1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.22"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
360 struct s2io_nic *nic = dev->priv;
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
398 * Constants to be programmed into the Xena's registers, to configure
403 static const u64 herc_act_dtx_cfg[] = {
405 0x8000051536750000ULL, 0x80000515367500E0ULL,
407 0x8000051536750004ULL, 0x80000515367500E4ULL,
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
424 static const u64 xena_dtx_cfg[] = {
426 0x8000051500000000ULL, 0x80000515000000E0ULL,
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
434 0x8002051500000000ULL, 0x80020515000000E0ULL,
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
441 * Constants for Fixing the MacAddress problem seen mostly on
444 static const u64 fix_mac[] = {
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
468 S2IO_PARM_INT(rx_ring_num, 1);
469 S2IO_PARM_INT(multiq, 0);
470 S2IO_PARM_INT(rx_ring_mode, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472 S2IO_PARM_INT(rmac_pause_time, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475 S2IO_PARM_INT(shared_splits, 0);
476 S2IO_PARM_INT(tmac_util_period, 5);
477 S2IO_PARM_INT(rmac_util_period, 5);
478 S2IO_PARM_INT(l3l4hdr_size, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable;
487 module_param_named(lro, lro_enable, uint, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts, 0);
495 S2IO_PARM_INT(napi, 1);
496 S2IO_PARM_INT(ufo, 0);
497 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
499 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503 static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
506 module_param_array(tx_fifo_len, uint, NULL, 0);
507 module_param_array(rx_ring_sz, uint, NULL, 0);
508 module_param_array(rts_frm_len, uint, NULL, 0);
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
526 MODULE_DEVICE_TABLE(pci, s2io_tbl);
528 static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
534 static struct pci_driver s2io_driver = {
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
539 .err_handler = &s2io_err_handler,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp->config.multiq) {
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 netif_stop_subqueue(sp->dev, i);
556 for (i = 0; i < sp->config.tx_fifo_num; i++)
557 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
558 netif_stop_queue(sp->dev);
562 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp->config.multiq)
566 netif_stop_subqueue(sp->dev, fifo_no);
570 sp->mac_control.fifos[fifo_no].queue_state =
572 netif_stop_queue(sp->dev);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp->config.multiq) {
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 netif_start_subqueue(sp->dev, i);
586 for (i = 0; i < sp->config.tx_fifo_num; i++)
587 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
588 netif_start_queue(sp->dev);
592 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp->config.multiq)
596 netif_start_subqueue(sp->dev, fifo_no);
600 sp->mac_control.fifos[fifo_no].queue_state =
602 netif_start_queue(sp->dev);
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp->config.multiq) {
611 for (i = 0; i < sp->config.tx_fifo_num; i++)
612 netif_wake_subqueue(sp->dev, i);
616 for (i = 0; i < sp->config.tx_fifo_num; i++)
617 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
618 netif_wake_queue(sp->dev);
622 static inline void s2io_wake_tx_queue(
623 struct fifo_info *fifo, int cnt, u8 multiq)
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
628 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
629 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
632 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
633 if (netif_queue_stopped(fifo->dev)) {
634 fifo->queue_state = FIFO_QUEUE_START;
635 netif_wake_queue(fifo->dev);
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
645 * Rx descriptors and the statistics block.
648 static int init_shared_mem(struct s2io_nic *nic)
651 void *tmp_v_addr, *tmp_v_addr_next;
652 dma_addr_t tmp_p_addr, tmp_p_addr_next;
653 struct RxD_block *pre_rxd_blk = NULL;
655 int lst_size, lst_per_page;
656 struct net_device *dev = nic->dev;
660 struct mac_info *mac_control;
661 struct config_param *config;
662 unsigned long long mem_allocated = 0;
664 mac_control = &nic->mac_control;
665 config = &nic->config;
668 /* Allocation and initialization of TXDLs in FIOFs */
670 for (i = 0; i < config->tx_fifo_num; i++) {
671 size += config->tx_cfg[i].fifo_len;
673 if (size > MAX_AVAILABLE_TXDS) {
674 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
675 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 size = config->tx_cfg[i].fifo_len;
683 * Legal values are from 2 to 8192
686 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
687 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
688 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
694 lst_size = (sizeof(struct TxD) * config->max_txds);
695 lst_per_page = PAGE_SIZE / lst_size;
697 for (i = 0; i < config->tx_fifo_num; i++) {
698 int fifo_len = config->tx_cfg[i].fifo_len;
699 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
700 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
702 if (!mac_control->fifos[i].list_info) {
704 "Malloc failed for list_info\n");
707 mem_allocated += list_holder_size;
709 for (i = 0; i < config->tx_fifo_num; i++) {
710 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
712 mac_control->fifos[i].tx_curr_put_info.offset = 0;
713 mac_control->fifos[i].tx_curr_put_info.fifo_len =
714 config->tx_cfg[i].fifo_len - 1;
715 mac_control->fifos[i].tx_curr_get_info.offset = 0;
716 mac_control->fifos[i].tx_curr_get_info.fifo_len =
717 config->tx_cfg[i].fifo_len - 1;
718 mac_control->fifos[i].fifo_no = i;
719 mac_control->fifos[i].nic = nic;
720 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
721 mac_control->fifos[i].dev = dev;
723 for (j = 0; j < page_num; j++) {
727 tmp_v = pci_alloc_consistent(nic->pdev,
731 "pci_alloc_consistent ");
732 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
741 mac_control->zerodma_virt_addr = tmp_v;
743 "%s: Zero DMA address for TxDL. ", dev->name);
745 "Virtual address %p\n", tmp_v);
746 tmp_v = pci_alloc_consistent(nic->pdev,
750 "pci_alloc_consistent ");
751 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
754 mem_allocated += PAGE_SIZE;
756 while (k < lst_per_page) {
757 int l = (j * lst_per_page) + k;
758 if (l == config->tx_cfg[i].fifo_len)
760 mac_control->fifos[i].list_info[l].list_virt_addr =
761 tmp_v + (k * lst_size);
762 mac_control->fifos[i].list_info[l].list_phy_addr =
763 tmp_p + (k * lst_size);
769 for (i = 0; i < config->tx_fifo_num; i++) {
770 size = config->tx_cfg[i].fifo_len;
771 mac_control->fifos[i].ufo_in_band_v
772 = kcalloc(size, sizeof(u64), GFP_KERNEL);
773 if (!mac_control->fifos[i].ufo_in_band_v)
775 mem_allocated += (size * sizeof(u64));
778 /* Allocation and initialization of RXDs in Rings */
780 for (i = 0; i < config->rx_ring_num; i++) {
781 if (config->rx_cfg[i].num_rxd %
782 (rxd_count[nic->rxd_mode] + 1)) {
783 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
784 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
786 DBG_PRINT(ERR_DBG, "RxDs per Block");
789 size += config->rx_cfg[i].num_rxd;
790 mac_control->rings[i].block_count =
791 config->rx_cfg[i].num_rxd /
792 (rxd_count[nic->rxd_mode] + 1 );
793 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
794 mac_control->rings[i].block_count;
796 if (nic->rxd_mode == RXD_MODE_1)
797 size = (size * (sizeof(struct RxD1)));
799 size = (size * (sizeof(struct RxD3)));
801 for (i = 0; i < config->rx_ring_num; i++) {
802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
803 mac_control->rings[i].rx_curr_get_info.offset = 0;
804 mac_control->rings[i].rx_curr_get_info.ring_len =
805 config->rx_cfg[i].num_rxd - 1;
806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
807 mac_control->rings[i].rx_curr_put_info.offset = 0;
808 mac_control->rings[i].rx_curr_put_info.ring_len =
809 config->rx_cfg[i].num_rxd - 1;
810 mac_control->rings[i].nic = nic;
811 mac_control->rings[i].ring_no = i;
813 blk_cnt = config->rx_cfg[i].num_rxd /
814 (rxd_count[nic->rxd_mode] + 1);
815 /* Allocating all the Rx blocks */
816 for (j = 0; j < blk_cnt; j++) {
817 struct rx_block_info *rx_blocks;
820 rx_blocks = &mac_control->rings[i].rx_blocks[j];
821 size = SIZE_OF_BLOCK; //size is always page size
822 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
824 if (tmp_v_addr == NULL) {
826 * In case of failure, free_shared_mem()
827 * is called, which should free any
828 * memory that was alloced till the
831 rx_blocks->block_virt_addr = tmp_v_addr;
834 mem_allocated += size;
835 memset(tmp_v_addr, 0, size);
836 rx_blocks->block_virt_addr = tmp_v_addr;
837 rx_blocks->block_dma_addr = tmp_p_addr;
838 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
839 rxd_count[nic->rxd_mode],
841 if (!rx_blocks->rxds)
844 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
845 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
846 rx_blocks->rxds[l].virt_addr =
847 rx_blocks->block_virt_addr +
848 (rxd_size[nic->rxd_mode] * l);
849 rx_blocks->rxds[l].dma_addr =
850 rx_blocks->block_dma_addr +
851 (rxd_size[nic->rxd_mode] * l);
854 /* Interlinking all Rx Blocks */
855 for (j = 0; j < blk_cnt; j++) {
857 mac_control->rings[i].rx_blocks[j].block_virt_addr;
859 mac_control->rings[i].rx_blocks[(j + 1) %
860 blk_cnt].block_virt_addr;
862 mac_control->rings[i].rx_blocks[j].block_dma_addr;
864 mac_control->rings[i].rx_blocks[(j + 1) %
865 blk_cnt].block_dma_addr;
867 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
868 pre_rxd_blk->reserved_2_pNext_RxD_block =
869 (unsigned long) tmp_v_addr_next;
870 pre_rxd_blk->pNext_RxD_Blk_physical =
871 (u64) tmp_p_addr_next;
874 if (nic->rxd_mode == RXD_MODE_3B) {
876 * Allocation of Storages for buffer addresses in 2BUFF mode
877 * and the buffers as well.
879 for (i = 0; i < config->rx_ring_num; i++) {
880 blk_cnt = config->rx_cfg[i].num_rxd /
881 (rxd_count[nic->rxd_mode]+ 1);
882 mac_control->rings[i].ba =
883 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
885 if (!mac_control->rings[i].ba)
887 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
888 for (j = 0; j < blk_cnt; j++) {
890 mac_control->rings[i].ba[j] =
891 kmalloc((sizeof(struct buffAdd) *
892 (rxd_count[nic->rxd_mode] + 1)),
894 if (!mac_control->rings[i].ba[j])
896 mem_allocated += (sizeof(struct buffAdd) * \
897 (rxd_count[nic->rxd_mode] + 1));
898 while (k != rxd_count[nic->rxd_mode]) {
899 ba = &mac_control->rings[i].ba[j][k];
901 ba->ba_0_org = (void *) kmalloc
902 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
906 (BUF0_LEN + ALIGN_SIZE);
907 tmp = (unsigned long)ba->ba_0_org;
909 tmp &= ~((unsigned long) ALIGN_SIZE);
910 ba->ba_0 = (void *) tmp;
912 ba->ba_1_org = (void *) kmalloc
913 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
917 += (BUF1_LEN + ALIGN_SIZE);
918 tmp = (unsigned long) ba->ba_1_org;
920 tmp &= ~((unsigned long) ALIGN_SIZE);
921 ba->ba_1 = (void *) tmp;
928 /* Allocation and initialization of Statistics block */
929 size = sizeof(struct stat_block);
930 mac_control->stats_mem = pci_alloc_consistent
931 (nic->pdev, size, &mac_control->stats_mem_phy);
933 if (!mac_control->stats_mem) {
935 * In case of failure, free_shared_mem() is called, which
936 * should free any memory that was alloced till the
941 mem_allocated += size;
942 mac_control->stats_mem_sz = size;
944 tmp_v_addr = mac_control->stats_mem;
945 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
946 memset(tmp_v_addr, 0, size);
947 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
948 (unsigned long long) tmp_p_addr);
949 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
954 * free_shared_mem - Free the allocated Memory
955 * @nic: Device private variable.
956 * Description: This function is to free all memory locations allocated by
957 * the init_shared_mem() function and return it to the kernel.
960 static void free_shared_mem(struct s2io_nic *nic)
962 int i, j, blk_cnt, size;
964 dma_addr_t tmp_p_addr;
965 struct mac_info *mac_control;
966 struct config_param *config;
967 int lst_size, lst_per_page;
968 struct net_device *dev;
976 mac_control = &nic->mac_control;
977 config = &nic->config;
979 lst_size = (sizeof(struct TxD) * config->max_txds);
980 lst_per_page = PAGE_SIZE / lst_size;
982 for (i = 0; i < config->tx_fifo_num; i++) {
983 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
985 for (j = 0; j < page_num; j++) {
986 int mem_blks = (j * lst_per_page);
987 if (!mac_control->fifos[i].list_info)
989 if (!mac_control->fifos[i].list_info[mem_blks].
992 pci_free_consistent(nic->pdev, PAGE_SIZE,
993 mac_control->fifos[i].
996 mac_control->fifos[i].
999 nic->mac_control.stats_info->sw_stat.mem_freed
1002 /* If we got a zero DMA address during allocation,
1005 if (mac_control->zerodma_virt_addr) {
1006 pci_free_consistent(nic->pdev, PAGE_SIZE,
1007 mac_control->zerodma_virt_addr,
1010 "%s: Freeing TxDL with zero DMA addr. ",
1012 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1013 mac_control->zerodma_virt_addr);
1014 nic->mac_control.stats_info->sw_stat.mem_freed
1017 kfree(mac_control->fifos[i].list_info);
1018 nic->mac_control.stats_info->sw_stat.mem_freed +=
1019 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1022 size = SIZE_OF_BLOCK;
1023 for (i = 0; i < config->rx_ring_num; i++) {
1024 blk_cnt = mac_control->rings[i].block_count;
1025 for (j = 0; j < blk_cnt; j++) {
1026 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1028 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1030 if (tmp_v_addr == NULL)
1032 pci_free_consistent(nic->pdev, size,
1033 tmp_v_addr, tmp_p_addr);
1034 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1035 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1036 nic->mac_control.stats_info->sw_stat.mem_freed +=
1037 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1041 if (nic->rxd_mode == RXD_MODE_3B) {
1042 /* Freeing buffer storage addresses in 2BUFF mode. */
1043 for (i = 0; i < config->rx_ring_num; i++) {
1044 blk_cnt = config->rx_cfg[i].num_rxd /
1045 (rxd_count[nic->rxd_mode] + 1);
1046 for (j = 0; j < blk_cnt; j++) {
1048 if (!mac_control->rings[i].ba[j])
1050 while (k != rxd_count[nic->rxd_mode]) {
1051 struct buffAdd *ba =
1052 &mac_control->rings[i].ba[j][k];
1053 kfree(ba->ba_0_org);
1054 nic->mac_control.stats_info->sw_stat.\
1055 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1056 kfree(ba->ba_1_org);
1057 nic->mac_control.stats_info->sw_stat.\
1058 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1061 kfree(mac_control->rings[i].ba[j]);
1062 nic->mac_control.stats_info->sw_stat.mem_freed +=
1063 (sizeof(struct buffAdd) *
1064 (rxd_count[nic->rxd_mode] + 1));
1066 kfree(mac_control->rings[i].ba);
1067 nic->mac_control.stats_info->sw_stat.mem_freed +=
1068 (sizeof(struct buffAdd *) * blk_cnt);
1072 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1073 if (mac_control->fifos[i].ufo_in_band_v) {
1074 nic->mac_control.stats_info->sw_stat.mem_freed
1075 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1076 kfree(mac_control->fifos[i].ufo_in_band_v);
1080 if (mac_control->stats_mem) {
1081 nic->mac_control.stats_info->sw_stat.mem_freed +=
1082 mac_control->stats_mem_sz;
1083 pci_free_consistent(nic->pdev,
1084 mac_control->stats_mem_sz,
1085 mac_control->stats_mem,
1086 mac_control->stats_mem_phy);
1091 * s2io_verify_pci_mode -
1094 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1096 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1097 register u64 val64 = 0;
1100 val64 = readq(&bar0->pci_mode);
1101 mode = (u8)GET_PCI_MODE(val64);
1103 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1104 return -1; /* Unknown PCI mode */
1108 #define NEC_VENID 0x1033
1109 #define NEC_DEVID 0x0125
1110 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1112 struct pci_dev *tdev = NULL;
1113 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1114 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1115 if (tdev->bus == s2io_pdev->bus->parent)
1123 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1125 * s2io_print_pci_mode -
1127 static int s2io_print_pci_mode(struct s2io_nic *nic)
1129 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130 register u64 val64 = 0;
1132 struct config_param *config = &nic->config;
1134 val64 = readq(&bar0->pci_mode);
1135 mode = (u8)GET_PCI_MODE(val64);
1137 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1138 return -1; /* Unknown PCI mode */
1140 config->bus_speed = bus_speed[mode];
1142 if (s2io_on_nec_bridge(nic->pdev)) {
1143 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1148 if (val64 & PCI_MODE_32_BITS) {
1149 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1151 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1155 case PCI_MODE_PCI_33:
1156 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1158 case PCI_MODE_PCI_66:
1159 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1161 case PCI_MODE_PCIX_M1_66:
1162 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1164 case PCI_MODE_PCIX_M1_100:
1165 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1167 case PCI_MODE_PCIX_M1_133:
1168 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1170 case PCI_MODE_PCIX_M2_66:
1171 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1173 case PCI_MODE_PCIX_M2_100:
1174 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1176 case PCI_MODE_PCIX_M2_133:
1177 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1180 return -1; /* Unsupported bus speed */
1187 * init_tti - Initialization transmit traffic interrupt scheme
1188 * @nic: device private variable
1189 * @link: link status (UP/DOWN) used to enable/disable continuous
1190 * transmit interrupts
1191 * Description: The function configures transmit traffic interrupts
1192 * Return Value: SUCCESS on success and
1196 static int init_tti(struct s2io_nic *nic, int link)
1198 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1199 register u64 val64 = 0;
1201 struct config_param *config;
1203 config = &nic->config;
1205 for (i = 0; i < config->tx_fifo_num; i++) {
1207 * TTI Initialization. Default Tx timer gets us about
1208 * 250 interrupts per sec. Continuous interrupts are enabled
1211 if (nic->device_type == XFRAME_II_DEVICE) {
1212 int count = (nic->config.bus_speed * 125)/2;
1213 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1215 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1217 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1218 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1219 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1220 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1222 if (use_continuous_tx_intrs && (link == LINK_UP))
1223 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1224 writeq(val64, &bar0->tti_data1_mem);
1226 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229 TTI_DATA2_MEM_TX_UFC_D(0x80);
1231 writeq(val64, &bar0->tti_data2_mem);
1233 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1234 TTI_CMD_MEM_OFFSET(i);
1235 writeq(val64, &bar0->tti_command_mem);
1237 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1238 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1246 * init_nic - Initialization of hardware
1247 * @nic: device private variable
1248 * Description: The function sequentially configures every block
1249 * of the H/W from their reset values.
1250 * Return Value: SUCCESS on success and
1251 * '-1' on failure (endian settings incorrect).
1254 static int init_nic(struct s2io_nic *nic)
1256 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1257 struct net_device *dev = nic->dev;
1258 register u64 val64 = 0;
1262 struct mac_info *mac_control;
1263 struct config_param *config;
1265 unsigned long long mem_share;
1268 mac_control = &nic->mac_control;
1269 config = &nic->config;
1271 /* to set the swapper controle on the card */
1272 if(s2io_set_swapper(nic)) {
1273 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1278 * Herc requires EOI to be removed from reset before XGXS, so..
1280 if (nic->device_type & XFRAME_II_DEVICE) {
1281 val64 = 0xA500000000ULL;
1282 writeq(val64, &bar0->sw_reset);
1284 val64 = readq(&bar0->sw_reset);
1287 /* Remove XGXS from reset state */
1289 writeq(val64, &bar0->sw_reset);
1291 val64 = readq(&bar0->sw_reset);
1293 /* Ensure that it's safe to access registers by checking
1294 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1296 if (nic->device_type == XFRAME_II_DEVICE) {
1297 for (i = 0; i < 50; i++) {
1298 val64 = readq(&bar0->adapter_status);
1299 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1307 /* Enable Receiving broadcasts */
1308 add = &bar0->mac_cfg;
1309 val64 = readq(&bar0->mac_cfg);
1310 val64 |= MAC_RMAC_BCAST_ENABLE;
1311 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1312 writel((u32) val64, add);
1313 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314 writel((u32) (val64 >> 32), (add + 4));
1316 /* Read registers in all blocks */
1317 val64 = readq(&bar0->mac_int_mask);
1318 val64 = readq(&bar0->mc_int_mask);
1319 val64 = readq(&bar0->xgxs_int_mask);
1323 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1325 if (nic->device_type & XFRAME_II_DEVICE) {
1326 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1327 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1328 &bar0->dtx_control, UF);
1330 msleep(1); /* Necessary!! */
1334 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1335 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1336 &bar0->dtx_control, UF);
1337 val64 = readq(&bar0->dtx_control);
1342 /* Tx DMA Initialization */
1344 writeq(val64, &bar0->tx_fifo_partition_0);
1345 writeq(val64, &bar0->tx_fifo_partition_1);
1346 writeq(val64, &bar0->tx_fifo_partition_2);
1347 writeq(val64, &bar0->tx_fifo_partition_3);
1350 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1352 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1353 13) | vBIT(config->tx_cfg[i].fifo_priority,
1356 if (i == (config->tx_fifo_num - 1)) {
1363 writeq(val64, &bar0->tx_fifo_partition_0);
1368 writeq(val64, &bar0->tx_fifo_partition_1);
1373 writeq(val64, &bar0->tx_fifo_partition_2);
1378 writeq(val64, &bar0->tx_fifo_partition_3);
1389 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1390 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1392 if ((nic->device_type == XFRAME_I_DEVICE) &&
1393 (nic->pdev->revision < 4))
1394 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1396 val64 = readq(&bar0->tx_fifo_partition_0);
1397 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1398 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1401 * Initialization of Tx_PA_CONFIG register to ignore packet
1402 * integrity checking.
