]> err.no Git - linux-2.6/blob - drivers/net/wan/hdlc_fr.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[linux-2.6] / drivers / net / wan / hdlc_fr.c
1 /*
2  * Generic HDLC support routines for Linux
3  * Frame Relay support
4  *
5  * Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11
12             Theory of PVC state
13
14  DCE mode:
15
16  (exist,new) -> 0,0 when "PVC create" or if "link unreliable"
17          0,x -> 1,1 if "link reliable" when sending FULL STATUS
18          1,1 -> 1,0 if received FULL STATUS ACK
19
20  (active)    -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create"
21              -> 1 when "PVC up" and (exist,new) = 1,0
22
23  DTE mode:
24  (exist,new,active) = FULL STATUS if "link reliable"
25                     = 0, 0, 0 if "link unreliable"
26  No LMI:
27  active = open and "link reliable"
28  exist = new = not used
29
30  CCITT LMI: ITU-T Q.933 Annex A
31  ANSI LMI: ANSI T1.617 Annex D
32  CISCO LMI: the original, aka "Gang of Four" LMI
33
34 */
35
36 #include <linux/errno.h>
37 #include <linux/etherdevice.h>
38 #include <linux/hdlc.h>
39 #include <linux/if_arp.h>
40 #include <linux/inetdevice.h>
41 #include <linux/init.h>
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/pkt_sched.h>
45 #include <linux/poll.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/skbuff.h>
48 #include <linux/slab.h>
49
50 #undef DEBUG_PKT
51 #undef DEBUG_ECN
52 #undef DEBUG_LINK
53 #undef DEBUG_PROTO
54 #undef DEBUG_PVC
55
56 #define FR_UI                   0x03
57 #define FR_PAD                  0x00
58
59 #define NLPID_IP                0xCC
60 #define NLPID_IPV6              0x8E
61 #define NLPID_SNAP              0x80
62 #define NLPID_PAD               0x00
63 #define NLPID_CCITT_ANSI_LMI    0x08
64 #define NLPID_CISCO_LMI         0x09
65
66
67 #define LMI_CCITT_ANSI_DLCI        0 /* LMI DLCI */
68 #define LMI_CISCO_DLCI          1023
69
70 #define LMI_CALLREF             0x00 /* Call Reference */
71 #define LMI_ANSI_LOCKSHIFT      0x95 /* ANSI locking shift */
72 #define LMI_ANSI_CISCO_REPTYPE  0x01 /* report type */
73 #define LMI_CCITT_REPTYPE       0x51
74 #define LMI_ANSI_CISCO_ALIVE    0x03 /* keep alive */
75 #define LMI_CCITT_ALIVE         0x53
76 #define LMI_ANSI_CISCO_PVCSTAT  0x07 /* PVC status */
77 #define LMI_CCITT_PVCSTAT       0x57
78
79 #define LMI_FULLREP             0x00 /* full report  */
80 #define LMI_INTEGRITY           0x01 /* link integrity report */
81 #define LMI_SINGLE              0x02 /* single PVC report */
82
83 #define LMI_STATUS_ENQUIRY      0x75
84 #define LMI_STATUS              0x7D /* reply */
85
86 #define LMI_REPT_LEN               1 /* report type element length */
87 #define LMI_INTEG_LEN              2 /* link integrity element length */
88
89 #define LMI_CCITT_CISCO_LENGTH    13 /* LMI frame lengths */
90 #define LMI_ANSI_LENGTH           14
91
92
93 typedef struct {
94 #if defined(__LITTLE_ENDIAN_BITFIELD)
95         unsigned ea1:   1;
96         unsigned cr:    1;
97         unsigned dlcih: 6;
98
99         unsigned ea2:   1;
100         unsigned de:    1;
101         unsigned becn:  1;
102         unsigned fecn:  1;
103         unsigned dlcil: 4;
104 #else
105         unsigned dlcih: 6;
106         unsigned cr:    1;
107         unsigned ea1:   1;
108
109         unsigned dlcil: 4;
110         unsigned fecn:  1;
111         unsigned becn:  1;
112         unsigned de:    1;
113         unsigned ea2:   1;
114 #endif
115 }__attribute__ ((packed)) fr_hdr;
116
117
118 typedef struct pvc_device_struct {
119         struct net_device *frad;
120         struct net_device *main;
121         struct net_device *ether;       /* bridged Ethernet interface   */
122         struct pvc_device_struct *next; /* Sorted in ascending DLCI order */
123         int dlci;
124         int open_count;
125
126         struct {
127                 unsigned int new: 1;
128                 unsigned int active: 1;
129                 unsigned int exist: 1;
130                 unsigned int deleted: 1;
131                 unsigned int fecn: 1;
132                 unsigned int becn: 1;
133                 unsigned int bandwidth; /* Cisco LMI reporting only */
134         }state;
135 }pvc_device;
136
137 struct frad_state {
138         fr_proto settings;
139         pvc_device *first_pvc;
140         int dce_pvc_count;
141
142         struct timer_list timer;
143         unsigned long last_poll;
144         int reliable;
145         int dce_changed;
146         int request;
147         int fullrep_sent;
148         u32 last_errors; /* last errors bit list */
149         u8 n391cnt;
150         u8 txseq; /* TX sequence number */
151         u8 rxseq; /* RX sequence number */
152 };
153
154
155 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr);
156
157
158 static inline u16 q922_to_dlci(u8 *hdr)
159 {
160         return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4);
161 }
162
163
164 static inline void dlci_to_q922(u8 *hdr, u16 dlci)
165 {
166         hdr[0] = (dlci >> 2) & 0xFC;
167         hdr[1] = ((dlci << 4) & 0xF0) | 0x01;
168 }
169
170
171 static inline struct frad_state* state(hdlc_device *hdlc)
172 {
173         return(struct frad_state *)(hdlc->state);
174 }
175
176
177 static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci)
178 {
179         pvc_device *pvc = state(hdlc)->first_pvc;
180
181         while (pvc) {
182                 if (pvc->dlci == dlci)
183                         return pvc;
184                 if (pvc->dlci > dlci)
185                         return NULL; /* the listed is sorted */
186                 pvc = pvc->next;
187         }
188
189         return NULL;
190 }
191
192
193 static pvc_device* add_pvc(struct net_device *dev, u16 dlci)
194 {
195         hdlc_device *hdlc = dev_to_hdlc(dev);
196         pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc;
197
198         while (*pvc_p) {
199                 if ((*pvc_p)->dlci == dlci)
200                         return *pvc_p;
