interrupts(priv);
1846         spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848         if (ipw2100_hw_stop_adapter(priv))
1849                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850                        priv->net_dev->name);
1851
1852         /* Do not disable the interrupt until _after_ we disable
1853          * the adaptor.  Otherwise the CARD_DISABLE command will never
1854          * be ack'd by the firmware */
1855         spin_lock_irqsave(&priv->low_lock, flags);
1856         ipw2100_disable_interrupts(priv);
1857         spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860
1861         /* We have to signal any supplicant if we are disassociating */
1862         if (associated)
1863                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866         netif_carrier_off(priv->net_dev);
1867         netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct work_struct *work)
1871 {
1872         struct ipw2100_priv *priv =
1873                 container_of(work, struct ipw2100_priv, reset_work.work);
1874         unsigned long flags;
1875         union iwreq_data wrqu = {
1876                 .ap_addr = {
1877                             .sa_family = ARPHRD_ETHER}
1878         };
1879         int associated = priv->status & STATUS_ASSOCIATED;
1880
1881         spin_lock_irqsave(&priv->low_lock, flags);
1882         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1883         priv->resets++;
1884         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1885         priv->status |= STATUS_SECURITY_UPDATED;
1886
1887         /* Force a power cycle even if interface hasn't been opened
1888          * yet */
1889         cancel_delayed_work(&priv->reset_work);
1890         priv->status |= STATUS_RESET_PENDING;
1891         spin_unlock_irqrestore(&priv->low_lock, flags);
1892
1893         mutex_lock(&priv->action_mutex);
1894         /* stop timed checks so that they don't interfere with reset */
1895         priv->stop_hang_check = 1;
1896         cancel_delayed_work(&priv->hang_check);
1897
1898         /* We have to signal any supplicant if we are disassociating */
1899         if (associated)
1900                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1901
1902         ipw2100_up(priv, 0);
1903         mutex_unlock(&priv->action_mutex);
1904
1905 }
1906
1907 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1908 {
1909
1910 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1911         int ret, len, essid_len;
1912         char essid[IW_ESSID_MAX_SIZE];
1913         u32 txrate;
1914         u32 chan;
1915         char *txratename;
1916         u8 bssid[ETH_ALEN];
1917         DECLARE_MAC_BUF(mac);
1918
1919         /*
1920          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1921          *      an actual MAC of the AP. Seems like FW sets this
1922          *      address too late. Read it later and expose through
1923          *      /proc or schedule a later task to query and update
1924          */
1925
1926         essid_len = IW_ESSID_MAX_SIZE;
1927         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1928                                   essid, &essid_len);
1929         if (ret) {
1930                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1931                                __LINE__);
1932                 return;
1933         }
1934
1935         len = sizeof(u32);
1936         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1937         if (ret) {
1938                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1939                                __LINE__);
1940                 return;
1941         }
1942
1943         len = sizeof(u32);
1944         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1945         if (ret) {
1946                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1947                                __LINE__);
1948                 return;
1949         }
1950         len = ETH_ALEN;
1951         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1952         if (ret) {
1953                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1954                                __LINE__);
1955                 return;
1956         }
1957         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1958
1959         switch (txrate) {
1960         case TX_RATE_1_MBIT:
1961                 txratename = "1Mbps";
1962                 break;
1963         case TX_RATE_2_MBIT:
1964                 txratename = "2Mbsp";
1965                 break;
1966         case TX_RATE_5_5_MBIT:
1967                 txratename = "5.5Mbps";
1968                 break;
1969         case TX_RATE_11_MBIT:
1970                 txratename = "11Mbps";
1971                 break;
1972         default:
1973                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1974                 txratename = "unknown rate";
1975                 break;
1976         }
1977
1978         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1979                        "%s)\n",
1980                        priv->net_dev->name, escape_essid(essid, essid_len),
1981                        txratename, chan, print_mac(mac, bssid));
1982
1983         /* now we copy read ssid into dev */
1984         if (!(priv->config & CFG_STATIC_ESSID)) {
1985                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1986                 memcpy(priv->essid, essid, priv->essid_len);
1987         }
1988         priv->channel = chan;
1989         memcpy(priv->bssid, bssid, ETH_ALEN);
1990
1991         priv->status |= STATUS_ASSOCIATING;
1992         priv->connect_start = get_seconds();
1993
1994         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1995 }
1996
1997 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1998                              int length, int batch_mode)
1999 {
2000         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2001         struct host_command cmd = {
2002                 .host_command = SSID,
2003                 .host_command_sequence = 0,
2004                 .host_command_length = ssid_len
2005         };
2006         int err;
2007
2008         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2009
2010         if (ssid_len)
2011                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2012
2013         if (!batch_mode) {
2014                 err = ipw2100_disable_adapter(priv);
2015                 if (err)
2016                         return err;
2017         }
2018
2019         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2020          * disable auto association -- so we cheat by setting a bogus SSID */
2021         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2022                 int i;
2023                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2024                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2025                         bogus[i] = 0x18 + i;
2026                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2027         }
2028
2029         /* NOTE:  We always send the SSID command even if the provided ESSID is
2030          * the same as what we currently think is set. */
2031
2032         err = ipw2100_hw_send_command(priv, &cmd);
2033         if (!err) {
2034                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2035                 memcpy(priv->essid, essid, ssid_len);
2036                 priv->essid_len = ssid_len;
2037         }
2038
2039         if (!batch_mode) {
2040                 if (ipw2100_enable_adapter(priv))
2041                         err = -EIO;
2042         }
2043
2044         return err;
2045 }
2046
2047 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2048 {
2049         DECLARE_MAC_BUF(mac);
2050
2051         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2052                   "disassociated: '%s' %s \n",
2053                   escape_essid(priv->essid, priv->essid_len),
2054                   print_mac(mac, priv->bssid));
2055
2056         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2057
2058         if (priv->status & STATUS_STOPPING) {
2059                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2060                 return;
2061         }
2062
2063         memset(priv->bssid, 0, ETH_ALEN);
2064         memset(priv->ieee->bssid, 0, ETH_ALEN);
2065
2066         netif_carrier_off(priv->net_dev);
2067         netif_stop_queue(priv->net_dev);
2068
2069         if (!(priv->status & STATUS_RUNNING))
2070                 return;
2071
2072         if (priv->status & STATUS_SECURITY_UPDATED)
2073                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2074
2075         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2076 }
2077
2078 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2079 {
2080         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2081                        priv->net_dev->name);
2082
2083         /* RF_KILL is now enabled (else we wouldn't be here) */
2084         priv->status |= STATUS_RF_KILL_HW;
2085
2086         /* Make sure the RF Kill check timer is running */
2087         priv->stop_rf_kill = 0;
2088         cancel_delayed_work(&priv->rf_kill);
2089         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2090                            round_jiffies_relative(HZ));
2091 }
2092
2093 static void send_scan_event(void *data)
2094 {
2095         struct ipw2100_priv *priv = data;
2096         union iwreq_data wrqu;
2097
2098         wrqu.data.length = 0;
2099         wrqu.data.flags = 0;
2100         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2101 }
2102
2103 static void ipw2100_scan_event_later(struct work_struct *work)
2104 {
2105         send_scan_event(container_of(work, struct ipw2100_priv,
2106                                         scan_event_later.work));
2107 }
2108
2109 static void ipw2100_scan_event_now(struct work_struct *work)
2110 {
2111         send_scan_event(container_of(work, struct ipw2100_priv,
2112                                         scan_event_now));
2113 }
2114
2115 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2116 {
2117         IPW_DEBUG_SCAN("scan complete\n");
2118         /* Age the scan results... */
2119         priv->ieee->scans++;
2120         priv->status &= ~STATUS_SCANNING;
2121
2122         /* Only userspace-requested scan completion events go out immediately */
2123         if (!priv->user_requested_scan) {
2124                 if (!delayed_work_pending(&priv->scan_event_later))
2125                         queue_delayed_work(priv->workqueue,
2126                                         &priv->scan_event_later,
2127                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2128         } else {
2129                 priv->user_requested_scan = 0;
2130                 cancel_delayed_work(&priv->scan_event_later);
2131                 queue_work(priv->workqueue, &priv->scan_event_now);
2132         }
2133 }
2134
2135 #ifdef CONFIG_IPW2100_DEBUG
2136 #define IPW2100_HANDLER(v, f) { v, f, # v }
2137 struct ipw2100_status_indicator {
2138         int status;
2139         void (*cb) (struct ipw2100_priv * priv, u32 status);
2140         char *name;
2141 };
2142 #else
2143 #define IPW2100_HANDLER(v, f) { v, f }
2144 struct ipw2100_status_indicator {
2145         int status;
2146         void (*cb) (struct ipw2100_priv * priv, u32 status);
2147 };
2148 #endif                          /* CONFIG_IPW2100_DEBUG */
2149
2150 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2151 {
2152         IPW_DEBUG_SCAN("Scanning...\n");
2153         priv->status |= STATUS_SCANNING;
2154 }
2155
2156 static const struct ipw2100_status_indicator status_handlers[] = {
2157         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2158         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2159         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2160         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2161         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2162         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2163         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2164         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2165         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2166         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2167         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2168         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2169         IPW2100_HANDLER(-1, NULL)
2170 };
2171
2172 static void isr_status_change(struct ipw2100_priv *priv, int status)
2173 {
2174         int i;
2175
2176         if (status == IPW_STATE_SCANNING &&
2177             priv->status & STATUS_ASSOCIATED &&
2178             !(priv->status & STATUS_SCANNING)) {
2179                 IPW_DEBUG_INFO("Scan detected while associated, with "
2180                                "no scan request.  Restarting firmware.\n");
2181
2182                 /* Wake up any sleeping jobs */
2183                 schedule_reset(priv);
2184         }
2185
2186         for (i = 0; status_handlers[i].status != -1; i++) {
2187                 if (status == status_handlers[i].status) {
2188                         IPW_DEBUG_NOTIF("Status change: %s\n",
2189                                         status_handlers[i].name);
2190                         if (status_handlers[i].cb)
2191                                 status_handlers[i].cb(priv, status);
2192                         priv->wstats.status = status;
2193                         return;
2194                 }
2195         }
2196
2197         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2198 }
2199
2200 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2201                                     struct ipw2100_cmd_header *cmd)
2202 {
2203 #ifdef CONFIG_IPW2100_DEBUG
2204         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2205                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2206                              command_types[cmd->host_command_reg],
2207                              cmd->host_command_reg);
2208         }
2209 #endif
2210         if (cmd->host_command_reg == HOST_COMPLETE)
2211                 priv->status |= STATUS_ENABLED;
2212
2213         if (cmd->host_command_reg == CARD_DISABLE)
2214                 priv->status &= ~STATUS_ENABLED;
2215
2216         priv->status &= ~STATUS_CMD_ACTIVE;
2217
2218         wake_up_interruptible(&priv->wait_command_queue);
2219 }
2220
2221 #ifdef CONFIG_IPW2100_DEBUG
2222 static const char *frame_types[] = {
2223         "COMMAND_STATUS_VAL",
2224         "STATUS_CHANGE_VAL",
2225         "P80211_DATA_VAL",
2226         "P8023_DATA_VAL",
2227         "HOST_NOTIFICATION_VAL"
2228 };
2229 #endif
2230
2231 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2232                                     struct ipw2100_rx_packet *packet)
2233 {
2234         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2235         if (!packet->skb)
2236                 return -ENOMEM;
2237
2238         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2239         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2240                                           sizeof(struct ipw2100_rx),
2241                                           PCI_DMA_FROMDEVICE);
2242         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2243          *       dma_addr */
2244
2245         return 0;
2246 }
2247
2248 #define SEARCH_ERROR   0xffffffff
2249 #define SEARCH_FAIL    0xfffffffe
2250 #define SEARCH_SUCCESS 0xfffffff0
2251 #define SEARCH_DISCARD 0
2252 #define SEARCH_SNAPSHOT 1
2253
2254 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2255 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2256 {
2257         int i;
2258         if (!priv->snapshot[0])
2259                 return;
2260         for (i = 0; i < 0x30; i++)
2261                 kfree(priv->snapshot[i]);
2262         priv->snapshot[0] = NULL;
2263 }
2264
2265 #ifdef IPW2100_DEBUG_C3
2266 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2267 {
2268         int i;
2269         if (priv->snapshot[0])
2270                 return 1;
2271         for (i = 0; i < 0x30; i++) {
2272                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2273                 if (!priv->snapshot[i]) {
2274                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2275                                        "buffer %d\n", priv->net_dev->name, i);
2276                         while (i > 0)
2277                                 kfree(priv->snapshot[--i]);
2278                         priv->snapshot[0] = NULL;
2279                         return 0;
2280                 }
2281         }
2282
2283         return 1;
2284 }
2285
2286 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2287                                     size_t len, int mode)
2288 {
2289         u32 i, j;
2290         u32 tmp;
2291         u8 *s, *d;
2292         u32 ret;
2293
2294         s = in_buf;
2295         if (mode == SEARCH_SNAPSHOT) {
2296                 if (!ipw2100_snapshot_alloc(priv))
2297                         mode = SEARCH_DISCARD;
2298         }
2299
2300         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2301                 read_nic_dword(priv->net_dev, i, &tmp);
2302                 if (mode == SEARCH_SNAPSHOT)
2303                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2304                 if (ret == SEARCH_FAIL) {
2305                         d = (u8 *) & tmp;
2306                         for (j = 0; j < 4; j++) {
2307                                 if (*s != *d) {
2308                                         s = in_buf;
2309                                         continue;
2310                                 }
2311
2312                                 s++;
2313                                 d++;
2314
2315                                 if ((s - in_buf) == len)
2316                                         ret = (i + j) - len + 1;
2317                         }
2318                 } else if (mode == SEARCH_DISCARD)
2319                         return ret;
2320         }
2321
2322         return ret;
2323 }
2324 #endif
2325
2326 /*
2327  *
2328  * 0) Disconnect the SKB from the firmware (just unmap)
2329  * 1) Pack the ETH header into the SKB
2330  * 2) Pass the SKB to the network stack
2331  *
2332  * When packet is provided by the firmware, it contains the following:
2333  *
2334  * .  ieee80211_hdr
2335  * .  ieee80211_snap_hdr
2336  *
2337  * The size of the constructed ethernet
2338  *
2339  */
2340 #ifdef IPW2100_RX_DEBUG
2341 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2342 #endif
2343
2344 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2345 {
2346 #ifdef IPW2100_DEBUG_C3
2347         struct ipw2100_status *status = &priv->status_queue.drv[i];
2348         u32 match, reg;
2349         int j;
2350 #endif
2351
2352         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2353                        i * sizeof(struct ipw2100_status));
2354
2355 #ifdef IPW2100_DEBUG_C3
2356         /* Halt the fimrware so we can get a good image */
2357         write_register(priv->net_dev, IPW_REG_RESET_REG,
2358                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2359         j = 5;
2360         do {
2361                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2362                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2363
2364                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2365                         break;
2366         } while (j--);
2367
2368         match = ipw2100_match_buf(priv, (u8 *) status,
2369                                   sizeof(struct ipw2100_status),
2370                                   SEARCH_SNAPSHOT);
2371         if (match < SEARCH_SUCCESS)
2372                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2373                                "offset 0x%06X, length %d:\n",
2374                                priv->net_dev->name, match,
2375                                sizeof(struct ipw2100_status));
2376         else
2377                 IPW_DEBUG_INFO("%s: No DMA status match in "
2378                                "Firmware.\n", priv->net_dev->name);
2379
2380         printk_buf((u8 *) priv->status_queue.drv,
2381                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2382 #endif
2383
2384         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2385         priv->ieee->stats.rx_errors++;
2386         schedule_reset(priv);
2387 }
2388
2389 static void isr_rx(struct ipw2100_priv *priv, int i,
2390                           struct ieee80211_rx_stats *stats)
2391 {
2392         struct ipw2100_status *status = &priv->status_queue.drv[i];
2393         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2394
2395         IPW_DEBUG_RX("Handler...\n");
2396
2397         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2398                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2399                                "  Dropping.\n",
2400                                priv->net_dev->name,
2401                                status->frame_size, skb_tailroom(packet->skb));
2402                 priv->ieee->stats.rx_errors++;
2403                 return;
2404         }
2405
2406         if (unlikely(!netif_running(priv->net_dev))) {
2407                 priv->ieee->stats.rx_errors++;
2408                 priv->wstats.discard.misc++;
2409                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2410                 return;
2411         }
2412
2413         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2414                      !(priv->status & STATUS_ASSOCIATED))) {
2415                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2416                 priv->wstats.discard.misc++;
2417                 return;
2418         }
2419
2420         pci_unmap_single(priv->pci_dev,
2421                          packet->dma_addr,
2422                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2423
2424         skb_put(packet->skb, status->frame_size);
2425
2426 #ifdef IPW2100_RX_DEBUG
2427         /* Make a copy of the frame so we can dump it to the logs if
2428          * ieee80211_rx fails */
2429         skb_copy_from_linear_data(packet->skb, packet_data,
2430                                   min_t(u32, status->frame_size,
2431                                              IPW_RX_NIC_BUFFER_LENGTH));
2432 #endif
2433
2434         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2435 #ifdef IPW2100_RX_DEBUG
2436                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2437                                priv->net_dev->name);
2438                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2439 #endif
2440                 priv->ieee->stats.rx_errors++;
2441
2442                 /* ieee80211_rx failed, so it didn't free the SKB */
2443                 dev_kfree_skb_any(packet->skb);
2444                 packet->skb = NULL;
2445         }
2446
2447         /* We need to allocate a new SKB and attach it to the RDB. */
2448         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2449                 printk(KERN_WARNING DRV_NAME ": "
2450                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2451                        "adapter.\n", priv->net_dev->name);
2452                 /* TODO: schedule adapter shutdown */
2453                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2454         }
2455
2456         /* Update the RDB entry */
2457         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2458 }
2459
2460 #ifdef CONFIG_IPW2100_MONITOR
2461
2462 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2463                    struct ieee80211_rx_stats *stats)
2464 {
2465         struct ipw2100_status *status = &priv->status_queue.drv[i];
2466         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2467
2468         /* Magic struct that slots into the radiotap header -- no reason
2469          * to build this manually element by element, we can write it much
2470          * more efficiently than we can parse it. ORDER MATTERS HERE */
2471         struct ipw_rt_hdr {
2472                 struct ieee80211_radiotap_header rt_hdr;
2473                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2474         } *ipw_rt;
2475
2476         IPW_DEBUG_RX("Handler...\n");
2477
2478         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2479                                 sizeof(struct ipw_rt_hdr))) {
2480                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2481                                "  Dropping.\n",
2482                                priv->net_dev->name,
2483                                status->frame_size,
2484                                skb_tailroom(packet->skb));
2485                 priv->ieee->stats.rx_errors++;
2486                 return;
2487         }
2488
2489         if (unlikely(!netif_running(priv->net_dev))) {
2490                 priv->ieee->stats.rx_errors++;
2491                 priv->wstats.discard.misc++;
2492                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2493                 return;
2494         }
2495
2496         if (unlikely(priv->config & CFG_CRC_CHECK &&
2497                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2498                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2499                 priv->ieee->stats.rx_errors++;
2500                 return;
2501         }
2502
2503         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2504                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2505         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2506                 packet->skb->data, status->frame_size);
2507
2508         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2509
2510         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2511         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2512         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2513
2514         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2515
2516         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2517
2518         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2519
2520         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2521                 priv->ieee->stats.rx_errors++;
2522
2523                 /* ieee80211_rx failed, so it didn't free the SKB */
2524                 dev_kfree_skb_any(packet->skb);
2525                 packet->skb = NULL;
2526         }
2527
2528         /* We need to allocate a new SKB and attach it to the RDB. */
2529         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2530                 IPW_DEBUG_WARNING(
2531                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2532                         "adapter.\n", priv->net_dev->name);
2533                 /* TODO: schedule adapter shutdown */
2534                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2535         }
2536
2537         /* Update the RDB entry */
2538         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2539 }
2540
2541 #endif
2542
2543 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2544 {
2545         struct ipw2100_status *status = &priv->status_queue.drv[i];
2546         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2547         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2548
2549         switch (frame_type) {
2550         case COMMAND_STATUS_VAL:
2551                 return (status->frame_size != sizeof(u->rx_data.command));
2552         case STATUS_CHANGE_VAL:
2553                 return (status->frame_size != sizeof(u->rx_data.status));
2554         case HOST_NOTIFICATION_VAL:
2555                 return (status->frame_size < sizeof(u->rx_data.notification));
2556         case P80211_DATA_VAL:
2557         case P8023_DATA_VAL:
2558 #ifdef CONFIG_IPW2100_MONITOR
2559                 return 0;
2560 #else
2561                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2562                 case IEEE80211_FTYPE_MGMT:
2563                 case IEEE80211_FTYPE_CTL:
2564                         return 0;
2565                 case IEEE80211_FTYPE_DATA:
2566                         return (status->frame_size >
2567                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2568                 }
2569 #endif
2570         }
2571
2572         return 1;
2573 }
2574
2575 /*
2576  * ipw2100 interrupts are disabled at this point, and the ISR
2577  * is the only code that calls this method.  So, we do not need
2578  * to play with any locks.
2579  *
2580  * RX Queue works as follows:
2581  *
2582  * Read index - firmware places packet in entry identified by the
2583  *              Read index and advances Read index.  In this manner,
2584  *              Read index will always point to the next packet to
2585  *              be filled--but not yet valid.
2586  *
2587  * Write index - driver fills this entry with an unused RBD entry.
2588  *               This entry has not filled by the firmware yet.
2589  *
2590  * In between the W and R indexes are the RBDs that have been received
2591  * but not yet processed.
2592  *
2593  * The process of handling packets will start at WRITE + 1 and advance
2594  * until it reaches the READ index.
2595  *
2596  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2597  *
2598  */
2599 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2600 {
2601         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2602         struct ipw2100_status_queue *sq = &priv->status_queue;
2603         struct ipw2100_rx_packet *packet;
2604         u16 frame_type;
2605         u32 r, w, i, s;
2606         struct ipw2100_rx *u;
2607         struct ieee80211_rx_stats stats = {
2608                 .mac_time = jiffies,
2609         };
2610
2611         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2612         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2613
2614         if (r >= rxq->entries) {
2615                 IPW_DEBUG_RX("exit - bad read index\n");
2616                 return;
2617         }
2618
2619         i = (rxq->next + 1) % rxq->entries;
2620         s = i;
2621         while (i != r) {
2622                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2623                    r, rxq->next, i); */
2624
2625                 packet = &priv->rx_buffers[i];
2626
2627                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2628                  * the correct values */
2629                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2630                                             sq->nic +
2631                                             sizeof(struct ipw2100_status) * i,
2632                                             sizeof(struct ipw2100_status),
2633                                             PCI_DMA_FROMDEVICE);
2634
2635                 /* Sync the DMA for the RX buffer so CPU is sure to get
2636                  * the correct values */
2637                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2638                                             sizeof(struct ipw2100_rx),
2639                                             PCI_DMA_FROMDEVICE);
2640
2641                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2642                         ipw2100_corruption_detected(priv, i);
2643                         goto increment;
2644                 }
2645
2646                 u = packet->rxp;
2647                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2648                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2649                 stats.len = sq->drv[i].frame_size;
2650
2651                 stats.mask = 0;
2652                 if (stats.rssi != 0)
2653                         stats.mask |= IEEE80211_STATMASK_RSSI;
2654                 stats.freq = IEEE80211_24GHZ_BAND;
2655
2656                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2657                              priv->net_dev->name, frame_types[frame_type],
2658                              stats.len);
2659
2660                 switch (frame_type) {
2661                 case COMMAND_STATUS_VAL:
2662                         /* Reset Rx watchdog */
2663                         isr_rx_complete_command(priv, &u->rx_data.command);
2664                         break;
2665
2666                 case STATUS_CHANGE_VAL:
2667                         isr_status_change(priv, u->rx_data.status);
2668                         break;
2669
2670                 case P80211_DATA_VAL:
2671                 case P8023_DATA_VAL:
2672 #ifdef CONFIG_IPW2100_MONITOR
2673                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2674                                 isr_rx_monitor(priv, i, &stats);
2675                                 break;
2676                         }
2677 #endif
2678                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2679                                 break;
2680                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2681                         case IEEE80211_FTYPE_MGMT:
2682                                 ieee80211_rx_mgt(priv->ieee,
2683                                                  &u->rx_data.header, &stats);
2684                                 break;
2685
2686                         case IEEE80211_FTYPE_CTL:
2687                                 break;
2688
2689                         case IEEE80211_FTYPE_DATA:
2690                                 isr_rx(priv, i, &stats);
2691                                 break;
2692
2693                         }
2694                         break;
2695                 }
2696
2697               increment:
2698                 /* clear status field associated with this RBD */
2699                 rxq->drv[i].status.info.field = 0;
2700
2701                 i = (i + 1) % rxq->entries;
2702         }
2703
2704         if (i != s) {
2705                 /* backtrack one entry, wrapping to end if at 0 */
2706                 rxq->next = (i ? i : rxq->entries) - 1;
2707
2708                 write_register(priv->net_dev,
2709                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2710         }
2711 }
2712
2713 /*
2714  * __ipw2100_tx_process
2715  *
2716  * This routine will determine whether the next packet on
2717  * the fw_pend_list has been processed by the firmware yet.
