]> err.no Git - linux-2.6/blob - drivers/net/s2io.c
S2IO: Fixes for reset and link handling.
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
69
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74 #include <asm/irq.h>
75
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
79
80 #define DRV_VERSION "2.0.15.2"
81
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
85
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
88
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
90 {
91         int ret;
92
93         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96         return ret;
97 }
98
99 /*
100  * Cards with following subsystem_id have a link state indication
101  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102  * macro below identifies these cards given the subsystem_id.
103  */
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105         (dev_type == XFRAME_I_DEVICE) ?                 \
106                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC   1
113 #define LOW     2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 {
116         mac_info_t *mac_control;
117
118         mac_control = &sp->mac_control;
119         if (rxb_size <= rxd_count[sp->rxd_mode])
120                 return PANIC;
121         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122                 return  LOW;
123         return 0;
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"},
230         {"rmac_ttl_1519_4095_frms"},
231         {"rmac_ttl_4096_8191_frms"},
232         {"rmac_ttl_8192_max_frms"},
233         {"rmac_ttl_gt_max_frms"},
234         {"rmac_osized_alt_frms"},
235         {"rmac_jabber_alt_frms"},
236         {"rmac_gt_max_alt_frms"},
237         {"rmac_vlan_frms"},
238         {"rmac_len_discard"},
239         {"rmac_fcs_discard"},
240         {"rmac_pf_discard"},
241         {"rmac_da_discard"},
242         {"rmac_red_discard"},
243         {"rmac_rts_discard"},
244         {"rmac_ingm_full_discard"},
245         {"link_fault_cnt"},
246         {"\n DRIVER STATISTICS"},
247         {"single_bit_ecc_errs"},
248         {"double_bit_ecc_errs"},
249         {"parity_err_cnt"},
250         {"serious_err_cnt"},
251         {"soft_reset_cnt"},
252         {"fifo_full_cnt"},
253         {"ring_full_cnt"},
254         ("alarm_transceiver_temp_high"),
255         ("alarm_transceiver_temp_low"),
256         ("alarm_laser_bias_current_high"),
257         ("alarm_laser_bias_current_low"),
258         ("alarm_laser_output_power_high"),
259         ("alarm_laser_output_power_low"),
260         ("warn_transceiver_temp_high"),
261         ("warn_transceiver_temp_low"),
262         ("warn_laser_bias_current_high"),
263         ("warn_laser_bias_current_low"),
264         ("warn_laser_output_power_high"),
265         ("warn_laser_output_power_low"),
266         ("lro_aggregated_pkts"),
267         ("lro_flush_both_count"),
268         ("lro_out_of_sequence_pkts"),
269         ("lro_flush_due_to_max_pkts"),
270         ("lro_avg_aggr_pkts"),
271 };
272
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
278
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
280                         init_timer(&timer);                     \
281                         timer.function = handle;                \
282                         timer.data = (unsigned long) arg;       \
283                         mod_timer(&timer, (jiffies + exp))      \
284
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287                                         struct vlan_group *grp)
288 {
289         nic_t *nic = dev->priv;
290         unsigned long flags;
291
292         spin_lock_irqsave(&nic->tx_lock, flags);
293         nic->vlgrp = grp;
294         spin_unlock_irqrestore(&nic->tx_lock, flags);
295 }
296
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 {
300         nic_t *nic = dev->priv;
301         unsigned long flags;
302
303         spin_lock_irqsave(&nic->tx_lock, flags);
304         if (nic->vlgrp)
305                 nic->vlgrp->vlan_devices[vid] = NULL;
306         spin_unlock_irqrestore(&nic->tx_lock, flags);
307 }
308
309 /*
310  * Constants to be programmed into the Xena's registers, to configure
311  * the XAUI.
312  */
313
314 #define END_SIGN        0x0
315 static const u64 herc_act_dtx_cfg[] = {
316         /* Set address */
317         0x8000051536750000ULL, 0x80000515367500E0ULL,
318         /* Write data */
319         0x8000051536750004ULL, 0x80000515367500E4ULL,
320         /* Set address */
321         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322         /* Write data */
323         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324         /* Set address */
325         0x801205150D440000ULL, 0x801205150D4400E0ULL,
326         /* Write data */
327         0x801205150D440004ULL, 0x801205150D4400E4ULL,
328         /* Set address */
329         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330         /* Write data */
331         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332         /* Done */
333         END_SIGN
334 };
335
336 static const u64 xena_dtx_cfg[] = {
337         /* Set address */
338         0x8000051500000000ULL, 0x80000515000000E0ULL,
339         /* Write data */
340         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341         /* Set address */
342         0x8001051500000000ULL, 0x80010515000000E0ULL,
343         /* Write data */
344         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345         /* Set address */
346         0x8002051500000000ULL, 0x80020515000000E0ULL,
347         /* Write data */
348         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349         END_SIGN
350 };
351
352 /*
353  * Constants for Fixing the MacAddress problem seen mostly on
354  * Alpha machines.
355  */
356 static const u64 fix_mac[] = {
357         0x0060000000000000ULL, 0x0060600000000000ULL,
358         0x0040600000000000ULL, 0x0000600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0060600000000000ULL,
369         0x0020600000000000ULL, 0x0000600000000000ULL,
370         0x0040600000000000ULL, 0x0060600000000000ULL,
371         END_SIGN
372 };
373
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
377
378
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
382
383
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401  * aggregation happens until we hit max IP pkt size(64K)
402  */
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 S2IO_PARM_INT(indicate_max_pkts, 0);
405
406 S2IO_PARM_INT(napi, 1);
407 S2IO_PARM_INT(ufo, 0);
408
409 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
410     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
411 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
412     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
413 static unsigned int rts_frm_len[MAX_RX_RINGS] =
414     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415
416 module_param_array(tx_fifo_len, uint, NULL, 0);
417 module_param_array(rx_ring_sz, uint, NULL, 0);
418 module_param_array(rts_frm_len, uint, NULL, 0);
419
420 /*
421  * S2IO device table.
422  * This table lists all the devices that this driver supports.
423  */
424 static struct pci_device_id s2io_tbl[] __devinitdata = {
425         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
426          PCI_ANY_ID, PCI_ANY_ID},
427         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
428          PCI_ANY_ID, PCI_ANY_ID},
429         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
430          PCI_ANY_ID, PCI_ANY_ID},
431         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
432          PCI_ANY_ID, PCI_ANY_ID},
433         {0,}
434 };
435
436 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437
438 static struct pci_driver s2io_driver = {
439       .name = "S2IO",
440       .id_table = s2io_tbl,
441       .probe = s2io_init_nic,
442       .remove = __devexit_p(s2io_rem_nic),
443 };
444
445 /* A simplifier macro used both by init and free shared_mem Fns(). */
446 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
447
448 /**
449  * init_shared_mem - Allocation and Initialization of Memory
450  * @nic: Device private variable.
451  * Description: The function allocates all the memory areas shared
452  * between the NIC and the driver. This includes Tx descriptors,
453  * Rx descriptors and the statistics block.
