2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 * Implementation of receive path.
24 * Setup and link descriptors.
26 * 11N: we can no longer afford to self link the last descriptor.
27 * MAC acknowledges BA status as long as it copies frames to host
28 * buffer (or rx fifo). This can incorrectly acknowledge packets
29 * to a sender if last desc is self-linked.
31 * NOTE: Caller should hold the rxbuf lock.
34 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
36 struct ath_hal *ah = sc->sc_ah;
43 ds->ds_link = 0; /* link to null */
44 ds->ds_data = bf->bf_buf_addr;
47 * virtual addr of the beginning of the buffer. */
50 ds->ds_vdata = skb->data;
52 /* setup rx descriptors */
53 ath9k_hw_setuprxdesc(ah,
55 skb_tailroom(skb), /* buffer size */
58 if (sc->sc_rxlink == NULL)
59 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
61 *sc->sc_rxlink = bf->bf_daddr;
63 sc->sc_rxlink = &ds->ds_link;
67 /* Process received BAR frame */
69 static int ath_bar_rx(struct ath_softc *sc,
73 struct ieee80211_bar *bar;
74 struct ath_arx_tid *rxtid;
76 struct ath_recv_status *rx_status;
77 int tidno, index, cindex;
80 /* look at BAR contents */
82 bar = (struct ieee80211_bar *)skb->data;
83 tidno = (le16_to_cpu(bar->control) & IEEE80211_BAR_CTL_TID_M)
84 >> IEEE80211_BAR_CTL_TID_S;
85 seqno = le16_to_cpu(bar->start_seq_num) >> IEEE80211_SEQ_SEQ_SHIFT;
87 /* process BAR - indicate all pending RX frames till the BAR seqno */
89 rxtid = &an->an_aggr.rx.tid[tidno];
91 spin_lock_bh(&rxtid->tidlock);
93 /* get relative index */
95 index = ATH_BA_INDEX(rxtid->seq_next, seqno);
97 /* drop BAR if old sequence (index is too large) */
99 if ((index > rxtid->baw_size) &&
100 (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))))
101 /* discard frame, ieee layer may not treat frame as a dup */
102 goto unlock_and_free;
104 /* complete receive processing for all pending frames upto BAR seqno */
106 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
107 while ((rxtid->baw_head != rxtid->baw_tail) &&
108 (rxtid->baw_head != cindex)) {
109 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
110 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
111 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
114 ath_rx_subframe(an, tskb, rx_status);
116 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
117 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
120 /* ... and indicate rest of the frames in-order */
122 while (rxtid->baw_head != rxtid->baw_tail &&
123 rxtid->rxbuf[rxtid->baw_head].rx_wbuf != NULL) {
124 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
125 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
126 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
128 ath_rx_subframe(an, tskb, rx_status);
130 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
131 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
135 spin_unlock_bh(&rxtid->tidlock);
136 /* free bar itself */
138 return IEEE80211_FTYPE_CTL;
141 /* Function to handle a subframe of aggregation when HT is enabled */
143 static int ath_ampdu_input(struct ath_softc *sc,
146 struct ath_recv_status *rx_status)
148 struct ieee80211_hdr *hdr;
149 struct ath_arx_tid *rxtid;
150 struct ath_rxbuf *rxbuf;
153 int tid = 0, index, cindex, rxdiff;
157 hdr = (struct ieee80211_hdr *)skb->data;
158 fc = hdr->frame_control;
160 /* collect stats of frames with non-zero version */
162 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_VERS) != 0) {
167 type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
168 subtype = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE;