1404 val64 = readq(&bar0->tx_pa_cfg);
1405 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1406 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1407 writeq(val64, &bar0->tx_pa_cfg);
1409 /* Rx DMA intialization. */
1411 for (i = 0; i < config->rx_ring_num; i++) {
1413 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1416 writeq(val64, &bar0->rx_queue_priority);
1419 * Allocating equal share of memory to all the
1423 if (nic->device_type & XFRAME_II_DEVICE)
1428 for (i = 0; i < config->rx_ring_num; i++) {
1431 mem_share = (mem_size / config->rx_ring_num +
1432 mem_size % config->rx_ring_num);
1433 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1436 mem_share = (mem_size / config->rx_ring_num);
1437 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1440 mem_share = (mem_size / config->rx_ring_num);
1441 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1444 mem_share = (mem_size / config->rx_ring_num);
1445 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1448 mem_share = (mem_size / config->rx_ring_num);
1449 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1452 mem_share = (mem_size / config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1456 mem_share = (mem_size / config->rx_ring_num);
1457 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1460 mem_share = (mem_size / config->rx_ring_num);
1461 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1465 writeq(val64, &bar0->rx_queue_cfg);
1468 * Filling Tx round robin registers
1469 * as per the number of FIFOs for equal scheduling priority
1471 switch (config->tx_fifo_num) {
1474 writeq(val64, &bar0->tx_w_round_robin_0);
1475 writeq(val64, &bar0->tx_w_round_robin_1);
1476 writeq(val64, &bar0->tx_w_round_robin_2);
1477 writeq(val64, &bar0->tx_w_round_robin_3);
1478 writeq(val64, &bar0->tx_w_round_robin_4);
1481 val64 = 0x0001000100010001ULL;
1482 writeq(val64, &bar0->tx_w_round_robin_0);
1483 writeq(val64, &bar0->tx_w_round_robin_1);
1484 writeq(val64, &bar0->tx_w_round_robin_2);
1485 writeq(val64, &bar0->tx_w_round_robin_3);
1486 val64 = 0x0001000100000000ULL;
1487 writeq(val64, &bar0->tx_w_round_robin_4);
1490 val64 = 0x0001020001020001ULL;
1491 writeq(val64, &bar0->tx_w_round_robin_0);
1492 val64 = 0x0200010200010200ULL;
1493 writeq(val64, &bar0->tx_w_round_robin_1);
1494 val64 = 0x0102000102000102ULL;
1495 writeq(val64, &bar0->tx_w_round_robin_2);
1496 val64 = 0x0001020001020001ULL;
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 val64 = 0x0200010200000000ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1502 val64 = 0x0001020300010203ULL;
1503 writeq(val64, &bar0->tx_w_round_robin_0);
1504 writeq(val64, &bar0->tx_w_round_robin_1);
1505 writeq(val64, &bar0->tx_w_round_robin_2);
1506 writeq(val64, &bar0->tx_w_round_robin_3);
1507 val64 = 0x0001020300000000ULL;
1508 writeq(val64, &bar0->tx_w_round_robin_4);
1511 val64 = 0x0001020304000102ULL;
1512 writeq(val64, &bar0->tx_w_round_robin_0);
1513 val64 = 0x0304000102030400ULL;
1514 writeq(val64, &bar0->tx_w_round_robin_1);
1515 val64 = 0x0102030400010203ULL;
1516 writeq(val64, &bar0->tx_w_round_robin_2);
1517 val64 = 0x0400010203040001ULL;
1518 writeq(val64, &bar0->tx_w_round_robin_3);
1519 val64 = 0x0203040000000000ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_4);
1523 val64 = 0x0001020304050001ULL;
1524 writeq(val64, &bar0->tx_w_round_robin_0);
1525 val64 = 0x0203040500010203ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_1);
1527 val64 = 0x0405000102030405ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_2);
1529 val64 = 0x0001020304050001ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_3);
1531 val64 = 0x0203040500000000ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_4);
1535 val64 = 0x0001020304050600ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_0);
1537 val64 = 0x0102030405060001ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_1);
1539 val64 = 0x0203040506000102ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_2);
1541 val64 = 0x0304050600010203ULL;
1542 writeq(val64, &bar0->tx_w_round_robin_3);
1543 val64 = 0x0405060000000000ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_4);
1547 val64 = 0x0001020304050607ULL;
1548 writeq(val64, &bar0->tx_w_round_robin_0);
1549 writeq(val64, &bar0->tx_w_round_robin_1);
1550 writeq(val64, &bar0->tx_w_round_robin_2);
1551 writeq(val64, &bar0->tx_w_round_robin_3);
1552 val64 = 0x0001020300000000ULL;
1553 writeq(val64, &bar0->tx_w_round_robin_4);
1557 /* Enable all configured Tx FIFO partitions */
1558 val64 = readq(&bar0->tx_fifo_partition_0);
1559 val64 |= (TX_FIFO_PARTITION_EN);
1560 writeq(val64, &bar0->tx_fifo_partition_0);
1562 /* Filling the Rx round robin registers as per the
1563 * number of Rings and steering based on QoS.
1565 switch (config->rx_ring_num) {
1567 val64 = 0x8080808080808080ULL;
1568 writeq(val64, &bar0->rts_qos_steering);
1571 val64 = 0x0000010000010000ULL;
1572 writeq(val64, &bar0->rx_w_round_robin_0);
1573 val64 = 0x0100000100000100ULL;
1574 writeq(val64, &bar0->rx_w_round_robin_1);
1575 val64 = 0x0001000001000001ULL;
1576 writeq(val64, &bar0->rx_w_round_robin_2);
1577 val64 = 0x0000010000010000ULL;
1578 writeq(val64, &bar0->rx_w_round_robin_3);
1579 val64 = 0x0100000000000000ULL;
1580 writeq(val64, &bar0->rx_w_round_robin_4);
1582 val64 = 0x8080808040404040ULL;
1583 writeq(val64, &bar0->rts_qos_steering);
1586 val64 = 0x0001000102000001ULL;
1587 writeq(val64, &bar0->rx_w_round_robin_0);
1588 val64 = 0x0001020000010001ULL;
1589 writeq(val64, &bar0->rx_w_round_robin_1);
1590 val64 = 0x0200000100010200ULL;
1591 writeq(val64, &bar0->rx_w_round_robin_2);
1592 val64 = 0x0001000102000001ULL;
1593 writeq(val64, &bar0->rx_w_round_robin_3);
1594 val64 = 0x0001020000000000ULL;
1595 writeq(val64, &bar0->rx_w_round_robin_4);
1597 val64 = 0x8080804040402020ULL;
1598 writeq(val64, &bar0->rts_qos_steering);
1601 val64 = 0x0001020300010200ULL;
1602 writeq(val64, &bar0->rx_w_round_robin_0);
1603 val64 = 0x0100000102030001ULL;
1604 writeq(val64, &bar0->rx_w_round_robin_1);
1605 val64 = 0x0200010000010203ULL;
1606 writeq(val64, &bar0->rx_w_round_robin_2);
1607 val64 = 0x0001020001000001ULL;
1608 writeq(val64, &bar0->rx_w_round_robin_3);
1609 val64 = 0x0203000100000000ULL;
1610 writeq(val64, &bar0->rx_w_round_robin_4);
1612 val64 = 0x8080404020201010ULL;
1613 writeq(val64, &bar0->rts_qos_steering);
1616 val64 = 0x0001000203000102ULL;
1617 writeq(val64, &bar0->rx_w_round_robin_0);
1618 val64 = 0x0001020001030004ULL;
1619 writeq(val64, &bar0->rx_w_round_robin_1);
1620 val64 = 0x0001000203000102ULL;
1621 writeq(val64, &bar0->rx_w_round_robin_2);
1622 val64 = 0x0001020001030004ULL;
1623 writeq(val64, &bar0->rx_w_round_robin_3);
1624 val64 = 0x0001000000000000ULL;
1625 writeq(val64, &bar0->rx_w_round_robin_4);
1627 val64 = 0x8080404020201008ULL;
1628 writeq(val64, &bar0->rts_qos_steering);
1631 val64 = 0x0001020304000102ULL;
1632 writeq(val64, &bar0->rx_w_round_robin_0);
1633 val64 = 0x0304050001020001ULL;
1634 writeq(val64, &bar0->rx_w_round_robin_1);
1635 val64 = 0x0203000100000102ULL;
1636 writeq(val64, &bar0->rx_w_round_robin_2);
1637 val64 = 0x0304000102030405ULL;
1638 writeq(val64, &bar0->rx_w_round_robin_3);
1639 val64 = 0x0001000200000000ULL;
1640 writeq(val64, &bar0->rx_w_round_robin_4);
1642 val64 = 0x8080404020100804ULL;
1643 writeq(val64, &bar0->rts_qos_steering);
1646 val64 = 0x0001020001020300ULL;
1647 writeq(val64, &bar0->rx_w_round_robin_0);
1648 val64 = 0x0102030400010203ULL;
1649 writeq(val64, &bar0->rx_w_round_robin_1);
1650 val64 = 0x0405060001020001ULL;
1651 writeq(val64, &bar0->rx_w_round_robin_2);
1652 val64 = 0x0304050000010200ULL;
1653 writeq(val64, &bar0->rx_w_round_robin_3);
1654 val64 = 0x0102030000000000ULL;
1655 writeq(val64, &bar0->rx_w_round_robin_4);
1657 val64 = 0x8080402010080402ULL;
1658 writeq(val64, &bar0->rts_qos_steering);
1661 val64 = 0x0001020300040105ULL;
1662 writeq(val64, &bar0->rx_w_round_robin_0);
1663 val64 = 0x0200030106000204ULL;
1664 writeq(val64, &bar0->rx_w_round_robin_1);
1665 val64 = 0x0103000502010007ULL;
1666 writeq(val64, &bar0->rx_w_round_robin_2);
1667 val64 = 0x0304010002060500ULL;
1668 writeq(val64, &bar0->rx_w_round_robin_3);
1669 val64 = 0x0103020400000000ULL;
1670 writeq(val64, &bar0->rx_w_round_robin_4);
1672 val64 = 0x8040201008040201ULL;
1673 writeq(val64, &bar0->rts_qos_steering);
1679 for (i = 0; i < 8; i++)
1680 writeq(val64, &bar0->rts_frm_len_n[i]);
1682 /* Set the default rts frame length for the rings configured */
1683 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1684 for (i = 0 ; i < config->rx_ring_num ; i++)
1685 writeq(val64, &bar0->rts_frm_len_n[i]);
1687 /* Set the frame length for the configured rings
1688 * desired by the user
1690 for (i = 0; i < config->rx_ring_num; i++) {
1691 /* If rts_frm_len[i] == 0 then it is assumed that user not
1692 * specified frame length steering.
1693 * If the user provides the frame length then program
1694 * the rts_frm_len register for those values or else
1695 * leave it as it is.
1697 if (rts_frm_len[i] != 0) {
1698 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1699 &bar0->rts_frm_len_n[i]);
1703 /* Disable differentiated services steering logic */
1704 for (i = 0; i < 64; i++) {
1705 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1706 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1708 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1713 /* Program statistics memory */
1714 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1716 if (nic->device_type == XFRAME_II_DEVICE) {
1717 val64 = STAT_BC(0x320);
1718 writeq(val64, &bar0->stat_byte_cnt);
1722 * Initializing the sampling rate for the device to calculate the
1723 * bandwidth utilization.
1725 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1726 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1727 writeq(val64, &bar0->mac_link_util);
1730 * Initializing the Transmit and Receive Traffic Interrupt
1734 /* Initialize TTI */
1735 if (SUCCESS != init_tti(nic, nic->last_link_state))
1738 /* RTI Initialization */
1739 if (nic->device_type == XFRAME_II_DEVICE) {
1741 * Programmed to generate Apprx 500 Intrs per
1744 int count = (nic->config.bus_speed * 125)/4;
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1747 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1748 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1749 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1750 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1752 writeq(val64, &bar0->rti_data1_mem);
1754 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756 if (nic->config.intr_type == MSI_X)
1757 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1758 RTI_DATA2_MEM_RX_UFC_D(0x40));
1760 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1761 RTI_DATA2_MEM_RX_UFC_D(0x80));
1762 writeq(val64, &bar0->rti_data2_mem);
1764 for (i = 0; i < config->rx_ring_num; i++) {
1765 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1766 | RTI_CMD_MEM_OFFSET(i);
1767 writeq(val64, &bar0->rti_command_mem);
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1783 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799 /* Disable RMAC PAD STRIPPING */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1838 for (i = 0; i < 4; i++) {
1840 (((u64) 0xFF00 | nic->mac_control.
1841 mc_pause_threshold_q0q3)
1844 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1847 for (i = 0; i < 4; i++) {
1849 (((u64) 0xFF00 | nic->mac_control.
1850 mc_pause_threshold_q4q7)
1853 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1856 * TxDMA will stop Read request if the number of read split has
1857 * exceeded the limit pointed by shared_splits
1859 val64 = readq(&bar0->pic_control);
1860 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1861 writeq(val64, &bar0->pic_control);
1863 if (nic->config.bus_speed == 266) {
1864 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1865 writeq(0x0, &bar0->read_retry_delay);
1866 writeq(0x0, &bar0->write_retry_delay);
1870 * Programming the Herc to split every write transaction
1871 * that does not start on an ADB to reduce disconnects.
1873 if (nic->device_type == XFRAME_II_DEVICE) {
1874 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1875 MISC_LINK_STABILITY_PRD(3);
1876 writeq(val64, &bar0->misc_control);
1877 val64 = readq(&bar0->pic_control2);
1878 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1879 writeq(val64, &bar0->pic_control2);
1881 if (strstr(nic->product_name, "CX4")) {
1882 val64 = TMAC_AVG_IPG(0x17);
1883 writeq(val64, &bar0->tmac_avg_ipg);
1888 #define LINK_UP_DOWN_INTERRUPT 1
1889 #define MAC_RMAC_ERR_TIMER 2
1891 static int s2io_link_fault_indication(struct s2io_nic *nic)
1893 if (nic->config.intr_type != INTA)
1894 return MAC_RMAC_ERR_TIMER;
1895 if (nic->device_type == XFRAME_II_DEVICE)
1896 return LINK_UP_DOWN_INTERRUPT;
1898 return MAC_RMAC_ERR_TIMER;
1902 * do_s2io_write_bits - update alarm bits in alarm register
1903 * @value: alarm bits
1904 * @flag: interrupt status
1905 * @addr: address value
1906 * Description: update alarm bits in alarm register
1910 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1914 temp64 = readq(addr);
1916 if(flag == ENABLE_INTRS)
1917 temp64 &= ~((u64) value);
1919 temp64 |= ((u64) value);
1920 writeq(temp64, addr);
1923 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1925 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1926 register u64 gen_int_mask = 0;
1928 if (mask & TX_DMA_INTR) {
1930 gen_int_mask |= TXDMA_INT_M;
1932 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1933 TXDMA_PCC_INT | TXDMA_TTI_INT |
1934 TXDMA_LSO_INT | TXDMA_TPA_INT |
1935 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1937 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1938 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1939 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1940 &bar0->pfc_err_mask);
1942 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1943 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1944 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1946 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1947 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1948 PCC_N_SERR | PCC_6_COF_OV_ERR |
1949 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1950 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1951 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1953 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1954 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1956 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1957 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1958 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1959 flag, &bar0->lso_err_mask);
1961 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1962 flag, &bar0->tpa_err_mask);
1964 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1968 if (mask & TX_MAC_INTR) {
1969 gen_int_mask |= TXMAC_INT_M;
1970 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1971 &bar0->mac_int_mask);
1972 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1973 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1974 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1975 flag, &bar0->mac_tmac_err_mask);
1978 if (mask & TX_XGXS_INTR) {
1979 gen_int_mask |= TXXGXS_INT_M;
1980 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1981 &bar0->xgxs_int_mask);
1982 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1983 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1984 flag, &bar0->xgxs_txgxs_err_mask);
1987 if (mask & RX_DMA_INTR) {
1988 gen_int_mask |= RXDMA_INT_M;
1989 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1990 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1991 flag, &bar0->rxdma_int_mask);
1992 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1993 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1994 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1995 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1996 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1997 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1998 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1999 &bar0->prc_pcix_err_mask);
2000 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2001 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2002 &bar0->rpa_err_mask);
2003 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2004 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2005 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2006 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2007 flag, &bar0->rda_err_mask);
2008 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2009 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2010 flag, &bar0->rti_err_mask);
2013 if (mask & RX_MAC_INTR) {
2014 gen_int_mask |= RXMAC_INT_M;
2015 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2016 &bar0->mac_int_mask);
2017 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2018 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2019 RMAC_DOUBLE_ECC_ERR |
2020 RMAC_LINK_STATE_CHANGE_INT,
2021 flag, &bar0->mac_rmac_err_mask);
2024 if (mask & RX_XGXS_INTR)
2026 gen_int_mask |= RXXGXS_INT_M;
2027 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2028 &bar0->xgxs_int_mask);
2029 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2030 &bar0->xgxs_rxgxs_err_mask);
2033 if (mask & MC_INTR) {
2034 gen_int_mask |= MC_INT_M;
2035 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
2040 nic->general_int_mask = gen_int_mask;
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2046 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2047 * @nic: device private variable,
2048 * @mask: A mask indicating which Intr block must be modified and,
2049 * @flag: A flag indicating whether to enable or disable the Intrs.
2050 * Description: This function will either disable or enable the interrupts
2051 * depending on the flag argument. The mask argument can be used to
2052 * enable/disable any Intr block.
2053 * Return Value: NONE.
2056 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2059 register u64 temp64 = 0, intr_mask = 0;
2061 intr_mask = nic->general_int_mask;
2063 /* Top level interrupt classification */
2064 /* PIC Interrupts */
2065 if (mask & TX_PIC_INTR) {
2066 /* Enable PIC Intrs in the general intr mask register */
2067 intr_mask |= TXPIC_INT_M;
2068 if (flag == ENABLE_INTRS) {
2070 * If Hercules adapter enable GPIO otherwise
2071 * disable all PCIX, Flash, MDIO, IIC and GPIO
2072 * interrupts for now.
2075 if (s2io_link_fault_indication(nic) ==
2076 LINK_UP_DOWN_INTERRUPT ) {
2077 do_s2io_write_bits(PIC_INT_GPIO, flag,
2078 &bar0->pic_int_mask);
2079 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2080 &bar0->gpio_int_mask);
2082 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2083 } else if (flag == DISABLE_INTRS) {
2085 * Disable PIC Intrs in the general
2086 * intr mask register
2088 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2092 /* Tx traffic interrupts */
2093 if (mask & TX_TRAFFIC_INTR) {
2094 intr_mask |= TXTRAFFIC_INT_M;
2095 if (flag == ENABLE_INTRS) {
2097 * Enable all the Tx side interrupts
2098 * writing 0 Enables all 64 TX interrupt levels
2100 writeq(0x0, &bar0->tx_traffic_mask);
2101 } else if (flag == DISABLE_INTRS) {
2103 * Disable Tx Traffic Intrs in the general intr mask
2106 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2110 /* Rx traffic interrupts */
2111 if (mask & RX_TRAFFIC_INTR) {
2112 intr_mask |= RXTRAFFIC_INT_M;
2113 if (flag == ENABLE_INTRS) {
2114 /* writing 0 Enables all 8 RX interrupt levels */
2115 writeq(0x0, &bar0->rx_traffic_mask);
2116 } else if (flag == DISABLE_INTRS) {
2118 * Disable Rx Traffic Intrs in the general intr mask
2121 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2125 temp64 = readq(&bar0->general_int_mask);
2126 if (flag == ENABLE_INTRS)
2127 temp64 &= ~((u64) intr_mask);
2129 temp64 = DISABLE_ALL_INTRS;
2130 writeq(temp64, &bar0->general_int_mask);
2132 nic->general_int_mask = readq(&bar0->general_int_mask);
2136 * verify_pcc_quiescent- Checks for PCC quiescent state
2137 * Return: 1 If PCC is quiescence
2138 * 0 If PCC is not quiescence
2140 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2143 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2144 u64 val64 = readq(&bar0->adapter_status);
2146 herc = (sp->device_type == XFRAME_II_DEVICE);
2148 if (flag == FALSE) {
2149 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2153 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2157 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2158 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2159 ADAPTER_STATUS_RMAC_PCC_IDLE))
2162 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2163 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2171 * verify_xena_quiescence - Checks whether the H/W is ready
2172 * Description: Returns whether the H/W is ready to go or not. Depending
2173 * on whether adapter enable bit was written or not the comparison
2174 * differs and the calling function passes the input argument flag to
2176 * Return: 1 If xena is quiescence
2177 * 0 If Xena is not quiescence
2180 static int verify_xena_quiescence(struct s2io_nic *sp)
2183 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2184 u64 val64 = readq(&bar0->adapter_status);
2185 mode = s2io_verify_pci_mode(sp);
2187 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2188 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2191 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2192 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2195 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2196 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2199 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2200 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2203 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2204 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2207 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2208 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2211 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2212 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2215 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2216 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2221 * In PCI 33 mode, the P_PLL is not used, and therefore,
2222 * the the P_PLL_LOCK bit in the adapter_status register will
2225 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2226 sp->device_type == XFRAME_II_DEVICE && mode !=
2228 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2231 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2232 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2233 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2240 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2241 * @sp: Pointer to device specifc structure
2243 * New procedure to clear mac address reading problems on Alpha platforms
2247 static void fix_mac_address(struct s2io_nic * sp)
2249 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2253 while (fix_mac[i] != END_SIGN) {
2254 writeq(fix_mac[i++], &bar0->gpio_control);
2256 val64 = readq(&bar0->gpio_control);
2261 * start_nic - Turns the device on
2262 * @nic : device private variable.
2264 * This function actually turns the device on. Before this function is
2265 * called,all Registers are configured from their reset states
2266 * and shared memory is allocated but the NIC is still quiescent. On
2267 * calling this function, the device interrupts are cleared and the NIC is
2268 * literally switched on by writing into the adapter control register.
2270 * SUCCESS on success and -1 on failure.
2273 static int start_nic(struct s2io_nic *nic)
2275 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2276 struct net_device *dev = nic->dev;
2277 register u64 val64 = 0;
2279 struct mac_info *mac_control;
2280 struct config_param *config;
2282 mac_control = &nic->mac_control;
2283 config = &nic->config;
2285 /* PRC Initialization and configuration */
2286 for (i = 0; i < config->rx_ring_num; i++) {
2287 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2288 &bar0->prc_rxd0_n[i]);
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
2313 vlan_strip_flag = 0;
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2326 msleep(100); /* Delay by around 100 ms. */
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2334 * Verify if the device is ready to be enabled, if so enable
2337 val64 = readq(&bar0->adapter_status);
2338 if (!verify_xena_quiescence(nic)) {
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2340 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2341 (unsigned long long) val64);
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2363 schedule_work(&nic->set_link_task);
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2382 TxD *txdlp, int get_off)
2384 struct s2io_nic *nic = fifo_data->nic;
2385 struct sk_buff *skb;
2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391 pci_unmap_single(nic->pdev, (dma_addr_t)
2392 txds->Buffer_Pointer, sizeof(u64),
2397 skb = (struct sk_buff *) ((unsigned long)
2398 txds->Host_Control);
2400 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2403 pci_unmap_single(nic->pdev, (dma_addr_t)
2404 txds->Buffer_Pointer,
2405 skb->len - skb->data_len,
2407 frg_cnt = skb_shinfo(skb)->nr_frags;
2410 for (j = 0; j < frg_cnt; j++, txds++) {
2411 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2412 if (!txds->Buffer_Pointer)
2414 pci_unmap_page(nic->pdev, (dma_addr_t)
2415 txds->Buffer_Pointer,
2416 frag->size, PCI_DMA_TODEVICE);
2419 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2424 * free_tx_buffers - Free all queued Tx buffers
2425 * @nic : device private variable.
2427 * Free all queued Tx buffers.
2428 * Return Value: void
2431 static void free_tx_buffers(struct s2io_nic *nic)
2433 struct net_device *dev = nic->dev;
2434 struct sk_buff *skb;
2437 struct mac_info *mac_control;
2438 struct config_param *config;
2441 mac_control = &nic->mac_control;
2442 config = &nic->config;
2444 for (i = 0; i < config->tx_fifo_num; i++) {
2445 unsigned long flags;
2446 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2447 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2448 txdp = (struct TxD *) \
2449 mac_control->fifos[i].list_info[j].list_virt_addr;
2450 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2452 nic->mac_control.stats_info->sw_stat.mem_freed
2459 "%s:forcibly freeing %d skbs on FIFO%d\n",
2461 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2462 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2463 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2468 * stop_nic - To stop the nic
2469 * @nic ; device private variable.