454  */
455
456 static int init_shared_mem(struct s2io_nic *nic)
457 {
458         u32 size;
459         void *tmp_v_addr, *tmp_v_addr_next;
460         dma_addr_t tmp_p_addr, tmp_p_addr_next;
461         RxD_block_t *pre_rxd_blk = NULL;
462         int i, j, blk_cnt, rx_sz, tx_sz;
463         int lst_size, lst_per_page;
464         struct net_device *dev = nic->dev;
465         unsigned long tmp;
466         buffAdd_t *ba;
467
468         mac_info_t *mac_control;
469         struct config_param *config;
470
471         mac_control = &nic->mac_control;
472         config = &nic->config;
473
474
475         /* Allocation and initialization of TXDLs in FIOFs */
476         size = 0;
477         for (i = 0; i < config->tx_fifo_num; i++) {
478                 size += config->tx_cfg[i].fifo_len;
479         }
480         if (size > MAX_AVAILABLE_TXDS) {
481                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
482                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
483                 return -EINVAL;
484         }
485
486         lst_size = (sizeof(TxD_t) * config->max_txds);
487         tx_sz = lst_size * size;
488         lst_per_page = PAGE_SIZE / lst_size;
489
490         for (i = 0; i < config->tx_fifo_num; i++) {
491                 int fifo_len = config->tx_cfg[i].fifo_len;
492                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
493                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
494                                                           GFP_KERNEL);
495                 if (!mac_control->fifos[i].list_info) {
496                         DBG_PRINT(ERR_DBG,
497                                   "Malloc failed for list_info\n");
498                         return -ENOMEM;
499                 }
500                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
501         }
502         for (i = 0; i < config->tx_fifo_num; i++) {
503                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
504                                                 lst_per_page);
505                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
506                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
507                     config->tx_cfg[i].fifo_len - 1;
508                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
509                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
510                     config->tx_cfg[i].fifo_len - 1;
511                 mac_control->fifos[i].fifo_no = i;
512                 mac_control->fifos[i].nic = nic;
513                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
514
515                 for (j = 0; j < page_num; j++) {
516                         int k = 0;
517                         dma_addr_t tmp_p;
518                         void *tmp_v;
519                         tmp_v = pci_alloc_consistent(nic->pdev,
520                                                      PAGE_SIZE, &tmp_p);
521                         if (!tmp_v) {
522                                 DBG_PRINT(ERR_DBG,
523                                           "pci_alloc_consistent ");
524                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
525                                 return -ENOMEM;
526                         }
527                         /* If we got a zero DMA address(can happen on
528                          * certain platforms like PPC), reallocate.
529                          * Store virtual address of page we don't want,
530                          * to be freed later.
531                          */
532                         if (!tmp_p) {
533                                 mac_control->zerodma_virt_addr = tmp_v;
534                                 DBG_PRINT(INIT_DBG,
535                                 "%s: Zero DMA address for TxDL. ", dev->name);
536                                 DBG_PRINT(INIT_DBG,
537                                 "Virtual address %p\n", tmp_v);
538                                 tmp_v = pci_alloc_consistent(nic->pdev,
539                                                      PAGE_SIZE, &tmp_p);
540                                 if (!tmp_v) {
541                                         DBG_PRINT(ERR_DBG,
542                                           "pci_alloc_consistent ");
543                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
544                                         return -ENOMEM;
545                                 }
546                         }
547                         while (k < lst_per_page) {
548                                 int l = (j * lst_per_page) + k;
549                                 if (l == config->tx_cfg[i].fifo_len)
550                                         break;
551                                 mac_control->fifos[i].list_info[l].list_virt_addr =
552                                     tmp_v + (k * lst_size);
553                                 mac_control->fifos[i].list_info[l].list_phy_addr =
554                                     tmp_p + (k * lst_size);
555                                 k++;
556                         }
557                 }
558         }
559
560         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
561         if (!nic->ufo_in_band_v)
562                 return -ENOMEM;
563
564         /* Allocation and initialization of RXDs in Rings */
565         size = 0;
566         for (i = 0; i < config->rx_ring_num; i++) {
567                 if (config->rx_cfg[i].num_rxd %
568                     (rxd_count[nic->rxd_mode] + 1)) {
569                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
570                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
571                                   i);
572                         DBG_PRINT(ERR_DBG, "RxDs per Block");
573                         return FAILURE;
574                 }
575                 size += config->rx_cfg[i].num_rxd;
576                 mac_control->rings[i].block_count =
577                         config->rx_cfg[i].num_rxd /
578                         (rxd_count[nic->rxd_mode] + 1 );
579                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
580                         mac_control->rings[i].block_count;
581         }
582         if (nic->rxd_mode == RXD_MODE_1)
583                 size = (size * (sizeof(RxD1_t)));
584         else
585                 size = (size * (sizeof(RxD3_t)));
586         rx_sz = size;
587
588         for (i = 0; i < config->rx_ring_num; i++) {
589                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
590                 mac_control->rings[i].rx_curr_get_info.offset = 0;
591                 mac_control->rings[i].rx_curr_get_info.ring_len =
592                     config->rx_cfg[i].num_rxd - 1;
593                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
594                 mac_control->rings[i].rx_curr_put_info.offset = 0;
595                 mac_control->rings[i].rx_curr_put_info.ring_len =
596                     config->rx_cfg[i].num_rxd - 1;
597                 mac_control->rings[i].nic = nic;
598                 mac_control->rings[i].ring_no = i;
599
600                 blk_cnt = config->rx_cfg[i].num_rxd /
601                                 (rxd_count[nic->rxd_mode] + 1);
602                 /*  Allocating all the Rx blocks */
603                 for (j = 0; j < blk_cnt; j++) {
604                         rx_block_info_t *rx_blocks;
605                         int l;
606
607                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
608                         size = SIZE_OF_BLOCK; //size is always page size
609                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
610                                                           &tmp_p_addr);
611                         if (tmp_v_addr == NULL) {
612                                 /*
613                                  * In case of failure, free_shared_mem()
614                                  * is called, which should free any
615                                  * memory that was alloced till the
616                                  * failure happened.
617                                  */
618                                 rx_blocks->block_virt_addr = tmp_v_addr;
619                                 return -ENOMEM;
620                         }
621                         memset(tmp_v_addr, 0, size);
622                         rx_blocks->block_virt_addr = tmp_v_addr;
623                         rx_blocks->block_dma_addr = tmp_p_addr;
624                         rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
625                                                   rxd_count[nic->rxd_mode],
626                                                   GFP_KERNEL);
627                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628                                 rx_blocks->rxds[l].virt_addr =
629                                         rx_blocks->block_virt_addr +
630                                         (rxd_size[nic->rxd_mode] * l);
631                                 rx_blocks->rxds[l].dma_addr =
632                                         rx_blocks->block_dma_addr +
633                                         (rxd_size[nic->rxd_mode] * l);
634                         }
635                 }
636                 /* Interlinking all Rx Blocks */
637                 for (j = 0; j < blk_cnt; j++) {
638                         tmp_v_addr =
639                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
640                         tmp_v_addr_next =
641                                 mac_control->rings[i].rx_blocks[(j + 1) %
642                                               blk_cnt].block_virt_addr;
643                         tmp_p_addr =
644                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
645                         tmp_p_addr_next =
646                                 mac_control->rings[i].rx_blocks[(j + 1) %
647                                               blk_cnt].block_dma_addr;
648
649                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
650                         pre_rxd_blk->reserved_2_pNext_RxD_block =
651                             (unsigned long) tmp_v_addr_next;
652                         pre_rxd_blk->pNext_RxD_Blk_physical =
653                             (u64) tmp_p_addr_next;
654                 }
655         }
656         if (nic->rxd_mode >= RXD_MODE_3A) {
657                 /*
658                  * Allocation of Storages for buffer addresses in 2BUFF mode
659                  * and the buffers as well.