170 if (ieee80211_is_back_req(fc))
171 return ath_bar_rx(sc, an, skb);
173 /* special aggregate processing only for qos unicast data frames */
175 if (!ieee80211_is_data(fc) ||
176 !ieee80211_is_data_qos(fc) ||
177 is_multicast_ether_addr(hdr->addr1))
178 return ath_rx_subframe(an, skb, rx_status);
180 /* lookup rx tid state */
182 if (ieee80211_is_data_qos(fc)) {
183 qc = ieee80211_get_qos_ctl(hdr);
187 if (sc->sc_opmode == ATH9K_M_STA) {
188 /* Drop the frame not belonging to me. */
189 if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) {
195 rxtid = &an->an_aggr.rx.tid[tid];
197 spin_lock(&rxtid->tidlock);
199 rxdiff = (rxtid->baw_tail - rxtid->baw_head) &
200 (ATH_TID_MAX_BUFS - 1);
203 * If the ADDBA exchange has not been completed by the source,
204 * process via legacy path (i.e. no reordering buffer is needed)
206 if (!rxtid->addba_exchangecomplete) {
207 spin_unlock(&rxtid->tidlock);
208 return ath_rx_subframe(an, skb, rx_status);
211 /* extract sequence number from recvd frame */
213 rxseq = le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT;
215 if (rxtid->seq_reset) {
216 rxtid->seq_reset = 0;
217 rxtid->seq_next = rxseq;
220 index = ATH_BA_INDEX(rxtid->seq_next, rxseq);
222 /* drop frame if old sequence (index is too large) */
224 if (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))) {
225 /* discard frame, ieee layer may not treat frame as a dup */
226 spin_unlock(&rxtid->tidlock);
228 return IEEE80211_FTYPE_DATA;
231 /* sequence number is beyond block-ack window */
233 if (index >= rxtid->baw_size) {
235 /* complete receive processing for all pending frames */
237 while (index >= rxtid->baw_size) {
239 rxbuf = rxtid->rxbuf + rxtid->baw_head;
241 if (rxbuf->rx_wbuf != NULL) {
242 ath_rx_subframe(an, rxbuf->rx_wbuf,
244 rxbuf->rx_wbuf = NULL;
247 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
248 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
254 /* add buffer to the recv ba window */
256 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
257 rxbuf = rxtid->rxbuf + cindex;
259 if (rxbuf->rx_wbuf != NULL) {
260 spin_unlock(&rxtid->tidlock);
261 /* duplicate frame */
263 return IEEE80211_FTYPE_DATA;
266 rxbuf->rx_wbuf = skb;
267 rxbuf->rx_time = get_timestamp();
268 rxbuf->rx_status = *rx_status;
270 /* advance tail if sequence received is newer
271 * than any received so far */
273 if (index >= rxdiff) {
274 rxtid->baw_tail = cindex;
275 INCR(rxtid->baw_tail, ATH_TID_MAX_BUFS);
278 /* indicate all in-order received frames */
280 while (rxtid->baw_head != rxtid->baw_tail) {
281 rxbuf = rxtid->rxbuf + rxtid->baw_head;
285 ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status);
286 rxbuf->rx_wbuf = NULL;
288 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
289 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
293 * start a timer to flush all received frames if there are pending
296 if (rxtid->baw_head != rxtid->baw_tail)
297 mod_timer(&rxtid->timer, ATH_RX_TIMEOUT);
299 del_timer_sync(&rxtid->timer);
301 spin_unlock(&rxtid->tidlock);
302 return IEEE80211_FTYPE_DATA;
305 /* Timer to flush all received sub-frames */
307 static void ath_rx_timer(unsigned long data)
309 struct ath_arx_tid *rxtid = (struct ath_arx_tid *)data;
310 struct ath_node *an = rxtid->an;
311 struct ath_rxbuf *rxbuf;
314 spin_lock_bh(&rxtid->tidlock);
315 while (rxtid->baw_head != rxtid->baw_tail) {
316 rxbuf = rxtid->rxbuf + rxtid->baw_head;
317 if (!rxbuf->rx_wbuf) {
318 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
319 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
324 * Stop if the next one is a very recent frame.