2718  *
2719  * If not, then it does nothing and returns.
2720  *
2721  * If so, then it removes the item from the fw_pend_list, frees
2722  * any associated storage, and places the item back on the
2723  * free list of its source (either msg_free_list or tx_free_list)
2724  *
2725  * TX Queue works as follows:
2726  *
2727  * Read index - points to the next TBD that the firmware will
2728  *              process.  The firmware will read the data, and once
2729  *              done processing, it will advance the Read index.
2730  *
2731  * Write index - driver fills this entry with an constructed TBD
2732  *               entry.  The Write index is not advanced until the
2733  *               packet has been configured.
2734  *
2735  * In between the W and R indexes are the TBDs that have NOT been
2736  * processed.  Lagging behind the R index are packets that have
2737  * been processed but have not been freed by the driver.
2738  *
2739  * In order to free old storage, an internal index will be maintained
2740  * that points to the next packet to be freed.  When all used
2741  * packets have been freed, the oldest index will be the same as the
2742  * firmware's read index.
2743  *
2744  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2745  *
2746  * Because the TBD structure can not contain arbitrary data, the
2747  * driver must keep an internal queue of cached allocations such that
2748  * it can put that data back into the tx_free_list and msg_free_list
2749  * for use by future command and data packets.
2750  *
2751  */
2752 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2753 {
2754         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2755         struct ipw2100_bd *tbd;
2756         struct list_head *element;
2757         struct ipw2100_tx_packet *packet;
2758         int descriptors_used;
2759         int e, i;
2760         u32 r, w, frag_num = 0;
2761
2762         if (list_empty(&priv->fw_pend_list))
2763                 return 0;
2764
2765         element = priv->fw_pend_list.next;
2766
2767         packet = list_entry(element, struct ipw2100_tx_packet, list);
2768         tbd = &txq->drv[packet->index];
2769
2770         /* Determine how many TBD entries must be finished... */
2771         switch (packet->type) {
2772         case COMMAND:
2773                 /* COMMAND uses only one slot; don't advance */
2774                 descriptors_used = 1;
2775                 e = txq->oldest;
2776                 break;
2777
2778         case DATA:
2779                 /* DATA uses two slots; advance and loop position. */
2780                 descriptors_used = tbd->num_fragments;
2781                 frag_num = tbd->num_fragments - 1;
2782                 e = txq->oldest + frag_num;
2783                 e %= txq->entries;
2784                 break;
2785
2786         default:
2787                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2788                        priv->net_dev->name);
2789                 return 0;
2790         }
2791
2792         /* if the last TBD is not done by NIC yet, then packet is
2793          * not ready to be released.
2794          *
2795          */
2796         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2797                       &r);
2798         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2799                       &w);
2800         if (w != txq->next)
2801                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2802                        priv->net_dev->name);
2803
2804         /*
2805          * txq->next is the index of the last packet written txq->oldest is
2806          * the index of the r is the index of the next packet to be read by
2807          * firmware
2808          */
2809
2810         /*
2811          * Quick graphic to help you visualize the following
2812          * if / else statement
2813          *
2814          * ===>|                     s---->|===============
2815          *                               e>|
2816          * | a | b | c | d | e | f | g | h | i | j | k | l
2817          *       r---->|
2818          *               w
2819          *
2820          * w - updated by driver
2821          * r - updated by firmware
2822          * s - start of oldest BD entry (txq->oldest)
2823          * e - end of oldest BD entry
2824          *
2825          */
2826         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2827                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2828                 return 0;
2829         }
2830
2831         list_del(element);
2832         DEC_STAT(&priv->fw_pend_stat);
2833
2834 #ifdef CONFIG_IPW2100_DEBUG
2835         {
2836                 int i = txq->oldest;
2837                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2838                              &txq->drv[i],
2839                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2840                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2841
2842                 if (packet->type == DATA) {
2843                         i = (i + 1) % txq->entries;
2844
2845                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2846                                      &txq->drv[i],
2847                                      (u32) (txq->nic + i *
2848                                             sizeof(struct ipw2100_bd)),
2849                                      (u32) txq->drv[i].host_addr,
2850                                      txq->drv[i].buf_length);
2851                 }
2852         }
2853 #endif
2854
2855         switch (packet->type) {
2856         case DATA:
2857                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2858                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2859                                "Expecting DATA TBD but pulled "
2860                                "something else: ids %d=%d.\n",
2861                                priv->net_dev->name, txq->oldest, packet->index);
2862
2863                 /* DATA packet; we have to unmap and free the SKB */
2864                 for (i = 0; i < frag_num; i++) {
2865                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2866
2867                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2868                                      (packet->index + 1 + i) % txq->entries,
2869                                      tbd->host_addr, tbd->buf_length);
2870
2871                         pci_unmap_single(priv->pci_dev,
2872                                          tbd->host_addr,
2873                                          tbd->buf_length, PCI_DMA_TODEVICE);
2874                 }
2875
2876                 ieee80211_txb_free(packet->info.d_struct.txb);
2877                 packet->info.d_struct.txb = NULL;
2878
2879                 list_add_tail(element, &priv->tx_free_list);
2880                 INC_STAT(&priv->tx_free_stat);
2881
2882                 /* We have a free slot in the Tx queue, so wake up the
2883                  * transmit layer if it is stopped. */
2884                 if (priv->status & STATUS_ASSOCIATED)
2885                         netif_wake_queue(priv->net_dev);
2886
2887                 /* A packet was processed by the hardware, so update the
2888                  * watchdog */
2889                 priv->net_dev->trans_start = jiffies;
2890
2891                 break;
2892
2893         case COMMAND:
2894                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2895                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2896                                "Expecting COMMAND TBD but pulled "
2897                                "something else: ids %d=%d.\n",
2898                                priv->net_dev->name, txq->oldest, packet->index);
2899
2900 #ifdef CONFIG_IPW2100_DEBUG
2901                 if (packet->info.c_struct.cmd->host_command_reg <
2902                     ARRAY_SIZE(command_types))
2903                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2904                                      command_types[packet->info.c_struct.cmd->
2905                                                    host_command_reg],
2906                                      packet->info.c_struct.cmd->
2907                                      host_command_reg,
2908                                      packet->info.c_struct.cmd->cmd_status_reg);
2909 #endif
2910
2911                 list_add_tail(element, &priv->msg_free_list);
2912                 INC_STAT(&priv->msg_free_stat);
2913                 break;
2914         }
2915
2916         /* advance oldest used TBD pointer to start of next entry */
2917         txq->oldest = (e + 1) % txq->entries;
2918         /* increase available TBDs number */
2919         txq->available += descriptors_used;
2920         SET_STAT(&priv->txq_stat, txq->available);
2921
2922         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2923                      jiffies - packet->jiffy_start);
2924
2925         return (!list_empty(&priv->fw_pend_list));
2926 }
2927
2928 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2929 {
2930         int i = 0;
2931
2932         while (__ipw2100_tx_process(priv) && i < 200)
2933                 i++;
2934
2935         if (i == 200) {
2936                 printk(KERN_WARNING DRV_NAME ": "
2937                        "%s: Driver is running slow (%d iters).\n",
2938                        priv->net_dev->name, i);
2939         }
2940 }
2941
2942 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2943 {
2944         struct list_head *element;
2945         struct ipw2100_tx_packet *packet;
2946         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2947         struct ipw2100_bd *tbd;
2948         int next = txq->next;
2949
2950         while (!list_empty(&priv->msg_pend_list)) {
2951                 /* if there isn't enough space in TBD queue, then
2952                  * don't stuff a new one in.
2953                  * NOTE: 3 are needed as a command will take one,
2954                  *       and there is a minimum of 2 that must be
2955                  *       maintained between the r and w indexes
2956                  */
2957                 if (txq->available <= 3) {
2958                         IPW_DEBUG_TX("no room in tx_queue\n");
2959                         break;
2960                 }
2961
2962                 element = priv->msg_pend_list.next;
2963                 list_del(element);
2964                 DEC_STAT(&priv->msg_pend_stat);
2965
2966                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2967
2968                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2969                              &txq->drv[txq->next],
2970                              (void *)(txq->nic + txq->next *
2971                                       sizeof(struct ipw2100_bd)));
2972
2973                 packet->index = txq->next;
2974
2975                 tbd = &txq->drv[txq->next];
2976
2977                 /* initialize TBD */
2978                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2979                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2980                 /* not marking number of fragments causes problems
2981                  * with f/w debug version */
2982                 tbd->num_fragments = 1;
2983                 tbd->status.info.field =
2984                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2985                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2986
2987                 /* update TBD queue counters */
2988                 txq->next++;
2989                 txq->next %= txq->entries;
2990                 txq->available--;
2991                 DEC_STAT(&priv->txq_stat);
2992
2993                 list_add_tail(element, &priv->fw_pend_list);
2994                 INC_STAT(&priv->fw_pend_stat);
2995         }
2996
2997         if (txq->next != next) {
2998                 /* kick off the DMA by notifying firmware the
2999                  * write index has moved; make sure TBD stores are sync'd */
3000                 wmb();
3001                 write_register(priv->net_dev,
3002                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3003                                txq->next);
3004         }
3005 }
3006
3007 /*
3008  * ipw2100_tx_send_data
3009  *
3010  */
3011 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3012 {
3013         struct list_head *element;
3014         struct ipw2100_tx_packet *packet;
3015         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3016         struct ipw2100_bd *tbd;
3017         int next = txq->next;
3018         int i = 0;
3019         struct ipw2100_data_header *ipw_hdr;
3020         struct ieee80211_hdr_3addr *hdr;
3021
3022         while (!list_empty(&priv->tx_pend_list)) {
3023                 /* if there isn't enough space in TBD queue, then
3024                  * don't stuff a new one in.
3025                  * NOTE: 4 are needed as a data will take two,
3026                  *       and there is a minimum of 2 that must be
3027                  *       maintained between the r and w indexes
3028                  */
3029                 element = priv->tx_pend_list.next;
3030                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3031
3032                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3033                              IPW_MAX_BDS)) {
3034                         /* TODO: Support merging buffers if more than
3035                          * IPW_MAX_BDS are used */
3036                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3037                                        "Increase fragmentation level.\n",
3038                                        priv->net_dev->name);
3039                 }
3040
3041                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3042                         IPW_DEBUG_TX("no room in tx_queue\n");
3043                         break;
3044                 }
3045
3046                 list_del(element);
3047                 DEC_STAT(&priv->tx_pend_stat);
3048
3049                 tbd = &txq->drv[txq->next];
3050
3051                 packet->index = txq->next;
3052
3053                 ipw_hdr = packet->info.d_struct.data;
3054                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3055                     fragments[0]->data;
3056
3057                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3058                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3059                            Addr3 = DA */
3060                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3061                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3062                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3063                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3064                            Addr3 = BSSID */
3065                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3066                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3067                 }
3068
3069                 ipw_hdr->host_command_reg = SEND;
3070                 ipw_hdr->host_command_reg1 = 0;
3071
3072                 /* For now we only support host based encryption */
3073                 ipw_hdr->needs_encryption = 0;
3074                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3075                 if (packet->info.d_struct.txb->nr_frags > 1)
3076                         ipw_hdr->fragment_size =
3077                             packet->info.d_struct.txb->frag_size -
3078                             IEEE80211_3ADDR_LEN;
3079                 else
3080                         ipw_hdr->fragment_size = 0;
3081
3082                 tbd->host_addr = packet->info.d_struct.data_phys;
3083                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3084                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3085                 tbd->status.info.field =
3086                     IPW_BD_STATUS_TX_FRAME_802_3 |
3087                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3088                 txq->next++;
3089                 txq->next %= txq->entries;
3090
3091                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3092                              packet->index, tbd->host_addr, tbd->buf_length);
3093 #ifdef CONFIG_IPW2100_DEBUG
3094                 if (packet->info.d_struct.txb->nr_frags > 1)
3095                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3096                                        packet->info.d_struct.txb->nr_frags);
3097 #endif
3098
3099                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3100                         tbd = &txq->drv[txq->next];
3101                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3102                                 tbd->status.info.field =
3103                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3104                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3105                         else
3106                                 tbd->status.info.field =
3107                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3108                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3109
3110                         tbd->buf_length = packet->info.d_struct.txb->
3111                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3112
3113                         tbd->host_addr = pci_map_single(priv->pci_dev,
3114                                                         packet->info.d_struct.
3115                                                         txb->fragments[i]->
3116                                                         data +
3117                                                         IEEE80211_3ADDR_LEN,
3118                                                         tbd->buf_length,
3119                                                         PCI_DMA_TODEVICE);
3120
3121                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3122                                      txq->next, tbd->host_addr,
3123                                      tbd->buf_length);
3124
3125                         pci_dma_sync_single_for_device(priv->pci_dev,
3126                                                        tbd->host_addr,
3127                                                        tbd->buf_length,
3128                                                        PCI_DMA_TODEVICE);
3129
3130                         txq->next++;
3131                         txq->next %= txq->entries;
3132                 }
3133
3134                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3135                 SET_STAT(&priv->txq_stat, txq->available);
3136
3137                 list_add_tail(element, &priv->fw_pend_list);
3138                 INC_STAT(&priv->fw_pend_stat);
3139         }
3140
3141         if (txq->next != next) {
3142                 /* kick off the DMA by notifying firmware the
3143                  * write index has moved; make sure TBD stores are sync'd */
3144                 write_register(priv->net_dev,
3145                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3146                                txq->next);
3147         }
3148         return;
3149 }
3150
3151 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3152 {
3153         struct net_device *dev = priv->net_dev;
3154         unsigned long flags;
3155         u32 inta, tmp;
3156
3157         spin_lock_irqsave(&priv->low_lock, flags);
3158         ipw2100_disable_interrupts(priv);
3159
3160         read_register(dev, IPW_REG_INTA, &inta);
3161
3162         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3163                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3164
3165         priv->in_isr++;
3166         priv->interrupts++;
3167
3168         /* We do not loop and keep polling for more interrupts as this
3169          * is frowned upon and doesn't play nicely with other potentially
3170          * chained IRQs */
3171         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3172                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3173
3174         if (inta & IPW2100_INTA_FATAL_ERROR) {
3175                 printk(KERN_WARNING DRV_NAME
3176                        ": Fatal interrupt. Scheduling firmware restart.\n");
3177                 priv->inta_other++;
3178                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3179
3180                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3181                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3182                                priv->net_dev->name, priv->fatal_error);
3183
3184                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3185                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3186                                priv->net_dev->name, tmp);
3187
3188                 /* Wake up any sleeping jobs */
3189                 schedule_reset(priv);
3190         }
3191
3192         if (inta & IPW2100_INTA_PARITY_ERROR) {
3193                 printk(KERN_ERR DRV_NAME
3194                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3195                 priv->inta_other++;
3196                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3197         }
3198
3199         if (inta & IPW2100_INTA_RX_TRANSFER) {
3200                 IPW_DEBUG_ISR("RX interrupt\n");
3201
3202                 priv->rx_interrupts++;
3203
3204                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3205
3206                 __ipw2100_rx_process(priv);
3207                 __ipw2100_tx_complete(priv);
3208         }
3209
3210         if (inta & IPW2100_INTA_TX_TRANSFER) {
3211                 IPW_DEBUG_ISR("TX interrupt\n");
3212
3213                 priv->tx_interrupts++;
3214
3215                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3216
3217                 __ipw2100_tx_complete(priv);
3218                 ipw2100_tx_send_commands(priv);
3219                 ipw2100_tx_send_data(priv);
3220         }
3221
3222         if (inta & IPW2100_INTA_TX_COMPLETE) {
3223                 IPW_DEBUG_ISR("TX complete\n");
3224                 priv->inta_other++;
3225                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3226
3227                 __ipw2100_tx_complete(priv);
3228         }
3229
3230         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3231                 /* ipw2100_handle_event(dev); */
3232                 priv->inta_other++;
3233                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3234         }
3235
3236         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3237                 IPW_DEBUG_ISR("FW init done interrupt\n");
3238                 priv->inta_other++;
3239
3240                 read_register(dev, IPW_REG_INTA, &tmp);
3241                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3242                            IPW2100_INTA_PARITY_ERROR)) {
3243                         write_register(dev, IPW_REG_INTA,
3244                                        IPW2100_INTA_FATAL_ERROR |
3245                                        IPW2100_INTA_PARITY_ERROR);
3246                 }
3247
3248                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3249         }
3250
3251         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3252                 IPW_DEBUG_ISR("Status change interrupt\n");
3253                 priv->inta_other++;
3254                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3255         }
3256
3257         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3258                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3259                 priv->inta_other++;
3260                 write_register(dev, IPW_REG_INTA,
3261                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3262         }
3263
3264         priv->in_isr--;
3265         ipw2100_enable_interrupts(priv);
3266
3267         spin_unlock_irqrestore(&priv->low_lock, flags);
3268
3269         IPW_DEBUG_ISR("exit\n");
3270 }
3271
3272 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3273 {
3274         struct ipw2100_priv *priv = data;
3275         u32 inta, inta_mask;
3276
3277         if (!data)
3278                 return IRQ_NONE;
3279
3280         spin_lock(&priv->low_lock);
3281
3282         /* We check to see if we should be ignoring interrupts before
3283          * we touch the hardware.  During ucode load if we try and handle
3284          * an interrupt we can cause keyboard problems as well as cause
3285          * the ucode to fail to initialize */
3286         if (!(priv->status & STATUS_INT_ENABLED)) {
3287                 /* Shared IRQ */
3288                 goto none;
3289         }
3290
3291         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3292         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3293
3294         if (inta == 0xFFFFFFFF) {
3295                 /* Hardware disappeared */
3296                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3297                 goto none;
3298         }
3299
3300         inta &= IPW_INTERRUPT_MASK;
3301
3302         if (!(inta & inta_mask)) {
3303                 /* Shared interrupt */
3304                 goto none;
3305         }
3306
3307         /* We disable the hardware interrupt here just to prevent unneeded
3308          * calls to be made.  We disable this again within the actual
3309          * work tasklet, so if another part of the code re-enables the
3310          * interrupt, that is fine */
3311         ipw2100_disable_interrupts(priv);
3312
3313         tasklet_schedule(&priv->irq_tasklet);
3314         spin_unlock(&priv->low_lock);
3315
3316         return IRQ_HANDLED;
3317       none:
3318         spin_unlock(&priv->low_lock);
3319         return IRQ_NONE;
3320 }
3321
3322 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3323                       int pri)
3324 {
3325         struct ipw2100_priv *priv = ieee80211_priv(dev);
3326         struct list_head *element;
3327         struct ipw2100_tx_packet *packet;
3328         unsigned long flags;
3329
3330         spin_lock_irqsave(&priv->low_lock, flags);
3331
3332         if (!(priv->status & STATUS_ASSOCIATED)) {
3333                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3334                 priv->ieee->stats.tx_carrier_errors++;
3335                 netif_stop_queue(dev);
3336                 goto fail_unlock;
3337         }
3338
3339         if (list_empty(&priv->tx_free_list))
3340                 goto fail_unlock;
3341
3342         element = priv->tx_free_list.next;
3343         packet = list_entry(element, struct ipw2100_tx_packet, list);
3344
3345         packet->info.d_struct.txb = txb;
3346
3347         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3348         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3349
3350         packet->jiffy_start = jiffies;
3351
3352         list_del(element);
3353         DEC_STAT(&priv->tx_free_stat);
3354
3355         list_add_tail(element, &priv->tx_pend_list);
3356         INC_STAT(&priv->tx_pend_stat);
3357
3358         ipw2100_tx_send_data(priv);
3359
3360         spin_unlock_irqrestore(&priv->low_lock, flags);
3361         return 0;
3362
3363       fail_unlock:
3364         netif_stop_queue(dev);
3365         spin_unlock_irqrestore(&priv->low_lock, flags);
3366         return 1;
3367 }
3368
3369 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3370 {
3371         int i, j, err = -EINVAL;
3372         void *v;
3373         dma_addr_t p;
3374
3375         priv->msg_buffers =
3376             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3377                                                 sizeof(struct
3378                                                        ipw2100_tx_packet),
3379                                                 GFP_KERNEL);
3380         if (!priv->msg_buffers) {
3381                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3382                        "buffers.\n", priv->net_dev->name);
3383                 return -ENOMEM;
3384         }
3385
3386         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3387                 v = pci_alloc_consistent(priv->pci_dev,
3388                                          sizeof(struct ipw2100_cmd_header), &p);
3389                 if (!v) {
3390                         printk(KERN_ERR DRV_NAME ": "
3391                                "%s: PCI alloc failed for msg "
3392                                "buffers.\n", priv->net_dev->name);
3393                         err = -ENOMEM;
3394                         break;
3395                 }
3396
3397                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3398
3399                 priv->msg_buffers[i].type = COMMAND;
3400                 priv->msg_buffers[i].info.c_struct.cmd =
3401                     (struct ipw2100_cmd_header *)v;
3402                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3403         }
3404
3405         if (i == IPW_COMMAND_POOL_SIZE)
3406                 return 0;
3407
3408         for (j = 0; j < i; j++) {
3409                 pci_free_consistent(priv->pci_dev,
3410                                     sizeof(struct ipw2100_cmd_header),
3411                                     priv->msg_buffers[j].info.c_struct.cmd,
3412                                     priv->msg_buffers[j].info.c_struct.
3413                                     cmd_phys);
3414         }
3415
3416         kfree(priv->msg_buffers);
3417         priv->msg_buffers = NULL;
3418
3419         return err;
3420 }
3421
3422 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3423 {
3424         int i;
3425
3426         INIT_LIST_HEAD(&priv->msg_free_list);
3427         INIT_LIST_HEAD(&priv->msg_pend_list);
3428
3429         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3430                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3431         SET_STAT(&priv->msg_free_stat, i);
3432
3433         return 0;
3434 }
3435
3436 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3437 {
3438         int i;
3439
3440         if (!priv->msg_buffers)
3441                 return;
3442
3443         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3444                 pci_free_consistent(priv->pci_dev,
3445                                     sizeof(struct ipw2100_cmd_header),
3446                                     priv->msg_buffers[i].info.c_struct.cmd,
3447                                     priv->msg_buffers[i].info.c_struct.