660                  */
661                 for (i = 0; i < config->rx_ring_num; i++) {
662                         blk_cnt = config->rx_cfg[i].num_rxd /
663                            (rxd_count[nic->rxd_mode]+ 1);
664                         mac_control->rings[i].ba =
665                                 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
666                                      GFP_KERNEL);
667                         if (!mac_control->rings[i].ba)
668                                 return -ENOMEM;
669                         for (j = 0; j < blk_cnt; j++) {
670                                 int k = 0;
671                                 mac_control->rings[i].ba[j] =
672                                         kmalloc((sizeof(buffAdd_t) *
673                                                 (rxd_count[nic->rxd_mode] + 1)),
674                                                 GFP_KERNEL);
675                                 if (!mac_control->rings[i].ba[j])
676                                         return -ENOMEM;
677                                 while (k != rxd_count[nic->rxd_mode]) {
678                                         ba = &mac_control->rings[i].ba[j][k];
679
680                                         ba->ba_0_org = (void *) kmalloc
681                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
682                                         if (!ba->ba_0_org)
683                                                 return -ENOMEM;
684                                         tmp = (unsigned long)ba->ba_0_org;
685                                         tmp += ALIGN_SIZE;
686                                         tmp &= ~((unsigned long) ALIGN_SIZE);
687                                         ba->ba_0 = (void *) tmp;
688
689                                         ba->ba_1_org = (void *) kmalloc
690                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
691                                         if (!ba->ba_1_org)
692                                                 return -ENOMEM;
693                                         tmp = (unsigned long) ba->ba_1_org;
694                                         tmp += ALIGN_SIZE;
695                                         tmp &= ~((unsigned long) ALIGN_SIZE);
696                                         ba->ba_1 = (void *) tmp;
697                                         k++;
698                                 }
699                         }
700                 }
701         }
702
703         /* Allocation and initialization of Statistics block */
704         size = sizeof(StatInfo_t);
705         mac_control->stats_mem = pci_alloc_consistent
706             (nic->pdev, size, &mac_control->stats_mem_phy);
707
708         if (!mac_control->stats_mem) {
709                 /*
710                  * In case of failure, free_shared_mem() is called, which
711                  * should free any memory that was alloced till the
712                  * failure happened.
713                  */
714                 return -ENOMEM;
715         }
716         mac_control->stats_mem_sz = size;
717
718         tmp_v_addr = mac_control->stats_mem;
719         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
720         memset(tmp_v_addr, 0, size);
721         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722                   (unsigned long long) tmp_p_addr);
723
724         return SUCCESS;
725 }
726
727 /**
728  * free_shared_mem - Free the allocated Memory
729  * @nic:  Device private variable.
730  * Description: This function is to free all memory locations allocated by
731  * the init_shared_mem() function and return it to the kernel.
732  */
733
734 static void free_shared_mem(struct s2io_nic *nic)
735 {
736         int i, j, blk_cnt, size;
737         void *tmp_v_addr;
738         dma_addr_t tmp_p_addr;
739         mac_info_t *mac_control;
740         struct config_param *config;
741         int lst_size, lst_per_page;
742         struct net_device *dev = nic->dev;
743
744         if (!nic)
745                 return;
746
747         mac_control = &nic->mac_control;
748         config = &nic->config;
749
750         lst_size = (sizeof(TxD_t) * config->max_txds);
751         lst_per_page = PAGE_SIZE / lst_size;
752
753         for (i = 0; i < config->tx_fifo_num; i++) {
754                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
755                                                 lst_per_page);
756                 for (j = 0; j < page_num; j++) {
757                         int mem_blks = (j * lst_per_page);
758                         if (!mac_control->fifos[i].list_info)
759                                 return;
760                         if (!mac_control->fifos[i].list_info[mem_blks].
761                                  list_virt_addr)
762                                 break;
763                         pci_free_consistent(nic->pdev, PAGE_SIZE,
764                                             mac_control->fifos[i].
765                                             list_info[mem_blks].
766                                             list_virt_addr,
767                                             mac_control->fifos[i].
768                                             list_info[mem_blks].
769                                             list_phy_addr);
770                 }
771                 /* If we got a zero DMA address during allocation,
772                  * free the page now
773                  */
774                 if (mac_control->zerodma_virt_addr) {
775                         pci_free_consistent(nic->pdev, PAGE_SIZE,
776                                             mac_control->zerodma_virt_addr,
777                                             (dma_addr_t)0);
778                         DBG_PRINT(INIT_DBG,
779                                 "%s: Freeing TxDL with zero DMA addr. ",
780                                 dev->name);
781                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782                                 mac_control->zerodma_virt_addr);
783                 }
784                 kfree(mac_control->fifos[i].list_info);
785         }
786
787         size = SIZE_OF_BLOCK;
788         for (i = 0; i < config->rx_ring_num; i++) {
789                 blk_cnt = mac_control->rings[i].block_count;
790                 for (j = 0; j < blk_cnt; j++) {
791                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
792                                 block_virt_addr;
793                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
794                                 block_dma_addr;
795                         if (tmp_v_addr == NULL)
796                                 break;
797                         pci_free_consistent(nic->pdev, size,
798                                             tmp_v_addr, tmp_p_addr);
799                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
800                 }
801         }
802
803         if (nic->rxd_mode >= RXD_MODE_3A) {
804                 /* Freeing buffer storage addresses in 2BUFF mode. */
805                 for (i = 0; i < config->rx_ring_num; i++) {
806                         blk_cnt = config->rx_cfg[i].num_rxd /
807                             (rxd_count[nic->rxd_mode] + 1);
808                         for (j = 0; j < blk_cnt; j++) {
809                                 int k = 0;
810                                 if (!mac_control->rings[i].ba[j])
811                                         continue;
812                                 while (k != rxd_count[nic->rxd_mode]) {
813                                         buffAdd_t *ba =
814                                                 &mac_control->rings[i].ba[j][k];
815                                         kfree(ba->ba_0_org);
816                                         kfree(ba->ba_1_org);
817                                         k++;
818                                 }
819                                 kfree(mac_control->rings[i].ba[j]);
820                         }
821                         kfree(mac_control->rings[i].ba);
822                 }
823         }
824
825         if (mac_control->stats_mem) {
826                 pci_free_consistent(nic->pdev,
827                                     mac_control->stats_mem_sz,
828                                     mac_control->stats_mem,
829                                     mac_control->stats_mem_phy);
830         }
831         if (nic->ufo_in_band_v)
832                 kfree(nic->ufo_in_band_v);
833 }
834
835 /**
836  * s2io_verify_pci_mode -
837  */
838
839 static int s2io_verify_pci_mode(nic_t *nic)
840 {
841         XENA_dev_config_t __iomem *bar0 = nic->bar0;
842         register u64 val64 = 0;
843         int     mode;
844
845         val64 = readq(&bar0->pci_mode);
846         mode = (u8)GET_PCI_MODE(val64);
847
848         if ( val64 & PCI_MODE_UNKNOWN_MODE)
849                 return -1;      /* Unknown PCI mode */
850         return mode;
851 }
852
853 #define NEC_VENID   0x1033
854 #define NEC_DEVID   0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
856 {
857         struct pci_dev *tdev = NULL;
858         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
860                         if (tdev->bus == s2io_pdev->bus->parent)
861                                 pci_dev_put(tdev);
862                                 return 1;
863                 }
864         }
865         return 0;
866 }
867
868 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
869 /**
870  * s2io_print_pci_mode -
871  */
872 static int s2io_print_pci_mode(nic_t *nic)
873 {
874         XENA_dev_config_t __iomem *bar0 = nic->bar0;
875         register u64 val64 = 0;
876         int     mode;
877         struct config_param *config = &nic->config;
878
879         val64 = readq(&bar0->pci_mode);
880         mode = (u8)GET_PCI_MODE(val64);
881
882         if ( val64 & PCI_MODE_UNKNOWN_MODE)
883                 return -1;      /* Unknown PCI mode */
884
885         config->bus_speed = bus_speed[mode];
886
887         if (s2io_on_nec_bridge(nic->pdev)) {
888                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
889                                                         nic->dev->name);
890                 return mode;
891         }
892
893         if (val64 & PCI_MODE_32_BITS) {
894                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
895         } else {
896                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
897         }
898
899         switch(mode) {
900                 case PCI_MODE_PCI_33:
901                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
902                         break;
903                 case PCI_MODE_PCI_66:
904                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
905                         break;
906                 case PCI_MODE_PCIX_M1_66:
907                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
908                         break;
909                 case PCI_MODE_PCIX_M1_100:
910                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
911                         break;
912                 case PCI_MODE_PCIX_M1_133:
913                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
914                         break;
915                 case PCI_MODE_PCIX_M2_66:
916                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
917                         break;
918                 case PCI_MODE_PCIX_M2_100:
919                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
920                         break;
921                 case PCI_MODE_PCIX_M2_133:
922                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
923                         break;
924                 default:
925                         return -1;      /* Unsupported bus speed */
926         }
927
928         return mode;
929 }
930
931 /**
932  *  init_nic - Initialization of hardware
933  *  @nic: device peivate variable
934  *  Description: The function sequentially configures every block
935  *  of the H/W from their reset values.