2471 * This function does exactly the opposite of what the start_nic()
2472 * function does. This function is called to stop the device.
2477 static void stop_nic(struct s2io_nic *nic)
2479 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2480 register u64 val64 = 0;
2482 struct mac_info *mac_control;
2483 struct config_param *config;
2485 mac_control = &nic->mac_control;
2486 config = &nic->config;
2488 /* Disable all interrupts */
2489 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2490 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2491 interruptible |= TX_PIC_INTR;
2492 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2494 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2495 val64 = readq(&bar0->adapter_control);
2496 val64 &= ~(ADAPTER_CNTL_EN);
2497 writeq(val64, &bar0->adapter_control);
2501 * fill_rx_buffers - Allocates the Rx side skbs
2502 * @nic: device private variable
2503 * @ring_no: ring number
2505 * The function allocates Rx side skbs and puts the physical
2506 * address of these buffers into the RxD buffer pointers, so that the NIC
2507 * can DMA the received frame into these locations.
2508 * The NIC supports 3 receive modes, viz
2510 * 2. three buffer and
2511 * 3. Five buffer modes.
2512 * Each mode defines how many fragments the received frame will be split
2513 * up into by the NIC. The frame is split into L3 header, L4 Header,
2514 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2515 * is split into 3 fragments. As of now only single buffer mode is
2518 * SUCCESS on success or an appropriate -ve value on failure.
2521 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2523 struct net_device *dev = nic->dev;
2524 struct sk_buff *skb;
2526 int off, off1, size, block_no, block_no1;
2529 struct mac_info *mac_control;
2530 struct config_param *config;
2533 struct RxD_t *first_rxdp = NULL;
2534 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2537 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2539 mac_control = &nic->mac_control;
2540 config = &nic->config;
2541 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2542 atomic_read(&nic->rx_bufs_left[ring_no]);
2544 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2545 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2546 while (alloc_tab < alloc_cnt) {
2547 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2549 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2551 rxdp = mac_control->rings[ring_no].
2552 rx_blocks[block_no].rxds[off].virt_addr;
2554 if ((block_no == block_no1) && (off == off1) &&
2555 (rxdp->Host_Control)) {
2556 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2558 DBG_PRINT(INTR_DBG, " info equated\n");
2561 if (off && (off == rxd_count[nic->rxd_mode])) {
2562 mac_control->rings[ring_no].rx_curr_put_info.
2564 if (mac_control->rings[ring_no].rx_curr_put_info.
2565 block_index == mac_control->rings[ring_no].
2567 mac_control->rings[ring_no].rx_curr_put_info.
2569 block_no = mac_control->rings[ring_no].
2570 rx_curr_put_info.block_index;
2571 if (off == rxd_count[nic->rxd_mode])
2573 mac_control->rings[ring_no].rx_curr_put_info.
2575 rxdp = mac_control->rings[ring_no].
2576 rx_blocks[block_no].block_virt_addr;
2577 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2581 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2582 ((nic->rxd_mode == RXD_MODE_3B) &&
2583 (rxdp->Control_2 & s2BIT(0)))) {
2584 mac_control->rings[ring_no].rx_curr_put_info.
2588 /* calculate size of skb based on ring mode */
2589 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2590 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2591 if (nic->rxd_mode == RXD_MODE_1)
2592 size += NET_IP_ALIGN;
2594 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2597 skb = dev_alloc_skb(size);
2599 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2600 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2603 first_rxdp->Control_1 |= RXD_OWN_XENA;
2605 nic->mac_control.stats_info->sw_stat. \
2606 mem_alloc_fail_cnt++;
2609 nic->mac_control.stats_info->sw_stat.mem_allocated
2611 if (nic->rxd_mode == RXD_MODE_1) {
2612 /* 1 buffer mode - normal operation mode */
2613 rxdp1 = (struct RxD1*)rxdp;
2614 memset(rxdp, 0, sizeof(struct RxD1));
2615 skb_reserve(skb, NET_IP_ALIGN);
2616 rxdp1->Buffer0_ptr = pci_map_single
2617 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2618 PCI_DMA_FROMDEVICE);
2619 if( (rxdp1->Buffer0_ptr == 0) ||
2620 (rxdp1->Buffer0_ptr ==
2622 goto pci_map_failed;
2625 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2627 } else if (nic->rxd_mode == RXD_MODE_3B) {
2630 * 2 buffer mode provides 128
2631 * byte aligned receive buffers.
2634 rxdp3 = (struct RxD3*)rxdp;
2635 /* save buffer pointers to avoid frequent dma mapping */
2636 Buffer0_ptr = rxdp3->Buffer0_ptr;
2637 Buffer1_ptr = rxdp3->Buffer1_ptr;
2638 memset(rxdp, 0, sizeof(struct RxD3));
2639 /* restore the buffer pointers for dma sync*/
2640 rxdp3->Buffer0_ptr = Buffer0_ptr;
2641 rxdp3->Buffer1_ptr = Buffer1_ptr;
2643 ba = &mac_control->rings[ring_no].ba[block_no][off];
2644 skb_reserve(skb, BUF0_LEN);
2645 tmp = (u64)(unsigned long) skb->data;
2648 skb->data = (void *) (unsigned long)tmp;
2649 skb_reset_tail_pointer(skb);
2651 if (!(rxdp3->Buffer0_ptr))
2652 rxdp3->Buffer0_ptr =
2653 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2654 PCI_DMA_FROMDEVICE);
2656 pci_dma_sync_single_for_device(nic->pdev,
2657 (dma_addr_t) rxdp3->Buffer0_ptr,
2658 BUF0_LEN, PCI_DMA_FROMDEVICE);
2659 if( (rxdp3->Buffer0_ptr == 0) ||
2660 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2661 goto pci_map_failed;
2663 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2664 if (nic->rxd_mode == RXD_MODE_3B) {
2665 /* Two buffer mode */
2668 * Buffer2 will have L3/L4 header plus
2671 rxdp3->Buffer2_ptr = pci_map_single
2672 (nic->pdev, skb->data, dev->mtu + 4,
2673 PCI_DMA_FROMDEVICE);
2675 if( (rxdp3->Buffer2_ptr == 0) ||
2676 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2677 goto pci_map_failed;
2679 rxdp3->Buffer1_ptr =
2680 pci_map_single(nic->pdev,
2682 PCI_DMA_FROMDEVICE);
2683 if( (rxdp3->Buffer1_ptr == 0) ||
2684 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2687 (dma_addr_t)rxdp3->Buffer2_ptr,
2689 PCI_DMA_FROMDEVICE);
2690 goto pci_map_failed;
2692 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2693 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2696 rxdp->Control_2 |= s2BIT(0);
2698 rxdp->Host_Control = (unsigned long) (skb);
2699 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2700 rxdp->Control_1 |= RXD_OWN_XENA;
2702 if (off == (rxd_count[nic->rxd_mode] + 1))
2704 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2706 rxdp->Control_2 |= SET_RXD_MARKER;
2707 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2710 first_rxdp->Control_1 |= RXD_OWN_XENA;
2714 atomic_inc(&nic->rx_bufs_left[ring_no]);
2719 /* Transfer ownership of first descriptor to adapter just before
2720 * exiting. Before that, use memory barrier so that ownership
2721 * and other fields are seen by adapter correctly.
2725 first_rxdp->Control_1 |= RXD_OWN_XENA;
2730 stats->pci_map_fail_cnt++;
2731 stats->mem_freed += skb->truesize;
2732 dev_kfree_skb_irq(skb);
2736 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2738 struct net_device *dev = sp->dev;
2740 struct sk_buff *skb;
2742 struct mac_info *mac_control;
2747 mac_control = &sp->mac_control;
2748 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2749 rxdp = mac_control->rings[ring_no].
2750 rx_blocks[blk].rxds[j].virt_addr;
2751 skb = (struct sk_buff *)
2752 ((unsigned long) rxdp->Host_Control);
2756 if (sp->rxd_mode == RXD_MODE_1) {
2757 rxdp1 = (struct RxD1*)rxdp;
2758 pci_unmap_single(sp->pdev, (dma_addr_t)
2761 HEADER_ETHERNET_II_802_3_SIZE
2762 + HEADER_802_2_SIZE +
2764 PCI_DMA_FROMDEVICE);
2765 memset(rxdp, 0, sizeof(struct RxD1));
2766 } else if(sp->rxd_mode == RXD_MODE_3B) {
2767 rxdp3 = (struct RxD3*)rxdp;
2768 ba = &mac_control->rings[ring_no].
2770 pci_unmap_single(sp->pdev, (dma_addr_t)
2773 PCI_DMA_FROMDEVICE);
2774 pci_unmap_single(sp->pdev, (dma_addr_t)
2777 PCI_DMA_FROMDEVICE);
2778 pci_unmap_single(sp->pdev, (dma_addr_t)
2781 PCI_DMA_FROMDEVICE);
2782 memset(rxdp, 0, sizeof(struct RxD3));
2784 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2786 atomic_dec(&sp->rx_bufs_left[ring_no]);
2791 * free_rx_buffers - Frees all Rx buffers
2792 * @sp: device private variable.
2794 * This function will free all Rx buffers allocated by host.
2799 static void free_rx_buffers(struct s2io_nic *sp)
2801 struct net_device *dev = sp->dev;
2802 int i, blk = 0, buf_cnt = 0;
2803 struct mac_info *mac_control;
2804 struct config_param *config;
2806 mac_control = &sp->mac_control;
2807 config = &sp->config;
2809 for (i = 0; i < config->rx_ring_num; i++) {
2810 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2811 free_rxd_blk(sp,i,blk);
2813 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2814 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2815 mac_control->rings[i].rx_curr_put_info.offset = 0;
2816 mac_control->rings[i].rx_curr_get_info.offset = 0;
2817 atomic_set(&sp->rx_bufs_left[i], 0);
2818 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2819 dev->name, buf_cnt, i);
2824 * s2io_poll - Rx interrupt handler for NAPI support
2825 * @napi : pointer to the napi structure.
2826 * @budget : The number of packets that were budgeted to be processed
2827 * during one pass through the 'Poll" function.
2829 * Comes into picture only if NAPI support has been incorporated. It does
2830 * the same thing that rx_intr_handler does, but not in a interrupt context
2831 * also It will process only a given number of packets.
2833 * 0 on success and 1 if there are No Rx packets to be processed.
2836 static int s2io_poll(struct napi_struct *napi, int budget)
2838 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2839 struct net_device *dev = nic->dev;
2840 int pkt_cnt = 0, org_pkts_to_process;
2841 struct mac_info *mac_control;
2842 struct config_param *config;
2843 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2846 mac_control = &nic->mac_control;
2847 config = &nic->config;
2849 nic->pkts_to_process = budget;
2850 org_pkts_to_process = nic->pkts_to_process;
2852 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2853 readl(&bar0->rx_traffic_int);
2855 for (i = 0; i < config->rx_ring_num; i++) {
2856 rx_intr_handler(&mac_control->rings[i]);
2857 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2858 if (!nic->pkts_to_process) {
2859 /* Quota for the current iteration has been met */
2864 netif_rx_complete(dev, napi);
2866 for (i = 0; i < config->rx_ring_num; i++) {
2867 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2868 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2869 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2873 /* Re enable the Rx interrupts. */
2874 writeq(0x0, &bar0->rx_traffic_mask);
2875 readl(&bar0->rx_traffic_mask);
2879 for (i = 0; i < config->rx_ring_num; i++) {
2880 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2881 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2882 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2889 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 * s2io_netpoll - netpoll event handler entry point
2892 * @dev : pointer to the device structure.
2894 * This function will be called by upper layer to check for events on the
2895 * interface in situations where interrupts are disabled. It is used for
2896 * specific in-kernel networking tasks, such as remote consoles and kernel
2897 * debugging over the network (example netdump in RedHat).
2899 static void s2io_netpoll(struct net_device *dev)
2901 struct s2io_nic *nic = dev->priv;
2902 struct mac_info *mac_control;
2903 struct config_param *config;
2904 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2905 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2908 if (pci_channel_offline(nic->pdev))
2911 disable_irq(dev->irq);
2913 mac_control = &nic->mac_control;
2914 config = &nic->config;
2916 writeq(val64, &bar0->rx_traffic_int);
2917 writeq(val64, &bar0->tx_traffic_int);
2919 /* we need to free up the transmitted skbufs or else netpoll will
2920 * run out of skbs and will fail and eventually netpoll application such
2921 * as netdump will fail.
2923 for (i = 0; i < config->tx_fifo_num; i++)
2924 tx_intr_handler(&mac_control->fifos[i]);
2926 /* check for received packet and indicate up to network */
2927 for (i = 0; i < config->rx_ring_num; i++)
2928 rx_intr_handler(&mac_control->rings[i]);
2930 for (i = 0; i < config->rx_ring_num; i++) {
2931 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2932 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2933 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2937 enable_irq(dev->irq);
2943 * rx_intr_handler - Rx interrupt handler
2944 * @nic: device private variable.
2946 * If the interrupt is because of a received frame or if the
2947 * receive ring contains fresh as yet un-processed frames,this function is
2948 * called. It picks out the RxD at which place the last Rx processing had
2949 * stopped and sends the skb to the OSM's Rx handler and then increments
2954 static void rx_intr_handler(struct ring_info *ring_data)
2956 struct s2io_nic *nic = ring_data->nic;
2957 struct net_device *dev = (struct net_device *) nic->dev;
2958 int get_block, put_block;
2959 struct rx_curr_get_info get_info, put_info;
2961 struct sk_buff *skb;
2967 get_info = ring_data->rx_curr_get_info;
2968 get_block = get_info.block_index;
2969 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2970 put_block = put_info.block_index;
2971 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2973 while (RXD_IS_UP2DT(rxdp)) {
2975 * If your are next to put index then it's
2976 * FIFO full condition
2978 if ((get_block == put_block) &&
2979 (get_info.offset + 1) == put_info.offset) {
2980 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2983 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2985 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2987 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2990 if (nic->rxd_mode == RXD_MODE_1) {
2991 rxdp1 = (struct RxD1*)rxdp;
2992 pci_unmap_single(nic->pdev, (dma_addr_t)
2995 HEADER_ETHERNET_II_802_3_SIZE +
2998 PCI_DMA_FROMDEVICE);
2999 } else if (nic->rxd_mode == RXD_MODE_3B) {
3000 rxdp3 = (struct RxD3*)rxdp;
3001 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
3003 BUF0_LEN, PCI_DMA_FROMDEVICE);
3004 pci_unmap_single(nic->pdev, (dma_addr_t)
3007 PCI_DMA_FROMDEVICE);
3009 prefetch(skb->data);
3010 rx_osm_handler(ring_data, rxdp);
3012 ring_data->rx_curr_get_info.offset = get_info.offset;
3013 rxdp = ring_data->rx_blocks[get_block].
3014 rxds[get_info.offset].virt_addr;
3015 if (get_info.offset == rxd_count[nic->rxd_mode]) {
3016 get_info.offset = 0;
3017 ring_data->rx_curr_get_info.offset = get_info.offset;
3019 if (get_block == ring_data->block_count)
3021 ring_data->rx_curr_get_info.block_index = get_block;
3022 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3025 nic->pkts_to_process -= 1;
3026 if ((napi) && (!nic->pkts_to_process))
3029 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3033 /* Clear all LRO sessions before exiting */
3034 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3035 struct lro *lro = &nic->lro0_n[i];
3037 update_L3L4_header(nic, lro);
3038 queue_rx_frame(lro->parent, lro->vlan_tag);
3039 clear_lro_session(lro);
3046 * tx_intr_handler - Transmit interrupt handler
3047 * @nic : device private variable
3049 * If an interrupt was raised to indicate DMA complete of the
3050 * Tx packet, this function is called. It identifies the last TxD
3051 * whose buffer was freed and frees all skbs whose data have already
3052 * DMA'ed into the NICs internal memory.
3057 static void tx_intr_handler(struct fifo_info *fifo_data)
3059 struct s2io_nic *nic = fifo_data->nic;
3060 struct tx_curr_get_info get_info, put_info;
3061 struct sk_buff *skb = NULL;
3064 unsigned long flags = 0;
3067 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3070 get_info = fifo_data->tx_curr_get_info;
3071 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3072 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3074 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3075 (get_info.offset != put_info.offset) &&
3076 (txdlp->Host_Control)) {
3077 /* Check for TxD errors */
3078 if (txdlp->Control_1 & TXD_T_CODE) {
3079 unsigned long long err;
3080 err = txdlp->Control_1 & TXD_T_CODE;
3082 nic->mac_control.stats_info->sw_stat.
3086 /* update t_code statistics */
3087 err_mask = err >> 48;
3090 nic->mac_control.stats_info->sw_stat.
3095 nic->mac_control.stats_info->sw_stat.
3096 tx_desc_abort_cnt++;
3100 nic->mac_control.stats_info->sw_stat.
3101 tx_parity_err_cnt++;
3105 nic->mac_control.stats_info->sw_stat.
3110 nic->mac_control.stats_info->sw_stat.
3111 tx_list_proc_err_cnt++;
3116 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3118 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3119 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3121 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3126 /* Updating the statistics block */
3127 nic->stats.tx_bytes += skb->len;
3128 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3129 dev_kfree_skb_irq(skb);
3132 if (get_info.offset == get_info.fifo_len + 1)
3133 get_info.offset = 0;
3134 txdlp = (struct TxD *) fifo_data->list_info
3135 [get_info.offset].list_virt_addr;
3136 fifo_data->tx_curr_get_info.offset =
3140 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3142 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3146 * s2io_mdio_write - Function to write in to MDIO registers
3147 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3148 * @addr : address value
3149 * @value : data value
3150 * @dev : pointer to net_device structure
3152 * This function is used to write values to the MDIO registers
3155 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3158 struct s2io_nic *sp = dev->priv;
3159 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3161 //address transaction
3162 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3163 | MDIO_MMD_DEV_ADDR(mmd_type)
3164 | MDIO_MMS_PRT_ADDR(0x0);
3165 writeq(val64, &bar0->mdio_control);
3166 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3167 writeq(val64, &bar0->mdio_control);
3172 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3173 | MDIO_MMD_DEV_ADDR(mmd_type)
3174 | MDIO_MMS_PRT_ADDR(0x0)
3175 | MDIO_MDIO_DATA(value)
3176 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3177 writeq(val64, &bar0->mdio_control);
3178 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3179 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3184 | MDIO_MMD_DEV_ADDR(mmd_type)
3185 | MDIO_MMS_PRT_ADDR(0x0)
3186 | MDIO_OP(MDIO_OP_READ_TRANS);
3187 writeq(val64, &bar0->mdio_control);
3188 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3189 writeq(val64, &bar0->mdio_control);
3195 * s2io_mdio_read - Function to write in to MDIO registers
3196 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3197 * @addr : address value
3198 * @dev : pointer to net_device structure
3200 * This function is used to read values to the MDIO registers
3203 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3207 struct s2io_nic *sp = dev->priv;
3208 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3210 /* address transaction */
3211 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3212 | MDIO_MMD_DEV_ADDR(mmd_type)
3213 | MDIO_MMS_PRT_ADDR(0x0);
3214 writeq(val64, &bar0->mdio_control);
3215 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3216 writeq(val64, &bar0->mdio_control);
3219 /* Data transaction */
3221 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3222 | MDIO_MMD_DEV_ADDR(mmd_type)
3223 | MDIO_MMS_PRT_ADDR(0x0)
3224 | MDIO_OP(MDIO_OP_READ_TRANS);
3225 writeq(val64, &bar0->mdio_control);
3226 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3227 writeq(val64, &bar0->mdio_control);
3230 /* Read the value from regs */
3231 rval64 = readq(&bar0->mdio_control);
3232 rval64 = rval64 & 0xFFFF0000;
3233 rval64 = rval64 >> 16;
3237 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3238 * @counter : couter value to be updated
3239 * @flag : flag to indicate the status
3240 * @type : counter type
3242 * This function is to check the status of the xpak counters value
3246 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3251 for(i = 0; i <index; i++)
3256 *counter = *counter + 1;
3257 val64 = *regs_stat & mask;
3258 val64 = val64 >> (index * 0x2);
3265 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3266 "service. Excessive temperatures may "
3267 "result in premature transceiver "
3271 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3272 "service Excessive bias currents may "
3273 "indicate imminent laser diode "
3277 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3278 "service Excessive laser output "
3279 "power may saturate far-end "
3283 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3288 val64 = val64 << (index * 0x2);
3289 *regs_stat = (*regs_stat & (~mask)) | (val64);
3292 *regs_stat = *regs_stat & (~mask);
3297 * s2io_updt_xpak_counter - Function to update the xpak counters
3298 * @dev : pointer to net_device struct
3300 * This function is to upate the status of the xpak counters value
3303 static void s2io_updt_xpak_counter(struct net_device *dev)
3311 struct s2io_nic *sp = dev->priv;
3312 struct stat_block *stat_info = sp->mac_control.stats_info;
3314 /* Check the communication with the MDIO slave */
3317 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3318 if((val64 == 0xFFFF) || (val64 == 0x0000))
3320 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3321 "Returned %llx\n", (unsigned long long)val64);
3325 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3328 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3329 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3330 (unsigned long long)val64);
3334 /* Loading the DOM register to MDIO register */
3336 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3337 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3339 /* Reading the Alarm flags */
3342 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3344 flag = CHECKBIT(val64, 0x7);
3346 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3347 &stat_info->xpak_stat.xpak_regs_stat,
3350 if(CHECKBIT(val64, 0x6))
3351 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3353 flag = CHECKBIT(val64, 0x3);
3355 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3356 &stat_info->xpak_stat.xpak_regs_stat,
3359 if(CHECKBIT(val64, 0x2))
3360 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3362 flag = CHECKBIT(val64, 0x1);
3364 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3365 &stat_info->xpak_stat.xpak_regs_stat,
3368 if(CHECKBIT(val64, 0x0))
3369 stat_info->xpak_stat.alarm_laser_output_power_low++;
3371 /* Reading the Warning flags */
3374 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3376 if(CHECKBIT(val64, 0x7))
3377 stat_info->xpak_stat.warn_transceiver_temp_high++;
3379 if(CHECKBIT(val64, 0x6))
3380 stat_info->xpak_stat.warn_transceiver_temp_low++;
3382 if(CHECKBIT(val64, 0x3))
3383 stat_info->xpak_stat.warn_laser_bias_current_high++;
3385 if(CHECKBIT(val64, 0x2))
3386 stat_info->xpak_stat.warn_laser_bias_current_low++;
3388 if(CHECKBIT(val64, 0x1))
3389 stat_info->xpak_stat.warn_laser_output_power_high++;
3391 if(CHECKBIT(val64, 0x0))
3392 stat_info->xpak_stat.warn_laser_output_power_low++;
3396 * wait_for_cmd_complete - waits for a command to complete.
3397 * @sp : private member of the device structure, which is a pointer to the
3398 * s2io_nic structure.