326 * Call get_timestamp in every iteration to protect against the
327 * case in which a new frame is received while we are executing
328 * this function. Using a timestamp obtained before entering
329 * the loop could lead to a very large time interval
330 * (a negative value typecast to unsigned), breaking the
333 if ((get_timestamp() - rxbuf->rx_time) <
334 (ATH_RX_TIMEOUT * HZ / 1000))
337 ath_rx_subframe(an, rxbuf->rx_wbuf,
339 rxbuf->rx_wbuf = NULL;
341 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
342 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
346 * start a timer to flush all received frames if there are pending
349 if (rxtid->baw_head != rxtid->baw_tail)
352 nosched = 1; /* no need to re-arm the timer again */
354 spin_unlock_bh(&rxtid->tidlock);
357 /* Free all pending sub-frames in the re-ordering buffer */
359 static void ath_rx_flush_tid(struct ath_softc *sc,
360 struct ath_arx_tid *rxtid, int drop)
362 struct ath_rxbuf *rxbuf;
365 spin_lock_irqsave(&rxtid->tidlock, flag);
366 while (rxtid->baw_head != rxtid->baw_tail) {
367 rxbuf = rxtid->rxbuf + rxtid->baw_head;
368 if (!rxbuf->rx_wbuf) {
369 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
370 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
375 dev_kfree_skb(rxbuf->rx_wbuf);
377 ath_rx_subframe(rxtid->an,
381 rxbuf->rx_wbuf = NULL;
383 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
384 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
386 spin_unlock_irqrestore(&rxtid->tidlock, flag);
389 static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc,
396 * Cache-line-align. This is important (for the
397 * 5210 at least) as not doing so causes bogus data
401 skb = dev_alloc_skb(len + sc->sc_cachelsz - 1);
403 off = ((unsigned long) skb->data) % sc->sc_cachelsz;
405 skb_reserve(skb, sc->sc_cachelsz - off);
407 DPRINTF(sc, ATH_DBG_FATAL,
408 "%s: skbuff alloc of size %u failed\n",
416 static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb)
418 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
422 spin_lock_bh(&sc->sc_rxbuflock);
423 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
425 * This buffer is still held for hw acess.
426 * Mark it as free to be re-queued it later.
428 bf->bf_status |= ATH_BUFSTATUS_FREE;
430 /* XXX: we probably never enter here, remove after
432 list_add_tail(&bf->list, &sc->sc_rxbuf);
433 ath_rx_buf_link(sc, bf);
435 spin_unlock_bh(&sc->sc_rxbuflock);
439 * The skb indicated to upper stack won't be returned to us.
440 * So we have to allocate a new one and queue it by ourselves.
442 static int ath_rx_indicate(struct ath_softc *sc,
444 struct ath_recv_status *status,
447 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
448 struct sk_buff *nskb;
451 /* indicate frame to the stack, which will free the old skb. */
452 type = ath__rx_indicate(sc, skb, status, keyix);
454 /* allocate a new skb and queue it to for H/W processing */
455 nskb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
458 bf->bf_buf_addr = ath_skb_map_single(sc,
461 /* XXX: Remove get_dma_mem_context() */
462 get_dma_mem_context(bf, bf_dmacontext));
463 ATH_RX_CONTEXT(nskb)->ctx_rxbuf = bf;
465 /* queue the new wbuf to H/W */
466 ath_rx_requeue(sc, nskb);
472 static void ath_opmode_init(struct ath_softc *sc)
474 struct ath_hal *ah = sc->sc_ah;
477 /* configure rx filter */
478 rfilt = ath_calcrxfilter(sc);
479 ath9k_hw_setrxfilter(ah, rfilt);
481 /* configure bssid mask */
482 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
483 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
485 /* configure operational mode */
486 ath9k_hw_setopmode(ah);
488 /* Handle any link-level address change. */
489 ath9k_hw_setmac(ah, sc->sc_myaddr);
491 /* calculate and install multicast filter */
492 mfilt[0] = mfilt[1] = ~0;
494 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
495 DPRINTF(sc, ATH_DBG_CONFIG ,
496 "%s: RX filter 0x%x, MC filter %08x:%08x\n",
497 __func__, rfilt, mfilt[0], mfilt[1]);
500 int ath_rx_init(struct ath_softc *sc, int nbufs)
507 spin_lock_init(&sc->sc_rxflushlock);
509 spin_lock_init(&sc->sc_rxbuflock);
512 * Cisco's VPN software requires that drivers be able to
513 * receive encapsulated frames that are larger than the MTU.
514 * Since we can't be sure how large a frame we'll get, setup
515 * to handle the larges on possible.