936  *  Return Value:  SUCCESS on success and
937  *  '-1' on failure (endian settings incorrect).
938  */
939
940 static int init_nic(struct s2io_nic *nic)
941 {
942         XENA_dev_config_t __iomem *bar0 = nic->bar0;
943         struct net_device *dev = nic->dev;
944         register u64 val64 = 0;
945         void __iomem *add;
946         u32 time;
947         int i, j;
948         mac_info_t *mac_control;
949         struct config_param *config;
950         int dtx_cnt = 0;
951         unsigned long long mem_share;
952         int mem_size;
953
954         mac_control = &nic->mac_control;
955         config = &nic->config;
956
957         /* to set the swapper controle on the card */
958         if(s2io_set_swapper(nic)) {
959                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
960                 return -1;
961         }
962
963         /*
964          * Herc requires EOI to be removed from reset before XGXS, so..
965          */
966         if (nic->device_type & XFRAME_II_DEVICE) {
967                 val64 = 0xA500000000ULL;
968                 writeq(val64, &bar0->sw_reset);
969                 msleep(500);
970                 val64 = readq(&bar0->sw_reset);
971         }
972
973         /* Remove XGXS from reset state */
974         val64 = 0;
975         writeq(val64, &bar0->sw_reset);
976         msleep(500);
977         val64 = readq(&bar0->sw_reset);
978
979         /*  Enable Receiving broadcasts */
980         add = &bar0->mac_cfg;
981         val64 = readq(&bar0->mac_cfg);
982         val64 |= MAC_RMAC_BCAST_ENABLE;
983         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984         writel((u32) val64, add);
985         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986         writel((u32) (val64 >> 32), (add + 4));
987
988         /* Read registers in all blocks */
989         val64 = readq(&bar0->mac_int_mask);
990         val64 = readq(&bar0->mc_int_mask);
991         val64 = readq(&bar0->xgxs_int_mask);
992
993         /*  Set MTU */
994         val64 = dev->mtu;
995         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
996
997         if (nic->device_type & XFRAME_II_DEVICE) {
998                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
999                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1000                                           &bar0->dtx_control, UF);
1001                         if (dtx_cnt & 0x1)
1002                                 msleep(1); /* Necessary!! */
1003                         dtx_cnt++;
1004                 }
1005         } else {
1006                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008                                           &bar0->dtx_control, UF);
1009                         val64 = readq(&bar0->dtx_control);
1010                         dtx_cnt++;
1011                 }
1012         }
1013
1014         /*  Tx DMA Initialization */
1015         val64 = 0;
1016         writeq(val64, &bar0->tx_fifo_partition_0);
1017         writeq(val64, &bar0->tx_fifo_partition_1);
1018         writeq(val64, &bar0->tx_fifo_partition_2);
1019         writeq(val64, &bar0->tx_fifo_partition_3);
1020
1021
1022         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1023                 val64 |=
1024                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1026                                     ((i * 32) + 5), 3);
1027
1028                 if (i == (config->tx_fifo_num - 1)) {
1029                         if (i % 2 == 0)
1030                                 i++;
1031                 }
1032
1033                 switch (i) {
1034                 case 1:
1035                         writeq(val64, &bar0->tx_fifo_partition_0);
1036                         val64 = 0;
1037                         break;
1038                 case 3:
1039                         writeq(val64, &bar0->tx_fifo_partition_1);
1040                         val64 = 0;
1041                         break;
1042                 case 5:
1043                         writeq(val64, &bar0->tx_fifo_partition_2);
1044                         val64 = 0;
1045                         break;
1046                 case 7:
1047                         writeq(val64, &bar0->tx_fifo_partition_3);
1048                         break;
1049                 }
1050         }
1051
1052         /*
1053          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055          */
1056         if ((nic->device_type == XFRAME_I_DEVICE) &&
1057                 (get_xena_rev_id(nic->pdev) < 4))
1058                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1059
1060         val64 = readq(&bar0->tx_fifo_partition_0);
1061         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1063
1064         /*
1065          * Initialization of Tx_PA_CONFIG register to ignore packet
1066          * integrity checking.
1067          */
1068         val64 = readq(&bar0->tx_pa_cfg);
1069         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071         writeq(val64, &bar0->tx_pa_cfg);
1072
1073         /* Rx DMA intialization. */
1074         val64 = 0;
1075         for (i = 0; i < config->rx_ring_num; i++) {
1076                 val64 |=
1077                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1078                          3);
1079         }
1080         writeq(val64, &bar0->rx_queue_priority);
1081
1082         /*
1083          * Allocating equal share of memory to all the
1084          * configured Rings.
