1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.23"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
360 struct s2io_nic *nic = dev->priv;
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
398 * Constants to be programmed into the Xena's registers, to configure
403 static const u64 herc_act_dtx_cfg[] = {
405 0x8000051536750000ULL, 0x80000515367500E0ULL,
407 0x8000051536750004ULL, 0x80000515367500E4ULL,
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
424 static const u64 xena_dtx_cfg[] = {
426 0x8000051500000000ULL, 0x80000515000000E0ULL,
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
434 0x8002051500000000ULL, 0x80020515000000E0ULL,
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
441 * Constants for Fixing the MacAddress problem seen mostly on
444 static const u64 fix_mac[] = {
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
468 S2IO_PARM_INT(rx_ring_num, 1);
469 S2IO_PARM_INT(multiq, 0);
470 S2IO_PARM_INT(rx_ring_mode, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472 S2IO_PARM_INT(rmac_pause_time, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475 S2IO_PARM_INT(shared_splits, 0);
476 S2IO_PARM_INT(tmac_util_period, 5);
477 S2IO_PARM_INT(rmac_util_period, 5);
478 S2IO_PARM_INT(l3l4hdr_size, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable;
487 module_param_named(lro, lro_enable, uint, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts, 0);
495 S2IO_PARM_INT(napi, 1);
496 S2IO_PARM_INT(ufo, 0);
497 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
499 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503 static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
506 module_param_array(tx_fifo_len, uint, NULL, 0);
507 module_param_array(rx_ring_sz, uint, NULL, 0);
508 module_param_array(rts_frm_len, uint, NULL, 0);
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
526 MODULE_DEVICE_TABLE(pci, s2io_tbl);
528 static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
534 static struct pci_driver s2io_driver = {
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
539 .err_handler = &s2io_err_handler,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp->config.multiq) {
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 netif_stop_subqueue(sp->dev, i);
556 for (i = 0; i < sp->config.tx_fifo_num; i++)
557 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
558 netif_stop_queue(sp->dev);
562 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp->config.multiq)
566 netif_stop_subqueue(sp->dev, fifo_no);
570 sp->mac_control.fifos[fifo_no].queue_state =
572 netif_stop_queue(sp->dev);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp->config.multiq) {
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 netif_start_subqueue(sp->dev, i);
586 for (i = 0; i < sp->config.tx_fifo_num; i++)
587 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
588 netif_start_queue(sp->dev);
592 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp->config.multiq)
596 netif_start_subqueue(sp->dev, fifo_no);
600 sp->mac_control.fifos[fifo_no].queue_state =
602 netif_start_queue(sp->dev);
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp->config.multiq) {
611 for (i = 0; i < sp->config.tx_fifo_num; i++)
612 netif_wake_subqueue(sp->dev, i);
616 for (i = 0; i < sp->config.tx_fifo_num; i++)
617 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
618 netif_wake_queue(sp->dev);
622 static inline void s2io_wake_tx_queue(
623 struct fifo_info *fifo, int cnt, u8 multiq)
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
628 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
629 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
632 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
633 if (netif_queue_stopped(fifo->dev)) {
634 fifo->queue_state = FIFO_QUEUE_START;
635 netif_wake_queue(fifo->dev);
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
645 * Rx descriptors and the statistics block.
648 static int init_shared_mem(struct s2io_nic *nic)
651 void *tmp_v_addr, *tmp_v_addr_next;
652 dma_addr_t tmp_p_addr, tmp_p_addr_next;
653 struct RxD_block *pre_rxd_blk = NULL;
655 int lst_size, lst_per_page;
656 struct net_device *dev = nic->dev;
660 struct mac_info *mac_control;
661 struct config_param *config;
662 unsigned long long mem_allocated = 0;
664 mac_control = &nic->mac_control;
665 config = &nic->config;
668 /* Allocation and initialization of TXDLs in FIOFs */
670 for (i = 0; i < config->tx_fifo_num; i++) {
671 size += config->tx_cfg[i].fifo_len;
673 if (size > MAX_AVAILABLE_TXDS) {
674 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
675 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 size = config->tx_cfg[i].fifo_len;
683 * Legal values are from 2 to 8192
686 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
687 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
688 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
694 lst_size = (sizeof(struct TxD) * config->max_txds);
695 lst_per_page = PAGE_SIZE / lst_size;
697 for (i = 0; i < config->tx_fifo_num; i++) {
698 int fifo_len = config->tx_cfg[i].fifo_len;
699 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
700 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
702 if (!mac_control->fifos[i].list_info) {
704 "Malloc failed for list_info\n");
707 mem_allocated += list_holder_size;
709 for (i = 0; i < config->tx_fifo_num; i++) {
710 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
712 mac_control->fifos[i].tx_curr_put_info.offset = 0;
713 mac_control->fifos[i].tx_curr_put_info.fifo_len =
714 config->tx_cfg[i].fifo_len - 1;
715 mac_control->fifos[i].tx_curr_get_info.offset = 0;
716 mac_control->fifos[i].tx_curr_get_info.fifo_len =
717 config->tx_cfg[i].fifo_len - 1;
718 mac_control->fifos[i].fifo_no = i;
719 mac_control->fifos[i].nic = nic;
720 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
721 mac_control->fifos[i].dev = dev;
723 for (j = 0; j < page_num; j++) {
727 tmp_v = pci_alloc_consistent(nic->pdev,
731 "pci_alloc_consistent ");
732 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
741 mac_control->zerodma_virt_addr = tmp_v;
743 "%s: Zero DMA address for TxDL. ", dev->name);
745 "Virtual address %p\n", tmp_v);
746 tmp_v = pci_alloc_consistent(nic->pdev,
750 "pci_alloc_consistent ");
751 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
754 mem_allocated += PAGE_SIZE;
756 while (k < lst_per_page) {
757 int l = (j * lst_per_page) + k;
758 if (l == config->tx_cfg[i].fifo_len)
760 mac_control->fifos[i].list_info[l].list_virt_addr =
761 tmp_v + (k * lst_size);
762 mac_control->fifos[i].list_info[l].list_phy_addr =
763 tmp_p + (k * lst_size);
769 for (i = 0; i < config->tx_fifo_num; i++) {
770 size = config->tx_cfg[i].fifo_len;
771 mac_control->fifos[i].ufo_in_band_v
772 = kcalloc(size, sizeof(u64), GFP_KERNEL);
773 if (!mac_control->fifos[i].ufo_in_band_v)
775 mem_allocated += (size * sizeof(u64));
778 /* Allocation and initialization of RXDs in Rings */
780 for (i = 0; i < config->rx_ring_num; i++) {
781 if (config->rx_cfg[i].num_rxd %
782 (rxd_count[nic->rxd_mode] + 1)) {
783 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
784 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
786 DBG_PRINT(ERR_DBG, "RxDs per Block");
789 size += config->rx_cfg[i].num_rxd;
790 mac_control->rings[i].block_count =
791 config->rx_cfg[i].num_rxd /
792 (rxd_count[nic->rxd_mode] + 1 );
793 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
794 mac_control->rings[i].block_count;
796 if (nic->rxd_mode == RXD_MODE_1)
797 size = (size * (sizeof(struct RxD1)));
799 size = (size * (sizeof(struct RxD3)));
801 for (i = 0; i < config->rx_ring_num; i++) {
802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
803 mac_control->rings[i].rx_curr_get_info.offset = 0;
804 mac_control->rings[i].rx_curr_get_info.ring_len =
805 config->rx_cfg[i].num_rxd - 1;
806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
807 mac_control->rings[i].rx_curr_put_info.offset = 0;
808 mac_control->rings[i].rx_curr_put_info.ring_len =
809 config->rx_cfg[i].num_rxd - 1;
810 mac_control->rings[i].nic = nic;
811 mac_control->rings[i].ring_no = i;
812 mac_control->rings[i].lro = lro_enable;
814 blk_cnt = config->rx_cfg[i].num_rxd /
815 (rxd_count[nic->rxd_mode] + 1);
816 /* Allocating all the Rx blocks */
817 for (j = 0; j < blk_cnt; j++) {
818 struct rx_block_info *rx_blocks;
821 rx_blocks = &mac_control->rings[i].rx_blocks[j];
822 size = SIZE_OF_BLOCK; //size is always page size
823 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
825 if (tmp_v_addr == NULL) {
827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
832 rx_blocks->block_virt_addr = tmp_v_addr;
835 mem_allocated += size;
836 memset(tmp_v_addr, 0, size);
837 rx_blocks->block_virt_addr = tmp_v_addr;
838 rx_blocks->block_dma_addr = tmp_p_addr;
839 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
840 rxd_count[nic->rxd_mode],
842 if (!rx_blocks->rxds)
845 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
846 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
847 rx_blocks->rxds[l].virt_addr =
848 rx_blocks->block_virt_addr +
849 (rxd_size[nic->rxd_mode] * l);
850 rx_blocks->rxds[l].dma_addr =
851 rx_blocks->block_dma_addr +
852 (rxd_size[nic->rxd_mode] * l);
855 /* Interlinking all Rx Blocks */
856 for (j = 0; j < blk_cnt; j++) {
858 mac_control->rings[i].rx_blocks[j].block_virt_addr;
860 mac_control->rings[i].rx_blocks[(j + 1) %
861 blk_cnt].block_virt_addr;
863 mac_control->rings[i].rx_blocks[j].block_dma_addr;
865 mac_control->rings[i].rx_blocks[(j + 1) %
866 blk_cnt].block_dma_addr;
868 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
869 pre_rxd_blk->reserved_2_pNext_RxD_block =
870 (unsigned long) tmp_v_addr_next;
871 pre_rxd_blk->pNext_RxD_Blk_physical =
872 (u64) tmp_p_addr_next;
875 if (nic->rxd_mode == RXD_MODE_3B) {
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
880 for (i = 0; i < config->rx_ring_num; i++) {
881 blk_cnt = config->rx_cfg[i].num_rxd /
882 (rxd_count[nic->rxd_mode]+ 1);
883 mac_control->rings[i].ba =
884 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
886 if (!mac_control->rings[i].ba)
888 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
889 for (j = 0; j < blk_cnt; j++) {
891 mac_control->rings[i].ba[j] =
892 kmalloc((sizeof(struct buffAdd) *
893 (rxd_count[nic->rxd_mode] + 1)),
895 if (!mac_control->rings[i].ba[j])
897 mem_allocated += (sizeof(struct buffAdd) * \
898 (rxd_count[nic->rxd_mode] + 1));
899 while (k != rxd_count[nic->rxd_mode]) {
900 ba = &mac_control->rings[i].ba[j][k];
902 ba->ba_0_org = (void *) kmalloc
903 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
907 (BUF0_LEN + ALIGN_SIZE);
908 tmp = (unsigned long)ba->ba_0_org;
910 tmp &= ~((unsigned long) ALIGN_SIZE);
911 ba->ba_0 = (void *) tmp;
913 ba->ba_1_org = (void *) kmalloc
914 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
918 += (BUF1_LEN + ALIGN_SIZE);
919 tmp = (unsigned long) ba->ba_1_org;
921 tmp &= ~((unsigned long) ALIGN_SIZE);
922 ba->ba_1 = (void *) tmp;
929 /* Allocation and initialization of Statistics block */
930 size = sizeof(struct stat_block);
931 mac_control->stats_mem = pci_alloc_consistent
932 (nic->pdev, size, &mac_control->stats_mem_phy);
934 if (!mac_control->stats_mem) {
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
942 mem_allocated += size;
943 mac_control->stats_mem_sz = size;
945 tmp_v_addr = mac_control->stats_mem;
946 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
947 memset(tmp_v_addr, 0, size);
948 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
949 (unsigned long long) tmp_p_addr);
950 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
955 * free_shared_mem - Free the allocated Memory
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
961 static void free_shared_mem(struct s2io_nic *nic)
963 int i, j, blk_cnt, size;
965 dma_addr_t tmp_p_addr;
966 struct mac_info *mac_control;
967 struct config_param *config;
968 int lst_size, lst_per_page;
969 struct net_device *dev;
977 mac_control = &nic->mac_control;
978 config = &nic->config;
980 lst_size = (sizeof(struct TxD) * config->max_txds);
981 lst_per_page = PAGE_SIZE / lst_size;
983 for (i = 0; i < config->tx_fifo_num; i++) {
984 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
986 for (j = 0; j < page_num; j++) {
987 int mem_blks = (j * lst_per_page);
988 if (!mac_control->fifos[i].list_info)
990 if (!mac_control->fifos[i].list_info[mem_blks].
993 pci_free_consistent(nic->pdev, PAGE_SIZE,
994 mac_control->fifos[i].
997 mac_control->fifos[i].
1000 nic->mac_control.stats_info->sw_stat.mem_freed
1003 /* If we got a zero DMA address during allocation,
1006 if (mac_control->zerodma_virt_addr) {
1007 pci_free_consistent(nic->pdev, PAGE_SIZE,
1008 mac_control->zerodma_virt_addr,
1011 "%s: Freeing TxDL with zero DMA addr. ",
1013 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1014 mac_control->zerodma_virt_addr);
1015 nic->mac_control.stats_info->sw_stat.mem_freed
1018 kfree(mac_control->fifos[i].list_info);
1019 nic->mac_control.stats_info->sw_stat.mem_freed +=
1020 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1023 size = SIZE_OF_BLOCK;
1024 for (i = 0; i < config->rx_ring_num; i++) {
1025 blk_cnt = mac_control->rings[i].block_count;
1026 for (j = 0; j < blk_cnt; j++) {
1027 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1029 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1031 if (tmp_v_addr == NULL)
1033 pci_free_consistent(nic->pdev, size,
1034 tmp_v_addr, tmp_p_addr);
1035 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1036 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1037 nic->mac_control.stats_info->sw_stat.mem_freed +=
1038 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1042 if (nic->rxd_mode == RXD_MODE_3B) {
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i = 0; i < config->rx_ring_num; i++) {
1045 blk_cnt = config->rx_cfg[i].num_rxd /
1046 (rxd_count[nic->rxd_mode] + 1);
1047 for (j = 0; j < blk_cnt; j++) {
1049 if (!mac_control->rings[i].ba[j])
1051 while (k != rxd_count[nic->rxd_mode]) {
1052 struct buffAdd *ba =
1053 &mac_control->rings[i].ba[j][k];
1054 kfree(ba->ba_0_org);
1055 nic->mac_control.stats_info->sw_stat.\
1056 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1057 kfree(ba->ba_1_org);
1058 nic->mac_control.stats_info->sw_stat.\
1059 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1062 kfree(mac_control->rings[i].ba[j]);
1063 nic->mac_control.stats_info->sw_stat.mem_freed +=
1064 (sizeof(struct buffAdd) *
1065 (rxd_count[nic->rxd_mode] + 1));
1067 kfree(mac_control->rings[i].ba);
1068 nic->mac_control.stats_info->sw_stat.mem_freed +=
1069 (sizeof(struct buffAdd *) * blk_cnt);
1073 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1074 if (mac_control->fifos[i].ufo_in_band_v) {
1075 nic->mac_control.stats_info->sw_stat.mem_freed
1076 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1077 kfree(mac_control->fifos[i].ufo_in_band_v);
1081 if (mac_control->stats_mem) {
1082 nic->mac_control.stats_info->sw_stat.mem_freed +=
1083 mac_control->stats_mem_sz;
1084 pci_free_consistent(nic->pdev,
1085 mac_control->stats_mem_sz,
1086 mac_control->stats_mem,
1087 mac_control->stats_mem_phy);
1092 * s2io_verify_pci_mode -
1095 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1097 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1098 register u64 val64 = 0;
1101 val64 = readq(&bar0->pci_mode);
1102 mode = (u8)GET_PCI_MODE(val64);
1104 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1105 return -1; /* Unknown PCI mode */
1109 #define NEC_VENID 0x1033
1110 #define NEC_DEVID 0x0125
1111 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1113 struct pci_dev *tdev = NULL;
1114 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1115 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1116 if (tdev->bus == s2io_pdev->bus->parent)
1124 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1126 * s2io_print_pci_mode -
1128 static int s2io_print_pci_mode(struct s2io_nic *nic)
1130 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1131 register u64 val64 = 0;
1133 struct config_param *config = &nic->config;
1135 val64 = readq(&bar0->pci_mode);
1136 mode = (u8)GET_PCI_MODE(val64);
1138 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1139 return -1; /* Unknown PCI mode */
1141 config->bus_speed = bus_speed[mode];
1143 if (s2io_on_nec_bridge(nic->pdev)) {
1144 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1149 if (val64 & PCI_MODE_32_BITS) {
1150 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1152 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1156 case PCI_MODE_PCI_33:
1157 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1159 case PCI_MODE_PCI_66:
1160 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1162 case PCI_MODE_PCIX_M1_66:
1163 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1165 case PCI_MODE_PCIX_M1_100:
1166 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1168 case PCI_MODE_PCIX_M1_133:
1169 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1171 case PCI_MODE_PCIX_M2_66:
1172 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1174 case PCI_MODE_PCIX_M2_100:
1175 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1177 case PCI_MODE_PCIX_M2_133:
1178 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1181 return -1; /* Unsupported bus speed */
1188 * init_tti - Initialization transmit traffic interrupt scheme
1189 * @nic: device private variable
1190 * @link: link status (UP/DOWN) used to enable/disable continuous
1191 * transmit interrupts
1192 * Description: The function configures transmit traffic interrupts
1193 * Return Value: SUCCESS on success and
1197 static int init_tti(struct s2io_nic *nic, int link)
1199 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1200 register u64 val64 = 0;
1202 struct config_param *config;
1204 config = &nic->config;
1206 for (i = 0; i < config->tx_fifo_num; i++) {
1208 * TTI Initialization. Default Tx timer gets us about
1209 * 250 interrupts per sec. Continuous interrupts are enabled
1212 if (nic->device_type == XFRAME_II_DEVICE) {
1213 int count = (nic->config.bus_speed * 125)/2;
1214 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1216 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1218 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1219 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1220 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1221 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1223 if (use_continuous_tx_intrs && (link == LINK_UP))
1224 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1225 writeq(val64, &bar0->tti_data1_mem);
1227 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1228 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1229 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1230 TTI_DATA2_MEM_TX_UFC_D(0x80);
1232 writeq(val64, &bar0->tti_data2_mem);
1234 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1235 TTI_CMD_MEM_OFFSET(i);
1236 writeq(val64, &bar0->tti_command_mem);
1238 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1239 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1247 * init_nic - Initialization of hardware
1248 * @nic: device private variable
1249 * Description: The function sequentially configures every block
1250 * of the H/W from their reset values.
1251 * Return Value: SUCCESS on success and
1252 * '-1' on failure (endian settings incorrect).
1255 static int init_nic(struct s2io_nic *nic)
1257 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1258 struct net_device *dev = nic->dev;
1259 register u64 val64 = 0;
1263 struct mac_info *mac_control;
1264 struct config_param *config;
1266 unsigned long long mem_share;
1269 mac_control = &nic->mac_control;
1270 config = &nic->config;
1272 /* to set the swapper controle on the card */
1273 if(s2io_set_swapper(nic)) {
1274 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1279 * Herc requires EOI to be removed from reset before XGXS, so..
1281 if (nic->device_type & XFRAME_II_DEVICE) {
1282 val64 = 0xA500000000ULL;
1283 writeq(val64, &bar0->sw_reset);
1285 val64 = readq(&bar0->sw_reset);
1288 /* Remove XGXS from reset state */
1290 writeq(val64, &bar0->sw_reset);
1292 val64 = readq(&bar0->sw_reset);
1294 /* Ensure that it's safe to access registers by checking
1295 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1297 if (nic->device_type == XFRAME_II_DEVICE) {
1298 for (i = 0; i < 50; i++) {
1299 val64 = readq(&bar0->adapter_status);
1300 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1308 /* Enable Receiving broadcasts */
1309 add = &bar0->mac_cfg;
1310 val64 = readq(&bar0->mac_cfg);
1311 val64 |= MAC_RMAC_BCAST_ENABLE;
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313 writel((u32) val64, add);
1314 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1315 writel((u32) (val64 >> 32), (add + 4));
1317 /* Read registers in all blocks */
1318 val64 = readq(&bar0->mac_int_mask);
1319 val64 = readq(&bar0->mc_int_mask);
1320 val64 = readq(&bar0->xgxs_int_mask);
1324 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1326 if (nic->device_type & XFRAME_II_DEVICE) {
1327 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1328 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1329 &bar0->dtx_control, UF);
1331 msleep(1); /* Necessary!! */
1335 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1336 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1337 &bar0->dtx_control, UF);
1338 val64 = readq(&bar0->dtx_control);
1343 /* Tx DMA Initialization */
1345 writeq(val64, &bar0->tx_fifo_partition_0);
1346 writeq(val64, &bar0->tx_fifo_partition_1);
1347 writeq(val64, &bar0->tx_fifo_partition_2);
1348 writeq(val64, &bar0->tx_fifo_partition_3);
1351 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1353 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1354 13) | vBIT(config->tx_cfg[i].fifo_priority,
1357 if (i == (config->tx_fifo_num - 1)) {
1364 writeq(val64, &bar0->tx_fifo_partition_0);
1369 writeq(val64, &bar0->tx_fifo_partition_1);
1374 writeq(val64, &bar0->tx_fifo_partition_2);
1379 writeq(val64, &bar0->tx_fifo_partition_3);
1390 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1391 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1393 if ((nic->device_type == XFRAME_I_DEVICE) &&
1394 (nic->pdev->revision < 4))
1395 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1397 val64 = readq(&bar0->tx_fifo_partition_0);
1398 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1399 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1402 * Initialization of Tx_PA_CONFIG register to ignore packet
1403 * integrity checking.