201                 if ((*pvc_p)->dlci > dlci)
202                         break;  /* the list is sorted */
203                 pvc_p = &(*pvc_p)->next;
204         }
205
206         pvc = kzalloc(sizeof(pvc_device), GFP_ATOMIC);
207 #ifdef DEBUG_PVC
208         printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev);
209 #endif
210         if (!pvc)
211                 return NULL;
212
213         pvc->dlci = dlci;
214         pvc->frad = dev;
215         pvc->next = *pvc_p;     /* Put it in the chain */
216         *pvc_p = pvc;
217         return pvc;
218 }
219
220
221 static inline int pvc_is_used(pvc_device *pvc)
222 {
223         return pvc->main || pvc->ether;
224 }
225
226
227 static inline void pvc_carrier(int on, pvc_device *pvc)
228 {
229         if (on) {
230                 if (pvc->main)
231                         if (!netif_carrier_ok(pvc->main))
232                                 netif_carrier_on(pvc->main);
233                 if (pvc->ether)
234                         if (!netif_carrier_ok(pvc->ether))
235                                 netif_carrier_on(pvc->ether);
236         } else {
237                 if (pvc->main)
238                         if (netif_carrier_ok(pvc->main))
239                                 netif_carrier_off(pvc->main);
240                 if (pvc->ether)
241                         if (netif_carrier_ok(pvc->ether))
242                                 netif_carrier_off(pvc->ether);
243         }
244 }
245
246
247 static inline void delete_unused_pvcs(hdlc_device *hdlc)
248 {
249         pvc_device **pvc_p = &state(hdlc)->first_pvc;
250
251         while (*pvc_p) {
252                 if (!pvc_is_used(*pvc_p)) {
253                         pvc_device *pvc = *pvc_p;
254 #ifdef DEBUG_PVC
255                         printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc);
256 #endif
257                         *pvc_p = pvc->next;
258                         kfree(pvc);
259                         continue;
260                 }
261                 pvc_p = &(*pvc_p)->next;
262         }
263 }
264
265
266 static inline struct net_device** get_dev_p(pvc_device *pvc, int type)
267 {
268         if (type == ARPHRD_ETHER)
269                 return &pvc->ether;
270         else
271                 return &pvc->main;
272 }
273
274
275 static int fr_hard_header(struct sk_buff **skb_p, u16 dlci)
276 {
277         u16 head_len;
278         struct sk_buff *skb = *skb_p;
279
280         switch (skb->protocol) {
281         case __constant_htons(NLPID_CCITT_ANSI_LMI):
282                 head_len = 4;
283                 skb_push(skb, head_len);
284                 skb->data[3] = NLPID_CCITT_ANSI_LMI;
285                 break;
286
287         case __constant_htons(NLPID_CISCO_LMI):
288                 head_len = 4;
289                 skb_push(skb, head_len);
290                 skb->data[3] = NLPID_CISCO_LMI;
291                 break;
292
293         case __constant_htons(ETH_P_IP):
294                 head_len = 4;
295                 skb_push(skb, head_len);
296                 skb->data[3] = NLPID_IP;
297                 break;
298
299         case __constant_htons(ETH_P_IPV6):
300                 head_len = 4;
301                 skb_push(skb, head_len);
302                 skb->data[3] = NLPID_IPV6;
303                 break;
304
305         case __constant_htons(ETH_P_802_3):
306                 head_len = 10;
307                 if (skb_headroom(skb) < head_len) {
308                         struct sk_buff *skb2 = skb_realloc_headroom(skb,
309                                                                     head_len);
310                         if (!skb2)
311                                 return -ENOBUFS;
312                         dev_kfree_skb(skb);
313                         skb = *skb_p = skb2;
314                 }
315                 skb_push(skb, head_len);
316                 skb->data[3] = FR_PAD;
317                 skb->data[4] = NLPID_SNAP;
318                 skb->data[5] = FR_PAD;
319                 skb->data[6] = 0x80;
320                 skb->data[7] = 0xC2;
321                 skb->data[8] = 0x00;
322                 skb->data[9] = 0x07; /* bridged Ethernet frame w/out FCS */
323                 break;
324
325         default:
326                 head_len = 10;
327                 skb_push(skb, head_len);
328                 skb->data[3] = FR_PAD;
329                 skb->data[4] = NLPID_SNAP;
330                 skb->data[5] = FR_PAD;
331                 skb->data[6] = FR_PAD;
332                 skb->data[7] = FR_PAD;
333                 *(__be16*)(skb->data + 8) = skb->protocol;
334         }
335
336         dlci_to_q922(skb->data, dlci);
337         skb->data[2] = FR_UI;
338         return 0;
339 }
340
341
342
343 static int pvc_open(struct net_device *dev)
344 {
345         pvc_device *pvc = dev->priv;
346
347         if ((pvc->frad->flags & IFF_UP) == 0)
348                 return -EIO;  /* Frad must be UP in order to activate PVC */
349
350         if (pvc->open_count++ == 0) {
351                 hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
352                 if (state(hdlc)->settings.lmi == LMI_NONE)
353                         pvc->state.active = netif_carrier_ok(pvc->frad);
354
355                 pvc_carrier(pvc->state.active, pvc);
356                 state(hdlc)->dce_changed = 1;
357         }
358         return 0;
359 }
360
361
362
363 static int pvc_close(struct net_device *dev)
364 {
365         pvc_device *pvc = dev->priv;
366
367         if (--pvc->open_count == 0) {
368                 hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
369                 if (state(hdlc)->settings.lmi == LMI_NONE)
370                         pvc->state.active = 0;
371
372                 if (state(hdlc)->settings.dce) {
373                         state(hdlc)->dce_changed = 1;
374                         pvc->state.active = 0;
375                 }
376         }
377         return 0;