3399 * Description: Function that waits for a command to Write into RMAC
3400 * ADDR DATA registers to be completed and returns either success or
3401 * error depending on whether the command was complete or not.
3403 * SUCCESS on success and FAILURE on failure.
3406 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3409 int ret = FAILURE, cnt = 0, delay = 1;
3412 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3416 val64 = readq(addr);
3417 if (bit_state == S2IO_BIT_RESET) {
3418 if (!(val64 & busy_bit)) {
3423 if (!(val64 & busy_bit)) {
3440 * check_pci_device_id - Checks if the device id is supported
3442 * Description: Function to check if the pci device id is supported by driver.
3443 * Return value: Actual device id if supported else PCI_ANY_ID
3445 static u16 check_pci_device_id(u16 id)
3448 case PCI_DEVICE_ID_HERC_WIN:
3449 case PCI_DEVICE_ID_HERC_UNI:
3450 return XFRAME_II_DEVICE;
3451 case PCI_DEVICE_ID_S2IO_UNI:
3452 case PCI_DEVICE_ID_S2IO_WIN:
3453 return XFRAME_I_DEVICE;
3460 * s2io_reset - Resets the card.
3461 * @sp : private member of the device structure.
3462 * Description: Function to Reset the card. This function then also
3463 * restores the previously saved PCI configuration space registers as
3464 * the card reset also resets the configuration space.
3469 static void s2io_reset(struct s2io_nic * sp)
3471 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3476 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3477 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3479 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3480 __FUNCTION__, sp->dev->name);
3482 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3483 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3485 val64 = SW_RESET_ALL;
3486 writeq(val64, &bar0->sw_reset);
3487 if (strstr(sp->product_name, "CX4")) {
3491 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3493 /* Restore the PCI state saved during initialization. */
3494 pci_restore_state(sp->pdev);
3495 pci_read_config_word(sp->pdev, 0x2, &val16);
3496 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3501 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3502 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3505 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3509 /* Set swapper to enable I/O register access */
3510 s2io_set_swapper(sp);
3512 /* restore mac_addr entries */
3513 do_s2io_restore_unicast_mc(sp);
3515 /* Restore the MSIX table entries from local variables */
3516 restore_xmsi_data(sp);
3518 /* Clear certain PCI/PCI-X fields after reset */
3519 if (sp->device_type == XFRAME_II_DEVICE) {
3520 /* Clear "detected parity error" bit */
3521 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3523 /* Clearing PCIX Ecc status register */
3524 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3526 /* Clearing PCI_STATUS error reflected here */
3527 writeq(s2BIT(62), &bar0->txpic_int_reg);
3530 /* Reset device statistics maintained by OS */
3531 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3533 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3534 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3535 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3536 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3537 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3538 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3539 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3540 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3541 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3542 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3543 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3544 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3545 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3546 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3547 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3548 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3549 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3550 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3551 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3553 /* SXE-002: Configure link and activity LED to turn it off */
3554 subid = sp->pdev->subsystem_device;
3555 if (((subid & 0xFF) >= 0x07) &&
3556 (sp->device_type == XFRAME_I_DEVICE)) {
3557 val64 = readq(&bar0->gpio_control);
3558 val64 |= 0x0000800000000000ULL;
3559 writeq(val64, &bar0->gpio_control);
3560 val64 = 0x0411040400000000ULL;
3561 writeq(val64, (void __iomem *)bar0 + 0x2700);
3565 * Clear spurious ECC interrupts that would have occured on
3566 * XFRAME II cards after reset.
3568 if (sp->device_type == XFRAME_II_DEVICE) {
3569 val64 = readq(&bar0->pcc_err_reg);
3570 writeq(val64, &bar0->pcc_err_reg);
3573 sp->device_enabled_once = FALSE;
3577 * s2io_set_swapper - to set the swapper controle on the card
3578 * @sp : private member of the device structure,
3579 * pointer to the s2io_nic structure.
3580 * Description: Function to set the swapper control on the card
3581 * correctly depending on the 'endianness' of the system.
3583 * SUCCESS on success and FAILURE on failure.
3586 static int s2io_set_swapper(struct s2io_nic * sp)
3588 struct net_device *dev = sp->dev;
3589 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3590 u64 val64, valt, valr;
3593 * Set proper endian settings and verify the same by reading
3594 * the PIF Feed-back register.
3597 val64 = readq(&bar0->pif_rd_swapper_fb);
3598 if (val64 != 0x0123456789ABCDEFULL) {
3600 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3601 0x8100008181000081ULL, /* FE=1, SE=0 */
3602 0x4200004242000042ULL, /* FE=0, SE=1 */
3603 0}; /* FE=0, SE=0 */
3606 writeq(value[i], &bar0->swapper_ctrl);
3607 val64 = readq(&bar0->pif_rd_swapper_fb);
3608 if (val64 == 0x0123456789ABCDEFULL)
3613 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3615 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3616 (unsigned long long) val64);
3621 valr = readq(&bar0->swapper_ctrl);
3624 valt = 0x0123456789ABCDEFULL;
3625 writeq(valt, &bar0->xmsi_address);
3626 val64 = readq(&bar0->xmsi_address);
3630 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3631 0x0081810000818100ULL, /* FE=1, SE=0 */
3632 0x0042420000424200ULL, /* FE=0, SE=1 */
3633 0}; /* FE=0, SE=0 */
3636 writeq((value[i] | valr), &bar0->swapper_ctrl);
3637 writeq(valt, &bar0->xmsi_address);
3638 val64 = readq(&bar0->xmsi_address);
3644 unsigned long long x = val64;
3645 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3646 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3650 val64 = readq(&bar0->swapper_ctrl);
3651 val64 &= 0xFFFF000000000000ULL;
3655 * The device by default set to a big endian format, so a
3656 * big endian driver need not set anything.
3658 val64 |= (SWAPPER_CTRL_TXP_FE |
3659 SWAPPER_CTRL_TXP_SE |
3660 SWAPPER_CTRL_TXD_R_FE |
3661 SWAPPER_CTRL_TXD_W_FE |
3662 SWAPPER_CTRL_TXF_R_FE |
3663 SWAPPER_CTRL_RXD_R_FE |
3664 SWAPPER_CTRL_RXD_W_FE |
3665 SWAPPER_CTRL_RXF_W_FE |
3666 SWAPPER_CTRL_XMSI_FE |
3667 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3668 if (sp->config.intr_type == INTA)
3669 val64 |= SWAPPER_CTRL_XMSI_SE;
3670 writeq(val64, &bar0->swapper_ctrl);
3673 * Initially we enable all bits to make it accessible by the
3674 * driver, then we selectively enable only those bits that
3677 val64 |= (SWAPPER_CTRL_TXP_FE |
3678 SWAPPER_CTRL_TXP_SE |
3679 SWAPPER_CTRL_TXD_R_FE |
3680 SWAPPER_CTRL_TXD_R_SE |
3681 SWAPPER_CTRL_TXD_W_FE |
3682 SWAPPER_CTRL_TXD_W_SE |
3683 SWAPPER_CTRL_TXF_R_FE |
3684 SWAPPER_CTRL_RXD_R_FE |
3685 SWAPPER_CTRL_RXD_R_SE |
3686 SWAPPER_CTRL_RXD_W_FE |
3687 SWAPPER_CTRL_RXD_W_SE |
3688 SWAPPER_CTRL_RXF_W_FE |
3689 SWAPPER_CTRL_XMSI_FE |
3690 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3691 if (sp->config.intr_type == INTA)
3692 val64 |= SWAPPER_CTRL_XMSI_SE;
3693 writeq(val64, &bar0->swapper_ctrl);
3695 val64 = readq(&bar0->swapper_ctrl);
3698 * Verifying if endian settings are accurate by reading a
3699 * feedback register.
3701 val64 = readq(&bar0->pif_rd_swapper_fb);
3702 if (val64 != 0x0123456789ABCDEFULL) {
3703 /* Endian settings are incorrect, calls for another dekko. */
3704 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3706 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3707 (unsigned long long) val64);
3714 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3716 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3718 int ret = 0, cnt = 0;
3721 val64 = readq(&bar0->xmsi_access);
3722 if (!(val64 & s2BIT(15)))
3728 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3735 static void restore_xmsi_data(struct s2io_nic *nic)
3737 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3741 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3742 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3743 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3744 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3745 writeq(val64, &bar0->xmsi_access);
3746 if (wait_for_msix_trans(nic, i)) {
3747 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3753 static void store_xmsi_data(struct s2io_nic *nic)
3755 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3756 u64 val64, addr, data;
3759 /* Store and display */
3760 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3761 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3762 writeq(val64, &bar0->xmsi_access);
3763 if (wait_for_msix_trans(nic, i)) {
3764 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3767 addr = readq(&bar0->xmsi_address);
3768 data = readq(&bar0->xmsi_data);
3770 nic->msix_info[i].addr = addr;
3771 nic->msix_info[i].data = data;
3776 static int s2io_enable_msi_x(struct s2io_nic *nic)
3778 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3780 u16 msi_control; /* Temp variable */
3781 int ret, i, j, msix_indx = 1;
3783 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3785 if (!nic->entries) {
3786 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3788 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3791 nic->mac_control.stats_info->sw_stat.mem_allocated
3792 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3795 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3797 if (!nic->s2io_entries) {
3798 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3800 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3801 kfree(nic->entries);
3802 nic->mac_control.stats_info->sw_stat.mem_freed
3803 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3806 nic->mac_control.stats_info->sw_stat.mem_allocated
3807 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3809 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3810 nic->entries[i].entry = i;
3811 nic->s2io_entries[i].entry = i;
3812 nic->s2io_entries[i].arg = NULL;
3813 nic->s2io_entries[i].in_use = 0;
3816 tx_mat = readq(&bar0->tx_mat0_n[0]);
3817 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3818 tx_mat |= TX_MAT_SET(i, msix_indx);
3819 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3820 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3821 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3823 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3825 rx_mat = readq(&bar0->rx_mat);
3826 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3827 rx_mat |= RX_MAT_SET(j, msix_indx);
3828 nic->s2io_entries[msix_indx].arg
3829 = &nic->mac_control.rings[j];
3830 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3831 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3833 writeq(rx_mat, &bar0->rx_mat);
3835 nic->avail_msix_vectors = 0;
3836 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3837 /* We fail init if error or we get less vectors than min required */
3838 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3839 nic->avail_msix_vectors = ret;
3840 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3843 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3844 kfree(nic->entries);
3845 nic->mac_control.stats_info->sw_stat.mem_freed
3846 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3847 kfree(nic->s2io_entries);
3848 nic->mac_control.stats_info->sw_stat.mem_freed
3849 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3850 nic->entries = NULL;
3851 nic->s2io_entries = NULL;
3852 nic->avail_msix_vectors = 0;
3855 if (!nic->avail_msix_vectors)
3856 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3859 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3860 * in the herc NIC. (Temp change, needs to be removed later)
3862 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3863 msi_control |= 0x1; /* Enable MSI */
3864 pci_write_config_word(nic->pdev, 0x42, msi_control);
3869 /* Handle software interrupt used during MSI(X) test */
3870 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3872 struct s2io_nic *sp = dev_id;
3874 sp->msi_detected = 1;
3875 wake_up(&sp->msi_wait);
3880 /* Test interrupt path by forcing a a software IRQ */
3881 static int s2io_test_msi(struct s2io_nic *sp)
3883 struct pci_dev *pdev = sp->pdev;
3884 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3888 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3891 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3892 sp->dev->name, pci_name(pdev), pdev->irq);
3896 init_waitqueue_head (&sp->msi_wait);
3897 sp->msi_detected = 0;
3899 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3900 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3901 val64 |= SCHED_INT_CTRL_TIMER_EN;
3902 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3903 writeq(val64, &bar0->scheduled_int_ctrl);
3905 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3907 if (!sp->msi_detected) {
3908 /* MSI(X) test failed, go back to INTx mode */
3909 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3910 "using MSI(X) during test\n", sp->dev->name,
3916 free_irq(sp->entries[1].vector, sp);
3918 writeq(saved64, &bar0->scheduled_int_ctrl);
3923 static void remove_msix_isr(struct s2io_nic *sp)
3928 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3929 if (sp->s2io_entries[i].in_use ==
3930 MSIX_REGISTERED_SUCCESS) {
3931 int vector = sp->entries[i].vector;
3932 void *arg = sp->s2io_entries[i].arg;
3933 free_irq(vector, arg);
3938 kfree(sp->s2io_entries);
3940 sp->s2io_entries = NULL;
3942 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3943 msi_control &= 0xFFFE; /* Disable MSI */
3944 pci_write_config_word(sp->pdev, 0x42, msi_control);
3946 pci_disable_msix(sp->pdev);
3949 static void remove_inta_isr(struct s2io_nic *sp)
3951 struct net_device *dev = sp->dev;
3953 free_irq(sp->pdev->irq, dev);
3956 /* ********************************************************* *
3957 * Functions defined below concern the OS part of the driver *
3958 * ********************************************************* */
3961 * s2io_open - open entry point of the driver
3962 * @dev : pointer to the device structure.
3964 * This function is the open entry point of the driver. It mainly calls a
3965 * function to allocate Rx buffers and inserts them into the buffer
3966 * descriptors and then enables the Rx part of the NIC.
3968 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3972 static int s2io_open(struct net_device *dev)
3974 struct s2io_nic *sp = dev->priv;
3978 * Make sure you have link off by default every time
3979 * Nic is initialized
3981 netif_carrier_off(dev);
3982 sp->last_link_state = 0;
3984 if (sp->config.intr_type == MSI_X) {
3985 int ret = s2io_enable_msi_x(sp);
3988 ret = s2io_test_msi(sp);
3989 /* rollback MSI-X, will re-enable during add_isr() */
3990 remove_msix_isr(sp);
3995 "%s: MSI-X requested but failed to enable\n",
3997 sp->config.intr_type = INTA;
4001 /* NAPI doesn't work well with MSI(X) */
4002 if (sp->config.intr_type != INTA) {
4004 sp->config.napi = 0;
4007 /* Initialize H/W and enable interrupts */
4008 err = s2io_card_up(sp);
4010 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4012 goto hw_init_failed;
4015 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4016 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4019 goto hw_init_failed;
4021 s2io_start_all_tx_queue(sp);
4025 if (sp->config.intr_type == MSI_X) {
4028 sp->mac_control.stats_info->sw_stat.mem_freed
4029 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4031 if (sp->s2io_entries) {
4032 kfree(sp->s2io_entries);
4033 sp->mac_control.stats_info->sw_stat.mem_freed
4034 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4041 * s2io_close -close entry point of the driver
4042 * @dev : device pointer.
4044 * This is the stop entry point of the driver. It needs to undo exactly
4045 * whatever was done by the open entry point,thus it's usually referred to
4046 * as the close function.Among other things this function mainly stops the
4047 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4049 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4053 static int s2io_close(struct net_device *dev)
4055 struct s2io_nic *sp = dev->priv;
4056 struct config_param *config = &sp->config;
4060 /* Return if the device is already closed *
4061 * Can happen when s2io_card_up failed in change_mtu *
4063 if (!is_s2io_card_up(sp))
4066 s2io_stop_all_tx_queue(sp);
4067 /* delete all populated mac entries */
4068 for (offset = 1; offset < config->max_mc_addr; offset++) {
4069 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4070 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4071 do_s2io_delete_unicast_mc(sp, tmp64);
4080 * s2io_xmit - Tx entry point of te driver
4081 * @skb : the socket buffer containing the Tx data.
4082 * @dev : device pointer.
4084 * This function is the Tx entry point of the driver. S2IO NIC supports
4085 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4086 * NOTE: when device cant queue the pkt,just the trans_start variable will
4089 * 0 on success & 1 on failure.
4092 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4094 struct s2io_nic *sp = dev->priv;
4095 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4098 struct TxFIFO_element __iomem *tx_fifo;
4099 unsigned long flags = 0;
4101 struct fifo_info *fifo = NULL;
4102 struct mac_info *mac_control;
4103 struct config_param *config;
4104 int do_spin_lock = 1;
4106 int enable_per_list_interrupt = 0;
4107 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4109 mac_control = &sp->mac_control;
4110 config = &sp->config;
4112 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4114 if (unlikely(skb->len <= 0)) {
4115 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4116 dev_kfree_skb_any(skb);
4120 if (!is_s2io_card_up(sp)) {
4121 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4128 if (sp->vlgrp && vlan_tx_tag_present(skb))
4129 vlan_tag = vlan_tx_tag_get(skb);
4130 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4131 if (skb->protocol == htons(ETH_P_IP)) {
4136 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4137 th = (struct tcphdr *)(((unsigned char *)ip) +
4140 if (ip->protocol == IPPROTO_TCP) {
4141 queue_len = sp->total_tcp_fifos;
4142 queue = (ntohs(th->source) +
4144 sp->fifo_selector[queue_len - 1];
4145 if (queue >= queue_len)
4146 queue = queue_len - 1;
4147 } else if (ip->protocol == IPPROTO_UDP) {
4148 queue_len = sp->total_udp_fifos;
4149 queue = (ntohs(th->source) +
4151 sp->fifo_selector[queue_len - 1];
4152 if (queue >= queue_len)
4153 queue = queue_len - 1;
4154 queue += sp->udp_fifo_idx;
4155 if (skb->len > 1024)
4156 enable_per_list_interrupt = 1;
4161 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4162 /* get fifo number based on skb->priority value */
4163 queue = config->fifo_mapping
4164 [skb->priority & (MAX_TX_FIFOS - 1)];
4165 fifo = &mac_control->fifos[queue];
4168 spin_lock_irqsave(&fifo->tx_lock, flags);
4170 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4171 return NETDEV_TX_LOCKED;
4174 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4175 if (sp->config.multiq) {
4176 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4177 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178 return NETDEV_TX_BUSY;
4182 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4183 if (netif_queue_stopped(dev)) {
4184 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4185 return NETDEV_TX_BUSY;
4189 put_off = (u16) fifo->tx_curr_put_info.offset;
4190 get_off = (u16) fifo->tx_curr_get_info.offset;
4191 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4193 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4194 /* Avoid "put" pointer going beyond "get" pointer */
4195 if (txdp->Host_Control ||
4196 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4197 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4198 s2io_stop_tx_queue(sp, fifo->fifo_no);
4200 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4204 offload_type = s2io_offload_type(skb);
4205 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4206 txdp->Control_1 |= TXD_TCP_LSO_EN;
4207 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4209 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4211 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4214 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4215 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4216 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4217 if (enable_per_list_interrupt)
4218 if (put_off & (queue_len >> 5))
4219 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4221 txdp->Control_2 |= TXD_VLAN_ENABLE;
4222 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4225 frg_len = skb->len - skb->data_len;
4226 if (offload_type == SKB_GSO_UDP) {
4229 ufo_size = s2io_udp_mss(skb);
4231 txdp->Control_1 |= TXD_UFO_EN;
4232 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4233 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4235 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4236 fifo->ufo_in_band_v[put_off] =
4237 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4239 fifo->ufo_in_band_v[put_off] =
4240 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4242 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4243 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4244 fifo->ufo_in_band_v,
4245 sizeof(u64), PCI_DMA_TODEVICE);
4246 if((txdp->Buffer_Pointer == 0) ||
4247 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4248 goto pci_map_failed;
4252 txdp->Buffer_Pointer = pci_map_single
4253 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4254 if((txdp->Buffer_Pointer == 0) ||
4255 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4256 goto pci_map_failed;
4258 txdp->Host_Control = (unsigned long) skb;
4259 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4260 if (offload_type == SKB_GSO_UDP)
4261 txdp->Control_1 |= TXD_UFO_EN;
4263 frg_cnt = skb_shinfo(skb)->nr_frags;
4264 /* For fragmented SKB. */
4265 for (i = 0; i < frg_cnt; i++) {
4266 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4267 /* A '0' length fragment will be ignored */
4271 txdp->Buffer_Pointer = (u64) pci_map_page
4272 (sp->pdev, frag->page, frag->page_offset,
4273 frag->size, PCI_DMA_TODEVICE);
4274 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4275 if (offload_type == SKB_GSO_UDP)
4276 txdp->Control_1 |= TXD_UFO_EN;
4278 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4280 if (offload_type == SKB_GSO_UDP)
4281 frg_cnt++; /* as Txd0 was used for inband header */
4283 tx_fifo = mac_control->tx_FIFO_start[queue];
4284 val64 = fifo->list_info[put_off].list_phy_addr;
4285 writeq(val64, &tx_fifo->TxDL_Pointer);
4287 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4290 val64 |= TX_FIFO_SPECIAL_FUNC;
4292 writeq(val64, &tx_fifo->List_Control);
4297 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4299 fifo->tx_curr_put_info.offset = put_off;
4301 /* Avoid "put" pointer going beyond "get" pointer */
4302 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4303 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4305 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4307 s2io_stop_tx_queue(sp, fifo->fifo_no);
4309 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4310 dev->trans_start = jiffies;
4311 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4313 if (sp->config.intr_type == MSI_X)
4314 tx_intr_handler(fifo);
4318 stats->pci_map_fail_cnt++;
4319 s2io_stop_tx_queue(sp, fifo->fifo_no);
4320 stats->mem_freed += skb->truesize;
4322 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4327 s2io_alarm_handle(unsigned long data)
4329 struct s2io_nic *sp = (struct s2io_nic *)data;
4330 struct net_device *dev = sp->dev;
4332 s2io_handle_errors(dev);
4333 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4336 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4338 if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4339 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4340 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4345 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4347 struct ring_info *ring = (struct ring_info *)dev_id;
4348 struct s2io_nic *sp = ring->nic;
4350 if (!is_s2io_card_up(sp))
4353 rx_intr_handler(ring);
4354 s2io_chk_rx_buffers(sp, ring->ring_no);
4359 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4361 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4362 struct s2io_nic *sp = fifo->nic;
4364 if (!is_s2io_card_up(sp))
4367 tx_intr_handler(fifo);
4370 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4372 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4375 val64 = readq(&bar0->pic_int_status);
4376 if (val64 & PIC_INT_GPIO) {
4377 val64 = readq(&bar0->gpio_int_reg);
4378 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4379 (val64 & GPIO_INT_REG_LINK_UP)) {
4381 * This is unstable state so clear both up/down
4382 * interrupt and adapter to re-evaluate the link state.