1405 val64 = readq(&bar0->tx_pa_cfg);
1406 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1407 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1408 writeq(val64, &bar0->tx_pa_cfg);
1410 /* Rx DMA intialization. */
1412 for (i = 0; i < config->rx_ring_num; i++) {
1414 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1417 writeq(val64, &bar0->rx_queue_priority);
1420 * Allocating equal share of memory to all the
1424 if (nic->device_type & XFRAME_II_DEVICE)
1429 for (i = 0; i < config->rx_ring_num; i++) {
1432 mem_share = (mem_size / config->rx_ring_num +
1433 mem_size % config->rx_ring_num);
1434 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1437 mem_share = (mem_size / config->rx_ring_num);
1438 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1441 mem_share = (mem_size / config->rx_ring_num);
1442 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1445 mem_share = (mem_size / config->rx_ring_num);
1446 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1449 mem_share = (mem_size / config->rx_ring_num);
1450 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1453 mem_share = (mem_size / config->rx_ring_num);
1454 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1457 mem_share = (mem_size / config->rx_ring_num);
1458 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1461 mem_share = (mem_size / config->rx_ring_num);
1462 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1466 writeq(val64, &bar0->rx_queue_cfg);
1469 * Filling Tx round robin registers
1470 * as per the number of FIFOs for equal scheduling priority
1472 switch (config->tx_fifo_num) {
1475 writeq(val64, &bar0->tx_w_round_robin_0);
1476 writeq(val64, &bar0->tx_w_round_robin_1);
1477 writeq(val64, &bar0->tx_w_round_robin_2);
1478 writeq(val64, &bar0->tx_w_round_robin_3);
1479 writeq(val64, &bar0->tx_w_round_robin_4);
1482 val64 = 0x0001000100010001ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_0);
1484 writeq(val64, &bar0->tx_w_round_robin_1);
1485 writeq(val64, &bar0->tx_w_round_robin_2);
1486 writeq(val64, &bar0->tx_w_round_robin_3);
1487 val64 = 0x0001000100000000ULL;
1488 writeq(val64, &bar0->tx_w_round_robin_4);
1491 val64 = 0x0001020001020001ULL;
1492 writeq(val64, &bar0->tx_w_round_robin_0);
1493 val64 = 0x0200010200010200ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_1);
1495 val64 = 0x0102000102000102ULL;
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 val64 = 0x0001020001020001ULL;
1498 writeq(val64, &bar0->tx_w_round_robin_3);
1499 val64 = 0x0200010200000000ULL;
1500 writeq(val64, &bar0->tx_w_round_robin_4);
1503 val64 = 0x0001020300010203ULL;
1504 writeq(val64, &bar0->tx_w_round_robin_0);
1505 writeq(val64, &bar0->tx_w_round_robin_1);
1506 writeq(val64, &bar0->tx_w_round_robin_2);
1507 writeq(val64, &bar0->tx_w_round_robin_3);
1508 val64 = 0x0001020300000000ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_4);
1512 val64 = 0x0001020304000102ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_0);
1514 val64 = 0x0304000102030400ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_1);
1516 val64 = 0x0102030400010203ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_2);
1518 val64 = 0x0400010203040001ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_3);
1520 val64 = 0x0203040000000000ULL;
1521 writeq(val64, &bar0->tx_w_round_robin_4);
1524 val64 = 0x0001020304050001ULL;
1525 writeq(val64, &bar0->tx_w_round_robin_0);
1526 val64 = 0x0203040500010203ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_1);
1528 val64 = 0x0405000102030405ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_2);
1530 val64 = 0x0001020304050001ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_3);
1532 val64 = 0x0203040500000000ULL;
1533 writeq(val64, &bar0->tx_w_round_robin_4);
1536 val64 = 0x0001020304050600ULL;
1537 writeq(val64, &bar0->tx_w_round_robin_0);
1538 val64 = 0x0102030405060001ULL;
1539 writeq(val64, &bar0->tx_w_round_robin_1);
1540 val64 = 0x0203040506000102ULL;
1541 writeq(val64, &bar0->tx_w_round_robin_2);
1542 val64 = 0x0304050600010203ULL;
1543 writeq(val64, &bar0->tx_w_round_robin_3);
1544 val64 = 0x0405060000000000ULL;
1545 writeq(val64, &bar0->tx_w_round_robin_4);
1548 val64 = 0x0001020304050607ULL;
1549 writeq(val64, &bar0->tx_w_round_robin_0);
1550 writeq(val64, &bar0->tx_w_round_robin_1);
1551 writeq(val64, &bar0->tx_w_round_robin_2);
1552 writeq(val64, &bar0->tx_w_round_robin_3);
1553 val64 = 0x0001020300000000ULL;
1554 writeq(val64, &bar0->tx_w_round_robin_4);
1558 /* Enable all configured Tx FIFO partitions */
1559 val64 = readq(&bar0->tx_fifo_partition_0);
1560 val64 |= (TX_FIFO_PARTITION_EN);
1561 writeq(val64, &bar0->tx_fifo_partition_0);
1563 /* Filling the Rx round robin registers as per the
1564 * number of Rings and steering based on QoS with
1567 switch (config->rx_ring_num) {
1570 writeq(val64, &bar0->rx_w_round_robin_0);
1571 writeq(val64, &bar0->rx_w_round_robin_1);
1572 writeq(val64, &bar0->rx_w_round_robin_2);
1573 writeq(val64, &bar0->rx_w_round_robin_3);
1574 writeq(val64, &bar0->rx_w_round_robin_4);
1576 val64 = 0x8080808080808080ULL;
1577 writeq(val64, &bar0->rts_qos_steering);
1580 val64 = 0x0001000100010001ULL;
1581 writeq(val64, &bar0->rx_w_round_robin_0);
1582 writeq(val64, &bar0->rx_w_round_robin_1);
1583 writeq(val64, &bar0->rx_w_round_robin_2);
1584 writeq(val64, &bar0->rx_w_round_robin_3);
1585 val64 = 0x0001000100000000ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_4);
1588 val64 = 0x8080808040404040ULL;
1589 writeq(val64, &bar0->rts_qos_steering);
1592 val64 = 0x0001020001020001ULL;
1593 writeq(val64, &bar0->rx_w_round_robin_0);
1594 val64 = 0x0200010200010200ULL;
1595 writeq(val64, &bar0->rx_w_round_robin_1);
1596 val64 = 0x0102000102000102ULL;
1597 writeq(val64, &bar0->rx_w_round_robin_2);
1598 val64 = 0x0001020001020001ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_3);
1600 val64 = 0x0200010200000000ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_4);
1603 val64 = 0x8080804040402020ULL;
1604 writeq(val64, &bar0->rts_qos_steering);
1607 val64 = 0x0001020300010203ULL;
1608 writeq(val64, &bar0->rx_w_round_robin_0);
1609 writeq(val64, &bar0->rx_w_round_robin_1);
1610 writeq(val64, &bar0->rx_w_round_robin_2);
1611 writeq(val64, &bar0->rx_w_round_robin_3);
1612 val64 = 0x0001020300000000ULL;
1613 writeq(val64, &bar0->rx_w_round_robin_4);
1615 val64 = 0x8080404020201010ULL;
1616 writeq(val64, &bar0->rts_qos_steering);
1619 val64 = 0x0001020304000102ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_0);
1621 val64 = 0x0304000102030400ULL;
1622 writeq(val64, &bar0->rx_w_round_robin_1);
1623 val64 = 0x0102030400010203ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_2);
1625 val64 = 0x0400010203040001ULL;
1626 writeq(val64, &bar0->rx_w_round_robin_3);
1627 val64 = 0x0203040000000000ULL;
1628 writeq(val64, &bar0->rx_w_round_robin_4);
1630 val64 = 0x8080404020201008ULL;
1631 writeq(val64, &bar0->rts_qos_steering);
1634 val64 = 0x0001020304050001ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_0);
1636 val64 = 0x0203040500010203ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_1);
1638 val64 = 0x0405000102030405ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_2);
1640 val64 = 0x0001020304050001ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_3);
1642 val64 = 0x0203040500000000ULL;
1643 writeq(val64, &bar0->rx_w_round_robin_4);
1645 val64 = 0x8080404020100804ULL;
1646 writeq(val64, &bar0->rts_qos_steering);
1649 val64 = 0x0001020304050600ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_0);
1651 val64 = 0x0102030405060001ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_1);
1653 val64 = 0x0203040506000102ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_2);
1655 val64 = 0x0304050600010203ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_3);
1657 val64 = 0x0405060000000000ULL;
1658 writeq(val64, &bar0->rx_w_round_robin_4);
1660 val64 = 0x8080402010080402ULL;
1661 writeq(val64, &bar0->rts_qos_steering);
1664 val64 = 0x0001020304050607ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_0);
1666 writeq(val64, &bar0->rx_w_round_robin_1);
1667 writeq(val64, &bar0->rx_w_round_robin_2);
1668 writeq(val64, &bar0->rx_w_round_robin_3);
1669 val64 = 0x0001020300000000ULL;
1670 writeq(val64, &bar0->rx_w_round_robin_4);
1672 val64 = 0x8040201008040201ULL;
1673 writeq(val64, &bar0->rts_qos_steering);
1679 for (i = 0; i < 8; i++)
1680 writeq(val64, &bar0->rts_frm_len_n[i]);
1682 /* Set the default rts frame length for the rings configured */
1683 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1684 for (i = 0 ; i < config->rx_ring_num ; i++)
1685 writeq(val64, &bar0->rts_frm_len_n[i]);
1687 /* Set the frame length for the configured rings
1688 * desired by the user
1690 for (i = 0; i < config->rx_ring_num; i++) {
1691 /* If rts_frm_len[i] == 0 then it is assumed that user not
1692 * specified frame length steering.
1693 * If the user provides the frame length then program
1694 * the rts_frm_len register for those values or else
1695 * leave it as it is.
1697 if (rts_frm_len[i] != 0) {
1698 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1699 &bar0->rts_frm_len_n[i]);
1703 /* Disable differentiated services steering logic */
1704 for (i = 0; i < 64; i++) {
1705 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1706 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1708 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1713 /* Program statistics memory */
1714 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1716 if (nic->device_type == XFRAME_II_DEVICE) {
1717 val64 = STAT_BC(0x320);
1718 writeq(val64, &bar0->stat_byte_cnt);
1722 * Initializing the sampling rate for the device to calculate the
1723 * bandwidth utilization.
1725 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1726 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1727 writeq(val64, &bar0->mac_link_util);
1730 * Initializing the Transmit and Receive Traffic Interrupt
1734 /* Initialize TTI */
1735 if (SUCCESS != init_tti(nic, nic->last_link_state))
1738 /* RTI Initialization */
1739 if (nic->device_type == XFRAME_II_DEVICE) {
1741 * Programmed to generate Apprx 500 Intrs per
1744 int count = (nic->config.bus_speed * 125)/4;
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1747 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1748 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1749 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1750 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1752 writeq(val64, &bar0->rti_data1_mem);
1754 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756 if (nic->config.intr_type == MSI_X)
1757 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1758 RTI_DATA2_MEM_RX_UFC_D(0x40));
1760 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1761 RTI_DATA2_MEM_RX_UFC_D(0x80));
1762 writeq(val64, &bar0->rti_data2_mem);
1764 for (i = 0; i < config->rx_ring_num; i++) {
1765 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1766 | RTI_CMD_MEM_OFFSET(i);
1767 writeq(val64, &bar0->rti_command_mem);
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1783 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799 /* Disable RMAC PAD STRIPPING */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1838 for (i = 0; i < 4; i++) {
1840 (((u64) 0xFF00 | nic->mac_control.
1841 mc_pause_threshold_q0q3)
1844 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1847 for (i = 0; i < 4; i++) {
1849 (((u64) 0xFF00 | nic->mac_control.
1850 mc_pause_threshold_q4q7)
1853 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1856 * TxDMA will stop Read request if the number of read split has
1857 * exceeded the limit pointed by shared_splits
1859 val64 = readq(&bar0->pic_control);
1860 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1861 writeq(val64, &bar0->pic_control);
1863 if (nic->config.bus_speed == 266) {
1864 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1865 writeq(0x0, &bar0->read_retry_delay);
1866 writeq(0x0, &bar0->write_retry_delay);
1870 * Programming the Herc to split every write transaction
1871 * that does not start on an ADB to reduce disconnects.
1873 if (nic->device_type == XFRAME_II_DEVICE) {
1874 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1875 MISC_LINK_STABILITY_PRD(3);
1876 writeq(val64, &bar0->misc_control);
1877 val64 = readq(&bar0->pic_control2);
1878 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1879 writeq(val64, &bar0->pic_control2);
1881 if (strstr(nic->product_name, "CX4")) {
1882 val64 = TMAC_AVG_IPG(0x17);
1883 writeq(val64, &bar0->tmac_avg_ipg);
1888 #define LINK_UP_DOWN_INTERRUPT 1
1889 #define MAC_RMAC_ERR_TIMER 2
1891 static int s2io_link_fault_indication(struct s2io_nic *nic)
1893 if (nic->config.intr_type != INTA)
1894 return MAC_RMAC_ERR_TIMER;
1895 if (nic->device_type == XFRAME_II_DEVICE)
1896 return LINK_UP_DOWN_INTERRUPT;
1898 return MAC_RMAC_ERR_TIMER;
1902 * do_s2io_write_bits - update alarm bits in alarm register
1903 * @value: alarm bits
1904 * @flag: interrupt status
1905 * @addr: address value
1906 * Description: update alarm bits in alarm register
1910 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1914 temp64 = readq(addr);
1916 if(flag == ENABLE_INTRS)
1917 temp64 &= ~((u64) value);
1919 temp64 |= ((u64) value);
1920 writeq(temp64, addr);
1923 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1925 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1926 register u64 gen_int_mask = 0;
1928 if (mask & TX_DMA_INTR) {
1930 gen_int_mask |= TXDMA_INT_M;
1932 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1933 TXDMA_PCC_INT | TXDMA_TTI_INT |
1934 TXDMA_LSO_INT | TXDMA_TPA_INT |
1935 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1937 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1938 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1939 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1940 &bar0->pfc_err_mask);
1942 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1943 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1944 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1946 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1947 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1948 PCC_N_SERR | PCC_6_COF_OV_ERR |
1949 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1950 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1951 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1953 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1954 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1956 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1957 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1958 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1959 flag, &bar0->lso_err_mask);
1961 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1962 flag, &bar0->tpa_err_mask);
1964 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1968 if (mask & TX_MAC_INTR) {
1969 gen_int_mask |= TXMAC_INT_M;
1970 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1971 &bar0->mac_int_mask);
1972 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1973 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1974 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1975 flag, &bar0->mac_tmac_err_mask);
1978 if (mask & TX_XGXS_INTR) {
1979 gen_int_mask |= TXXGXS_INT_M;
1980 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1981 &bar0->xgxs_int_mask);
1982 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1983 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1984 flag, &bar0->xgxs_txgxs_err_mask);
1987 if (mask & RX_DMA_INTR) {
1988 gen_int_mask |= RXDMA_INT_M;
1989 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1990 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1991 flag, &bar0->rxdma_int_mask);
1992 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1993 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1994 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1995 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1996 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1997 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1998 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1999 &bar0->prc_pcix_err_mask);
2000 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2001 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2002 &bar0->rpa_err_mask);
2003 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2004 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2005 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2006 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2007 flag, &bar0->rda_err_mask);
2008 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2009 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2010 flag, &bar0->rti_err_mask);
2013 if (mask & RX_MAC_INTR) {
2014 gen_int_mask |= RXMAC_INT_M;
2015 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2016 &bar0->mac_int_mask);
2017 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2018 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2019 RMAC_DOUBLE_ECC_ERR |
2020 RMAC_LINK_STATE_CHANGE_INT,
2021 flag, &bar0->mac_rmac_err_mask);
2024 if (mask & RX_XGXS_INTR)
2026 gen_int_mask |= RXXGXS_INT_M;
2027 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2028 &bar0->xgxs_int_mask);
2029 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2030 &bar0->xgxs_rxgxs_err_mask);
2033 if (mask & MC_INTR) {
2034 gen_int_mask |= MC_INT_M;
2035 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
2040 nic->general_int_mask = gen_int_mask;
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2046 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2047 * @nic: device private variable,
2048 * @mask: A mask indicating which Intr block must be modified and,
2049 * @flag: A flag indicating whether to enable or disable the Intrs.
2050 * Description: This function will either disable or enable the interrupts
2051 * depending on the flag argument. The mask argument can be used to
2052 * enable/disable any Intr block.
2053 * Return Value: NONE.
2056 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2059 register u64 temp64 = 0, intr_mask = 0;
2061 intr_mask = nic->general_int_mask;
2063 /* Top level interrupt classification */
2064 /* PIC Interrupts */
2065 if (mask & TX_PIC_INTR) {
2066 /* Enable PIC Intrs in the general intr mask register */
2067 intr_mask |= TXPIC_INT_M;
2068 if (flag == ENABLE_INTRS) {
2070 * If Hercules adapter enable GPIO otherwise
2071 * disable all PCIX, Flash, MDIO, IIC and GPIO
2072 * interrupts for now.
2075 if (s2io_link_fault_indication(nic) ==
2076 LINK_UP_DOWN_INTERRUPT ) {
2077 do_s2io_write_bits(PIC_INT_GPIO, flag,
2078 &bar0->pic_int_mask);
2079 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2080 &bar0->gpio_int_mask);
2082 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2083 } else if (flag == DISABLE_INTRS) {
2085 * Disable PIC Intrs in the general
2086 * intr mask register
2088 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2092 /* Tx traffic interrupts */
2093 if (mask & TX_TRAFFIC_INTR) {
2094 intr_mask |= TXTRAFFIC_INT_M;
2095 if (flag == ENABLE_INTRS) {
2097 * Enable all the Tx side interrupts
2098 * writing 0 Enables all 64 TX interrupt levels
2100 writeq(0x0, &bar0->tx_traffic_mask);
2101 } else if (flag == DISABLE_INTRS) {
2103 * Disable Tx Traffic Intrs in the general intr mask
2106 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2110 /* Rx traffic interrupts */
2111 if (mask & RX_TRAFFIC_INTR) {
2112 intr_mask |= RXTRAFFIC_INT_M;
2113 if (flag == ENABLE_INTRS) {
2114 /* writing 0 Enables all 8 RX interrupt levels */
2115 writeq(0x0, &bar0->rx_traffic_mask);
2116 } else if (flag == DISABLE_INTRS) {
2118 * Disable Rx Traffic Intrs in the general intr mask
2121 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2125 temp64 = readq(&bar0->general_int_mask);
2126 if (flag == ENABLE_INTRS)
2127 temp64 &= ~((u64) intr_mask);
2129 temp64 = DISABLE_ALL_INTRS;
2130 writeq(temp64, &bar0->general_int_mask);
2132 nic->general_int_mask = readq(&bar0->general_int_mask);
2136 * verify_pcc_quiescent- Checks for PCC quiescent state
2137 * Return: 1 If PCC is quiescence
2138 * 0 If PCC is not quiescence
2140 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2143 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2144 u64 val64 = readq(&bar0->adapter_status);
2146 herc = (sp->device_type == XFRAME_II_DEVICE);
2148 if (flag == FALSE) {
2149 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2153 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2157 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2158 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2159 ADAPTER_STATUS_RMAC_PCC_IDLE))
2162 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2163 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2171 * verify_xena_quiescence - Checks whether the H/W is ready
2172 * Description: Returns whether the H/W is ready to go or not. Depending
2173 * on whether adapter enable bit was written or not the comparison
2174 * differs and the calling function passes the input argument flag to
2176 * Return: 1 If xena is quiescence
2177 * 0 If Xena is not quiescence
2180 static int verify_xena_quiescence(struct s2io_nic *sp)
2183 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2184 u64 val64 = readq(&bar0->adapter_status);
2185 mode = s2io_verify_pci_mode(sp);
2187 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2188 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2191 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2192 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2195 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2196 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2199 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2200 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2203 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2204 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2207 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2208 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2211 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2212 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2215 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2216 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2221 * In PCI 33 mode, the P_PLL is not used, and therefore,
2222 * the the P_PLL_LOCK bit in the adapter_status register will
2225 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2226 sp->device_type == XFRAME_II_DEVICE && mode !=
2228 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2231 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2232 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2233 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2240 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2241 * @sp: Pointer to device specifc structure
2243 * New procedure to clear mac address reading problems on Alpha platforms
2247 static void fix_mac_address(struct s2io_nic * sp)
2249 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2253 while (fix_mac[i] != END_SIGN) {
2254 writeq(fix_mac[i++], &bar0->gpio_control);
2256 val64 = readq(&bar0->gpio_control);
2261 * start_nic - Turns the device on
2262 * @nic : device private variable.
2264 * This function actually turns the device on. Before this function is
2265 * called,all Registers are configured from their reset states
2266 * and shared memory is allocated but the NIC is still quiescent. On
2267 * calling this function, the device interrupts are cleared and the NIC is
2268 * literally switched on by writing into the adapter control register.
2270 * SUCCESS on success and -1 on failure.
2273 static int start_nic(struct s2io_nic *nic)
2275 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2276 struct net_device *dev = nic->dev;
2277 register u64 val64 = 0;
2279 struct mac_info *mac_control;
2280 struct config_param *config;
2282 mac_control = &nic->mac_control;
2283 config = &nic->config;
2285 /* PRC Initialization and configuration */
2286 for (i = 0; i < config->rx_ring_num; i++) {
2287 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2288 &bar0->prc_rxd0_n[i]);
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
2313 vlan_strip_flag = 0;
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2326 msleep(100); /* Delay by around 100 ms. */
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2334 * Verify if the device is ready to be enabled, if so enable
2337 val64 = readq(&bar0->adapter_status);
2338 if (!verify_xena_quiescence(nic)) {
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2340 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2341 (unsigned long long) val64);
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2363 schedule_work(&nic->set_link_task);
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2382 TxD *txdlp, int get_off)
2384 struct s2io_nic *nic = fifo_data->nic;
2385 struct sk_buff *skb;
2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391 pci_unmap_single(nic->pdev, (dma_addr_t)
2392 txds->Buffer_Pointer, sizeof(u64),
2397 skb = (struct sk_buff *) ((unsigned long)
2398 txds->Host_Control);
2400 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2403 pci_unmap_single(nic->pdev, (dma_addr_t)
2404 txds->Buffer_Pointer,
2405 skb->len - skb->data_len,
2407 frg_cnt = skb_shinfo(skb)->nr_frags;
2410 for (j = 0; j < frg_cnt; j++, txds++) {
2411 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2412 if (!txds->Buffer_Pointer)
2414 pci_unmap_page(nic->pdev, (dma_addr_t)
2415 txds->Buffer_Pointer,
2416 frag->size, PCI_DMA_TODEVICE);
2419 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2424 * free_tx_buffers - Free all queued Tx buffers
2425 * @nic : device private variable.
2427 * Free all queued Tx buffers.
2428 * Return Value: void
2431 static void free_tx_buffers(struct s2io_nic *nic)
2433 struct net_device *dev = nic->dev;
2434 struct sk_buff *skb;
2437 struct mac_info *mac_control;
2438 struct config_param *config;
2441 mac_control = &nic->mac_control;
2442 config = &nic->config;
2444 for (i = 0; i < config->tx_fifo_num; i++) {
2445 unsigned long flags;
2446 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2447 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2448 txdp = (struct TxD *) \
2449 mac_control->fifos[i].list_info[j].list_virt_addr;
2450 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2452 nic->mac_control.stats_info->sw_stat.mem_freed
2459 "%s:forcibly freeing %d skbs on FIFO%d\n",
2461 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2462 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2463 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2468 * stop_nic - To stop the nic
2469 * @nic ; device private variable.
2471 * This function does exactly the opposite of what the start_nic()
2472 * function does. This function is called to stop the device.
2477 static void stop_nic(struct s2io_nic *nic)
2479 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2480 register u64 val64 = 0;
2482 struct mac_info *mac_control;
2483 struct config_param *config;
2485 mac_control = &nic->mac_control;
2486 config = &nic->config;
2488 /* Disable all interrupts */
2489 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2490 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2491 interruptible |= TX_PIC_INTR;
2492 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2494 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2495 val64 = readq(&bar0->adapter_control);
2496 val64 &= ~(ADAPTER_CNTL_EN);
2497 writeq(val64, &bar0->adapter_control);
2501 * fill_rx_buffers - Allocates the Rx side skbs
2502 * @ring_info: per ring structure
2504 * The function allocates Rx side skbs and puts the physical
2505 * address of these buffers into the RxD buffer pointers, so that the NIC
2506 * can DMA the received frame into these locations.