3448                                     cmd_phys);
3449         }
3450
3451         kfree(priv->msg_buffers);
3452         priv->msg_buffers = NULL;
3453 }
3454
3455 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3456                         char *buf)
3457 {
3458         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3459         char *out = buf;
3460         int i, j;
3461         u32 val;
3462
3463         for (i = 0; i < 16; i++) {
3464                 out += sprintf(out, "[%08X] ", i * 16);
3465                 for (j = 0; j < 16; j += 4) {
3466                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3467                         out += sprintf(out, "%08X ", val);
3468                 }
3469                 out += sprintf(out, "\n");
3470         }
3471
3472         return out - buf;
3473 }
3474
3475 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3476
3477 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3478                         char *buf)
3479 {
3480         struct ipw2100_priv *p = d->driver_data;
3481         return sprintf(buf, "0x%08x\n", (int)p->config);
3482 }
3483
3484 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3485
3486 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3487                            char *buf)
3488 {
3489         struct ipw2100_priv *p = d->driver_data;
3490         return sprintf(buf, "0x%08x\n", (int)p->status);
3491 }
3492
3493 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3494
3495 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3496                                char *buf)
3497 {
3498         struct ipw2100_priv *p = d->driver_data;
3499         return sprintf(buf, "0x%08x\n", (int)p->capability);
3500 }
3501
3502 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3503
3504 #define IPW2100_REG(x) { IPW_ ##x, #x }
3505 static const struct {
3506         u32 addr;
3507         const char *name;
3508 } hw_data[] = {
3509 IPW2100_REG(REG_GP_CNTRL),
3510             IPW2100_REG(REG_GPIO),
3511             IPW2100_REG(REG_INTA),
3512             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3513 #define IPW2100_NIC(x, s) { x, #x, s }
3514 static const struct {
3515         u32 addr;
3516         const char *name;
3517         size_t size;
3518 } nic_data[] = {
3519 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3520             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3521 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3522 static const struct {
3523         u8 index;
3524         const char *name;
3525         const char *desc;
3526 } ord_data[] = {
3527 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3528             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3529                                 "successful Host Tx's (MSDU)"),
3530             IPW2100_ORD(STAT_TX_DIR_DATA,
3531                                 "successful Directed Tx's (MSDU)"),
3532             IPW2100_ORD(STAT_TX_DIR_DATA1,
3533                                 "successful Directed Tx's (MSDU) @ 1MB"),
3534             IPW2100_ORD(STAT_TX_DIR_DATA2,
3535                                 "successful Directed Tx's (MSDU) @ 2MB"),
3536             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3537                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3538             IPW2100_ORD(STAT_TX_DIR_DATA11,
3539                                 "successful Directed Tx's (MSDU) @ 11MB"),
3540             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3541                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3542             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3543                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3544             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3545                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3546             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3547                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3548             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3549             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3550             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3551             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3552             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3553             IPW2100_ORD(STAT_TX_ASSN_RESP,
3554                                 "successful Association response Tx's"),
3555             IPW2100_ORD(STAT_TX_REASSN,
3556                                 "successful Reassociation Tx's"),
3557             IPW2100_ORD(STAT_TX_REASSN_RESP,
3558                                 "successful Reassociation response Tx's"),
3559             IPW2100_ORD(STAT_TX_PROBE,
3560                                 "probes successfully transmitted"),
3561             IPW2100_ORD(STAT_TX_PROBE_RESP,
3562                                 "probe responses successfully transmitted"),
3563             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3564             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3565             IPW2100_ORD(STAT_TX_DISASSN,
3566                                 "successful Disassociation TX"),
3567             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3568             IPW2100_ORD(STAT_TX_DEAUTH,
3569                                 "successful Deauthentication TX"),
3570             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3571                                 "Total successful Tx data bytes"),
3572             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3573             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3574             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3575             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3576             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3577             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3578             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3579                                 "times max tries in a hop failed"),
3580             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3581                                 "times disassociation failed"),
3582             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3583             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3584             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3585             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3586             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3587             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3588             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3589                                 "directed packets at 5.5MB"),
3590             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3591             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3592             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3593                                 "nondirected packets at 1MB"),
3594             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3595                                 "nondirected packets at 2MB"),
3596             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3597                                 "nondirected packets at 5.5MB"),
3598             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3599                                 "nondirected packets at 11MB"),
3600             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3601             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3602                                                                     "Rx CTS"),
3603             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3604             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3605             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3606             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3607             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3608             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3609             IPW2100_ORD(STAT_RX_REASSN_RESP,
3610                                 "Reassociation response Rx's"),
3611             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3612             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3613             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3614             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3615             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3616             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3617             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3618             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3619                                 "Total rx data bytes received"),
3620             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3621             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3622             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3623             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3624             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3625             IPW2100_ORD(STAT_RX_DUPLICATE1,
3626                                 "duplicate rx packets at 1MB"),
3627             IPW2100_ORD(STAT_RX_DUPLICATE2,
3628                                 "duplicate rx packets at 2MB"),
3629             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3630                                 "duplicate rx packets at 5.5MB"),
3631             IPW2100_ORD(STAT_RX_DUPLICATE11,
3632                                 "duplicate rx packets at 11MB"),
3633             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3634             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3635             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3636             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3637             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3638                                 "rx frames with invalid protocol"),
3639             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3640             IPW2100_ORD(STAT_RX_NO_BUFFER,
3641                                 "rx frames rejected due to no buffer"),
3642             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3643                                 "rx frames dropped due to missing fragment"),
3644             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3645                                 "rx frames dropped due to non-sequential fragment"),
3646             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3647                                 "rx frames dropped due to unmatched 1st frame"),
3648             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3649                                 "rx frames dropped due to uncompleted frame"),
3650             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3651                                 "ICV errors during decryption"),
3652             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3653             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3654             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3655                                 "poll response timeouts"),
3656             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3657                                 "timeouts waiting for last {broad,multi}cast pkt"),
3658             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3659             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3660             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3661             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3662             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3663                                 "current calculation of % missed beacons"),
3664             IPW2100_ORD(STAT_PERCENT_RETRIES,
3665                                 "current calculation of % missed tx retries"),
3666             IPW2100_ORD(ASSOCIATED_AP_PTR,
3667                                 "0 if not associated, else pointer to AP table entry"),
3668             IPW2100_ORD(AVAILABLE_AP_CNT,
3669                                 "AP's decsribed in the AP table"),
3670             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3671             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3672             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3673             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3674                                 "failures due to response fail"),
3675             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3676             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3677             IPW2100_ORD(STAT_ROAM_INHIBIT,
3678                                 "times roaming was inhibited due to activity"),
3679             IPW2100_ORD(RSSI_AT_ASSN,
3680                                 "RSSI of associated AP at time of association"),
3681             IPW2100_ORD(STAT_ASSN_CAUSE1,
3682                                 "reassociation: no probe response or TX on hop"),
3683             IPW2100_ORD(STAT_ASSN_CAUSE2,
3684                                 "reassociation: poor tx/rx quality"),
3685             IPW2100_ORD(STAT_ASSN_CAUSE3,
3686                                 "reassociation: tx/rx quality (excessive AP load"),
3687             IPW2100_ORD(STAT_ASSN_CAUSE4,
3688                                 "reassociation: AP RSSI level"),
3689             IPW2100_ORD(STAT_ASSN_CAUSE5,
3690                                 "reassociations due to load leveling"),
3691             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3692             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3693                                 "times authentication response failed"),
3694             IPW2100_ORD(STATION_TABLE_CNT,
3695                                 "entries in association table"),
3696             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3697             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3698             IPW2100_ORD(COUNTRY_CODE,
3699                                 "IEEE country code as recv'd from beacon"),
3700             IPW2100_ORD(COUNTRY_CHANNELS,
3701                                 "channels suported by country"),
3702             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3703             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3704             IPW2100_ORD(ANTENNA_DIVERSITY,
3705                                 "TRUE if antenna diversity is disabled"),
3706             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3707             IPW2100_ORD(OUR_FREQ,
3708                                 "current radio freq lower digits - channel ID"),
3709             IPW2100_ORD(RTC_TIME, "current RTC time"),
3710             IPW2100_ORD(PORT_TYPE, "operating mode"),
3711             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3712             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3713             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3714             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3715             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3716             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3717             IPW2100_ORD(CAPABILITIES,
3718                                 "Management frame capability field"),
3719             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3720             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3721             IPW2100_ORD(RTS_THRESHOLD,
3722                                 "Min packet length for RTS handshaking"),
3723             IPW2100_ORD(INT_MODE, "International mode"),
3724             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3725                                 "protocol frag threshold"),
3726             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3727                                 "EEPROM offset in SRAM"),
3728             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3729                                 "EEPROM size in SRAM"),
3730             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3731             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3732                                 "EEPROM IBSS 11b channel set"),
3733             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3734             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3735             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3736             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3737             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3738
3739 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3740                               char *buf)
3741 {
3742         int i;
3743         struct ipw2100_priv *priv = dev_get_drvdata(d);
3744         struct net_device *dev = priv->net_dev;
3745         char *out = buf;
3746         u32 val = 0;
3747
3748         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3749
3750         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3751                 read_register(dev, hw_data[i].addr, &val);
3752                 out += sprintf(out, "%30s [%08X] : %08X\n",
3753                                hw_data[i].name, hw_data[i].addr, val);
3754         }
3755
3756         return out - buf;
3757 }
3758
3759 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3760
3761 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3762                              char *buf)
3763 {
3764         struct ipw2100_priv *priv = dev_get_drvdata(d);
3765         struct net_device *dev = priv->net_dev;
3766         char *out = buf;
3767         int i;
3768
3769         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3770
3771         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3772                 u8 tmp8;
3773                 u16 tmp16;
3774                 u32 tmp32;
3775
3776                 switch (nic_data[i].size) {
3777                 case 1:
3778                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3779                         out += sprintf(out, "%30s [%08X] : %02X\n",
3780                                        nic_data[i].name, nic_data[i].addr,
3781                                        tmp8);
3782                         break;
3783                 case 2:
3784                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3785                         out += sprintf(out, "%30s [%08X] : %04X\n",
3786                                        nic_data[i].name, nic_data[i].addr,
3787                                        tmp16);
3788                         break;
3789                 case 4:
3790                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3791                         out += sprintf(out, "%30s [%08X] : %08X\n",
3792                                        nic_data[i].name, nic_data[i].addr,
3793                                        tmp32);
3794                         break;
3795                 }
3796         }
3797         return out - buf;
3798 }
3799
3800 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3801
3802 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3803                            char *buf)
3804 {
3805         struct ipw2100_priv *priv = dev_get_drvdata(d);
3806         struct net_device *dev = priv->net_dev;
3807         static unsigned long loop = 0;
3808         int len = 0;
3809         u32 buffer[4];
3810         int i;
3811         char line[81];
3812
3813         if (loop >= 0x30000)
3814                 loop = 0;
3815
3816         /* sysfs provides us PAGE_SIZE buffer */
3817         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3818
3819                 if (priv->snapshot[0])
3820                         for (i = 0; i < 4; i++)
3821                                 buffer[i] =
3822                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3823                 else
3824                         for (i = 0; i < 4; i++)
3825                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3826
3827                 if (priv->dump_raw)
3828                         len += sprintf(buf + len,
3829                                        "%c%c%c%c"
3830                                        "%c%c%c%c"
3831                                        "%c%c%c%c"
3832                                        "%c%c%c%c",
3833                                        ((u8 *) buffer)[0x0],
3834                                        ((u8 *) buffer)[0x1],
3835                                        ((u8 *) buffer)[0x2],
3836                                        ((u8 *) buffer)[0x3],
3837                                        ((u8 *) buffer)[0x4],
3838                                        ((u8 *) buffer)[0x5],
3839                                        ((u8 *) buffer)[0x6],
3840                                        ((u8 *) buffer)[0x7],
3841                                        ((u8 *) buffer)[0x8],
3842                                        ((u8 *) buffer)[0x9],
3843                                        ((u8 *) buffer)[0xa],
3844                                        ((u8 *) buffer)[0xb],
3845                                        ((u8 *) buffer)[0xc],
3846                                        ((u8 *) buffer)[0xd],
3847                                        ((u8 *) buffer)[0xe],
3848                                        ((u8 *) buffer)[0xf]);
3849                 else
3850                         len += sprintf(buf + len, "%s\n",
3851                                        snprint_line(line, sizeof(line),
3852                                                     (u8 *) buffer, 16, loop));
3853                 loop += 16;
3854         }
3855
3856         return len;
3857 }
3858
3859 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3860                             const char *buf, size_t count)
3861 {
3862         struct ipw2100_priv *priv = dev_get_drvdata(d);
3863         struct net_device *dev = priv->net_dev;
3864         const char *p = buf;
3865
3866         (void)dev;              /* kill unused-var warning for debug-only code */
3867
3868         if (count < 1)
3869                 return count;
3870
3871         if (p[0] == '1' ||
3872             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3873                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3874                                dev->name);
3875                 priv->dump_raw = 1;
3876
3877         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3878                                    tolower(p[1]) == 'f')) {
3879                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3880                                dev->name);
3881                 priv->dump_raw = 0;
3882
3883         } else if (tolower(p[0]) == 'r') {
3884                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3885                 ipw2100_snapshot_free(priv);
3886
3887         } else
3888                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3889                                "reset = clear memory snapshot\n", dev->name);
3890
3891         return count;
3892 }
3893
3894 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3895
3896 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3897                              char *buf)
3898 {
3899         struct ipw2100_priv *priv = dev_get_drvdata(d);
3900         u32 val = 0;
3901         int len = 0;
3902         u32 val_len;
3903         static int loop = 0;
3904
3905         if (priv->status & STATUS_RF_KILL_MASK)
3906                 return 0;
3907
3908         if (loop >= ARRAY_SIZE(ord_data))
3909                 loop = 0;
3910
3911         /* sysfs provides us PAGE_SIZE buffer */
3912         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3913                 val_len = sizeof(u32);
3914
3915                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3916                                         &val_len))
3917                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3918                                        ord_data[loop].index,
3919                                        ord_data[loop].desc);
3920                 else
3921                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3922                                        ord_data[loop].index, val,
3923                                        ord_data[loop].desc);
3924                 loop++;
3925         }
3926
3927         return len;
3928 }
3929
3930 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3931
3932 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3933                           char *buf)
3934 {
3935         struct ipw2100_priv *priv = dev_get_drvdata(d);
3936         char *out = buf;
3937
3938         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3939                        priv->interrupts, priv->tx_interrupts,
3940                        priv->rx_interrupts, priv->inta_other);
3941         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3942         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3943 #ifdef CONFIG_IPW2100_DEBUG
3944         out += sprintf(out, "packet mismatch image: %s\n",
3945                        priv->snapshot[0] ? "YES" : "NO");
3946 #endif
3947
3948         return out - buf;
3949 }
3950
3951 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3952
3953 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3954 {
3955         int err;
3956
3957         if (mode == priv->ieee->iw_mode)
3958                 return 0;
3959
3960         err = ipw2100_disable_adapter(priv);
3961         if (err) {
3962                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3963                        priv->net_dev->name, err);
3964                 return err;
3965         }
3966
3967         switch (mode) {
3968         case IW_MODE_INFRA:
3969                 priv->net_dev->type = ARPHRD_ETHER;
3970                 break;
3971         case IW_MODE_ADHOC:
3972                 priv->net_dev->type = ARPHRD_ETHER;
3973                 break;
3974 #ifdef CONFIG_IPW2100_MONITOR
3975         case IW_MODE_MONITOR:
3976                 priv->last_mode = priv->ieee->iw_mode;
3977                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3978                 break;
3979 #endif                          /* CONFIG_IPW2100_MONITOR */
3980         }
3981
3982         priv->ieee->iw_mode = mode;
3983
3984 #ifdef CONFIG_PM
3985         /* Indicate ipw2100_download_firmware download firmware
3986          * from disk instead of memory. */
3987         ipw2100_firmware.version = 0;
3988 #endif
3989
3990         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3991         priv->reset_backoff = 0;
3992         schedule_reset(priv);
3993
3994         return 0;
3995 }
3996
3997 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3998                               char *buf)
3999 {
4000         struct ipw2100_priv *priv = dev_get_drvdata(d);
4001         int len = 0;
4002
4003 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4004
4005         if (priv->status & STATUS_ASSOCIATED)
4006                 len += sprintf(buf + len, "connected: %lu\n",
4007                                get_seconds() - priv->connect_start);
4008         else
4009                 len += sprintf(buf + len, "not connected\n");
4010
4011         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4012         DUMP_VAR(status, "08lx");
4013         DUMP_VAR(config, "08lx");
4014         DUMP_VAR(capability, "08lx");
4015
4016         len +=
4017             sprintf(buf + len, "last_rtc: %lu\n",
4018                     (unsigned long)priv->last_rtc);
4019
4020         DUMP_VAR(fatal_error, "d");
4021         DUMP_VAR(stop_hang_check, "d");
4022         DUMP_VAR(stop_rf_kill, "d");
4023         DUMP_VAR(messages_sent, "d");
4024
4025         DUMP_VAR(tx_pend_stat.value, "d");
4026         DUMP_VAR(tx_pend_stat.hi, "d");
4027
4028         DUMP_VAR(tx_free_stat.value, "d");
4029         DUMP_VAR(tx_free_stat.lo, "d");
4030
4031         DUMP_VAR(msg_free_stat.value, "d");
4032         DUMP_VAR(msg_free_stat.lo, "d");
4033
4034         DUMP_VAR(msg_pend_stat.value, "d");
4035         DUMP_VAR(msg_pend_stat.hi, "d");
4036
4037         DUMP_VAR(fw_pend_stat.value, "d");
4038         DUMP_VAR(fw_pend_stat.hi, "d");
4039
4040         DUMP_VAR(txq_stat.value, "d");
4041         DUMP_VAR(txq_stat.lo, "d");
4042
4043         DUMP_VAR(ieee->scans, "d");
4044         DUMP_VAR(reset_backoff, "d");
4045
4046         return len;
4047 }
4048
4049 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4050
4051 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4052                             char *buf)
4053 {
4054         struct ipw2100_priv *priv = dev_get_drvdata(d);
4055         char essid[IW_ESSID_MAX_SIZE + 1];
4056         u8 bssid[ETH_ALEN];
4057         u32 chan = 0;
4058         char *out = buf;
4059         int length;
4060         int ret;
4061         DECLARE_MAC_BUF(mac);
4062
4063         if (priv->status & STATUS_RF_KILL_MASK)
4064                 return 0;
4065
4066         memset(essid, 0, sizeof(essid));
4067         memset(bssid, 0, sizeof(bssid));
4068
4069         length = IW_ESSID_MAX_SIZE;
4070         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4071         if (ret)
4072                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4073                                __LINE__);
4074
4075         length = sizeof(bssid);
4076         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4077                                   bssid, &length);
4078         if (ret)
4079                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4080                                __LINE__);
4081
4082         length = sizeof(u32);
4083         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4084         if (ret)
4085                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4086                                __LINE__);
4087
4088         out += sprintf(out, "ESSID: %s\n", essid);
4089         out += sprintf(out, "BSSID:   %s\n", print_mac(mac, bssid));
4090         out += sprintf(out, "Channel: %d\n", chan);
4091
4092         return out - buf;
4093 }
4094
4095 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4096
4097 #ifdef CONFIG_IPW2100_DEBUG
4098 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4099 {
4100         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4101 }
4102
4103 static ssize_t store_debug_level(struct device_driver *d,
4104                                  const char *buf, size_t count)
4105 {
4106         char *p = (char *)buf;
4107         u32 val;
4108
4109         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4110                 p++;
4111                 if (p[0] == 'x' || p[0] == 'X')
4112                         p++;
4113                 val = simple_strtoul(p, &p, 16);
4114         } else
4115                 val = simple_strtoul(p, &p, 10);
4116         if (p == buf)
4117                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4118         else
4119                 ipw2100_debug_level = val;
4120
4121         return strnlen(buf, count);
4122 }
4123
4124 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4125                    store_debug_level);
4126 #endif                          /* CONFIG_IPW2100_DEBUG */
4127
4128 static ssize_t show_fatal_error(struct device *d,
4129                                 struct device_attribute *attr, char *buf)
4130 {
4131         struct ipw2100_priv *priv = dev_get_drvdata(d);
4132         char *out = buf;
4133         int i;
4134
4135         if (priv->fatal_error)
4136                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4137         else
4138                 out += sprintf(out, "0\n");
4139
4140         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4141                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4142                                         IPW2100_ERROR_QUEUE])
4143                         continue;
4144
4145                 out += sprintf(out, "%d. 0x%08X\n", i,
4146                                priv->fatal_errors[(priv->fatal_index - i) %
4147                                                   IPW2100_ERROR_QUEUE]);
4148         }
4149
4150         return out - buf;
4151 }
4152
4153 static ssize_t store_fatal_error(struct device *d,
4154                                  struct device_attribute *attr, const char *buf,
4155                                  size_t count)
4156 {
4157         struct ipw2100_priv *priv = dev_get_drvdata(d);
4158         schedule_reset(priv);
4159         return count;
4160 }
4161
4162 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4163                    store_fatal_error);
4164
4165 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4166                              char *buf)
4167 {
4168         struct ipw2100_priv *priv = dev_get_drvdata(d);
4169         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4170 }
4171
4172 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4173                               const char *buf, size_t count)
4174 {
4175         struct ipw2100_priv *priv = dev_get_drvdata(d);
4176         struct net_device *dev = priv->net_dev;
4177         char buffer[] = "00000000";
4178         unsigned long len =
4179             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4180         unsigned long val;
4181         char *p = buffer;
4182
4183         (void)dev;              /* kill unused-var warning for debug-only code */
4184
4185         IPW_DEBUG_INFO("enter\n");
4186
4187         strncpy(buffer, buf, len);
4188         buffer[len] = 0;
4189
4190         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4191                 p++;
4192                 if (p[0] == 'x' || p[0] == 'X')
4193                         p++;
4194                 val = simple_strtoul(p, &p, 16);
4195         } else
4196                 val = simple_strtoul(p, &p, 10);
4197         if (p == buffer) {
4198                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4199         } else {
4200                 priv->ieee->scan_age = val;
4201                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4202         }
4203
4204         IPW_DEBUG_INFO("exit\n");
4205         return len;
4206 }
4207
4208 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4209
4210 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4211                             char *buf)
4212 {
4213         /* 0 - RF kill not enabled
4214            1 - SW based RF kill active (sysfs)
4215            2 - HW based RF kill active
4216            3 - Both HW and SW baed RF kill active */
4217         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4218         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4219             (rf_kill_active(priv) ? 0x2 : 0x0);
4220         return sprintf(buf, "%i\n", val);
4221 }
4222
4223 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4224 {
4225         if ((disable_radio ? 1 : 0) ==
4226             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4227                 return 0;
4228
4229         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4230                           disable_radio ? "OFF" : "ON");
4231
4232         mutex_lock(&priv->action_mutex);
4233
4234         if (disable_radio) {
4235                 priv->status |= STATUS_RF_KILL_SW;
4236                 ipw2100_down(priv);
4237         } else {
4238                 priv->status &= ~STATUS_RF_KILL_SW;
4239                 if (rf_kill_active(priv)) {
4240                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4241                                           "disabled by HW switch\n");
4242                         /* Make sure the RF_KILL check timer is running */
4243                         priv->stop_rf_kill = 0;
4244                         cancel_delayed_work(&priv->rf_kill);
4245                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4246                                            round_jiffies_relative(HZ));
4247                 } else
4248                         schedule_reset(priv);
4249         }
4250
4251         mutex_unlock(&priv->action_mutex);
4252         return 1;
4253 }
4254
4255 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4256                              const char *buf, size_t count)
4257 {
4258         struct ipw2100_priv *priv = dev_get_drvdata(d);
4259         ipw_radio_kill_sw(priv, buf[0] == '1');
4260         return count;
4261 }
4262
4263 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4264
4265 static struct attribute *ipw2100_sysfs_entries[] = {
4266         &dev_attr_hardware.attr,
4267         &dev_attr_registers.attr,
4268         &dev_attr_ordinals.attr,
4269         &dev_attr_pci.attr,
4270         &dev_attr_stats.attr,
4271         &dev_attr_internals.attr,
4272         &dev_attr_bssinfo.attr,
4273         &dev_attr_memory.attr,
4274         &dev_attr_scan_age.attr,
4275         &dev_attr_fatal_error.attr,
4276         &dev_attr_rf_kill.attr,
4277         &dev_attr_cfg.attr,
4278         &dev_attr_status.attr,
4279         &dev_attr_capability.attr,
4280         NULL,
4281 };
4282
4283 static struct attribute_group ipw2100_attribute_group = {
4284         .attrs = ipw2100_sysfs_entries,
4285 };
4286
4287 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4288 {
4289         struct ipw2100_status_queue *q = &priv->status_queue;
4290
4291         IPW_DEBUG_INFO("enter\n");
4292
4293         q->size = entries * sizeof(struct ipw2100_status);
4294         q->drv =
4295             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4296                                                           q->size, &q->nic);
4297         if (!q->drv) {
4298                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4299                 return -ENOMEM;
4300         }
4301
4302         memset(q->drv, 0, q->size);
4303
4304         IPW_DEBUG_INFO("exit\n");
4305
4306         return 0;
4307 }
4308
4309 static void status_queue_free(struct ipw2100_priv *priv)
4310 {
4311         IPW_DEBUG_INFO("enter\n");
4312
4313         if (priv->status_queue.drv) {
4314                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4315                                     priv->status_queue.drv,
4316                                     priv->status_queue.nic);
4317                 priv->status_queue.drv = NULL;
4318         }
4319
4320         IPW_DEBUG_INFO("exit\n");
4321 }
4322
4323 static int bd_queue_allocate(struct ipw2100_priv *priv,
4324                              struct ipw2100_bd_queue *q, int entries)
4325 {
4326         IPW_DEBUG_INFO("enter\n");
4327
4328         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4329
4330         q->entries = entries;
4331         q->size = entries * sizeof(struct ipw2100_bd);
4332         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4333         if (!q->drv) {
4334                 IPW_DEBUG_INFO
4335                     ("can't allocate shared memory for buffer descriptors\n");
4336                 return -ENOMEM;
4337         }
4338         memset(q->drv, 0, q->size);
4339
4340         IPW_DEBUG_INFO("exit\n");
4341
4342         return 0;
4343 }
4344
4345 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4346 {
4347         IPW_DEBUG_INFO("enter\n");
4348
4349         if (!q)
4350                 return;
4351
4352         if (q->drv) {
4353                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4354                 q->drv = NULL;
4355         }
4356
4357         IPW_DEBUG_INFO("exit\n");
4358 }
4359
4360 static void bd_queue_initialize(struct ipw2100_priv *priv,
4361                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4362                                 u32 r, u32 w)
4363 {
4364         IPW_DEBUG_INFO("enter\n");
4365
4366         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4367                        (u32) q->nic);
4368
4369         write_register(priv->net_dev, base, q->nic);
4370         write_register(priv->net_dev, size, q->entries);
4371         write_register(priv->net_dev, r, q->oldest);
4372         write_register(priv->net_dev, w, q->next);
4373
4374         IPW_DEBUG_INFO("exit\n");
4375 }
4376
4377 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4378 {
4379         if (priv->workqueue) {
4380                 priv->stop_rf_kill = 1;
4381                 priv->stop_hang_check = 1;
4382                 cancel_delayed_work(&priv->reset_work);
4383                 cancel_delayed_work(&priv->security_work);
4384                 cancel_delayed_work(&priv->wx_event_work);
4385                 cancel_delayed_work(&priv->hang_check);
4386                 cancel_delayed_work(&priv->rf_kill);
4387                 cancel_delayed_work(&priv->scan_event_later);
4388                 destroy_workqueue(priv->workqueue);
4389                 priv->workqueue = NULL;
4390         }
4391 }
4392
4393 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4394 {
4395         int i, j, err = -EINVAL;
4396         void *v;
4397         dma_addr_t p;
4398
4399         IPW_DEBUG_INFO("enter\n");
4400
4401         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4402         if (err) {
4403                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4404                                 priv->net_dev->name);
4405                 return err;
4406         }
4407
4408         priv->tx_buffers =
4409             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4410                                                 sizeof(struct
4411                                                        ipw2100_tx_packet),
4412                                                 GFP_ATOMIC);
4413         if (!priv->tx_buffers) {
4414                 printk(KERN_ERR DRV_NAME
4415                        ": %s: alloc failed form tx buffers.\n",
4416                        priv->net_dev->name);
4417                 bd_queue_free(priv, &priv->tx_queue);
4418                 return -ENOMEM;
4419         }
4420
4421         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4422                 v = pci_alloc_consistent(priv->pci_dev,
4423                                          sizeof(struct ipw2100_data_header),
4424                                          &p);
4425                 if (!v) {
4426                         printk(KERN_ERR DRV_NAME
4427                                ": %s: PCI alloc failed for tx " "buffers.\n",
4428                                priv->net_dev->name);
4429                         err = -ENOMEM;
4430                         break;
4431                 }
4432
4433                 priv->tx_buffers[i].type = DATA;
4434                 priv->tx_buffers[i].info.d_struct.data =
4435                     (struct ipw2100_data_header *)v;
4436                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4437                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4438         }
4439
4440         if (i == TX_PENDED_QUEUE_LENGTH)
4441                 return 0;
4442
4443         for (j = 0; j < i; j++) {
4444                 pci_free_consistent(priv->pci_dev,
4445                                     sizeof(struct ipw2100_data_header),
4446                                     priv->tx_buffers[j].info.d_struct.data,
4447                                     priv->tx_buffers[j].info.d_struct.