1085          */
1086         val64 = 0;
1087         if (nic->device_type & XFRAME_II_DEVICE)
1088                 mem_size = 32;
1089         else
1090                 mem_size = 64;
1091
1092         for (i = 0; i < config->rx_ring_num; i++) {
1093                 switch (i) {
1094                 case 0:
1095                         mem_share = (mem_size / config->rx_ring_num +
1096                                      mem_size % config->rx_ring_num);
1097                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1098                         continue;
1099                 case 1:
1100                         mem_share = (mem_size / config->rx_ring_num);
1101                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1102                         continue;
1103                 case 2:
1104                         mem_share = (mem_size / config->rx_ring_num);
1105                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1106                         continue;
1107                 case 3:
1108                         mem_share = (mem_size / config->rx_ring_num);
1109                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1110                         continue;
1111                 case 4:
1112                         mem_share = (mem_size / config->rx_ring_num);
1113                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1114                         continue;
1115                 case 5:
1116                         mem_share = (mem_size / config->rx_ring_num);
1117                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1118                         continue;
1119                 case 6:
1120                         mem_share = (mem_size / config->rx_ring_num);
1121                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1122                         continue;
1123                 case 7:
1124                         mem_share = (mem_size / config->rx_ring_num);
1125                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1126                         continue;
1127                 }
1128         }
1129         writeq(val64, &bar0->rx_queue_cfg);
1130
1131         /*
1132          * Filling Tx round robin registers
1133          * as per the number of FIFOs
1134          */
1135         switch (config->tx_fifo_num) {
1136         case 1:
1137                 val64 = 0x0000000000000000ULL;
1138                 writeq(val64, &bar0->tx_w_round_robin_0);
1139                 writeq(val64, &bar0->tx_w_round_robin_1);
1140                 writeq(val64, &bar0->tx_w_round_robin_2);
1141                 writeq(val64, &bar0->tx_w_round_robin_3);
1142                 writeq(val64, &bar0->tx_w_round_robin_4);
1143                 break;
1144         case 2:
1145                 val64 = 0x0000010000010000ULL;
1146                 writeq(val64, &bar0->tx_w_round_robin_0);
1147                 val64 = 0x0100000100000100ULL;
1148                 writeq(val64, &bar0->tx_w_round_robin_1);
1149                 val64 = 0x0001000001000001ULL;
1150                 writeq(val64, &bar0->tx_w_round_robin_2);
1151                 val64 = 0x0000010000010000ULL;
1152                 writeq(val64, &bar0->tx_w_round_robin_3);
1153                 val64 = 0x0100000000000000ULL;
1154                 writeq(val64, &bar0->tx_w_round_robin_4);
1155                 break;
1156         case 3:
1157                 val64 = 0x0001000102000001ULL;
1158                 writeq(val64, &bar0->tx_w_round_robin_0);
1159                 val64 = 0x0001020000010001ULL;
1160                 writeq(val64, &bar0->tx_w_round_robin_1);
1161                 val64 = 0x0200000100010200ULL;
1162                 writeq(val64, &bar0->tx_w_round_robin_2);
1163                 val64 = 0x0001000102000001ULL;
1164                 writeq(val64, &bar0->tx_w_round_robin_3);
1165                 val64 = 0x0001020000000000ULL;
1166                 writeq(val64, &bar0->tx_w_round_robin_4);
1167                 break;
1168         case 4:
1169                 val64 = 0x0001020300010200ULL;
1170                 writeq(val64, &bar0->tx_w_round_robin_0);
1171                 val64 = 0x0100000102030001ULL;
1172                 writeq(val64, &bar0->tx_w_round_robin_1);
1173                 val64 = 0x0200010000010203ULL;
1174                 writeq(val64, &bar0->tx_w_round_robin_2);
1175                 val64 = 0x0001020001000001ULL;
1176                 writeq(val64, &bar0->tx_w_round_robin_3);
1177                 val64 = 0x0203000100000000ULL;
1178                 writeq(val64, &bar0->tx_w_round_robin_4);
1179                 break;
1180         case 5:
1181                 val64 = 0x0001000203000102ULL;
1182                 writeq(val64, &bar0->tx_w_round_robin_0);
1183                 val64 = 0x0001020001030004ULL;
1184                 writeq(val64, &bar0->tx_w_round_robin_1);
1185                 val64 = 0x0001000203000102ULL;
1186                 writeq(val64, &bar0->tx_w_round_robin_2);
1187                 val64 = 0x0001020001030004ULL;
1188                 writeq(val64, &bar0->tx_w_round_robin_3);
1189                 val64 = 0x0001000000000000ULL;
1190                 writeq(val64, &bar0->tx_w_round_robin_4);
1191                 break;
1192         case 6:
1193                 val64 = 0x0001020304000102ULL;
1194                 writeq(val64, &bar0->tx_w_round_robin_0);
1195                 val64 = 0x0304050001020001ULL;
1196                 writeq(val64, &bar0->tx_w_round_robin_1);
1197                 val64 = 0x0203000100000102ULL;
1198                 writeq(val64, &bar0->tx_w_round_robin_2);
1199                 val64 = 0x0304000102030405ULL;
1200                 writeq(val64, &bar0->tx_w_round_robin_3);
1201                 val64 = 0x0001000200000000ULL;
1202                 writeq(val64, &bar0->tx_w_round_robin_4);
1203                 break;
1204         case 7:
1205                 val64 = 0x0001020001020300ULL;
1206                 writeq(val64, &bar0->tx_w_round_robin_0);
1207                 val64 = 0x0102030400010203ULL;
1208                 writeq(val64, &bar0->tx_w_round_robin_1);
1209                 val64 = 0x0405060001020001ULL;
1210                 writeq(val64, &bar0->tx_w_round_robin_2);
1211                 val64 = 0x0304050000010200ULL;
1212                 writeq(val64, &bar0->tx_w_round_robin_3);
1213                 val64 = 0x0102030000000000ULL;
1214                 writeq(val64, &bar0->tx_w_round_robin_4);
1215                 break;
1216         case 8:
1217                 val64 = 0x0001020300040105ULL;
1218                 writeq(val64, &bar0->tx_w_round_robin_0);
1219                 val64 = 0x0200030106000204ULL;
1220                 writeq(val64, &bar0->tx_w_round_robin_1);
1221                 val64 = 0x0103000502010007ULL;
1222                 writeq(val64, &bar0->tx_w_round_robin_2);
1223                 val64 = 0x0304010002060500ULL;
1224                 writeq(val64, &bar0->tx_w_round_robin_3);
1225                 val64 = 0x0103020400000000ULL;
1226                 writeq(val64, &bar0->tx_w_round_robin_4);
1227                 break;
1228         }
1229
1230         /* Enable all configured Tx FIFO partitions */
1231         val64 = readq(&bar0->tx_fifo_partition_0);
1232         val64 |= (TX_FIFO_PARTITION_EN);
1233         writeq(val64, &bar0->tx_fifo_partition_0);
1234
1235         /* Filling the Rx round robin registers as per the
1236          * number of Rings and steering based on QoS.
1237          */
1238         switch (config->rx_ring_num) {
1239         case 1:
1240                 val64 = 0x8080808080808080ULL;
1241                 writeq(val64, &bar0->rts_qos_steering);
1242                 break;
1243         case 2:
1244                 val64 = 0x0000010000010000ULL;
1245                 writeq(val64, &bar0->rx_w_round_robin_0);
1246                 val64 = 0x0100000100000100ULL;
1247                 writeq(val64, &bar0->rx_w_round_robin_1);
1248                 val64 = 0x0001000001000001ULL;
1249                 writeq(val64, &bar0->rx_w_round_robin_2);
1250                 val64 = 0x0000010000010000ULL;
1251                 writeq(val64, &bar0->rx_w_round_robin_3);
1252                 val64 = 0x0100000000000000ULL;
1253                 writeq(val64, &bar0->rx_w_round_robin_4);
1254
1255                 val64 = 0x8080808040404040ULL;
1256                 writeq(val64, &bar0->rts_qos_steering);
1257                 break;
1258         case 3:
1259                 val64 = 0x0001000102000001ULL;
1260                 writeq(val64, &bar0->rx_w_round_robin_0);
1261                 val64 = 0x0001020000010001ULL;
1262                 writeq(val64, &bar0->rx_w_round_robin_1);
1263                 val64 = 0x0200000100010200ULL;
1264                 writeq(val64, &bar0->rx_w_round_robin_2);
1265                 val64 = 0x0001000102000001ULL;
1266                 writeq(val64, &bar0->rx_w_round_robin_3);
1267                 val64 = 0x0001020000000000ULL;
1268                 writeq(val64, &bar0->rx_w_round_robin_4);
1269
1270                 val64 = 0x8080804040402020ULL;
1271                 writeq(val64, &bar0->rts_qos_steering);
1272                 break;
1273         case 4:
1274                 val64 = 0x0001020300010200ULL;
1275                 writeq(val64, &bar0->rx_w_round_robin_0);
1276                 val64 = 0x0100000102030001ULL;
1277                 writeq(val64, &bar0->rx_w_round_robin_1);
1278                 val64 = 0x0200010000010203ULL;
1279                 writeq(val64, &bar0->rx_w_round_robin_2);
1280                 val64 = 0x0001020001000001ULL;
1281                 writeq(val64, &bar0->rx_w_round_robin_3);
1282                 val64 = 0x0203000100000000ULL;
1283                 writeq(val64, &bar0->rx_w_round_robin_4);
1284
1285                 val64 = 0x8080404020201010ULL;
1286                 writeq(val64, &bar0->rts_qos_steering);
1287                 break;
1288         case 5:
1289                 val64 = 0x0001000203000102ULL;
1290                 writeq(val64, &bar0->rx_w_round_robin_0);