378 }
379
380
381
382 static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
383 {
384         pvc_device *pvc = dev->priv;
385         fr_proto_pvc_info info;
386
387         if (ifr->ifr_settings.type == IF_GET_PROTO) {
388                 if (dev->type == ARPHRD_ETHER)
389                         ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC;
390                 else
391                         ifr->ifr_settings.type = IF_PROTO_FR_PVC;
392
393                 if (ifr->ifr_settings.size < sizeof(info)) {
394                         /* data size wanted */
395                         ifr->ifr_settings.size = sizeof(info);
396                         return -ENOBUFS;
397                 }
398
399                 info.dlci = pvc->dlci;
400                 memcpy(info.master, pvc->frad->name, IFNAMSIZ);
401                 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info,
402                                  &info, sizeof(info)))
403                         return -EFAULT;
404                 return 0;
405         }
406
407         return -EINVAL;
408 }
409
410 static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
411 {
412         pvc_device *pvc = dev->priv;
413
414         if (pvc->state.active) {
415                 if (dev->type == ARPHRD_ETHER) {
416                         int pad = ETH_ZLEN - skb->len;
417                         if (pad > 0) { /* Pad the frame with zeros */
418                                 int len = skb->len;
419                                 if (skb_tailroom(skb) < pad)
420                                         if (pskb_expand_head(skb, 0, pad,
421                                                              GFP_ATOMIC)) {
422                                                 dev->stats.tx_dropped++;
423                                                 dev_kfree_skb(skb);
424                                                 return 0;
425                                         }
426                                 skb_put(skb, pad);
427                                 memset(skb->data + len, 0, pad);
428                         }
429                         skb->protocol = __constant_htons(ETH_P_802_3);
430                 }
431                 if (!fr_hard_header(&skb, pvc->dlci)) {
432                         dev->stats.tx_bytes += skb->len;
433                         dev->stats.tx_packets++;
434                         if (pvc->state.fecn) /* TX Congestion counter */
435                                 dev->stats.tx_compressed++;
436                         skb->dev = pvc->frad;
437                         dev_queue_xmit(skb);
438                         return 0;
439                 }
440         }
441
442         dev->stats.tx_dropped++;
443         dev_kfree_skb(skb);
444         return 0;
445 }
446
447
448
449 static int pvc_change_mtu(struct net_device *dev, int new_mtu)
450 {
451         if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU))
452                 return -EINVAL;
453         dev->mtu = new_mtu;
454         return 0;
455 }
456
457
458
459 static inline void fr_log_dlci_active(pvc_device *pvc)
460 {
461         printk(KERN_INFO "%s: DLCI %d [%s%s%s]%s %s\n",
462                pvc->frad->name,
463                pvc->dlci,
464                pvc->main ? pvc->main->name : "",
465                pvc->main && pvc->ether ? " " : "",
466                pvc->ether ? pvc->ether->name : "",
467                pvc->state.new ? " new" : "",
468                !pvc->state.exist ? "deleted" :
469                pvc->state.active ? "active" : "inactive");
470 }
471
472
473
474 static inline u8 fr_lmi_nextseq(u8 x)
475 {
476         x++;
477         return x ? x : 1;
478 }
479
480
481 static void fr_lmi_send(struct net_device *dev, int fullrep)
482 {
483         hdlc_device *hdlc = dev_to_hdlc(dev);
484         struct sk_buff *skb;
485         pvc_device *pvc = state(hdlc)->first_pvc;
486         int lmi = state(hdlc)->settings.lmi;
487         int dce = state(hdlc)->settings.dce;
488         int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH;
489         int stat_len = (lmi == LMI_CISCO) ? 6 : 3;
490         u8 *data;
491         int i = 0;
492
493         if (dce && fullrep) {
494                 len += state(hdlc)->dce_pvc_count * (2 + stat_len);
495                 if (len > HDLC_MAX_MRU) {
496                         printk(KERN_WARNING "%s: Too many PVCs while sending "
497                                "LMI full report\n", dev->name);
498                         return;
499                 }
500         }
501
502         skb = dev_alloc_skb(len);
503         if (!skb) {
504                 printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n",
505                        dev->name);
506                 return;
507         }
508         memset(skb->data, 0, len);
509         skb_reserve(skb, 4);
510         if (lmi == LMI_CISCO) {
511                 skb->protocol = __constant_htons(NLPID_CISCO_LMI);
512                 fr_hard_header(&skb, LMI_CISCO_DLCI);
513         } else {
514                 skb->protocol = __constant_htons(NLPID_CCITT_ANSI_LMI);
515                 fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI);
516         }
517         data = skb_tail_pointer(skb);
518         data[i++] = LMI_CALLREF;
519         data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY;
520         if (lmi == LMI_ANSI)
521                 data[i++] = LMI_ANSI_LOCKSHIFT;
522         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
523                 LMI_ANSI_CISCO_REPTYPE;
524         data[i++] = LMI_REPT_LEN;
525         data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY;
526         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE;
527         data[i++] = LMI_INTEG_LEN;
528         data[i++] = state(hdlc)->txseq =
529                 fr_lmi_nextseq(state(hdlc)->txseq);
530         data[i++] = state(hdlc)->rxseq;
531
532         if (dce && fullrep) {