4448                                     data_phys);
4449         }
4450
4451         kfree(priv->tx_buffers);
4452         priv->tx_buffers = NULL;
4453
4454         return err;
4455 }
4456
4457 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4458 {
4459         int i;
4460
4461         IPW_DEBUG_INFO("enter\n");
4462
4463         /*
4464          * reinitialize packet info lists
4465          */
4466         INIT_LIST_HEAD(&priv->fw_pend_list);
4467         INIT_STAT(&priv->fw_pend_stat);
4468
4469         /*
4470          * reinitialize lists
4471          */
4472         INIT_LIST_HEAD(&priv->tx_pend_list);
4473         INIT_LIST_HEAD(&priv->tx_free_list);
4474         INIT_STAT(&priv->tx_pend_stat);
4475         INIT_STAT(&priv->tx_free_stat);
4476
4477         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4478                 /* We simply drop any SKBs that have been queued for
4479                  * transmit */
4480                 if (priv->tx_buffers[i].info.d_struct.txb) {
4481                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4482                                            txb);
4483                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4484                 }
4485
4486                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4487         }
4488
4489         SET_STAT(&priv->tx_free_stat, i);
4490
4491         priv->tx_queue.oldest = 0;
4492         priv->tx_queue.available = priv->tx_queue.entries;
4493         priv->tx_queue.next = 0;
4494         INIT_STAT(&priv->txq_stat);
4495         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4496
4497         bd_queue_initialize(priv, &priv->tx_queue,
4498                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4499                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4500                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4501                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4502
4503         IPW_DEBUG_INFO("exit\n");
4504
4505 }
4506
4507 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4508 {
4509         int i;
4510
4511         IPW_DEBUG_INFO("enter\n");
4512
4513         bd_queue_free(priv, &priv->tx_queue);
4514
4515         if (!priv->tx_buffers)
4516                 return;
4517
4518         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4519                 if (priv->tx_buffers[i].info.d_struct.txb) {
4520                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4521                                            txb);
4522                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4523                 }
4524                 if (priv->tx_buffers[i].info.d_struct.data)
4525                         pci_free_consistent(priv->pci_dev,
4526                                             sizeof(struct ipw2100_data_header),
4527                                             priv->tx_buffers[i].info.d_struct.
4528                                             data,
4529                                             priv->tx_buffers[i].info.d_struct.
4530                                             data_phys);
4531         }
4532
4533         kfree(priv->tx_buffers);
4534         priv->tx_buffers = NULL;
4535
4536         IPW_DEBUG_INFO("exit\n");
4537 }
4538
4539 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4540 {
4541         int i, j, err = -EINVAL;
4542
4543         IPW_DEBUG_INFO("enter\n");
4544
4545         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4546         if (err) {
4547                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4548                 return err;
4549         }
4550
4551         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4552         if (err) {
4553                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4554                 bd_queue_free(priv, &priv->rx_queue);
4555                 return err;
4556         }
4557
4558         /*
4559          * allocate packets
4560          */
4561         priv->rx_buffers = (struct ipw2100_rx_packet *)
4562             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4563                     GFP_KERNEL);
4564         if (!priv->rx_buffers) {
4565                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4566
4567                 bd_queue_free(priv, &priv->rx_queue);
4568
4569                 status_queue_free(priv);
4570
4571                 return -ENOMEM;
4572         }
4573
4574         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4575                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4576
4577                 err = ipw2100_alloc_skb(priv, packet);
4578                 if (unlikely(err)) {
4579                         err = -ENOMEM;
4580                         break;
4581                 }
4582
4583                 /* The BD holds the cache aligned address */
4584                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4585                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4586                 priv->status_queue.drv[i].status_fields = 0;
4587         }
4588
4589         if (i == RX_QUEUE_LENGTH)
4590                 return 0;
4591
4592         for (j = 0; j < i; j++) {
4593                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4594                                  sizeof(struct ipw2100_rx_packet),
4595                                  PCI_DMA_FROMDEVICE);
4596                 dev_kfree_skb(priv->rx_buffers[j].skb);
4597         }
4598
4599         kfree(priv->rx_buffers);
4600         priv->rx_buffers = NULL;
4601
4602         bd_queue_free(priv, &priv->rx_queue);
4603
4604         status_queue_free(priv);
4605
4606         return err;
4607 }
4608
4609 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4610 {
4611         IPW_DEBUG_INFO("enter\n");
4612
4613         priv->rx_queue.oldest = 0;
4614         priv->rx_queue.available = priv->rx_queue.entries - 1;
4615         priv->rx_queue.next = priv->rx_queue.entries - 1;
4616
4617         INIT_STAT(&priv->rxq_stat);
4618         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4619
4620         bd_queue_initialize(priv, &priv->rx_queue,
4621                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4622                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4623                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4624                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4625
4626         /* set up the status queue */
4627         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4628                        priv->status_queue.nic);
4629
4630         IPW_DEBUG_INFO("exit\n");
4631 }
4632
4633 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4634 {
4635         int i;
4636
4637         IPW_DEBUG_INFO("enter\n");
4638
4639         bd_queue_free(priv, &priv->rx_queue);
4640         status_queue_free(priv);
4641
4642         if (!priv->rx_buffers)
4643                 return;
4644
4645         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4646                 if (priv->rx_buffers[i].rxp) {
4647                         pci_unmap_single(priv->pci_dev,
4648                                          priv->rx_buffers[i].dma_addr,
4649                                          sizeof(struct ipw2100_rx),
4650                                          PCI_DMA_FROMDEVICE);
4651                         dev_kfree_skb(priv->rx_buffers[i].skb);
4652                 }
4653         }
4654
4655         kfree(priv->rx_buffers);
4656         priv->rx_buffers = NULL;
4657
4658         IPW_DEBUG_INFO("exit\n");
4659 }
4660
4661 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4662 {
4663         u32 length = ETH_ALEN;
4664         u8 addr[ETH_ALEN];
4665         DECLARE_MAC_BUF(mac);
4666
4667         int err;
4668
4669         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4670         if (err) {
4671                 IPW_DEBUG_INFO("MAC address read failed\n");
4672                 return -EIO;
4673         }
4674
4675         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4676         IPW_DEBUG_INFO("card MAC is %s\n",
4677                        print_mac(mac, priv->net_dev->dev_addr));
4678
4679         return 0;
4680 }
4681
4682 /********************************************************************
4683  *
4684  * Firmware Commands
4685  *
4686  ********************************************************************/
4687
4688 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4689 {
4690         struct host_command cmd = {
4691                 .host_command = ADAPTER_ADDRESS,
4692                 .host_command_sequence = 0,
4693                 .host_command_length = ETH_ALEN
4694         };
4695         int err;
4696
4697         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4698
4699         IPW_DEBUG_INFO("enter\n");
4700
4701         if (priv->config & CFG_CUSTOM_MAC) {
4702                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4703                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4704         } else
4705                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4706                        ETH_ALEN);
4707
4708         err = ipw2100_hw_send_command(priv, &cmd);
4709
4710         IPW_DEBUG_INFO("exit\n");
4711         return err;
4712 }
4713
4714 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4715                                  int batch_mode)
4716 {
4717         struct host_command cmd = {
4718                 .host_command = PORT_TYPE,
4719                 .host_command_sequence = 0,
4720                 .host_command_length = sizeof(u32)
4721         };
4722         int err;
4723
4724         switch (port_type) {
4725         case IW_MODE_INFRA:
4726                 cmd.host_command_parameters[0] = IPW_BSS;
4727                 break;
4728         case IW_MODE_ADHOC:
4729                 cmd.host_command_parameters[0] = IPW_IBSS;
4730                 break;
4731         }
4732
4733         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4734                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4735
4736         if (!batch_mode) {
4737                 err = ipw2100_disable_adapter(priv);
4738                 if (err) {
4739                         printk(KERN_ERR DRV_NAME
4740                                ": %s: Could not disable adapter %d\n",
4741                                priv->net_dev->name, err);
4742                         return err;
4743                 }
4744         }
4745
4746         /* send cmd to firmware */
4747         err = ipw2100_hw_send_command(priv, &cmd);
4748
4749         if (!batch_mode)
4750                 ipw2100_enable_adapter(priv);
4751
4752         return err;
4753 }
4754
4755 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4756                                int batch_mode)
4757 {
4758         struct host_command cmd = {
4759                 .host_command = CHANNEL,
4760                 .host_command_sequence = 0,
4761                 .host_command_length = sizeof(u32)
4762         };
4763         int err;
4764
4765         cmd.host_command_parameters[0] = channel;
4766
4767         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4768
4769         /* If BSS then we don't support channel selection */
4770         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4771                 return 0;
4772
4773         if ((channel != 0) &&
4774             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4775                 return -EINVAL;
4776
4777         if (!batch_mode) {
4778                 err = ipw2100_disable_adapter(priv);
4779                 if (err)
4780                         return err;
4781         }
4782
4783         err = ipw2100_hw_send_command(priv, &cmd);
4784         if (err) {
4785                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4786                 return err;
4787         }
4788
4789         if (channel)
4790                 priv->config |= CFG_STATIC_CHANNEL;
4791         else
4792                 priv->config &= ~CFG_STATIC_CHANNEL;
4793
4794         priv->channel = channel;
4795
4796         if (!batch_mode) {
4797                 err = ipw2100_enable_adapter(priv);
4798                 if (err)
4799                         return err;
4800         }
4801
4802         return 0;
4803 }
4804
4805 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4806 {
4807         struct host_command cmd = {
4808                 .host_command = SYSTEM_CONFIG,
4809                 .host_command_sequence = 0,
4810                 .host_command_length = 12,
4811         };
4812         u32 ibss_mask, len = sizeof(u32);
4813         int err;
4814
4815         /* Set system configuration */
4816
4817         if (!batch_mode) {
4818                 err = ipw2100_disable_adapter(priv);
4819                 if (err)
4820                         return err;
4821         }
4822
4823         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4824                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4825
4826         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4827             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4828
4829         if (!(priv->config & CFG_LONG_PREAMBLE))
4830                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4831
4832         err = ipw2100_get_ordinal(priv,
4833                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4834                                   &ibss_mask, &len);
4835         if (err)
4836                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4837
4838         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4839         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4840
4841         /* 11b only */
4842         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4843
4844         err = ipw2100_hw_send_command(priv, &cmd);
4845         if (err)
4846                 return err;
4847
4848 /* If IPv6 is configured in the kernel then we don't want to filter out all
4849  * of the multicast packets as IPv6 needs some. */
4850 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4851         cmd.host_command = ADD_MULTICAST;
4852         cmd.host_command_sequence = 0;
4853         cmd.host_command_length = 0;
4854
4855         ipw2100_hw_send_command(priv, &cmd);
4856 #endif
4857         if (!batch_mode) {
4858                 err = ipw2100_enable_adapter(priv);
4859                 if (err)
4860                         return err;
4861         }
4862
4863         return 0;
4864 }
4865
4866 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4867                                 int batch_mode)
4868 {
4869         struct host_command cmd = {
4870                 .host_command = BASIC_TX_RATES,
4871                 .host_command_sequence = 0,
4872                 .host_command_length = 4
4873         };
4874         int err;
4875
4876         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4877
4878         if (!batch_mode) {
4879                 err = ipw2100_disable_adapter(priv);
4880                 if (err)
4881                         return err;
4882         }
4883
4884         /* Set BASIC TX Rate first */
4885         ipw2100_hw_send_command(priv, &cmd);
4886
4887         /* Set TX Rate */
4888         cmd.host_command = TX_RATES;
4889         ipw2100_hw_send_command(priv, &cmd);
4890
4891         /* Set MSDU TX Rate */
4892         cmd.host_command = MSDU_TX_RATES;
4893         ipw2100_hw_send_command(priv, &cmd);
4894
4895         if (!batch_mode) {
4896                 err = ipw2100_enable_adapter(priv);
4897                 if (err)
4898                         return err;
4899         }
4900
4901         priv->tx_rates = rate;
4902
4903         return 0;
4904 }
4905
4906 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4907 {
4908         struct host_command cmd = {
4909                 .host_command = POWER_MODE,
4910                 .host_command_sequence = 0,
4911                 .host_command_length = 4
4912         };
4913         int err;
4914
4915         cmd.host_command_parameters[0] = power_level;
4916
4917         err = ipw2100_hw_send_command(priv, &cmd);
4918         if (err)
4919                 return err;
4920
4921         if (power_level == IPW_POWER_MODE_CAM)
4922                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4923         else
4924                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4925
4926 #ifdef IPW2100_TX_POWER
4927         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4928                 /* Set beacon interval */
4929                 cmd.host_command = TX_POWER_INDEX;
4930                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4931
4932                 err = ipw2100_hw_send_command(priv, &cmd);
4933                 if (err)
4934                         return err;
4935         }
4936 #endif
4937
4938         return 0;
4939 }
4940
4941 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4942 {
4943         struct host_command cmd = {
4944                 .host_command = RTS_THRESHOLD,
4945                 .host_command_sequence = 0,
4946                 .host_command_length = 4
4947         };
4948         int err;
4949
4950         if (threshold & RTS_DISABLED)
4951                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4952         else
4953                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4954
4955         err = ipw2100_hw_send_command(priv, &cmd);
4956         if (err)
4957                 return err;
4958
4959         priv->rts_threshold = threshold;
4960
4961         return 0;
4962 }
4963
4964 #if 0
4965 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4966                                         u32 threshold, int batch_mode)
4967 {
4968         struct host_command cmd = {
4969                 .host_command = FRAG_THRESHOLD,
4970                 .host_command_sequence = 0,
4971                 .host_command_length = 4,
4972                 .host_command_parameters[0] = 0,
4973         };
4974         int err;
4975
4976         if (!batch_mode) {
4977                 err = ipw2100_disable_adapter(priv);
4978                 if (err)
4979                         return err;
4980         }
4981
4982         if (threshold == 0)
4983                 threshold = DEFAULT_FRAG_THRESHOLD;
4984         else {
4985                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4986                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4987         }
4988
4989         cmd.host_command_parameters[0] = threshold;
4990
4991         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4992
4993         err = ipw2100_hw_send_command(priv, &cmd);
4994
4995         if (!batch_mode)
4996                 ipw2100_enable_adapter(priv);
4997
4998         if (!err)
4999                 priv->frag_threshold = threshold;
5000
5001         return err;
5002 }
5003 #endif
5004
5005 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5006 {
5007         struct host_command cmd = {
5008                 .host_command = SHORT_RETRY_LIMIT,
5009                 .host_command_sequence = 0,
5010                 .host_command_length = 4
5011         };
5012         int err;
5013
5014         cmd.host_command_parameters[0] = retry;
5015
5016         err = ipw2100_hw_send_command(priv, &cmd);
5017         if (err)
5018                 return err;
5019
5020         priv->short_retry_limit = retry;
5021
5022         return 0;
5023 }
5024
5025 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5026 {
5027         struct host_command cmd = {
5028                 .host_command = LONG_RETRY_LIMIT,
5029                 .host_command_sequence = 0,
5030                 .host_command_length = 4
5031         };
5032         int err;
5033
5034         cmd.host_command_parameters[0] = retry;
5035
5036         err = ipw2100_hw_send_command(priv, &cmd);
5037         if (err)
5038                 return err;
5039
5040         priv->long_retry_limit = retry;
5041
5042         return 0;
5043 }
5044
5045 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5046                                        int batch_mode)
5047 {
5048         struct host_command cmd = {
5049                 .host_command = MANDATORY_BSSID,
5050                 .host_command_sequence = 0,
5051                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5052         };
5053         int err;
5054
5055 #ifdef CONFIG_IPW2100_DEBUG
5056         DECLARE_MAC_BUF(mac);
5057         if (bssid != NULL)
5058                 IPW_DEBUG_HC("MANDATORY_BSSID: %s\n",
5059                              print_mac(mac, bssid));
5060         else
5061                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5062 #endif
5063         /* if BSSID is empty then we disable mandatory bssid mode */
5064         if (bssid != NULL)
5065                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5066
5067         if (!batch_mode) {
5068                 err = ipw2100_disable_adapter(priv);
5069                 if (err)
5070                         return err;
5071         }
5072
5073         err = ipw2100_hw_send_command(priv, &cmd);
5074
5075         if (!batch_mode)
5076                 ipw2100_enable_adapter(priv);
5077
5078         return err;
5079 }
5080
5081 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5082 {
5083         struct host_command cmd = {
5084                 .host_command = DISASSOCIATION_BSSID,
5085                 .host_command_sequence = 0,
5086                 .host_command_length = ETH_ALEN
5087         };
5088         int err;
5089         int len;
5090
5091         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5092
5093         len = ETH_ALEN;
5094         /* The Firmware currently ignores the BSSID and just disassociates from
5095          * the currently associated AP -- but in the off chance that a future
5096          * firmware does use the BSSID provided here, we go ahead and try and
5097          * set it to the currently associated AP's BSSID */
5098         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5099
5100         err = ipw2100_hw_send_command(priv, &cmd);
5101
5102         return err;
5103 }
5104
5105 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5106                               struct ipw2100_wpa_assoc_frame *, int)
5107     __attribute__ ((unused));
5108
5109 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5110                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5111                               int batch_mode)
5112 {
5113         struct host_command cmd = {
5114                 .host_command = SET_WPA_IE,
5115                 .host_command_sequence = 0,
5116                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5117         };
5118         int err;
5119
5120         IPW_DEBUG_HC("SET_WPA_IE\n");
5121
5122         if (!batch_mode) {
5123                 err = ipw2100_disable_adapter(priv);
5124                 if (err)
5125                         return err;
5126         }
5127
5128         memcpy(cmd.host_command_parameters, wpa_frame,
5129                sizeof(struct ipw2100_wpa_assoc_frame));
5130
5131         err = ipw2100_hw_send_command(priv, &cmd);
5132
5133         if (!batch_mode) {
5134                 if (ipw2100_enable_adapter(priv))
5135                         err = -EIO;
5136         }
5137
5138         return err;
5139 }
5140
5141 struct security_info_params {
5142         u32 allowed_ciphers;
5143         u16 version;
5144         u8 auth_mode;
5145         u8 replay_counters_number;
5146         u8 unicast_using_group;
5147 } __attribute__ ((packed));
5148
5149 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5150                                             int auth_mode,
5151                                             int security_level,
5152                                             int unicast_using_group,
5153                                             int batch_mode)
5154 {
5155         struct host_command cmd = {
5156                 .host_command = SET_SECURITY_INFORMATION,
5157                 .host_command_sequence = 0,
5158                 .host_command_length = sizeof(struct security_info_params)
5159         };
5160         struct security_info_params *security =
5161             (struct security_info_params *)&cmd.host_command_parameters;
5162         int err;
5163         memset(security, 0, sizeof(*security));
5164
5165         /* If shared key AP authentication is turned on, then we need to
5166          * configure the firmware to try and use it.
5167          *
5168          * Actual data encryption/decryption is handled by the host. */
5169         security->auth_mode = auth_mode;
5170         security->unicast_using_group = unicast_using_group;
5171
5172         switch (security_level) {
5173         default:
5174         case SEC_LEVEL_0:
5175                 security->allowed_ciphers = IPW_NONE_CIPHER;
5176                 break;
5177         case SEC_LEVEL_1:
5178                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5179                     IPW_WEP104_CIPHER;
5180                 break;
5181         case SEC_LEVEL_2:
5182                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5183                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5184                 break;
5185         case SEC_LEVEL_2_CKIP:
5186                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5187                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5188                 break;
5189         case SEC_LEVEL_3:
5190                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5191                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5192                 break;
5193         }
5194
5195         IPW_DEBUG_HC
5196             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5197              security->auth_mode, security->allowed_ciphers, security_level);
5198
5199         security->replay_counters_number = 0;
5200
5201         if (!batch_mode) {
5202                 err = ipw2100_disable_adapter(priv);
5203                 if (err)
5204                         return err;
5205         }
5206
5207         err = ipw2100_hw_send_command(priv, &cmd);
5208
5209         if (!batch_mode)
5210                 ipw2100_enable_adapter(priv);
5211
5212         return err;
5213 }
5214
5215 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5216 {
5217         struct host_command cmd = {
5218                 .host_command = TX_POWER_INDEX,
5219                 .host_command_sequence = 0,
5220                 .host_command_length = 4
5221         };
5222         int err = 0;
5223         u32 tmp = tx_power;
5224
5225         if (tx_power != IPW_TX_POWER_DEFAULT)
5226                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5227                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5228
5229         cmd.host_command_parameters[0] = tmp;
5230
5231         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5232                 err = ipw2100_hw_send_command(priv, &cmd);
5233         if (!err)
5234                 priv->tx_power = tx_power;
5235
5236         return 0;
5237 }
5238
5239 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5240                                             u32 interval, int batch_mode)
5241 {
5242         struct host_command cmd = {
5243                 .host_command = BEACON_INTERVAL,
5244                 .host_command_sequence = 0,
5245                 .host_command_length = 4
5246         };
5247         int err;
5248
5249         cmd.host_command_parameters[0] = interval;
5250
5251         IPW_DEBUG_INFO("enter\n");
5252
5253         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5254                 if (!batch_mode) {
5255                         err = ipw2100_disable_adapter(priv);
5256                         if (err)
5257                                 return err;
5258                 }
5259
5260                 ipw2100_hw_send_command(priv, &cmd);
5261
5262                 if (!batch_mode) {
5263                         err = ipw2100_enable_adapter(priv);
5264                         if (err)
5265                                 return err;
5266                 }
5267         }
5268
5269         IPW_DEBUG_INFO("exit\n");
5270
5271         return 0;
5272 }
5273
5274 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5275 {
5276         ipw2100_tx_initialize(priv);
5277         ipw2100_rx_initialize(priv);
5278         ipw2100_msg_initialize(priv);
5279 }
5280
5281 void ipw2100_queues_free(struct ipw2100_priv *priv)
5282 {
5283         ipw2100_tx_free(priv);
5284         ipw2100_rx_free(priv);
5285         ipw2100_msg_free(priv);
5286 }
5287
5288 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5289 {
5290         if (ipw2100_tx_allocate(priv) ||
5291             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5292                 goto fail;
5293
5294         return 0;
5295
5296       fail:
5297         ipw2100_tx_free(priv);
5298         ipw2100_rx_free(priv);
5299         ipw2100_msg_free(priv);
5300         return -ENOMEM;
5301 }
5302
5303 #define IPW_PRIVACY_CAPABLE 0x0008
5304
5305 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5306                                  int batch_mode)
5307 {
5308         struct host_command cmd = {
5309                 .host_command = WEP_FLAGS,
5310                 .host_command_sequence = 0,
5311                 .host_command_length = 4
5312         };
5313         int err;
5314
5315         cmd.host_command_parameters[0] = flags;
5316
5317         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5318
5319         if (!batch_mode) {
5320                 err = ipw2100_disable_adapter(priv);
5321                 if (err) {
5322                         printk(KERN_ERR DRV_NAME
5323                                ": %s: Could not disable adapter %d\n",
5324                                priv->net_dev->name, err);
5325                         return err;
5326                 }
5327         }
5328
5329         /* send cmd to firmware */
5330         err = ipw2100_hw_send_command(priv, &cmd);
5331
5332         if (!batch_mode)
5333                 ipw2100_enable_adapter(priv);
5334
5335         return err;
5336 }
5337
5338 struct ipw2100_wep_key {
5339         u8 idx;
5340         u8 len;
5341         u8 key[13];
5342 };
5343
5344 /* Macros to ease up priting WEP keys */
5345 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5346 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5347 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5348 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5349
5350 /**
5351  * Set a the wep key
5352  *
5353  * @priv: struct to work on
5354  * @idx: index of the key we want to set
5355  * @key: ptr to the key data to set
5356  * @len: length of the buffer at @key
5357  * @batch_mode: FIXME perform the operation in batch mode, not
5358  *              disabling the device.