517 sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN,
521 DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n",
522 __func__, sc->sc_cachelsz, sc->sc_rxbufsize);
524 /* Initialize rx descriptors */
526 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
529 DPRINTF(sc, ATH_DBG_FATAL,
530 "%s: failed to allocate rx descriptors: %d\n",
535 /* Pre-allocate a wbuf for each rx buffer */
537 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
538 skb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
546 ath_skb_map_single(sc, skb, PCI_DMA_FROMDEVICE,
547 get_dma_mem_context(bf, bf_dmacontext));
548 ATH_RX_CONTEXT(skb)->ctx_rxbuf = bf;
550 sc->sc_rxlink = NULL;
560 /* Reclaim all rx queue resources */
562 void ath_rx_cleanup(struct ath_softc *sc)
567 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
573 /* cleanup rx descriptors */
575 if (sc->sc_rxdma.dd_desc_len != 0)
576 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
580 * Calculate the receive filter according to the
581 * operating mode and state:
583 * o always accept unicast, broadcast, and multicast traffic
584 * o maintain current state of phy error reception (the hal
585 * may enable phy error frames for noise immunity work)
586 * o probe request frames are accepted only when operating in
587 * hostap, adhoc, or monitor modes
588 * o enable promiscuous mode according to the interface state
590 * - when operating in adhoc mode so the 802.11 layer creates
591 * node table entries for peers,
592 * - when operating in station mode for collecting rssi data when
593 * the station is otherwise quiet, or
594 * - when operating as a repeater so we see repeater-sta beacons
598 u32 ath_calcrxfilter(struct ath_softc *sc)
600 #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
603 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
604 | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
605 | ATH9K_RX_FILTER_MCAST;
607 /* If not a STA, enable processing of Probe Requests */
608 if (sc->sc_opmode != ATH9K_M_STA)
609 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
611 /* Can't set HOSTAP into promiscous mode */
612 if (sc->sc_opmode == ATH9K_M_MONITOR) {
613 rfilt |= ATH9K_RX_FILTER_PROM;
614 /* ??? To prevent from sending ACK */
615 rfilt &= ~ATH9K_RX_FILTER_UCAST;
618 if (sc->sc_opmode == ATH9K_M_STA || sc->sc_opmode == ATH9K_M_IBSS ||
620 rfilt |= ATH9K_RX_FILTER_BEACON;
622 /* If in HOSTAP mode, want to enable reception of PSPOLL frames
624 if (sc->sc_opmode == ATH9K_M_HOSTAP)
625 rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL);
627 #undef RX_FILTER_PRESERVE
630 /* Enable the receive h/w following a reset. */
632 int ath_startrecv(struct ath_softc *sc)
634 struct ath_hal *ah = sc->sc_ah;
635 struct ath_buf *bf, *tbf;
637 spin_lock_bh(&sc->sc_rxbuflock);
638 if (list_empty(&sc->sc_rxbuf))
641 sc->sc_rxlink = NULL;
642 list_for_each_entry_safe(bf, tbf, &sc->sc_rxbuf, list) {
643 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
644 /* restarting h/w, no need for holding descriptors */
645 bf->bf_status &= ~ATH_BUFSTATUS_STALE;
647 * Upper layer may not be done with the frame yet so
648 * we can't just re-queue it to hardware. Remove it
649 * from h/w queue. It'll be re-queued when upper layer
650 * returns the frame and ath_rx_requeue_mpdu is called.
652 if (!(bf->bf_status & ATH_BUFSTATUS_FREE)) {
657 /* chain descriptors */
658 ath_rx_buf_link(sc, bf);
661 /* We could have deleted elements so the list may be empty now */
662 if (list_empty(&sc->sc_rxbuf))
665 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
666 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
667 ath9k_hw_rxena(ah); /* enable recv descriptors */
670 spin_unlock_bh(&sc->sc_rxbuflock);
671 ath_opmode_init(sc); /* set filters, etc. */
672 ath9k_hw_startpcureceive(ah); /* re-enable PCU/DMA engine */
676 /* Disable the receive h/w in preparation for a reset. */
678 bool ath_stoprecv(struct ath_softc *sc)
680 struct ath_hal *ah = sc->sc_ah;
684 ath9k_hw_stoppcurecv(ah); /* disable PCU */
685 ath9k_hw_setrxfilter(ah, 0); /* clear recv filter */
686 stopped = ath9k_hw_stopdmarecv(ah); /* disable DMA engine */
687 mdelay(3); /* 3ms is long enough for 1 frame */
688 tsf = ath9k_hw_gettsf64(ah);
689 sc->sc_rxlink = NULL; /* just in case */
693 /* Flush receive queue */
695 void ath_flushrecv(struct ath_softc *sc)
698 * ath_rx_tasklet may be used to handle rx interrupt and flush receive
699 * queue at the same time. Use a lock to serialize the access of rx
701 * ath_rx_tasklet cannot hold the spinlock while indicating packets.