533                 while (pvc) {
534                         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
535                                 LMI_ANSI_CISCO_PVCSTAT;
536                         data[i++] = stat_len;
537
538                         /* LMI start/restart */
539                         if (state(hdlc)->reliable && !pvc->state.exist) {
540                                 pvc->state.exist = pvc->state.new = 1;
541                                 fr_log_dlci_active(pvc);
542                         }
543
544                         /* ifconfig PVC up */
545                         if (pvc->open_count && !pvc->state.active &&
546                             pvc->state.exist && !pvc->state.new) {
547                                 pvc_carrier(1, pvc);
548                                 pvc->state.active = 1;
549                                 fr_log_dlci_active(pvc);
550                         }
551
552                         if (lmi == LMI_CISCO) {
553                                 data[i] = pvc->dlci >> 8;
554                                 data[i + 1] = pvc->dlci & 0xFF;
555                         } else {
556                                 data[i] = (pvc->dlci >> 4) & 0x3F;
557                                 data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80;
558                                 data[i + 2] = 0x80;
559                         }
560
561                         if (pvc->state.new)
562                                 data[i + 2] |= 0x08;
563                         else if (pvc->state.active)
564                                 data[i + 2] |= 0x02;
565
566                         i += stat_len;
567                         pvc = pvc->next;
568                 }
569         }
570
571         skb_put(skb, i);
572         skb->priority = TC_PRIO_CONTROL;
573         skb->dev = dev;
574         skb_reset_network_header(skb);
575
576         dev_queue_xmit(skb);
577 }
578
579
580
581 static void fr_set_link_state(int reliable, struct net_device *dev)
582 {
583         hdlc_device *hdlc = dev_to_hdlc(dev);
584         pvc_device *pvc = state(hdlc)->first_pvc;
585
586         state(hdlc)->reliable = reliable;
587         if (reliable) {
588                 netif_dormant_off(dev);
589                 state(hdlc)->n391cnt = 0; /* Request full status */
590                 state(hdlc)->dce_changed = 1;
591
592                 if (state(hdlc)->settings.lmi == LMI_NONE) {
593                         while (pvc) {   /* Activate all PVCs */
594                                 pvc_carrier(1, pvc);
595                                 pvc->state.exist = pvc->state.active = 1;
596                                 pvc->state.new = 0;
597                                 pvc = pvc->next;
598                         }
599                 }
600         } else {
601                 netif_dormant_on(dev);
602                 while (pvc) {           /* Deactivate all PVCs */
603                         pvc_carrier(0, pvc);
604                         pvc->state.exist = pvc->state.active = 0;
605                         pvc->state.new = 0;
606                         if (!state(hdlc)->settings.dce)
607                                 pvc->state.bandwidth = 0;
608                         pvc = pvc->next;
609                 }
610         }
611 }
612
613
614 static void fr_timer(unsigned long arg)
615 {
616         struct net_device *dev = (struct net_device *)arg;
617         hdlc_device *hdlc = dev_to_hdlc(dev);
618         int i, cnt = 0, reliable;
619         u32 list;
620
621         if (state(hdlc)->settings.dce) {
622                 reliable = state(hdlc)->request &&
623                         time_before(jiffies, state(hdlc)->last_poll +
624                                     state(hdlc)->settings.t392 * HZ);
625                 state(hdlc)->request = 0;
626         } else {
627                 state(hdlc)->last_errors <<= 1; /* Shift the list */
628                 if (state(hdlc)->request) {
629                         if (state(hdlc)->reliable)
630                                 printk(KERN_INFO "%s: No LMI status reply "
631                                        "received\n", dev->name);
632                         state(hdlc)->last_errors |= 1;
633                 }
634
635                 list = state(hdlc)->last_errors;
636                 for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1)
637                         cnt += (list & 1);      /* errors count */
638
639                 reliable = (cnt < state(hdlc)->settings.n392);
640         }
641
642         if (state(hdlc)->reliable != reliable) {
643                 printk(KERN_INFO "%s: Link %sreliable\n", dev->name,
644                        reliable ? "" : "un");
645                 fr_set_link_state(reliable, dev);
646         }
647
648         if (state(hdlc)->settings.dce)
649                 state(hdlc)->timer.expires = jiffies +
650                         state(hdlc)->settings.t392 * HZ;
651         else {
652                 if (state(hdlc)->n391cnt)
653                         state(hdlc)->n391cnt--;
654
655                 fr_lmi_send(dev, state(hdlc)->n391cnt == 0);
656
657                 state(hdlc)->last_poll = jiffies;
658                 state(hdlc)->request = 1;
659                 state(hdlc)->timer.expires = jiffies +
660                         state(hdlc)->settings.t391 * HZ;
661         }
662
663         state(hdlc)->timer.function = fr_timer;
664         state(hdlc)->timer.data = arg;
665         add_timer(&state(hdlc)->timer);
666 }
667
668
669 static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb)
670 {
671         hdlc_device *hdlc = dev_to_hdlc(dev);
672         pvc_device *pvc;
673         u8 rxseq, txseq;
674         int lmi = state(hdlc)->settings.lmi;
675         int dce = state(hdlc)->settings.dce;
676         int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i;
677
678         if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH :
679                         LMI_CCITT_CISCO_LENGTH)) {
680                 printk(KERN_INFO "%s: Short LMI frame\n", dev->name);
681                 return 1;
682         }
683
684         if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI :
685                              NLPID_CCITT_ANSI_LMI)) {
686                 printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n",
687                        dev->name);
688                 return 1;
689         }
690
691         if (skb->data[4] != LMI_CALLREF) {
692                 printk(KERN_INFO "%s: Invalid LMI Call reference (0x%02X)\n",
693                        dev->name, skb->data[4]);
694                 return 1;
695         }
696
697         if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) {
698                 printk(KERN_INFO "%s: Invalid LMI Message type (0x%02X)\n",
699                        dev->name, skb->data[5]);
700                 return 1;
701         }
702
703         if (lmi == LMI_ANSI) {
704                 if (skb->data[6] != LMI_ANSI_LOCKSHIFT) {
705                         printk(KERN_INFO "%s: Not ANSI locking shift in LMI"
706                                " message (0x%02X)\n", dev->name, skb->data[6]);
707                         return 1;
708                 }
709                 i = 7;
710         } else
711                 i = 6;
712
713         if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
714                              LMI_ANSI_CISCO_REPTYPE)) {
715                 printk(KERN_INFO "%s: Not an LMI Report type IE (0x%02X)\n",
716                        dev->name, skb->data[i]);
717                 return 1;
718         }
719
720         if (skb->data[++i] != LMI_REPT_LEN) {
721                 printk(KERN_INFO "%s: Invalid LMI Report type IE length"
722                        " (%u)\n", dev->name, skb->data[i]);
723                 return 1;
724         }
725
726         reptype = skb->data[++i];
727         if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) {
728                 printk(KERN_INFO "%s: Unsupported LMI Report type (0x%02X)\n",
729                        dev->name, reptype);
730                 return 1;
731         }
732
733         if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE :
734                                LMI_ANSI_CISCO_ALIVE)) {
735                 printk(KERN_INFO "%s: Not an LMI Link integrity verification"
736                        " IE (0x%02X)\n", dev->name, skb->data[i]);
737                 return 1;
738         }
739
740         if (skb->data[++i] != LMI_INTEG_LEN) {
741                 printk(KERN_INFO "%s: Invalid LMI Link integrity verification"
742                        " IE length (%u)\n", dev->name, skb->data[i]);
743                 return 1;
744         }
745         i++;
746
747         state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */
748         rxseq = skb->data[i++]; /* Should confirm our sequence */
749
750         txseq = state(hdlc)->txseq;
751
752         if (dce)
753                 state(hdlc)->last_poll = jiffies;
754
755         error = 0;
756         if (!state(hdlc)->reliable)
757                 error = 1;
758
759         if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */
760                 state(hdlc)->n391cnt = 0;
761                 error = 1;
762         }
763
764         if (dce) {
765                 if (state(hdlc)->fullrep_sent && !error) {
766 /* Stop sending full report - the last one has been confirmed by DTE */
767                         state(hdlc)->fullrep_sent = 0;
768                         pvc = state(hdlc)->first_pvc;
769                         while (pvc) {
770                                 if (pvc->state.new) {
771                                         pvc->state.new = 0;
772
773 /* Tell DTE that new PVC is now active */
774                                         state(hdlc)->dce_changed = 1;
775                                 }
776                                 pvc = pvc->next;
777                         }
778                 }
779
780                 if (state(hdlc)->dce_changed) {
781                         reptype = LMI_FULLREP;
782                         state(hdlc)->fullrep_sent = 1;
783                         state(hdlc)->dce_changed = 0;
784                 }
785
786                 state(hdlc)->request = 1; /* got request */
787                 fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0);
788                 return 0;
789         }
790
791         /* DTE */
792
793         state(hdlc)->request = 0; /* got response, no request pending */
794
795         if (error)
796                 return 0;
797
798         if (reptype != LMI_FULLREP)
799                 return 0;
800
801         pvc = state(hdlc)->first_pvc;
802
803         while (pvc) {
804                 pvc->state.deleted = 1;
805                 pvc = pvc->next;
806         }
807
808         no_ram = 0;
809         while (skb->len >= i + 2 + stat_len) {
810                 u16 dlci;
811                 u32 bw;
812                 unsigned int active, new;
813
814                 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
815                                        LMI_ANSI_CISCO_PVCSTAT)) {
816                         printk(KERN_INFO "%s: Not an LMI PVC status IE"
817                                " (0x%02X)\n", dev->name, skb->data[i]);
818                         return 1;
819                 }
820
821                 if (skb->data[++i] != stat_len) {
822                         printk(KERN_INFO "%s: Invalid LMI PVC status IE length"
823                                " (%u)\n", dev->name, skb->data[i]);
824                         return 1;
825                 }
826                 i++;
827
828                 new = !! (skb->data[i + 2] & 0x08);
829                 active = !! (skb->data[i + 2] & 0x02);
830                 if (lmi == LMI_CISCO) {
831                         dlci = (skb->data[i] << 8) | skb->data[i + 1];