4384 val64 |= GPIO_INT_REG_LINK_DOWN;
4385 val64 |= GPIO_INT_REG_LINK_UP;
4386 writeq(val64, &bar0->gpio_int_reg);
4387 val64 = readq(&bar0->gpio_int_mask);
4388 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4389 GPIO_INT_MASK_LINK_DOWN);
4390 writeq(val64, &bar0->gpio_int_mask);
4392 else if (val64 & GPIO_INT_REG_LINK_UP) {
4393 val64 = readq(&bar0->adapter_status);
4394 /* Enable Adapter */
4395 val64 = readq(&bar0->adapter_control);
4396 val64 |= ADAPTER_CNTL_EN;
4397 writeq(val64, &bar0->adapter_control);
4398 val64 |= ADAPTER_LED_ON;
4399 writeq(val64, &bar0->adapter_control);
4400 if (!sp->device_enabled_once)
4401 sp->device_enabled_once = 1;
4403 s2io_link(sp, LINK_UP);
4405 * unmask link down interrupt and mask link-up
4408 val64 = readq(&bar0->gpio_int_mask);
4409 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4410 val64 |= GPIO_INT_MASK_LINK_UP;
4411 writeq(val64, &bar0->gpio_int_mask);
4413 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4414 val64 = readq(&bar0->adapter_status);
4415 s2io_link(sp, LINK_DOWN);
4416 /* Link is down so unmaks link up interrupt */
4417 val64 = readq(&bar0->gpio_int_mask);
4418 val64 &= ~GPIO_INT_MASK_LINK_UP;
4419 val64 |= GPIO_INT_MASK_LINK_DOWN;
4420 writeq(val64, &bar0->gpio_int_mask);
4423 val64 = readq(&bar0->adapter_control);
4424 val64 = val64 &(~ADAPTER_LED_ON);
4425 writeq(val64, &bar0->adapter_control);
4428 val64 = readq(&bar0->gpio_int_mask);
4432 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4433 * @value: alarm bits
4434 * @addr: address value
4435 * @cnt: counter variable
4436 * Description: Check for alarm and increment the counter
4438 * 1 - if alarm bit set
4439 * 0 - if alarm bit is not set
4441 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4442 unsigned long long *cnt)
4445 val64 = readq(addr);
4446 if ( val64 & value ) {
4447 writeq(val64, addr);
4456 * s2io_handle_errors - Xframe error indication handler
4457 * @nic: device private variable
4458 * Description: Handle alarms such as loss of link, single or
4459 * double ECC errors, critical and serious errors.
4463 static void s2io_handle_errors(void * dev_id)
4465 struct net_device *dev = (struct net_device *) dev_id;
4466 struct s2io_nic *sp = dev->priv;
4467 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4468 u64 temp64 = 0,val64=0;
4471 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4472 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4474 if (!is_s2io_card_up(sp))
4477 if (pci_channel_offline(sp->pdev))
4480 memset(&sw_stat->ring_full_cnt, 0,
4481 sizeof(sw_stat->ring_full_cnt));
4483 /* Handling the XPAK counters update */
4484 if(stats->xpak_timer_count < 72000) {
4485 /* waiting for an hour */
4486 stats->xpak_timer_count++;
4488 s2io_updt_xpak_counter(dev);
4489 /* reset the count to zero */
4490 stats->xpak_timer_count = 0;
4493 /* Handling link status change error Intr */
4494 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4495 val64 = readq(&bar0->mac_rmac_err_reg);
4496 writeq(val64, &bar0->mac_rmac_err_reg);
4497 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4498 schedule_work(&sp->set_link_task);
4501 /* In case of a serious error, the device will be Reset. */
4502 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4503 &sw_stat->serious_err_cnt))
4506 /* Check for data parity error */
4507 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4508 &sw_stat->parity_err_cnt))
4511 /* Check for ring full counter */
4512 if (sp->device_type == XFRAME_II_DEVICE) {
4513 val64 = readq(&bar0->ring_bump_counter1);
4514 for (i=0; i<4; i++) {
4515 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4516 temp64 >>= 64 - ((i+1)*16);
4517 sw_stat->ring_full_cnt[i] += temp64;
4520 val64 = readq(&bar0->ring_bump_counter2);
4521 for (i=0; i<4; i++) {
4522 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4523 temp64 >>= 64 - ((i+1)*16);
4524 sw_stat->ring_full_cnt[i+4] += temp64;
4528 val64 = readq(&bar0->txdma_int_status);
4529 /*check for pfc_err*/
4530 if (val64 & TXDMA_PFC_INT) {
4531 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4532 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4533 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4534 &sw_stat->pfc_err_cnt))
4536 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4537 &sw_stat->pfc_err_cnt);
4540 /*check for tda_err*/
4541 if (val64 & TXDMA_TDA_INT) {
4542 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4543 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4544 &sw_stat->tda_err_cnt))
4546 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4547 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4549 /*check for pcc_err*/
4550 if (val64 & TXDMA_PCC_INT) {
4551 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4552 | PCC_N_SERR | PCC_6_COF_OV_ERR
4553 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4554 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4555 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4556 &sw_stat->pcc_err_cnt))
4558 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4559 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4562 /*check for tti_err*/
4563 if (val64 & TXDMA_TTI_INT) {
4564 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4565 &sw_stat->tti_err_cnt))
4567 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4568 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4571 /*check for lso_err*/
4572 if (val64 & TXDMA_LSO_INT) {
4573 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4574 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4575 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4577 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4578 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4581 /*check for tpa_err*/
4582 if (val64 & TXDMA_TPA_INT) {
4583 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4584 &sw_stat->tpa_err_cnt))
4586 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4587 &sw_stat->tpa_err_cnt);
4590 /*check for sm_err*/
4591 if (val64 & TXDMA_SM_INT) {
4592 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4593 &sw_stat->sm_err_cnt))
4597 val64 = readq(&bar0->mac_int_status);
4598 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4599 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4600 &bar0->mac_tmac_err_reg,
4601 &sw_stat->mac_tmac_err_cnt))
4603 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4604 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4605 &bar0->mac_tmac_err_reg,
4606 &sw_stat->mac_tmac_err_cnt);
4609 val64 = readq(&bar0->xgxs_int_status);
4610 if (val64 & XGXS_INT_STATUS_TXGXS) {
4611 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4612 &bar0->xgxs_txgxs_err_reg,
4613 &sw_stat->xgxs_txgxs_err_cnt))
4615 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4616 &bar0->xgxs_txgxs_err_reg,
4617 &sw_stat->xgxs_txgxs_err_cnt);
4620 val64 = readq(&bar0->rxdma_int_status);
4621 if (val64 & RXDMA_INT_RC_INT_M) {
4622 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4623 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4624 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4626 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4627 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4628 &sw_stat->rc_err_cnt);
4629 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4630 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4631 &sw_stat->prc_pcix_err_cnt))
4633 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4634 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4635 &sw_stat->prc_pcix_err_cnt);
4638 if (val64 & RXDMA_INT_RPA_INT_M) {
4639 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4640 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4642 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4643 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4646 if (val64 & RXDMA_INT_RDA_INT_M) {
4647 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4648 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4649 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4650 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4652 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4653 | RDA_MISC_ERR | RDA_PCIX_ERR,
4654 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4657 if (val64 & RXDMA_INT_RTI_INT_M) {
4658 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4659 &sw_stat->rti_err_cnt))
4661 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4662 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4665 val64 = readq(&bar0->mac_int_status);
4666 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4667 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4668 &bar0->mac_rmac_err_reg,
4669 &sw_stat->mac_rmac_err_cnt))
4671 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4672 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4673 &sw_stat->mac_rmac_err_cnt);
4676 val64 = readq(&bar0->xgxs_int_status);
4677 if (val64 & XGXS_INT_STATUS_RXGXS) {
4678 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4679 &bar0->xgxs_rxgxs_err_reg,
4680 &sw_stat->xgxs_rxgxs_err_cnt))
4684 val64 = readq(&bar0->mc_int_status);
4685 if(val64 & MC_INT_STATUS_MC_INT) {
4686 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4687 &sw_stat->mc_err_cnt))
4690 /* Handling Ecc errors */
4691 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4692 writeq(val64, &bar0->mc_err_reg);
4693 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4694 sw_stat->double_ecc_errs++;
4695 if (sp->device_type != XFRAME_II_DEVICE) {
4697 * Reset XframeI only if critical error
4700 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4701 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4705 sw_stat->single_ecc_errs++;
4711 s2io_stop_all_tx_queue(sp);
4712 schedule_work(&sp->rst_timer_task);
4713 sw_stat->soft_reset_cnt++;
4718 * s2io_isr - ISR handler of the device .
4719 * @irq: the irq of the device.
4720 * @dev_id: a void pointer to the dev structure of the NIC.
4721 * Description: This function is the ISR handler of the device. It
4722 * identifies the reason for the interrupt and calls the relevant
4723 * service routines. As a contongency measure, this ISR allocates the
4724 * recv buffers, if their numbers are below the panic value which is
4725 * presently set to 25% of the original number of rcv buffers allocated.
4727 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4728 * IRQ_NONE: will be returned if interrupt is not from our device
4730 static irqreturn_t s2io_isr(int irq, void *dev_id)
4732 struct net_device *dev = (struct net_device *) dev_id;
4733 struct s2io_nic *sp = dev->priv;
4734 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4737 struct mac_info *mac_control;
4738 struct config_param *config;
4740 /* Pretend we handled any irq's from a disconnected card */
4741 if (pci_channel_offline(sp->pdev))
4744 if (!is_s2io_card_up(sp))
4747 mac_control = &sp->mac_control;
4748 config = &sp->config;
4751 * Identify the cause for interrupt and call the appropriate
4752 * interrupt handler. Causes for the interrupt could be;
4757 reason = readq(&bar0->general_int_status);
4759 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4760 /* Nothing much can be done. Get out */
4764 if (reason & (GEN_INTR_RXTRAFFIC |
4765 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4767 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4770 if (reason & GEN_INTR_RXTRAFFIC) {
4771 if (likely(netif_rx_schedule_prep(dev,
4773 __netif_rx_schedule(dev, &sp->napi);
4774 writeq(S2IO_MINUS_ONE,
4775 &bar0->rx_traffic_mask);
4777 writeq(S2IO_MINUS_ONE,
4778 &bar0->rx_traffic_int);
4782 * rx_traffic_int reg is an R1 register, writing all 1's
4783 * will ensure that the actual interrupt causing bit
4784 * get's cleared and hence a read can be avoided.
4786 if (reason & GEN_INTR_RXTRAFFIC)
4787 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4789 for (i = 0; i < config->rx_ring_num; i++)
4790 rx_intr_handler(&mac_control->rings[i]);
4794 * tx_traffic_int reg is an R1 register, writing all 1's
4795 * will ensure that the actual interrupt causing bit get's
4796 * cleared and hence a read can be avoided.
4798 if (reason & GEN_INTR_TXTRAFFIC)
4799 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4801 for (i = 0; i < config->tx_fifo_num; i++)
4802 tx_intr_handler(&mac_control->fifos[i]);
4804 if (reason & GEN_INTR_TXPIC)
4805 s2io_txpic_intr_handle(sp);
4808 * Reallocate the buffers from the interrupt handler itself.
4810 if (!config->napi) {
4811 for (i = 0; i < config->rx_ring_num; i++)
4812 s2io_chk_rx_buffers(sp, i);
4814 writeq(sp->general_int_mask, &bar0->general_int_mask);
4815 readl(&bar0->general_int_status);
4821 /* The interrupt was not raised by us */
4831 static void s2io_updt_stats(struct s2io_nic *sp)
4833 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4837 if (is_s2io_card_up(sp)) {
4838 /* Apprx 30us on a 133 MHz bus */
4839 val64 = SET_UPDT_CLICKS(10) |
4840 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4841 writeq(val64, &bar0->stat_cfg);
4844 val64 = readq(&bar0->stat_cfg);
4845 if (!(val64 & s2BIT(0)))
4849 break; /* Updt failed */
4855 * s2io_get_stats - Updates the device statistics structure.
4856 * @dev : pointer to the device structure.
4858 * This function updates the device statistics structure in the s2io_nic
4859 * structure and returns a pointer to the same.
4861 * pointer to the updated net_device_stats structure.
4864 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4866 struct s2io_nic *sp = dev->priv;
4867 struct mac_info *mac_control;
4868 struct config_param *config;
4871 mac_control = &sp->mac_control;
4872 config = &sp->config;
4874 /* Configure Stats for immediate updt */
4875 s2io_updt_stats(sp);
4877 sp->stats.tx_packets =
4878 le32_to_cpu(mac_control->stats_info->tmac_frms);
4879 sp->stats.tx_errors =
4880 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4881 sp->stats.rx_errors =
4882 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4883 sp->stats.multicast =
4884 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4885 sp->stats.rx_length_errors =
4886 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4888 return (&sp->stats);
4892 * s2io_set_multicast - entry point for multicast address enable/disable.
4893 * @dev : pointer to the device structure
4895 * This function is a driver entry point which gets called by the kernel
4896 * whenever multicast addresses must be enabled/disabled. This also gets
4897 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4898 * determine, if multicast address must be enabled or if promiscuous mode
4899 * is to be disabled etc.
4904 static void s2io_set_multicast(struct net_device *dev)
4907 struct dev_mc_list *mclist;
4908 struct s2io_nic *sp = dev->priv;
4909 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4910 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4912 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4914 struct config_param *config = &sp->config;
4916 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4917 /* Enable all Multicast addresses */
4918 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4919 &bar0->rmac_addr_data0_mem);
4920 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4921 &bar0->rmac_addr_data1_mem);
4922 val64 = RMAC_ADDR_CMD_MEM_WE |
4923 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4924 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4925 writeq(val64, &bar0->rmac_addr_cmd_mem);
4926 /* Wait till command completes */
4927 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4928 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4932 sp->all_multi_pos = config->max_mc_addr - 1;
4933 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4934 /* Disable all Multicast addresses */
4935 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4936 &bar0->rmac_addr_data0_mem);
4937 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4938 &bar0->rmac_addr_data1_mem);
4939 val64 = RMAC_ADDR_CMD_MEM_WE |
4940 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4941 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4942 writeq(val64, &bar0->rmac_addr_cmd_mem);
4943 /* Wait till command completes */
4944 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4945 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4949 sp->all_multi_pos = 0;
4952 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4953 /* Put the NIC into promiscuous mode */
4954 add = &bar0->mac_cfg;
4955 val64 = readq(&bar0->mac_cfg);
4956 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4958 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4959 writel((u32) val64, add);
4960 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4961 writel((u32) (val64 >> 32), (add + 4));
4963 if (vlan_tag_strip != 1) {
4964 val64 = readq(&bar0->rx_pa_cfg);
4965 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4966 writeq(val64, &bar0->rx_pa_cfg);
4967 vlan_strip_flag = 0;
4970 val64 = readq(&bar0->mac_cfg);
4971 sp->promisc_flg = 1;
4972 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4974 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4975 /* Remove the NIC from promiscuous mode */
4976 add = &bar0->mac_cfg;
4977 val64 = readq(&bar0->mac_cfg);
4978 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4980 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4981 writel((u32) val64, add);
4982 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4983 writel((u32) (val64 >> 32), (add + 4));
4985 if (vlan_tag_strip != 0) {
4986 val64 = readq(&bar0->rx_pa_cfg);
4987 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4988 writeq(val64, &bar0->rx_pa_cfg);
4989 vlan_strip_flag = 1;
4992 val64 = readq(&bar0->mac_cfg);
4993 sp->promisc_flg = 0;
4994 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4998 /* Update individual M_CAST address list */
4999 if ((!sp->m_cast_flg) && dev->mc_count) {
5001 (config->max_mc_addr - config->max_mac_addr)) {
5002 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5004 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5005 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5009 prev_cnt = sp->mc_addr_count;
5010 sp->mc_addr_count = dev->mc_count;
5012 /* Clear out the previous list of Mc in the H/W. */
5013 for (i = 0; i < prev_cnt; i++) {
5014 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5015 &bar0->rmac_addr_data0_mem);
5016 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5017 &bar0->rmac_addr_data1_mem);
5018 val64 = RMAC_ADDR_CMD_MEM_WE |
5019 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5020 RMAC_ADDR_CMD_MEM_OFFSET
5021 (config->mc_start_offset + i);
5022 writeq(val64, &bar0->rmac_addr_cmd_mem);
5024 /* Wait for command completes */
5025 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5026 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5028 DBG_PRINT(ERR_DBG, "%s: Adding ",
5030 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5035 /* Create the new Rx filter list and update the same in H/W. */
5036 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5037 i++, mclist = mclist->next) {
5038 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5041 for (j = 0; j < ETH_ALEN; j++) {
5042 mac_addr |= mclist->dmi_addr[j];
5046 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5047 &bar0->rmac_addr_data0_mem);
5048 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5049 &bar0->rmac_addr_data1_mem);
5050 val64 = RMAC_ADDR_CMD_MEM_WE |
5051 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5052 RMAC_ADDR_CMD_MEM_OFFSET
5053 (i + config->mc_start_offset);
5054 writeq(val64, &bar0->rmac_addr_cmd_mem);
5056 /* Wait for command completes */
5057 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5058 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5060 DBG_PRINT(ERR_DBG, "%s: Adding ",
5062 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5069 /* read from CAM unicast & multicast addresses and store it in
5070 * def_mac_addr structure
5072 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5076 struct config_param *config = &sp->config;
5078 /* store unicast & multicast mac addresses */
5079 for (offset = 0; offset < config->max_mc_addr; offset++) {
5080 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5081 /* if read fails disable the entry */
5082 if (mac_addr == FAILURE)
5083 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5084 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5088 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5089 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5092 struct config_param *config = &sp->config;
5093 /* restore unicast mac address */
5094 for (offset = 0; offset < config->max_mac_addr; offset++)
5095 do_s2io_prog_unicast(sp->dev,
5096 sp->def_mac_addr[offset].mac_addr);
5098 /* restore multicast mac address */
5099 for (offset = config->mc_start_offset;
5100 offset < config->max_mc_addr; offset++)
5101 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5104 /* add a multicast MAC address to CAM */
5105 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5109 struct config_param *config = &sp->config;
5111 for (i = 0; i < ETH_ALEN; i++) {
5113 mac_addr |= addr[i];
5115 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5118 /* check if the multicast mac already preset in CAM */
5119 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5121 tmp64 = do_s2io_read_unicast_mc(sp, i);
5122 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5125 if (tmp64 == mac_addr)
5128 if (i == config->max_mc_addr) {
5130 "CAM full no space left for multicast MAC\n");
5133 /* Update the internal structure with this new mac address */
5134 do_s2io_copy_mac_addr(sp, i, mac_addr);
5136 return (do_s2io_add_mac(sp, mac_addr, i));
5139 /* add MAC address to CAM */
5140 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5143 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5145 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5146 &bar0->rmac_addr_data0_mem);
5149 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5150 RMAC_ADDR_CMD_MEM_OFFSET(off);
5151 writeq(val64, &bar0->rmac_addr_cmd_mem);
5153 /* Wait till command completes */
5154 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5155 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5157 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5162 /* deletes a specified unicast/multicast mac entry from CAM */
5163 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5166 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5167 struct config_param *config = &sp->config;
5170 offset < config->max_mc_addr; offset++) {
5171 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5172 if (tmp64 == addr) {
5173 /* disable the entry by writing 0xffffffffffffULL */
5174 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5176 /* store the new mac list from CAM */
5177 do_s2io_store_unicast_mc(sp);
5181 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5182 (unsigned long long)addr);
5186 /* read mac entries from CAM */
5187 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5189 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5190 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5194 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5195 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5196 writeq(val64, &bar0->rmac_addr_cmd_mem);
5198 /* Wait till command completes */
5199 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5200 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5202 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5205 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5206 return (tmp64 >> 16);
5210 * s2io_set_mac_addr driver entry point
5213 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5215 struct sockaddr *addr = p;
5217 if (!is_valid_ether_addr(addr->sa_data))
5220 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5222 /* store the MAC address in CAM */
5223 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5226 * do_s2io_prog_unicast - Programs the Xframe mac address
5227 * @dev : pointer to the device structure.
5228 * @addr: a uchar pointer to the new mac address which is to be set.
5229 * Description : This procedure will program the Xframe to receive
5230 * frames with new Mac Address
5231 * Return value: SUCCESS on success and an appropriate (-)ve integer
5232 * as defined in errno.h file on failure.
5235 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5237 struct s2io_nic *sp = dev->priv;
5238 register u64 mac_addr = 0, perm_addr = 0;
5241 struct config_param *config = &sp->config;
5244 * Set the new MAC address as the new unicast filter and reflect this
5245 * change on the device address registered with the OS. It will be
5248 for (i = 0; i < ETH_ALEN; i++) {
5250 mac_addr |= addr[i];
5252 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5255 /* check if the dev_addr is different than perm_addr */
5256 if (mac_addr == perm_addr)
5259 /* check if the mac already preset in CAM */
5260 for (i = 1; i < config->max_mac_addr; i++) {
5261 tmp64 = do_s2io_read_unicast_mc(sp, i);
5262 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5265 if (tmp64 == mac_addr) {
5267 "MAC addr:0x%llx already present in CAM\n",
5268 (unsigned long long)mac_addr);
5272 if (i == config->max_mac_addr) {
5273 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5276 /* Update the internal structure with this new mac address */
5277 do_s2io_copy_mac_addr(sp, i, mac_addr);
5278 return (do_s2io_add_mac(sp, mac_addr, i));
5282 * s2io_ethtool_sset - Sets different link parameters.
5283 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5284 * @info: pointer to the structure with parameters given by ethtool to set
5287 * The function sets different link parameters provided by the user onto
5293 static int s2io_ethtool_sset(struct net_device *dev,
5294 struct ethtool_cmd *info)
5296 struct s2io_nic *sp = dev->priv;
5297 if ((info->autoneg == AUTONEG_ENABLE) ||
5298 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5301 s2io_close(sp->dev);
5309 * s2io_ethtol_gset - Return link specific information.
5310 * @sp : private member of the device structure, pointer to the
5311 * s2io_nic structure.
5312 * @info : pointer to the structure with parameters given by ethtool
5313 * to return link information.
5315 * Returns link specific information like speed, duplex etc.. to ethtool.
5317 * return 0 on success.
5320 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5322 struct s2io_nic *sp = dev->priv;
5323 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5324 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5325 info->port = PORT_FIBRE;
5327 /* info->transceiver */
5328 info->transceiver = XCVR_EXTERNAL;
5330 if (netif_carrier_ok(sp->dev)) {
5331 info->speed = 10000;
5332 info->duplex = DUPLEX_FULL;
5338 info->autoneg = AUTONEG_DISABLE;
5343 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5344 * @sp : private member of the device structure, which is a pointer to the
5345 * s2io_nic structure.
5346 * @info : pointer to the structure with parameters given by ethtool to
5347 * return driver information.
5349 * Returns driver specefic information like name, version etc.. to ethtool.
5354 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5355 struct ethtool_drvinfo *info)
5357 struct s2io_nic *sp = dev->priv;
5359 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5360 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5361 strncpy(info->fw_version, "", sizeof(info->fw_version));
5362 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5363 info->regdump_len = XENA_REG_SPACE;
5364 info->eedump_len = XENA_EEPROM_SPACE;
5368 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5369 * @sp: private member of the device structure, which is a pointer to the
5370 * s2io_nic structure.
5371 * @regs : pointer to the structure with parameters given by ethtool for
5372 * dumping the registers.
5373 * @reg_space: The input argumnet into which all the registers are dumped.
5375 * Dumps the entire register space of xFrame NIC into the user given
5381 static void s2io_ethtool_gregs(struct net_device *dev,
5382 struct ethtool_regs *regs, void *space)
5386 u8 *reg_space = (u8 *) space;
5387 struct s2io_nic *sp = dev->priv;
5389 regs->len = XENA_REG_SPACE;
5390 regs->version = sp->pdev->subsystem_device;
5392 for (i = 0; i < regs->len; i += 8) {
5393 reg = readq(sp->bar0 + i);
5394 memcpy((reg_space + i), ®, 8);
5399 * s2io_phy_id - timer function that alternates adapter LED.