1291                 val64 = 0x0001020001030004ULL;
1292                 writeq(val64, &bar0->rx_w_round_robin_1);
1293                 val64 = 0x0001000203000102ULL;
1294                 writeq(val64, &bar0->rx_w_round_robin_2);
1295                 val64 = 0x0001020001030004ULL;
1296                 writeq(val64, &bar0->rx_w_round_robin_3);
1297                 val64 = 0x0001000000000000ULL;
1298                 writeq(val64, &bar0->rx_w_round_robin_4);
1299
1300                 val64 = 0x8080404020201008ULL;
1301                 writeq(val64, &bar0->rts_qos_steering);
1302                 break;
1303         case 6:
1304                 val64 = 0x0001020304000102ULL;
1305                 writeq(val64, &bar0->rx_w_round_robin_0);
1306                 val64 = 0x0304050001020001ULL;
1307                 writeq(val64, &bar0->rx_w_round_robin_1);
1308                 val64 = 0x0203000100000102ULL;
1309                 writeq(val64, &bar0->rx_w_round_robin_2);
1310                 val64 = 0x0304000102030405ULL;
1311                 writeq(val64, &bar0->rx_w_round_robin_3);
1312                 val64 = 0x0001000200000000ULL;
1313                 writeq(val64, &bar0->rx_w_round_robin_4);
1314
1315                 val64 = 0x8080404020100804ULL;
1316                 writeq(val64, &bar0->rts_qos_steering);
1317                 break;
1318         case 7:
1319                 val64 = 0x0001020001020300ULL;
1320                 writeq(val64, &bar0->rx_w_round_robin_0);
1321                 val64 = 0x0102030400010203ULL;
1322                 writeq(val64, &bar0->rx_w_round_robin_1);
1323                 val64 = 0x0405060001020001ULL;
1324                 writeq(val64, &bar0->rx_w_round_robin_2);
1325                 val64 = 0x0304050000010200ULL;
1326                 writeq(val64, &bar0->rx_w_round_robin_3);
1327                 val64 = 0x0102030000000000ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_4);
1329
1330                 val64 = 0x8080402010080402ULL;
1331                 writeq(val64, &bar0->rts_qos_steering);
1332                 break;
1333         case 8:
1334                 val64 = 0x0001020300040105ULL;
1335                 writeq(val64, &bar0->rx_w_round_robin_0);
1336                 val64 = 0x0200030106000204ULL;
1337                 writeq(val64, &bar0->rx_w_round_robin_1);
1338                 val64 = 0x0103000502010007ULL;
1339                 writeq(val64, &bar0->rx_w_round_robin_2);
1340                 val64 = 0x0304010002060500ULL;
1341                 writeq(val64, &bar0->rx_w_round_robin_3);
1342                 val64 = 0x0103020400000000ULL;
1343                 writeq(val64, &bar0->rx_w_round_robin_4);
1344
1345                 val64 = 0x8040201008040201ULL;
1346                 writeq(val64, &bar0->rts_qos_steering);
1347                 break;
1348         }
1349
1350         /* UDP Fix */
1351         val64 = 0;
1352         for (i = 0; i < 8; i++)
1353                 writeq(val64, &bar0->rts_frm_len_n[i]);
1354
1355         /* Set the default rts frame length for the rings configured */
1356         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357         for (i = 0 ; i < config->rx_ring_num ; i++)
1358                 writeq(val64, &bar0->rts_frm_len_n[i]);
1359
1360         /* Set the frame length for the configured rings
1361          * desired by the user
1362          */
1363         for (i = 0; i < config->rx_ring_num; i++) {
1364                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365                  * specified frame length steering.
1366                  * If the user provides the frame length then program
1367                  * the rts_frm_len register for those values or else
1368                  * leave it as it is.
1369                  */
1370                 if (rts_frm_len[i] != 0) {
1371                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372                                 &bar0->rts_frm_len_n[i]);
1373                 }
1374         }
1375
1376         /* Program statistics memory */
1377         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1378
1379         if (nic->device_type == XFRAME_II_DEVICE) {
1380                 val64 = STAT_BC(0x320);
1381                 writeq(val64, &bar0->stat_byte_cnt);
1382         }
1383
1384         /*
1385          * Initializing the sampling rate for the device to calculate the
1386          * bandwidth utilization.
1387          */
1388         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390         writeq(val64, &bar0->mac_link_util);
1391
1392
1393         /*
1394          * Initializing the Transmit and Receive Traffic Interrupt
1395          * Scheme.
1396          */
1397         /*
1398          * TTI Initialization. Default Tx timer gets us about
1399          * 250 interrupts per sec. Continuous interrupts are enabled
1400          * by default.
1401          */
1402         if (nic->device_type == XFRAME_II_DEVICE) {
1403                 int count = (nic->config.bus_speed * 125)/2;
1404                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1405         } else {
1406
1407                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408         }
1409         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1410             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1411             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1412                 if (use_continuous_tx_intrs)
1413                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1414         writeq(val64, &bar0->tti_data1_mem);
1415
1416         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1418             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1419         writeq(val64, &bar0->tti_data2_mem);
1420
1421         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422         writeq(val64, &bar0->tti_command_mem);
1423
1424         /*
1425          * Once the operation completes, the Strobe bit of the command
1426          * register will be reset. We poll for this particular condition
1427          * We wait for a maximum of 500ms for the operation to complete,
1428          * if it's not complete by then we return error.
1429          */
1430         time = 0;
1431         while (TRUE) {
1432                 val64 = readq(&bar0->tti_command_mem);
1433                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1434                         break;
1435                 }
1436                 if (time > 10) {
1437                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1438                                   dev->name);
1439                         return -1;
1440                 }
1441                 msleep(50);
1442                 time++;
1443         }
1444
1445         if (nic->config.bimodal) {
1446                 int k = 0;
1447                 for (k = 0; k < config->rx_ring_num; k++) {
1448                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450                         writeq(val64, &bar0->tti_command_mem);
1451
1452                 /*
1453                  * Once the operation completes, the Strobe bit of the command
1454                  * register will be reset. We poll for this particular condition
1455                  * We wait for a maximum of 500ms for the operation to complete,
1456                  * if it's not complete by then we return error.
1457                 */
1458                         time = 0;
1459                         while (TRUE) {
1460                                 val64 = readq(&bar0->tti_command_mem);
1461                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1462                                         break;
1463                                 }
1464                                 if (time > 10) {
1465                                         DBG_PRINT(ERR_DBG,
1466                                                 "%s: TTI init Failed\n",
1467                                         dev->name);
1468                                         return -1;
1469                                 }
1470                                 time++;
1471                                 msleep(50);
1472                         }
1473                 }
1474         } else {
1475
1476                 /* RTI Initialization */
1477                 if (nic->device_type == XFRAME_II_DEVICE) {
1478                         /*
1479                          * Programmed to generate Apprx 500 Intrs per
1480                          * second
1481                          */
1482                         int count = (nic->config.bus_speed * 125)/4;
1483                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1484                 } else {
1485                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486                 }
1487                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1490
1491                 writeq(val64, &bar0->rti_data1_mem);
1492
1493                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1494                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495                 if (nic->intr_type == MSI_X)
1496                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1498                 else
1499                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1501                 writeq(val64, &bar0->rti_data2_mem);
1502
1503                 for (i = 0; i < config->rx_ring_num; i++) {
1504                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505                                         | RTI_CMD_MEM_OFFSET(i);
1506                         writeq(val64, &bar0->rti_command_mem);
1507
1508                         /*
1509                          * Once the operation completes, the Strobe bit of the
1510                          * command register will be reset. We poll for this
1511                          * particular condition. We wait for a maximum of 500ms
1512                          * for the operation to complete, if it's not complete
1513                          * by then we return error.