832                         bw = (skb->data[i + 3] << 16) |
833                                 (skb->data[i + 4] << 8) |
834                                 (skb->data[i + 5]);
835                 } else {
836                         dlci = ((skb->data[i] & 0x3F) << 4) |
837                                 ((skb->data[i + 1] & 0x78) >> 3);
838                         bw = 0;
839                 }
840
841                 pvc = add_pvc(dev, dlci);
842
843                 if (!pvc && !no_ram) {
844                         printk(KERN_WARNING
845                                "%s: Memory squeeze on fr_lmi_recv()\n",
846                                dev->name);
847                         no_ram = 1;
848                 }
849
850                 if (pvc) {
851                         pvc->state.exist = 1;
852                         pvc->state.deleted = 0;
853                         if (active != pvc->state.active ||
854                             new != pvc->state.new ||
855                             bw != pvc->state.bandwidth ||
856                             !pvc->state.exist) {
857                                 pvc->state.new = new;
858                                 pvc->state.active = active;
859                                 pvc->state.bandwidth = bw;
860                                 pvc_carrier(active, pvc);
861                                 fr_log_dlci_active(pvc);
862                         }
863                 }
864
865                 i += stat_len;
866         }
867
868         pvc = state(hdlc)->first_pvc;
869
870         while (pvc) {
871                 if (pvc->state.deleted && pvc->state.exist) {
872                         pvc_carrier(0, pvc);
873                         pvc->state.active = pvc->state.new = 0;
874                         pvc->state.exist = 0;
875                         pvc->state.bandwidth = 0;
876                         fr_log_dlci_active(pvc);
877                 }
878                 pvc = pvc->next;
879         }
880
881         /* Next full report after N391 polls */
882         state(hdlc)->n391cnt = state(hdlc)->settings.n391;
883
884         return 0;
885 }
886
887
888 static int fr_rx(struct sk_buff *skb)
889 {
890         struct net_device *frad = skb->dev;
891         hdlc_device *hdlc = dev_to_hdlc(frad);
892         fr_hdr *fh = (fr_hdr*)skb->data;
893         u8 *data = skb->data;
894         u16 dlci;
895         pvc_device *pvc;
896         struct net_device *dev = NULL;
897
898         if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI)
899                 goto rx_error;
900
901         dlci = q922_to_dlci(skb->data);
902
903         if ((dlci == LMI_CCITT_ANSI_DLCI &&
904              (state(hdlc)->settings.lmi == LMI_ANSI ||
905               state(hdlc)->settings.lmi == LMI_CCITT)) ||
906             (dlci == LMI_CISCO_DLCI &&
907              state(hdlc)->settings.lmi == LMI_CISCO)) {
908                 if (fr_lmi_recv(frad, skb))
909                         goto rx_error;
910                 dev_kfree_skb_any(skb);
911                 return NET_RX_SUCCESS;
912         }
913
914         pvc = find_pvc(hdlc, dlci);
915         if (!pvc) {
916 #ifdef DEBUG_PKT
917                 printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n",
918                        frad->name, dlci);
919 #endif
920                 dev_kfree_skb_any(skb);
921                 return NET_RX_DROP;
922         }
923
924         if (pvc->state.fecn != fh->fecn) {
925 #ifdef DEBUG_ECN
926                 printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name,
927                        dlci, fh->fecn ? "N" : "FF");
928 #endif
929                 pvc->state.fecn ^= 1;
930         }
931
932         if (pvc->state.becn != fh->becn) {
933 #ifdef DEBUG_ECN
934                 printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name,
935                        dlci, fh->becn ? "N" : "FF");
936 #endif
937                 pvc->state.becn ^= 1;
938         }
939
940
941         if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
942                 frad->stats.rx_dropped++;
943                 return NET_RX_DROP;
944         }
945
946         if (data[3] == NLPID_IP) {
947                 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
948                 dev = pvc->main;
949                 skb->protocol = htons(ETH_P_IP);
950
951         } else if (data[3] == NLPID_IPV6) {
952                 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
953                 dev = pvc->main;
954                 skb->protocol = htons(ETH_P_IPV6);
955
956         } else if (skb->len > 10 && data[3] == FR_PAD &&
957                    data[4] == NLPID_SNAP && data[5] == FR_PAD) {
958                 u16 oui = ntohs(*(__be16*)(data + 6));
959                 u16 pid = ntohs(*(__be16*)(data + 8));
960                 skb_pull(skb, 10);
961
962                 switch ((((u32)oui) << 16) | pid) {
963                 case ETH_P_ARP: /* routed frame with SNAP */
964                 case ETH_P_IPX:
965                 case ETH_P_IP:  /* a long variant */
966                 case ETH_P_IPV6:
967                         dev = pvc->main;
968                         skb->protocol = htons(pid);
969                         break;
970
971                 case 0x80C20007: /* bridged Ethernet frame */
972                         if ((dev = pvc->ether) != NULL)
973                                 skb->protocol = eth_type_trans(skb, dev);
974                         break;
975
976                 default:
977                         printk(KERN_INFO "%s: Unsupported protocol, OUI=%x "
978                                "PID=%x\n", frad->name, oui, pid);
979                         dev_kfree_skb_any(skb);
980                         return NET_RX_DROP;
981                 }
982         } else {
983                 printk(KERN_INFO "%s: Unsupported protocol, NLPID=%x "
984                        "length = %i\n", frad->name, data[3], skb->len);