5400 * @data : address of the private member of the device structure, which
5401 * is a pointer to the s2io_nic structure, provided as an u32.
5402 * Description: This is actually the timer function that alternates the
5403 * adapter LED bit of the adapter control bit to set/reset every time on
5404 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5405 * once every second.
5407 static void s2io_phy_id(unsigned long data)
5409 struct s2io_nic *sp = (struct s2io_nic *) data;
5410 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5414 subid = sp->pdev->subsystem_device;
5415 if ((sp->device_type == XFRAME_II_DEVICE) ||
5416 ((subid & 0xFF) >= 0x07)) {
5417 val64 = readq(&bar0->gpio_control);
5418 val64 ^= GPIO_CTRL_GPIO_0;
5419 writeq(val64, &bar0->gpio_control);
5421 val64 = readq(&bar0->adapter_control);
5422 val64 ^= ADAPTER_LED_ON;
5423 writeq(val64, &bar0->adapter_control);
5426 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5430 * s2io_ethtool_idnic - To physically identify the nic on the system.
5431 * @sp : private member of the device structure, which is a pointer to the
5432 * s2io_nic structure.
5433 * @id : pointer to the structure with identification parameters given by
5435 * Description: Used to physically identify the NIC on the system.
5436 * The Link LED will blink for a time specified by the user for
5438 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5439 * identification is possible only if it's link is up.
5441 * int , returns 0 on success
5444 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5446 u64 val64 = 0, last_gpio_ctrl_val;
5447 struct s2io_nic *sp = dev->priv;
5448 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5451 subid = sp->pdev->subsystem_device;
5452 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5453 if ((sp->device_type == XFRAME_I_DEVICE) &&
5454 ((subid & 0xFF) < 0x07)) {
5455 val64 = readq(&bar0->adapter_control);
5456 if (!(val64 & ADAPTER_CNTL_EN)) {
5458 "Adapter Link down, cannot blink LED\n");
5462 if (sp->id_timer.function == NULL) {
5463 init_timer(&sp->id_timer);
5464 sp->id_timer.function = s2io_phy_id;
5465 sp->id_timer.data = (unsigned long) sp;
5467 mod_timer(&sp->id_timer, jiffies);
5469 msleep_interruptible(data * HZ);
5471 msleep_interruptible(MAX_FLICKER_TIME);
5472 del_timer_sync(&sp->id_timer);
5474 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5475 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5476 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5482 static void s2io_ethtool_gringparam(struct net_device *dev,
5483 struct ethtool_ringparam *ering)
5485 struct s2io_nic *sp = dev->priv;
5486 int i,tx_desc_count=0,rx_desc_count=0;
5488 if (sp->rxd_mode == RXD_MODE_1)
5489 ering->rx_max_pending = MAX_RX_DESC_1;
5490 else if (sp->rxd_mode == RXD_MODE_3B)
5491 ering->rx_max_pending = MAX_RX_DESC_2;
5493 ering->tx_max_pending = MAX_TX_DESC;
5494 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5495 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5497 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5498 ering->tx_pending = tx_desc_count;
5500 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5501 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5503 ering->rx_pending = rx_desc_count;
5505 ering->rx_mini_max_pending = 0;
5506 ering->rx_mini_pending = 0;
5507 if(sp->rxd_mode == RXD_MODE_1)
5508 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5509 else if (sp->rxd_mode == RXD_MODE_3B)
5510 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5511 ering->rx_jumbo_pending = rx_desc_count;
5515 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5516 * @sp : private member of the device structure, which is a pointer to the
5517 * s2io_nic structure.
5518 * @ep : pointer to the structure with pause parameters given by ethtool.
5520 * Returns the Pause frame generation and reception capability of the NIC.
5524 static void s2io_ethtool_getpause_data(struct net_device *dev,
5525 struct ethtool_pauseparam *ep)
5528 struct s2io_nic *sp = dev->priv;
5529 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5531 val64 = readq(&bar0->rmac_pause_cfg);
5532 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5533 ep->tx_pause = TRUE;
5534 if (val64 & RMAC_PAUSE_RX_ENABLE)
5535 ep->rx_pause = TRUE;
5536 ep->autoneg = FALSE;
5540 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5541 * @sp : private member of the device structure, which is a pointer to the
5542 * s2io_nic structure.
5543 * @ep : pointer to the structure with pause parameters given by ethtool.
5545 * It can be used to set or reset Pause frame generation or reception
5546 * support of the NIC.
5548 * int, returns 0 on Success
5551 static int s2io_ethtool_setpause_data(struct net_device *dev,
5552 struct ethtool_pauseparam *ep)
5555 struct s2io_nic *sp = dev->priv;
5556 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5558 val64 = readq(&bar0->rmac_pause_cfg);
5560 val64 |= RMAC_PAUSE_GEN_ENABLE;
5562 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5564 val64 |= RMAC_PAUSE_RX_ENABLE;
5566 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5567 writeq(val64, &bar0->rmac_pause_cfg);
5572 * read_eeprom - reads 4 bytes of data from user given offset.
5573 * @sp : private member of the device structure, which is a pointer to the
5574 * s2io_nic structure.
5575 * @off : offset at which the data must be written
5576 * @data : Its an output parameter where the data read at the given
5579 * Will read 4 bytes of data from the user given offset and return the
5581 * NOTE: Will allow to read only part of the EEPROM visible through the
5584 * -1 on failure and 0 on success.
5587 #define S2IO_DEV_ID 5
5588 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5593 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5595 if (sp->device_type == XFRAME_I_DEVICE) {
5596 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5597 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5598 I2C_CONTROL_CNTL_START;
5599 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5601 while (exit_cnt < 5) {
5602 val64 = readq(&bar0->i2c_control);
5603 if (I2C_CONTROL_CNTL_END(val64)) {
5604 *data = I2C_CONTROL_GET_DATA(val64);
5613 if (sp->device_type == XFRAME_II_DEVICE) {
5614 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5615 SPI_CONTROL_BYTECNT(0x3) |
5616 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5617 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5618 val64 |= SPI_CONTROL_REQ;
5619 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5620 while (exit_cnt < 5) {
5621 val64 = readq(&bar0->spi_control);
5622 if (val64 & SPI_CONTROL_NACK) {
5625 } else if (val64 & SPI_CONTROL_DONE) {
5626 *data = readq(&bar0->spi_data);
5639 * write_eeprom - actually writes the relevant part of the data value.
5640 * @sp : private member of the device structure, which is a pointer to the
5641 * s2io_nic structure.
5642 * @off : offset at which the data must be written
5643 * @data : The data that is to be written
5644 * @cnt : Number of bytes of the data that are actually to be written into
5645 * the Eeprom. (max of 3)
5647 * Actually writes the relevant part of the data value into the Eeprom
5648 * through the I2C bus.
5650 * 0 on success, -1 on failure.
5653 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5655 int exit_cnt = 0, ret = -1;
5657 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5659 if (sp->device_type == XFRAME_I_DEVICE) {
5660 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5661 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5662 I2C_CONTROL_CNTL_START;
5663 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5665 while (exit_cnt < 5) {
5666 val64 = readq(&bar0->i2c_control);
5667 if (I2C_CONTROL_CNTL_END(val64)) {
5668 if (!(val64 & I2C_CONTROL_NACK))
5677 if (sp->device_type == XFRAME_II_DEVICE) {
5678 int write_cnt = (cnt == 8) ? 0 : cnt;
5679 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5681 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5682 SPI_CONTROL_BYTECNT(write_cnt) |
5683 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5684 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5685 val64 |= SPI_CONTROL_REQ;
5686 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5687 while (exit_cnt < 5) {
5688 val64 = readq(&bar0->spi_control);
5689 if (val64 & SPI_CONTROL_NACK) {
5692 } else if (val64 & SPI_CONTROL_DONE) {
5702 static void s2io_vpd_read(struct s2io_nic *nic)
5706 int i=0, cnt, fail = 0;
5707 int vpd_addr = 0x80;
5709 if (nic->device_type == XFRAME_II_DEVICE) {
5710 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5714 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5717 strcpy(nic->serial_num, "NOT AVAILABLE");
5719 vpd_data = kmalloc(256, GFP_KERNEL);
5721 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5724 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5726 for (i = 0; i < 256; i +=4 ) {
5727 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5728 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5729 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5730 for (cnt = 0; cnt <5; cnt++) {
5732 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5737 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5741 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5742 (u32 *)&vpd_data[i]);
5746 /* read serial number of adapter */
5747 for (cnt = 0; cnt < 256; cnt++) {
5748 if ((vpd_data[cnt] == 'S') &&
5749 (vpd_data[cnt+1] == 'N') &&
5750 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5751 memset(nic->serial_num, 0, VPD_STRING_LEN);
5752 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5759 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5760 memset(nic->product_name, 0, vpd_data[1]);
5761 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5764 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5768 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5769 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5770 * @eeprom : pointer to the user level structure provided by ethtool,
5771 * containing all relevant information.
5772 * @data_buf : user defined value to be written into Eeprom.
5773 * Description: Reads the values stored in the Eeprom at given offset
5774 * for a given length. Stores these values int the input argument data
5775 * buffer 'data_buf' and returns these to the caller (ethtool.)
5780 static int s2io_ethtool_geeprom(struct net_device *dev,
5781 struct ethtool_eeprom *eeprom, u8 * data_buf)
5785 struct s2io_nic *sp = dev->priv;
5787 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5789 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5790 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5792 for (i = 0; i < eeprom->len; i += 4) {
5793 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5794 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5798 memcpy((data_buf + i), &valid, 4);
5804 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5805 * @sp : private member of the device structure, which is a pointer to the
5806 * s2io_nic structure.
5807 * @eeprom : pointer to the user level structure provided by ethtool,
5808 * containing all relevant information.
5809 * @data_buf ; user defined value to be written into Eeprom.
5811 * Tries to write the user provided value in the Eeprom, at the offset
5812 * given by the user.
5814 * 0 on success, -EFAULT on failure.
5817 static int s2io_ethtool_seeprom(struct net_device *dev,
5818 struct ethtool_eeprom *eeprom,
5821 int len = eeprom->len, cnt = 0;
5822 u64 valid = 0, data;
5823 struct s2io_nic *sp = dev->priv;
5825 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5827 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5828 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5834 data = (u32) data_buf[cnt] & 0x000000FF;
5836 valid = (u32) (data << 24);
5840 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5842 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5844 "write into the specified offset\n");
5855 * s2io_register_test - reads and writes into all clock domains.
5856 * @sp : private member of the device structure, which is a pointer to the
5857 * s2io_nic structure.
5858 * @data : variable that returns the result of each of the test conducted b
5861 * Read and write into all clock domains. The NIC has 3 clock domains,
5862 * see that registers in all the three regions are accessible.
5867 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5869 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5870 u64 val64 = 0, exp_val;
5873 val64 = readq(&bar0->pif_rd_swapper_fb);
5874 if (val64 != 0x123456789abcdefULL) {
5876 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5879 val64 = readq(&bar0->rmac_pause_cfg);
5880 if (val64 != 0xc000ffff00000000ULL) {
5882 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5885 val64 = readq(&bar0->rx_queue_cfg);
5886 if (sp->device_type == XFRAME_II_DEVICE)
5887 exp_val = 0x0404040404040404ULL;
5889 exp_val = 0x0808080808080808ULL;
5890 if (val64 != exp_val) {
5892 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5895 val64 = readq(&bar0->xgxs_efifo_cfg);
5896 if (val64 != 0x000000001923141EULL) {
5898 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5901 val64 = 0x5A5A5A5A5A5A5A5AULL;
5902 writeq(val64, &bar0->xmsi_data);
5903 val64 = readq(&bar0->xmsi_data);
5904 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5906 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5909 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5910 writeq(val64, &bar0->xmsi_data);
5911 val64 = readq(&bar0->xmsi_data);
5912 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5914 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5922 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5923 * @sp : private member of the device structure, which is a pointer to the
5924 * s2io_nic structure.
5925 * @data:variable that returns the result of each of the test conducted by
5928 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5934 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5937 u64 ret_data, org_4F0, org_7F0;
5938 u8 saved_4F0 = 0, saved_7F0 = 0;
5939 struct net_device *dev = sp->dev;
5941 /* Test Write Error at offset 0 */
5942 /* Note that SPI interface allows write access to all areas
5943 * of EEPROM. Hence doing all negative testing only for Xframe I.
5945 if (sp->device_type == XFRAME_I_DEVICE)
5946 if (!write_eeprom(sp, 0, 0, 3))
5949 /* Save current values at offsets 0x4F0 and 0x7F0 */
5950 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5952 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5955 /* Test Write at offset 4f0 */
5956 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5958 if (read_eeprom(sp, 0x4F0, &ret_data))
5961 if (ret_data != 0x012345) {
5962 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5963 "Data written %llx Data read %llx\n",
5964 dev->name, (unsigned long long)0x12345,
5965 (unsigned long long)ret_data);
5969 /* Reset the EEPROM data go FFFF */
5970 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5972 /* Test Write Request Error at offset 0x7c */
5973 if (sp->device_type == XFRAME_I_DEVICE)
5974 if (!write_eeprom(sp, 0x07C, 0, 3))
5977 /* Test Write Request at offset 0x7f0 */
5978 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5980 if (read_eeprom(sp, 0x7F0, &ret_data))
5983 if (ret_data != 0x012345) {
5984 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5985 "Data written %llx Data read %llx\n",
5986 dev->name, (unsigned long long)0x12345,
5987 (unsigned long long)ret_data);
5991 /* Reset the EEPROM data go FFFF */
5992 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5994 if (sp->device_type == XFRAME_I_DEVICE) {
5995 /* Test Write Error at offset 0x80 */
5996 if (!write_eeprom(sp, 0x080, 0, 3))
5999 /* Test Write Error at offset 0xfc */
6000 if (!write_eeprom(sp, 0x0FC, 0, 3))
6003 /* Test Write Error at offset 0x100 */
6004 if (!write_eeprom(sp, 0x100, 0, 3))
6007 /* Test Write Error at offset 4ec */
6008 if (!write_eeprom(sp, 0x4EC, 0, 3))
6012 /* Restore values at offsets 0x4F0 and 0x7F0 */
6014 write_eeprom(sp, 0x4F0, org_4F0, 3);
6016 write_eeprom(sp, 0x7F0, org_7F0, 3);
6023 * s2io_bist_test - invokes the MemBist test of the card .
6024 * @sp : private member of the device structure, which is a pointer to the
6025 * s2io_nic structure.
6026 * @data:variable that returns the result of each of the test conducted by
6029 * This invokes the MemBist test of the card. We give around
6030 * 2 secs time for the Test to complete. If it's still not complete
6031 * within this peiod, we consider that the test failed.
6033 * 0 on success and -1 on failure.
6036 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6039 int cnt = 0, ret = -1;
6041 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6042 bist |= PCI_BIST_START;
6043 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6046 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6047 if (!(bist & PCI_BIST_START)) {
6048 *data = (bist & PCI_BIST_CODE_MASK);
6060 * s2io-link_test - verifies the link state of the nic
6061 * @sp ; private member of the device structure, which is a pointer to the
6062 * s2io_nic structure.
6063 * @data: variable that returns the result of each of the test conducted by
6066 * The function verifies the link state of the NIC and updates the input
6067 * argument 'data' appropriately.
6072 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6074 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6077 val64 = readq(&bar0->adapter_status);
6078 if(!(LINK_IS_UP(val64)))
6087 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6088 * @sp - private member of the device structure, which is a pointer to the
6089 * s2io_nic structure.
6090 * @data - variable that returns the result of each of the test
6091 * conducted by the driver.
6093 * This is one of the offline test that tests the read and write
6094 * access to the RldRam chip on the NIC.
6099 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6101 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6103 int cnt, iteration = 0, test_fail = 0;
6105 val64 = readq(&bar0->adapter_control);
6106 val64 &= ~ADAPTER_ECC_EN;
6107 writeq(val64, &bar0->adapter_control);
6109 val64 = readq(&bar0->mc_rldram_test_ctrl);
6110 val64 |= MC_RLDRAM_TEST_MODE;
6111 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6113 val64 = readq(&bar0->mc_rldram_mrs);
6114 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6115 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6117 val64 |= MC_RLDRAM_MRS_ENABLE;
6118 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6120 while (iteration < 2) {
6121 val64 = 0x55555555aaaa0000ULL;
6122 if (iteration == 1) {
6123 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6125 writeq(val64, &bar0->mc_rldram_test_d0);
6127 val64 = 0xaaaa5a5555550000ULL;
6128 if (iteration == 1) {
6129 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6131 writeq(val64, &bar0->mc_rldram_test_d1);
6133 val64 = 0x55aaaaaaaa5a0000ULL;
6134 if (iteration == 1) {
6135 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6137 writeq(val64, &bar0->mc_rldram_test_d2);
6139 val64 = (u64) (0x0000003ffffe0100ULL);
6140 writeq(val64, &bar0->mc_rldram_test_add);
6142 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6144 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6146 for (cnt = 0; cnt < 5; cnt++) {
6147 val64 = readq(&bar0->mc_rldram_test_ctrl);
6148 if (val64 & MC_RLDRAM_TEST_DONE)
6156 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6157 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6159 for (cnt = 0; cnt < 5; cnt++) {
6160 val64 = readq(&bar0->mc_rldram_test_ctrl);
6161 if (val64 & MC_RLDRAM_TEST_DONE)
6169 val64 = readq(&bar0->mc_rldram_test_ctrl);
6170 if (!(val64 & MC_RLDRAM_TEST_PASS))
6178 /* Bring the adapter out of test mode */
6179 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6185 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6186 * @sp : private member of the device structure, which is a pointer to the
6187 * s2io_nic structure.
6188 * @ethtest : pointer to a ethtool command specific structure that will be
6189 * returned to the user.
6190 * @data : variable that returns the result of each of the test
6191 * conducted by the driver.
6193 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6194 * the health of the card.
6199 static void s2io_ethtool_test(struct net_device *dev,
6200 struct ethtool_test *ethtest,
6203 struct s2io_nic *sp = dev->priv;
6204 int orig_state = netif_running(sp->dev);
6206 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6207 /* Offline Tests. */
6209 s2io_close(sp->dev);
6211 if (s2io_register_test(sp, &data[0]))
6212 ethtest->flags |= ETH_TEST_FL_FAILED;
6216 if (s2io_rldram_test(sp, &data[3]))
6217 ethtest->flags |= ETH_TEST_FL_FAILED;
6221 if (s2io_eeprom_test(sp, &data[1]))
6222 ethtest->flags |= ETH_TEST_FL_FAILED;
6224 if (s2io_bist_test(sp, &data[4]))
6225 ethtest->flags |= ETH_TEST_FL_FAILED;
6235 "%s: is not up, cannot run test\n",
6244 if (s2io_link_test(sp, &data[2]))
6245 ethtest->flags |= ETH_TEST_FL_FAILED;
6254 static void s2io_get_ethtool_stats(struct net_device *dev,
6255 struct ethtool_stats *estats,
6259 struct s2io_nic *sp = dev->priv;
6260 struct stat_block *stat_info = sp->mac_control.stats_info;
6262 s2io_updt_stats(sp);
6264 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6265 le32_to_cpu(stat_info->tmac_frms);
6267 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6268 le32_to_cpu(stat_info->tmac_data_octets);
6269 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6271 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6272 le32_to_cpu(stat_info->tmac_mcst_frms);
6274 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6275 le32_to_cpu(stat_info->tmac_bcst_frms);
6276 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6278 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6279 le32_to_cpu(stat_info->tmac_ttl_octets);
6281 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6282 le32_to_cpu(stat_info->tmac_ucst_frms);
6284 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6285 le32_to_cpu(stat_info->tmac_nucst_frms);
6287 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6288 le32_to_cpu(stat_info->tmac_any_err_frms);
6289 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6290 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6292 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6293 le32_to_cpu(stat_info->tmac_vld_ip);
6295 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6296 le32_to_cpu(stat_info->tmac_drop_ip);
6298 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6299 le32_to_cpu(stat_info->tmac_icmp);
6301 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6302 le32_to_cpu(stat_info->tmac_rst_tcp);
6303 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6304 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6305 le32_to_cpu(stat_info->tmac_udp);
6307 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6308 le32_to_cpu(stat_info->rmac_vld_frms);
6310 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6311 le32_to_cpu(stat_info->rmac_data_octets);
6312 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6313 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6315 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6316 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6318 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6319 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6320 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6321 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6322 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6323 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6324 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6326 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6327 le32_to_cpu(stat_info->rmac_ttl_octets);
6329 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6330 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6332 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6333 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6335 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6336 le32_to_cpu(stat_info->rmac_discarded_frms);
6338 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6339 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6340 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6341 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6343 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6344 le32_to_cpu(stat_info->rmac_usized_frms);
6346 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6347 le32_to_cpu(stat_info->rmac_osized_frms);
6349 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6350 le32_to_cpu(stat_info->rmac_frag_frms);
6352 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6353 le32_to_cpu(stat_info->rmac_jabber_frms);
6354 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6355 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6356 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6357 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6358 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6359 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6361 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6362 le32_to_cpu(stat_info->rmac_ip);
6363 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6364 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6366 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6367 le32_to_cpu(stat_info->rmac_drop_ip);
6369 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6370 le32_to_cpu(stat_info->rmac_icmp);
6371 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6373 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6374 le32_to_cpu(stat_info->rmac_udp);
6376 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6377 le32_to_cpu(stat_info->rmac_err_drp_udp);
6378 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6379 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6380 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6381 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6382 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6385 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6386 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6387 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6388 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6389 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6390 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6391 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6392 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6393 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6394 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6396 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6397 le32_to_cpu(stat_info->rmac_pause_cnt);
6398 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6399 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6401 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6402 le32_to_cpu(stat_info->rmac_accepted_ip);
6403 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6404 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6405 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6406 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6407 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6408 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6409 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6410 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6411 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6412 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6413 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6414 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6415 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6416 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6417 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6418 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6419 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6420 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6421 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6423 /* Enhanced statistics exist only for Hercules */
6424 if(sp->device_type == XFRAME_II_DEVICE) {
6426 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6428 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6430 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6431 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6432 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6435 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6436 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6437 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6438 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6439 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6440 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6441 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6442 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6443 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6447 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6448 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6449 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6450 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6451 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6452 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6453 for (k = 0; k < MAX_RX_RINGS; k++)
6454 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6455 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6456 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6457 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6458 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6459 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6460 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6461 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6462 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6463 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6464 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6465 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6466 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6467 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6468 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6469 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6470 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6471 if (stat_info->sw_stat.num_aggregations) {
6472 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6475 * Since 64-bit divide does not work on all platforms,
6476 * do repeated subtraction.