1514                          */
1515                         time = 0;
1516                         while (TRUE) {
1517                                 val64 = readq(&bar0->rti_command_mem);
1518                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1519                                         break;
1520                                 }
1521                                 if (time > 10) {
1522                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1523                                                   dev->name);
1524                                         return -1;
1525                                 }
1526                                 time++;
1527                                 msleep(50);
1528                         }
1529                 }
1530         }
1531
1532         /*
1533          * Initializing proper values as Pause threshold into all
1534          * the 8 Queues on Rx side.
1535          */
1536         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1538
1539         /* Disable RMAC PAD STRIPPING */
1540         add = &bar0->mac_cfg;
1541         val64 = readq(&bar0->mac_cfg);
1542         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544         writel((u32) (val64), add);
1545         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546         writel((u32) (val64 >> 32), (add + 4));
1547         val64 = readq(&bar0->mac_cfg);
1548
1549         /* Enable FCS stripping by adapter */
1550         add = &bar0->mac_cfg;
1551         val64 = readq(&bar0->mac_cfg);
1552         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553         if (nic->device_type == XFRAME_II_DEVICE)
1554                 writeq(val64, &bar0->mac_cfg);
1555         else {
1556                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557                 writel((u32) (val64), add);
1558                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559                 writel((u32) (val64 >> 32), (add + 4));
1560         }
1561
1562         /*
1563          * Set the time value to be inserted in the pause frame
1564          * generated by xena.
1565          */
1566         val64 = readq(&bar0->rmac_pause_cfg);
1567         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569         writeq(val64, &bar0->rmac_pause_cfg);
1570
1571         /*
1572          * Set the Threshold Limit for Generating the pause frame
1573          * If the amount of data in any Queue exceeds ratio of
1574          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575          * pause frame is generated
1576          */
1577         val64 = 0;
1578         for (i = 0; i < 4; i++) {
1579                 val64 |=
1580                     (((u64) 0xFF00 | nic->mac_control.
1581                       mc_pause_threshold_q0q3)
1582                      << (i * 2 * 8));
1583         }
1584         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1585
1586         val64 = 0;
1587         for (i = 0; i < 4; i++) {
1588                 val64 |=
1589                     (((u64) 0xFF00 | nic->mac_control.
1590                       mc_pause_threshold_q4q7)
1591                      << (i * 2 * 8));
1592         }
1593         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1594
1595         /*
1596          * TxDMA will stop Read request if the number of read split has
1597          * exceeded the limit pointed by shared_splits
1598          */
1599         val64 = readq(&bar0->pic_control);
1600         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601         writeq(val64, &bar0->pic_control);
1602
1603         if (nic->config.bus_speed == 266) {
1604                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605                 writeq(0x0, &bar0->read_retry_delay);
1606                 writeq(0x0, &bar0->write_retry_delay);
1607         }
1608
1609         /*
1610          * Programming the Herc to split every write transaction
1611          * that does not start on an ADB to reduce disconnects.
1612          */
1613         if (nic->device_type == XFRAME_II_DEVICE) {
1614                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1615                         MISC_LINK_STABILITY_PRD(3);
1616                 writeq(val64, &bar0->misc_control);
1617                 val64 = readq(&bar0->pic_control2);
1618                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1619                 writeq(val64, &bar0->pic_control2);
1620         }
1621         if (strstr(nic->product_name, "CX4")) {
1622                 val64 = TMAC_AVG_IPG(0x17);
1623                 writeq(val64, &bar0->tmac_avg_ipg);
1624         }
1625
1626         return SUCCESS;
1627 }
1628 #define LINK_UP_DOWN_INTERRUPT          1
1629 #define MAC_RMAC_ERR_TIMER              2
1630
1631 static int s2io_link_fault_indication(nic_t *nic)
1632 {
1633         if (nic->intr_type != INTA)
1634                 return MAC_RMAC_ERR_TIMER;
1635         if (nic->device_type == XFRAME_II_DEVICE)
1636                 return LINK_UP_DOWN_INTERRUPT;
1637         else
1638                 return MAC_RMAC_ERR_TIMER;
1639 }
1640
1641 /**
1642  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1643  *  @nic: device private variable,
1644  *  @mask: A mask indicating which Intr block must be modified and,
1645  *  @flag: A flag indicating whether to enable or disable the Intrs.
1646  *  Description: This function will either disable or enable the interrupts
1647  *  depending on the flag argument. The mask argument can be used to
1648  *  enable/disable any Intr block.
1649  *  Return Value: NONE.
1650  */
1651
1652 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1653 {
1654         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1655         register u64 val64 = 0, temp64 = 0;
1656
1657         /*  Top level interrupt classification */
1658         /*  PIC Interrupts */
1659         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1660                 /*  Enable PIC Intrs in the general intr mask register */
1661                 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1662                 if (flag == ENABLE_INTRS) {
1663                         temp64 = readq(&bar0->general_int_mask);
1664                         temp64 &= ~((u64) val64);
1665                         writeq(temp64, &bar0->general_int_mask);
1666                         /*
1667                          * If Hercules adapter enable GPIO otherwise
1668                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1669                          * interrupts for now.
1670                          * TODO
1671                          */
1672                         if (s2io_link_fault_indication(nic) ==
1673                                         LINK_UP_DOWN_INTERRUPT ) {
1674                                 temp64 = readq(&bar0->pic_int_mask);
1675                                 temp64 &= ~((u64) PIC_INT_GPIO);
1676                                 writeq(temp64, &bar0->pic_int_mask);
1677                                 temp64 = readq(&bar0->gpio_int_mask);
1678                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1679                                 writeq(temp64, &bar0->gpio_int_mask);
1680                         } else {
1681                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1682                         }
1683                         /*
1684                          * No MSI Support is available presently, so TTI and
1685                          * RTI interrupts are also disabled.
1686                          */
1687                 } else if (flag == DISABLE_INTRS) {
1688                         /*
1689                          * Disable PIC Intrs in the general
1690                          * intr mask register
1691                          */
1692                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1693                         temp64 = readq(&bar0->general_int_mask);
1694                         val64 |= temp64;
1695                         writeq(val64, &bar0->general_int_mask);
1696                 }
1697         }
1698
1699         /*  DMA Interrupts */
1700         /*  Enabling/Disabling Tx DMA interrupts */
1701         if (mask & TX_DMA_INTR) {
1702                 /* Enable TxDMA Intrs in the general intr mask register */
1703                 val64 = TXDMA_INT_M;
1704                 if (flag == ENABLE_INTRS) {
1705                         temp64 = readq(&bar0->general_int_mask);
1706                         temp64 &= ~((u64) val64);
1707                         writeq(temp64, &bar0->general_int_mask);
1708                         /*
1709                          * Keep all interrupts other than PFC interrupt
1710                          * and PCC interrupt disabled in DMA level.