5359  *
5360  * @returns 0 if OK, < 0 errno code on error.
5361  *
5362  * Fill out a command structure with the new wep key, length an
5363  * index and send it down the wire.
5364  */
5365 static int ipw2100_set_key(struct ipw2100_priv *priv,
5366                            int idx, char *key, int len, int batch_mode)
5367 {
5368         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5369         struct host_command cmd = {
5370                 .host_command = WEP_KEY_INFO,
5371                 .host_command_sequence = 0,
5372                 .host_command_length = sizeof(struct ipw2100_wep_key),
5373         };
5374         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5375         int err;
5376
5377         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5378                      idx, keylen, len);
5379
5380         /* NOTE: We don't check cached values in case the firmware was reset
5381          * or some other problem is occurring.  If the user is setting the key,
5382          * then we push the change */
5383
5384         wep_key->idx = idx;
5385         wep_key->len = keylen;
5386
5387         if (keylen) {
5388                 memcpy(wep_key->key, key, len);
5389                 memset(wep_key->key + len, 0, keylen - len);
5390         }
5391
5392         /* Will be optimized out on debug not being configured in */
5393         if (keylen == 0)
5394                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5395                               priv->net_dev->name, wep_key->idx);
5396         else if (keylen == 5)
5397                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5398                               priv->net_dev->name, wep_key->idx, wep_key->len,
5399                               WEP_STR_64(wep_key->key));
5400         else
5401                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5402                               "\n",
5403                               priv->net_dev->name, wep_key->idx, wep_key->len,
5404                               WEP_STR_128(wep_key->key));
5405
5406         if (!batch_mode) {
5407                 err = ipw2100_disable_adapter(priv);
5408                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5409                 if (err) {
5410                         printk(KERN_ERR DRV_NAME
5411                                ": %s: Could not disable adapter %d\n",
5412                                priv->net_dev->name, err);
5413                         return err;
5414                 }
5415         }
5416
5417         /* send cmd to firmware */
5418         err = ipw2100_hw_send_command(priv, &cmd);
5419
5420         if (!batch_mode) {
5421                 int err2 = ipw2100_enable_adapter(priv);
5422                 if (err == 0)
5423                         err = err2;
5424         }
5425         return err;
5426 }
5427
5428 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5429                                  int idx, int batch_mode)
5430 {
5431         struct host_command cmd = {
5432                 .host_command = WEP_KEY_INDEX,
5433                 .host_command_sequence = 0,
5434                 .host_command_length = 4,
5435                 .host_command_parameters = {idx},
5436         };
5437         int err;
5438
5439         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5440
5441         if (idx < 0 || idx > 3)
5442                 return -EINVAL;
5443
5444         if (!batch_mode) {
5445                 err = ipw2100_disable_adapter(priv);
5446                 if (err) {
5447                         printk(KERN_ERR DRV_NAME
5448                                ": %s: Could not disable adapter %d\n",
5449                                priv->net_dev->name, err);
5450                         return err;
5451                 }
5452         }
5453
5454         /* send cmd to firmware */
5455         err = ipw2100_hw_send_command(priv, &cmd);
5456
5457         if (!batch_mode)
5458                 ipw2100_enable_adapter(priv);
5459
5460         return err;
5461 }
5462
5463 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5464 {
5465         int i, err, auth_mode, sec_level, use_group;
5466
5467         if (!(priv->status & STATUS_RUNNING))
5468                 return 0;
5469
5470         if (!batch_mode) {
5471                 err = ipw2100_disable_adapter(priv);
5472                 if (err)
5473                         return err;
5474         }
5475
5476         if (!priv->ieee->sec.enabled) {
5477                 err =
5478                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5479                                                      SEC_LEVEL_0, 0, 1);
5480         } else {
5481                 auth_mode = IPW_AUTH_OPEN;
5482                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5483                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5484                                 auth_mode = IPW_AUTH_SHARED;
5485                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5486                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5487                 }
5488
5489                 sec_level = SEC_LEVEL_0;
5490                 if (priv->ieee->sec.flags & SEC_LEVEL)
5491                         sec_level = priv->ieee->sec.level;
5492
5493                 use_group = 0;
5494                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5495                         use_group = priv->ieee->sec.unicast_uses_group;
5496
5497                 err =
5498                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5499                                                      use_group, 1);
5500         }
5501
5502         if (err)
5503                 goto exit;
5504
5505         if (priv->ieee->sec.enabled) {
5506                 for (i = 0; i < 4; i++) {
5507                         if (!(priv->ieee->sec.flags & (1 << i))) {
5508                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5509                                 priv->ieee->sec.key_sizes[i] = 0;
5510                         } else {
5511                                 err = ipw2100_set_key(priv, i,
5512                                                       priv->ieee->sec.keys[i],
5513                                                       priv->ieee->sec.
5514                                                       key_sizes[i], 1);
5515                                 if (err)
5516                                         goto exit;
5517                         }
5518                 }
5519
5520                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5521         }
5522
5523         /* Always enable privacy so the Host can filter WEP packets if
5524          * encrypted data is sent up */
5525         err =
5526             ipw2100_set_wep_flags(priv,
5527                                   priv->ieee->sec.
5528                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5529         if (err)
5530                 goto exit;
5531
5532         priv->status &= ~STATUS_SECURITY_UPDATED;
5533
5534       exit:
5535         if (!batch_mode)
5536                 ipw2100_enable_adapter(priv);
5537
5538         return err;
5539 }
5540
5541 static void ipw2100_security_work(struct work_struct *work)
5542 {
5543         struct ipw2100_priv *priv =
5544                 container_of(work, struct ipw2100_priv, security_work.work);
5545
5546         /* If we happen to have reconnected before we get a chance to
5547          * process this, then update the security settings--which causes
5548          * a disassociation to occur */
5549         if (!(priv->status & STATUS_ASSOCIATED) &&
5550             priv->status & STATUS_SECURITY_UPDATED)
5551                 ipw2100_configure_security(priv, 0);
5552 }
5553
5554 static void shim__set_security(struct net_device *dev,
5555                                struct ieee80211_security *sec)
5556 {
5557         struct ipw2100_priv *priv = ieee80211_priv(dev);
5558         int i, force_update = 0;
5559
5560         mutex_lock(&priv->action_mutex);
5561         if (!(priv->status & STATUS_INITIALIZED))
5562                 goto done;
5563
5564         for (i = 0; i < 4; i++) {
5565                 if (sec->flags & (1 << i)) {
5566                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5567                         if (sec->key_sizes[i] == 0)
5568                                 priv->ieee->sec.flags &= ~(1 << i);
5569                         else
5570                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5571                                        sec->key_sizes[i]);
5572                         if (sec->level == SEC_LEVEL_1) {
5573                                 priv->ieee->sec.flags |= (1 << i);
5574                                 priv->status |= STATUS_SECURITY_UPDATED;
5575                         } else
5576                                 priv->ieee->sec.flags &= ~(1 << i);
5577                 }
5578         }
5579
5580         if ((sec->flags & SEC_ACTIVE_KEY) &&
5581             priv->ieee->sec.active_key != sec->active_key) {
5582                 if (sec->active_key <= 3) {
5583                         priv->ieee->sec.active_key = sec->active_key;
5584                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5585                 } else
5586                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5587
5588                 priv->status |= STATUS_SECURITY_UPDATED;
5589         }
5590
5591         if ((sec->flags & SEC_AUTH_MODE) &&
5592             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5593                 priv->ieee->sec.auth_mode = sec->auth_mode;
5594                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5595                 priv->status |= STATUS_SECURITY_UPDATED;
5596         }
5597
5598         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5599                 priv->ieee->sec.flags |= SEC_ENABLED;
5600                 priv->ieee->sec.enabled = sec->enabled;
5601                 priv->status |= STATUS_SECURITY_UPDATED;
5602                 force_update = 1;
5603         }
5604
5605         if (sec->flags & SEC_ENCRYPT)
5606                 priv->ieee->sec.encrypt = sec->encrypt;
5607
5608         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5609                 priv->ieee->sec.level = sec->level;
5610                 priv->ieee->sec.flags |= SEC_LEVEL;
5611                 priv->status |= STATUS_SECURITY_UPDATED;
5612         }
5613
5614         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5615                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5616                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5617                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5618                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5619                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5620                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5621                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5622                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5623                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5624
5625 /* As a temporary work around to enable WPA until we figure out why
5626  * wpa_supplicant toggles the security capability of the driver, which
5627  * forces a disassocation with force_update...
5628  *
5629  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5630         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5631                 ipw2100_configure_security(priv, 0);
5632       done:
5633         mutex_unlock(&priv->action_mutex);
5634 }
5635
5636 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5637 {
5638         int err;
5639         int batch_mode = 1;
5640         u8 *bssid;
5641
5642         IPW_DEBUG_INFO("enter\n");
5643
5644         err = ipw2100_disable_adapter(priv);
5645         if (err)
5646                 return err;
5647 #ifdef CONFIG_IPW2100_MONITOR
5648         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5649                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5650                 if (err)
5651                         return err;
5652
5653                 IPW_DEBUG_INFO("exit\n");
5654
5655                 return 0;
5656         }
5657 #endif                          /* CONFIG_IPW2100_MONITOR */
5658
5659         err = ipw2100_read_mac_address(priv);
5660         if (err)
5661                 return -EIO;
5662
5663         err = ipw2100_set_mac_address(priv, batch_mode);
5664         if (err)
5665                 return err;
5666
5667         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5668         if (err)
5669                 return err;
5670
5671         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5672                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5673                 if (err)
5674                         return err;
5675         }
5676
5677         err = ipw2100_system_config(priv, batch_mode);
5678         if (err)
5679                 return err;
5680
5681         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5682         if (err)
5683                 return err;
5684
5685         /* Default to power mode OFF */
5686         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5687         if (err)
5688                 return err;
5689
5690         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5691         if (err)
5692                 return err;
5693
5694         if (priv->config & CFG_STATIC_BSSID)
5695                 bssid = priv->bssid;
5696         else
5697                 bssid = NULL;
5698         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5699         if (err)
5700                 return err;
5701
5702         if (priv->config & CFG_STATIC_ESSID)
5703                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5704                                         batch_mode);
5705         else
5706                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5707         if (err)
5708                 return err;
5709
5710         err = ipw2100_configure_security(priv, batch_mode);
5711         if (err)
5712                 return err;
5713
5714         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5715                 err =
5716                     ipw2100_set_ibss_beacon_interval(priv,
5717                                                      priv->beacon_interval,
5718                                                      batch_mode);
5719                 if (err)
5720                         return err;
5721
5722                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5723                 if (err)
5724                         return err;
5725         }
5726
5727         /*
5728            err = ipw2100_set_fragmentation_threshold(
5729            priv, priv->frag_threshold, batch_mode);
5730            if (err)
5731            return err;
5732          */
5733
5734         IPW_DEBUG_INFO("exit\n");
5735
5736         return 0;
5737 }
5738
5739 /*************************************************************************
5740  *
5741  * EXTERNALLY CALLED METHODS
5742  *
5743  *************************************************************************/
5744
5745 /* This method is called by the network layer -- not to be confused with
5746  * ipw2100_set_mac_address() declared above called by this driver (and this
5747  * method as well) to talk to the firmware */
5748 static int ipw2100_set_address(struct net_device *dev, void *p)
5749 {
5750         struct ipw2100_priv *priv = ieee80211_priv(dev);
5751         struct sockaddr *addr = p;
5752         int err = 0;
5753
5754         if (!is_valid_ether_addr(addr->sa_data))
5755                 return -EADDRNOTAVAIL;
5756
5757         mutex_lock(&priv->action_mutex);
5758
5759         priv->config |= CFG_CUSTOM_MAC;
5760         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5761
5762         err = ipw2100_set_mac_address(priv, 0);
5763         if (err)
5764                 goto done;
5765
5766         priv->reset_backoff = 0;
5767         mutex_unlock(&priv->action_mutex);
5768         ipw2100_reset_adapter(&priv->reset_work.work);
5769         return 0;
5770
5771       done:
5772         mutex_unlock(&priv->action_mutex);
5773         return err;
5774 }
5775
5776 static int ipw2100_open(struct net_device *dev)
5777 {
5778         struct ipw2100_priv *priv = ieee80211_priv(dev);
5779         unsigned long flags;
5780         IPW_DEBUG_INFO("dev->open\n");
5781
5782         spin_lock_irqsave(&priv->low_lock, flags);
5783         if (priv->status & STATUS_ASSOCIATED) {
5784                 netif_carrier_on(dev);
5785                 netif_start_queue(dev);
5786         }
5787         spin_unlock_irqrestore(&priv->low_lock, flags);
5788
5789         return 0;
5790 }
5791
5792 static int ipw2100_close(struct net_device *dev)
5793 {
5794         struct ipw2100_priv *priv = ieee80211_priv(dev);
5795         unsigned long flags;
5796         struct list_head *element;
5797         struct ipw2100_tx_packet *packet;
5798
5799         IPW_DEBUG_INFO("enter\n");
5800
5801         spin_lock_irqsave(&priv->low_lock, flags);
5802
5803         if (priv->status & STATUS_ASSOCIATED)
5804                 netif_carrier_off(dev);
5805         netif_stop_queue(dev);
5806
5807         /* Flush the TX queue ... */
5808         while (!list_empty(&priv->tx_pend_list)) {
5809                 element = priv->tx_pend_list.next;
5810                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5811
5812                 list_del(element);
5813                 DEC_STAT(&priv->tx_pend_stat);
5814
5815                 ieee80211_txb_free(packet->info.d_struct.txb);
5816                 packet->info.d_struct.txb = NULL;
5817
5818                 list_add_tail(element, &priv->tx_free_list);
5819                 INC_STAT(&priv->tx_free_stat);
5820         }
5821         spin_unlock_irqrestore(&priv->low_lock, flags);
5822
5823         IPW_DEBUG_INFO("exit\n");
5824
5825         return 0;
5826 }
5827
5828 /*
5829  * TODO:  Fix this function... its just wrong
5830  */
5831 static void ipw2100_tx_timeout(struct net_device *dev)
5832 {
5833         struct ipw2100_priv *priv = ieee80211_priv(dev);
5834
5835         priv->ieee->stats.tx_errors++;
5836
5837 #ifdef CONFIG_IPW2100_MONITOR
5838         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5839                 return;
5840 #endif
5841
5842         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5843                        dev->name);
5844         schedule_reset(priv);
5845 }
5846
5847 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5848 {
5849         /* This is called when wpa_supplicant loads and closes the driver
5850          * interface. */
5851         priv->ieee->wpa_enabled = value;
5852         return 0;
5853 }
5854
5855 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5856 {
5857
5858         struct ieee80211_device *ieee = priv->ieee;
5859         struct ieee80211_security sec = {
5860                 .flags = SEC_AUTH_MODE,
5861         };
5862         int ret = 0;
5863
5864         if (value & IW_AUTH_ALG_SHARED_KEY) {
5865                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5866                 ieee->open_wep = 0;
5867         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5868                 sec.auth_mode = WLAN_AUTH_OPEN;
5869                 ieee->open_wep = 1;
5870         } else if (value & IW_AUTH_ALG_LEAP) {
5871                 sec.auth_mode = WLAN_AUTH_LEAP;
5872                 ieee->open_wep = 1;
5873         } else
5874                 return -EINVAL;
5875
5876         if (ieee->set_security)
5877                 ieee->set_security(ieee->dev, &sec);
5878         else
5879                 ret = -EOPNOTSUPP;
5880
5881         return ret;
5882 }
5883
5884 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5885                                     char *wpa_ie, int wpa_ie_len)
5886 {
5887
5888         struct ipw2100_wpa_assoc_frame frame;
5889
5890         frame.fixed_ie_mask = 0;
5891
5892         /* copy WPA IE */
5893         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5894         frame.var_ie_len = wpa_ie_len;
5895
5896         /* make sure WPA is enabled */
5897         ipw2100_wpa_enable(priv, 1);
5898         ipw2100_set_wpa_ie(priv, &frame, 0);
5899 }
5900
5901 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5902                                     struct ethtool_drvinfo *info)
5903 {
5904         struct ipw2100_priv *priv = ieee80211_priv(dev);
5905         char fw_ver[64], ucode_ver[64];
5906
5907         strcpy(info->driver, DRV_NAME);
5908         strcpy(info->version, DRV_VERSION);
5909
5910         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5911         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5912
5913         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5914                  fw_ver, priv->eeprom_version, ucode_ver);
5915
5916         strcpy(info->bus_info, pci_name(priv->pci_dev));
5917 }
5918
5919 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5920 {
5921         struct ipw2100_priv *priv = ieee80211_priv(dev);
5922         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5923 }
5924
5925 static const struct ethtool_ops ipw2100_ethtool_ops = {
5926         .get_link = ipw2100_ethtool_get_link,
5927         .get_drvinfo = ipw_ethtool_get_drvinfo,
5928 };
5929
5930 static void ipw2100_hang_check(struct work_struct *work)
5931 {
5932         struct ipw2100_priv *priv =
5933                 container_of(work, struct ipw2100_priv, hang_check.work);
5934         unsigned long flags;
5935         u32 rtc = 0xa5a5a5a5;
5936         u32 len = sizeof(rtc);
5937         int restart = 0;
5938
5939         spin_lock_irqsave(&priv->low_lock, flags);
5940
5941         if (priv->fatal_error != 0) {
5942                 /* If fatal_error is set then we need to restart */
5943                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5944                                priv->net_dev->name);
5945
5946                 restart = 1;
5947         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5948                    (rtc == priv->last_rtc)) {
5949                 /* Check if firmware is hung */
5950                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5951                                priv->net_dev->name);
5952
5953                 restart = 1;
5954         }
5955
5956         if (restart) {
5957                 /* Kill timer */
5958                 priv->stop_hang_check = 1;
5959                 priv->hangs++;
5960
5961                 /* Restart the NIC */
5962                 schedule_reset(priv);
5963         }
5964
5965         priv->last_rtc = rtc;
5966
5967         if (!priv->stop_hang_check)
5968                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5969
5970         spin_unlock_irqrestore(&priv->low_lock, flags);
5971 }
5972
5973 static void ipw2100_rf_kill(struct work_struct *work)
5974 {
5975         struct ipw2100_priv *priv =
5976                 container_of(work, struct ipw2100_priv, rf_kill.work);
5977         unsigned long flags;
5978
5979         spin_lock_irqsave(&priv->low_lock, flags);
5980
5981         if (rf_kill_active(priv)) {
5982                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5983                 if (!priv->stop_rf_kill)
5984                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
5985                                            round_jiffies_relative(HZ));
5986                 goto exit_unlock;
5987         }
5988
5989         /* RF Kill is now disabled, so bring the device back up */
5990
5991         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5992                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5993                                   "device\n");
5994                 schedule_reset(priv);
5995         } else
5996                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5997                                   "enabled\n");
5998
5999       exit_unlock:
6000         spin_unlock_irqrestore(&priv->low_lock, flags);
6001 }
6002
6003 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6004
6005 /* Look into using netdev destructor to shutdown ieee80211? */
6006
6007 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6008                                                void __iomem * base_addr,
6009                                                unsigned long mem_start,
6010                                                unsigned long mem_len)
6011 {
6012         struct ipw2100_priv *priv;
6013         struct net_device *dev;
6014
6015         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6016         if (!dev)
6017                 return NULL;
6018         priv = ieee80211_priv(dev);
6019         priv->ieee = netdev_priv(dev);
6020         priv->pci_dev = pci_dev;
6021         priv->net_dev = dev;
6022
6023         priv->ieee->hard_start_xmit = ipw2100_tx;
6024         priv->ieee->set_security = shim__set_security;
6025
6026         priv->ieee->perfect_rssi = -20;
6027         priv->ieee->worst_rssi = -85;
6028
6029         dev->open = ipw2100_open;
6030         dev->stop = ipw2100_close;
6031         dev->init = ipw2100_net_init;
6032         dev->ethtool_ops = &ipw2100_ethtool_ops;
6033         dev->tx_timeout = ipw2100_tx_timeout;
6034         dev->wireless_handlers = &ipw2100_wx_handler_def;
6035         priv->wireless_data.ieee80211 = priv->ieee;
6036         dev->wireless_data = &priv->wireless_data;
6037         dev->set_mac_address = ipw2100_set_address;
6038         dev->watchdog_timeo = 3 * HZ;
6039         dev->irq = 0;
6040
6041         dev->base_addr = (unsigned long)base_addr;
6042         dev->mem_start = mem_start;
6043         dev->mem_end = dev->mem_start + mem_len - 1;
6044
6045         /* NOTE: We don't use the wireless_handlers hook
6046          * in dev as the system will start throwing WX requests
6047          * to us before we're actually initialized and it just
6048          * ends up causing problems.  So, we just handle
6049          * the WX extensions through the ipw2100_ioctl interface */
6050
6051         /* memset() puts everything to 0, so we only have explicitly set
6052          * those values that need to be something else */
6053
6054         /* If power management is turned on, default to AUTO mode */
6055         priv->power_mode = IPW_POWER_AUTO;
6056
6057 #ifdef CONFIG_IPW2100_MONITOR
6058         priv->config |= CFG_CRC_CHECK;
6059 #endif
6060         priv->ieee->wpa_enabled = 0;
6061         priv->ieee->drop_unencrypted = 0;
6062         priv->ieee->privacy_invoked = 0;
6063         priv->ieee->ieee802_1x = 1;
6064
6065         /* Set module parameters */
6066         switch (mode) {
6067         case 1:
6068                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6069                 break;
6070 #ifdef CONFIG_IPW2100_MONITOR
6071         case 2:
6072                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6073                 break;
6074 #endif
6075         default:
6076         case 0:
6077                 priv->ieee->iw_mode = IW_MODE_INFRA;
6078                 break;
6079         }
6080
6081         if (disable == 1)
6082                 priv->status |= STATUS_RF_KILL_SW;
6083
6084         if (channel != 0 &&
6085             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6086                 priv->config |= CFG_STATIC_CHANNEL;
6087                 priv->channel = channel;
6088         }
6089
6090         if (associate)
6091                 priv->config |= CFG_ASSOCIATE;
6092
6093         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6094         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6095         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6096         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6097         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6098         priv->tx_power = IPW_TX_POWER_DEFAULT;
6099         priv->tx_rates = DEFAULT_TX_RATES;
6100
6101         strcpy(priv->nick, "ipw2100");
6102
6103         spin_lock_init(&priv->low_lock);
6104         mutex_init(&priv->action_mutex);
6105         mutex_init(&priv->adapter_mutex);
6106
6107         init_waitqueue_head(&priv->wait_command_queue);
6108
6109         netif_carrier_off(dev);
6110
6111         INIT_LIST_HEAD(&priv->msg_free_list);
6112         INIT_LIST_HEAD(&priv->msg_pend_list);
6113         INIT_STAT(&priv->msg_free_stat);
6114         INIT_STAT(&priv->msg_pend_stat);
6115
6116         INIT_LIST_HEAD(&priv->tx_free_list);
6117         INIT_LIST_HEAD(&priv->tx_pend_list);
6118         INIT_STAT(&priv->tx_free_stat);
6119         INIT_STAT(&priv->tx_pend_stat);
6120
6121         INIT_LIST_HEAD(&priv->fw_pend_list);
6122         INIT_STAT(&priv->fw_pend_stat);
6123
6124         priv->workqueue = create_workqueue(DRV_NAME);
6125
6126         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6127         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6128         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6129         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6130         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6131         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6132         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6133
6134         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6135                      ipw2100_irq_tasklet, (unsigned long)priv);
6136
6137         /* NOTE:  We do not start the deferred work for status checks yet */
6138         priv->stop_rf_kill = 1;
6139         priv->stop_hang_check = 1;
6140
6141         return dev;
6142 }
6143
6144 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6145                                 const struct pci_device_id *ent)
6146 {
6147         unsigned long mem_start, mem_len, mem_flags;
6148         void __iomem *base_addr = NULL;
6149         struct net_device *dev = NULL;
6150         struct ipw2100_priv *priv = NULL;
6151         int err = 0;
6152         int registered = 0;
6153         u32 val;
6154
6155         IPW_DEBUG_INFO("enter\n");
6156
6157         mem_start = pci_resource_start(pci_dev, 0);
6158         mem_len = pci_resource_len(pci_dev, 0);
6159         mem_flags = pci_resource_flags(pci_dev, 0);
6160
6161         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6162                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6163                 err = -ENODEV;
6164                 goto fail;
6165         }
6166
6167         base_addr = ioremap_nocache(mem_start, mem_len);
6168         if (!base_addr) {
6169                 printk(KERN_WARNING DRV_NAME
6170                        "Error calling ioremap_nocache.\n");
6171                 err = -EIO;
6172                 goto fail;
6173         }
6174
6175         /* allocate and initialize our net_device */
6176         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6177         if (!dev) {
6178                 printk(KERN_WARNING DRV_NAME
6179                        "Error calling ipw2100_alloc_device.\n");
6180                 err = -ENOMEM;
6181                 goto fail;
6182         }
6183
6184         /* set up PCI mappings for device */
6185         err = pci_enable_device(pci_dev);
6186         if (err) {
6187                 printk(KERN_WARNING DRV_NAME
6188                        "Error calling pci_enable_device.\n");
6189                 return err;
6190         }
6191
6192         priv = ieee80211_priv(dev);
6193
6194         pci_set_master(pci_dev);
6195         pci_set_drvdata(pci_dev, priv);
6196
6197         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6198         if (err) {
6199                 printk(KERN_WARNING DRV_NAME
6200                        "Error calling pci_set_dma_mask.\n");
6201                 pci_disable_device(pci_dev);
6202                 return err;
6203         }
6204
6205         err = pci_request_regions(pci_dev, DRV_NAME);
6206         if (err) {
6207                 printk(KERN_WARNING DRV_NAME
6208                        "Error calling pci_request_regions.\n");
6209                 pci_disable_device(pci_dev);
6210                 return err;
6211         }
6212
6213         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6214          * PCI Tx retries from interfering with C3 CPU state */
6215         pci_read_config_dword(pci_dev, 0x40, &val);
6216         if ((val & 0x0000ff00) != 0)
6217                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6218
6219         pci_set_power_state(pci_dev, PCI_D0);
6220
6221         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6222                 printk(KERN_WARNING DRV_NAME
6223                        "Device not found via register read.\n");
6224                 err = -ENODEV;
6225                 goto fail;
6226         }
6227
6228         SET_NETDEV_DEV(dev, &pci_dev->dev);
6229
6230         /* Force interrupts to be shut off on the device */
6231         priv->status |= STATUS_INT_ENABLED;
6232         ipw2100_disable_interrupts(priv);
6233
6234         /* Allocate and initialize the Tx/Rx queues and lists */
6235         if (ipw2100_queues_allocate(priv)) {
6236                 printk(KERN_WARNING DRV_NAME
6237                        "Error calling ipw2100_queues_allocate.\n");
6238                 err = -ENOMEM;
6239                 goto fail;
6240         }
6241         ipw2100_queues_initialize(priv);
6242
6243         err = request_irq(pci_dev->irq,
6244                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6245         if (err) {
6246                 printk(KERN_WARNING DRV_NAME
6247                        "Error calling request_irq: %d.\n", pci_dev->irq);
6248                 goto fail;
6249         }
6250         dev->irq = pci_dev->irq;
6251
6252         IPW_DEBUG_INFO("Attempting to register device...\n");
6253
6254         printk(KERN_INFO DRV_NAME
6255                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6256
6257         /* Bring up the interface.  Pre 0.46, after we registered the
6258          * network device we would call ipw2100_up.  This introduced a race
6259          * condition with newer hotplug configurations (network was coming
6260          * up and making calls before the device was initialized).
