1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
4 Maintained by Valerie Henson <val_henson@linux.intel.com>
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
18 #define DRV_NAME "tulip"
19 #ifdef CONFIG_TULIP_NAPI
20 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
22 #define DRV_VERSION "1.1.15"
24 #define DRV_RELDATE "Feb 27, 2007"
27 #include <linux/module.h>
28 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/etherdevice.h>
32 #include <linux/delay.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <asm/unaligned.h>
37 #include <asm/uaccess.h>
43 static char version[] __devinitdata =
44 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
47 /* A few user-configurable values. */
49 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
50 static unsigned int max_interrupt_work = 25;
53 /* Used to pass the full-duplex flag, etc. */
54 static int full_duplex[MAX_UNITS];
55 static int options[MAX_UNITS];
56 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
58 /* The possible media types that can be set in options[] are: */
59 const char * const medianame[32] = {
60 "10baseT", "10base2", "AUI", "100baseTx",
61 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
62 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
63 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
64 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
65 "","","","", "","","","", "","","","Transceiver reset",
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
70 || defined(CONFIG_SPARC) || defined(__ia64__) \
71 || defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
74 static int rx_copybreak = 100;
78 Set the bus performance register.
79 Typical: Set 16 longword cache alignment, no burst limit.
80 Cache alignment bits 15:14 Burst length 13:8
81 0000 No alignment 0x00000000 unlimited 0800 8 longwords
82 4000 8 longwords 0100 1 longword 1000 16 longwords
83 8000 16 longwords 0200 2 longwords 2000 32 longwords
84 C000 32 longwords 0400 4 longwords
85 Warning: many older 486 systems are broken and require setting 0x00A04800
86 8 longword cache alignment, 8 longword burst.
87 ToDo: Non-Intel setting could be better.
90 #if defined(__alpha__) || defined(__ia64__)
91 static int csr0 = 0x01A00000 | 0xE000;
92 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
93 static int csr0 = 0x01A00000 | 0x8000;
94 #elif defined(CONFIG_SPARC) || defined(__hppa__)
95 /* The UltraSparc PCI controllers will disconnect at every 64-byte
96 * crossing anyways so it makes no sense to tell Tulip to burst
99 static int csr0 = 0x01A00000 | 0x9000;
100 #elif defined(__arm__) || defined(__sh__)
101 static int csr0 = 0x01A00000 | 0x4800;
102 #elif defined(__mips__)
103 static int csr0 = 0x00200000 | 0x4000;
105 #warning Processor architecture undefined!
106 static int csr0 = 0x00A00000 | 0x4800;
109 /* Operational parameters that usually are not changed. */
110 /* Time in jiffies before concluding the transmitter is hung. */
111 #define TX_TIMEOUT (4*HZ)
114 MODULE_AUTHOR("The Linux Kernel Team");
115 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
116 MODULE_LICENSE("GPL");
117 MODULE_VERSION(DRV_VERSION);
118 module_param(tulip_debug, int, 0);
119 module_param(max_interrupt_work, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param(csr0, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
125 #define PFX DRV_NAME ": "
128 int tulip_debug = TULIP_DEBUG;
133 static void tulip_timer(unsigned long data)
135 struct net_device *dev = (struct net_device *)data;
136 struct tulip_private *tp = netdev_priv(dev);
138 if (netif_running(dev))
139 schedule_work(&tp->media_work);
143 * This table use during operation for capabilities and media timer.
145 * It is indexed via the values in 'enum chips'
148 struct tulip_chip_table tulip_tbl[] = {
149 { }, /* placeholder for array, slot unused currently */
150 { }, /* placeholder for array, slot unused currently */
153 { "Digital DS21140 Tulip", 128, 0x0001ebef,
154 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
157 /* DC21142, DC21143 */
158 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
159 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
160 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
163 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
164 HAS_MII | HAS_PNICNWAY, pnic_timer, },
167 { "Macronix 98713 PMAC", 128, 0x0001ebef,
168 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
171 { "Macronix 98715 PMAC", 256, 0x0001ebef,
172 HAS_MEDIA_TABLE, mxic_timer, },
175 { "Macronix 98725 PMAC", 256, 0x0001ebef,
176 HAS_MEDIA_TABLE, mxic_timer, },
179 { "ASIX AX88140", 128, 0x0001fbff,
180 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
181 | IS_ASIX, tulip_timer, tulip_media_task },
184 { "Lite-On PNIC-II", 256, 0x0801fbff,
185 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
188 { "ADMtek Comet", 256, 0x0001abef,
189 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
192 { "Compex 9881 PMAC", 128, 0x0001ebef,
193 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
196 { "Intel DS21145 Tulip", 128, 0x0801fbff,
197 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
198 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
201 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
202 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
203 tulip_timer, tulip_media_task },
206 { "Conexant LANfinity", 256, 0x0001ebef,
207 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
212 static struct pci_device_id tulip_pci_tbl[] = {
213 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
214 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
215 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
216 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
217 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
218 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
219 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
220 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
221 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
232 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
233 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
248 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
249 { } /* terminate list */
251 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