6478 while (tmp >= stat_info->sw_stat.num_aggregations) {
6479 tmp -= stat_info->sw_stat.num_aggregations;
6482 tmp_stats[i++] = count;
6486 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6487 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6488 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6489 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6490 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6491 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6492 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6493 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6494 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6496 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6497 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6498 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6499 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6500 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6502 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6503 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6504 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6505 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6506 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6507 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6508 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6509 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6510 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6511 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6512 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6513 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6514 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6515 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6516 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6517 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6518 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6519 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6520 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6521 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6522 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6523 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6524 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6525 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6526 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6527 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6530 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6532 return (XENA_REG_SPACE);
6536 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6538 struct s2io_nic *sp = dev->priv;
6540 return (sp->rx_csum);
6543 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6545 struct s2io_nic *sp = dev->priv;
6555 static int s2io_get_eeprom_len(struct net_device *dev)
6557 return (XENA_EEPROM_SPACE);
6560 static int s2io_get_sset_count(struct net_device *dev, int sset)
6562 struct s2io_nic *sp = dev->priv;
6566 return S2IO_TEST_LEN;
6568 switch(sp->device_type) {
6569 case XFRAME_I_DEVICE:
6570 return XFRAME_I_STAT_LEN;
6571 case XFRAME_II_DEVICE:
6572 return XFRAME_II_STAT_LEN;
6581 static void s2io_ethtool_get_strings(struct net_device *dev,
6582 u32 stringset, u8 * data)
6585 struct s2io_nic *sp = dev->priv;
6587 switch (stringset) {
6589 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6592 stat_size = sizeof(ethtool_xena_stats_keys);
6593 memcpy(data, ðtool_xena_stats_keys,stat_size);
6594 if(sp->device_type == XFRAME_II_DEVICE) {
6595 memcpy(data + stat_size,
6596 ðtool_enhanced_stats_keys,
6597 sizeof(ethtool_enhanced_stats_keys));
6598 stat_size += sizeof(ethtool_enhanced_stats_keys);
6601 memcpy(data + stat_size, ðtool_driver_stats_keys,
6602 sizeof(ethtool_driver_stats_keys));
6606 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6609 dev->features |= NETIF_F_IP_CSUM;
6611 dev->features &= ~NETIF_F_IP_CSUM;
6616 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6618 return (dev->features & NETIF_F_TSO) != 0;
6620 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6623 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6625 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6630 static const struct ethtool_ops netdev_ethtool_ops = {
6631 .get_settings = s2io_ethtool_gset,
6632 .set_settings = s2io_ethtool_sset,
6633 .get_drvinfo = s2io_ethtool_gdrvinfo,
6634 .get_regs_len = s2io_ethtool_get_regs_len,
6635 .get_regs = s2io_ethtool_gregs,
6636 .get_link = ethtool_op_get_link,
6637 .get_eeprom_len = s2io_get_eeprom_len,
6638 .get_eeprom = s2io_ethtool_geeprom,
6639 .set_eeprom = s2io_ethtool_seeprom,
6640 .get_ringparam = s2io_ethtool_gringparam,
6641 .get_pauseparam = s2io_ethtool_getpause_data,
6642 .set_pauseparam = s2io_ethtool_setpause_data,
6643 .get_rx_csum = s2io_ethtool_get_rx_csum,
6644 .set_rx_csum = s2io_ethtool_set_rx_csum,
6645 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6646 .set_sg = ethtool_op_set_sg,
6647 .get_tso = s2io_ethtool_op_get_tso,
6648 .set_tso = s2io_ethtool_op_set_tso,
6649 .set_ufo = ethtool_op_set_ufo,
6650 .self_test = s2io_ethtool_test,
6651 .get_strings = s2io_ethtool_get_strings,
6652 .phys_id = s2io_ethtool_idnic,
6653 .get_ethtool_stats = s2io_get_ethtool_stats,
6654 .get_sset_count = s2io_get_sset_count,
6658 * s2io_ioctl - Entry point for the Ioctl
6659 * @dev : Device pointer.
6660 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6661 * a proprietary structure used to pass information to the driver.
6662 * @cmd : This is used to distinguish between the different commands that
6663 * can be passed to the IOCTL functions.
6665 * Currently there are no special functionality supported in IOCTL, hence
6666 * function always return EOPNOTSUPPORTED
6669 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6675 * s2io_change_mtu - entry point to change MTU size for the device.
6676 * @dev : device pointer.
6677 * @new_mtu : the new MTU size for the device.
6678 * Description: A driver entry point to change MTU size for the device.
6679 * Before changing the MTU the device must be stopped.
6681 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6685 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6687 struct s2io_nic *sp = dev->priv;
6690 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6691 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6697 if (netif_running(dev)) {
6698 s2io_stop_all_tx_queue(sp);
6700 ret = s2io_card_up(sp);
6702 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6706 s2io_wake_all_tx_queue(sp);
6707 } else { /* Device is down */
6708 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6709 u64 val64 = new_mtu;
6711 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6718 * s2io_set_link - Set the LInk status
6719 * @data: long pointer to device private structue
6720 * Description: Sets the link status for the adapter
6723 static void s2io_set_link(struct work_struct *work)
6725 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6726 struct net_device *dev = nic->dev;
6727 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6733 if (!netif_running(dev))
6736 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6737 /* The card is being reset, no point doing anything */
6741 subid = nic->pdev->subsystem_device;
6742 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6744 * Allow a small delay for the NICs self initiated
6745 * cleanup to complete.
6750 val64 = readq(&bar0->adapter_status);
6751 if (LINK_IS_UP(val64)) {
6752 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6753 if (verify_xena_quiescence(nic)) {
6754 val64 = readq(&bar0->adapter_control);
6755 val64 |= ADAPTER_CNTL_EN;
6756 writeq(val64, &bar0->adapter_control);
6757 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6758 nic->device_type, subid)) {
6759 val64 = readq(&bar0->gpio_control);
6760 val64 |= GPIO_CTRL_GPIO_0;
6761 writeq(val64, &bar0->gpio_control);
6762 val64 = readq(&bar0->gpio_control);
6764 val64 |= ADAPTER_LED_ON;
6765 writeq(val64, &bar0->adapter_control);
6767 nic->device_enabled_once = TRUE;
6769 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6770 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6771 s2io_stop_all_tx_queue(nic);
6774 val64 = readq(&bar0->adapter_control);
6775 val64 |= ADAPTER_LED_ON;
6776 writeq(val64, &bar0->adapter_control);
6777 s2io_link(nic, LINK_UP);
6779 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6781 val64 = readq(&bar0->gpio_control);
6782 val64 &= ~GPIO_CTRL_GPIO_0;
6783 writeq(val64, &bar0->gpio_control);
6784 val64 = readq(&bar0->gpio_control);
6787 val64 = readq(&bar0->adapter_control);
6788 val64 = val64 &(~ADAPTER_LED_ON);
6789 writeq(val64, &bar0->adapter_control);
6790 s2io_link(nic, LINK_DOWN);
6792 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6798 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6800 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6801 u64 *temp2, int size)
6803 struct net_device *dev = sp->dev;
6804 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6806 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6807 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6810 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6812 * As Rx frame are not going to be processed,
6813 * using same mapped address for the Rxd
6816 rxdp1->Buffer0_ptr = *temp0;
6818 *skb = dev_alloc_skb(size);
6820 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6821 DBG_PRINT(INFO_DBG, "memory to allocate ");
6822 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6823 sp->mac_control.stats_info->sw_stat. \
6824 mem_alloc_fail_cnt++;
6827 sp->mac_control.stats_info->sw_stat.mem_allocated
6828 += (*skb)->truesize;
6829 /* storing the mapped addr in a temp variable
6830 * such it will be used for next rxd whose
6831 * Host Control is NULL
6833 rxdp1->Buffer0_ptr = *temp0 =
6834 pci_map_single( sp->pdev, (*skb)->data,
6835 size - NET_IP_ALIGN,
6836 PCI_DMA_FROMDEVICE);
6837 if( (rxdp1->Buffer0_ptr == 0) ||
6838 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6839 goto memalloc_failed;
6841 rxdp->Host_Control = (unsigned long) (*skb);
6843 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6844 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6845 /* Two buffer Mode */
6847 rxdp3->Buffer2_ptr = *temp2;
6848 rxdp3->Buffer0_ptr = *temp0;
6849 rxdp3->Buffer1_ptr = *temp1;
6851 *skb = dev_alloc_skb(size);
6853 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6854 DBG_PRINT(INFO_DBG, "memory to allocate ");
6855 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6856 sp->mac_control.stats_info->sw_stat. \
6857 mem_alloc_fail_cnt++;
6860 sp->mac_control.stats_info->sw_stat.mem_allocated
6861 += (*skb)->truesize;
6862 rxdp3->Buffer2_ptr = *temp2 =
6863 pci_map_single(sp->pdev, (*skb)->data,
6865 PCI_DMA_FROMDEVICE);
6866 if( (rxdp3->Buffer2_ptr == 0) ||
6867 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6868 goto memalloc_failed;
6870 rxdp3->Buffer0_ptr = *temp0 =
6871 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6872 PCI_DMA_FROMDEVICE);
6873 if( (rxdp3->Buffer0_ptr == 0) ||
6874 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6875 pci_unmap_single (sp->pdev,
6876 (dma_addr_t)rxdp3->Buffer2_ptr,
6877 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6878 goto memalloc_failed;
6880 rxdp->Host_Control = (unsigned long) (*skb);
6882 /* Buffer-1 will be dummy buffer not used */
6883 rxdp3->Buffer1_ptr = *temp1 =
6884 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6885 PCI_DMA_FROMDEVICE);
6886 if( (rxdp3->Buffer1_ptr == 0) ||
6887 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6888 pci_unmap_single (sp->pdev,
6889 (dma_addr_t)rxdp3->Buffer0_ptr,
6890 BUF0_LEN, PCI_DMA_FROMDEVICE);
6891 pci_unmap_single (sp->pdev,
6892 (dma_addr_t)rxdp3->Buffer2_ptr,
6893 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6894 goto memalloc_failed;
6900 stats->pci_map_fail_cnt++;
6901 stats->mem_freed += (*skb)->truesize;
6902 dev_kfree_skb(*skb);
6906 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6909 struct net_device *dev = sp->dev;
6910 if (sp->rxd_mode == RXD_MODE_1) {
6911 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6912 } else if (sp->rxd_mode == RXD_MODE_3B) {
6913 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6914 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6915 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6919 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6921 int i, j, k, blk_cnt = 0, size;
6922 struct mac_info * mac_control = &sp->mac_control;
6923 struct config_param *config = &sp->config;
6924 struct net_device *dev = sp->dev;
6925 struct RxD_t *rxdp = NULL;
6926 struct sk_buff *skb = NULL;
6927 struct buffAdd *ba = NULL;
6928 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6930 /* Calculate the size based on ring mode */
6931 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6932 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6933 if (sp->rxd_mode == RXD_MODE_1)
6934 size += NET_IP_ALIGN;
6935 else if (sp->rxd_mode == RXD_MODE_3B)
6936 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6938 for (i = 0; i < config->rx_ring_num; i++) {
6939 blk_cnt = config->rx_cfg[i].num_rxd /
6940 (rxd_count[sp->rxd_mode] +1);
6942 for (j = 0; j < blk_cnt; j++) {
6943 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6944 rxdp = mac_control->rings[i].
6945 rx_blocks[j].rxds[k].virt_addr;
6946 if(sp->rxd_mode == RXD_MODE_3B)
6947 ba = &mac_control->rings[i].ba[j][k];
6948 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6949 &skb,(u64 *)&temp0_64,
6956 set_rxd_buffer_size(sp, rxdp, size);
6958 /* flip the Ownership bit to Hardware */
6959 rxdp->Control_1 |= RXD_OWN_XENA;
6967 static int s2io_add_isr(struct s2io_nic * sp)
6970 struct net_device *dev = sp->dev;
6973 if (sp->config.intr_type == MSI_X)
6974 ret = s2io_enable_msi_x(sp);
6976 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6977 sp->config.intr_type = INTA;
6980 /* Store the values of the MSIX table in the struct s2io_nic structure */
6981 store_xmsi_data(sp);
6983 /* After proper initialization of H/W, register ISR */
6984 if (sp->config.intr_type == MSI_X) {
6985 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6987 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6988 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6989 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6991 err = request_irq(sp->entries[i].vector,
6992 s2io_msix_fifo_handle, 0, sp->desc[i],
6993 sp->s2io_entries[i].arg);
6994 /* If either data or addr is zero print it */
6995 if(!(sp->msix_info[i].addr &&
6996 sp->msix_info[i].data)) {
6997 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6998 "Data:0x%llx\n",sp->desc[i],
6999 (unsigned long long)
7000 sp->msix_info[i].addr,
7001 (unsigned long long)
7002 sp->msix_info[i].data);
7007 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7009 err = request_irq(sp->entries[i].vector,
7010 s2io_msix_ring_handle, 0, sp->desc[i],
7011 sp->s2io_entries[i].arg);
7012 /* If either data or addr is zero print it */
7013 if(!(sp->msix_info[i].addr &&
7014 sp->msix_info[i].data)) {
7015 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7016 "Data:0x%llx\n",sp->desc[i],
7017 (unsigned long long)
7018 sp->msix_info[i].addr,
7019 (unsigned long long)
7020 sp->msix_info[i].data);
7026 remove_msix_isr(sp);
7027 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7028 "failed\n", dev->name, i);
7029 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7031 sp->config.intr_type = INTA;
7034 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7037 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7039 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7043 if (sp->config.intr_type == INTA) {
7044 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7047 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7054 static void s2io_rem_isr(struct s2io_nic * sp)
7056 if (sp->config.intr_type == MSI_X)
7057 remove_msix_isr(sp);
7059 remove_inta_isr(sp);
7062 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7065 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7066 register u64 val64 = 0;
7067 struct config_param *config;
7068 config = &sp->config;
7070 if (!is_s2io_card_up(sp))
7073 del_timer_sync(&sp->alarm_timer);
7074 /* If s2io_set_link task is executing, wait till it completes. */
7075 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7078 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7082 napi_disable(&sp->napi);
7084 /* disable Tx and Rx traffic on the NIC */
7090 /* Check if the device is Quiescent and then Reset the NIC */
7092 /* As per the HW requirement we need to replenish the
7093 * receive buffer to avoid the ring bump. Since there is
7094 * no intention of processing the Rx frame at this pointwe are
7095 * just settting the ownership bit of rxd in Each Rx
7096 * ring to HW and set the appropriate buffer size
7097 * based on the ring mode
7099 rxd_owner_bit_reset(sp);
7101 val64 = readq(&bar0->adapter_status);
7102 if (verify_xena_quiescence(sp)) {
7103 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7111 "s2io_close:Device not Quiescent ");
7112 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7113 (unsigned long long) val64);
7120 /* Free all Tx buffers */
7121 free_tx_buffers(sp);
7123 /* Free all Rx buffers */
7124 free_rx_buffers(sp);
7126 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7129 static void s2io_card_down(struct s2io_nic * sp)
7131 do_s2io_card_down(sp, 1);
7134 static int s2io_card_up(struct s2io_nic * sp)
7137 struct mac_info *mac_control;
7138 struct config_param *config;
7139 struct net_device *dev = (struct net_device *) sp->dev;
7142 /* Initialize the H/W I/O registers */
7145 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7153 * Initializing the Rx buffers. For now we are considering only 1
7154 * Rx ring and initializing buffers into 30 Rx blocks
7156 mac_control = &sp->mac_control;
7157 config = &sp->config;
7159 for (i = 0; i < config->rx_ring_num; i++) {
7160 if ((ret = fill_rx_buffers(sp, i))) {
7161 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7164 free_rx_buffers(sp);
7167 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7168 atomic_read(&sp->rx_bufs_left[i]));
7171 /* Initialise napi */
7173 napi_enable(&sp->napi);
7175 /* Maintain the state prior to the open */
7176 if (sp->promisc_flg)
7177 sp->promisc_flg = 0;
7178 if (sp->m_cast_flg) {
7180 sp->all_multi_pos= 0;
7183 /* Setting its receive mode */
7184 s2io_set_multicast(dev);
7187 /* Initialize max aggregatable pkts per session based on MTU */
7188 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7189 /* Check if we can use(if specified) user provided value */
7190 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7191 sp->lro_max_aggr_per_sess = lro_max_pkts;
7194 /* Enable Rx Traffic and interrupts on the NIC */
7195 if (start_nic(sp)) {
7196 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7198 free_rx_buffers(sp);
7202 /* Add interrupt service routine */
7203 if (s2io_add_isr(sp) != 0) {
7204 if (sp->config.intr_type == MSI_X)
7207 free_rx_buffers(sp);
7211 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7213 /* Enable select interrupts */
7214 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7215 if (sp->config.intr_type != INTA)
7216 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7218 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7219 interruptible |= TX_PIC_INTR;
7220 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7223 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7228 * s2io_restart_nic - Resets the NIC.
7229 * @data : long pointer to the device private structure
7231 * This function is scheduled to be run by the s2io_tx_watchdog
7232 * function after 0.5 secs to reset the NIC. The idea is to reduce
7233 * the run time of the watch dog routine which is run holding a
7237 static void s2io_restart_nic(struct work_struct *work)
7239 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7240 struct net_device *dev = sp->dev;
7244 if (!netif_running(dev))
7248 if (s2io_card_up(sp)) {
7249 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7252 s2io_wake_all_tx_queue(sp);
7253 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7260 * s2io_tx_watchdog - Watchdog for transmit side.
7261 * @dev : Pointer to net device structure
7263 * This function is triggered if the Tx Queue is stopped
7264 * for a pre-defined amount of time when the Interface is still up.
7265 * If the Interface is jammed in such a situation, the hardware is
7266 * reset (by s2io_close) and restarted again (by s2io_open) to
7267 * overcome any problem that might have been caused in the hardware.
7272 static void s2io_tx_watchdog(struct net_device *dev)
7274 struct s2io_nic *sp = dev->priv;
7276 if (netif_carrier_ok(dev)) {
7277 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7278 schedule_work(&sp->rst_timer_task);
7279 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7284 * rx_osm_handler - To perform some OS related operations on SKB.
7285 * @sp: private member of the device structure,pointer to s2io_nic structure.
7286 * @skb : the socket buffer pointer.
7287 * @len : length of the packet
7288 * @cksum : FCS checksum of the frame.
7289 * @ring_no : the ring from which this RxD was extracted.
7291 * This function is called by the Rx interrupt serivce routine to perform
7292 * some OS related operations on the SKB before passing it to the upper
7293 * layers. It mainly checks if the checksum is OK, if so adds it to the
7294 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7295 * to the upper layer. If the checksum is wrong, it increments the Rx
7296 * packet error count, frees the SKB and returns error.
7298 * SUCCESS on success and -1 on failure.
7300 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7302 struct s2io_nic *sp = ring_data->nic;
7303 struct net_device *dev = (struct net_device *) sp->dev;
7304 struct sk_buff *skb = (struct sk_buff *)
7305 ((unsigned long) rxdp->Host_Control);
7306 int ring_no = ring_data->ring_no;
7307 u16 l3_csum, l4_csum;
7308 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7315 /* Check for parity error */
7317 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7319 err_mask = err >> 48;
7322 sp->mac_control.stats_info->sw_stat.
7323 rx_parity_err_cnt++;
7327 sp->mac_control.stats_info->sw_stat.
7332 sp->mac_control.stats_info->sw_stat.
7333 rx_parity_abort_cnt++;
7337 sp->mac_control.stats_info->sw_stat.
7342 sp->mac_control.stats_info->sw_stat.
7347 sp->mac_control.stats_info->sw_stat.
7352 sp->mac_control.stats_info->sw_stat.
7353 rx_buf_size_err_cnt++;
7357 sp->mac_control.stats_info->sw_stat.
7358 rx_rxd_corrupt_cnt++;
7362 sp->mac_control.stats_info->sw_stat.
7367 * Drop the packet if bad transfer code. Exception being
7368 * 0x5, which could be due to unsupported IPv6 extension header.
7369 * In this case, we let stack handle the packet.
7370 * Note that in this case, since checksum will be incorrect,
7371 * stack will validate the same.
7373 if (err_mask != 0x5) {
7374 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7375 dev->name, err_mask);
7376 sp->stats.rx_crc_errors++;
7377 sp->mac_control.stats_info->sw_stat.mem_freed
7380 atomic_dec(&sp->rx_bufs_left[ring_no]);
7381 rxdp->Host_Control = 0;
7386 /* Updating statistics */
7387 sp->stats.rx_packets++;
7388 rxdp->Host_Control = 0;
7389 if (sp->rxd_mode == RXD_MODE_1) {
7390 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7392 sp->stats.rx_bytes += len;
7395 } else if (sp->rxd_mode == RXD_MODE_3B) {
7396 int get_block = ring_data->rx_curr_get_info.block_index;
7397 int get_off = ring_data->rx_curr_get_info.offset;
7398 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7399 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7400 unsigned char *buff = skb_push(skb, buf0_len);
7402 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7403 sp->stats.rx_bytes += buf0_len + buf2_len;
7404 memcpy(buff, ba->ba_0, buf0_len);
7405 skb_put(skb, buf2_len);
7408 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7409 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7411 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7412 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7413 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7415 * NIC verifies if the Checksum of the received
7416 * frame is Ok or not and accordingly returns
7417 * a flag in the RxD.
7419 skb->ip_summed = CHECKSUM_UNNECESSARY;
7425 ret = s2io_club_tcp_session(skb->data, &tcp,
7429 case 3: /* Begin anew */
7432 case 1: /* Aggregate */
7434 lro_append_pkt(sp, lro,
7438 case 4: /* Flush session */
7440 lro_append_pkt(sp, lro,
7442 queue_rx_frame(lro->parent,
7444 clear_lro_session(lro);
7445 sp->mac_control.stats_info->
7446 sw_stat.flush_max_pkts++;
7449 case 2: /* Flush both */
7450 lro->parent->data_len =
7452 sp->mac_control.stats_info->
7453 sw_stat.sending_both++;
7454 queue_rx_frame(lro->parent,
7456 clear_lro_session(lro);
7458 case 0: /* sessions exceeded */
7459 case -1: /* non-TCP or not
7463 * First pkt in session not
7464 * L3/L4 aggregatable
7469 "%s: Samadhana!!\n",
7476 * Packet with erroneous checksum, let the
7477 * upper layers deal with it.
7479 skb->ip_summed = CHECKSUM_NONE;
7482 skb->ip_summed = CHECKSUM_NONE;
7484 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7486 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7487 dev->last_rx = jiffies;
7489 atomic_dec(&sp->rx_bufs_left[ring_no]);
7494 * s2io_link - stops/starts the Tx queue.
7495 * @sp : private member of the device structure, which is a pointer to the
7496 * s2io_nic structure.
7497 * @link : inidicates whether link is UP/DOWN.
7499 * This function stops/starts the Tx queue depending on whether the link
7500 * status of the NIC is is down or up. This is called by the Alarm
7501 * interrupt handler whenever a link change interrupt comes up.
7506 static void s2io_link(struct s2io_nic * sp, int link)
7508 struct net_device *dev = (struct net_device *) sp->dev;
7510 if (link != sp->last_link_state) {
7512 if (link == LINK_DOWN) {
7513 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7514 s2io_stop_all_tx_queue(sp);
7515 netif_carrier_off(dev);
7516 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7517 sp->mac_control.stats_info->sw_stat.link_up_time =
7518 jiffies - sp->start_time;
7519 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7521 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7522 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7523 sp->mac_control.stats_info->sw_stat.link_down_time =
7524 jiffies - sp->start_time;
7525 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7526 netif_carrier_on(dev);
7527 s2io_wake_all_tx_queue(sp);
7530 sp->last_link_state = link;
7531 sp->start_time = jiffies;
7535 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7536 * @sp : private member of the device structure, which is a pointer to the
7537 * s2io_nic structure.