2507 * The NIC supports 3 receive modes, viz
2509 * 2. three buffer and
2510 * 3. Five buffer modes.
2511 * Each mode defines how many fragments the received frame will be split
2512 * up into by the NIC. The frame is split into L3 header, L4 Header,
2513 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2514 * is split into 3 fragments. As of now only single buffer mode is
2517 * SUCCESS on success or an appropriate -ve value on failure.
2520 static int fill_rx_buffers(struct ring_info *ring)
2522 struct sk_buff *skb;
2524 int off, size, block_no, block_no1;
2529 struct RxD_t *first_rxdp = NULL;
2530 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2534 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2536 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2538 block_no1 = ring->rx_curr_get_info.block_index;
2539 while (alloc_tab < alloc_cnt) {
2540 block_no = ring->rx_curr_put_info.block_index;
2542 off = ring->rx_curr_put_info.offset;
2544 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2546 rxd_index = off + 1;
2548 rxd_index += (block_no * ring->rxd_count);
2550 if ((block_no == block_no1) &&
2551 (off == ring->rx_curr_get_info.offset) &&
2552 (rxdp->Host_Control)) {
2553 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2555 DBG_PRINT(INTR_DBG, " info equated\n");
2558 if (off && (off == ring->rxd_count)) {
2559 ring->rx_curr_put_info.block_index++;
2560 if (ring->rx_curr_put_info.block_index ==
2562 ring->rx_curr_put_info.block_index = 0;
2563 block_no = ring->rx_curr_put_info.block_index;
2565 ring->rx_curr_put_info.offset = off;
2566 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2567 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2568 ring->dev->name, rxdp);
2572 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2573 ((ring->rxd_mode == RXD_MODE_3B) &&
2574 (rxdp->Control_2 & s2BIT(0)))) {
2575 ring->rx_curr_put_info.offset = off;
2578 /* calculate size of skb based on ring mode */
2579 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2580 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2581 if (ring->rxd_mode == RXD_MODE_1)
2582 size += NET_IP_ALIGN;
2584 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2587 skb = dev_alloc_skb(size);
2589 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2590 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2593 first_rxdp->Control_1 |= RXD_OWN_XENA;
2595 stats->mem_alloc_fail_cnt++;
2599 stats->mem_allocated += skb->truesize;
2601 if (ring->rxd_mode == RXD_MODE_1) {
2602 /* 1 buffer mode - normal operation mode */
2603 rxdp1 = (struct RxD1*)rxdp;
2604 memset(rxdp, 0, sizeof(struct RxD1));
2605 skb_reserve(skb, NET_IP_ALIGN);
2606 rxdp1->Buffer0_ptr = pci_map_single
2607 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2608 PCI_DMA_FROMDEVICE);
2609 if( (rxdp1->Buffer0_ptr == 0) ||
2610 (rxdp1->Buffer0_ptr ==
2612 goto pci_map_failed;
2615 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2616 rxdp->Host_Control = (unsigned long) (skb);
2617 } else if (ring->rxd_mode == RXD_MODE_3B) {
2620 * 2 buffer mode provides 128
2621 * byte aligned receive buffers.
2624 rxdp3 = (struct RxD3*)rxdp;
2625 /* save buffer pointers to avoid frequent dma mapping */
2626 Buffer0_ptr = rxdp3->Buffer0_ptr;
2627 Buffer1_ptr = rxdp3->Buffer1_ptr;
2628 memset(rxdp, 0, sizeof(struct RxD3));
2629 /* restore the buffer pointers for dma sync*/
2630 rxdp3->Buffer0_ptr = Buffer0_ptr;
2631 rxdp3->Buffer1_ptr = Buffer1_ptr;
2633 ba = &ring->ba[block_no][off];
2634 skb_reserve(skb, BUF0_LEN);
2635 tmp = (u64)(unsigned long) skb->data;
2638 skb->data = (void *) (unsigned long)tmp;
2639 skb_reset_tail_pointer(skb);
2641 if (!(rxdp3->Buffer0_ptr))
2642 rxdp3->Buffer0_ptr =
2643 pci_map_single(ring->pdev, ba->ba_0,
2644 BUF0_LEN, PCI_DMA_FROMDEVICE);
2646 pci_dma_sync_single_for_device(ring->pdev,
2647 (dma_addr_t) rxdp3->Buffer0_ptr,
2648 BUF0_LEN, PCI_DMA_FROMDEVICE);
2649 if( (rxdp3->Buffer0_ptr == 0) ||
2650 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2651 goto pci_map_failed;
2653 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2654 if (ring->rxd_mode == RXD_MODE_3B) {
2655 /* Two buffer mode */
2658 * Buffer2 will have L3/L4 header plus
2661 rxdp3->Buffer2_ptr = pci_map_single
2662 (ring->pdev, skb->data, ring->mtu + 4,
2663 PCI_DMA_FROMDEVICE);
2665 if( (rxdp3->Buffer2_ptr == 0) ||
2666 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2667 goto pci_map_failed;
2669 if (!rxdp3->Buffer1_ptr)
2670 rxdp3->Buffer1_ptr =
2671 pci_map_single(ring->pdev,
2673 PCI_DMA_FROMDEVICE);
2675 if( (rxdp3->Buffer1_ptr == 0) ||
2676 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2679 (dma_addr_t)(unsigned long)
2682 PCI_DMA_FROMDEVICE);
2683 goto pci_map_failed;
2685 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2686 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2689 rxdp->Control_2 |= s2BIT(0);
2690 rxdp->Host_Control = (unsigned long) (skb);
2692 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2693 rxdp->Control_1 |= RXD_OWN_XENA;
2695 if (off == (ring->rxd_count + 1))
2697 ring->rx_curr_put_info.offset = off;
2699 rxdp->Control_2 |= SET_RXD_MARKER;
2700 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2703 first_rxdp->Control_1 |= RXD_OWN_XENA;
2707 ring->rx_bufs_left += 1;
2712 /* Transfer ownership of first descriptor to adapter just before
2713 * exiting. Before that, use memory barrier so that ownership
2714 * and other fields are seen by adapter correctly.
2718 first_rxdp->Control_1 |= RXD_OWN_XENA;
2723 stats->pci_map_fail_cnt++;
2724 stats->mem_freed += skb->truesize;
2725 dev_kfree_skb_irq(skb);
2729 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2731 struct net_device *dev = sp->dev;
2733 struct sk_buff *skb;
2735 struct mac_info *mac_control;
2740 mac_control = &sp->mac_control;
2741 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742 rxdp = mac_control->rings[ring_no].
2743 rx_blocks[blk].rxds[j].virt_addr;
2744 skb = (struct sk_buff *)
2745 ((unsigned long) rxdp->Host_Control);
2749 if (sp->rxd_mode == RXD_MODE_1) {
2750 rxdp1 = (struct RxD1*)rxdp;
2751 pci_unmap_single(sp->pdev, (dma_addr_t)
2754 HEADER_ETHERNET_II_802_3_SIZE
2755 + HEADER_802_2_SIZE +
2757 PCI_DMA_FROMDEVICE);
2758 memset(rxdp, 0, sizeof(struct RxD1));
2759 } else if(sp->rxd_mode == RXD_MODE_3B) {
2760 rxdp3 = (struct RxD3*)rxdp;
2761 ba = &mac_control->rings[ring_no].
2763 pci_unmap_single(sp->pdev, (dma_addr_t)
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev, (dma_addr_t)
2770 PCI_DMA_FROMDEVICE);
2771 pci_unmap_single(sp->pdev, (dma_addr_t)
2774 PCI_DMA_FROMDEVICE);
2775 memset(rxdp, 0, sizeof(struct RxD3));
2777 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2779 mac_control->rings[ring_no].rx_bufs_left -= 1;
2784 * free_rx_buffers - Frees all Rx buffers
2785 * @sp: device private variable.
2787 * This function will free all Rx buffers allocated by host.
2792 static void free_rx_buffers(struct s2io_nic *sp)
2794 struct net_device *dev = sp->dev;
2795 int i, blk = 0, buf_cnt = 0;
2796 struct mac_info *mac_control;
2797 struct config_param *config;
2799 mac_control = &sp->mac_control;
2800 config = &sp->config;
2802 for (i = 0; i < config->rx_ring_num; i++) {
2803 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2804 free_rxd_blk(sp,i,blk);
2806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2807 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2808 mac_control->rings[i].rx_curr_put_info.offset = 0;
2809 mac_control->rings[i].rx_curr_get_info.offset = 0;
2810 mac_control->rings[i].rx_bufs_left = 0;
2811 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2812 dev->name, buf_cnt, i);
2817 * s2io_poll - Rx interrupt handler for NAPI support
2818 * @napi : pointer to the napi structure.
2819 * @budget : The number of packets that were budgeted to be processed
2820 * during one pass through the 'Poll" function.
2822 * Comes into picture only if NAPI support has been incorporated. It does
2823 * the same thing that rx_intr_handler does, but not in a interrupt context
2824 * also It will process only a given number of packets.
2826 * 0 on success and 1 if there are No Rx packets to be processed.
2829 static int s2io_poll(struct napi_struct *napi, int budget)
2831 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2832 struct net_device *dev = nic->dev;
2833 int pkt_cnt = 0, org_pkts_to_process;
2834 struct mac_info *mac_control;
2835 struct config_param *config;
2836 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2839 mac_control = &nic->mac_control;
2840 config = &nic->config;
2842 nic->pkts_to_process = budget;
2843 org_pkts_to_process = nic->pkts_to_process;
2845 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2846 readl(&bar0->rx_traffic_int);
2848 for (i = 0; i < config->rx_ring_num; i++) {
2849 rx_intr_handler(&mac_control->rings[i]);
2850 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2851 if (!nic->pkts_to_process) {
2852 /* Quota for the current iteration has been met */
2857 netif_rx_complete(dev, napi);
2859 for (i = 0; i < config->rx_ring_num; i++) {
2860 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2861 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2862 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2866 /* Re enable the Rx interrupts. */
2867 writeq(0x0, &bar0->rx_traffic_mask);
2868 readl(&bar0->rx_traffic_mask);
2872 for (i = 0; i < config->rx_ring_num; i++) {
2873 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2874 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2875 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2882 #ifdef CONFIG_NET_POLL_CONTROLLER
2884 * s2io_netpoll - netpoll event handler entry point
2885 * @dev : pointer to the device structure.
2887 * This function will be called by upper layer to check for events on the
2888 * interface in situations where interrupts are disabled. It is used for
2889 * specific in-kernel networking tasks, such as remote consoles and kernel
2890 * debugging over the network (example netdump in RedHat).
2892 static void s2io_netpoll(struct net_device *dev)
2894 struct s2io_nic *nic = dev->priv;
2895 struct mac_info *mac_control;
2896 struct config_param *config;
2897 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2898 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2901 if (pci_channel_offline(nic->pdev))
2904 disable_irq(dev->irq);
2906 mac_control = &nic->mac_control;
2907 config = &nic->config;
2909 writeq(val64, &bar0->rx_traffic_int);
2910 writeq(val64, &bar0->tx_traffic_int);
2912 /* we need to free up the transmitted skbufs or else netpoll will
2913 * run out of skbs and will fail and eventually netpoll application such
2914 * as netdump will fail.
2916 for (i = 0; i < config->tx_fifo_num; i++)
2917 tx_intr_handler(&mac_control->fifos[i]);
2919 /* check for received packet and indicate up to network */
2920 for (i = 0; i < config->rx_ring_num; i++)
2921 rx_intr_handler(&mac_control->rings[i]);
2923 for (i = 0; i < config->rx_ring_num; i++) {
2924 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2925 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2926 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2930 enable_irq(dev->irq);
2936 * rx_intr_handler - Rx interrupt handler
2937 * @nic: device private variable.
2939 * If the interrupt is because of a received frame or if the
2940 * receive ring contains fresh as yet un-processed frames,this function is
2941 * called. It picks out the RxD at which place the last Rx processing had
2942 * stopped and sends the skb to the OSM's Rx handler and then increments
2947 static void rx_intr_handler(struct ring_info *ring_data)
2949 int get_block, put_block;
2950 struct rx_curr_get_info get_info, put_info;
2952 struct sk_buff *skb;
2958 get_info = ring_data->rx_curr_get_info;
2959 get_block = get_info.block_index;
2960 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2961 put_block = put_info.block_index;
2962 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2964 while (RXD_IS_UP2DT(rxdp)) {
2966 * If your are next to put index then it's
2967 * FIFO full condition
2969 if ((get_block == put_block) &&
2970 (get_info.offset + 1) == put_info.offset) {
2971 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2972 ring_data->dev->name);
2975 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2977 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2978 ring_data->dev->name);
2979 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2982 if (ring_data->rxd_mode == RXD_MODE_1) {
2983 rxdp1 = (struct RxD1*)rxdp;
2984 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2987 HEADER_ETHERNET_II_802_3_SIZE +
2990 PCI_DMA_FROMDEVICE);
2991 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2992 rxdp3 = (struct RxD3*)rxdp;
2993 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
2995 BUF0_LEN, PCI_DMA_FROMDEVICE);
2996 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2999 PCI_DMA_FROMDEVICE);
3001 prefetch(skb->data);
3002 rx_osm_handler(ring_data, rxdp);
3004 ring_data->rx_curr_get_info.offset = get_info.offset;
3005 rxdp = ring_data->rx_blocks[get_block].
3006 rxds[get_info.offset].virt_addr;
3007 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3008 get_info.offset = 0;
3009 ring_data->rx_curr_get_info.offset = get_info.offset;
3011 if (get_block == ring_data->block_count)
3013 ring_data->rx_curr_get_info.block_index = get_block;
3014 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3017 if(ring_data->nic->config.napi){
3018 ring_data->nic->pkts_to_process -= 1;
3019 if (!ring_data->nic->pkts_to_process)
3023 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3026 if (ring_data->lro) {
3027 /* Clear all LRO sessions before exiting */
3028 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3029 struct lro *lro = &ring_data->lro0_n[i];
3031 update_L3L4_header(ring_data->nic, lro);
3032 queue_rx_frame(lro->parent, lro->vlan_tag);
3033 clear_lro_session(lro);
3040 * tx_intr_handler - Transmit interrupt handler
3041 * @nic : device private variable
3043 * If an interrupt was raised to indicate DMA complete of the
3044 * Tx packet, this function is called. It identifies the last TxD
3045 * whose buffer was freed and frees all skbs whose data have already
3046 * DMA'ed into the NICs internal memory.
3051 static void tx_intr_handler(struct fifo_info *fifo_data)
3053 struct s2io_nic *nic = fifo_data->nic;
3054 struct tx_curr_get_info get_info, put_info;
3055 struct sk_buff *skb = NULL;
3058 unsigned long flags = 0;
3061 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3064 get_info = fifo_data->tx_curr_get_info;
3065 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3066 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3068 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3069 (get_info.offset != put_info.offset) &&
3070 (txdlp->Host_Control)) {
3071 /* Check for TxD errors */
3072 if (txdlp->Control_1 & TXD_T_CODE) {
3073 unsigned long long err;
3074 err = txdlp->Control_1 & TXD_T_CODE;
3076 nic->mac_control.stats_info->sw_stat.
3080 /* update t_code statistics */
3081 err_mask = err >> 48;
3084 nic->mac_control.stats_info->sw_stat.
3089 nic->mac_control.stats_info->sw_stat.
3090 tx_desc_abort_cnt++;
3094 nic->mac_control.stats_info->sw_stat.
3095 tx_parity_err_cnt++;
3099 nic->mac_control.stats_info->sw_stat.
3104 nic->mac_control.stats_info->sw_stat.
3105 tx_list_proc_err_cnt++;
3110 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3112 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3113 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3115 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3120 /* Updating the statistics block */
3121 nic->stats.tx_bytes += skb->len;
3122 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3123 dev_kfree_skb_irq(skb);
3126 if (get_info.offset == get_info.fifo_len + 1)
3127 get_info.offset = 0;
3128 txdlp = (struct TxD *) fifo_data->list_info
3129 [get_info.offset].list_virt_addr;
3130 fifo_data->tx_curr_get_info.offset =
3134 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3136 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3140 * s2io_mdio_write - Function to write in to MDIO registers
3141 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3142 * @addr : address value
3143 * @value : data value
3144 * @dev : pointer to net_device structure
3146 * This function is used to write values to the MDIO registers
3149 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3152 struct s2io_nic *sp = dev->priv;
3153 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3155 //address transaction
3156 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3157 | MDIO_MMD_DEV_ADDR(mmd_type)
3158 | MDIO_MMS_PRT_ADDR(0x0);
3159 writeq(val64, &bar0->mdio_control);
3160 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3161 writeq(val64, &bar0->mdio_control);
3166 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3167 | MDIO_MMD_DEV_ADDR(mmd_type)
3168 | MDIO_MMS_PRT_ADDR(0x0)
3169 | MDIO_MDIO_DATA(value)
3170 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3171 writeq(val64, &bar0->mdio_control);
3172 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173 writeq(val64, &bar0->mdio_control);
3177 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3178 | MDIO_MMD_DEV_ADDR(mmd_type)
3179 | MDIO_MMS_PRT_ADDR(0x0)
3180 | MDIO_OP(MDIO_OP_READ_TRANS);
3181 writeq(val64, &bar0->mdio_control);
3182 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64, &bar0->mdio_control);
3189 * s2io_mdio_read - Function to write in to MDIO registers
3190 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3191 * @addr : address value
3192 * @dev : pointer to net_device structure
3194 * This function is used to read values to the MDIO registers
3197 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3201 struct s2io_nic *sp = dev->priv;
3202 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3204 /* address transaction */
3205 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3206 | MDIO_MMD_DEV_ADDR(mmd_type)
3207 | MDIO_MMS_PRT_ADDR(0x0);
3208 writeq(val64, &bar0->mdio_control);
3209 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3210 writeq(val64, &bar0->mdio_control);
3213 /* Data transaction */
3215 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3216 | MDIO_MMD_DEV_ADDR(mmd_type)
3217 | MDIO_MMS_PRT_ADDR(0x0)
3218 | MDIO_OP(MDIO_OP_READ_TRANS);
3219 writeq(val64, &bar0->mdio_control);
3220 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3221 writeq(val64, &bar0->mdio_control);
3224 /* Read the value from regs */
3225 rval64 = readq(&bar0->mdio_control);
3226 rval64 = rval64 & 0xFFFF0000;
3227 rval64 = rval64 >> 16;
3231 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3232 * @counter : couter value to be updated
3233 * @flag : flag to indicate the status
3234 * @type : counter type
3236 * This function is to check the status of the xpak counters value
3240 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3245 for(i = 0; i <index; i++)
3250 *counter = *counter + 1;
3251 val64 = *regs_stat & mask;
3252 val64 = val64 >> (index * 0x2);
3259 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3260 "service. Excessive temperatures may "
3261 "result in premature transceiver "
3265 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3266 "service Excessive bias currents may "
3267 "indicate imminent laser diode "
3271 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3272 "service Excessive laser output "
3273 "power may saturate far-end "
3277 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3282 val64 = val64 << (index * 0x2);
3283 *regs_stat = (*regs_stat & (~mask)) | (val64);
3286 *regs_stat = *regs_stat & (~mask);
3291 * s2io_updt_xpak_counter - Function to update the xpak counters
3292 * @dev : pointer to net_device struct
3294 * This function is to upate the status of the xpak counters value
3297 static void s2io_updt_xpak_counter(struct net_device *dev)
3305 struct s2io_nic *sp = dev->priv;
3306 struct stat_block *stat_info = sp->mac_control.stats_info;
3308 /* Check the communication with the MDIO slave */
3311 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3312 if((val64 == 0xFFFF) || (val64 == 0x0000))
3314 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3315 "Returned %llx\n", (unsigned long long)val64);
3319 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3322 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3323 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3324 (unsigned long long)val64);
3328 /* Loading the DOM register to MDIO register */
3330 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3331 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3333 /* Reading the Alarm flags */
3336 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3338 flag = CHECKBIT(val64, 0x7);
3340 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3341 &stat_info->xpak_stat.xpak_regs_stat,
3344 if(CHECKBIT(val64, 0x6))
3345 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3347 flag = CHECKBIT(val64, 0x3);
3349 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3350 &stat_info->xpak_stat.xpak_regs_stat,
3353 if(CHECKBIT(val64, 0x2))
3354 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3356 flag = CHECKBIT(val64, 0x1);
3358 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3359 &stat_info->xpak_stat.xpak_regs_stat,
3362 if(CHECKBIT(val64, 0x0))
3363 stat_info->xpak_stat.alarm_laser_output_power_low++;
3365 /* Reading the Warning flags */
3368 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3370 if(CHECKBIT(val64, 0x7))
3371 stat_info->xpak_stat.warn_transceiver_temp_high++;
3373 if(CHECKBIT(val64, 0x6))
3374 stat_info->xpak_stat.warn_transceiver_temp_low++;
3376 if(CHECKBIT(val64, 0x3))
3377 stat_info->xpak_stat.warn_laser_bias_current_high++;
3379 if(CHECKBIT(val64, 0x2))
3380 stat_info->xpak_stat.warn_laser_bias_current_low++;
3382 if(CHECKBIT(val64, 0x1))
3383 stat_info->xpak_stat.warn_laser_output_power_high++;
3385 if(CHECKBIT(val64, 0x0))
3386 stat_info->xpak_stat.warn_laser_output_power_low++;
3390 * wait_for_cmd_complete - waits for a command to complete.
3391 * @sp : private member of the device structure, which is a pointer to the
3392 * s2io_nic structure.
3393 * Description: Function that waits for a command to Write into RMAC
3394 * ADDR DATA registers to be completed and returns either success or
3395 * error depending on whether the command was complete or not.
3397 * SUCCESS on success and FAILURE on failure.
3400 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3403 int ret = FAILURE, cnt = 0, delay = 1;
3406 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3410 val64 = readq(addr);
3411 if (bit_state == S2IO_BIT_RESET) {
3412 if (!(val64 & busy_bit)) {
3417 if (!(val64 & busy_bit)) {
3434 * check_pci_device_id - Checks if the device id is supported
3436 * Description: Function to check if the pci device id is supported by driver.
3437 * Return value: Actual device id if supported else PCI_ANY_ID
3439 static u16 check_pci_device_id(u16 id)
3442 case PCI_DEVICE_ID_HERC_WIN:
3443 case PCI_DEVICE_ID_HERC_UNI:
3444 return XFRAME_II_DEVICE;
3445 case PCI_DEVICE_ID_S2IO_UNI:
3446 case PCI_DEVICE_ID_S2IO_WIN:
3447 return XFRAME_I_DEVICE;
3454 * s2io_reset - Resets the card.
3455 * @sp : private member of the device structure.
3456 * Description: Function to Reset the card. This function then also
3457 * restores the previously saved PCI configuration space registers as
3458 * the card reset also resets the configuration space.