254 /* A full-duplex map for media types. */
255 const char tulip_media_cap[32] =
256 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
258 static void tulip_tx_timeout(struct net_device *dev);
259 static void tulip_init_ring(struct net_device *dev);
260 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
261 static int tulip_open(struct net_device *dev);
262 static int tulip_close(struct net_device *dev);
263 static void tulip_up(struct net_device *dev);
264 static void tulip_down(struct net_device *dev);
265 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
266 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
267 static void set_rx_mode(struct net_device *dev);
268 #ifdef CONFIG_NET_POLL_CONTROLLER
269 static void poll_tulip(struct net_device *dev);
272 static void tulip_set_power_state (struct tulip_private *tp,
273 int sleep, int snooze)
275 if (tp->flags & HAS_ACPI) {
277 pci_read_config_dword (tp->pdev, CFDD, &tmp);
278 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
280 newtmp |= CFDD_Sleep;
282 newtmp |= CFDD_Snooze;
284 pci_write_config_dword (tp->pdev, CFDD, newtmp);
290 static void tulip_up(struct net_device *dev)
292 struct tulip_private *tp = netdev_priv(dev);
293 void __iomem *ioaddr = tp->base_addr;
294 int next_tick = 3*HZ;
298 #ifdef CONFIG_TULIP_NAPI
299 napi_enable(&tp->napi);
302 /* Wake the chip from sleep/snooze mode. */
303 tulip_set_power_state (tp, 0, 0);
305 /* On some chip revs we must set the MII/SYM port before the reset!? */
306 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
307 iowrite32(0x00040000, ioaddr + CSR6);
309 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
310 iowrite32(0x00000001, ioaddr + CSR0);
311 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
315 Wait the specified 50 PCI cycles after a reset by initializing
316 Tx and Rx queues and the address filter list. */
317 iowrite32(tp->csr0, ioaddr + CSR0);
318 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
322 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
324 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
325 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
326 tp->cur_rx = tp->cur_tx = 0;
327 tp->dirty_rx = tp->dirty_tx = 0;
329 if (tp->flags & MC_HASH_ONLY) {
330 u32 addr_low = get_unaligned_le32(dev->dev_addr);
331 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
332 if (tp->chip_id == AX88140) {
333 iowrite32(0, ioaddr + CSR13);
334 iowrite32(addr_low, ioaddr + CSR14);
335 iowrite32(1, ioaddr + CSR13);
336 iowrite32(addr_high, ioaddr + CSR14);
337 } else if (tp->flags & COMET_MAC_ADDR) {
338 iowrite32(addr_low, ioaddr + 0xA4);
339 iowrite32(addr_high, ioaddr + 0xA8);
340 iowrite32(0, ioaddr + 0xAC);
341 iowrite32(0, ioaddr + 0xB0);
344 /* This is set_rx_mode(), but without starting the transmitter. */
345 u16 *eaddrs = (u16 *)dev->dev_addr;
346 u16 *setup_frm = &tp->setup_frame[15*6];
349 /* 21140 bug: you must add the broadcast address. */
350 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
351 /* Fill the final entry of the table with our physical address. */
352 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
353 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
354 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
356 mapping = pci_map_single(tp->pdev, tp->setup_frame,
357 sizeof(tp->setup_frame),
359 tp->tx_buffers[tp->cur_tx].skb = NULL;
360 tp->tx_buffers[tp->cur_tx].mapping = mapping;
362 /* Put the setup frame on the Tx list. */
363 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
364 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
365 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
370 tp->saved_if_port = dev->if_port;
371 if (dev->if_port == 0)
372 dev->if_port = tp->default_port;
374 /* Allow selecting a default media. */
376 if (tp->mtable == NULL)
379 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
380 (dev->if_port == 12 ? 0 : dev->if_port);
381 for (i = 0; i < tp->mtable->leafcount; i++)
382 if (tp->mtable->mleaf[i].media == looking_for) {
383 printk(KERN_INFO "%s: Using user-specified media %s.\n",
384 dev->name, medianame[dev->if_port]);
388 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
389 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
390 for (i = 0; i < tp->mtable->leafcount; i++)
391 if (tp->mtable->mleaf[i].media == looking_for) {
392 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
393 dev->name, medianame[looking_for]);
397 /* Start sensing first non-full-duplex media. */
398 for (i = tp->mtable->leafcount - 1;
399 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
408 if (tp->chip_id == DC21143 &&
409 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
410 /* We must reset the media CSRs when we force-select MII mode. */
411 iowrite32(0x0000, ioaddr + CSR13);
412 iowrite32(0x0000, ioaddr + CSR14);
413 iowrite32(0x0008, ioaddr + CSR15);
415 tulip_select_media(dev, 1);
416 } else if (tp->chip_id == DC21142) {
418 tulip_select_media(dev, 1);
420 printk(KERN_INFO "%s: Using MII transceiver %d, status "
422 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
423 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
424 tp->csr6 = csr6_mask_hdcap;
426 iowrite32(0x0000, ioaddr + CSR13);
427 iowrite32(0x0000, ioaddr + CSR14);
429 t21142_start_nway(dev);
430 } else if (tp->chip_id == PNIC2) {
431 /* for initial startup advertise 10/100 Full and Half */
432 tp->sym_advertise = 0x01E0;
433 /* enable autonegotiate end interrupt */
434 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
435 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
436 pnic2_start_nway(dev);
437 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
440 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
441 iowrite32(0x0001, ioaddr + CSR15);
442 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
445 /* Start with 10mbps to do autonegotiation. */
446 iowrite32(0x32, ioaddr + CSR12);
447 tp->csr6 = 0x00420000;
448 iowrite32(0x0001B078, ioaddr + 0xB8);
449 iowrite32(0x0201B078, ioaddr + 0xB8);
452 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
453 && ! tp->medialock) {
455 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
456 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
457 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