985                 dev_kfree_skb_any(skb);
986                 return NET_RX_DROP;
987         }
988
989         if (dev) {
990                 dev->stats.rx_packets++; /* PVC traffic */
991                 dev->stats.rx_bytes += skb->len;
992                 if (pvc->state.becn)
993                         dev->stats.rx_compressed++;
994                 skb->dev = dev;
995                 netif_rx(skb);
996                 return NET_RX_SUCCESS;
997         } else {
998                 dev_kfree_skb_any(skb);
999                 return NET_RX_DROP;
1000         }
1001
1002  rx_error:
1003         frad->stats.rx_errors++; /* Mark error */
1004         dev_kfree_skb_any(skb);
1005         return NET_RX_DROP;
1006 }
1007
1008
1009
1010 static void fr_start(struct net_device *dev)
1011 {
1012         hdlc_device *hdlc = dev_to_hdlc(dev);
1013 #ifdef DEBUG_LINK
1014         printk(KERN_DEBUG "fr_start\n");
1015 #endif
1016         if (state(hdlc)->settings.lmi != LMI_NONE) {
1017                 state(hdlc)->reliable = 0;
1018                 state(hdlc)->dce_changed = 1;
1019                 state(hdlc)->request = 0;
1020                 state(hdlc)->fullrep_sent = 0;
1021                 state(hdlc)->last_errors = 0xFFFFFFFF;
1022                 state(hdlc)->n391cnt = 0;
1023                 state(hdlc)->txseq = state(hdlc)->rxseq = 0;
1024
1025                 init_timer(&state(hdlc)->timer);
1026                 /* First poll after 1 s */
1027                 state(hdlc)->timer.expires = jiffies + HZ;
1028                 state(hdlc)->timer.function = fr_timer;
1029                 state(hdlc)->timer.data = (unsigned long)dev;
1030                 add_timer(&state(hdlc)->timer);
1031         } else
1032                 fr_set_link_state(1, dev);
1033 }
1034
1035
1036 static void fr_stop(struct net_device *dev)
1037 {
1038         hdlc_device *hdlc = dev_to_hdlc(dev);
1039 #ifdef DEBUG_LINK
1040         printk(KERN_DEBUG "fr_stop\n");
1041 #endif
1042         if (state(hdlc)->settings.lmi != LMI_NONE)
1043                 del_timer_sync(&state(hdlc)->timer);
1044         fr_set_link_state(0, dev);
1045 }
1046
1047
1048 static void fr_close(struct net_device *dev)
1049 {
1050         hdlc_device *hdlc = dev_to_hdlc(dev);
1051         pvc_device *pvc = state(hdlc)->first_pvc;
1052
1053         while (pvc) {           /* Shutdown all PVCs for this FRAD */
1054                 if (pvc->main)
1055                         dev_close(pvc->main);
1056                 if (pvc->ether)
1057                         dev_close(pvc->ether);
1058                 pvc = pvc->next;
1059         }
1060 }
1061
1062
1063 static void pvc_setup(struct net_device *dev)
1064 {
1065         dev->type = ARPHRD_DLCI;
1066         dev->flags = IFF_POINTOPOINT;
1067         dev->hard_header_len = 10;
1068         dev->addr_len = 2;
1069 }
1070
1071 static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
1072 {
1073         hdlc_device *hdlc = dev_to_hdlc(frad);
1074         pvc_device *pvc;
1075         struct net_device *dev;
1076         int result, used;
1077
1078         if ((pvc = add_pvc(frad, dlci)) == NULL) {
1079                 printk(KERN_WARNING "%s: Memory squeeze on fr_add_pvc()\n",
1080                        frad->name);
1081                 return -ENOBUFS;
1082         }
1083
1084         if (*get_dev_p(pvc, type))
1085                 return -EEXIST;
1086
1087         used = pvc_is_used(pvc);
1088
1089         if (type == ARPHRD_ETHER)
1090                 dev = alloc_netdev(0, "pvceth%d", ether_setup);
1091         else
1092                 dev = alloc_netdev(0, "pvc%d", pvc_setup);
1093
1094         if (!dev) {
1095                 printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n",
1096                        frad->name);
1097                 delete_unused_pvcs(hdlc);
1098                 return -ENOBUFS;
1099         }
1100
1101         if (type == ARPHRD_ETHER)
1102                 random_ether_addr(dev->dev_addr);
1103         else {
1104                 *(__be16*)dev->dev_addr = htons(dlci);
1105                 dlci_to_q922(dev->broadcast, dlci);
1106         }
1107         dev->hard_start_xmit = pvc_xmit;
1108         dev->open = pvc_open;
1109         dev->stop = pvc_close;
1110         dev->do_ioctl = pvc_ioctl;
1111         dev->change_mtu = pvc_change_mtu;
1112         dev->mtu = HDLC_MAX_MTU;
1113         dev->tx_queue_len = 0;
1114         dev->priv = pvc;
1115
1116         result = dev_alloc_name(dev, dev->name);
1117         if (result < 0) {
1118                 free_netdev(dev);
1119                 delete_unused_pvcs(hdlc);
1120                 return result;
1121         }
1122
1123         if (register_netdevice(dev) != 0) {
1124                 free_netdev(dev);
1125                 delete_unused_pvcs(hdlc);
1126                 return -EIO;
1127         }
1128
1129         dev->destructor = free_netdev;
1130         *get_dev_p(pvc, type) = dev;
1131         if (!used) {
1132                 state(hdlc)->dce_changed = 1;
1133                 state(hdlc)->dce_pvc_count++;
1134         }
1135         return 0;
1136 }
1137
1138
1139
1140 static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type)
1141 {
1142         pvc_device *pvc;
1143         struct net_device *dev;
1144
1145         if ((pvc = find_pvc(hdlc, dlci)) == NULL)
1146                 return -ENOENT;
1147
1148         if ((dev = *get_dev_p(pvc, type)) == NULL)
1149                 return -ENOENT;
1150
1151         if (dev->flags & IFF_UP)
1152                 return -EBUSY;          /* PVC in use */
1153
1154         unregister_netdevice(dev); /* the destructor will free_netdev(dev) */
1155         *get_dev_p(pvc, type) = NULL;
1156
1157         if (!pvc_is_used(pvc)) {
1158                 state(hdlc)->dce_pvc_count--;
1159                 state(hdlc)->dce_changed = 1;
1160         }
1161         delete_unused_pvcs(hdlc);
1162         return 0;
1163 }
1164
1165
1166