3463 static void s2io_reset(struct s2io_nic * sp)
3465 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3470 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3471 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3473 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3474 __FUNCTION__, sp->dev->name);
3476 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3477 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3479 val64 = SW_RESET_ALL;
3480 writeq(val64, &bar0->sw_reset);
3481 if (strstr(sp->product_name, "CX4")) {
3485 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3487 /* Restore the PCI state saved during initialization. */
3488 pci_restore_state(sp->pdev);
3489 pci_read_config_word(sp->pdev, 0x2, &val16);
3490 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3495 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3496 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3499 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3503 /* Set swapper to enable I/O register access */
3504 s2io_set_swapper(sp);
3506 /* restore mac_addr entries */
3507 do_s2io_restore_unicast_mc(sp);
3509 /* Restore the MSIX table entries from local variables */
3510 restore_xmsi_data(sp);
3512 /* Clear certain PCI/PCI-X fields after reset */
3513 if (sp->device_type == XFRAME_II_DEVICE) {
3514 /* Clear "detected parity error" bit */
3515 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3517 /* Clearing PCIX Ecc status register */
3518 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3520 /* Clearing PCI_STATUS error reflected here */
3521 writeq(s2BIT(62), &bar0->txpic_int_reg);
3524 /* Reset device statistics maintained by OS */
3525 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3527 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3528 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3529 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3530 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3531 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3532 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3533 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3534 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3535 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3536 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3537 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3538 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3539 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3540 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3541 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3542 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3543 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3544 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3545 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3547 /* SXE-002: Configure link and activity LED to turn it off */
3548 subid = sp->pdev->subsystem_device;
3549 if (((subid & 0xFF) >= 0x07) &&
3550 (sp->device_type == XFRAME_I_DEVICE)) {
3551 val64 = readq(&bar0->gpio_control);
3552 val64 |= 0x0000800000000000ULL;
3553 writeq(val64, &bar0->gpio_control);
3554 val64 = 0x0411040400000000ULL;
3555 writeq(val64, (void __iomem *)bar0 + 0x2700);
3559 * Clear spurious ECC interrupts that would have occured on
3560 * XFRAME II cards after reset.
3562 if (sp->device_type == XFRAME_II_DEVICE) {
3563 val64 = readq(&bar0->pcc_err_reg);
3564 writeq(val64, &bar0->pcc_err_reg);
3567 sp->device_enabled_once = FALSE;
3571 * s2io_set_swapper - to set the swapper controle on the card
3572 * @sp : private member of the device structure,
3573 * pointer to the s2io_nic structure.
3574 * Description: Function to set the swapper control on the card
3575 * correctly depending on the 'endianness' of the system.
3577 * SUCCESS on success and FAILURE on failure.
3580 static int s2io_set_swapper(struct s2io_nic * sp)
3582 struct net_device *dev = sp->dev;
3583 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3584 u64 val64, valt, valr;
3587 * Set proper endian settings and verify the same by reading
3588 * the PIF Feed-back register.
3591 val64 = readq(&bar0->pif_rd_swapper_fb);
3592 if (val64 != 0x0123456789ABCDEFULL) {
3594 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3595 0x8100008181000081ULL, /* FE=1, SE=0 */
3596 0x4200004242000042ULL, /* FE=0, SE=1 */
3597 0}; /* FE=0, SE=0 */
3600 writeq(value[i], &bar0->swapper_ctrl);
3601 val64 = readq(&bar0->pif_rd_swapper_fb);
3602 if (val64 == 0x0123456789ABCDEFULL)
3607 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3609 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3610 (unsigned long long) val64);
3615 valr = readq(&bar0->swapper_ctrl);
3618 valt = 0x0123456789ABCDEFULL;
3619 writeq(valt, &bar0->xmsi_address);
3620 val64 = readq(&bar0->xmsi_address);
3624 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3625 0x0081810000818100ULL, /* FE=1, SE=0 */
3626 0x0042420000424200ULL, /* FE=0, SE=1 */
3627 0}; /* FE=0, SE=0 */
3630 writeq((value[i] | valr), &bar0->swapper_ctrl);
3631 writeq(valt, &bar0->xmsi_address);
3632 val64 = readq(&bar0->xmsi_address);
3638 unsigned long long x = val64;
3639 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3640 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3644 val64 = readq(&bar0->swapper_ctrl);
3645 val64 &= 0xFFFF000000000000ULL;
3649 * The device by default set to a big endian format, so a
3650 * big endian driver need not set anything.
3652 val64 |= (SWAPPER_CTRL_TXP_FE |
3653 SWAPPER_CTRL_TXP_SE |
3654 SWAPPER_CTRL_TXD_R_FE |
3655 SWAPPER_CTRL_TXD_W_FE |
3656 SWAPPER_CTRL_TXF_R_FE |
3657 SWAPPER_CTRL_RXD_R_FE |
3658 SWAPPER_CTRL_RXD_W_FE |
3659 SWAPPER_CTRL_RXF_W_FE |
3660 SWAPPER_CTRL_XMSI_FE |
3661 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3662 if (sp->config.intr_type == INTA)
3663 val64 |= SWAPPER_CTRL_XMSI_SE;
3664 writeq(val64, &bar0->swapper_ctrl);
3667 * Initially we enable all bits to make it accessible by the
3668 * driver, then we selectively enable only those bits that
3671 val64 |= (SWAPPER_CTRL_TXP_FE |
3672 SWAPPER_CTRL_TXP_SE |
3673 SWAPPER_CTRL_TXD_R_FE |
3674 SWAPPER_CTRL_TXD_R_SE |
3675 SWAPPER_CTRL_TXD_W_FE |
3676 SWAPPER_CTRL_TXD_W_SE |
3677 SWAPPER_CTRL_TXF_R_FE |
3678 SWAPPER_CTRL_RXD_R_FE |
3679 SWAPPER_CTRL_RXD_R_SE |
3680 SWAPPER_CTRL_RXD_W_FE |
3681 SWAPPER_CTRL_RXD_W_SE |
3682 SWAPPER_CTRL_RXF_W_FE |
3683 SWAPPER_CTRL_XMSI_FE |
3684 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3685 if (sp->config.intr_type == INTA)
3686 val64 |= SWAPPER_CTRL_XMSI_SE;
3687 writeq(val64, &bar0->swapper_ctrl);
3689 val64 = readq(&bar0->swapper_ctrl);
3692 * Verifying if endian settings are accurate by reading a
3693 * feedback register.
3695 val64 = readq(&bar0->pif_rd_swapper_fb);
3696 if (val64 != 0x0123456789ABCDEFULL) {
3697 /* Endian settings are incorrect, calls for another dekko. */
3698 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3700 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3701 (unsigned long long) val64);
3708 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3710 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3712 int ret = 0, cnt = 0;
3715 val64 = readq(&bar0->xmsi_access);
3716 if (!(val64 & s2BIT(15)))
3722 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3729 static void restore_xmsi_data(struct s2io_nic *nic)
3731 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3735 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3736 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3737 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3738 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3739 writeq(val64, &bar0->xmsi_access);
3740 if (wait_for_msix_trans(nic, i)) {
3741 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3747 static void store_xmsi_data(struct s2io_nic *nic)
3749 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3750 u64 val64, addr, data;
3753 /* Store and display */
3754 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3755 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3756 writeq(val64, &bar0->xmsi_access);
3757 if (wait_for_msix_trans(nic, i)) {
3758 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3761 addr = readq(&bar0->xmsi_address);
3762 data = readq(&bar0->xmsi_data);
3764 nic->msix_info[i].addr = addr;
3765 nic->msix_info[i].data = data;
3770 static int s2io_enable_msi_x(struct s2io_nic *nic)
3772 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3774 u16 msi_control; /* Temp variable */
3775 int ret, i, j, msix_indx = 1;
3777 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3779 if (!nic->entries) {
3780 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3782 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3785 nic->mac_control.stats_info->sw_stat.mem_allocated
3786 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3789 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3791 if (!nic->s2io_entries) {
3792 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3794 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3795 kfree(nic->entries);
3796 nic->mac_control.stats_info->sw_stat.mem_freed
3797 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3800 nic->mac_control.stats_info->sw_stat.mem_allocated
3801 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3803 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3804 nic->entries[i].entry = i;
3805 nic->s2io_entries[i].entry = i;
3806 nic->s2io_entries[i].arg = NULL;
3807 nic->s2io_entries[i].in_use = 0;
3810 tx_mat = readq(&bar0->tx_mat0_n[0]);
3811 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3812 tx_mat |= TX_MAT_SET(i, msix_indx);
3813 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3814 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3815 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3817 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3819 rx_mat = readq(&bar0->rx_mat);
3820 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3821 rx_mat |= RX_MAT_SET(j, msix_indx);
3822 nic->s2io_entries[msix_indx].arg
3823 = &nic->mac_control.rings[j];
3824 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3825 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3827 writeq(rx_mat, &bar0->rx_mat);
3829 nic->avail_msix_vectors = 0;
3830 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3831 /* We fail init if error or we get less vectors than min required */
3832 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3833 nic->avail_msix_vectors = ret;
3834 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3837 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3838 kfree(nic->entries);
3839 nic->mac_control.stats_info->sw_stat.mem_freed
3840 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3841 kfree(nic->s2io_entries);
3842 nic->mac_control.stats_info->sw_stat.mem_freed
3843 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3844 nic->entries = NULL;
3845 nic->s2io_entries = NULL;
3846 nic->avail_msix_vectors = 0;
3849 if (!nic->avail_msix_vectors)
3850 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3853 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3854 * in the herc NIC. (Temp change, needs to be removed later)
3856 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3857 msi_control |= 0x1; /* Enable MSI */
3858 pci_write_config_word(nic->pdev, 0x42, msi_control);
3863 /* Handle software interrupt used during MSI(X) test */
3864 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3866 struct s2io_nic *sp = dev_id;
3868 sp->msi_detected = 1;
3869 wake_up(&sp->msi_wait);
3874 /* Test interrupt path by forcing a a software IRQ */
3875 static int s2io_test_msi(struct s2io_nic *sp)
3877 struct pci_dev *pdev = sp->pdev;
3878 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3882 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3885 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3886 sp->dev->name, pci_name(pdev), pdev->irq);
3890 init_waitqueue_head (&sp->msi_wait);
3891 sp->msi_detected = 0;
3893 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3894 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3895 val64 |= SCHED_INT_CTRL_TIMER_EN;
3896 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3897 writeq(val64, &bar0->scheduled_int_ctrl);
3899 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3901 if (!sp->msi_detected) {
3902 /* MSI(X) test failed, go back to INTx mode */
3903 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3904 "using MSI(X) during test\n", sp->dev->name,
3910 free_irq(sp->entries[1].vector, sp);
3912 writeq(saved64, &bar0->scheduled_int_ctrl);
3917 static void remove_msix_isr(struct s2io_nic *sp)
3922 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3923 if (sp->s2io_entries[i].in_use ==
3924 MSIX_REGISTERED_SUCCESS) {
3925 int vector = sp->entries[i].vector;
3926 void *arg = sp->s2io_entries[i].arg;
3927 free_irq(vector, arg);
3932 kfree(sp->s2io_entries);
3934 sp->s2io_entries = NULL;
3936 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3937 msi_control &= 0xFFFE; /* Disable MSI */
3938 pci_write_config_word(sp->pdev, 0x42, msi_control);
3940 pci_disable_msix(sp->pdev);
3943 static void remove_inta_isr(struct s2io_nic *sp)
3945 struct net_device *dev = sp->dev;
3947 free_irq(sp->pdev->irq, dev);
3950 /* ********************************************************* *
3951 * Functions defined below concern the OS part of the driver *
3952 * ********************************************************* */
3955 * s2io_open - open entry point of the driver
3956 * @dev : pointer to the device structure.
3958 * This function is the open entry point of the driver. It mainly calls a
3959 * function to allocate Rx buffers and inserts them into the buffer
3960 * descriptors and then enables the Rx part of the NIC.
3962 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3966 static int s2io_open(struct net_device *dev)
3968 struct s2io_nic *sp = dev->priv;
3972 * Make sure you have link off by default every time
3973 * Nic is initialized
3975 netif_carrier_off(dev);
3976 sp->last_link_state = 0;
3978 if (sp->config.intr_type == MSI_X) {
3979 int ret = s2io_enable_msi_x(sp);
3982 ret = s2io_test_msi(sp);
3983 /* rollback MSI-X, will re-enable during add_isr() */
3984 remove_msix_isr(sp);
3989 "%s: MSI-X requested but failed to enable\n",
3991 sp->config.intr_type = INTA;
3995 /* NAPI doesn't work well with MSI(X) */
3996 if (sp->config.intr_type != INTA) {
3998 sp->config.napi = 0;
4001 /* Initialize H/W and enable interrupts */
4002 err = s2io_card_up(sp);
4004 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4006 goto hw_init_failed;
4009 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4010 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4013 goto hw_init_failed;
4015 s2io_start_all_tx_queue(sp);
4019 if (sp->config.intr_type == MSI_X) {
4022 sp->mac_control.stats_info->sw_stat.mem_freed
4023 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4025 if (sp->s2io_entries) {
4026 kfree(sp->s2io_entries);
4027 sp->mac_control.stats_info->sw_stat.mem_freed
4028 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4035 * s2io_close -close entry point of the driver
4036 * @dev : device pointer.
4038 * This is the stop entry point of the driver. It needs to undo exactly
4039 * whatever was done by the open entry point,thus it's usually referred to
4040 * as the close function.Among other things this function mainly stops the
4041 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4043 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4047 static int s2io_close(struct net_device *dev)
4049 struct s2io_nic *sp = dev->priv;
4050 struct config_param *config = &sp->config;
4054 /* Return if the device is already closed *
4055 * Can happen when s2io_card_up failed in change_mtu *
4057 if (!is_s2io_card_up(sp))
4060 s2io_stop_all_tx_queue(sp);
4061 /* delete all populated mac entries */
4062 for (offset = 1; offset < config->max_mc_addr; offset++) {
4063 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4064 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4065 do_s2io_delete_unicast_mc(sp, tmp64);
4074 * s2io_xmit - Tx entry point of te driver
4075 * @skb : the socket buffer containing the Tx data.
4076 * @dev : device pointer.
4078 * This function is the Tx entry point of the driver. S2IO NIC supports
4079 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4080 * NOTE: when device cant queue the pkt,just the trans_start variable will
4083 * 0 on success & 1 on failure.
4086 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4088 struct s2io_nic *sp = dev->priv;
4089 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4092 struct TxFIFO_element __iomem *tx_fifo;
4093 unsigned long flags = 0;
4095 struct fifo_info *fifo = NULL;
4096 struct mac_info *mac_control;
4097 struct config_param *config;
4098 int do_spin_lock = 1;
4100 int enable_per_list_interrupt = 0;
4101 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4103 mac_control = &sp->mac_control;
4104 config = &sp->config;
4106 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4108 if (unlikely(skb->len <= 0)) {
4109 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4110 dev_kfree_skb_any(skb);
4114 if (!is_s2io_card_up(sp)) {
4115 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4122 if (sp->vlgrp && vlan_tx_tag_present(skb))
4123 vlan_tag = vlan_tx_tag_get(skb);
4124 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4125 if (skb->protocol == htons(ETH_P_IP)) {
4130 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4131 th = (struct tcphdr *)(((unsigned char *)ip) +
4134 if (ip->protocol == IPPROTO_TCP) {
4135 queue_len = sp->total_tcp_fifos;
4136 queue = (ntohs(th->source) +
4138 sp->fifo_selector[queue_len - 1];
4139 if (queue >= queue_len)
4140 queue = queue_len - 1;
4141 } else if (ip->protocol == IPPROTO_UDP) {
4142 queue_len = sp->total_udp_fifos;
4143 queue = (ntohs(th->source) +
4145 sp->fifo_selector[queue_len - 1];
4146 if (queue >= queue_len)
4147 queue = queue_len - 1;
4148 queue += sp->udp_fifo_idx;
4149 if (skb->len > 1024)
4150 enable_per_list_interrupt = 1;
4155 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4156 /* get fifo number based on skb->priority value */
4157 queue = config->fifo_mapping
4158 [skb->priority & (MAX_TX_FIFOS - 1)];
4159 fifo = &mac_control->fifos[queue];
4162 spin_lock_irqsave(&fifo->tx_lock, flags);
4164 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4165 return NETDEV_TX_LOCKED;
4168 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4169 if (sp->config.multiq) {
4170 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4171 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4172 return NETDEV_TX_BUSY;
4176 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4177 if (netif_queue_stopped(dev)) {
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 return NETDEV_TX_BUSY;
4183 put_off = (u16) fifo->tx_curr_put_info.offset;
4184 get_off = (u16) fifo->tx_curr_get_info.offset;
4185 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4187 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4188 /* Avoid "put" pointer going beyond "get" pointer */
4189 if (txdp->Host_Control ||
4190 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4191 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4192 s2io_stop_tx_queue(sp, fifo->fifo_no);
4194 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4198 offload_type = s2io_offload_type(skb);
4199 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4200 txdp->Control_1 |= TXD_TCP_LSO_EN;
4201 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4203 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4205 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4208 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4210 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4211 if (enable_per_list_interrupt)
4212 if (put_off & (queue_len >> 5))
4213 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4215 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4219 frg_len = skb->len - skb->data_len;
4220 if (offload_type == SKB_GSO_UDP) {
4223 ufo_size = s2io_udp_mss(skb);
4225 txdp->Control_1 |= TXD_UFO_EN;
4226 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4229 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230 fifo->ufo_in_band_v[put_off] =
4231 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4233 fifo->ufo_in_band_v[put_off] =
4234 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4236 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4237 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4238 fifo->ufo_in_band_v,
4239 sizeof(u64), PCI_DMA_TODEVICE);
4240 if((txdp->Buffer_Pointer == 0) ||
4241 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4242 goto pci_map_failed;
4246 txdp->Buffer_Pointer = pci_map_single
4247 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4248 if((txdp->Buffer_Pointer == 0) ||
4249 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4250 goto pci_map_failed;
4252 txdp->Host_Control = (unsigned long) skb;
4253 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4254 if (offload_type == SKB_GSO_UDP)
4255 txdp->Control_1 |= TXD_UFO_EN;
4257 frg_cnt = skb_shinfo(skb)->nr_frags;
4258 /* For fragmented SKB. */
4259 for (i = 0; i < frg_cnt; i++) {
4260 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4261 /* A '0' length fragment will be ignored */
4265 txdp->Buffer_Pointer = (u64) pci_map_page
4266 (sp->pdev, frag->page, frag->page_offset,
4267 frag->size, PCI_DMA_TODEVICE);
4268 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4269 if (offload_type == SKB_GSO_UDP)
4270 txdp->Control_1 |= TXD_UFO_EN;
4272 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4274 if (offload_type == SKB_GSO_UDP)
4275 frg_cnt++; /* as Txd0 was used for inband header */
4277 tx_fifo = mac_control->tx_FIFO_start[queue];
4278 val64 = fifo->list_info[put_off].list_phy_addr;
4279 writeq(val64, &tx_fifo->TxDL_Pointer);
4281 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4284 val64 |= TX_FIFO_SPECIAL_FUNC;
4286 writeq(val64, &tx_fifo->List_Control);
4291 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4293 fifo->tx_curr_put_info.offset = put_off;
4295 /* Avoid "put" pointer going beyond "get" pointer */
4296 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4297 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4299 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4301 s2io_stop_tx_queue(sp, fifo->fifo_no);
4303 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4304 dev->trans_start = jiffies;
4305 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4307 if (sp->config.intr_type == MSI_X)
4308 tx_intr_handler(fifo);
4312 stats->pci_map_fail_cnt++;
4313 s2io_stop_tx_queue(sp, fifo->fifo_no);
4314 stats->mem_freed += skb->truesize;
4316 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4321 s2io_alarm_handle(unsigned long data)
4323 struct s2io_nic *sp = (struct s2io_nic *)data;
4324 struct net_device *dev = sp->dev;
4326 s2io_handle_errors(dev);
4327 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4330 static int s2io_chk_rx_buffers(struct ring_info *ring)
4332 if (fill_rx_buffers(ring) == -ENOMEM) {
4333 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
4334 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4339 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4341 struct ring_info *ring = (struct ring_info *)dev_id;
4342 struct s2io_nic *sp = ring->nic;
4344 if (!is_s2io_card_up(sp))
4347 rx_intr_handler(ring);
4348 s2io_chk_rx_buffers(ring);
4353 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4355 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4356 struct s2io_nic *sp = fifo->nic;
4358 if (!is_s2io_card_up(sp))
4361 tx_intr_handler(fifo);
4364 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4366 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4369 val64 = readq(&bar0->pic_int_status);
4370 if (val64 & PIC_INT_GPIO) {
4371 val64 = readq(&bar0->gpio_int_reg);
4372 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4373 (val64 & GPIO_INT_REG_LINK_UP)) {
4375 * This is unstable state so clear both up/down
4376 * interrupt and adapter to re-evaluate the link state.
4378 val64 |= GPIO_INT_REG_LINK_DOWN;
4379 val64 |= GPIO_INT_REG_LINK_UP;
4380 writeq(val64, &bar0->gpio_int_reg);
4381 val64 = readq(&bar0->gpio_int_mask);
4382 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4383 GPIO_INT_MASK_LINK_DOWN);
4384 writeq(val64, &bar0->gpio_int_mask);
4386 else if (val64 & GPIO_INT_REG_LINK_UP) {
4387 val64 = readq(&bar0->adapter_status);
4388 /* Enable Adapter */
4389 val64 = readq(&bar0->adapter_control);
4390 val64 |= ADAPTER_CNTL_EN;
4391 writeq(val64, &bar0->adapter_control);
4392 val64 |= ADAPTER_LED_ON;
4393 writeq(val64, &bar0->adapter_control);
4394 if (!sp->device_enabled_once)
4395 sp->device_enabled_once = 1;
4397 s2io_link(sp, LINK_UP);
4399 * unmask link down interrupt and mask link-up
4402 val64 = readq(&bar0->gpio_int_mask);
4403 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4404 val64 |= GPIO_INT_MASK_LINK_UP;
4405 writeq(val64, &bar0->gpio_int_mask);
4407 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4408 val64 = readq(&bar0->adapter_status);
4409 s2io_link(sp, LINK_DOWN);
4410 /* Link is down so unmaks link up interrupt */
4411 val64 = readq(&bar0->gpio_int_mask);
4412 val64 &= ~GPIO_INT_MASK_LINK_UP;
4413 val64 |= GPIO_INT_MASK_LINK_DOWN;
4414 writeq(val64, &bar0->gpio_int_mask);
4417 val64 = readq(&bar0->adapter_control);
4418 val64 = val64 &(~ADAPTER_LED_ON);
4419 writeq(val64, &bar0->adapter_control);
4422 val64 = readq(&bar0->gpio_int_mask);
4426 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4427 * @value: alarm bits
4428 * @addr: address value
4429 * @cnt: counter variable
4430 * Description: Check for alarm and increment the counter
4432 * 1 - if alarm bit set
4433 * 0 - if alarm bit is not set
4435 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4436 unsigned long long *cnt)
4439 val64 = readq(addr);
4440 if ( val64 & value ) {
4441 writeq(val64, addr);
4450 * s2io_handle_errors - Xframe error indication handler
4451 * @nic: device private variable
4452 * Description: Handle alarms such as loss of link, single or
4453 * double ECC errors, critical and serious errors.