702 * Instead, do not claim the spinlock but check for a flush in
703 * progress (see references to sc_rxflush)
705 spin_lock_bh(&sc->sc_rxflushlock);
708 ath_rx_tasklet(sc, 1);
711 spin_unlock_bh(&sc->sc_rxflushlock);
714 /* Process an individual frame */
716 int ath_rx_input(struct ath_softc *sc,
720 struct ath_recv_status *rx_status,
721 enum ATH_RX_TYPE *status)
723 if (is_ampdu && sc->sc_rxaggr) {
724 *status = ATH_RX_CONSUMED;
725 return ath_ampdu_input(sc, an, skb, rx_status);
727 *status = ATH_RX_NON_CONSUMED;
732 /* Process receive queue, as well as LED, etc. */
734 int ath_rx_tasklet(struct ath_softc *sc, int flush)
736 #define PA2DESC(_sc, _pa) \
737 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
738 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
740 struct ath_buf *bf, *bf_held = NULL;
742 struct ieee80211_hdr *hdr;
743 struct sk_buff *skb = NULL;
744 struct ath_recv_status rx_status;
745 struct ath_hal *ah = sc->sc_ah;
746 int type, rx_processed = 0;
753 /* If handling rx interrupt and flush is in progress => exit */
754 if (sc->sc_rxflush && (flush == 0))
757 spin_lock_bh(&sc->sc_rxbuflock);
758 if (list_empty(&sc->sc_rxbuf)) {
759 sc->sc_rxlink = NULL;
760 spin_unlock_bh(&sc->sc_rxbuflock);
764 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
767 * There is a race condition that BH gets scheduled after sw
768 * writes RxE and before hw re-load the last descriptor to get
769 * the newly chained one. Software must keep the last DONE
770 * descriptor as a holding descriptor - software does so by
771 * marking it with the STALE flag.
773 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
775 if (list_is_last(&bf_held->list, &sc->sc_rxbuf)) {
777 * The holding descriptor is the last
778 * descriptor in queue. It's safe to
779 * remove the last holding descriptor
782 list_del(&bf_held->list);
783 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
784 sc->sc_rxlink = NULL;
786 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
787 list_add_tail(&bf_held->list,
789 ath_rx_buf_link(sc, bf_held);
791 spin_unlock_bh(&sc->sc_rxbuflock);
794 bf = list_entry(bf->list.next, struct ath_buf, list);
801 * Must provide the virtual address of the current
802 * descriptor, the physical address, and the virtual
803 * address of the next descriptor in the h/w chain.
804 * This allows the HAL to look ahead to see if the
805 * hardware is done with a descriptor by checking the
806 * done bit in the following descriptor and the address
807 * of the current descriptor the DMA engine is working
808 * on. All this is necessary because of our use of
809 * a self-linked list to avoid rx overruns.
811 retval = ath9k_hw_rxprocdesc(ah,
814 PA2DESC(sc, ds->ds_link),
816 if (retval == -EINPROGRESS) {
818 struct ath_desc *tds;
820 if (list_is_last(&bf->list, &sc->sc_rxbuf)) {
821 spin_unlock_bh(&sc->sc_rxbuflock);
825 tbf = list_entry(bf->list.next, struct ath_buf, list);
828 * On some hardware the descriptor status words could
829 * get corrupted, including the done bit. Because of
830 * this, check if the next descriptor's done bit is
833 * If the next descriptor's done bit is set, the current
834 * descriptor has been corrupted. Force s/w to discard
835 * this descriptor and continue...
839 retval = ath9k_hw_rxprocdesc(ah,
841 PA2DESC(sc, tds->ds_link), 0);
842 if (retval == -EINPROGRESS) {
843 spin_unlock_bh(&sc->sc_rxbuflock);
848 /* XXX: we do not support frames spanning
849 * multiple descriptors */
850 bf->bf_status |= ATH_BUFSTATUS_DONE;
853 if (skb == NULL) { /* XXX ??? can this happen */
854 spin_unlock_bh(&sc->sc_rxbuflock);
858 * Now we know it's a completed frame, we can indicate the
859 * frame. Remove the previous holding descriptor and leave
860 * this one in the queue as the new holding descriptor.
863 list_del(&bf_held->list);
864 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
865 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
866 list_add_tail(&bf_held->list, &sc->sc_rxbuf);
867 /* try to requeue this descriptor */
868 ath_rx_buf_link(sc, bf_held);
872 bf->bf_status |= ATH_BUFSTATUS_STALE;
875 * Release the lock here in case ieee80211_input() return
876 * the frame immediately by calling ath_rx_mpdu_requeue().