458 /* Provided by BOLO, Macronix - 12/10/1998. */
460 tp->csr6 = 0x01a80200;
461 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
462 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
463 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
464 /* Enable automatic Tx underrun recovery. */
465 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
466 dev->if_port = tp->mii_cnt ? 11 : 0;
467 tp->csr6 = 0x00040000;
468 } else if (tp->chip_id == AX88140) {
469 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
471 tulip_select_media(dev, 1);
473 /* Start the chip's Tx to process setup frame. */
477 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
479 /* Enable interrupts by setting the interrupt mask. */
480 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
481 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
482 tulip_start_rxtx(tp);
483 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
485 if (tulip_debug > 2) {
486 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
487 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
488 ioread32(ioaddr + CSR6));
491 /* Set the timer to switch to check for link beat and perhaps switch
492 to an alternate media type. */
493 tp->timer.expires = RUN_AT(next_tick);
494 add_timer(&tp->timer);
495 #ifdef CONFIG_TULIP_NAPI
496 init_timer(&tp->oom_timer);
497 tp->oom_timer.data = (unsigned long)dev;
498 tp->oom_timer.function = oom_timer;
503 tulip_open(struct net_device *dev)
507 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
510 tulip_init_ring (dev);
514 netif_start_queue (dev);
520 static void tulip_tx_timeout(struct net_device *dev)
522 struct tulip_private *tp = netdev_priv(dev);
523 void __iomem *ioaddr = tp->base_addr;
526 spin_lock_irqsave (&tp->lock, flags);
528 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
529 /* Do nothing -- the media monitor should handle this. */
531 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
533 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
534 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
535 || tp->chip_id == DM910X) {
536 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
537 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
538 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
539 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
540 tp->timeout_recovery = 1;
541 schedule_work(&tp->media_work);
543 } else if (tp->chip_id == PNIC2) {
544 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
545 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
546 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
547 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
549 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
550 "%8.8x, resetting...\n",
551 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
555 #if defined(way_too_many_messages)
556 if (tulip_debug > 3) {
558 for (i = 0; i < RX_RING_SIZE; i++) {
559 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
561 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
562 "%2.2x %2.2x %2.2x.\n",
563 i, (unsigned int)tp->rx_ring[i].status,
564 (unsigned int)tp->rx_ring[i].length,
565 (unsigned int)tp->rx_ring[i].buffer1,
566 (unsigned int)tp->rx_ring[i].buffer2,
567 buf[0], buf[1], buf[2]);
568 for (j = 0; buf[j] != 0xee && j < 1600; j++)
569 if (j < 100) printk(" %2.2x", buf[j]);
570 printk(" j=%d.\n", j);
572 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
573 for (i = 0; i < RX_RING_SIZE; i++)
574 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
575 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
576 for (i = 0; i < TX_RING_SIZE; i++)
577 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
582 tulip_tx_timeout_complete(tp, ioaddr);
585 spin_unlock_irqrestore (&tp->lock, flags);
586 dev->trans_start = jiffies;
587 netif_wake_queue (dev);
591 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
592 static void tulip_init_ring(struct net_device *dev)
594 struct tulip_private *tp = netdev_priv(dev);
601 for (i = 0; i < RX_RING_SIZE; i++) {
602 tp->rx_ring[i].status = 0x00000000;
603 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
604 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
605 tp->rx_buffers[i].skb = NULL;
606 tp->rx_buffers[i].mapping = 0;
608 /* Mark the last entry as wrapping the ring. */
609 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
610 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
612 for (i = 0; i < RX_RING_SIZE; i++) {
615 /* Note the receive buffer must be longword aligned.
616 dev_alloc_skb() provides 16 byte alignment. But do *not*
617 use skb_reserve() to align the IP header! */
618 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
619 tp->rx_buffers[i].skb = skb;
622 mapping = pci_map_single(tp->pdev, skb->data,
623 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
624 tp->rx_buffers[i].mapping = mapping;
625 skb->dev = dev; /* Mark as being used by this device. */
626 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
627 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
629 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
631 /* The Tx buffer descriptor is filled in as needed, but we
632 do need to clear the ownership bit. */
633 for (i = 0; i < TX_RING_SIZE; i++) {
634 tp->tx_buffers[i].skb = NULL;
635 tp->tx_buffers[i].mapping = 0;
636 tp->tx_ring[i].status = 0x00000000;
637 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
639 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
643 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
645 struct tulip_private *tp = netdev_priv(dev);
650 spin_lock_irq(&tp->lock);
652 /* Calculate the next Tx descriptor entry. */
653 entry = tp->cur_tx % TX_RING_SIZE;
655 tp->tx_buffers[entry].skb = skb;
656 mapping = pci_map_single(tp->pdev, skb->data,
657 skb->len, PCI_DMA_TODEVICE);
658 tp->tx_buffers[entry].mapping = mapping;
659 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
661 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
662 flag = 0x60000000; /* No interrupt */
663 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
664 flag = 0xe0000000; /* Tx-done intr. */
665 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
666 flag = 0x60000000; /* No Tx-done intr. */
667 } else { /* Leave room for set_rx_mode() to fill entries. */