4457 static void s2io_handle_errors(void * dev_id)
4459 struct net_device *dev = (struct net_device *) dev_id;
4460 struct s2io_nic *sp = dev->priv;
4461 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4462 u64 temp64 = 0,val64=0;
4465 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4466 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4468 if (!is_s2io_card_up(sp))
4471 if (pci_channel_offline(sp->pdev))
4474 memset(&sw_stat->ring_full_cnt, 0,
4475 sizeof(sw_stat->ring_full_cnt));
4477 /* Handling the XPAK counters update */
4478 if(stats->xpak_timer_count < 72000) {
4479 /* waiting for an hour */
4480 stats->xpak_timer_count++;
4482 s2io_updt_xpak_counter(dev);
4483 /* reset the count to zero */
4484 stats->xpak_timer_count = 0;
4487 /* Handling link status change error Intr */
4488 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4489 val64 = readq(&bar0->mac_rmac_err_reg);
4490 writeq(val64, &bar0->mac_rmac_err_reg);
4491 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4492 schedule_work(&sp->set_link_task);
4495 /* In case of a serious error, the device will be Reset. */
4496 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4497 &sw_stat->serious_err_cnt))
4500 /* Check for data parity error */
4501 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4502 &sw_stat->parity_err_cnt))
4505 /* Check for ring full counter */
4506 if (sp->device_type == XFRAME_II_DEVICE) {
4507 val64 = readq(&bar0->ring_bump_counter1);
4508 for (i=0; i<4; i++) {
4509 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4510 temp64 >>= 64 - ((i+1)*16);
4511 sw_stat->ring_full_cnt[i] += temp64;
4514 val64 = readq(&bar0->ring_bump_counter2);
4515 for (i=0; i<4; i++) {
4516 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4517 temp64 >>= 64 - ((i+1)*16);
4518 sw_stat->ring_full_cnt[i+4] += temp64;
4522 val64 = readq(&bar0->txdma_int_status);
4523 /*check for pfc_err*/
4524 if (val64 & TXDMA_PFC_INT) {
4525 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4526 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4527 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4528 &sw_stat->pfc_err_cnt))
4530 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4531 &sw_stat->pfc_err_cnt);
4534 /*check for tda_err*/
4535 if (val64 & TXDMA_TDA_INT) {
4536 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4537 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4538 &sw_stat->tda_err_cnt))
4540 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4541 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4543 /*check for pcc_err*/
4544 if (val64 & TXDMA_PCC_INT) {
4545 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4546 | PCC_N_SERR | PCC_6_COF_OV_ERR
4547 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4548 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4549 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4550 &sw_stat->pcc_err_cnt))
4552 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4553 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4556 /*check for tti_err*/
4557 if (val64 & TXDMA_TTI_INT) {
4558 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4559 &sw_stat->tti_err_cnt))
4561 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4562 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4565 /*check for lso_err*/
4566 if (val64 & TXDMA_LSO_INT) {
4567 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4568 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4569 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4571 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4572 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4575 /*check for tpa_err*/
4576 if (val64 & TXDMA_TPA_INT) {
4577 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4578 &sw_stat->tpa_err_cnt))
4580 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4581 &sw_stat->tpa_err_cnt);
4584 /*check for sm_err*/
4585 if (val64 & TXDMA_SM_INT) {
4586 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4587 &sw_stat->sm_err_cnt))
4591 val64 = readq(&bar0->mac_int_status);
4592 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4593 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4594 &bar0->mac_tmac_err_reg,
4595 &sw_stat->mac_tmac_err_cnt))
4597 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4598 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4599 &bar0->mac_tmac_err_reg,
4600 &sw_stat->mac_tmac_err_cnt);
4603 val64 = readq(&bar0->xgxs_int_status);
4604 if (val64 & XGXS_INT_STATUS_TXGXS) {
4605 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4606 &bar0->xgxs_txgxs_err_reg,
4607 &sw_stat->xgxs_txgxs_err_cnt))
4609 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4610 &bar0->xgxs_txgxs_err_reg,
4611 &sw_stat->xgxs_txgxs_err_cnt);
4614 val64 = readq(&bar0->rxdma_int_status);
4615 if (val64 & RXDMA_INT_RC_INT_M) {
4616 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4617 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4618 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4620 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4621 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4622 &sw_stat->rc_err_cnt);
4623 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4624 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4625 &sw_stat->prc_pcix_err_cnt))
4627 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4628 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4629 &sw_stat->prc_pcix_err_cnt);
4632 if (val64 & RXDMA_INT_RPA_INT_M) {
4633 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4634 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4636 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4637 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4640 if (val64 & RXDMA_INT_RDA_INT_M) {
4641 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4642 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4643 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4644 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4646 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4647 | RDA_MISC_ERR | RDA_PCIX_ERR,
4648 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4651 if (val64 & RXDMA_INT_RTI_INT_M) {
4652 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4653 &sw_stat->rti_err_cnt))
4655 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4656 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4659 val64 = readq(&bar0->mac_int_status);
4660 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4661 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4662 &bar0->mac_rmac_err_reg,
4663 &sw_stat->mac_rmac_err_cnt))
4665 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4666 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4667 &sw_stat->mac_rmac_err_cnt);
4670 val64 = readq(&bar0->xgxs_int_status);
4671 if (val64 & XGXS_INT_STATUS_RXGXS) {
4672 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4673 &bar0->xgxs_rxgxs_err_reg,
4674 &sw_stat->xgxs_rxgxs_err_cnt))
4678 val64 = readq(&bar0->mc_int_status);
4679 if(val64 & MC_INT_STATUS_MC_INT) {
4680 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4681 &sw_stat->mc_err_cnt))
4684 /* Handling Ecc errors */
4685 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4686 writeq(val64, &bar0->mc_err_reg);
4687 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4688 sw_stat->double_ecc_errs++;
4689 if (sp->device_type != XFRAME_II_DEVICE) {
4691 * Reset XframeI only if critical error
4694 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4695 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4699 sw_stat->single_ecc_errs++;
4705 s2io_stop_all_tx_queue(sp);
4706 schedule_work(&sp->rst_timer_task);
4707 sw_stat->soft_reset_cnt++;
4712 * s2io_isr - ISR handler of the device .
4713 * @irq: the irq of the device.
4714 * @dev_id: a void pointer to the dev structure of the NIC.
4715 * Description: This function is the ISR handler of the device. It
4716 * identifies the reason for the interrupt and calls the relevant
4717 * service routines. As a contongency measure, this ISR allocates the
4718 * recv buffers, if their numbers are below the panic value which is
4719 * presently set to 25% of the original number of rcv buffers allocated.
4721 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4722 * IRQ_NONE: will be returned if interrupt is not from our device
4724 static irqreturn_t s2io_isr(int irq, void *dev_id)
4726 struct net_device *dev = (struct net_device *) dev_id;
4727 struct s2io_nic *sp = dev->priv;
4728 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4731 struct mac_info *mac_control;
4732 struct config_param *config;
4734 /* Pretend we handled any irq's from a disconnected card */
4735 if (pci_channel_offline(sp->pdev))
4738 if (!is_s2io_card_up(sp))
4741 mac_control = &sp->mac_control;
4742 config = &sp->config;
4745 * Identify the cause for interrupt and call the appropriate
4746 * interrupt handler. Causes for the interrupt could be;
4751 reason = readq(&bar0->general_int_status);
4753 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4754 /* Nothing much can be done. Get out */
4758 if (reason & (GEN_INTR_RXTRAFFIC |
4759 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4761 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4764 if (reason & GEN_INTR_RXTRAFFIC) {
4765 if (likely(netif_rx_schedule_prep(dev,
4767 __netif_rx_schedule(dev, &sp->napi);
4768 writeq(S2IO_MINUS_ONE,
4769 &bar0->rx_traffic_mask);
4771 writeq(S2IO_MINUS_ONE,
4772 &bar0->rx_traffic_int);
4776 * rx_traffic_int reg is an R1 register, writing all 1's
4777 * will ensure that the actual interrupt causing bit
4778 * get's cleared and hence a read can be avoided.
4780 if (reason & GEN_INTR_RXTRAFFIC)
4781 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4783 for (i = 0; i < config->rx_ring_num; i++)
4784 rx_intr_handler(&mac_control->rings[i]);
4788 * tx_traffic_int reg is an R1 register, writing all 1's
4789 * will ensure that the actual interrupt causing bit get's
4790 * cleared and hence a read can be avoided.
4792 if (reason & GEN_INTR_TXTRAFFIC)
4793 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4795 for (i = 0; i < config->tx_fifo_num; i++)
4796 tx_intr_handler(&mac_control->fifos[i]);
4798 if (reason & GEN_INTR_TXPIC)
4799 s2io_txpic_intr_handle(sp);
4802 * Reallocate the buffers from the interrupt handler itself.
4804 if (!config->napi) {
4805 for (i = 0; i < config->rx_ring_num; i++)
4806 s2io_chk_rx_buffers(&mac_control->rings[i]);
4808 writeq(sp->general_int_mask, &bar0->general_int_mask);
4809 readl(&bar0->general_int_status);
4815 /* The interrupt was not raised by us */
4825 static void s2io_updt_stats(struct s2io_nic *sp)
4827 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4831 if (is_s2io_card_up(sp)) {
4832 /* Apprx 30us on a 133 MHz bus */
4833 val64 = SET_UPDT_CLICKS(10) |
4834 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4835 writeq(val64, &bar0->stat_cfg);
4838 val64 = readq(&bar0->stat_cfg);
4839 if (!(val64 & s2BIT(0)))
4843 break; /* Updt failed */
4849 * s2io_get_stats - Updates the device statistics structure.
4850 * @dev : pointer to the device structure.
4852 * This function updates the device statistics structure in the s2io_nic
4853 * structure and returns a pointer to the same.
4855 * pointer to the updated net_device_stats structure.
4858 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4860 struct s2io_nic *sp = dev->priv;
4861 struct mac_info *mac_control;
4862 struct config_param *config;
4866 mac_control = &sp->mac_control;
4867 config = &sp->config;
4869 /* Configure Stats for immediate updt */
4870 s2io_updt_stats(sp);
4872 sp->stats.tx_packets =
4873 le32_to_cpu(mac_control->stats_info->tmac_frms);
4874 sp->stats.tx_errors =
4875 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4876 sp->stats.rx_errors =
4877 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4878 sp->stats.multicast =
4879 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4880 sp->stats.rx_length_errors =
4881 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4883 /* collect per-ring rx_packets and rx_bytes */
4884 sp->stats.rx_packets = sp->stats.rx_bytes = 0;
4885 for (i = 0; i < config->rx_ring_num; i++) {
4886 sp->stats.rx_packets += mac_control->rings[i].rx_packets;
4887 sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4890 return (&sp->stats);
4894 * s2io_set_multicast - entry point for multicast address enable/disable.
4895 * @dev : pointer to the device structure
4897 * This function is a driver entry point which gets called by the kernel
4898 * whenever multicast addresses must be enabled/disabled. This also gets
4899 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4900 * determine, if multicast address must be enabled or if promiscuous mode
4901 * is to be disabled etc.
4906 static void s2io_set_multicast(struct net_device *dev)
4909 struct dev_mc_list *mclist;
4910 struct s2io_nic *sp = dev->priv;
4911 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4912 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4914 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4916 struct config_param *config = &sp->config;
4918 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4919 /* Enable all Multicast addresses */
4920 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4921 &bar0->rmac_addr_data0_mem);
4922 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4923 &bar0->rmac_addr_data1_mem);
4924 val64 = RMAC_ADDR_CMD_MEM_WE |
4925 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4926 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4927 writeq(val64, &bar0->rmac_addr_cmd_mem);
4928 /* Wait till command completes */
4929 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4930 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4934 sp->all_multi_pos = config->max_mc_addr - 1;
4935 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4936 /* Disable all Multicast addresses */
4937 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4938 &bar0->rmac_addr_data0_mem);
4939 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4940 &bar0->rmac_addr_data1_mem);
4941 val64 = RMAC_ADDR_CMD_MEM_WE |
4942 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4943 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4944 writeq(val64, &bar0->rmac_addr_cmd_mem);
4945 /* Wait till command completes */
4946 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4947 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4951 sp->all_multi_pos = 0;
4954 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4955 /* Put the NIC into promiscuous mode */
4956 add = &bar0->mac_cfg;
4957 val64 = readq(&bar0->mac_cfg);
4958 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4960 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4961 writel((u32) val64, add);
4962 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4963 writel((u32) (val64 >> 32), (add + 4));
4965 if (vlan_tag_strip != 1) {
4966 val64 = readq(&bar0->rx_pa_cfg);
4967 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4968 writeq(val64, &bar0->rx_pa_cfg);
4969 vlan_strip_flag = 0;
4972 val64 = readq(&bar0->mac_cfg);
4973 sp->promisc_flg = 1;
4974 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4976 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4977 /* Remove the NIC from promiscuous mode */
4978 add = &bar0->mac_cfg;
4979 val64 = readq(&bar0->mac_cfg);
4980 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4982 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4983 writel((u32) val64, add);
4984 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4985 writel((u32) (val64 >> 32), (add + 4));
4987 if (vlan_tag_strip != 0) {
4988 val64 = readq(&bar0->rx_pa_cfg);
4989 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4990 writeq(val64, &bar0->rx_pa_cfg);
4991 vlan_strip_flag = 1;
4994 val64 = readq(&bar0->mac_cfg);
4995 sp->promisc_flg = 0;
4996 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5000 /* Update individual M_CAST address list */
5001 if ((!sp->m_cast_flg) && dev->mc_count) {
5003 (config->max_mc_addr - config->max_mac_addr)) {
5004 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5006 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5007 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5011 prev_cnt = sp->mc_addr_count;
5012 sp->mc_addr_count = dev->mc_count;
5014 /* Clear out the previous list of Mc in the H/W. */
5015 for (i = 0; i < prev_cnt; i++) {
5016 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5017 &bar0->rmac_addr_data0_mem);
5018 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5019 &bar0->rmac_addr_data1_mem);
5020 val64 = RMAC_ADDR_CMD_MEM_WE |
5021 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5022 RMAC_ADDR_CMD_MEM_OFFSET
5023 (config->mc_start_offset + i);
5024 writeq(val64, &bar0->rmac_addr_cmd_mem);
5026 /* Wait for command completes */
5027 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5028 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5030 DBG_PRINT(ERR_DBG, "%s: Adding ",
5032 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5037 /* Create the new Rx filter list and update the same in H/W. */
5038 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5039 i++, mclist = mclist->next) {
5040 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5043 for (j = 0; j < ETH_ALEN; j++) {
5044 mac_addr |= mclist->dmi_addr[j];
5048 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5049 &bar0->rmac_addr_data0_mem);
5050 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5051 &bar0->rmac_addr_data1_mem);
5052 val64 = RMAC_ADDR_CMD_MEM_WE |
5053 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5054 RMAC_ADDR_CMD_MEM_OFFSET
5055 (i + config->mc_start_offset);
5056 writeq(val64, &bar0->rmac_addr_cmd_mem);
5058 /* Wait for command completes */
5059 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5062 DBG_PRINT(ERR_DBG, "%s: Adding ",
5064 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5071 /* read from CAM unicast & multicast addresses and store it in
5072 * def_mac_addr structure
5074 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5078 struct config_param *config = &sp->config;
5080 /* store unicast & multicast mac addresses */
5081 for (offset = 0; offset < config->max_mc_addr; offset++) {
5082 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5083 /* if read fails disable the entry */
5084 if (mac_addr == FAILURE)
5085 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5086 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5090 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5091 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5094 struct config_param *config = &sp->config;
5095 /* restore unicast mac address */
5096 for (offset = 0; offset < config->max_mac_addr; offset++)
5097 do_s2io_prog_unicast(sp->dev,
5098 sp->def_mac_addr[offset].mac_addr);
5100 /* restore multicast mac address */
5101 for (offset = config->mc_start_offset;
5102 offset < config->max_mc_addr; offset++)
5103 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5106 /* add a multicast MAC address to CAM */
5107 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5111 struct config_param *config = &sp->config;
5113 for (i = 0; i < ETH_ALEN; i++) {
5115 mac_addr |= addr[i];
5117 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5120 /* check if the multicast mac already preset in CAM */
5121 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5123 tmp64 = do_s2io_read_unicast_mc(sp, i);
5124 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5127 if (tmp64 == mac_addr)
5130 if (i == config->max_mc_addr) {
5132 "CAM full no space left for multicast MAC\n");
5135 /* Update the internal structure with this new mac address */
5136 do_s2io_copy_mac_addr(sp, i, mac_addr);
5138 return (do_s2io_add_mac(sp, mac_addr, i));
5141 /* add MAC address to CAM */
5142 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5145 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5147 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5148 &bar0->rmac_addr_data0_mem);
5151 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5152 RMAC_ADDR_CMD_MEM_OFFSET(off);
5153 writeq(val64, &bar0->rmac_addr_cmd_mem);
5155 /* Wait till command completes */
5156 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5157 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5159 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5164 /* deletes a specified unicast/multicast mac entry from CAM */
5165 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5168 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5169 struct config_param *config = &sp->config;
5172 offset < config->max_mc_addr; offset++) {
5173 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5174 if (tmp64 == addr) {
5175 /* disable the entry by writing 0xffffffffffffULL */
5176 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5178 /* store the new mac list from CAM */
5179 do_s2io_store_unicast_mc(sp);
5183 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5184 (unsigned long long)addr);
5188 /* read mac entries from CAM */
5189 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5191 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5192 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5196 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5197 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5198 writeq(val64, &bar0->rmac_addr_cmd_mem);
5200 /* Wait till command completes */
5201 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5202 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5204 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5207 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5208 return (tmp64 >> 16);
5212 * s2io_set_mac_addr driver entry point
5215 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5217 struct sockaddr *addr = p;
5219 if (!is_valid_ether_addr(addr->sa_data))
5222 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5224 /* store the MAC address in CAM */
5225 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5228 * do_s2io_prog_unicast - Programs the Xframe mac address
5229 * @dev : pointer to the device structure.
5230 * @addr: a uchar pointer to the new mac address which is to be set.
5231 * Description : This procedure will program the Xframe to receive
5232 * frames with new Mac Address
5233 * Return value: SUCCESS on success and an appropriate (-)ve integer
5234 * as defined in errno.h file on failure.
5237 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5239 struct s2io_nic *sp = dev->priv;
5240 register u64 mac_addr = 0, perm_addr = 0;
5243 struct config_param *config = &sp->config;
5246 * Set the new MAC address as the new unicast filter and reflect this
5247 * change on the device address registered with the OS. It will be
5250 for (i = 0; i < ETH_ALEN; i++) {
5252 mac_addr |= addr[i];
5254 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5257 /* check if the dev_addr is different than perm_addr */
5258 if (mac_addr == perm_addr)
5261 /* check if the mac already preset in CAM */
5262 for (i = 1; i < config->max_mac_addr; i++) {
5263 tmp64 = do_s2io_read_unicast_mc(sp, i);
5264 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5267 if (tmp64 == mac_addr) {
5269 "MAC addr:0x%llx already present in CAM\n",
5270 (unsigned long long)mac_addr);
5274 if (i == config->max_mac_addr) {
5275 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5278 /* Update the internal structure with this new mac address */
5279 do_s2io_copy_mac_addr(sp, i, mac_addr);
5280 return (do_s2io_add_mac(sp, mac_addr, i));
5284 * s2io_ethtool_sset - Sets different link parameters.
5285 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5286 * @info: pointer to the structure with parameters given by ethtool to set
5289 * The function sets different link parameters provided by the user onto
5295 static int s2io_ethtool_sset(struct net_device *dev,
5296 struct ethtool_cmd *info)
5298 struct s2io_nic *sp = dev->priv;
5299 if ((info->autoneg == AUTONEG_ENABLE) ||
5300 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5303 s2io_close(sp->dev);
5311 * s2io_ethtol_gset - Return link specific information.
5312 * @sp : private member of the device structure, pointer to the
5313 * s2io_nic structure.
5314 * @info : pointer to the structure with parameters given by ethtool
5315 * to return link information.
5317 * Returns link specific information like speed, duplex etc.. to ethtool.
5319 * return 0 on success.
5322 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5324 struct s2io_nic *sp = dev->priv;
5325 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5326 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5327 info->port = PORT_FIBRE;
5329 /* info->transceiver */
5330 info->transceiver = XCVR_EXTERNAL;
5332 if (netif_carrier_ok(sp->dev)) {
5333 info->speed = 10000;
5334 info->duplex = DUPLEX_FULL;
5340 info->autoneg = AUTONEG_DISABLE;
5345 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5346 * @sp : private member of the device structure, which is a pointer to the
5347 * s2io_nic structure.
5348 * @info : pointer to the structure with parameters given by ethtool to
5349 * return driver information.
5351 * Returns driver specefic information like name, version etc.. to ethtool.
5356 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5357 struct ethtool_drvinfo *info)
5359 struct s2io_nic *sp = dev->priv;
5361 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5362 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5363 strncpy(info->fw_version, "", sizeof(info->fw_version));
5364 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5365 info->regdump_len = XENA_REG_SPACE;
5366 info->eedump_len = XENA_EEPROM_SPACE;
5370 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5371 * @sp: private member of the device structure, which is a pointer to the
5372 * s2io_nic structure.
5373 * @regs : pointer to the structure with parameters given by ethtool for
5374 * dumping the registers.
5375 * @reg_space: The input argumnet into which all the registers are dumped.
5377 * Dumps the entire register space of xFrame NIC into the user given
5383 static void s2io_ethtool_gregs(struct net_device *dev,
5384 struct ethtool_regs *regs, void *space)
5388 u8 *reg_space = (u8 *) space;
5389 struct s2io_nic *sp = dev->priv;
5391 regs->len = XENA_REG_SPACE;
5392 regs->version = sp->pdev->subsystem_device;
5394 for (i = 0; i < regs->len; i += 8) {
5395 reg = readq(sp->bar0 + i);
5396 memcpy((reg_space + i), ®, 8);
5401 * s2io_phy_id - timer function that alternates adapter LED.
5402 * @data : address of the private member of the device structure, which
5403 * is a pointer to the s2io_nic structure, provided as an u32.
5404 * Description: This is actually the timer function that alternates the
5405 * adapter LED bit of the adapter control bit to set/reset every time on
5406 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5407 * once every second.
5409 static void s2io_phy_id(unsigned long data)
5411 struct s2io_nic *sp = (struct s2io_nic *) data;
5412 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5416 subid = sp->pdev->subsystem_device;
5417 if ((sp->device_type == XFRAME_II_DEVICE) ||
5418 ((subid & 0xFF) >= 0x07)) {
5419 val64 = readq(&bar0->gpio_control);
5420 val64 ^= GPIO_CTRL_GPIO_0;
5421 writeq(val64, &bar0->gpio_control);
5423 val64 = readq(&bar0->adapter_control);
5424 val64 ^= ADAPTER_LED_ON;
5425 writeq(val64, &bar0->adapter_control);
5428 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5432 * s2io_ethtool_idnic - To physically identify the nic on the system.