6261          *
6262          * If we called ipw2100_up before we registered the device, then the
6263          * device name wasn't registered.  So, we instead use the net_dev->init
6264          * member to call a function that then just turns and calls ipw2100_up.
6265          * net_dev->init is called after name allocation but before the
6266          * notifier chain is called */
6267         err = register_netdev(dev);
6268         if (err) {
6269                 printk(KERN_WARNING DRV_NAME
6270                        "Error calling register_netdev.\n");
6271                 goto fail;
6272         }
6273
6274         mutex_lock(&priv->action_mutex);
6275         registered = 1;
6276
6277         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6278
6279         /* perform this after register_netdev so that dev->name is set */
6280         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6281         if (err)
6282                 goto fail_unlock;
6283
6284         /* If the RF Kill switch is disabled, go ahead and complete the
6285          * startup sequence */
6286         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6287                 /* Enable the adapter - sends HOST_COMPLETE */
6288                 if (ipw2100_enable_adapter(priv)) {
6289                         printk(KERN_WARNING DRV_NAME
6290                                ": %s: failed in call to enable adapter.\n",
6291                                priv->net_dev->name);
6292                         ipw2100_hw_stop_adapter(priv);
6293                         err = -EIO;
6294                         goto fail_unlock;
6295                 }
6296
6297                 /* Start a scan . . . */
6298                 ipw2100_set_scan_options(priv);
6299                 ipw2100_start_scan(priv);
6300         }
6301
6302         IPW_DEBUG_INFO("exit\n");
6303
6304         priv->status |= STATUS_INITIALIZED;
6305
6306         mutex_unlock(&priv->action_mutex);
6307
6308         return 0;
6309
6310       fail_unlock:
6311         mutex_unlock(&priv->action_mutex);
6312
6313       fail:
6314         if (dev) {
6315                 if (registered)
6316                         unregister_netdev(dev);
6317
6318                 ipw2100_hw_stop_adapter(priv);
6319
6320                 ipw2100_disable_interrupts(priv);
6321
6322                 if (dev->irq)
6323                         free_irq(dev->irq, priv);
6324
6325                 ipw2100_kill_workqueue(priv);
6326
6327                 /* These are safe to call even if they weren't allocated */
6328                 ipw2100_queues_free(priv);
6329                 sysfs_remove_group(&pci_dev->dev.kobj,
6330                                    &ipw2100_attribute_group);
6331
6332                 free_ieee80211(dev);
6333                 pci_set_drvdata(pci_dev, NULL);
6334         }
6335
6336         if (base_addr)
6337                 iounmap(base_addr);
6338
6339         pci_release_regions(pci_dev);
6340         pci_disable_device(pci_dev);
6341
6342         return err;
6343 }
6344
6345 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6346 {
6347         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6348         struct net_device *dev;
6349
6350         if (priv) {
6351                 mutex_lock(&priv->action_mutex);
6352
6353                 priv->status &= ~STATUS_INITIALIZED;
6354
6355                 dev = priv->net_dev;
6356                 sysfs_remove_group(&pci_dev->dev.kobj,
6357                                    &ipw2100_attribute_group);
6358
6359 #ifdef CONFIG_PM
6360                 if (ipw2100_firmware.version)
6361                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6362 #endif
6363                 /* Take down the hardware */
6364                 ipw2100_down(priv);
6365
6366                 /* Release the mutex so that the network subsystem can
6367                  * complete any needed calls into the driver... */
6368                 mutex_unlock(&priv->action_mutex);
6369
6370                 /* Unregister the device first - this results in close()
6371                  * being called if the device is open.  If we free storage
6372                  * first, then close() will crash. */
6373                 unregister_netdev(dev);
6374
6375                 /* ipw2100_down will ensure that there is no more pending work
6376                  * in the workqueue's, so we can safely remove them now. */
6377                 ipw2100_kill_workqueue(priv);
6378
6379                 ipw2100_queues_free(priv);
6380
6381                 /* Free potential debugging firmware snapshot */
6382                 ipw2100_snapshot_free(priv);
6383
6384                 if (dev->irq)
6385                         free_irq(dev->irq, priv);
6386
6387                 if (dev->base_addr)
6388                         iounmap((void __iomem *)dev->base_addr);
6389
6390                 free_ieee80211(dev);
6391         }
6392
6393         pci_release_regions(pci_dev);
6394         pci_disable_device(pci_dev);
6395
6396         IPW_DEBUG_INFO("exit\n");
6397 }
6398
6399 #ifdef CONFIG_PM
6400 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6401 {
6402         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6403         struct net_device *dev = priv->net_dev;
6404
6405         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6406
6407         mutex_lock(&priv->action_mutex);
6408         if (priv->status & STATUS_INITIALIZED) {
6409                 /* Take down the device; powers it off, etc. */
6410                 ipw2100_down(priv);
6411         }
6412
6413         /* Remove the PRESENT state of the device */
6414         netif_device_detach(dev);
6415
6416         pci_save_state(pci_dev);
6417         pci_disable_device(pci_dev);
6418         pci_set_power_state(pci_dev, PCI_D3hot);
6419
6420         mutex_unlock(&priv->action_mutex);
6421
6422         return 0;
6423 }
6424
6425 static int ipw2100_resume(struct pci_dev *pci_dev)
6426 {
6427         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6428         struct net_device *dev = priv->net_dev;
6429         int err;
6430         u32 val;
6431
6432         if (IPW2100_PM_DISABLED)
6433                 return 0;
6434
6435         mutex_lock(&priv->action_mutex);
6436
6437         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6438
6439         pci_set_power_state(pci_dev, PCI_D0);
6440         err = pci_enable_device(pci_dev);
6441         if (err) {
6442                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6443                        dev->name);
6444                 return err;
6445         }
6446         pci_restore_state(pci_dev);
6447
6448         /*
6449          * Suspend/Resume resets the PCI configuration space, so we have to
6450          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6451          * from interfering with C3 CPU state. pci_restore_state won't help
6452          * here since it only restores the first 64 bytes pci config header.
6453          */
6454         pci_read_config_dword(pci_dev, 0x40, &val);
6455         if ((val & 0x0000ff00) != 0)
6456                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6457
6458         /* Set the device back into the PRESENT state; this will also wake
6459          * the queue of needed */
6460         netif_device_attach(dev);
6461
6462         /* Bring the device back up */
6463         if (!(priv->status & STATUS_RF_KILL_SW))
6464                 ipw2100_up(priv, 0);
6465
6466         mutex_unlock(&priv->action_mutex);
6467
6468         return 0;
6469 }
6470 #endif
6471
6472 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6473
6474 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6475         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6476         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6477         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6478         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6479         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6480         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6481         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6482         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6483         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6484         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6485         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6486         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6487         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6488
6489         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6490         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6491         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6492         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6493         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6494
6495         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6496         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6497         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6498         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6499         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6500         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6501         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6502
6503         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6504
6505         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6506         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6507         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6508         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6509         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6510         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6511         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6512
6513         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6514         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6515         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6516         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6517         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6518         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6519
6520         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6521         {0,},
6522 };
6523
6524 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6525
6526 static struct pci_driver ipw2100_pci_driver = {
6527         .name = DRV_NAME,
6528         .id_table = ipw2100_pci_id_table,
6529         .probe = ipw2100_pci_init_one,
6530         .remove = __devexit_p(ipw2100_pci_remove_one),
6531 #ifdef CONFIG_PM
6532         .suspend = ipw2100_suspend,
6533         .resume = ipw2100_resume,
6534 #endif
6535 };
6536
6537 /**
6538  * Initialize the ipw2100 driver/module
6539  *
6540  * @returns 0 if ok, < 0 errno node con error.
6541  *
6542  * Note: we cannot init the /proc stuff until the PCI driver is there,
6543  * or we risk an unlikely race condition on someone accessing
6544  * uninitialized data in the PCI dev struct through /proc.
6545  */
6546 static int __init ipw2100_init(void)
6547 {
6548         int ret;
6549
6550         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6551         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6552
6553         ret = pci_register_driver(&ipw2100_pci_driver);
6554         if (ret)
6555                 goto out;
6556
6557         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6558 #ifdef CONFIG_IPW2100_DEBUG
6559         ipw2100_debug_level = debug;
6560         ret = driver_create_file(&ipw2100_pci_driver.driver,
6561                                  &driver_attr_debug_level);
6562 #endif
6563
6564 out:
6565         return ret;
6566 }
6567
6568 /**
6569  * Cleanup ipw2100 driver registration
6570  */
6571 static void __exit ipw2100_exit(void)
6572 {
6573         /* FIXME: IPG: check that we have no instances of the devices open */
6574 #ifdef CONFIG_IPW2100_DEBUG
6575         driver_remove_file(&ipw2100_pci_driver.driver,
6576                            &driver_attr_debug_level);
6577 #endif
6578         pci_unregister_driver(&ipw2100_pci_driver);
6579         remove_acceptable_latency("ipw2100");
6580 }
6581
6582 module_init(ipw2100_init);
6583 module_exit(ipw2100_exit);
6584
6585 #define WEXT_USECHANNELS 1
6586
6587 static const long ipw2100_frequencies[] = {
6588         2412, 2417, 2422, 2427,
6589         2432, 2437, 2442, 2447,
6590         2452, 2457, 2462, 2467,
6591         2472, 2484
6592 };
6593
6594 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
6595
6596 static const long ipw2100_rates_11b[] = {
6597         1000000,
6598         2000000,
6599         5500000,
6600         11000000
6601 };
6602
6603 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6604
6605 static int ipw2100_wx_get_name(struct net_device *dev,
6606                                struct iw_request_info *info,
6607                                union iwreq_data *wrqu, char *extra)
6608 {
6609         /*
6610          * This can be called at any time.  No action lock required
6611          */
6612
6613         struct ipw2100_priv *priv = ieee80211_priv(dev);
6614         if (!(priv->status & STATUS_ASSOCIATED))
6615                 strcpy(wrqu->name, "unassociated");
6616         else
6617                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6618
6619         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6620         return 0;
6621 }
6622
6623 static int ipw2100_wx_set_freq(struct net_device *dev,
6624                                struct iw_request_info *info,
6625                                union iwreq_data *wrqu, char *extra)
6626 {
6627         struct ipw2100_priv *priv = ieee80211_priv(dev);
6628         struct iw_freq *fwrq = &wrqu->freq;
6629         int err = 0;
6630
6631         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6632                 return -EOPNOTSUPP;
6633
6634         mutex_lock(&priv->action_mutex);
6635         if (!(priv->status & STATUS_INITIALIZED)) {
6636                 err = -EIO;
6637                 goto done;
6638         }
6639
6640         /* if setting by freq convert to channel */
6641         if (fwrq->e == 1) {
6642                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6643                         int f = fwrq->m / 100000;
6644                         int c = 0;
6645
6646                         while ((c < REG_MAX_CHANNEL) &&
6647                                (f != ipw2100_frequencies[c]))
6648                                 c++;
6649
6650                         /* hack to fall through */
6651                         fwrq->e = 0;
6652                         fwrq->m = c + 1;
6653                 }
6654         }
6655
6656         if (fwrq->e > 0 || fwrq->m > 1000) {
6657                 err = -EOPNOTSUPP;
6658                 goto done;
6659         } else {                /* Set the channel */
6660                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6661                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6662         }
6663
6664       done:
6665         mutex_unlock(&priv->action_mutex);
6666         return err;
6667 }
6668
6669 static int ipw2100_wx_get_freq(struct net_device *dev,
6670                                struct iw_request_info *info,
6671                                union iwreq_data *wrqu, char *extra)
6672 {
6673         /*
6674          * This can be called at any time.  No action lock required
6675          */
6676
6677         struct ipw2100_priv *priv = ieee80211_priv(dev);
6678
6679         wrqu->freq.e = 0;
6680
6681         /* If we are associated, trying to associate, or have a statically
6682          * configured CHANNEL then return that; otherwise return ANY */
6683         if (priv->config & CFG_STATIC_CHANNEL ||
6684             priv->status & STATUS_ASSOCIATED)
6685                 wrqu->freq.m = priv->channel;
6686         else
6687                 wrqu->freq.m = 0;
6688
6689         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6690         return 0;
6691
6692 }
6693
6694 static int ipw2100_wx_set_mode(struct net_device *dev,
6695                                struct iw_request_info *info,
6696                                union iwreq_data *wrqu, char *extra)
6697 {
6698         struct ipw2100_priv *priv = ieee80211_priv(dev);
6699         int err = 0;
6700
6701         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6702
6703         if (wrqu->mode == priv->ieee->iw_mode)
6704                 return 0;
6705
6706         mutex_lock(&priv->action_mutex);
6707         if (!(priv->status & STATUS_INITIALIZED)) {
6708                 err = -EIO;
6709                 goto done;
6710         }
6711
6712         switch (wrqu->mode) {
6713 #ifdef CONFIG_IPW2100_MONITOR
6714         case IW_MODE_MONITOR:
6715                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6716                 break;
6717 #endif                          /* CONFIG_IPW2100_MONITOR */
6718         case IW_MODE_ADHOC:
6719                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6720                 break;
6721         case IW_MODE_INFRA:
6722         case IW_MODE_AUTO:
6723         default:
6724                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6725                 break;
6726         }
6727
6728       done:
6729         mutex_unlock(&priv->action_mutex);
6730         return err;
6731 }
6732
6733 static int ipw2100_wx_get_mode(struct net_device *dev,
6734                                struct iw_request_info *info,
6735                                union iwreq_data *wrqu, char *extra)
6736 {
6737         /*
6738          * This can be called at any time.  No action lock required
6739          */
6740
6741         struct ipw2100_priv *priv = ieee80211_priv(dev);
6742
6743         wrqu->mode = priv->ieee->iw_mode;
6744         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6745
6746         return 0;
6747 }
6748
6749 #define POWER_MODES 5
6750
6751 /* Values are in microsecond */
6752 static const s32 timeout_duration[POWER_MODES] = {
6753         350000,
6754         250000,
6755         75000,
6756         37000,
6757         25000,
6758 };
6759
6760 static const s32 period_duration[POWER_MODES] = {
6761         400000,
6762         700000,
6763         1000000,
6764         1000000,
6765         1000000
6766 };
6767
6768 static int ipw2100_wx_get_range(struct net_device *dev,
6769                                 struct iw_request_info *info,
6770                                 union iwreq_data *wrqu, char *extra)
6771 {
6772         /*
6773          * This can be called at any time.  No action lock required
6774          */
6775
6776         struct ipw2100_priv *priv = ieee80211_priv(dev);
6777         struct iw_range *range = (struct iw_range *)extra;
6778         u16 val;
6779         int i, level;
6780
6781         wrqu->data.length = sizeof(*range);
6782         memset(range, 0, sizeof(*range));
6783
6784         /* Let's try to keep this struct in the same order as in
6785          * linux/include/wireless.h
6786          */
6787
6788         /* TODO: See what values we can set, and remove the ones we can't
6789          * set, or fill them with some default data.