878 spin_unlock_bh(&sc->sc_rxbuflock);
882 * If we're asked to flush receive queue, directly
883 * chain it back at the queue without processing it.
888 hdr = (struct ieee80211_hdr *)skb->data;
889 fc = hdr->frame_control;
890 memzero(&rx_status, sizeof(struct ath_recv_status));
892 if (ds->ds_rxstat.rs_more) {
894 * Frame spans multiple descriptors; this
895 * cannot happen yet as we don't support
896 * jumbograms. If not in monitor mode,
901 * Enable this if you want to see
902 * error frames in Monitor mode.
904 if (sc->sc_opmode != ATH9K_M_MONITOR)
907 /* fall thru for monitor mode handling... */
908 } else if (ds->ds_rxstat.rs_status != 0) {
909 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
910 rx_status.flags |= ATH_RX_FCS_ERROR;
911 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) {
912 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
916 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
918 * Decrypt error. We only mark packet status
919 * here and always push up the frame up to let
920 * mac80211 handle the actual error case, be
921 * it no decryption key or real decryption
922 * error. This let us keep statistics there.
924 rx_status.flags |= ATH_RX_DECRYPT_ERROR;
925 } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
927 * Demic error. We only mark frame status here
928 * and always push up the frame up to let
929 * mac80211 handle the actual error case. This
930 * let us keep statistics there. Hardware may
931 * post a false-positive MIC error.
933 if (ieee80211_is_ctl(fc))
935 * Sometimes, we get invalid
936 * MIC failures on valid control frames.
937 * Remove these mic errors.
939 ds->ds_rxstat.rs_status &=
942 rx_status.flags |= ATH_RX_MIC_ERROR;
945 * Reject error frames with the exception of
946 * decryption and MIC failures. For monitor mode,
947 * we also ignore the CRC error.
949 if (sc->sc_opmode == ATH9K_M_MONITOR) {
950 if (ds->ds_rxstat.rs_status &
951 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
955 if (ds->ds_rxstat.rs_status &
956 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
962 * The status portion of the descriptor could get corrupted.
964 if (sc->sc_rxbufsize < ds->ds_rxstat.rs_datalen)
967 * Sync and unmap the frame. At this point we're
968 * committed to passing the sk_buff somewhere so
969 * clear buf_skb; this means a new sk_buff must be
970 * allocated when the rx descriptor is setup again
971 * to receive another frame.
973 skb_put(skb, ds->ds_rxstat.rs_datalen);
974 skb->protocol = cpu_to_be16(ETH_P_CONTROL);
975 rx_status.tsf = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
977 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate;
979 sc->sc_hwmap[ds->ds_rxstat.rs_rate].rateKbps;
980 rx_status.ratecode = ds->ds_rxstat.rs_rate;
983 if (rx_status.ratecode & 0x80) {
984 /* TODO - add table to avoid division */
985 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
986 rx_status.flags |= ATH_RX_40MHZ;
988 (rx_status.rateKbps * 27) / 13;
990 if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
992 (rx_status.rateKbps * 10) / 9;
994 rx_status.flags |= ATH_RX_SHORT_GI;
997 /* sc->sc_noise_floor is only available when the station
998 attaches to an AP, so we use a default value
999 if we are not yet attached. */
1001 /* XXX we should use either sc->sc_noise_floor or
1002 * ath_hal_getChanNoise(ah, &sc->sc_curchan)
1003 * to calculate the noise floor.
1004 * However, the value returned by ath_hal_getChanNoise
1005 * seems to be incorrect (-31dBm on the last test),
1006 * so we will use a hard-coded value until we
1007 * figure out what is going on.