668 flag = 0xe0000000; /* Tx-done intr. */
669 netif_stop_queue(dev);
671 if (entry == TX_RING_SIZE-1)
672 flag = 0xe0000000 | DESC_RING_WRAP;
674 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
675 /* if we were using Transmit Automatic Polling, we would need a
677 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
682 /* Trigger an immediate transmit demand. */
683 iowrite32(0, tp->base_addr + CSR1);
685 spin_unlock_irq(&tp->lock);
687 dev->trans_start = jiffies;
692 static void tulip_clean_tx_ring(struct tulip_private *tp)
694 unsigned int dirty_tx;
696 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
698 int entry = dirty_tx % TX_RING_SIZE;
699 int status = le32_to_cpu(tp->tx_ring[entry].status);
702 tp->stats.tx_errors++; /* It wasn't Txed */
703 tp->tx_ring[entry].status = 0;
706 /* Check for Tx filter setup frames. */
707 if (tp->tx_buffers[entry].skb == NULL) {
708 /* test because dummy frames not mapped */
709 if (tp->tx_buffers[entry].mapping)
710 pci_unmap_single(tp->pdev,
711 tp->tx_buffers[entry].mapping,
712 sizeof(tp->setup_frame),
717 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
718 tp->tx_buffers[entry].skb->len,
721 /* Free the original skb. */
722 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
723 tp->tx_buffers[entry].skb = NULL;
724 tp->tx_buffers[entry].mapping = 0;
728 static void tulip_down (struct net_device *dev)
730 struct tulip_private *tp = netdev_priv(dev);
731 void __iomem *ioaddr = tp->base_addr;
734 flush_scheduled_work();
736 #ifdef CONFIG_TULIP_NAPI
737 napi_disable(&tp->napi);
740 del_timer_sync (&tp->timer);
741 #ifdef CONFIG_TULIP_NAPI
742 del_timer_sync (&tp->oom_timer);
744 spin_lock_irqsave (&tp->lock, flags);
746 /* Disable interrupts by clearing the interrupt mask. */
747 iowrite32 (0x00000000, ioaddr + CSR7);
749 /* Stop the Tx and Rx processes. */
752 /* prepare receive buffers */
753 tulip_refill_rx(dev);
755 /* release any unconsumed transmit buffers */
756 tulip_clean_tx_ring(tp);
758 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
759 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
761 spin_unlock_irqrestore (&tp->lock, flags);
763 init_timer(&tp->timer);
764 tp->timer.data = (unsigned long)dev;
765 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
767 dev->if_port = tp->saved_if_port;
769 /* Leave the driver in snooze, not sleep, mode. */
770 tulip_set_power_state (tp, 0, 1);
774 static int tulip_close (struct net_device *dev)
776 struct tulip_private *tp = netdev_priv(dev);
777 void __iomem *ioaddr = tp->base_addr;
780 netif_stop_queue (dev);
785 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
786 dev->name, ioread32 (ioaddr + CSR5));
788 free_irq (dev->irq, dev);
790 /* Free all the skbuffs in the Rx queue. */
791 for (i = 0; i < RX_RING_SIZE; i++) {
792 struct sk_buff *skb = tp->rx_buffers[i].skb;
793 dma_addr_t mapping = tp->rx_buffers[i].mapping;
795 tp->rx_buffers[i].skb = NULL;
796 tp->rx_buffers[i].mapping = 0;
798 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
799 tp->rx_ring[i].length = 0;
800 /* An invalid address. */
801 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
803 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
808 for (i = 0; i < TX_RING_SIZE; i++) {
809 struct sk_buff *skb = tp->tx_buffers[i].skb;
812 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
813 skb->len, PCI_DMA_TODEVICE);
816 tp->tx_buffers[i].skb = NULL;
817 tp->tx_buffers[i].mapping = 0;
823 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
825 struct tulip_private *tp = netdev_priv(dev);
826 void __iomem *ioaddr = tp->base_addr;
828 if (netif_running(dev)) {
831 spin_lock_irqsave (&tp->lock, flags);
833 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
835 spin_unlock_irqrestore(&tp->lock, flags);
842 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
844 struct tulip_private *np = netdev_priv(dev);
845 strcpy(info->driver, DRV_NAME);
846 strcpy(info->version, DRV_VERSION);
847 strcpy(info->bus_info, pci_name(np->pdev));
850 static const struct ethtool_ops ops = {
851 .get_drvinfo = tulip_get_drvinfo
854 /* Provide ioctl() calls to examine the MII xcvr state. */
855 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
857 struct tulip_private *tp = netdev_priv(dev);
858 void __iomem *ioaddr = tp->base_addr;
859 struct mii_ioctl_data *data = if_mii(rq);
860 const unsigned int phy_idx = 0;
861 int phy = tp->phys[phy_idx] & 0x1f;
862 unsigned int regnum = data->reg_num;
865 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
868 else if (tp->flags & HAS_NWAY)
870 else if (tp->chip_id == COMET)
875 case SIOCGMIIREG: /* Read MII PHY register. */
876 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
877 int csr12 = ioread32 (ioaddr + CSR12);
878 int csr14 = ioread32 (ioaddr + CSR14);
881 if (((csr14<<5) & 0x1000) ||
882 (dev->if_port == 5 && tp->nwayset))
883 data->val_out = 0x1000;
885 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
886 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
891 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
892 ((csr12&0x06) == 6 ? 0 : 4);
893 data->val_out |= 0x6048;
896 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
898 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
899 ((csr14 >> 1) & 0x20) + 1;
900 data->val_out |= ((csr14 >> 9) & 0x03C0);
902 case 5: data->val_out = tp->lpar; break;
903 default: data->val_out = 0; break;
906 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
910 case SIOCSMIIREG: /* Write MII PHY register. */
911 if (!capable (CAP_NET_ADMIN))
915 if (data->phy_id == phy) {
916 u16 value = data->val_in;
918 case 0: /* Check for autonegotiation on or reset. */
919 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
920 if (tp->full_duplex_lock)
921 tp->full_duplex = (value & 0x0100) ? 1 : 0;
924 tp->advertising[phy_idx] =
925 tp->mii_advertise = data->val_in;
929 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
930 u16 value = data->val_in;
932 if ((value & 0x1200) == 0x1200) {
933 if (tp->chip_id == PNIC2) {
934 pnic2_start_nway (dev);
936 t21142_start_nway (dev);
939 } else if (regnum == 4)
940 tp->sym_advertise = value;
942 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
953 /* Set or clear the multicast filter for this adaptor.