6790          */
6791
6792         /* ~5 Mb/s real (802.11b) */
6793         range->throughput = 5 * 1000 * 1000;
6794
6795 //      range->sensitivity;     /* signal level threshold range */
6796
6797         range->max_qual.qual = 100;
6798         /* TODO: Find real max RSSI and stick here */
6799         range->max_qual.level = 0;
6800         range->max_qual.noise = 0;
6801         range->max_qual.updated = 7;    /* Updated all three */
6802
6803         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6804         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6805         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6806         range->avg_qual.noise = 0;
6807         range->avg_qual.updated = 7;    /* Updated all three */
6808
6809         range->num_bitrates = RATE_COUNT;
6810
6811         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6812                 range->bitrate[i] = ipw2100_rates_11b[i];
6813         }
6814
6815         range->min_rts = MIN_RTS_THRESHOLD;
6816         range->max_rts = MAX_RTS_THRESHOLD;
6817         range->min_frag = MIN_FRAG_THRESHOLD;
6818         range->max_frag = MAX_FRAG_THRESHOLD;
6819
6820         range->min_pmp = period_duration[0];    /* Minimal PM period */
6821         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6822         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6823         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6824
6825         /* How to decode max/min PM period */
6826         range->pmp_flags = IW_POWER_PERIOD;
6827         /* How to decode max/min PM period */
6828         range->pmt_flags = IW_POWER_TIMEOUT;
6829         /* What PM options are supported */
6830         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6831
6832         range->encoding_size[0] = 5;
6833         range->encoding_size[1] = 13;   /* Different token sizes */
6834         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6835         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6836 //      range->encoding_login_index;            /* token index for login token */
6837
6838         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6839                 range->txpower_capa = IW_TXPOW_DBM;
6840                 range->num_txpower = IW_MAX_TXPOWER;
6841                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6842                      i < IW_MAX_TXPOWER;
6843                      i++, level -=
6844                      ((IPW_TX_POWER_MAX_DBM -
6845                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6846                         range->txpower[i] = level / 16;
6847         } else {
6848                 range->txpower_capa = 0;
6849                 range->num_txpower = 0;
6850         }
6851
6852         /* Set the Wireless Extension versions */
6853         range->we_version_compiled = WIRELESS_EXT;
6854         range->we_version_source = 18;
6855
6856 //      range->retry_capa;      /* What retry options are supported */
6857 //      range->retry_flags;     /* How to decode max/min retry limit */
6858 //      range->r_time_flags;    /* How to decode max/min retry life */
6859 //      range->min_retry;       /* Minimal number of retries */
6860 //      range->max_retry;       /* Maximal number of retries */
6861 //      range->min_r_time;      /* Minimal retry lifetime */
6862 //      range->max_r_time;      /* Maximal retry lifetime */
6863
6864         range->num_channels = FREQ_COUNT;
6865
6866         val = 0;
6867         for (i = 0; i < FREQ_COUNT; i++) {
6868                 // TODO: Include only legal frequencies for some countries
6869 //              if (local->channel_mask & (1 << i)) {
6870                 range->freq[val].i = i + 1;
6871                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6872                 range->freq[val].e = 1;
6873                 val++;
6874 //              }
6875                 if (val == IW_MAX_FREQUENCIES)
6876                         break;
6877         }
6878         range->num_frequency = val;
6879
6880         /* Event capability (kernel + driver) */
6881         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6882                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6883         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6884
6885         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6886                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6887
6888         IPW_DEBUG_WX("GET Range\n");
6889
6890         return 0;
6891 }
6892
6893 static int ipw2100_wx_set_wap(struct net_device *dev,
6894                               struct iw_request_info *info,
6895                               union iwreq_data *wrqu, char *extra)
6896 {
6897         struct ipw2100_priv *priv = ieee80211_priv(dev);
6898         int err = 0;
6899
6900         static const unsigned char any[] = {
6901                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6902         };
6903         static const unsigned char off[] = {
6904                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6905         };
6906         DECLARE_MAC_BUF(mac);
6907
6908         // sanity checks
6909         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6910                 return -EINVAL;
6911
6912         mutex_lock(&priv->action_mutex);
6913         if (!(priv->status & STATUS_INITIALIZED)) {
6914                 err = -EIO;
6915                 goto done;
6916         }
6917
6918         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6919             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6920                 /* we disable mandatory BSSID association */
6921                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6922                 priv->config &= ~CFG_STATIC_BSSID;
6923                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6924                 goto done;
6925         }
6926
6927         priv->config |= CFG_STATIC_BSSID;
6928         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6929
6930         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6931
6932         IPW_DEBUG_WX("SET BSSID -> %s\n",
6933                      print_mac(mac, wrqu->ap_addr.sa_data));
6934
6935       done:
6936         mutex_unlock(&priv->action_mutex);
6937         return err;
6938 }
6939
6940 static int ipw2100_wx_get_wap(struct net_device *dev,
6941                               struct iw_request_info *info,
6942                               union iwreq_data *wrqu, char *extra)
6943 {
6944         /*
6945          * This can be called at any time.  No action lock required
6946          */
6947
6948         struct ipw2100_priv *priv = ieee80211_priv(dev);
6949         DECLARE_MAC_BUF(mac);
6950
6951         /* If we are associated, trying to associate, or have a statically
6952          * configured BSSID then return that; otherwise return ANY */
6953         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6954                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6955                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6956         } else
6957                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6958
6959         IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
6960                      print_mac(mac, wrqu->ap_addr.sa_data));
6961         return 0;
6962 }
6963
6964 static int ipw2100_wx_set_essid(struct net_device *dev,
6965                                 struct iw_request_info *info,
6966                                 union iwreq_data *wrqu, char *extra)
6967 {
6968         struct ipw2100_priv *priv = ieee80211_priv(dev);
6969         char *essid = "";       /* ANY */
6970         int length = 0;
6971         int err = 0;
6972
6973         mutex_lock(&priv->action_mutex);
6974         if (!(priv->status & STATUS_INITIALIZED)) {
6975                 err = -EIO;
6976                 goto done;
6977         }
6978
6979         if (wrqu->essid.flags && wrqu->essid.length) {
6980                 length = wrqu->essid.length;
6981                 essid = extra;
6982         }
6983
6984         if (length == 0) {
6985                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6986                 priv->config &= ~CFG_STATIC_ESSID;
6987                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6988                 goto done;
6989         }
6990
6991         length = min(length, IW_ESSID_MAX_SIZE);
6992
6993         priv->config |= CFG_STATIC_ESSID;
6994
6995         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6996                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6997                 err = 0;
6998                 goto done;
6999         }
7000
7001         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7002                      length);
7003
7004         priv->essid_len = length;
7005         memcpy(priv->essid, essid, priv->essid_len);
7006
7007         err = ipw2100_set_essid(priv, essid, length, 0);
7008
7009       done:
7010         mutex_unlock(&priv->action_mutex);
7011         return err;
7012 }
7013
7014 static int ipw2100_wx_get_essid(struct net_device *dev,
7015                                 struct iw_request_info *info,
7016                                 union iwreq_data *wrqu, char *extra)
7017 {
7018         /*
7019          * This can be called at any time.  No action lock required
7020          */
7021
7022         struct ipw2100_priv *priv = ieee80211_priv(dev);
7023
7024         /* If we are associated, trying to associate, or have a statically
7025          * configured ESSID then return that; otherwise return ANY */
7026         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7027                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7028                              escape_essid(priv->essid, priv->essid_len));
7029                 memcpy(extra, priv->essid, priv->essid_len);
7030                 wrqu->essid.length = priv->essid_len;
7031                 wrqu->essid.flags = 1;  /* active */
7032         } else {
7033                 IPW_DEBUG_WX("Getting essid: ANY\n");
7034                 wrqu->essid.length = 0;
7035                 wrqu->essid.flags = 0;  /* active */
7036         }
7037
7038         return 0;
7039 }
7040
7041 static int ipw2100_wx_set_nick(struct net_device *dev,
7042                                struct iw_request_info *info,
7043                                union iwreq_data *wrqu, char *extra)
7044 {
7045         /*
7046          * This can be called at any time.  No action lock required
7047          */
7048
7049         struct ipw2100_priv *priv = ieee80211_priv(dev);
7050
7051         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7052                 return -E2BIG;
7053
7054         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7055         memset(priv->nick, 0, sizeof(priv->nick));
7056         memcpy(priv->nick, extra, wrqu->data.length);
7057
7058         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7059
7060         return 0;
7061 }
7062
7063 static int ipw2100_wx_get_nick(struct net_device *dev,
7064                                struct iw_request_info *info,
7065                                union iwreq_data *wrqu, char *extra)
7066 {
7067         /*
7068          * This can be called at any time.  No action lock required
7069          */
7070
7071         struct ipw2100_priv *priv = ieee80211_priv(dev);
7072
7073         wrqu->data.length = strlen(priv->nick);
7074         memcpy(extra, priv->nick, wrqu->data.length);
7075         wrqu->data.flags = 1;   /* active */
7076
7077         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7078
7079         return 0;
7080 }
7081
7082 static int ipw2100_wx_set_rate(struct net_device *dev,
7083                                struct iw_request_info *info,
7084                                union iwreq_data *wrqu, char *extra)
7085 {
7086         struct ipw2100_priv *priv = ieee80211_priv(dev);
7087         u32 target_rate = wrqu->bitrate.value;
7088         u32 rate;
7089         int err = 0;
7090
7091         mutex_lock(&priv->action_mutex);
7092         if (!(priv->status & STATUS_INITIALIZED)) {
7093                 err = -EIO;
7094                 goto done;
7095         }
7096
7097         rate = 0;
7098
7099         if (target_rate == 1000000 ||
7100             (!wrqu->bitrate.fixed && target_rate > 1000000))
7101                 rate |= TX_RATE_1_MBIT;
7102         if (target_rate == 2000000 ||
7103             (!wrqu->bitrate.fixed && target_rate > 2000000))
7104                 rate |= TX_RATE_2_MBIT;
7105         if (target_rate == 5500000 ||
7106             (!wrqu->bitrate.fixed && target_rate > 5500000))
7107                 rate |= TX_RATE_5_5_MBIT;
7108         if (target_rate == 11000000 ||
7109             (!wrqu->bitrate.fixed && target_rate > 11000000))
7110                 rate |= TX_RATE_11_MBIT;
7111         if (rate == 0)
7112                 rate = DEFAULT_TX_RATES;
7113
7114         err = ipw2100_set_tx_rates(priv, rate, 0);
7115
7116         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7117       done:
7118         mutex_unlock(&priv->action_mutex);
7119         return err;
7120 }
7121
7122 static int ipw2100_wx_get_rate(struct net_device *dev,
7123                                struct iw_request_info *info,
7124                                union iwreq_data *wrqu, char *extra)
7125 {
7126         struct ipw2100_priv *priv = ieee80211_priv(dev);
7127         int val;
7128         int len = sizeof(val);
7129         int err = 0;
7130
7131         if (!(priv->status & STATUS_ENABLED) ||
7132             priv->status & STATUS_RF_KILL_MASK ||
7133             !(priv->status & STATUS_ASSOCIATED)) {
7134                 wrqu->bitrate.value = 0;
7135                 return 0;
7136         }
7137
7138         mutex_lock(&priv->action_mutex);
7139         if (!(priv->status & STATUS_INITIALIZED)) {
7140                 err = -EIO;
7141                 goto done;
7142         }
7143
7144         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7145         if (err) {
7146                 IPW_DEBUG_WX("failed querying ordinals.\n");
7147                 return err;
7148         }
7149
7150         switch (val & TX_RATE_MASK) {
7151         case TX_RATE_1_MBIT:
7152                 wrqu->bitrate.value = 1000000;
7153                 break;
7154         case TX_RATE_2_MBIT:
7155                 wrqu->bitrate.value = 2000000;
7156                 break;
7157         case TX_RATE_5_5_MBIT:
7158                 wrqu->bitrate.value = 5500000;
7159                 break;
7160         case TX_RATE_11_MBIT:
7161                 wrqu->bitrate.value = 11000000;
7162                 break;
7163         default:
7164                 wrqu->bitrate.value = 0;
7165         }
7166
7167         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7168
7169       done:
7170         mutex_unlock(&priv->action_mutex);
7171         return err;
7172 }
7173
7174 static int ipw2100_wx_set_rts(struct net_device *dev,
7175                               struct iw_request_info *info,
7176                               union iwreq_data *wrqu, char *extra)
7177 {
7178         struct ipw2100_priv *priv = ieee80211_priv(dev);
7179         int value, err;
7180
7181         /* Auto RTS not yet supported */
7182         if (wrqu->rts.fixed == 0)
7183                 return -EINVAL;
7184
7185         mutex_lock(&priv->action_mutex);
7186         if (!(priv->status & STATUS_INITIALIZED)) {
7187                 err = -EIO;
7188                 goto done;
7189         }
7190
7191         if (wrqu->rts.disabled)
7192                 value = priv->rts_threshold | RTS_DISABLED;
7193         else {
7194                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7195                         err = -EINVAL;
7196                         goto done;
7197                 }
7198                 value = wrqu->rts.value;
7199         }
7200
7201         err = ipw2100_set_rts_threshold(priv, value);
7202
7203         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7204       done:
7205         mutex_unlock(&priv->action_mutex);
7206         return err;
7207 }
7208
7209 static int ipw2100_wx_get_rts(struct net_device *dev,
7210                               struct iw_request_info *info,
7211                               union iwreq_data *wrqu, char *extra)
7212 {
7213         /*
7214          * This can be called at any time.  No action lock required
7215          */
7216
7217         struct ipw2100_priv *priv = ieee80211_priv(dev);
7218
7219         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7220         wrqu->rts.fixed = 1;    /* no auto select */
7221
7222         /* If RTS is set to the default value, then it is disabled */
7223         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7224
7225         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7226
7227         return 0;
7228 }
7229
7230 static int ipw2100_wx_set_txpow(struct net_device *dev,
7231                                 struct iw_request_info *info,
7232                                 union iwreq_data *wrqu, char *extra)
7233 {
7234         struct ipw2100_priv *priv = ieee80211_priv(dev);
7235         int err = 0, value;
7236         
7237         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7238                 return -EINPROGRESS;
7239
7240         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7241                 return 0;
7242
7243         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7244                 return -EINVAL;
7245
7246         if (wrqu->txpower.fixed == 0)
7247                 value = IPW_TX_POWER_DEFAULT;
7248         else {
7249                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7250                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7251                         return -EINVAL;
7252
7253                 value = wrqu->txpower.value;
7254         }
7255
7256         mutex_lock(&priv->action_mutex);
7257         if (!(priv->status & STATUS_INITIALIZED)) {
7258                 err = -EIO;
7259                 goto done;
7260         }
7261
7262         err = ipw2100_set_tx_power(priv, value);
7263
7264         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7265
7266       done:
7267         mutex_unlock(&priv->action_mutex);
7268         return err;
7269 }
7270
7271 static int ipw2100_wx_get_txpow(struct net_device *dev,
7272                                 struct iw_request_info *info,
7273                                 union iwreq_data *wrqu, char *extra)
7274 {
7275         /*
7276          * This can be called at any time.  No action lock required
7277          */
7278
7279         struct ipw2100_priv *priv = ieee80211_priv(dev);
7280
7281         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7282
7283         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7284                 wrqu->txpower.fixed = 0;
7285                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7286         } else {
7287                 wrqu->txpower.fixed = 1;
7288                 wrqu->txpower.value = priv->tx_power;
7289         }
7290
7291         wrqu->txpower.flags = IW_TXPOW_DBM;
7292
7293         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7294
7295         return 0;
7296 }
7297
7298 static int ipw2100_wx_set_frag(struct net_device *dev,
7299                                struct iw_request_info *info,
7300                                union iwreq_data *wrqu, char *extra)
7301 {
7302         /*
7303          * This can be called at any time.  No action lock required
7304          */
7305
7306         struct ipw2100_priv *priv = ieee80211_priv(dev);
7307
7308         if (!wrqu->frag.fixed)
7309                 return -EINVAL;
7310
7311         if (wrqu->frag.disabled) {
7312                 priv->frag_threshold |= FRAG_DISABLED;
7313                 priv->ieee->fts = DEFAULT_FTS;
7314         } else {
7315                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7316                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7317                         return -EINVAL;
7318
7319                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7320                 priv->frag_threshold = priv->ieee->fts;
7321         }
7322
7323         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7324
7325         return 0;
7326 }
7327
7328 static int ipw2100_wx_get_frag(struct net_device *dev,
7329                                struct iw_request_info *info,
7330                                union iwreq_data *wrqu, char *extra)
7331 {
7332         /*
7333          * This can be called at any time.  No action lock required
7334          */
7335
7336         struct ipw2100_priv *priv = ieee80211_priv(dev);
7337         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7338         wrqu->frag.fixed = 0;   /* no auto select */
7339         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7340
7341         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7342
7343         return 0;
7344 }
7345
7346 static int ipw2100_wx_set_retry(struct net_device *dev,
7347                                 struct iw_request_info *info,
7348                                 union iwreq_data *wrqu, char *extra)
7349 {
7350         struct ipw2100_priv *priv = ieee80211_priv(dev);
7351         int err = 0;
7352
7353         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7354                 return -EINVAL;
7355
7356         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7357                 return 0;
7358
7359         mutex_lock(&priv->action_mutex);
7360         if (!(priv->status & STATUS_INITIALIZED)) {
7361                 err = -EIO;
7362                 goto done;
7363         }
7364
7365         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7366                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7367                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7368                              wrqu->retry.value);
7369                 goto done;
7370         }
7371
7372         if (wrqu->retry.flags & IW_RETRY_LONG) {
7373                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7375                              wrqu->retry.value);
7376                 goto done;
7377         }
7378
7379         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7380         if (!err)
7381                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382
7383         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7384
7385       done:
7386         mutex_unlock(&priv->action_mutex);
7387         return err;
7388 }
7389
7390 static int ipw2100_wx_get_retry(struct net_device *dev,
7391                                 struct iw_request_info *info,
7392                                 union iwreq_data *wrqu, char *extra)
7393 {
7394         /*
7395          * This can be called at any time.  No action lock required
7396          */
7397
7398         struct ipw2100_priv *priv = ieee80211_priv(dev);
7399
7400         wrqu->retry.disabled = 0;       /* can't be disabled */
7401
7402         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7403                 return -EINVAL;
7404
7405         if (wrqu->retry.flags & IW_RETRY_LONG) {
7406                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7407                 wrqu->retry.value = priv->long_retry_limit;
7408         } else {
7409                 wrqu->retry.flags =
7410                     (priv->short_retry_limit !=
7411                      priv->long_retry_limit) ?
7412                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7413
7414                 wrqu->retry.value = priv->short_retry_limit;
7415         }
7416
7417         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7418
7419         return 0;
7420 }
7421
7422 static int ipw2100_wx_set_scan(struct net_device *dev,
7423                                struct iw_request_info *info,
7424                                union iwreq_data *wrqu, char *extra)
7425 {
7426         struct ipw2100_priv *priv = ieee80211_priv(dev);
7427         int err = 0;
7428
7429         mutex_lock(&priv->action_mutex);
7430         if (!(priv->status & STATUS_INITIALIZED)) {
7431                 err = -EIO;
7432                 goto done;
7433         }
7434
7435         IPW_DEBUG_WX("Initiating scan...\n");
7436
7437         priv->user_requested_scan = 1;
7438         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7439                 IPW_DEBUG_WX("Start scan failed.\n");
7440
7441                 /* TODO: Mark a scan as pending so when hardware initialized
7442                  *       a scan starts */
7443         }
7444
7445       done:
7446         mutex_unlock(&priv->action_mutex);
7447         return err;
7448 }
7449
7450 static int ipw2100_wx_get_scan(struct net_device *dev,
7451                                struct iw_request_info *info,
7452                                union iwreq_data *wrqu, char *extra)
7453 {
7454         /*
7455          * This can be called at any time.  No action lock required
7456          */
7457
7458         struct ipw2100_priv *priv = ieee80211_priv(dev);
7459         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7460 }
7461
7462 /*
7463  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7464  */
7465 static int ipw2100_wx_set_encode(struct net_device *dev,
7466                                  struct iw_request_info *info,
7467                                  union iwreq_data *wrqu, char *key)
7468 {
7469         /*
7470          * No check of STATUS_INITIALIZED required
7471          */
7472
7473         struct ipw2100_priv *priv = ieee80211_priv(dev);
7474         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7475 }
7476
7477 static int ipw2100_wx_get_encode(struct net_device *dev,
7478                                  struct iw_request_info *info,
7479                                  union iwreq_data *wrqu, char *key)
7480 {
7481         /*
7482          * This can be called at any time.  No action lock required
7483          */
7484
7485         struct ipw2100_priv *priv = ieee80211_priv(dev);
7486         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7487 }
7488
7489 static int ipw2100_wx_set_power(struct net_device *dev,
7490                                 struct iw_request_info *info,
7491                                 union iwreq_data *wrqu, char *extra)
7492 {
7493         struct ipw2100_priv *priv = ieee80211_priv(dev);
7494         int err = 0;
7495
7496         mutex_lock(&priv->action_mutex);
7497         if (!(priv->status & STATUS_INITIALIZED)) {
7498                 err = -EIO;
7499                 goto done;
7500         }
7501
7502         if (wrqu->power.disabled) {
7503                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7504                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7505                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7506                 goto done;
7507         }
7508
7509         switch (wrqu->power.flags & IW_POWER_MODE) {
7510         case IW_POWER_ON:       /* If not specified */
7511         case IW_POWER_MODE:     /* If set all mask */
7512         case IW_POWER_ALL_R:    /* If explicitly state all */
7513                 break;
7514         default:                /* Otherwise we don't support it */
7515                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7516                              wrqu->power.flags);
7517                 err = -EOPNOTSUPP;
7518                 goto done;
7519         }
7520
7521         /* If the user hasn't specified a power management mode yet, default
7522          * to BATTERY */
7523         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7524         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7525
7526         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7527
7528       done:
7529         mutex_unlock(&priv->action_mutex);
7530         return err;
7531
7532 }
7533
7534 static int ipw2100_wx_get_power(struct net_device *dev,
7535                                 struct iw_request_info *info,
7536                                 union iwreq_data *wrqu, char *extra)
7537 {
7538         /*
7539          * This can be called at any time.  No action lock required
7540          */
7541
7542         struct ipw2100_priv *priv = ieee80211_priv(dev);
7543
7544         if (!(priv->power_mode & IPW_POWER_ENABLED))
7545                 wrqu->power.disabled = 1;
7546         else {
7547                 wrqu->power.disabled = 0;
7548                 wrqu->power.flags = 0;
7549         }
7550
7551         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7552
7553         return 0;
7554 }
7555
7556 /*
7557  * WE-18 WPA support
7558  */
7559
7560 /* SIOCSIWGENIE */
7561 static int ipw2100_wx_set_genie(struct net_device *dev,
7562                                 struct iw_request_info *info,
7563                                 union iwreq_data *wrqu, char *extra)
7564 {
7565
7566         struct ipw2100_priv *priv = ieee80211_priv(dev);
7567         struct ieee80211_device *ieee = priv->ieee;
7568         u8 *buf;
7569
7570         if (!ieee->wpa_enabled)
7571                 return -EOPNOTSUPP;
7572
7573         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7574             (wrqu->data.length && extra == NULL))
7575                 return -EINVAL;
7576
7577         if (wrqu->data.length) {
7578                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7579                 if (buf == NULL)
7580                         return -ENOMEM;
7581
7582                 kfree(ieee->wpa_ie);
7583                 ieee->wpa_ie = buf;
7584                 ieee->wpa_ie_len = wrqu->data.length;
7585         } else {
7586                 kfree(ieee->wpa_ie);
7587                 ieee->wpa_ie = NULL;
7588                 ieee->wpa_ie_len = 0;
7589         }
7590
7591         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7592
7593         return 0;
7594 }
7595
7596 /* SIOCGIWGENIE */
7597 static int ipw2100_wx_get_genie(struct net_device *dev,
7598                                 struct iw_request_info *info,
7599                                 union iwreq_data *wrqu, char *extra)
7600 {
7601         struct ipw2100_priv *priv = ieee80211_priv(dev);
7602         struct ieee80211_device *ieee = priv->ieee;
7603
7604         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7605                 wrqu->data.length = 0;
7606                 return 0;
7607         }
7608
7609         if (wrqu->data.length < ieee->wpa_ie_len)
7610                 return -E2BIG;
7611
7612         wrqu->data.length = ieee->wpa_ie_len;
7613         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7614
7615         return 0;
7616 }
7617
7618 /* SIOCSIWAUTH */
7619 static int ipw2100_wx_set_auth(struct net_device *dev,
7620                                struct iw_request_info *info,
7621                                union iwreq_data *wrqu, char *extra)
7622 {
7623         struct ipw2100_priv *priv = ieee80211_priv(dev);
7624         struct ieee80211_device *ieee = priv->ieee;
7625         struct iw_param *param = &wrqu->param;
7626         struct ieee80211_crypt_data *crypt;
7627         unsigned long flags;
7628         int ret = 0;
7629
7630         switch (param->flags & IW_AUTH_INDEX) {
7631         case IW_AUTH_WPA_VERSION:
7632         case IW_AUTH_CIPHER_PAIRWISE:
7633         case IW_AUTH_CIPHER_GROUP:
7634         case IW_AUTH_KEY_MGMT:
7635                 /*
7636                  * ipw2200 does not use these parameters
7637                  */
7638                 break;
7639
7640         case IW_AUTH_TKIP_COUNTERMEASURES:
7641                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7642                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7643                         break;
7644
7645                 flags = crypt->ops->get_flags(crypt->priv);
7646
7647                 if (param->value)
7648                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7649                 else
7650                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7651
7652                 crypt->ops->set_flags(flags, crypt->priv);
7653
7654                 break;
7655
7656         case IW_AUTH_DROP_UNENCRYPTED:{
7657                         /* HACK:
7658                          *
7659                          * wpa_supplicant calls set_wpa_enabled when the driver
7660                          * is loaded and unloaded, regardless of if WPA is being
7661                          * used.  No other calls are made which can be used to
7662                          * determine if encryption will be used or not prior to
7663                          * association being expected.  If encryption is not being
7664                          * used, drop_unencrypted is set to false, else true -- we
7665                          * can use this to determine if the CAP_PRIVACY_ON bit should
7666                          * be set.
7667                          */
7668                         struct ieee80211_security sec = {
7669                                 .flags = SEC_ENABLED,
7670                                 .enabled = param->value,
7671                         };
7672                         priv->ieee->drop_unencrypted = param->value;
7673                         /* We only change SEC_LEVEL for open mode. Others
7674                          * are set by ipw_wpa_set_encryption.