1167 static void fr_destroy(struct net_device *frad)
1168 {
1169         hdlc_device *hdlc = dev_to_hdlc(frad);
1170         pvc_device *pvc = state(hdlc)->first_pvc;
1171         state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */
1172         state(hdlc)->dce_pvc_count = 0;
1173         state(hdlc)->dce_changed = 1;
1174
1175         while (pvc) {
1176                 pvc_device *next = pvc->next;
1177                 /* destructors will free_netdev() main and ether */
1178                 if (pvc->main)
1179                         unregister_netdevice(pvc->main);
1180
1181                 if (pvc->ether)
1182                         unregister_netdevice(pvc->ether);
1183
1184                 kfree(pvc);
1185                 pvc = next;
1186         }
1187 }
1188
1189
1190 static struct hdlc_proto proto = {
1191         .close          = fr_close,
1192         .start          = fr_start,
1193         .stop           = fr_stop,
1194         .detach         = fr_destroy,
1195         .ioctl          = fr_ioctl,
1196         .netif_rx       = fr_rx,
1197         .module         = THIS_MODULE,
1198 };
1199
1200
1201 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr)
1202 {
1203         fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr;
1204         const size_t size = sizeof(fr_proto);
1205         fr_proto new_settings;
1206         hdlc_device *hdlc = dev_to_hdlc(dev);
1207         fr_proto_pvc pvc;
1208         int result;
1209
1210         switch (ifr->ifr_settings.type) {
1211         case IF_GET_PROTO:
1212                 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1213                         return -EINVAL;
1214                 ifr->ifr_settings.type = IF_PROTO_FR;
1215                 if (ifr->ifr_settings.size < size) {
1216                         ifr->ifr_settings.size = size; /* data size wanted */
1217                         return -ENOBUFS;
1218                 }
1219                 if (copy_to_user(fr_s, &state(hdlc)->settings, size))
1220                         return -EFAULT;
1221                 return 0;
1222
1223         case IF_PROTO_FR:
1224                 if(!capable(CAP_NET_ADMIN))
1225                         return -EPERM;
1226
1227                 if(dev->flags & IFF_UP)
1228                         return -EBUSY;
1229
1230                 if (copy_from_user(&new_settings, fr_s, size))
1231                         return -EFAULT;
1232
1233                 if (new_settings.lmi == LMI_DEFAULT)
1234                         new_settings.lmi = LMI_ANSI;
1235
1236                 if ((new_settings.lmi != LMI_NONE &&
1237                      new_settings.lmi != LMI_ANSI &&
1238                      new_settings.lmi != LMI_CCITT &&
1239                      new_settings.lmi != LMI_CISCO) ||
1240                     new_settings.t391 < 1 ||
1241                     new_settings.t392 < 2 ||
1242                     new_settings.n391 < 1 ||
1243                     new_settings.n392 < 1 ||
1244                     new_settings.n393 < new_settings.n392 ||
1245                     new_settings.n393 > 32 ||
1246                     (new_settings.dce != 0 &&
1247                      new_settings.dce != 1))
1248                         return -EINVAL;
1249
1250                 result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
1251                 if (result)
1252                         return result;
1253
1254                 if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */
1255                         result = attach_hdlc_protocol(dev, &proto,
1256                                                       sizeof(struct frad_state));
1257                         if (result)
1258                                 return result;
1259                         state(hdlc)->first_pvc = NULL;
1260                         state(hdlc)->dce_pvc_count = 0;
1261                 }
1262                 memcpy(&state(hdlc)->settings, &new_settings, size);
1263
1264                 dev->hard_start_xmit = hdlc->xmit;
1265                 dev->type = ARPHRD_FRAD;
1266                 return 0;
1267
1268         case IF_PROTO_FR_ADD_PVC:
1269         case IF_PROTO_FR_DEL_PVC:
1270         case IF_PROTO_FR_ADD_ETH_PVC:
1271         case IF_PROTO_FR_DEL_ETH_PVC:
1272                 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1273                         return -EINVAL;
1274
1275                 if(!capable(CAP_NET_ADMIN))
1276                         return -EPERM;
1277
1278                 if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc,
1279                                    sizeof(fr_proto_pvc)))
1280                         return -EFAULT;
1281
1282                 if (pvc.dlci <= 0 || pvc.dlci >= 1024)
1283                         return -EINVAL; /* Only 10 bits, DLCI 0 reserved */
1284
1285                 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC ||
1286                     ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC)
1287                         result = ARPHRD_ETHER; /* bridged Ethernet device */
1288                 else
1289                         result = ARPHRD_DLCI;
1290
1291                 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC ||
1292                     ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC)
1293                         return fr_add_pvc(dev, pvc.dlci, result);
1294                 else
1295                         return fr_del_pvc(hdlc, pvc.dlci, result);
1296         }
1297
1298         return -EINVAL;
1299 }
1300
1301
1302 static int __init mod_init(void)
1303 {
1304         register_hdlc_protocol(&proto);
1305         return 0;
1306 }
1307
1308
1309 static void __exit mod_exit(void)
1310 {
1311         unregister_hdlc_protocol(&proto);
1312 }
1313
1314
1315 module_init(mod_init);
1316 module_exit(mod_exit);
1317
1318 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
1319 MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC");
1320 MODULE_LICENSE("GPL v2");