954 Note that we only use exclusion around actually queueing the
955 new frame, not around filling tp->setup_frame. This is non-deterministic
956 when re-entered but still correct. */
959 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
961 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
963 struct tulip_private *tp = netdev_priv(dev);
965 struct dev_mc_list *mclist;
969 memset(hash_table, 0, sizeof(hash_table));
970 set_bit_le(255, hash_table); /* Broadcast entry */
971 /* This should work on big-endian machines as well. */
972 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
973 i++, mclist = mclist->next) {
974 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
976 set_bit_le(index, hash_table);
979 for (i = 0; i < 32; i++) {
980 *setup_frm++ = hash_table[i];
981 *setup_frm++ = hash_table[i];
983 setup_frm = &tp->setup_frame[13*6];
985 /* Fill the final entry with our physical address. */
986 eaddrs = (u16 *)dev->dev_addr;
987 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
988 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
989 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
992 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
994 struct tulip_private *tp = netdev_priv(dev);
995 struct dev_mc_list *mclist;
999 /* We have <= 14 addresses so we can use the wonderful
1000 16 address perfect filtering of the Tulip. */
1001 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
1002 i++, mclist = mclist->next) {
1003 eaddrs = (u16 *)mclist->dmi_addr;
1004 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1005 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1006 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1008 /* Fill the unused entries with the broadcast address. */
1009 memset(setup_frm, 0xff, (15-i)*12);
1010 setup_frm = &tp->setup_frame[15*6];
1012 /* Fill the final entry with our physical address. */
1013 eaddrs = (u16 *)dev->dev_addr;
1014 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1015 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1016 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1020 static void set_rx_mode(struct net_device *dev)
1022 struct tulip_private *tp = netdev_priv(dev);
1023 void __iomem *ioaddr = tp->base_addr;
1026 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1028 tp->csr6 &= ~0x00D5;
1029 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1030 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1031 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1032 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1033 /* Too many to filter well -- accept all multicasts. */
1034 tp->csr6 |= AcceptAllMulticast;
1035 csr6 |= AcceptAllMulticast;
1036 } else if (tp->flags & MC_HASH_ONLY) {
1037 /* Some work-alikes have only a 64-entry hash filter table. */
1038 /* Should verify correctness on big-endian/__powerpc__ */
1039 struct dev_mc_list *mclist;
1041 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1042 tp->csr6 |= AcceptAllMulticast;
1043 csr6 |= AcceptAllMulticast;
1045 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1047 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1048 i++, mclist = mclist->next) {
1049 if (tp->flags & COMET_MAC_ADDR)
1050 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1052 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1054 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1055 if (tulip_debug > 2) {
1056 DECLARE_MAC_BUF(mac);
1057 printk(KERN_INFO "%s: Added filter for %s"
1059 dev->name, print_mac(mac, mclist->dmi_addr),
1060 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1063 if (mc_filter[0] == tp->mc_filter[0] &&
1064 mc_filter[1] == tp->mc_filter[1])
1066 else if (tp->flags & IS_ASIX) {
1067 iowrite32(2, ioaddr + CSR13);
1068 iowrite32(mc_filter[0], ioaddr + CSR14);
1069 iowrite32(3, ioaddr + CSR13);
1070 iowrite32(mc_filter[1], ioaddr + CSR14);
1071 } else if (tp->flags & COMET_MAC_ADDR) {
1072 iowrite32(mc_filter[0], ioaddr + 0xAC);
1073 iowrite32(mc_filter[1], ioaddr + 0xB0);
1075 tp->mc_filter[0] = mc_filter[0];
1076 tp->mc_filter[1] = mc_filter[1];
1079 unsigned long flags;
1080 u32 tx_flags = 0x08000000 | 192;
1082 /* Note that only the low-address shortword of setup_frame is valid!
1083 The values are doubled for big-endian architectures. */
1084 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1085 build_setup_frame_hash(tp->setup_frame, dev);
1086 tx_flags = 0x08400000 | 192;
1088 build_setup_frame_perfect(tp->setup_frame, dev);
1091 spin_lock_irqsave(&tp->lock, flags);
1093 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1094 /* Same setup recently queued, we need not add it. */
1099 /* Now add this frame to the Tx list. */
1101 entry = tp->cur_tx++ % TX_RING_SIZE;
1104 /* Avoid a chip errata by prefixing a dummy entry. */
1105 tp->tx_buffers[entry].skb = NULL;
1106 tp->tx_buffers[entry].mapping = 0;
1107 tp->tx_ring[entry].length =
1108 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1109 tp->tx_ring[entry].buffer1 = 0;
1110 /* Must set DescOwned later to avoid race with chip */
1112 entry = tp->cur_tx++ % TX_RING_SIZE;
1116 tp->tx_buffers[entry].skb = NULL;
1117 tp->tx_buffers[entry].mapping =
1118 pci_map_single(tp->pdev, tp->setup_frame,
1119 sizeof(tp->setup_frame),
1121 /* Put the setup frame on the Tx list. */
1122 if (entry == TX_RING_SIZE-1)
1123 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1124 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1125 tp->tx_ring[entry].buffer1 =
1126 cpu_to_le32(tp->tx_buffers[entry].mapping);
1127 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1129 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1130 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1131 netif_stop_queue(dev);
1133 /* Trigger an immediate transmit demand. */
1134 iowrite32(0, ioaddr + CSR1);
1137 spin_unlock_irqrestore(&tp->lock, flags);
1140 iowrite32(csr6, ioaddr + CSR6);
1143 #ifdef CONFIG_TULIP_MWI
1144 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1145 struct net_device *dev)
1147 struct tulip_private *tp = netdev_priv(dev);
1152 if (tulip_debug > 3)
1153 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1155 tp->csr0 = csr0 = 0;
1157 /* if we have any cache line size at all, we can do MRM and MWI */
1160 /* Enable MWI in the standard PCI command bit.