7539 * This function initializes a few of the PCI and PCI-X configuration registers
7540 * with recommended values.
7545 static void s2io_init_pci(struct s2io_nic * sp)
7547 u16 pci_cmd = 0, pcix_cmd = 0;
7549 /* Enable Data Parity Error Recovery in PCI-X command register. */
7550 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7552 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7554 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7557 /* Set the PErr Response bit in PCI command register. */
7558 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7559 pci_write_config_word(sp->pdev, PCI_COMMAND,
7560 (pci_cmd | PCI_COMMAND_PARITY));
7561 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7564 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7567 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7568 (tx_fifo_num < 1)) {
7569 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7570 "(%d) not supported\n", tx_fifo_num);
7572 if (tx_fifo_num < 1)
7575 tx_fifo_num = MAX_TX_FIFOS;
7577 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7578 DBG_PRINT(ERR_DBG, "tx fifos\n");
7581 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7583 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7588 *dev_multiq = multiq;
7590 if (tx_steering_type && (1 == tx_fifo_num)) {
7591 if (tx_steering_type != TX_DEFAULT_STEERING)
7593 "s2io: Tx steering is not supported with "
7594 "one fifo. Disabling Tx steering.\n");
7595 tx_steering_type = NO_STEERING;
7598 if ((tx_steering_type < NO_STEERING) ||
7599 (tx_steering_type > TX_DEFAULT_STEERING)) {
7600 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7602 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7603 tx_steering_type = NO_STEERING;
7606 if ( rx_ring_num > 8) {
7607 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7609 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7612 if (*dev_intr_type != INTA)
7615 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7616 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7617 "Defaulting to INTA\n");
7618 *dev_intr_type = INTA;
7621 if ((*dev_intr_type == MSI_X) &&
7622 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7623 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7624 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7625 "Defaulting to INTA\n");
7626 *dev_intr_type = INTA;
7629 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7630 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7631 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7638 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7639 * or Traffic class respectively.
7640 * @nic: device private variable
7641 * Description: The function configures the receive steering to
7642 * desired receive ring.
7643 * Return Value: SUCCESS on success and
7644 * '-1' on failure (endian settings incorrect).
7646 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7648 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7649 register u64 val64 = 0;
7651 if (ds_codepoint > 63)
7654 val64 = RTS_DS_MEM_DATA(ring);
7655 writeq(val64, &bar0->rts_ds_mem_data);
7657 val64 = RTS_DS_MEM_CTRL_WE |
7658 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7659 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7661 writeq(val64, &bar0->rts_ds_mem_ctrl);
7663 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7664 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7669 * s2io_init_nic - Initialization of the adapter .
7670 * @pdev : structure containing the PCI related information of the device.
7671 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7673 * The function initializes an adapter identified by the pci_dec structure.
7674 * All OS related initialization including memory and device structure and
7675 * initlaization of the device private variable is done. Also the swapper
7676 * control register is initialized to enable read and write into the I/O
7677 * registers of the device.
7679 * returns 0 on success and negative on failure.
7682 static int __devinit
7683 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7685 struct s2io_nic *sp;
7686 struct net_device *dev;
7688 int dma_flag = FALSE;
7689 u32 mac_up, mac_down;
7690 u64 val64 = 0, tmp64 = 0;
7691 struct XENA_dev_config __iomem *bar0 = NULL;
7693 struct mac_info *mac_control;
7694 struct config_param *config;
7696 u8 dev_intr_type = intr_type;
7698 DECLARE_MAC_BUF(mac);
7700 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7704 if ((ret = pci_enable_device(pdev))) {
7706 "s2io_init_nic: pci_enable_device failed\n");
7710 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7711 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7713 if (pci_set_consistent_dma_mask
7714 (pdev, DMA_64BIT_MASK)) {
7716 "Unable to obtain 64bit DMA for \
7717 consistent allocations\n");
7718 pci_disable_device(pdev);
7721 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7722 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7724 pci_disable_device(pdev);
7727 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7728 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7729 pci_disable_device(pdev);
7732 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7734 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7737 dev = alloc_etherdev(sizeof(struct s2io_nic));
7739 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7740 pci_disable_device(pdev);
7741 pci_release_regions(pdev);
7745 pci_set_master(pdev);
7746 pci_set_drvdata(pdev, dev);
7747 SET_NETDEV_DEV(dev, &pdev->dev);
7749 /* Private member variable initialized to s2io NIC structure */
7751 memset(sp, 0, sizeof(struct s2io_nic));
7754 sp->high_dma_flag = dma_flag;
7755 sp->device_enabled_once = FALSE;
7756 if (rx_ring_mode == 1)
7757 sp->rxd_mode = RXD_MODE_1;
7758 if (rx_ring_mode == 2)
7759 sp->rxd_mode = RXD_MODE_3B;
7761 sp->config.intr_type = dev_intr_type;
7763 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7764 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7765 sp->device_type = XFRAME_II_DEVICE;
7767 sp->device_type = XFRAME_I_DEVICE;
7769 sp->lro = lro_enable;
7771 /* Initialize some PCI/PCI-X fields of the NIC. */
7775 * Setting the device configuration parameters.
7776 * Most of these parameters can be specified by the user during
7777 * module insertion as they are module loadable parameters. If
7778 * these parameters are not not specified during load time, they
7779 * are initialized with default values.
7781 mac_control = &sp->mac_control;
7782 config = &sp->config;
7784 config->napi = napi;
7785 config->tx_steering_type = tx_steering_type;
7787 /* Tx side parameters. */
7788 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7789 config->tx_fifo_num = MAX_TX_FIFOS;
7791 config->tx_fifo_num = tx_fifo_num;
7793 /* Initialize the fifos used for tx steering */
7794 if (config->tx_fifo_num < 5) {
7795 if (config->tx_fifo_num == 1)
7796 sp->total_tcp_fifos = 1;
7798 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7799 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7800 sp->total_udp_fifos = 1;
7801 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7803 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7804 FIFO_OTHER_MAX_NUM);
7805 sp->udp_fifo_idx = sp->total_tcp_fifos;
7806 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7807 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7810 config->multiq = dev_multiq;
7811 for (i = 0; i < config->tx_fifo_num; i++) {
7812 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7813 config->tx_cfg[i].fifo_priority = i;
7816 /* mapping the QoS priority to the configured fifos */
7817 for (i = 0; i < MAX_TX_FIFOS; i++)
7818 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7820 /* map the hashing selector table to the configured fifos */
7821 for (i = 0; i < config->tx_fifo_num; i++)
7822 sp->fifo_selector[i] = fifo_selector[i];
7825 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7826 for (i = 0; i < config->tx_fifo_num; i++) {
7827 config->tx_cfg[i].f_no_snoop =
7828 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7829 if (config->tx_cfg[i].fifo_len < 65) {
7830 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7834 /* + 2 because one Txd for skb->data and one Txd for UFO */
7835 config->max_txds = MAX_SKB_FRAGS + 2;
7837 /* Rx side parameters. */
7838 config->rx_ring_num = rx_ring_num;
7839 for (i = 0; i < MAX_RX_RINGS; i++) {
7840 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7841 (rxd_count[sp->rxd_mode] + 1);
7842 config->rx_cfg[i].ring_priority = i;
7845 for (i = 0; i < rx_ring_num; i++) {
7846 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7847 config->rx_cfg[i].f_no_snoop =
7848 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7851 /* Setting Mac Control parameters */
7852 mac_control->rmac_pause_time = rmac_pause_time;
7853 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7854 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7857 /* Initialize Ring buffer parameters. */
7858 for (i = 0; i < config->rx_ring_num; i++)
7859 atomic_set(&sp->rx_bufs_left[i], 0);
7861 /* initialize the shared memory used by the NIC and the host */
7862 if (init_shared_mem(sp)) {
7863 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7866 goto mem_alloc_failed;
7869 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7870 pci_resource_len(pdev, 0));
7872 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7875 goto bar0_remap_failed;
7878 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7879 pci_resource_len(pdev, 2));
7881 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7884 goto bar1_remap_failed;
7887 dev->irq = pdev->irq;
7888 dev->base_addr = (unsigned long) sp->bar0;
7890 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7891 for (j = 0; j < MAX_TX_FIFOS; j++) {
7892 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7893 (sp->bar1 + (j * 0x00020000));
7896 /* Driver entry points */
7897 dev->open = &s2io_open;
7898 dev->stop = &s2io_close;
7899 dev->hard_start_xmit = &s2io_xmit;
7900 dev->get_stats = &s2io_get_stats;
7901 dev->set_multicast_list = &s2io_set_multicast;
7902 dev->do_ioctl = &s2io_ioctl;
7903 dev->set_mac_address = &s2io_set_mac_addr;
7904 dev->change_mtu = &s2io_change_mtu;
7905 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7906 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7907 dev->vlan_rx_register = s2io_vlan_rx_register;
7908 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7911 * will use eth_mac_addr() for dev->set_mac_address
7912 * mac address will be set every time dev->open() is called
7914 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7916 #ifdef CONFIG_NET_POLL_CONTROLLER
7917 dev->poll_controller = s2io_netpoll;
7920 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7921 if (sp->high_dma_flag == TRUE)
7922 dev->features |= NETIF_F_HIGHDMA;
7923 dev->features |= NETIF_F_TSO;
7924 dev->features |= NETIF_F_TSO6;
7925 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7926 dev->features |= NETIF_F_UFO;
7927 dev->features |= NETIF_F_HW_CSUM;
7929 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7931 dev->features |= NETIF_F_MULTI_QUEUE;
7933 dev->tx_timeout = &s2io_tx_watchdog;
7934 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7935 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7936 INIT_WORK(&sp->set_link_task, s2io_set_link);
7938 pci_save_state(sp->pdev);
7940 /* Setting swapper control on the NIC, for proper reset operation */
7941 if (s2io_set_swapper(sp)) {
7942 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7945 goto set_swap_failed;
7948 /* Verify if the Herc works on the slot its placed into */
7949 if (sp->device_type & XFRAME_II_DEVICE) {
7950 mode = s2io_verify_pci_mode(sp);
7952 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7953 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7955 goto set_swap_failed;
7959 /* Not needed for Herc */
7960 if (sp->device_type & XFRAME_I_DEVICE) {
7962 * Fix for all "FFs" MAC address problems observed on
7965 fix_mac_address(sp);
7970 * MAC address initialization.
7971 * For now only one mac address will be read and used.
7974 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7975 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7976 writeq(val64, &bar0->rmac_addr_cmd_mem);
7977 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7978 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7979 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7980 mac_down = (u32) tmp64;
7981 mac_up = (u32) (tmp64 >> 32);
7983 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7984 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7985 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7986 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7987 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7988 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7990 /* Set the factory defined MAC address initially */
7991 dev->addr_len = ETH_ALEN;
7992 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7993 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7995 /* initialize number of multicast & unicast MAC entries variables */
7996 if (sp->device_type == XFRAME_I_DEVICE) {
7997 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7998 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7999 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8000 } else if (sp->device_type == XFRAME_II_DEVICE) {
8001 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8002 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8003 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8006 /* store mac addresses from CAM to s2io_nic structure */
8007 do_s2io_store_unicast_mc(sp);
8009 /* Store the values of the MSIX table in the s2io_nic structure */
8010 store_xmsi_data(sp);
8011 /* reset Nic and bring it to known state */
8015 * Initialize link state flags
8016 * and the card state parameter
8020 /* Initialize spinlocks */
8021 for (i = 0; i < sp->config.tx_fifo_num; i++)
8022 spin_lock_init(&mac_control->fifos[i].tx_lock);
8025 * SXE-002: Configure link and activity LED to init state
8028 subid = sp->pdev->subsystem_device;
8029 if ((subid & 0xFF) >= 0x07) {
8030 val64 = readq(&bar0->gpio_control);
8031 val64 |= 0x0000800000000000ULL;
8032 writeq(val64, &bar0->gpio_control);
8033 val64 = 0x0411040400000000ULL;
8034 writeq(val64, (void __iomem *) bar0 + 0x2700);
8035 val64 = readq(&bar0->gpio_control);
8038 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8040 if (register_netdev(dev)) {
8041 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8043 goto register_failed;
8046 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8047 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8048 sp->product_name, pdev->revision);
8049 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8050 s2io_driver_version);
8051 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8052 dev->name, print_mac(mac, dev->dev_addr));
8053 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8054 if (sp->device_type & XFRAME_II_DEVICE) {
8055 mode = s2io_print_pci_mode(sp);
8057 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8059 unregister_netdev(dev);
8060 goto set_swap_failed;
8063 switch(sp->rxd_mode) {
8065 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8069 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8075 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8077 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8078 sp->config.tx_fifo_num);
8080 switch(sp->config.intr_type) {
8082 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8085 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8088 if (sp->config.multiq) {
8089 for (i = 0; i < sp->config.tx_fifo_num; i++)
8090 mac_control->fifos[i].multiq = config->multiq;
8091 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8094 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8097 switch (sp->config.tx_steering_type) {
8099 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8100 " transmit\n", dev->name);
8102 case TX_PRIORITY_STEERING:
8103 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8104 " transmit\n", dev->name);
8106 case TX_DEFAULT_STEERING:
8107 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8108 " transmit\n", dev->name);
8112 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8115 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8116 " enabled\n", dev->name);
8117 /* Initialize device name */
8118 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8121 * Make Link state as off at this point, when the Link change
8122 * interrupt comes the state will be automatically changed to
8125 netif_carrier_off(dev);
8136 free_shared_mem(sp);
8137 pci_disable_device(pdev);
8138 pci_release_regions(pdev);
8139 pci_set_drvdata(pdev, NULL);
8146 * s2io_rem_nic - Free the PCI device
8147 * @pdev: structure containing the PCI related information of the device.
8148 * Description: This function is called by the Pci subsystem to release a
8149 * PCI device and free up all resource held up by the device. This could
8150 * be in response to a Hot plug event or when the driver is to be removed
8154 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8156 struct net_device *dev =
8157 (struct net_device *) pci_get_drvdata(pdev);
8158 struct s2io_nic *sp;
8161 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8165 flush_scheduled_work();
8168 unregister_netdev(dev);
8170 free_shared_mem(sp);
8173 pci_release_regions(pdev);
8174 pci_set_drvdata(pdev, NULL);
8176 pci_disable_device(pdev);
8180 * s2io_starter - Entry point for the driver
8181 * Description: This function is the entry point for the driver. It verifies
8182 * the module loadable parameters and initializes PCI configuration space.
8185 static int __init s2io_starter(void)
8187 return pci_register_driver(&s2io_driver);
8191 * s2io_closer - Cleanup routine for the driver
8192 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8195 static __exit void s2io_closer(void)
8197 pci_unregister_driver(&s2io_driver);
8198 DBG_PRINT(INIT_DBG, "cleanup done\n");
8201 module_init(s2io_starter);
8202 module_exit(s2io_closer);
8204 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8205 struct tcphdr **tcp, struct RxD_t *rxdp,
8206 struct s2io_nic *sp)
8209 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8211 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8212 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8217 /* Checking for DIX type or DIX type with VLAN */
8219 || (l2_type == 4)) {
8220 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8222 * If vlan stripping is disabled and the frame is VLAN tagged,
8223 * shift the offset by the VLAN header size bytes.
8225 if ((!vlan_strip_flag) &&
8226 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8227 ip_off += HEADER_VLAN_SIZE;
8229 /* LLC, SNAP etc are considered non-mergeable */
8233 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8234 ip_len = (u8)((*ip)->ihl);
8236 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8241 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8244 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8245 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8246 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8251 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8253 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8256 static void initiate_new_session(struct lro *lro, u8 *l2h,
8257 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8259 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8263 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8264 lro->tcp_ack = tcp->ack_seq;
8266 lro->total_len = ntohs(ip->tot_len);
8268 lro->vlan_tag = vlan_tag;
8270 * check if we saw TCP timestamp. Other consistency checks have
8271 * already been done.
8273 if (tcp->doff == 8) {
8275 ptr = (__be32 *)(tcp+1);
8277 lro->cur_tsval = ntohl(*(ptr+1));
8278 lro->cur_tsecr = *(ptr+2);
8283 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8285 struct iphdr *ip = lro->iph;
8286 struct tcphdr *tcp = lro->tcph;
8288 struct stat_block *statinfo = sp->mac_control.stats_info;
8289 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8291 /* Update L3 header */
8292 ip->tot_len = htons(lro->total_len);
8294 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8297 /* Update L4 header */
8298 tcp->ack_seq = lro->tcp_ack;
8299 tcp->window = lro->window;
8301 /* Update tsecr field if this session has timestamps enabled */
8303 __be32 *ptr = (__be32 *)(tcp + 1);
8304 *(ptr+2) = lro->cur_tsecr;
8307 /* Update counters required for calculation of
8308 * average no. of packets aggregated.
8310 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8311 statinfo->sw_stat.num_aggregations++;
8314 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8315 struct tcphdr *tcp, u32 l4_pyld)
8317 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8318 lro->total_len += l4_pyld;
8319 lro->frags_len += l4_pyld;
8320 lro->tcp_next_seq += l4_pyld;
8323 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8324 lro->tcp_ack = tcp->ack_seq;
8325 lro->window = tcp->window;
8329 /* Update tsecr and tsval from this packet */
8330 ptr = (__be32 *)(tcp+1);
8331 lro->cur_tsval = ntohl(*(ptr+1));
8332 lro->cur_tsecr = *(ptr + 2);
8336 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8337 struct tcphdr *tcp, u32 tcp_pyld_len)
8341 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8343 if (!tcp_pyld_len) {
8344 /* Runt frame or a pure ack */
8348 if (ip->ihl != 5) /* IP has options */
8351 /* If we see CE codepoint in IP header, packet is not mergeable */
8352 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8355 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8356 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8357 tcp->ece || tcp->cwr || !tcp->ack) {
8359 * Currently recognize only the ack control word and
8360 * any other control field being set would result in
8361 * flushing the LRO session
8367 * Allow only one TCP timestamp option. Don't aggregate if
8368 * any other options are detected.
8370 if (tcp->doff != 5 && tcp->doff != 8)
8373 if (tcp->doff == 8) {
8374 ptr = (u8 *)(tcp + 1);
8375 while (*ptr == TCPOPT_NOP)
8377 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8380 /* Ensure timestamp value increases monotonically */
8382 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8385 /* timestamp echo reply should be non-zero */
8386 if (*((__be32 *)(ptr+6)) == 0)
8394 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8395 struct RxD_t *rxdp, struct s2io_nic *sp)
8398 struct tcphdr *tcph;
8402 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8404 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8405 ip->saddr, ip->daddr);
8409 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8410 tcph = (struct tcphdr *)*tcp;
8411 *tcp_len = get_l4_pyld_length(ip, tcph);
8412 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8413 struct lro *l_lro = &sp->lro0_n[i];
8414 if (l_lro->in_use) {
8415 if (check_for_socket_match(l_lro, ip, tcph))
8417 /* Sock pair matched */
8420 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8421 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8422 "0x%x, actual 0x%x\n", __FUNCTION__,
8423 (*lro)->tcp_next_seq,
8426 sp->mac_control.stats_info->
8427 sw_stat.outof_sequence_pkts++;
8432 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8433 ret = 1; /* Aggregate */
8435 ret = 2; /* Flush both */
8441 /* Before searching for available LRO objects,
8442 * check if the pkt is L3/L4 aggregatable. If not
8443 * don't create new LRO session. Just send this
8446 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8450 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8451 struct lro *l_lro = &sp->lro0_n[i];
8452 if (!(l_lro->in_use)) {
8454 ret = 3; /* Begin anew */
8460 if (ret == 0) { /* sessions exceeded */
8461 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8469 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8473 update_L3L4_header(sp, *lro);
8476 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8477 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8478 update_L3L4_header(sp, *lro);
8479 ret = 4; /* Flush the LRO */
8483 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8491 static void clear_lro_session(struct lro *lro)
8493 static u16 lro_struct_size = sizeof(struct lro);
8495 memset(lro, 0, lro_struct_size);
8498 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8500 struct net_device *dev = skb->dev;
8501 struct s2io_nic *sp = dev->priv;
8503 skb->protocol = eth_type_trans(skb, dev);
8504 if (sp->vlgrp && vlan_tag
8505 && (vlan_strip_flag)) {
8506 /* Queueing the vlan frame to the upper layer */
8507 if (sp->config.napi)
8508 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8510 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8512 if (sp->config.napi)
8513 netif_receive_skb(skb);
8519 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8520 struct sk_buff *skb,
8523 struct sk_buff *first = lro->parent;
8525 first->len += tcp_len;
8526 first->data_len = lro->frags_len;
8527 skb_pull(skb, (skb->len - tcp_len));
8528 if (skb_shinfo(first)->frag_list)
8529 lro->last_frag->next = skb;
8531 skb_shinfo(first)->frag_list = skb;
8532 first->truesize += skb->truesize;
8533 lro->last_frag = skb;
8534 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8539 * s2io_io_error_detected - called when PCI error is detected
8540 * @pdev: Pointer to PCI device
8541 * @state: The current pci connection state
8543 * This function is called after a PCI bus error affecting
8544 * this device has been detected.
8546 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8547 pci_channel_state_t state)
8549 struct net_device *netdev = pci_get_drvdata(pdev);
8550 struct s2io_nic *sp = netdev->priv;
8552 netif_device_detach(netdev);
8554 if (netif_running(netdev)) {
8555 /* Bring down the card, while avoiding PCI I/O */
8556 do_s2io_card_down(sp, 0);
8558 pci_disable_device(pdev);
8560 return PCI_ERS_RESULT_NEED_RESET;
8564 * s2io_io_slot_reset - called after the pci bus has been reset.
8565 * @pdev: Pointer to PCI device
8567 * Restart the card from scratch, as if from a cold-boot.
8568 * At this point, the card has exprienced a hard reset,
8569 * followed by fixups by BIOS, and has its config space
8570 * set up identically to what it was at cold boot.
8572 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8574 struct net_device *netdev = pci_get_drvdata(pdev);
8575 struct s2io_nic *sp = netdev->priv;
8577 if (pci_enable_device(pdev)) {
8578 printk(KERN_ERR "s2io: "
8579 "Cannot re-enable PCI device after reset.\n");
8580 return PCI_ERS_RESULT_DISCONNECT;
8583 pci_set_master(pdev);
8586 return PCI_ERS_RESULT_RECOVERED;
8590 * s2io_io_resume - called when traffic can start flowing again.
8591 * @pdev: Pointer to PCI device
8593 * This callback is called when the error recovery driver tells
8594 * us that its OK to resume normal operation.
8596 static void s2io_io_resume(struct pci_dev *pdev)
8598 struct net_device *netdev = pci_get_drvdata(pdev);
8599 struct s2io_nic *sp = netdev->priv;
8601 if (netif_running(netdev)) {
8602 if (s2io_card_up(sp)) {
8603 printk(KERN_ERR "s2io: "
8604 "Can't bring device back up after reset.\n");
8608 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8610 printk(KERN_ERR "s2io: "
8611 "Can't resetore mac addr after reset.\n");
8616 netif_device_attach(netdev);
8617 netif_wake_queue(netdev);