5433 * @sp : private member of the device structure, which is a pointer to the
5434 * s2io_nic structure.
5435 * @id : pointer to the structure with identification parameters given by
5437 * Description: Used to physically identify the NIC on the system.
5438 * The Link LED will blink for a time specified by the user for
5440 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5441 * identification is possible only if it's link is up.
5443 * int , returns 0 on success
5446 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5448 u64 val64 = 0, last_gpio_ctrl_val;
5449 struct s2io_nic *sp = dev->priv;
5450 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5453 subid = sp->pdev->subsystem_device;
5454 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5455 if ((sp->device_type == XFRAME_I_DEVICE) &&
5456 ((subid & 0xFF) < 0x07)) {
5457 val64 = readq(&bar0->adapter_control);
5458 if (!(val64 & ADAPTER_CNTL_EN)) {
5460 "Adapter Link down, cannot blink LED\n");
5464 if (sp->id_timer.function == NULL) {
5465 init_timer(&sp->id_timer);
5466 sp->id_timer.function = s2io_phy_id;
5467 sp->id_timer.data = (unsigned long) sp;
5469 mod_timer(&sp->id_timer, jiffies);
5471 msleep_interruptible(data * HZ);
5473 msleep_interruptible(MAX_FLICKER_TIME);
5474 del_timer_sync(&sp->id_timer);
5476 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5477 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5478 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5484 static void s2io_ethtool_gringparam(struct net_device *dev,
5485 struct ethtool_ringparam *ering)
5487 struct s2io_nic *sp = dev->priv;
5488 int i,tx_desc_count=0,rx_desc_count=0;
5490 if (sp->rxd_mode == RXD_MODE_1)
5491 ering->rx_max_pending = MAX_RX_DESC_1;
5492 else if (sp->rxd_mode == RXD_MODE_3B)
5493 ering->rx_max_pending = MAX_RX_DESC_2;
5495 ering->tx_max_pending = MAX_TX_DESC;
5496 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5497 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5499 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5500 ering->tx_pending = tx_desc_count;
5502 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5503 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5505 ering->rx_pending = rx_desc_count;
5507 ering->rx_mini_max_pending = 0;
5508 ering->rx_mini_pending = 0;
5509 if(sp->rxd_mode == RXD_MODE_1)
5510 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5511 else if (sp->rxd_mode == RXD_MODE_3B)
5512 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5513 ering->rx_jumbo_pending = rx_desc_count;
5517 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5518 * @sp : private member of the device structure, which is a pointer to the
5519 * s2io_nic structure.
5520 * @ep : pointer to the structure with pause parameters given by ethtool.
5522 * Returns the Pause frame generation and reception capability of the NIC.
5526 static void s2io_ethtool_getpause_data(struct net_device *dev,
5527 struct ethtool_pauseparam *ep)
5530 struct s2io_nic *sp = dev->priv;
5531 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5533 val64 = readq(&bar0->rmac_pause_cfg);
5534 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5535 ep->tx_pause = TRUE;
5536 if (val64 & RMAC_PAUSE_RX_ENABLE)
5537 ep->rx_pause = TRUE;
5538 ep->autoneg = FALSE;
5542 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5543 * @sp : private member of the device structure, which is a pointer to the
5544 * s2io_nic structure.
5545 * @ep : pointer to the structure with pause parameters given by ethtool.
5547 * It can be used to set or reset Pause frame generation or reception
5548 * support of the NIC.
5550 * int, returns 0 on Success
5553 static int s2io_ethtool_setpause_data(struct net_device *dev,
5554 struct ethtool_pauseparam *ep)
5557 struct s2io_nic *sp = dev->priv;
5558 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5560 val64 = readq(&bar0->rmac_pause_cfg);
5562 val64 |= RMAC_PAUSE_GEN_ENABLE;
5564 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5566 val64 |= RMAC_PAUSE_RX_ENABLE;
5568 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5569 writeq(val64, &bar0->rmac_pause_cfg);
5574 * read_eeprom - reads 4 bytes of data from user given offset.
5575 * @sp : private member of the device structure, which is a pointer to the
5576 * s2io_nic structure.
5577 * @off : offset at which the data must be written
5578 * @data : Its an output parameter where the data read at the given
5581 * Will read 4 bytes of data from the user given offset and return the
5583 * NOTE: Will allow to read only part of the EEPROM visible through the
5586 * -1 on failure and 0 on success.
5589 #define S2IO_DEV_ID 5
5590 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5595 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5597 if (sp->device_type == XFRAME_I_DEVICE) {
5598 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5599 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5600 I2C_CONTROL_CNTL_START;
5601 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5603 while (exit_cnt < 5) {
5604 val64 = readq(&bar0->i2c_control);
5605 if (I2C_CONTROL_CNTL_END(val64)) {
5606 *data = I2C_CONTROL_GET_DATA(val64);
5615 if (sp->device_type == XFRAME_II_DEVICE) {
5616 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5617 SPI_CONTROL_BYTECNT(0x3) |
5618 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5619 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5620 val64 |= SPI_CONTROL_REQ;
5621 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5622 while (exit_cnt < 5) {
5623 val64 = readq(&bar0->spi_control);
5624 if (val64 & SPI_CONTROL_NACK) {
5627 } else if (val64 & SPI_CONTROL_DONE) {
5628 *data = readq(&bar0->spi_data);
5641 * write_eeprom - actually writes the relevant part of the data value.
5642 * @sp : private member of the device structure, which is a pointer to the
5643 * s2io_nic structure.
5644 * @off : offset at which the data must be written
5645 * @data : The data that is to be written
5646 * @cnt : Number of bytes of the data that are actually to be written into
5647 * the Eeprom. (max of 3)
5649 * Actually writes the relevant part of the data value into the Eeprom
5650 * through the I2C bus.
5652 * 0 on success, -1 on failure.
5655 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5657 int exit_cnt = 0, ret = -1;
5659 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5661 if (sp->device_type == XFRAME_I_DEVICE) {
5662 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5663 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5664 I2C_CONTROL_CNTL_START;
5665 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5667 while (exit_cnt < 5) {
5668 val64 = readq(&bar0->i2c_control);
5669 if (I2C_CONTROL_CNTL_END(val64)) {
5670 if (!(val64 & I2C_CONTROL_NACK))
5679 if (sp->device_type == XFRAME_II_DEVICE) {
5680 int write_cnt = (cnt == 8) ? 0 : cnt;
5681 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5683 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5684 SPI_CONTROL_BYTECNT(write_cnt) |
5685 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5686 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5687 val64 |= SPI_CONTROL_REQ;
5688 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5689 while (exit_cnt < 5) {
5690 val64 = readq(&bar0->spi_control);
5691 if (val64 & SPI_CONTROL_NACK) {
5694 } else if (val64 & SPI_CONTROL_DONE) {
5704 static void s2io_vpd_read(struct s2io_nic *nic)
5708 int i=0, cnt, fail = 0;
5709 int vpd_addr = 0x80;
5711 if (nic->device_type == XFRAME_II_DEVICE) {
5712 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5716 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5719 strcpy(nic->serial_num, "NOT AVAILABLE");
5721 vpd_data = kmalloc(256, GFP_KERNEL);
5723 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5726 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5728 for (i = 0; i < 256; i +=4 ) {
5729 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5730 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5731 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5732 for (cnt = 0; cnt <5; cnt++) {
5734 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5739 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5743 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5744 (u32 *)&vpd_data[i]);
5748 /* read serial number of adapter */
5749 for (cnt = 0; cnt < 256; cnt++) {
5750 if ((vpd_data[cnt] == 'S') &&
5751 (vpd_data[cnt+1] == 'N') &&
5752 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5753 memset(nic->serial_num, 0, VPD_STRING_LEN);
5754 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5761 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5762 memset(nic->product_name, 0, vpd_data[1]);
5763 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5766 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5770 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5771 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5772 * @eeprom : pointer to the user level structure provided by ethtool,
5773 * containing all relevant information.
5774 * @data_buf : user defined value to be written into Eeprom.
5775 * Description: Reads the values stored in the Eeprom at given offset
5776 * for a given length. Stores these values int the input argument data
5777 * buffer 'data_buf' and returns these to the caller (ethtool.)
5782 static int s2io_ethtool_geeprom(struct net_device *dev,
5783 struct ethtool_eeprom *eeprom, u8 * data_buf)
5787 struct s2io_nic *sp = dev->priv;
5789 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5791 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5792 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5794 for (i = 0; i < eeprom->len; i += 4) {
5795 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5796 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5800 memcpy((data_buf + i), &valid, 4);
5806 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5807 * @sp : private member of the device structure, which is a pointer to the
5808 * s2io_nic structure.
5809 * @eeprom : pointer to the user level structure provided by ethtool,
5810 * containing all relevant information.
5811 * @data_buf ; user defined value to be written into Eeprom.
5813 * Tries to write the user provided value in the Eeprom, at the offset
5814 * given by the user.
5816 * 0 on success, -EFAULT on failure.
5819 static int s2io_ethtool_seeprom(struct net_device *dev,
5820 struct ethtool_eeprom *eeprom,
5823 int len = eeprom->len, cnt = 0;
5824 u64 valid = 0, data;
5825 struct s2io_nic *sp = dev->priv;
5827 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5829 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5830 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5836 data = (u32) data_buf[cnt] & 0x000000FF;
5838 valid = (u32) (data << 24);
5842 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5844 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5846 "write into the specified offset\n");
5857 * s2io_register_test - reads and writes into all clock domains.
5858 * @sp : private member of the device structure, which is a pointer to the
5859 * s2io_nic structure.
5860 * @data : variable that returns the result of each of the test conducted b
5863 * Read and write into all clock domains. The NIC has 3 clock domains,
5864 * see that registers in all the three regions are accessible.
5869 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5871 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5872 u64 val64 = 0, exp_val;
5875 val64 = readq(&bar0->pif_rd_swapper_fb);
5876 if (val64 != 0x123456789abcdefULL) {
5878 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5881 val64 = readq(&bar0->rmac_pause_cfg);
5882 if (val64 != 0xc000ffff00000000ULL) {
5884 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5887 val64 = readq(&bar0->rx_queue_cfg);
5888 if (sp->device_type == XFRAME_II_DEVICE)
5889 exp_val = 0x0404040404040404ULL;
5891 exp_val = 0x0808080808080808ULL;
5892 if (val64 != exp_val) {
5894 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5897 val64 = readq(&bar0->xgxs_efifo_cfg);
5898 if (val64 != 0x000000001923141EULL) {
5900 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5903 val64 = 0x5A5A5A5A5A5A5A5AULL;
5904 writeq(val64, &bar0->xmsi_data);
5905 val64 = readq(&bar0->xmsi_data);
5906 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5908 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5911 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5912 writeq(val64, &bar0->xmsi_data);
5913 val64 = readq(&bar0->xmsi_data);
5914 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5916 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5924 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5925 * @sp : private member of the device structure, which is a pointer to the
5926 * s2io_nic structure.
5927 * @data:variable that returns the result of each of the test conducted by
5930 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5936 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5939 u64 ret_data, org_4F0, org_7F0;
5940 u8 saved_4F0 = 0, saved_7F0 = 0;
5941 struct net_device *dev = sp->dev;
5943 /* Test Write Error at offset 0 */
5944 /* Note that SPI interface allows write access to all areas
5945 * of EEPROM. Hence doing all negative testing only for Xframe I.
5947 if (sp->device_type == XFRAME_I_DEVICE)
5948 if (!write_eeprom(sp, 0, 0, 3))
5951 /* Save current values at offsets 0x4F0 and 0x7F0 */
5952 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5954 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5957 /* Test Write at offset 4f0 */
5958 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5960 if (read_eeprom(sp, 0x4F0, &ret_data))
5963 if (ret_data != 0x012345) {
5964 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5965 "Data written %llx Data read %llx\n",
5966 dev->name, (unsigned long long)0x12345,
5967 (unsigned long long)ret_data);
5971 /* Reset the EEPROM data go FFFF */
5972 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5974 /* Test Write Request Error at offset 0x7c */
5975 if (sp->device_type == XFRAME_I_DEVICE)
5976 if (!write_eeprom(sp, 0x07C, 0, 3))
5979 /* Test Write Request at offset 0x7f0 */
5980 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5982 if (read_eeprom(sp, 0x7F0, &ret_data))
5985 if (ret_data != 0x012345) {
5986 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5987 "Data written %llx Data read %llx\n",
5988 dev->name, (unsigned long long)0x12345,
5989 (unsigned long long)ret_data);
5993 /* Reset the EEPROM data go FFFF */
5994 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5996 if (sp->device_type == XFRAME_I_DEVICE) {
5997 /* Test Write Error at offset 0x80 */
5998 if (!write_eeprom(sp, 0x080, 0, 3))
6001 /* Test Write Error at offset 0xfc */
6002 if (!write_eeprom(sp, 0x0FC, 0, 3))
6005 /* Test Write Error at offset 0x100 */
6006 if (!write_eeprom(sp, 0x100, 0, 3))
6009 /* Test Write Error at offset 4ec */
6010 if (!write_eeprom(sp, 0x4EC, 0, 3))
6014 /* Restore values at offsets 0x4F0 and 0x7F0 */
6016 write_eeprom(sp, 0x4F0, org_4F0, 3);
6018 write_eeprom(sp, 0x7F0, org_7F0, 3);
6025 * s2io_bist_test - invokes the MemBist test of the card .
6026 * @sp : private member of the device structure, which is a pointer to the
6027 * s2io_nic structure.
6028 * @data:variable that returns the result of each of the test conducted by
6031 * This invokes the MemBist test of the card. We give around
6032 * 2 secs time for the Test to complete. If it's still not complete
6033 * within this peiod, we consider that the test failed.
6035 * 0 on success and -1 on failure.
6038 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6041 int cnt = 0, ret = -1;
6043 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6044 bist |= PCI_BIST_START;
6045 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6048 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6049 if (!(bist & PCI_BIST_START)) {
6050 *data = (bist & PCI_BIST_CODE_MASK);
6062 * s2io-link_test - verifies the link state of the nic
6063 * @sp ; private member of the device structure, which is a pointer to the
6064 * s2io_nic structure.
6065 * @data: variable that returns the result of each of the test conducted by
6068 * The function verifies the link state of the NIC and updates the input
6069 * argument 'data' appropriately.
6074 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6076 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6079 val64 = readq(&bar0->adapter_status);
6080 if(!(LINK_IS_UP(val64)))
6089 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6090 * @sp - private member of the device structure, which is a pointer to the
6091 * s2io_nic structure.
6092 * @data - variable that returns the result of each of the test
6093 * conducted by the driver.
6095 * This is one of the offline test that tests the read and write
6096 * access to the RldRam chip on the NIC.
6101 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6103 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6105 int cnt, iteration = 0, test_fail = 0;
6107 val64 = readq(&bar0->adapter_control);
6108 val64 &= ~ADAPTER_ECC_EN;
6109 writeq(val64, &bar0->adapter_control);
6111 val64 = readq(&bar0->mc_rldram_test_ctrl);
6112 val64 |= MC_RLDRAM_TEST_MODE;
6113 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6115 val64 = readq(&bar0->mc_rldram_mrs);
6116 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6117 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6119 val64 |= MC_RLDRAM_MRS_ENABLE;
6120 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6122 while (iteration < 2) {
6123 val64 = 0x55555555aaaa0000ULL;
6124 if (iteration == 1) {
6125 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6127 writeq(val64, &bar0->mc_rldram_test_d0);
6129 val64 = 0xaaaa5a5555550000ULL;
6130 if (iteration == 1) {
6131 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6133 writeq(val64, &bar0->mc_rldram_test_d1);
6135 val64 = 0x55aaaaaaaa5a0000ULL;
6136 if (iteration == 1) {
6137 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6139 writeq(val64, &bar0->mc_rldram_test_d2);
6141 val64 = (u64) (0x0000003ffffe0100ULL);
6142 writeq(val64, &bar0->mc_rldram_test_add);
6144 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6146 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6148 for (cnt = 0; cnt < 5; cnt++) {
6149 val64 = readq(&bar0->mc_rldram_test_ctrl);
6150 if (val64 & MC_RLDRAM_TEST_DONE)
6158 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6159 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6161 for (cnt = 0; cnt < 5; cnt++) {
6162 val64 = readq(&bar0->mc_rldram_test_ctrl);
6163 if (val64 & MC_RLDRAM_TEST_DONE)
6171 val64 = readq(&bar0->mc_rldram_test_ctrl);
6172 if (!(val64 & MC_RLDRAM_TEST_PASS))
6180 /* Bring the adapter out of test mode */
6181 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6187 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6188 * @sp : private member of the device structure, which is a pointer to the
6189 * s2io_nic structure.
6190 * @ethtest : pointer to a ethtool command specific structure that will be
6191 * returned to the user.
6192 * @data : variable that returns the result of each of the test
6193 * conducted by the driver.
6195 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6196 * the health of the card.
6201 static void s2io_ethtool_test(struct net_device *dev,
6202 struct ethtool_test *ethtest,
6205 struct s2io_nic *sp = dev->priv;
6206 int orig_state = netif_running(sp->dev);
6208 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6209 /* Offline Tests. */
6211 s2io_close(sp->dev);
6213 if (s2io_register_test(sp, &data[0]))
6214 ethtest->flags |= ETH_TEST_FL_FAILED;
6218 if (s2io_rldram_test(sp, &data[3]))
6219 ethtest->flags |= ETH_TEST_FL_FAILED;
6223 if (s2io_eeprom_test(sp, &data[1]))
6224 ethtest->flags |= ETH_TEST_FL_FAILED;
6226 if (s2io_bist_test(sp, &data[4]))
6227 ethtest->flags |= ETH_TEST_FL_FAILED;
6237 "%s: is not up, cannot run test\n",
6246 if (s2io_link_test(sp, &data[2]))
6247 ethtest->flags |= ETH_TEST_FL_FAILED;
6256 static void s2io_get_ethtool_stats(struct net_device *dev,
6257 struct ethtool_stats *estats,
6261 struct s2io_nic *sp = dev->priv;
6262 struct stat_block *stat_info = sp->mac_control.stats_info;
6264 s2io_updt_stats(sp);
6266 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6267 le32_to_cpu(stat_info->tmac_frms);
6269 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6270 le32_to_cpu(stat_info->tmac_data_octets);
6271 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6273 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6274 le32_to_cpu(stat_info->tmac_mcst_frms);
6276 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6277 le32_to_cpu(stat_info->tmac_bcst_frms);
6278 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6280 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6281 le32_to_cpu(stat_info->tmac_ttl_octets);
6283 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6284 le32_to_cpu(stat_info->tmac_ucst_frms);
6286 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6287 le32_to_cpu(stat_info->tmac_nucst_frms);
6289 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6290 le32_to_cpu(stat_info->tmac_any_err_frms);
6291 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6292 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6294 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6295 le32_to_cpu(stat_info->tmac_vld_ip);
6297 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6298 le32_to_cpu(stat_info->tmac_drop_ip);
6300 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6301 le32_to_cpu(stat_info->tmac_icmp);
6303 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6304 le32_to_cpu(stat_info->tmac_rst_tcp);
6305 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6306 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6307 le32_to_cpu(stat_info->tmac_udp);
6309 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6310 le32_to_cpu(stat_info->rmac_vld_frms);
6312 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6313 le32_to_cpu(stat_info->rmac_data_octets);
6314 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6315 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6317 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6318 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6320 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6321 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6322 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6323 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6324 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6325 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6326 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6328 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6329 le32_to_cpu(stat_info->rmac_ttl_octets);
6331 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6332 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6334 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6335 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6337 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6338 le32_to_cpu(stat_info->rmac_discarded_frms);
6340 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6341 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6342 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6343 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6345 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6346 le32_to_cpu(stat_info->rmac_usized_frms);
6348 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6349 le32_to_cpu(stat_info->rmac_osized_frms);
6351 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6352 le32_to_cpu(stat_info->rmac_frag_frms);
6354 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6355 le32_to_cpu(stat_info->rmac_jabber_frms);
6356 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6357 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6358 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6359 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6360 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6361 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6363 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6364 le32_to_cpu(stat_info->rmac_ip);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6366 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6368 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6369 le32_to_cpu(stat_info->rmac_drop_ip);
6371 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6372 le32_to_cpu(stat_info->rmac_icmp);
6373 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6375 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6376 le32_to_cpu(stat_info->rmac_udp);
6378 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6379 le32_to_cpu(stat_info->rmac_err_drp_udp);
6380 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6381 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6382 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6385 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6386 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6387 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6388 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6389 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6390 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6391 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6392 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6393 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6394 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6395 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6396 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6398 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6399 le32_to_cpu(stat_info->rmac_pause_cnt);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6403 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6404 le32_to_cpu(stat_info->rmac_accepted_ip);
6405 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6406 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6407 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6408 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6409 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6410 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6411 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6412 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6413 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6414 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6415 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6416 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6417 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6418 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6419 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6420 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6421 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6422 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6423 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6425 /* Enhanced statistics exist only for Hercules */
6426 if(sp->device_type == XFRAME_II_DEVICE) {
6428 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6430 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6432 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6435 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6436 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6437 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6438 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6439 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6440 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6441 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6442 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6443 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6444 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6445 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6449 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6450 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6451 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6452 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6453 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6454 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6455 for (k = 0; k < MAX_RX_RINGS; k++)
6456 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6457 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6458 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6459 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6460 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6461 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6462 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6463 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6464 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6465 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6466 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6467 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6468 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6469 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6470 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6471 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6472 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6473 if (stat_info->sw_stat.num_aggregations) {
6474 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6477 * Since 64-bit divide does not work on all platforms,
6478 * do repeated subtraction.