1161 * Check for the case where MWI is desired but not available
1163 pci_try_set_mwi(pdev);
1165 /* read result from hardware (in case bit refused to enable) */
1166 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1167 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1170 /* if cache line size hardwired to zero, no MWI */
1171 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1172 if ((csr0 & MWI) && (cache == 0)) {
1174 pci_clear_mwi(pdev);
1177 /* assign per-cacheline-size cache alignment and
1178 * burst length values
1182 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1185 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1188 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1195 /* if we have a good cache line size, we by now have a good
1196 * csr0, so save it and exit
1201 /* we don't have a good csr0 or cache line size, disable MWI */
1203 pci_clear_mwi(pdev);
1207 /* sane defaults for burst length and cache alignment
1208 * originally from de4x5 driver
1210 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1214 if (tulip_debug > 2)
1215 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1216 pci_name(pdev), cache, csr0);
1221 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1222 * is the DM910X and the on chip ULi devices
1225 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1227 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1232 static int __devinit tulip_init_one (struct pci_dev *pdev,
1233 const struct pci_device_id *ent)
1235 struct tulip_private *tp;
1236 /* See note below on the multiport cards. */
1237 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1238 static struct pci_device_id early_486_chipsets[] = {
1239 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1240 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1243 static int last_irq;
1244 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1247 unsigned char *ee_data;
1248 struct net_device *dev;
1249 void __iomem *ioaddr;
1250 static int board_idx = -1;
1251 int chip_idx = ent->driver_data;
1252 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1253 unsigned int eeprom_missing = 0;
1254 unsigned int force_csr0 = 0;
1255 DECLARE_MAC_BUF(mac);
1258 static int did_version; /* Already printed version info. */
1259 if (tulip_debug > 0 && did_version++ == 0)
1260 printk (KERN_INFO "%s", version);
1266 * Lan media wire a tulip chip to a wan interface. Needs a very
1267 * different driver (lmc driver)
1270 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1271 printk (KERN_ERR PFX "skipping LMC card.\n");
1276 * Early DM9100's need software CRC and the DMFE driver
1279 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1281 /* Read Chip revision */
1282 if (pdev->revision < 0x30)
1284 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1290 * Looks for early PCI chipsets where people report hangs
1291 * without the workarounds being on.
1294 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1295 aligned. Aries might need this too. The Saturn errata are not
1296 pretty reading but thankfully it's an old 486 chipset.
1298 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1302 if (pci_dev_present(early_486_chipsets)) {
1303 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1307 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1308 if (chip_idx == AX88140) {
1309 if ((csr0 & 0x3f00) == 0)
1313 /* PNIC doesn't have MWI/MRL/MRM... */
1314 if (chip_idx == LC82C168)
1315 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1317 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1318 if (tulip_uli_dm_quirk(pdev)) {
1319 csr0 &= ~0x01f100ff;
1320 #if defined(CONFIG_SPARC)
1321 csr0 = (csr0 & ~0xff00) | 0xe000;
1325 * And back to business
1328 i = pci_enable_device(pdev);
1330 printk (KERN_ERR PFX
1331 "Cannot enable tulip board #%d, aborting\n",
1338 /* alloc_etherdev ensures aligned and zeroed private structures */
1339 dev = alloc_etherdev (sizeof (*tp));
1341 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1345 SET_NETDEV_DEV(dev, &pdev->dev);
1346 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1347 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1348 "aborting\n", pci_name(pdev),
1349 (unsigned long long)pci_resource_len (pdev, 0),
1350 (unsigned long long)pci_resource_start (pdev, 0));
1351 goto err_out_free_netdev;
1354 /* grab all resources from both PIO and MMIO regions, as we
1355 * don't want anyone else messing around with our hardware */
1356 if (pci_request_regions (pdev, "tulip"))
1357 goto err_out_free_netdev;
1359 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1362 goto err_out_free_res;
1365 * initialize private data structure 'tp'
1366 * it is zeroed and aligned in alloc_etherdev
1368 tp = netdev_priv(dev);
1371 tp->rx_ring = pci_alloc_consistent(pdev,
1372 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1373 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1376 goto err_out_mtable;
1377 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1378 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1380 tp->chip_id = chip_idx;
1381 tp->flags = tulip_tbl[chip_idx].flags;
1383 tp->base_addr = ioaddr;
1384 tp->revision = pdev->revision;
1386 spin_lock_init(&tp->lock);
1387 spin_lock_init(&tp->mii_lock);
1388 init_timer(&tp->timer);
1389 tp->timer.data = (unsigned long)dev;
1390 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1392 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1394 dev->base_addr = (unsigned long)ioaddr;
1396 #ifdef CONFIG_TULIP_MWI
1397 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1398 tulip_mwi_config (pdev, dev);
1401 /* Stop the chip's Tx and Rx processes. */
1402 tulip_stop_rxtx(tp);