7675                          */
7676                         if (!param->value) {
7677                                 sec.flags |= SEC_LEVEL;
7678                                 sec.level = SEC_LEVEL_0;
7679                         } else {
7680                                 sec.flags |= SEC_LEVEL;
7681                                 sec.level = SEC_LEVEL_1;
7682                         }
7683                         if (priv->ieee->set_security)
7684                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7685                         break;
7686                 }
7687
7688         case IW_AUTH_80211_AUTH_ALG:
7689                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7690                 break;
7691
7692         case IW_AUTH_WPA_ENABLED:
7693                 ret = ipw2100_wpa_enable(priv, param->value);
7694                 break;
7695
7696         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7697                 ieee->ieee802_1x = param->value;
7698                 break;
7699
7700                 //case IW_AUTH_ROAMING_CONTROL:
7701         case IW_AUTH_PRIVACY_INVOKED:
7702                 ieee->privacy_invoked = param->value;
7703                 break;
7704
7705         default:
7706                 return -EOPNOTSUPP;
7707         }
7708         return ret;
7709 }
7710
7711 /* SIOCGIWAUTH */
7712 static int ipw2100_wx_get_auth(struct net_device *dev,
7713                                struct iw_request_info *info,
7714                                union iwreq_data *wrqu, char *extra)
7715 {
7716         struct ipw2100_priv *priv = ieee80211_priv(dev);
7717         struct ieee80211_device *ieee = priv->ieee;
7718         struct ieee80211_crypt_data *crypt;
7719         struct iw_param *param = &wrqu->param;
7720         int ret = 0;
7721
7722         switch (param->flags & IW_AUTH_INDEX) {
7723         case IW_AUTH_WPA_VERSION:
7724         case IW_AUTH_CIPHER_PAIRWISE:
7725         case IW_AUTH_CIPHER_GROUP:
7726         case IW_AUTH_KEY_MGMT:
7727                 /*
7728                  * wpa_supplicant will control these internally
7729                  */
7730                 ret = -EOPNOTSUPP;
7731                 break;
7732
7733         case IW_AUTH_TKIP_COUNTERMEASURES:
7734                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7735                 if (!crypt || !crypt->ops->get_flags) {
7736                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7737                                           "crypt not set!\n");
7738                         break;
7739                 }
7740
7741                 param->value = (crypt->ops->get_flags(crypt->priv) &
7742                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7743
7744                 break;
7745
7746         case IW_AUTH_DROP_UNENCRYPTED:
7747                 param->value = ieee->drop_unencrypted;
7748                 break;
7749
7750         case IW_AUTH_80211_AUTH_ALG:
7751                 param->value = priv->ieee->sec.auth_mode;
7752                 break;
7753
7754         case IW_AUTH_WPA_ENABLED:
7755                 param->value = ieee->wpa_enabled;
7756                 break;
7757
7758         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7759                 param->value = ieee->ieee802_1x;
7760                 break;
7761
7762         case IW_AUTH_ROAMING_CONTROL:
7763         case IW_AUTH_PRIVACY_INVOKED:
7764                 param->value = ieee->privacy_invoked;
7765                 break;
7766
7767         default:
7768                 return -EOPNOTSUPP;
7769         }
7770         return 0;
7771 }
7772
7773 /* SIOCSIWENCODEEXT */
7774 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7775                                     struct iw_request_info *info,
7776                                     union iwreq_data *wrqu, char *extra)
7777 {
7778         struct ipw2100_priv *priv = ieee80211_priv(dev);
7779         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7780 }
7781
7782 /* SIOCGIWENCODEEXT */
7783 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7784                                     struct iw_request_info *info,
7785                                     union iwreq_data *wrqu, char *extra)
7786 {
7787         struct ipw2100_priv *priv = ieee80211_priv(dev);
7788         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7789 }
7790
7791 /* SIOCSIWMLME */
7792 static int ipw2100_wx_set_mlme(struct net_device *dev,
7793                                struct iw_request_info *info,
7794                                union iwreq_data *wrqu, char *extra)
7795 {
7796         struct ipw2100_priv *priv = ieee80211_priv(dev);
7797         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7798         __le16 reason;
7799
7800         reason = cpu_to_le16(mlme->reason_code);
7801
7802         switch (mlme->cmd) {
7803         case IW_MLME_DEAUTH:
7804                 // silently ignore
7805                 break;
7806
7807         case IW_MLME_DISASSOC:
7808                 ipw2100_disassociate_bssid(priv);
7809                 break;
7810
7811         default:
7812                 return -EOPNOTSUPP;
7813         }
7814         return 0;
7815 }
7816
7817 /*
7818  *
7819  * IWPRIV handlers
7820  *
7821  */
7822 #ifdef CONFIG_IPW2100_MONITOR
7823 static int ipw2100_wx_set_promisc(struct net_device *dev,
7824                                   struct iw_request_info *info,
7825                                   union iwreq_data *wrqu, char *extra)
7826 {
7827         struct ipw2100_priv *priv = ieee80211_priv(dev);
7828         int *parms = (int *)extra;
7829         int enable = (parms[0] > 0);
7830         int err = 0;
7831
7832         mutex_lock(&priv->action_mutex);
7833         if (!(priv->status & STATUS_INITIALIZED)) {
7834                 err = -EIO;
7835                 goto done;
7836         }
7837
7838         if (enable) {
7839                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7840                         err = ipw2100_set_channel(priv, parms[1], 0);
7841                         goto done;
7842                 }
7843                 priv->channel = parms[1];
7844                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7845         } else {
7846                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7847                         err = ipw2100_switch_mode(priv, priv->last_mode);
7848         }
7849       done:
7850         mutex_unlock(&priv->action_mutex);
7851         return err;
7852 }
7853
7854 static int ipw2100_wx_reset(struct net_device *dev,
7855                             struct iw_request_info *info,
7856                             union iwreq_data *wrqu, char *extra)
7857 {
7858         struct ipw2100_priv *priv = ieee80211_priv(dev);
7859         if (priv->status & STATUS_INITIALIZED)
7860                 schedule_reset(priv);
7861         return 0;
7862 }
7863
7864 #endif
7865
7866 static int ipw2100_wx_set_powermode(struct net_device *dev,
7867                                     struct iw_request_info *info,
7868                                     union iwreq_data *wrqu, char *extra)
7869 {
7870         struct ipw2100_priv *priv = ieee80211_priv(dev);
7871         int err = 0, mode = *(int *)extra;
7872
7873         mutex_lock(&priv->action_mutex);
7874         if (!(priv->status & STATUS_INITIALIZED)) {
7875                 err = -EIO;
7876                 goto done;
7877         }
7878
7879         if ((mode < 0) || (mode > POWER_MODES))
7880                 mode = IPW_POWER_AUTO;
7881
7882         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7883                 err = ipw2100_set_power_mode(priv, mode);
7884       done:
7885         mutex_unlock(&priv->action_mutex);
7886         return err;
7887 }
7888
7889 #define MAX_POWER_STRING 80
7890 static int ipw2100_wx_get_powermode(struct net_device *dev,
7891                                     struct iw_request_info *info,
7892                                     union iwreq_data *wrqu, char *extra)
7893 {
7894         /*
7895          * This can be called at any time.  No action lock required
7896          */
7897
7898         struct ipw2100_priv *priv = ieee80211_priv(dev);
7899         int level = IPW_POWER_LEVEL(priv->power_mode);
7900         s32 timeout, period;
7901
7902         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7903                 snprintf(extra, MAX_POWER_STRING,
7904                          "Power save level: %d (Off)", level);
7905         } else {
7906                 switch (level) {
7907                 case IPW_POWER_MODE_CAM:
7908                         snprintf(extra, MAX_POWER_STRING,
7909                                  "Power save level: %d (None)", level);
7910                         break;
7911                 case IPW_POWER_AUTO:
7912                         snprintf(extra, MAX_POWER_STRING,
7913                                  "Power save level: %d (Auto)", level);
7914                         break;
7915                 default:
7916                         timeout = timeout_duration[level - 1] / 1000;
7917                         period = period_duration[level - 1] / 1000;
7918                         snprintf(extra, MAX_POWER_STRING,
7919                                  "Power save level: %d "
7920                                  "(Timeout %dms, Period %dms)",
7921                                  level, timeout, period);
7922                 }
7923         }
7924
7925         wrqu->data.length = strlen(extra) + 1;
7926
7927         return 0;
7928 }
7929
7930 static int ipw2100_wx_set_preamble(struct net_device *dev,
7931                                    struct iw_request_info *info,
7932                                    union iwreq_data *wrqu, char *extra)
7933 {
7934         struct ipw2100_priv *priv = ieee80211_priv(dev);
7935         int err, mode = *(int *)extra;
7936
7937         mutex_lock(&priv->action_mutex);
7938         if (!(priv->status & STATUS_INITIALIZED)) {
7939                 err = -EIO;
7940                 goto done;
7941         }
7942
7943         if (mode == 1)
7944                 priv->config |= CFG_LONG_PREAMBLE;
7945         else if (mode == 0)
7946                 priv->config &= ~CFG_LONG_PREAMBLE;
7947         else {
7948                 err = -EINVAL;
7949                 goto done;
7950         }
7951
7952         err = ipw2100_system_config(priv, 0);
7953
7954       done:
7955         mutex_unlock(&priv->action_mutex);
7956         return err;
7957 }
7958
7959 static int ipw2100_wx_get_preamble(struct net_device *dev,
7960                                    struct iw_request_info *info,
7961                                    union iwreq_data *wrqu, char *extra)
7962 {
7963         /*
7964          * This can be called at any time.  No action lock required
7965          */
7966
7967         struct ipw2100_priv *priv = ieee80211_priv(dev);
7968
7969         if (priv->config & CFG_LONG_PREAMBLE)
7970                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7971         else
7972                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7973
7974         return 0;
7975 }
7976
7977 #ifdef CONFIG_IPW2100_MONITOR
7978 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7979                                     struct iw_request_info *info,
7980                                     union iwreq_data *wrqu, char *extra)
7981 {
7982         struct ipw2100_priv *priv = ieee80211_priv(dev);
7983         int err, mode = *(int *)extra;
7984
7985         mutex_lock(&priv->action_mutex);
7986         if (!(priv->status & STATUS_INITIALIZED)) {
7987                 err = -EIO;
7988                 goto done;
7989         }
7990
7991         if (mode == 1)
7992                 priv->config |= CFG_CRC_CHECK;
7993         else if (mode == 0)
7994                 priv->config &= ~CFG_CRC_CHECK;
7995         else {
7996                 err = -EINVAL;
7997                 goto done;
7998         }
7999         err = 0;
8000
8001       done:
8002         mutex_unlock(&priv->action_mutex);
8003         return err;
8004 }
8005
8006 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8007                                     struct iw_request_info *info,
8008                                     union iwreq_data *wrqu, char *extra)
8009 {
8010         /*
8011          * This can be called at any time.  No action lock required
8012          */
8013
8014         struct ipw2100_priv *priv = ieee80211_priv(dev);
8015
8016         if (priv->config & CFG_CRC_CHECK)
8017                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8018         else
8019                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8020
8021         return 0;
8022 }
8023 #endif                          /* CONFIG_IPW2100_MONITOR */
8024
8025 static iw_handler ipw2100_wx_handlers[] = {
8026         NULL,                   /* SIOCSIWCOMMIT */
8027         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8028         NULL,                   /* SIOCSIWNWID */
8029         NULL,                   /* SIOCGIWNWID */
8030         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8031         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8032         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8033         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8034         NULL,                   /* SIOCSIWSENS */
8035         NULL,                   /* SIOCGIWSENS */
8036         NULL,                   /* SIOCSIWRANGE */
8037         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8038         NULL,                   /* SIOCSIWPRIV */
8039         NULL,                   /* SIOCGIWPRIV */
8040         NULL,                   /* SIOCSIWSTATS */
8041         NULL,                   /* SIOCGIWSTATS */
8042         NULL,                   /* SIOCSIWSPY */
8043         NULL,                   /* SIOCGIWSPY */
8044         NULL,                   /* SIOCGIWTHRSPY */
8045         NULL,                   /* SIOCWIWTHRSPY */
8046         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8047         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8048         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8049         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8050         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8051         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8052         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8053         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8054         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8055         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8056         NULL,                   /* -- hole -- */
8057         NULL,                   /* -- hole -- */
8058         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8059         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8060         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8061         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8062         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8063         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8064         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8065         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8066         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8067         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8068         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8069         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8070         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8071         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8072         NULL,                   /* -- hole -- */
8073         NULL,                   /* -- hole -- */
8074         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8075         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8076         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8077         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8078         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8079         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8080         NULL,                   /* SIOCSIWPMKSA */
8081 };
8082
8083 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8084 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8085 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8086 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8087 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8088 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8089 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8090 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8091
8092 static const struct iw_priv_args ipw2100_private_args[] = {
8093
8094 #ifdef CONFIG_IPW2100_MONITOR
8095         {
8096          IPW2100_PRIV_SET_MONITOR,
8097          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8098         {
8099          IPW2100_PRIV_RESET,
8100          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8101 #endif                          /* CONFIG_IPW2100_MONITOR */
8102
8103         {
8104          IPW2100_PRIV_SET_POWER,
8105          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8106         {
8107          IPW2100_PRIV_GET_POWER,
8108          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8109          "get_power"},
8110         {
8111          IPW2100_PRIV_SET_LONGPREAMBLE,
8112          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8113         {
8114          IPW2100_PRIV_GET_LONGPREAMBLE,
8115          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8116 #ifdef CONFIG_IPW2100_MONITOR
8117         {
8118          IPW2100_PRIV_SET_CRC_CHECK,
8119          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8120         {
8121          IPW2100_PRIV_GET_CRC_CHECK,
8122          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8123 #endif                          /* CONFIG_IPW2100_MONITOR */
8124 };
8125
8126 static iw_handler ipw2100_private_handler[] = {
8127 #ifdef CONFIG_IPW2100_MONITOR
8128         ipw2100_wx_set_promisc,
8129         ipw2100_wx_reset,
8130 #else                           /* CONFIG_IPW2100_MONITOR */
8131         NULL,
8132         NULL,
8133 #endif                          /* CONFIG_IPW2100_MONITOR */
8134         ipw2100_wx_set_powermode,
8135         ipw2100_wx_get_powermode,
8136         ipw2100_wx_set_preamble,
8137         ipw2100_wx_get_preamble,
8138 #ifdef CONFIG_IPW2100_MONITOR
8139         ipw2100_wx_set_crc_check,
8140         ipw2100_wx_get_crc_check,
8141 #else                           /* CONFIG_IPW2100_MONITOR */
8142         NULL,
8143         NULL,
8144 #endif                          /* CONFIG_IPW2100_MONITOR */
8145 };
8146
8147 /*
8148  * Get wireless statistics.
8149  * Called by /proc/net/wireless
8150  * Also called by SIOCGIWSTATS
8151  */
8152 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8153 {
8154         enum {
8155                 POOR = 30,
8156                 FAIR = 60,
8157                 GOOD = 80,
8158                 VERY_GOOD = 90,
8159                 EXCELLENT = 95,
8160                 PERFECT = 100
8161         };
8162         int rssi_qual;
8163         int tx_qual;
8164         int beacon_qual;
8165
8166         struct ipw2100_priv *priv = ieee80211_priv(dev);
8167         struct iw_statistics *wstats;
8168         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8169         u32 ord_len = sizeof(u32);
8170
8171         if (!priv)
8172                 return (struct iw_statistics *)NULL;
8173
8174         wstats = &priv->wstats;
8175
8176         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8177          * ipw2100_wx_wireless_stats seems to be called before fw is
8178          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8179          * and associated; if not associcated, the values are all meaningless
8180          * anyway, so set them all to NULL and INVALID */
8181         if (!(priv->status & STATUS_ASSOCIATED)) {
8182                 wstats->miss.beacon = 0;
8183                 wstats->discard.retries = 0;
8184                 wstats->qual.qual = 0;
8185                 wstats->qual.level = 0;
8186                 wstats->qual.noise = 0;
8187                 wstats->qual.updated = 7;
8188                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8189                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8190                 return wstats;
8191         }
8192
8193         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8194                                 &missed_beacons, &ord_len))
8195                 goto fail_get_ordinal;
8196
8197         /* If we don't have a connection the quality and level is 0 */
8198         if (!(priv->status & STATUS_ASSOCIATED)) {
8199                 wstats->qual.qual = 0;
8200                 wstats->qual.level = 0;
8201         } else {
8202                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8203                                         &rssi, &ord_len))
8204                         goto fail_get_ordinal;
8205                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8206                 if (rssi < 10)
8207                         rssi_qual = rssi * POOR / 10;
8208                 else if (rssi < 15)
8209                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8210                 else if (rssi < 20)
8211                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8212                 else if (rssi < 30)
8213                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8214                             10 + GOOD;
8215                 else
8216                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8217                             10 + VERY_GOOD;
8218
8219                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8220                                         &tx_retries, &ord_len))
8221                         goto fail_get_ordinal;
8222
8223                 if (tx_retries > 75)
8224                         tx_qual = (90 - tx_retries) * POOR / 15;
8225                 else if (tx_retries > 70)
8226                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8227                 else if (tx_retries > 65)
8228                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8229                 else if (tx_retries > 50)
8230                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8231                             15 + GOOD;
8232                 else
8233                         tx_qual = (50 - tx_retries) *
8234                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8235
8236                 if (missed_beacons > 50)
8237                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8238                 else if (missed_beacons > 40)
8239                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8240                             10 + POOR;
8241                 else if (missed_beacons > 32)
8242                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8243                             18 + FAIR;
8244                 else if (missed_beacons > 20)
8245                         beacon_qual = (32 - missed_beacons) *
8246                             (VERY_GOOD - GOOD) / 20 + GOOD;
8247                 else
8248                         beacon_qual = (20 - missed_beacons) *
8249                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8250
8251                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8252
8253 #ifdef CONFIG_IPW2100_DEBUG
8254                 if (beacon_qual == quality)
8255                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8256                 else if (tx_qual == quality)
8257                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8258                 else if (quality != 100)
8259                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8260                 else
8261                         IPW_DEBUG_WX("Quality not clamped.\n");
8262 #endif
8263
8264                 wstats->qual.qual = quality;
8265                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8266         }
8267
8268         wstats->qual.noise = 0;
8269         wstats->qual.updated = 7;
8270         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8271
8272         /* FIXME: this is percent and not a # */
8273         wstats->miss.beacon = missed_beacons;
8274
8275         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8276                                 &tx_failures, &ord_len))
8277                 goto fail_get_ordinal;
8278         wstats->discard.retries = tx_failures;
8279
8280         return wstats;
8281
8282       fail_get_ordinal:
8283         IPW_DEBUG_WX("failed querying ordinals.\n");
8284
8285         return (struct iw_statistics *)NULL;
8286 }
8287
8288 static struct iw_handler_def ipw2100_wx_handler_def = {
8289         .standard = ipw2100_wx_handlers,
8290         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8291         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8292         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8293         .private = (iw_handler *) ipw2100_private_handler,
8294         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8295         .get_wireless_stats = ipw2100_wx_wireless_stats,
8296 };
8297
8298 static void ipw2100_wx_event_work(struct work_struct *work)
8299 {
8300         struct ipw2100_priv *priv =
8301                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8302         union iwreq_data wrqu;
8303         int len = ETH_ALEN;
8304
8305         if (priv->status & STATUS_STOPPING)
8306                 return;
8307
8308         mutex_lock(&priv->action_mutex);
8309
8310         IPW_DEBUG_WX("enter\n");
8311
8312         mutex_unlock(&priv->action_mutex);
8313
8314         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8315
8316         /* Fetch BSSID from the hardware */
8317         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8318             priv->status & STATUS_RF_KILL_MASK ||
8319             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8320                                 &priv->bssid, &len)) {
8321                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8322         } else {
8323                 /* We now have the BSSID, so can finish setting to the full
8324                  * associated state */
8325                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8326                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8327                 priv->status &= ~STATUS_ASSOCIATING;
8328                 priv->status |= STATUS_ASSOCIATED;
8329                 netif_carrier_on(priv->net_dev);
8330                 netif_wake_queue(priv->net_dev);
8331         }
8332
8333         if (!(priv->status & STATUS_ASSOCIATED)) {
8334                 IPW_DEBUG_WX("Configuring ESSID\n");
8335                 mutex_lock(&priv->action_mutex);
8336                 /* This is a disassociation event, so kick the firmware to
8337                  * look for another AP */
8338                 if (priv->config & CFG_STATIC_ESSID)
8339                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8340                                           0);
8341                 else
8342                         ipw2100_set_essid(priv, NULL, 0, 0);
8343                 mutex_unlock(&priv->action_mutex);
8344         }
8345
8346         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8347 }
8348
8349 #define IPW2100_FW_MAJOR_VERSION 1
8350 #define IPW2100_FW_MINOR_VERSION 3
8351
8352 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8353 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8354
8355 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8356                              IPW2100_FW_MAJOR_VERSION)
8357
8358 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8359 "." __stringify(IPW2100_FW_MINOR_VERSION)
8360
8361 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8362
8363 /*
8364
8365 BINARY FIRMWARE HEADER FORMAT
8366
8367 offset      length   desc
8368 0           2        version
8369 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8370 4           4        fw_len
8371 8           4        uc_len
8372 C           fw_len   firmware data
8373 12 + fw_len uc_len   microcode data
8374
8375 */
8376
8377 struct ipw2100_fw_header {
8378         short version;
8379         short mode;
8380         unsigned int fw_size;
8381         unsigned int uc_size;
8382 } __attribute__ ((packed));
8383
8384 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8385 {
8386         struct ipw2100_fw_header *h =
8387             (struct ipw2100_fw_header *)fw->fw_entry->data;
8388
8389         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8390                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8391                        "(detected version id of %u). "
8392                        "See Documentation/networking/README.ipw2100\n",
8393                        h->version);
8394                 return 1;
8395         }
8396
8397         fw->version = h->version;
8398         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8399         fw->fw.size = h->fw_size;
8400         fw->uc.data = fw->fw.data + h->fw_size;
8401         fw->uc.size = h->uc_size;
8402
8403         return 0;
8404 }
8405
8406 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8407                                 struct ipw2100_fw *fw)
8408 {
8409         char *fw_name;
8410         int rc;
8411
8412         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8413                        priv->net_dev->name);
8414
8415         switch (priv->ieee->iw_mode) {
8416         case IW_MODE_ADHOC:
8417                 fw_name = IPW2100_FW_NAME("-i");
8418                 break;
8419 #ifdef CONFIG_IPW2100_MONITOR
8420         case IW_MODE_MONITOR:
8421                 fw_name = IPW2100_FW_NAME("-p");
8422                 break;
8423 #endif
8424         case IW_MODE_INFRA:
8425         default:
8426                 fw_name = IPW2100_FW_NAME("");
8427                 break;
8428         }
8429
8430         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8431
8432         if (rc < 0) {
8433                 printk(KERN_ERR DRV_NAME ": "
8434                        "%s: Firmware '%s' not available or load failed.\n",
8435                        priv->net_dev->name, fw_name);
8436                 return rc;
8437         }
8438         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8439                        fw->fw_entry->size);
8440
8441         ipw2100_mod_firmware_load(fw);
8442
8443         return 0;
8444 }
8445
8446 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8447                                      struct ipw2100_fw *fw)
8448 {
8449         fw->version = 0;
8450         if (fw->fw_entry)
8451                 release_firmware(fw->fw_entry);
8452         fw->fw_entry = NULL;
8453 }
8454
8455 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8456                                  size_t max)
8457 {
8458         char ver[MAX_FW_VERSION_LEN];
8459         u32 len = MAX_FW_VERSION_LEN;
8460         u32 tmp;
8461         int i;
8462         /* firmware version is an ascii string (max len of 14) */
8463         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8464                 return -EIO;
8465         tmp = max;
8466         if (len >= max)
8467                 len = max - 1;
8468         for (i = 0; i < len; i++)
8469                 buf[i] = ver[i];
8470         buf[i] = '\0';
8471         return tmp;
8472 }
8473
8474 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8475                                     size_t max)
8476 {
8477         u32 ver;
8478         u32 len = sizeof(ver);
8479         /* microcode version is a 32 bit integer */
8480         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8481                 return -EIO;
8482         return snprintf(buf, max, "%08X", ver);
8483 }
8484
8485 /*
8486  * On exit, the firmware will have been freed from the fw list
8487  */
8488 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8489 {
8490         /* firmware is constructed of N contiguous entries, each entry is
8491          * structured as:
8492          *
8493          * offset    sie         desc
8494          * 0         4           address to write to
8495          * 4         2           length of data run
8496          * 6         length      data
8497          */
8498         unsigned int addr;
8499         unsigned short len;
8500
8501         const unsigned char *firmware_data = fw->fw.data;
8502         unsigned int firmware_data_left = fw->fw.size;
8503
8504         while (firmware_data_left > 0) {
8505                 addr = *(u32 *) (firmware_data);
8506                 firmware_data += 4;
8507                 firmware_data_left -= 4;
8508
8509                 len = *(u16 *) (firmware_data);
8510                 firmware_data += 2;
8511                 firmware_data_left -= 2;
8512
8513                 if (len > 32) {
8514                         printk(KERN_ERR DRV_NAME ": "
8515                                "Invalid firmware run-length of %d bytes\n",
8516                                len);
8517                         return -EINVAL;
8518                 }
8519
8520                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8521                 firmware_data += len;
8522                 firmware_data_left -= len;
8523         }
8524
8525         return 0;
8526 }
8527
8528 struct symbol_alive_response {
8529         u8 cmd_id;
8530         u8 seq_num;
8531         u8 ucode_rev;
8532         u8 eeprom_valid;
8533         u16 valid_flags;
8534         u8 IEEE_addr[6];
8535         u16 flags;
8536         u16 pcb_rev;
8537         u16 clock_settle_time;  // 1us LSB
8538         u16 powerup_settle_time;        // 1us LSB
8539         u16 hop_settle_time;    // 1us LSB
8540         u8 date[3];             // month, day, year
8541         u8 time[2];             // hours, minutes
8542         u8 ucode_valid;
8543 };
8544
8545 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8546                                   struct ipw2100_fw *fw)
8547 {
8548         struct net_device *dev = priv->net_dev;
8549         const unsigned char *microcode_data = fw->uc.data;
8550         unsigned int microcode_data_left = fw->uc.size;
8551         void __iomem *reg = (void __iomem *)dev->base_addr;
8552
8553         struct symbol_alive_response response;
8554         int i, j;
8555         u8 data;
8556
8557         /* Symbol control */
8558         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8559         readl(reg);
8560         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8561         readl(reg);
8562
8563         /* HW config */
8564         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8565         readl(reg);
8566         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8567         readl(reg);
8568
8569         /* EN_CS_ACCESS bit to reset control store pointer */
8570         write_nic_byte(dev, 0x210000, 0x40);
8571         readl(reg);
8572         write_nic_byte(dev, 0x210000, 0x0);
8573         readl(reg);
8574         write_nic_byte(dev, 0x210000, 0x40);
8575         readl(reg);
8576
8577         /* copy microcode from buffer into Symbol */
8578
8579         while (microcode_data_left > 0) {
8580                 write_nic_byte(dev, 0x210010, *microcode_data++);
8581                 write_nic_byte(dev, 0x210010, *microcode_data++);
8582                 microcode_data_left -= 2;
8583         }
8584
8585         /* EN_CS_ACCESS bit to reset the control store pointer */
8586         write_nic_byte(dev, 0x210000, 0x0);
8587         readl(reg);
8588
8589         /* Enable System (Reg 0)
8590          * first enable causes garbage in RX FIFO */
8591         write_nic_byte(dev, 0x210000, 0x0);
8592         readl(reg);
8593         write_nic_byte(dev, 0x210000, 0x80);
8594         readl(reg);
8595
8596         /* Reset External Baseband Reg */
8597         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8598         readl(reg);
8599         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8600         readl(reg);
8601
8602         /* HW Config (Reg 5) */
8603         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8604         readl(reg);
8605         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8606         readl(reg);
8607
8608         /* Enable System (Reg 0)
8609          * second enable should be OK */
8610         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8611         readl(reg);
8612         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8613
8614         /* check Symbol is enabled - upped this from 5 as it wasn't always
8615          * catching the update */
8616         for (i = 0; i < 10; i++) {
8617                 udelay(10);
8618
8619                 /* check Dino is enabled bit */
8620                 read_nic_byte(dev, 0x210000, &data);
8621                 if (data & 0x1)
8622                         break;
8623         }
8624
8625         if (i == 10) {
8626                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8627                        dev->name);
8628                 return -EIO;
8629         }
8630
8631         /* Get Symbol alive response */
8632         for (i = 0; i < 30; i++) {
8633                 /* Read alive response structure */
8634                 for (j = 0;
8635                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8636                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8637
8638                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8639                         break;
8640                 udelay(10);
8641         }
8642
8643         if (i == 30) {
8644                 printk(KERN_ERR DRV_NAME
8645                        ": %s: No response from Symbol - hw not alive\n",
8646                        dev->name);
8647                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8648                 return -EIO;
8649         }
8650
8651         return 0;
8652 }