6480 while (tmp >= stat_info->sw_stat.num_aggregations) {
6481 tmp -= stat_info->sw_stat.num_aggregations;
6484 tmp_stats[i++] = count;
6488 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6489 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6490 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6491 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6492 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6493 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6495 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6496 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6498 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6499 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6500 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6501 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6502 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6504 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6505 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6506 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6507 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6508 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6509 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6510 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6511 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6512 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6513 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6514 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6515 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6516 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6517 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6518 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6519 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6520 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6521 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6522 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6523 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6524 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6525 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6526 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6527 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6528 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6529 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6532 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6534 return (XENA_REG_SPACE);
6538 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6540 struct s2io_nic *sp = dev->priv;
6542 return (sp->rx_csum);
6545 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6547 struct s2io_nic *sp = dev->priv;
6557 static int s2io_get_eeprom_len(struct net_device *dev)
6559 return (XENA_EEPROM_SPACE);
6562 static int s2io_get_sset_count(struct net_device *dev, int sset)
6564 struct s2io_nic *sp = dev->priv;
6568 return S2IO_TEST_LEN;
6570 switch(sp->device_type) {
6571 case XFRAME_I_DEVICE:
6572 return XFRAME_I_STAT_LEN;
6573 case XFRAME_II_DEVICE:
6574 return XFRAME_II_STAT_LEN;
6583 static void s2io_ethtool_get_strings(struct net_device *dev,
6584 u32 stringset, u8 * data)
6587 struct s2io_nic *sp = dev->priv;
6589 switch (stringset) {
6591 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6594 stat_size = sizeof(ethtool_xena_stats_keys);
6595 memcpy(data, ðtool_xena_stats_keys,stat_size);
6596 if(sp->device_type == XFRAME_II_DEVICE) {
6597 memcpy(data + stat_size,
6598 ðtool_enhanced_stats_keys,
6599 sizeof(ethtool_enhanced_stats_keys));
6600 stat_size += sizeof(ethtool_enhanced_stats_keys);
6603 memcpy(data + stat_size, ðtool_driver_stats_keys,
6604 sizeof(ethtool_driver_stats_keys));
6608 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6611 dev->features |= NETIF_F_IP_CSUM;
6613 dev->features &= ~NETIF_F_IP_CSUM;
6618 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6620 return (dev->features & NETIF_F_TSO) != 0;
6622 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6625 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6627 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6632 static const struct ethtool_ops netdev_ethtool_ops = {
6633 .get_settings = s2io_ethtool_gset,
6634 .set_settings = s2io_ethtool_sset,
6635 .get_drvinfo = s2io_ethtool_gdrvinfo,
6636 .get_regs_len = s2io_ethtool_get_regs_len,
6637 .get_regs = s2io_ethtool_gregs,
6638 .get_link = ethtool_op_get_link,
6639 .get_eeprom_len = s2io_get_eeprom_len,
6640 .get_eeprom = s2io_ethtool_geeprom,
6641 .set_eeprom = s2io_ethtool_seeprom,
6642 .get_ringparam = s2io_ethtool_gringparam,
6643 .get_pauseparam = s2io_ethtool_getpause_data,
6644 .set_pauseparam = s2io_ethtool_setpause_data,
6645 .get_rx_csum = s2io_ethtool_get_rx_csum,
6646 .set_rx_csum = s2io_ethtool_set_rx_csum,
6647 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6648 .set_sg = ethtool_op_set_sg,
6649 .get_tso = s2io_ethtool_op_get_tso,
6650 .set_tso = s2io_ethtool_op_set_tso,
6651 .set_ufo = ethtool_op_set_ufo,
6652 .self_test = s2io_ethtool_test,
6653 .get_strings = s2io_ethtool_get_strings,
6654 .phys_id = s2io_ethtool_idnic,
6655 .get_ethtool_stats = s2io_get_ethtool_stats,
6656 .get_sset_count = s2io_get_sset_count,
6660 * s2io_ioctl - Entry point for the Ioctl
6661 * @dev : Device pointer.
6662 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6663 * a proprietary structure used to pass information to the driver.
6664 * @cmd : This is used to distinguish between the different commands that
6665 * can be passed to the IOCTL functions.
6667 * Currently there are no special functionality supported in IOCTL, hence
6668 * function always return EOPNOTSUPPORTED
6671 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6677 * s2io_change_mtu - entry point to change MTU size for the device.
6678 * @dev : device pointer.
6679 * @new_mtu : the new MTU size for the device.
6680 * Description: A driver entry point to change MTU size for the device.
6681 * Before changing the MTU the device must be stopped.
6683 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6687 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6689 struct s2io_nic *sp = dev->priv;
6692 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6693 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6699 if (netif_running(dev)) {
6700 s2io_stop_all_tx_queue(sp);
6702 ret = s2io_card_up(sp);
6704 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6708 s2io_wake_all_tx_queue(sp);
6709 } else { /* Device is down */
6710 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6711 u64 val64 = new_mtu;
6713 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6720 * s2io_set_link - Set the LInk status
6721 * @data: long pointer to device private structue
6722 * Description: Sets the link status for the adapter
6725 static void s2io_set_link(struct work_struct *work)
6727 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6728 struct net_device *dev = nic->dev;
6729 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6735 if (!netif_running(dev))
6738 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6739 /* The card is being reset, no point doing anything */
6743 subid = nic->pdev->subsystem_device;
6744 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6746 * Allow a small delay for the NICs self initiated
6747 * cleanup to complete.
6752 val64 = readq(&bar0->adapter_status);
6753 if (LINK_IS_UP(val64)) {
6754 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6755 if (verify_xena_quiescence(nic)) {
6756 val64 = readq(&bar0->adapter_control);
6757 val64 |= ADAPTER_CNTL_EN;
6758 writeq(val64, &bar0->adapter_control);
6759 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6760 nic->device_type, subid)) {
6761 val64 = readq(&bar0->gpio_control);
6762 val64 |= GPIO_CTRL_GPIO_0;
6763 writeq(val64, &bar0->gpio_control);
6764 val64 = readq(&bar0->gpio_control);
6766 val64 |= ADAPTER_LED_ON;
6767 writeq(val64, &bar0->adapter_control);
6769 nic->device_enabled_once = TRUE;
6771 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6772 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6773 s2io_stop_all_tx_queue(nic);
6776 val64 = readq(&bar0->adapter_control);
6777 val64 |= ADAPTER_LED_ON;
6778 writeq(val64, &bar0->adapter_control);
6779 s2io_link(nic, LINK_UP);
6781 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6783 val64 = readq(&bar0->gpio_control);
6784 val64 &= ~GPIO_CTRL_GPIO_0;
6785 writeq(val64, &bar0->gpio_control);
6786 val64 = readq(&bar0->gpio_control);
6789 val64 = readq(&bar0->adapter_control);
6790 val64 = val64 &(~ADAPTER_LED_ON);
6791 writeq(val64, &bar0->adapter_control);
6792 s2io_link(nic, LINK_DOWN);
6794 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6800 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6802 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6803 u64 *temp2, int size)
6805 struct net_device *dev = sp->dev;
6806 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6808 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6809 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6812 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6814 * As Rx frame are not going to be processed,
6815 * using same mapped address for the Rxd
6818 rxdp1->Buffer0_ptr = *temp0;
6820 *skb = dev_alloc_skb(size);
6822 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6823 DBG_PRINT(INFO_DBG, "memory to allocate ");
6824 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6825 sp->mac_control.stats_info->sw_stat. \
6826 mem_alloc_fail_cnt++;
6829 sp->mac_control.stats_info->sw_stat.mem_allocated
6830 += (*skb)->truesize;
6831 /* storing the mapped addr in a temp variable
6832 * such it will be used for next rxd whose
6833 * Host Control is NULL
6835 rxdp1->Buffer0_ptr = *temp0 =
6836 pci_map_single( sp->pdev, (*skb)->data,
6837 size - NET_IP_ALIGN,
6838 PCI_DMA_FROMDEVICE);
6839 if( (rxdp1->Buffer0_ptr == 0) ||
6840 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6841 goto memalloc_failed;
6843 rxdp->Host_Control = (unsigned long) (*skb);
6845 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6846 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6847 /* Two buffer Mode */
6849 rxdp3->Buffer2_ptr = *temp2;
6850 rxdp3->Buffer0_ptr = *temp0;
6851 rxdp3->Buffer1_ptr = *temp1;
6853 *skb = dev_alloc_skb(size);
6855 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6856 DBG_PRINT(INFO_DBG, "memory to allocate ");
6857 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6858 sp->mac_control.stats_info->sw_stat. \
6859 mem_alloc_fail_cnt++;
6862 sp->mac_control.stats_info->sw_stat.mem_allocated
6863 += (*skb)->truesize;
6864 rxdp3->Buffer2_ptr = *temp2 =
6865 pci_map_single(sp->pdev, (*skb)->data,
6867 PCI_DMA_FROMDEVICE);
6868 if( (rxdp3->Buffer2_ptr == 0) ||
6869 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6870 goto memalloc_failed;
6872 rxdp3->Buffer0_ptr = *temp0 =
6873 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6874 PCI_DMA_FROMDEVICE);
6875 if( (rxdp3->Buffer0_ptr == 0) ||
6876 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6877 pci_unmap_single (sp->pdev,
6878 (dma_addr_t)rxdp3->Buffer2_ptr,
6879 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6880 goto memalloc_failed;
6882 rxdp->Host_Control = (unsigned long) (*skb);
6884 /* Buffer-1 will be dummy buffer not used */
6885 rxdp3->Buffer1_ptr = *temp1 =
6886 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6887 PCI_DMA_FROMDEVICE);
6888 if( (rxdp3->Buffer1_ptr == 0) ||
6889 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6890 pci_unmap_single (sp->pdev,
6891 (dma_addr_t)rxdp3->Buffer0_ptr,
6892 BUF0_LEN, PCI_DMA_FROMDEVICE);
6893 pci_unmap_single (sp->pdev,
6894 (dma_addr_t)rxdp3->Buffer2_ptr,
6895 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6896 goto memalloc_failed;
6902 stats->pci_map_fail_cnt++;
6903 stats->mem_freed += (*skb)->truesize;
6904 dev_kfree_skb(*skb);
6908 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6911 struct net_device *dev = sp->dev;
6912 if (sp->rxd_mode == RXD_MODE_1) {
6913 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6914 } else if (sp->rxd_mode == RXD_MODE_3B) {
6915 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6916 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6917 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6921 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6923 int i, j, k, blk_cnt = 0, size;
6924 struct mac_info * mac_control = &sp->mac_control;
6925 struct config_param *config = &sp->config;
6926 struct net_device *dev = sp->dev;
6927 struct RxD_t *rxdp = NULL;
6928 struct sk_buff *skb = NULL;
6929 struct buffAdd *ba = NULL;
6930 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6932 /* Calculate the size based on ring mode */
6933 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6934 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6935 if (sp->rxd_mode == RXD_MODE_1)
6936 size += NET_IP_ALIGN;
6937 else if (sp->rxd_mode == RXD_MODE_3B)
6938 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6940 for (i = 0; i < config->rx_ring_num; i++) {
6941 blk_cnt = config->rx_cfg[i].num_rxd /
6942 (rxd_count[sp->rxd_mode] +1);
6944 for (j = 0; j < blk_cnt; j++) {
6945 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6946 rxdp = mac_control->rings[i].
6947 rx_blocks[j].rxds[k].virt_addr;
6948 if(sp->rxd_mode == RXD_MODE_3B)
6949 ba = &mac_control->rings[i].ba[j][k];
6950 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6951 &skb,(u64 *)&temp0_64,
6958 set_rxd_buffer_size(sp, rxdp, size);
6960 /* flip the Ownership bit to Hardware */
6961 rxdp->Control_1 |= RXD_OWN_XENA;
6969 static int s2io_add_isr(struct s2io_nic * sp)
6972 struct net_device *dev = sp->dev;
6975 if (sp->config.intr_type == MSI_X)
6976 ret = s2io_enable_msi_x(sp);
6978 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6979 sp->config.intr_type = INTA;
6982 /* Store the values of the MSIX table in the struct s2io_nic structure */
6983 store_xmsi_data(sp);
6985 /* After proper initialization of H/W, register ISR */
6986 if (sp->config.intr_type == MSI_X) {
6987 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6989 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6990 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6991 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6993 err = request_irq(sp->entries[i].vector,
6994 s2io_msix_fifo_handle, 0, sp->desc[i],
6995 sp->s2io_entries[i].arg);
6996 /* If either data or addr is zero print it */
6997 if(!(sp->msix_info[i].addr &&
6998 sp->msix_info[i].data)) {
6999 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7000 "Data:0x%llx\n",sp->desc[i],
7001 (unsigned long long)
7002 sp->msix_info[i].addr,
7003 (unsigned long long)
7004 sp->msix_info[i].data);
7009 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7011 err = request_irq(sp->entries[i].vector,
7012 s2io_msix_ring_handle, 0, sp->desc[i],
7013 sp->s2io_entries[i].arg);
7014 /* If either data or addr is zero print it */
7015 if(!(sp->msix_info[i].addr &&
7016 sp->msix_info[i].data)) {
7017 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7018 "Data:0x%llx\n",sp->desc[i],
7019 (unsigned long long)
7020 sp->msix_info[i].addr,
7021 (unsigned long long)
7022 sp->msix_info[i].data);
7028 remove_msix_isr(sp);
7029 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7030 "failed\n", dev->name, i);
7031 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7033 sp->config.intr_type = INTA;
7036 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7039 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7041 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7045 if (sp->config.intr_type == INTA) {
7046 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7049 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7056 static void s2io_rem_isr(struct s2io_nic * sp)
7058 if (sp->config.intr_type == MSI_X)
7059 remove_msix_isr(sp);
7061 remove_inta_isr(sp);
7064 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7067 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7068 register u64 val64 = 0;
7069 struct config_param *config;
7070 config = &sp->config;
7072 if (!is_s2io_card_up(sp))
7075 del_timer_sync(&sp->alarm_timer);
7076 /* If s2io_set_link task is executing, wait till it completes. */
7077 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7080 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7084 napi_disable(&sp->napi);
7086 /* disable Tx and Rx traffic on the NIC */
7092 /* Check if the device is Quiescent and then Reset the NIC */
7094 /* As per the HW requirement we need to replenish the
7095 * receive buffer to avoid the ring bump. Since there is
7096 * no intention of processing the Rx frame at this pointwe are
7097 * just settting the ownership bit of rxd in Each Rx
7098 * ring to HW and set the appropriate buffer size
7099 * based on the ring mode
7101 rxd_owner_bit_reset(sp);
7103 val64 = readq(&bar0->adapter_status);
7104 if (verify_xena_quiescence(sp)) {
7105 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7113 "s2io_close:Device not Quiescent ");
7114 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7115 (unsigned long long) val64);
7122 /* Free all Tx buffers */
7123 free_tx_buffers(sp);
7125 /* Free all Rx buffers */
7126 free_rx_buffers(sp);
7128 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7131 static void s2io_card_down(struct s2io_nic * sp)
7133 do_s2io_card_down(sp, 1);
7136 static int s2io_card_up(struct s2io_nic * sp)
7139 struct mac_info *mac_control;
7140 struct config_param *config;
7141 struct net_device *dev = (struct net_device *) sp->dev;
7144 /* Initialize the H/W I/O registers */
7147 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7155 * Initializing the Rx buffers. For now we are considering only 1
7156 * Rx ring and initializing buffers into 30 Rx blocks
7158 mac_control = &sp->mac_control;
7159 config = &sp->config;
7161 for (i = 0; i < config->rx_ring_num; i++) {
7162 mac_control->rings[i].mtu = dev->mtu;
7163 ret = fill_rx_buffers(&mac_control->rings[i]);
7165 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7168 free_rx_buffers(sp);
7171 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7172 mac_control->rings[i].rx_bufs_left);
7175 /* Initialise napi */
7177 napi_enable(&sp->napi);
7179 /* Maintain the state prior to the open */
7180 if (sp->promisc_flg)
7181 sp->promisc_flg = 0;
7182 if (sp->m_cast_flg) {
7184 sp->all_multi_pos= 0;
7187 /* Setting its receive mode */
7188 s2io_set_multicast(dev);
7191 /* Initialize max aggregatable pkts per session based on MTU */
7192 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7193 /* Check if we can use(if specified) user provided value */
7194 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7195 sp->lro_max_aggr_per_sess = lro_max_pkts;
7198 /* Enable Rx Traffic and interrupts on the NIC */
7199 if (start_nic(sp)) {
7200 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7202 free_rx_buffers(sp);
7206 /* Add interrupt service routine */
7207 if (s2io_add_isr(sp) != 0) {
7208 if (sp->config.intr_type == MSI_X)
7211 free_rx_buffers(sp);
7215 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7217 /* Enable select interrupts */
7218 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7219 if (sp->config.intr_type != INTA)
7220 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7222 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7223 interruptible |= TX_PIC_INTR;
7224 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7227 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7232 * s2io_restart_nic - Resets the NIC.
7233 * @data : long pointer to the device private structure
7235 * This function is scheduled to be run by the s2io_tx_watchdog
7236 * function after 0.5 secs to reset the NIC. The idea is to reduce
7237 * the run time of the watch dog routine which is run holding a
7241 static void s2io_restart_nic(struct work_struct *work)
7243 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7244 struct net_device *dev = sp->dev;
7248 if (!netif_running(dev))
7252 if (s2io_card_up(sp)) {
7253 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7256 s2io_wake_all_tx_queue(sp);
7257 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7264 * s2io_tx_watchdog - Watchdog for transmit side.
7265 * @dev : Pointer to net device structure
7267 * This function is triggered if the Tx Queue is stopped
7268 * for a pre-defined amount of time when the Interface is still up.
7269 * If the Interface is jammed in such a situation, the hardware is
7270 * reset (by s2io_close) and restarted again (by s2io_open) to
7271 * overcome any problem that might have been caused in the hardware.
7276 static void s2io_tx_watchdog(struct net_device *dev)
7278 struct s2io_nic *sp = dev->priv;
7280 if (netif_carrier_ok(dev)) {
7281 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7282 schedule_work(&sp->rst_timer_task);
7283 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7288 * rx_osm_handler - To perform some OS related operations on SKB.
7289 * @sp: private member of the device structure,pointer to s2io_nic structure.
7290 * @skb : the socket buffer pointer.
7291 * @len : length of the packet
7292 * @cksum : FCS checksum of the frame.
7293 * @ring_no : the ring from which this RxD was extracted.
7295 * This function is called by the Rx interrupt serivce routine to perform
7296 * some OS related operations on the SKB before passing it to the upper
7297 * layers. It mainly checks if the checksum is OK, if so adds it to the
7298 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7299 * to the upper layer. If the checksum is wrong, it increments the Rx
7300 * packet error count, frees the SKB and returns error.
7302 * SUCCESS on success and -1 on failure.
7304 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7306 struct s2io_nic *sp = ring_data->nic;
7307 struct net_device *dev = (struct net_device *) ring_data->dev;
7308 struct sk_buff *skb = (struct sk_buff *)
7309 ((unsigned long) rxdp->Host_Control);
7310 int ring_no = ring_data->ring_no;
7311 u16 l3_csum, l4_csum;
7312 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7319 /* Check for parity error */
7321 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7323 err_mask = err >> 48;
7326 sp->mac_control.stats_info->sw_stat.
7327 rx_parity_err_cnt++;
7331 sp->mac_control.stats_info->sw_stat.
7336 sp->mac_control.stats_info->sw_stat.
7337 rx_parity_abort_cnt++;
7341 sp->mac_control.stats_info->sw_stat.
7346 sp->mac_control.stats_info->sw_stat.
7351 sp->mac_control.stats_info->sw_stat.
7356 sp->mac_control.stats_info->sw_stat.
7357 rx_buf_size_err_cnt++;
7361 sp->mac_control.stats_info->sw_stat.
7362 rx_rxd_corrupt_cnt++;
7366 sp->mac_control.stats_info->sw_stat.
7371 * Drop the packet if bad transfer code. Exception being
7372 * 0x5, which could be due to unsupported IPv6 extension header.
7373 * In this case, we let stack handle the packet.
7374 * Note that in this case, since checksum will be incorrect,
7375 * stack will validate the same.
7377 if (err_mask != 0x5) {
7378 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7379 dev->name, err_mask);
7380 sp->stats.rx_crc_errors++;
7381 sp->mac_control.stats_info->sw_stat.mem_freed
7384 ring_data->rx_bufs_left -= 1;
7385 rxdp->Host_Control = 0;
7390 /* Updating statistics */
7391 ring_data->rx_packets++;
7392 rxdp->Host_Control = 0;
7393 if (sp->rxd_mode == RXD_MODE_1) {
7394 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7396 ring_data->rx_bytes += len;
7399 } else if (sp->rxd_mode == RXD_MODE_3B) {
7400 int get_block = ring_data->rx_curr_get_info.block_index;
7401 int get_off = ring_data->rx_curr_get_info.offset;
7402 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7403 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7404 unsigned char *buff = skb_push(skb, buf0_len);
7406 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7407 ring_data->rx_bytes += buf0_len + buf2_len;
7408 memcpy(buff, ba->ba_0, buf0_len);
7409 skb_put(skb, buf2_len);
7412 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7413 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7415 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7416 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7417 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7419 * NIC verifies if the Checksum of the received
7420 * frame is Ok or not and accordingly returns
7421 * a flag in the RxD.
7423 skb->ip_summed = CHECKSUM_UNNECESSARY;
7424 if (ring_data->lro) {
7429 ret = s2io_club_tcp_session(ring_data,
7430 skb->data, &tcp, &tcp_len, &lro,
7433 case 3: /* Begin anew */
7436 case 1: /* Aggregate */
7438 lro_append_pkt(sp, lro,
7442 case 4: /* Flush session */
7444 lro_append_pkt(sp, lro,
7446 queue_rx_frame(lro->parent,
7448 clear_lro_session(lro);
7449 sp->mac_control.stats_info->
7450 sw_stat.flush_max_pkts++;
7453 case 2: /* Flush both */
7454 lro->parent->data_len =
7456 sp->mac_control.stats_info->
7457 sw_stat.sending_both++;
7458 queue_rx_frame(lro->parent,
7460 clear_lro_session(lro);
7462 case 0: /* sessions exceeded */
7463 case -1: /* non-TCP or not
7467 * First pkt in session not
7468 * L3/L4 aggregatable
7473 "%s: Samadhana!!\n",
7480 * Packet with erroneous checksum, let the
7481 * upper layers deal with it.
7483 skb->ip_summed = CHECKSUM_NONE;
7486 skb->ip_summed = CHECKSUM_NONE;
7488 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7490 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7491 dev->last_rx = jiffies;
7493 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7498 * s2io_link - stops/starts the Tx queue.
7499 * @sp : private member of the device structure, which is a pointer to the
7500 * s2io_nic structure.
7501 * @link : inidicates whether link is UP/DOWN.
7503 * This function stops/starts the Tx queue depending on whether the link
7504 * status of the NIC is is down or up. This is called by the Alarm
7505 * interrupt handler whenever a link change interrupt comes up.
7510 static void s2io_link(struct s2io_nic * sp, int link)
7512 struct net_device *dev = (struct net_device *) sp->dev;
7514 if (link != sp->last_link_state) {
7516 if (link == LINK_DOWN) {
7517 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7518 s2io_stop_all_tx_queue(sp);
7519 netif_carrier_off(dev);
7520 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7521 sp->mac_control.stats_info->sw_stat.link_up_time =
7522 jiffies - sp->start_time;
7523 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7525 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7526 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7527 sp->mac_control.stats_info->sw_stat.link_down_time =
7528 jiffies - sp->start_time;
7529 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7530 netif_carrier_on(dev);
7531 s2io_wake_all_tx_queue(sp);
7534 sp->last_link_state = link;
7535 sp->start_time = jiffies;
7539 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7540 * @sp : private member of the device structure, which is a pointer to the
7541 * s2io_nic structure.
7543 * This function initializes a few of the PCI and PCI-X configuration registers
7544 * with recommended values.