1404 pci_set_master(pdev);
1407 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1408 switch (pdev->subsystem_device) {
1417 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1418 chip_name = "GSC DS21140 Tulip";
1423 /* Clear the missed-packet counter. */
1424 ioread32(ioaddr + CSR8);
1426 /* The station address ROM is read byte serially. The register must
1427 be polled, waiting for the value to be read bit serially from the
1430 ee_data = tp->eeprom;
1431 memset(ee_data, 0, sizeof(tp->eeprom));
1433 if (chip_idx == LC82C168) {
1434 for (i = 0; i < 3; i++) {
1435 int value, boguscnt = 100000;
1436 iowrite32(0x600 | i, ioaddr + 0x98);
1438 value = ioread32(ioaddr + CSR9);
1439 while (value < 0 && --boguscnt > 0);
1440 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1441 sum += value & 0xffff;
1443 } else if (chip_idx == COMET) {
1444 /* No need to read the EEPROM. */
1445 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1446 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1447 for (i = 0; i < 6; i ++)
1448 sum += dev->dev_addr[i];
1450 /* A serial EEPROM interface, we read now and sort it out later. */
1452 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1453 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1455 if (ee_max_addr > sizeof(tp->eeprom))
1456 ee_max_addr = sizeof(tp->eeprom);
1458 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1459 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1460 ee_data[i] = data & 0xff;
1461 ee_data[i + 1] = data >> 8;
1464 /* DEC now has a specification (see Notes) but early board makers
1465 just put the address in the first EEPROM locations. */
1466 /* This does memcmp(ee_data, ee_data+16, 8) */
1467 for (i = 0; i < 8; i ++)
1468 if (ee_data[i] != ee_data[16+i])
1470 if (chip_idx == CONEXANT) {
1471 /* Check that the tuple type and length is correct. */
1472 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1474 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1476 sa_offset = 2; /* Grrr, damn Matrox boards. */
1479 #ifdef CONFIG_MIPS_COBALT
1480 if ((pdev->bus->number == 0) &&
1481 ((PCI_SLOT(pdev->devfn) == 7) ||
1482 (PCI_SLOT(pdev->devfn) == 12))) {
1483 /* Cobalt MAC address in first EEPROM locations. */
1485 /* Ensure our media table fixup get's applied */
1486 memcpy(ee_data + 16, ee_data, 8);
1490 /* Check to see if we have a broken srom */
1491 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1492 /* pci_vendor_id and subsystem_id are swapped */
1493 ee_data[0] = ee_data[2];
1494 ee_data[1] = ee_data[3];
1498 /* HSC-PCI boards need to be byte-swaped and shifted
1499 * up 1 word. This shift needs to happen at the end
1500 * of the MAC first because of the 2 byte overlap.
1502 for (i = 4; i >= 0; i -= 2) {
1503 ee_data[17 + i + 3] = ee_data[17 + i];
1504 ee_data[16 + i + 5] = ee_data[16 + i];
1509 for (i = 0; i < 6; i ++) {
1510 dev->dev_addr[i] = ee_data[i + sa_offset];
1511 sum += ee_data[i + sa_offset];
1514 /* Lite-On boards have the address byte-swapped. */
1515 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1516 && dev->dev_addr[1] == 0x00)
1517 for (i = 0; i < 6; i+=2) {
1518 char tmp = dev->dev_addr[i];
1519 dev->dev_addr[i] = dev->dev_addr[i+1];
1520 dev->dev_addr[i+1] = tmp;
1522 /* On the Zynx 315 Etherarray and other multiport boards only the
1523 first Tulip has an EEPROM.
1524 On Sparc systems the mac address is held in the OBP property
1525 "local-mac-address".
1526 The addresses of the subsequent ports are derived from the first.
1527 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1528 that here as well. */
1529 if (sum == 0 || sum == 6*0xff) {
1530 #if defined(CONFIG_SPARC)
1531 struct device_node *dp = pci_device_to_OF_node(pdev);
1532 const unsigned char *addr;
1536 for (i = 0; i < 5; i++)
1537 dev->dev_addr[i] = last_phys_addr[i];
1538 dev->dev_addr[i] = last_phys_addr[i] + 1;
1539 #if defined(CONFIG_SPARC)
1540 addr = of_get_property(dp, "local-mac-address", &len);
1541 if (addr && len == 6)
1542 memcpy(dev->dev_addr, addr, 6);
1544 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1550 for (i = 0; i < 6; i++)
1551 last_phys_addr[i] = dev->dev_addr[i];
1555 /* The lower four bits are the media type. */
1556 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1557 if (options[board_idx] & MEDIA_MASK)
1558 tp->default_port = options[board_idx] & MEDIA_MASK;
1559 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1560 tp->full_duplex = 1;
1561 if (mtu[board_idx] > 0)
1562 dev->mtu = mtu[board_idx];
1564 if (dev->mem_start & MEDIA_MASK)
1565 tp->default_port = dev->mem_start & MEDIA_MASK;
1566 if (tp->default_port) {
1567 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1568 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1570 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1571 tp->full_duplex = 1;
1573 if (tp->full_duplex)
1574 tp->full_duplex_lock = 1;
1576 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1577 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1578 tp->mii_advertise = media2advert[tp->default_port - 9];
1579 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1582 if (tp->flags & HAS_MEDIA_TABLE) {
1583 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1584 tulip_parse_eeprom(dev);
1585 strcpy(dev->name, "eth%d"); /* un-hack */
1588 if ((tp->flags & ALWAYS_CHECK_MII) ||
1589 (tp->mtable && tp->mtable->has_mii) ||
1590 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1591 if (tp->mtable && tp->mtable->has_mii) {
1592 for (i = 0; i < tp->mtable->leafcount; i++)
1593 if (tp->mtable->mleaf[i].media == 11) {
1595 tp->saved_if_port = dev->if_port;
1596 tulip_select_media(dev, 2);
1597 dev->if_port = tp->saved_if_port;
1602 /* Find the connected MII xcvrs.