1009 rx_status.abs_rssi =
1010 ds->ds_rxstat.rs_rssi + ATH_DEFAULT_NOISE_FLOOR;
1012 pci_dma_sync_single_for_cpu(sc->pdev,
1015 PCI_DMA_FROMDEVICE);
1016 pci_unmap_single(sc->pdev,
1019 PCI_DMA_FROMDEVICE);
1021 /* XXX: Ah! make me more readable, use a helper */
1022 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1023 if (ds->ds_rxstat.rs_moreaggr == 0) {
1024 rx_status.rssictl[0] =
1025 ds->ds_rxstat.rs_rssi_ctl0;
1026 rx_status.rssictl[1] =
1027 ds->ds_rxstat.rs_rssi_ctl1;
1028 rx_status.rssictl[2] =
1029 ds->ds_rxstat.rs_rssi_ctl2;
1030 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1031 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
1032 rx_status.rssiextn[0] =
1033 ds->ds_rxstat.rs_rssi_ext0;
1034 rx_status.rssiextn[1] =
1035 ds->ds_rxstat.rs_rssi_ext1;
1036 rx_status.rssiextn[2] =
1037 ds->ds_rxstat.rs_rssi_ext2;
1039 ATH_RX_RSSI_EXTN_VALID;
1041 rx_status.flags |= ATH_RX_RSSI_VALID |
1042 ATH_RX_CHAIN_RSSI_VALID;
1046 * Need to insert the "combined" rssi into the
1047 * status structure for upper layer processing
1049 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1050 rx_status.flags |= ATH_RX_RSSI_VALID;
1053 /* Pass frames up to the stack. */
1055 type = ath_rx_indicate(sc, skb,
1056 &rx_status, ds->ds_rxstat.rs_keyix);
1059 * change the default rx antenna if rx diversity chooses the
1060 * other antenna 3 times in a row.
1062 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
1063 if (++sc->sc_rxotherant >= 3)
1064 ath_setdefantenna(sc,
1065 ds->ds_rxstat.rs_antenna);
1067 sc->sc_rxotherant = 0;
1070 #ifdef CONFIG_SLOW_ANT_DIV
1071 if ((rx_status.flags & ATH_RX_RSSI_VALID) &&
1072 ieee80211_is_beacon(fc)) {
1073 ath_slow_ant_div(&sc->sc_antdiv, hdr, &ds->ds_rxstat);
1077 * For frames successfully indicated, the buffer will be
1078 * returned to us by upper layers by calling
1079 * ath_rx_mpdu_requeue, either synchronusly or asynchronously.
1080 * So we don't want to do it here in this loop.
1085 bf->bf_status |= ATH_BUFSTATUS_FREE;
1089 DPRINTF(sc, ATH_DBG_CONFIG,
1090 "%s: Reset rx chain mask. "
1091 "Do internal reset\n", __func__);
1093 ath_internal_reset(sc);
1100 /* Process ADDBA request in per-TID data structure */
1102 int ath_rx_aggr_start(struct ath_softc *sc,
1107 struct ath_arx_tid *rxtid;
1108 struct ath_node *an;
1109 struct ieee80211_hw *hw = sc->hw;
1110 struct ieee80211_supported_band *sband;
1113 spin_lock_bh(&sc->node_lock);
1114 an = ath_node_find(sc, (u8 *) addr);
1115 spin_unlock_bh(&sc->node_lock);
1118 DPRINTF(sc, ATH_DBG_AGGR,
1119 "%s: Node not found to initialize RX aggregation\n",
1124 sband = hw->wiphy->bands[hw->conf.channel->band];
1125 buffersize = IEEE80211_MIN_AMPDU_BUF <<
1126 sband->ht_info.ampdu_factor; /* FIXME */
1128 rxtid = &an->an_aggr.rx.tid[tid];
1130 spin_lock_bh(&rxtid->tidlock);
1131 if (sc->sc_rxaggr) {
1132 /* Allow aggregation reception
1133 * Adjust rx BA window size. Peer might indicate a
1134 * zero buffer size for a _dont_care_ condition.
1137 rxtid->baw_size = min(buffersize, rxtid->baw_size);
1139 /* set rx sequence number */
1140 rxtid->seq_next = *ssn;
1142 /* Allocate the receive buffers for this TID */
1143 DPRINTF(sc, ATH_DBG_AGGR,
1144 "%s: Allcating rxbuffer for TID %d\n", __func__, tid);
1146 if (rxtid->rxbuf == NULL) {
1148 * If the rxbuff is not NULL at this point, we *probably*
1149 * already allocated the buffer on a previous ADDBA,
1150 * and this is a subsequent ADDBA that got through.
1151 * Don't allocate, but use the value in the pointer,
1152 * we zero it out when we de-allocate.