7549 static void s2io_init_pci(struct s2io_nic * sp)
7551 u16 pci_cmd = 0, pcix_cmd = 0;
7553 /* Enable Data Parity Error Recovery in PCI-X command register. */
7554 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7556 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7558 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7561 /* Set the PErr Response bit in PCI command register. */
7562 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7563 pci_write_config_word(sp->pdev, PCI_COMMAND,
7564 (pci_cmd | PCI_COMMAND_PARITY));
7565 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7568 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7571 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7572 (tx_fifo_num < 1)) {
7573 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7574 "(%d) not supported\n", tx_fifo_num);
7576 if (tx_fifo_num < 1)
7579 tx_fifo_num = MAX_TX_FIFOS;
7581 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7582 DBG_PRINT(ERR_DBG, "tx fifos\n");
7585 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7587 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7592 *dev_multiq = multiq;
7594 if (tx_steering_type && (1 == tx_fifo_num)) {
7595 if (tx_steering_type != TX_DEFAULT_STEERING)
7597 "s2io: Tx steering is not supported with "
7598 "one fifo. Disabling Tx steering.\n");
7599 tx_steering_type = NO_STEERING;
7602 if ((tx_steering_type < NO_STEERING) ||
7603 (tx_steering_type > TX_DEFAULT_STEERING)) {
7604 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7606 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7607 tx_steering_type = NO_STEERING;
7610 if (rx_ring_num > MAX_RX_RINGS) {
7611 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7613 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7615 rx_ring_num = MAX_RX_RINGS;
7618 if (*dev_intr_type != INTA)
7621 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7622 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7623 "Defaulting to INTA\n");
7624 *dev_intr_type = INTA;
7627 if ((*dev_intr_type == MSI_X) &&
7628 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7629 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7630 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7631 "Defaulting to INTA\n");
7632 *dev_intr_type = INTA;
7635 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7636 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7637 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7644 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7645 * or Traffic class respectively.
7646 * @nic: device private variable
7647 * Description: The function configures the receive steering to
7648 * desired receive ring.
7649 * Return Value: SUCCESS on success and
7650 * '-1' on failure (endian settings incorrect).
7652 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7655 register u64 val64 = 0;
7657 if (ds_codepoint > 63)
7660 val64 = RTS_DS_MEM_DATA(ring);
7661 writeq(val64, &bar0->rts_ds_mem_data);
7663 val64 = RTS_DS_MEM_CTRL_WE |
7664 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7665 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7667 writeq(val64, &bar0->rts_ds_mem_ctrl);
7669 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7670 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7675 * s2io_init_nic - Initialization of the adapter .
7676 * @pdev : structure containing the PCI related information of the device.
7677 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7679 * The function initializes an adapter identified by the pci_dec structure.
7680 * All OS related initialization including memory and device structure and
7681 * initlaization of the device private variable is done. Also the swapper
7682 * control register is initialized to enable read and write into the I/O
7683 * registers of the device.
7685 * returns 0 on success and negative on failure.
7688 static int __devinit
7689 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7691 struct s2io_nic *sp;
7692 struct net_device *dev;
7694 int dma_flag = FALSE;
7695 u32 mac_up, mac_down;
7696 u64 val64 = 0, tmp64 = 0;
7697 struct XENA_dev_config __iomem *bar0 = NULL;
7699 struct mac_info *mac_control;
7700 struct config_param *config;
7702 u8 dev_intr_type = intr_type;
7704 DECLARE_MAC_BUF(mac);
7706 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7710 if ((ret = pci_enable_device(pdev))) {
7712 "s2io_init_nic: pci_enable_device failed\n");
7716 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7717 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7719 if (pci_set_consistent_dma_mask
7720 (pdev, DMA_64BIT_MASK)) {
7722 "Unable to obtain 64bit DMA for \
7723 consistent allocations\n");
7724 pci_disable_device(pdev);
7727 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7728 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7730 pci_disable_device(pdev);
7733 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7734 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7735 pci_disable_device(pdev);
7738 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7740 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7743 dev = alloc_etherdev(sizeof(struct s2io_nic));
7745 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7746 pci_disable_device(pdev);
7747 pci_release_regions(pdev);
7751 pci_set_master(pdev);
7752 pci_set_drvdata(pdev, dev);
7753 SET_NETDEV_DEV(dev, &pdev->dev);
7755 /* Private member variable initialized to s2io NIC structure */
7757 memset(sp, 0, sizeof(struct s2io_nic));
7760 sp->high_dma_flag = dma_flag;
7761 sp->device_enabled_once = FALSE;
7762 if (rx_ring_mode == 1)
7763 sp->rxd_mode = RXD_MODE_1;
7764 if (rx_ring_mode == 2)
7765 sp->rxd_mode = RXD_MODE_3B;
7767 sp->config.intr_type = dev_intr_type;
7769 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7770 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7771 sp->device_type = XFRAME_II_DEVICE;
7773 sp->device_type = XFRAME_I_DEVICE;
7775 sp->lro = lro_enable;
7777 /* Initialize some PCI/PCI-X fields of the NIC. */
7781 * Setting the device configuration parameters.
7782 * Most of these parameters can be specified by the user during
7783 * module insertion as they are module loadable parameters. If
7784 * these parameters are not not specified during load time, they
7785 * are initialized with default values.
7787 mac_control = &sp->mac_control;
7788 config = &sp->config;
7790 config->napi = napi;
7791 config->tx_steering_type = tx_steering_type;
7793 /* Tx side parameters. */
7794 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7795 config->tx_fifo_num = MAX_TX_FIFOS;
7797 config->tx_fifo_num = tx_fifo_num;
7799 /* Initialize the fifos used for tx steering */
7800 if (config->tx_fifo_num < 5) {
7801 if (config->tx_fifo_num == 1)
7802 sp->total_tcp_fifos = 1;
7804 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7805 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7806 sp->total_udp_fifos = 1;
7807 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7809 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7810 FIFO_OTHER_MAX_NUM);
7811 sp->udp_fifo_idx = sp->total_tcp_fifos;
7812 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7813 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7816 config->multiq = dev_multiq;
7817 for (i = 0; i < config->tx_fifo_num; i++) {
7818 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7819 config->tx_cfg[i].fifo_priority = i;
7822 /* mapping the QoS priority to the configured fifos */
7823 for (i = 0; i < MAX_TX_FIFOS; i++)
7824 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7826 /* map the hashing selector table to the configured fifos */
7827 for (i = 0; i < config->tx_fifo_num; i++)
7828 sp->fifo_selector[i] = fifo_selector[i];
7831 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7832 for (i = 0; i < config->tx_fifo_num; i++) {
7833 config->tx_cfg[i].f_no_snoop =
7834 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7835 if (config->tx_cfg[i].fifo_len < 65) {
7836 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7840 /* + 2 because one Txd for skb->data and one Txd for UFO */
7841 config->max_txds = MAX_SKB_FRAGS + 2;
7843 /* Rx side parameters. */
7844 config->rx_ring_num = rx_ring_num;
7845 for (i = 0; i < config->rx_ring_num; i++) {
7846 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7847 (rxd_count[sp->rxd_mode] + 1);
7848 config->rx_cfg[i].ring_priority = i;
7849 mac_control->rings[i].rx_bufs_left = 0;
7850 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7851 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7852 mac_control->rings[i].pdev = sp->pdev;
7853 mac_control->rings[i].dev = sp->dev;
7856 for (i = 0; i < rx_ring_num; i++) {
7857 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7858 config->rx_cfg[i].f_no_snoop =
7859 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7862 /* Setting Mac Control parameters */
7863 mac_control->rmac_pause_time = rmac_pause_time;
7864 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7865 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7868 /* initialize the shared memory used by the NIC and the host */
7869 if (init_shared_mem(sp)) {
7870 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7873 goto mem_alloc_failed;
7876 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7877 pci_resource_len(pdev, 0));
7879 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7882 goto bar0_remap_failed;
7885 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7886 pci_resource_len(pdev, 2));
7888 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7891 goto bar1_remap_failed;
7894 dev->irq = pdev->irq;
7895 dev->base_addr = (unsigned long) sp->bar0;
7897 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7898 for (j = 0; j < MAX_TX_FIFOS; j++) {
7899 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7900 (sp->bar1 + (j * 0x00020000));
7903 /* Driver entry points */
7904 dev->open = &s2io_open;
7905 dev->stop = &s2io_close;
7906 dev->hard_start_xmit = &s2io_xmit;
7907 dev->get_stats = &s2io_get_stats;
7908 dev->set_multicast_list = &s2io_set_multicast;
7909 dev->do_ioctl = &s2io_ioctl;
7910 dev->set_mac_address = &s2io_set_mac_addr;
7911 dev->change_mtu = &s2io_change_mtu;
7912 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7913 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7914 dev->vlan_rx_register = s2io_vlan_rx_register;
7915 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7918 * will use eth_mac_addr() for dev->set_mac_address
7919 * mac address will be set every time dev->open() is called
7921 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7923 #ifdef CONFIG_NET_POLL_CONTROLLER
7924 dev->poll_controller = s2io_netpoll;
7927 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7928 if (sp->high_dma_flag == TRUE)
7929 dev->features |= NETIF_F_HIGHDMA;
7930 dev->features |= NETIF_F_TSO;
7931 dev->features |= NETIF_F_TSO6;
7932 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7933 dev->features |= NETIF_F_UFO;
7934 dev->features |= NETIF_F_HW_CSUM;
7936 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7938 dev->features |= NETIF_F_MULTI_QUEUE;
7940 dev->tx_timeout = &s2io_tx_watchdog;
7941 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7942 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7943 INIT_WORK(&sp->set_link_task, s2io_set_link);
7945 pci_save_state(sp->pdev);
7947 /* Setting swapper control on the NIC, for proper reset operation */
7948 if (s2io_set_swapper(sp)) {
7949 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7952 goto set_swap_failed;
7955 /* Verify if the Herc works on the slot its placed into */
7956 if (sp->device_type & XFRAME_II_DEVICE) {
7957 mode = s2io_verify_pci_mode(sp);
7959 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7960 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7962 goto set_swap_failed;
7966 /* Not needed for Herc */
7967 if (sp->device_type & XFRAME_I_DEVICE) {
7969 * Fix for all "FFs" MAC address problems observed on
7972 fix_mac_address(sp);
7977 * MAC address initialization.
7978 * For now only one mac address will be read and used.
7981 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7982 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7983 writeq(val64, &bar0->rmac_addr_cmd_mem);
7984 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7985 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7986 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7987 mac_down = (u32) tmp64;
7988 mac_up = (u32) (tmp64 >> 32);
7990 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7991 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7992 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7993 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7994 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7995 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7997 /* Set the factory defined MAC address initially */
7998 dev->addr_len = ETH_ALEN;
7999 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8000 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8002 /* initialize number of multicast & unicast MAC entries variables */
8003 if (sp->device_type == XFRAME_I_DEVICE) {
8004 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8005 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8006 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8007 } else if (sp->device_type == XFRAME_II_DEVICE) {
8008 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8009 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8010 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8013 /* store mac addresses from CAM to s2io_nic structure */
8014 do_s2io_store_unicast_mc(sp);
8016 /* Store the values of the MSIX table in the s2io_nic structure */
8017 store_xmsi_data(sp);
8018 /* reset Nic and bring it to known state */
8022 * Initialize link state flags
8023 * and the card state parameter
8027 /* Initialize spinlocks */
8028 for (i = 0; i < sp->config.tx_fifo_num; i++)
8029 spin_lock_init(&mac_control->fifos[i].tx_lock);
8032 * SXE-002: Configure link and activity LED to init state
8035 subid = sp->pdev->subsystem_device;
8036 if ((subid & 0xFF) >= 0x07) {
8037 val64 = readq(&bar0->gpio_control);
8038 val64 |= 0x0000800000000000ULL;
8039 writeq(val64, &bar0->gpio_control);
8040 val64 = 0x0411040400000000ULL;
8041 writeq(val64, (void __iomem *) bar0 + 0x2700);
8042 val64 = readq(&bar0->gpio_control);
8045 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8047 if (register_netdev(dev)) {
8048 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8050 goto register_failed;
8053 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8054 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8055 sp->product_name, pdev->revision);
8056 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8057 s2io_driver_version);
8058 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8059 dev->name, print_mac(mac, dev->dev_addr));
8060 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8061 if (sp->device_type & XFRAME_II_DEVICE) {
8062 mode = s2io_print_pci_mode(sp);
8064 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8066 unregister_netdev(dev);
8067 goto set_swap_failed;
8070 switch(sp->rxd_mode) {
8072 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8076 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8082 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8084 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8085 sp->config.tx_fifo_num);
8087 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8088 sp->config.rx_ring_num);
8090 switch(sp->config.intr_type) {
8092 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8095 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8098 if (sp->config.multiq) {
8099 for (i = 0; i < sp->config.tx_fifo_num; i++)
8100 mac_control->fifos[i].multiq = config->multiq;
8101 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8104 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8107 switch (sp->config.tx_steering_type) {
8109 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8110 " transmit\n", dev->name);
8112 case TX_PRIORITY_STEERING:
8113 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8114 " transmit\n", dev->name);
8116 case TX_DEFAULT_STEERING:
8117 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8118 " transmit\n", dev->name);
8122 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8125 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8126 " enabled\n", dev->name);
8127 /* Initialize device name */
8128 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8131 * Make Link state as off at this point, when the Link change
8132 * interrupt comes the state will be automatically changed to
8135 netif_carrier_off(dev);
8146 free_shared_mem(sp);
8147 pci_disable_device(pdev);
8148 pci_release_regions(pdev);
8149 pci_set_drvdata(pdev, NULL);
8156 * s2io_rem_nic - Free the PCI device
8157 * @pdev: structure containing the PCI related information of the device.
8158 * Description: This function is called by the Pci subsystem to release a
8159 * PCI device and free up all resource held up by the device. This could
8160 * be in response to a Hot plug event or when the driver is to be removed
8164 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8166 struct net_device *dev =
8167 (struct net_device *) pci_get_drvdata(pdev);
8168 struct s2io_nic *sp;
8171 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8175 flush_scheduled_work();
8178 unregister_netdev(dev);
8180 free_shared_mem(sp);
8183 pci_release_regions(pdev);
8184 pci_set_drvdata(pdev, NULL);
8186 pci_disable_device(pdev);
8190 * s2io_starter - Entry point for the driver
8191 * Description: This function is the entry point for the driver. It verifies
8192 * the module loadable parameters and initializes PCI configuration space.
8195 static int __init s2io_starter(void)
8197 return pci_register_driver(&s2io_driver);
8201 * s2io_closer - Cleanup routine for the driver
8202 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8205 static __exit void s2io_closer(void)
8207 pci_unregister_driver(&s2io_driver);
8208 DBG_PRINT(INIT_DBG, "cleanup done\n");
8211 module_init(s2io_starter);
8212 module_exit(s2io_closer);
8214 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8215 struct tcphdr **tcp, struct RxD_t *rxdp,
8216 struct s2io_nic *sp)
8219 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8221 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8222 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8227 /* Checking for DIX type or DIX type with VLAN */
8229 || (l2_type == 4)) {
8230 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8232 * If vlan stripping is disabled and the frame is VLAN tagged,
8233 * shift the offset by the VLAN header size bytes.
8235 if ((!vlan_strip_flag) &&
8236 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8237 ip_off += HEADER_VLAN_SIZE;
8239 /* LLC, SNAP etc are considered non-mergeable */
8243 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8244 ip_len = (u8)((*ip)->ihl);
8246 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8251 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8254 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8255 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8256 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8261 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8263 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8266 static void initiate_new_session(struct lro *lro, u8 *l2h,
8267 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8269 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8273 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8274 lro->tcp_ack = tcp->ack_seq;
8276 lro->total_len = ntohs(ip->tot_len);
8278 lro->vlan_tag = vlan_tag;
8280 * check if we saw TCP timestamp. Other consistency checks have
8281 * already been done.
8283 if (tcp->doff == 8) {
8285 ptr = (__be32 *)(tcp+1);
8287 lro->cur_tsval = ntohl(*(ptr+1));
8288 lro->cur_tsecr = *(ptr+2);
8293 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8295 struct iphdr *ip = lro->iph;
8296 struct tcphdr *tcp = lro->tcph;
8298 struct stat_block *statinfo = sp->mac_control.stats_info;
8299 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8301 /* Update L3 header */
8302 ip->tot_len = htons(lro->total_len);
8304 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8307 /* Update L4 header */
8308 tcp->ack_seq = lro->tcp_ack;
8309 tcp->window = lro->window;
8311 /* Update tsecr field if this session has timestamps enabled */
8313 __be32 *ptr = (__be32 *)(tcp + 1);
8314 *(ptr+2) = lro->cur_tsecr;
8317 /* Update counters required for calculation of
8318 * average no. of packets aggregated.
8320 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8321 statinfo->sw_stat.num_aggregations++;
8324 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8325 struct tcphdr *tcp, u32 l4_pyld)
8327 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8328 lro->total_len += l4_pyld;
8329 lro->frags_len += l4_pyld;
8330 lro->tcp_next_seq += l4_pyld;
8333 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8334 lro->tcp_ack = tcp->ack_seq;
8335 lro->window = tcp->window;
8339 /* Update tsecr and tsval from this packet */
8340 ptr = (__be32 *)(tcp+1);
8341 lro->cur_tsval = ntohl(*(ptr+1));
8342 lro->cur_tsecr = *(ptr + 2);
8346 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8347 struct tcphdr *tcp, u32 tcp_pyld_len)
8351 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8353 if (!tcp_pyld_len) {
8354 /* Runt frame or a pure ack */
8358 if (ip->ihl != 5) /* IP has options */
8361 /* If we see CE codepoint in IP header, packet is not mergeable */
8362 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8365 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8366 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8367 tcp->ece || tcp->cwr || !tcp->ack) {
8369 * Currently recognize only the ack control word and
8370 * any other control field being set would result in
8371 * flushing the LRO session
8377 * Allow only one TCP timestamp option. Don't aggregate if
8378 * any other options are detected.
8380 if (tcp->doff != 5 && tcp->doff != 8)
8383 if (tcp->doff == 8) {
8384 ptr = (u8 *)(tcp + 1);
8385 while (*ptr == TCPOPT_NOP)
8387 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8390 /* Ensure timestamp value increases monotonically */
8392 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8395 /* timestamp echo reply should be non-zero */
8396 if (*((__be32 *)(ptr+6)) == 0)
8404 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8405 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8406 struct s2io_nic *sp)
8409 struct tcphdr *tcph;
8413 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8415 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8416 ip->saddr, ip->daddr);
8420 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8421 tcph = (struct tcphdr *)*tcp;
8422 *tcp_len = get_l4_pyld_length(ip, tcph);
8423 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8424 struct lro *l_lro = &ring_data->lro0_n[i];
8425 if (l_lro->in_use) {
8426 if (check_for_socket_match(l_lro, ip, tcph))
8428 /* Sock pair matched */
8431 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8432 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8433 "0x%x, actual 0x%x\n", __FUNCTION__,
8434 (*lro)->tcp_next_seq,
8437 sp->mac_control.stats_info->
8438 sw_stat.outof_sequence_pkts++;
8443 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8444 ret = 1; /* Aggregate */
8446 ret = 2; /* Flush both */
8452 /* Before searching for available LRO objects,
8453 * check if the pkt is L3/L4 aggregatable. If not
8454 * don't create new LRO session. Just send this
8457 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8461 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8462 struct lro *l_lro = &ring_data->lro0_n[i];
8463 if (!(l_lro->in_use)) {
8465 ret = 3; /* Begin anew */
8471 if (ret == 0) { /* sessions exceeded */
8472 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8480 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8484 update_L3L4_header(sp, *lro);
8487 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8488 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8489 update_L3L4_header(sp, *lro);
8490 ret = 4; /* Flush the LRO */
8494 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8502 static void clear_lro_session(struct lro *lro)
8504 static u16 lro_struct_size = sizeof(struct lro);
8506 memset(lro, 0, lro_struct_size);
8509 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8511 struct net_device *dev = skb->dev;
8512 struct s2io_nic *sp = dev->priv;
8514 skb->protocol = eth_type_trans(skb, dev);
8515 if (sp->vlgrp && vlan_tag
8516 && (vlan_strip_flag)) {
8517 /* Queueing the vlan frame to the upper layer */
8518 if (sp->config.napi)
8519 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8521 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8523 if (sp->config.napi)
8524 netif_receive_skb(skb);
8530 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8531 struct sk_buff *skb,
8534 struct sk_buff *first = lro->parent;
8536 first->len += tcp_len;
8537 first->data_len = lro->frags_len;
8538 skb_pull(skb, (skb->len - tcp_len));
8539 if (skb_shinfo(first)->frag_list)
8540 lro->last_frag->next = skb;
8542 skb_shinfo(first)->frag_list = skb;
8543 first->truesize += skb->truesize;
8544 lro->last_frag = skb;
8545 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8550 * s2io_io_error_detected - called when PCI error is detected
8551 * @pdev: Pointer to PCI device
8552 * @state: The current pci connection state
8554 * This function is called after a PCI bus error affecting
8555 * this device has been detected.
8557 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8558 pci_channel_state_t state)
8560 struct net_device *netdev = pci_get_drvdata(pdev);
8561 struct s2io_nic *sp = netdev->priv;
8563 netif_device_detach(netdev);
8565 if (netif_running(netdev)) {
8566 /* Bring down the card, while avoiding PCI I/O */
8567 do_s2io_card_down(sp, 0);
8569 pci_disable_device(pdev);
8571 return PCI_ERS_RESULT_NEED_RESET;
8575 * s2io_io_slot_reset - called after the pci bus has been reset.
8576 * @pdev: Pointer to PCI device
8578 * Restart the card from scratch, as if from a cold-boot.
8579 * At this point, the card has exprienced a hard reset,
8580 * followed by fixups by BIOS, and has its config space
8581 * set up identically to what it was at cold boot.
8583 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8585 struct net_device *netdev = pci_get_drvdata(pdev);
8586 struct s2io_nic *sp = netdev->priv;
8588 if (pci_enable_device(pdev)) {
8589 printk(KERN_ERR "s2io: "
8590 "Cannot re-enable PCI device after reset.\n");
8591 return PCI_ERS_RESULT_DISCONNECT;
8594 pci_set_master(pdev);
8597 return PCI_ERS_RESULT_RECOVERED;
8601 * s2io_io_resume - called when traffic can start flowing again.
8602 * @pdev: Pointer to PCI device
8604 * This callback is called when the error recovery driver tells
8605 * us that its OK to resume normal operation.
8607 static void s2io_io_resume(struct pci_dev *pdev)
8609 struct net_device *netdev = pci_get_drvdata(pdev);
8610 struct s2io_nic *sp = netdev->priv;
8612 if (netif_running(netdev)) {
8613 if (s2io_card_up(sp)) {
8614 printk(KERN_ERR "s2io: "
8615 "Can't bring device back up after reset.\n");
8619 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8621 printk(KERN_ERR "s2io: "
8622 "Can't resetore mac addr after reset.\n");
8627 netif_device_attach(netdev);
8628 netif_wake_queue(netdev);