1603 Doing this in open() would allow detecting external xcvrs
1604 later, but takes much time. */
1605 tulip_find_mii (dev, board_idx);
1608 /* The Tulip-specific entries in the device structure. */
1609 dev->open = tulip_open;
1610 dev->hard_start_xmit = tulip_start_xmit;
1611 dev->tx_timeout = tulip_tx_timeout;
1612 dev->watchdog_timeo = TX_TIMEOUT;
1613 #ifdef CONFIG_TULIP_NAPI
1614 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1616 dev->stop = tulip_close;
1617 dev->get_stats = tulip_get_stats;
1618 dev->do_ioctl = private_ioctl;
1619 dev->set_multicast_list = set_rx_mode;
1620 #ifdef CONFIG_NET_POLL_CONTROLLER
1621 dev->poll_controller = &poll_tulip;
1623 SET_ETHTOOL_OPS(dev, &ops);
1625 if (register_netdev(dev))
1626 goto err_out_free_ring;
1628 printk(KERN_INFO "%s: %s rev %d at "
1629 #ifdef CONFIG_TULIP_MMIO
1634 " %#llx,", dev->name, chip_name, pdev->revision,
1635 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1636 pci_set_drvdata(pdev, dev);
1639 printk(" EEPROM not present,");
1640 printk(" %s", print_mac(mac, dev->dev_addr));
1641 printk(", IRQ %d.\n", irq);
1643 if (tp->chip_id == PNIC2)
1644 tp->link_change = pnic2_lnk_change;
1645 else if (tp->flags & HAS_NWAY)
1646 tp->link_change = t21142_lnk_change;
1647 else if (tp->flags & HAS_PNICNWAY)
1648 tp->link_change = pnic_lnk_change;
1650 /* Reset the xcvr interface and turn on heartbeat. */
1656 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1659 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1660 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1661 iowrite32(0x0000, ioaddr + CSR13);
1662 iowrite32(0x0000, ioaddr + CSR14);
1663 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1665 t21142_start_nway(dev);
1668 /* just do a reset for sanity sake */
1669 iowrite32(0x0000, ioaddr + CSR13);
1670 iowrite32(0x0000, ioaddr + CSR14);
1673 if ( ! tp->mii_cnt) {
1676 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1677 iowrite32(0x30, ioaddr + CSR12);
1678 iowrite32(0x0001F078, ioaddr + CSR6);
1679 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1684 iowrite32(0x00000000, ioaddr + CSR6);
1685 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1686 iowrite32(0x00000001, ioaddr + CSR13);
1690 iowrite32(0x01a80000, ioaddr + CSR6);
1691 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1692 iowrite32(0x00001000, ioaddr + CSR12);
1695 /* No initialization necessary. */
1699 /* put the chip in snooze mode until opened */
1700 tulip_set_power_state (tp, 0, 1);
1705 pci_free_consistent (pdev,
1706 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1707 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1708 tp->rx_ring, tp->rx_ring_dma);
1712 pci_iounmap(pdev, ioaddr);
1715 pci_release_regions (pdev);
1717 err_out_free_netdev:
1725 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1727 struct net_device *dev = pci_get_drvdata(pdev);
1732 if (netif_running(dev))
1735 netif_device_detach(dev);
1736 free_irq(dev->irq, dev);
1738 pci_save_state(pdev);
1739 pci_disable_device(pdev);
1740 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1746 static int tulip_resume(struct pci_dev *pdev)
1748 struct net_device *dev = pci_get_drvdata(pdev);
1754 pci_set_power_state(pdev, PCI_D0);
1755 pci_restore_state(pdev);
1757 if ((retval = pci_enable_device(pdev))) {
1758 printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
1762 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1763 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1767 netif_device_attach(dev);
1769 if (netif_running(dev))
1775 #endif /* CONFIG_PM */
1778 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1780 struct net_device *dev = pci_get_drvdata (pdev);
1781 struct tulip_private *tp;
1786 tp = netdev_priv(dev);
1787 unregister_netdev(dev);
1788 pci_free_consistent (pdev,
1789 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1790 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1791 tp->rx_ring, tp->rx_ring_dma);
1793 pci_iounmap(pdev, tp->base_addr);
1795 pci_release_regions (pdev);
1796 pci_set_drvdata (pdev, NULL);
1798 /* pci_power_off (pdev, -1); */
1801 #ifdef CONFIG_NET_POLL_CONTROLLER
1803 * Polling 'interrupt' - used by things like netconsole to send skbs
1804 * without having to re-enable interrupts. It's not called while
1805 * the interrupt routine is executing.
1808 static void poll_tulip (struct net_device *dev)
1810 /* disable_irq here is not very nice, but with the lockless
1811 interrupt handler we have no other choice. */
1812 disable_irq(dev->irq);
1813 tulip_interrupt (dev->irq, dev);
1814 enable_irq(dev->irq);
1818 static struct pci_driver tulip_driver = {
1820 .id_table = tulip_pci_tbl,
1821 .probe = tulip_init_one,
1822 .remove = __devexit_p(tulip_remove_one),
1824 .suspend = tulip_suspend,
1825 .resume = tulip_resume,
1826 #endif /* CONFIG_PM */
1830 static int __init tulip_init (void)
1833 printk (KERN_INFO "%s", version);
1836 /* copy module parms into globals */
1837 tulip_rx_copybreak = rx_copybreak;
1838 tulip_max_interrupt_work = max_interrupt_work;
1840 /* probe for and init boards */
1841 return pci_register_driver(&tulip_driver);
1845 static void __exit tulip_cleanup (void)
1847 pci_unregister_driver (&tulip_driver);
1851 module_init(tulip_init);
1852 module_exit(tulip_cleanup);