1154 rxtid->rxbuf = kmalloc(ATH_TID_MAX_BUFS *
1155 sizeof(struct ath_rxbuf), GFP_ATOMIC);
1157 if (rxtid->rxbuf == NULL) {
1158 DPRINTF(sc, ATH_DBG_AGGR,
1159 "%s: Unable to allocate RX buffer, "
1160 "refusing ADDBA\n", __func__);
1162 /* Ensure the memory is zeroed out (all internal
1163 * pointers are null) */
1164 memzero(rxtid->rxbuf, ATH_TID_MAX_BUFS *
1165 sizeof(struct ath_rxbuf));
1166 DPRINTF(sc, ATH_DBG_AGGR,
1167 "%s: Allocated @%p\n", __func__, rxtid->rxbuf);
1169 /* Allow aggregation reception */
1170 rxtid->addba_exchangecomplete = 1;
1173 spin_unlock_bh(&rxtid->tidlock);
1180 int ath_rx_aggr_stop(struct ath_softc *sc,
1184 struct ath_node *an;
1186 spin_lock_bh(&sc->node_lock);
1187 an = ath_node_find(sc, (u8 *) addr);
1188 spin_unlock_bh(&sc->node_lock);
1191 DPRINTF(sc, ATH_DBG_AGGR,
1192 "%s: RX aggr stop for non-existent node\n", __func__);
1196 ath_rx_aggr_teardown(sc, an, tid);
1200 /* Rx aggregation tear down */
1202 void ath_rx_aggr_teardown(struct ath_softc *sc,
1203 struct ath_node *an, u8 tid)
1205 struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid];
1207 if (!rxtid->addba_exchangecomplete)
1210 del_timer_sync(&rxtid->timer);
1211 ath_rx_flush_tid(sc, rxtid, 0);
1212 rxtid->addba_exchangecomplete = 0;
1214 /* De-allocate the receive buffer array allocated when addba started */
1217 DPRINTF(sc, ATH_DBG_AGGR,
1218 "%s: Deallocating TID %d rxbuff @%p\n",
1219 __func__, tid, rxtid->rxbuf);
1220 kfree(rxtid->rxbuf);
1222 /* Set pointer to null to avoid reuse*/
1223 rxtid->rxbuf = NULL;
1227 /* Initialize per-node receive state */
1229 void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an)
1231 if (sc->sc_rxaggr) {
1232 struct ath_arx_tid *rxtid;
1235 /* Init per tid rx state */
1236 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1237 tidno < WME_NUM_TID;
1240 rxtid->seq_reset = 1;
1241 rxtid->seq_next = 0;
1242 rxtid->baw_size = WME_MAX_BA;
1243 rxtid->baw_head = rxtid->baw_tail = 0;
1246 * Ensure the buffer pointer is null at this point
1247 * (needs to be allocated when addba is received)
1250 rxtid->rxbuf = NULL;
1251 setup_timer(&rxtid->timer, ath_rx_timer,
1252 (unsigned long)rxtid);
1253 spin_lock_init(&rxtid->tidlock);
1256 rxtid->addba_exchangecomplete = 0;
1261 void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
1263 if (sc->sc_rxaggr) {
1264 struct ath_arx_tid *rxtid;
1267 /* Init per tid rx state */
1268 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1269 tidno < WME_NUM_TID;
1272 if (!rxtid->addba_exchangecomplete)
1275 /* must cancel timer first */
1276 del_timer_sync(&rxtid->timer);
1278 /* drop any pending sub-frames */
1279 ath_rx_flush_tid(sc, rxtid, 1);
1281 for (i = 0; i < ATH_TID_MAX_BUFS; i++)
1282 ASSERT(rxtid->rxbuf[i].rx_wbuf == NULL);
1284 rxtid->addba_exchangecomplete = 0;
1290 /* Cleanup per-node receive state */
1292 void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an)
1294 ath_rx_node_cleanup(sc, an);
1297 dma_addr_t ath_skb_map_single(struct ath_softc *sc,
1298 struct sk_buff *skb,
1303 * NB: do NOT use skb->len, which is 0 on initialization.
1304 * Use skb's entire data area instead.
1306 *pa = pci_map_single(sc->pdev, skb->data,
1307 skb_end_pointer(skb) - skb->head, direction);
1311 void ath_skb_unmap_single(struct ath_softc *sc,
1312 struct sk_buff *skb,
1316 /* Unmap skb's entire data area */
1317 pci_unmap_single(sc->pdev, *pa,
1318 skb_end_pointer(skb) - skb->head, direction);