1711                          */
1712                         val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1713                                                       TXDMA_PCC_INT_M);
1714                         writeq(val64, &bar0->txdma_int_mask);
1715                         /*
1716                          * Enable only the MISC error 1 interrupt in PFC block
1717                          */
1718                         val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1719                         writeq(val64, &bar0->pfc_err_mask);
1720                         /*
1721                          * Enable only the FB_ECC error interrupt in PCC block
1722                          */
1723                         val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1724                         writeq(val64, &bar0->pcc_err_mask);
1725                 } else if (flag == DISABLE_INTRS) {
1726                         /*
1727                          * Disable TxDMA Intrs in the general intr mask
1728                          * register
1729                          */
1730                         writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1731                         writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1732                         temp64 = readq(&bar0->general_int_mask);
1733                         val64 |= temp64;
1734                         writeq(val64, &bar0->general_int_mask);
1735                 }
1736         }
1737
1738         /*  Enabling/Disabling Rx DMA interrupts */
1739         if (mask & RX_DMA_INTR) {
1740                 /*  Enable RxDMA Intrs in the general intr mask register */
1741                 val64 = RXDMA_INT_M;
1742                 if (flag == ENABLE_INTRS) {
1743                         temp64 = readq(&bar0->general_int_mask);
1744                         temp64 &= ~((u64) val64);
1745                         writeq(temp64, &bar0->general_int_mask);
1746                         /*
1747                          * All RxDMA block interrupts are disabled for now
1748                          * TODO
1749                          */
1750                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1751                 } else if (flag == DISABLE_INTRS) {
1752                         /*
1753                          * Disable RxDMA Intrs in the general intr mask
1754                          * register
1755                          */
1756                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1757                         temp64 = readq(&bar0->general_int_mask);
1758                         val64 |= temp64;
1759                         writeq(val64, &bar0->general_int_mask);
1760                 }
1761         }
1762
1763         /*  MAC Interrupts */
1764         /*  Enabling/Disabling MAC interrupts */
1765         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1766                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1767                 if (flag == ENABLE_INTRS) {
1768                         temp64 = readq(&bar0->general_int_mask);
1769                         temp64 &= ~((u64) val64);
1770                         writeq(temp64, &bar0->general_int_mask);
1771                         /*
1772                          * All MAC block error interrupts are disabled for now
1773                          * TODO
1774                          */
1775                 } else if (flag == DISABLE_INTRS) {
1776                         /*
1777                          * Disable MAC Intrs in the general intr mask register
1778                          */
1779                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1780                         writeq(DISABLE_ALL_INTRS,
1781                                &bar0->mac_rmac_err_mask);
1782
1783                         temp64 = readq(&bar0->general_int_mask);
1784                         val64 |= temp64;
1785                         writeq(val64, &bar0->general_int_mask);
1786                 }
1787         }
1788
1789         /*  XGXS Interrupts */
1790         if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1791                 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1792                 if (flag == ENABLE_INTRS) {
1793                         temp64 = readq(&bar0->general_int_mask);
1794                         temp64 &= ~((u64) val64);
1795                         writeq(temp64, &bar0->general_int_mask);
1796                         /*
1797                          * All XGXS block error interrupts are disabled for now
1798                          * TODO
1799                          */
1800                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1801                 } else if (flag == DISABLE_INTRS) {
1802                         /*
1803                          * Disable MC Intrs in the general intr mask register
1804                          */
1805                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1806                         temp64 = readq(&bar0->general_int_mask);
1807                         val64 |= temp64;
1808                         writeq(val64, &bar0->general_int_mask);
1809                 }
1810         }
1811
1812         /*  Memory Controller(MC) interrupts */
1813         if (mask & MC_INTR) {
1814                 val64 = MC_INT_M;
1815                 if (flag == ENABLE_INTRS) {
1816                         temp64 = readq(&bar0->general_int_mask);
1817                         temp64 &= ~((u64) val64);
1818                         writeq(temp64, &bar0->general_int_mask);
1819                         /*
1820                          * Enable all MC Intrs.
1821                          */
1822                         writeq(0x0, &bar0->mc_int_mask);
1823                         writeq(0x0, &bar0->mc_err_mask);
1824                 } else if (flag == DISABLE_INTRS) {
1825                         /*
1826                          * Disable MC Intrs in the general intr mask register
1827                          */
1828                         writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1829                         temp64 = readq(&bar0->general_int_mask);
1830                         val64 |= temp64;
1831                         writeq(val64, &bar0->general_int_mask);
1832                 }
1833         }
1834
1835
1836         /*  Tx traffic interrupts */
1837         if (mask & TX_TRAFFIC_INTR) {
1838                 val64 = TXTRAFFIC_INT_M;
1839                 if (flag == ENABLE_INTRS) {
1840                         temp64 = readq(&bar0->general_int_mask);
1841                         temp64 &= ~((u64) val64);
1842                         writeq(temp64, &bar0->general_int_mask);
1843                         /*
1844                          * Enable all the Tx side interrupts
1845                          * writing 0 Enables all 64 TX interrupt levels
1846                          */
1847                         writeq(0x0, &bar0->tx_traffic_mask);
1848                 } else if (flag == DISABLE_INTRS) {
1849                         /*
1850                          * Disable Tx Traffic Intrs in the general intr mask
1851                          * register.
1852                          */
1853                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1854                         temp64 = readq(&bar0->general_int_mask);
1855                         val64 |= temp64;
1856                         writeq(val64, &bar0->general_int_mask);
1857                 }
1858         }
1859
1860         /*  Rx traffic interrupts */
1861         if (mask & RX_TRAFFIC_INTR) {
1862                 val64 = RXTRAFFIC_INT_M;
1863                 if (flag == ENABLE_INTRS) {
1864                         temp64 = readq(&bar0->general_int_mask);
1865                         temp64 &= ~((u64) val64);
1866                         writeq(temp64, &bar0->general_int_mask);
1867                         /* writing 0 Enables all 8 RX interrupt levels */
1868                         writeq(0x0, &bar0->rx_traffic_mask);
1869                 } else if (flag == DISABLE_INTRS) {
1870                         /*
1871                          * Disable Rx Traffic Intrs in the general intr mask
1872                          * register.
1873                          */
1874                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1875                         temp64 = readq(&bar0->general_int_mask);
1876                         val64 |= temp64;
1877                         writeq(val64, &bar0->general_int_mask);
1878                 }
1879         }
1880 }
1881
1882 /**
1883  *  verify_pcc_quiescent- Checks for PCC quiescent state
1884  *  Return: 1 If PCC is quiescence
1885  *          0 If PCC is not quiescence
1886  */
1887 static int verify_pcc_quiescent(nic_t *sp, int flag)
1888 {
1889         int ret = 0, herc;
1890         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1891         u64 val64 = readq(&bar0->adapter_status);
1892         
1893         herc = (sp->device_type == XFRAME_II_DEVICE);
1894
1895         if (flag == FALSE) {
1896                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1897                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1898                                 ret = 1;
1899                 } else {
1900                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1901                                 ret = 1;
1902                 }
1903         } else {
1904                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1905                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1906                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1907                                 ret = 1;
1908                 } else {
1909                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1910                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1911                                 ret = 1;
1912                 }
1913         }
1914
1915         return ret;
1916 }
1917 /**
1918  *  verify_xena_quiescence - Checks whether the H/W is ready
1919  *  Description: Returns whether the H/W is ready to go or not. Depending
1920  *  on whether adapter enable bit was written or not the comparison
1921  *  differs and the calling function passes the input argument flag to
1922  *  indicate this.
1923  *  Return: 1 If xena is quiescence
1924  *          0 If Xena is not quiescence
1925  */
1926
1927 static int verify_xena_quiescence(nic_t *sp)
1928 {
1929         int  mode;
1930         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1931         u64 val64 = readq(&bar0->adapter_status);
1932         mode = s2io_verify_pci_mode(sp);
1933
1934         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1935                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1936                 return 0;
1937         }
1938         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1939         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1940                 return 0;
1941         }
1942         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1943                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1944                 return 0;
1945         }
1946         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1947                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1948                 return 0;
1949         }
1950         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1951                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1952                 return 0;
1953         }
1954         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1955                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1956                 return 0;
1957         }
1958         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1959                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1960                 return 0;
1961         }
1962         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1963                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1964                 return 0;
1965         }
1966
1967         /*
1968          * In PCI 33 mode, the P_PLL is not used, and therefore,
1969          * the the P_PLL_LOCK bit in the adapter_status register will
1970          * not be asserted.
1971          */
1972         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1973                 sp->device_type == XFRAME_II_DEVICE && mode !=
1974                 PCI_MODE_PCI_33) {
1975                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1976                 return 0;
1977         }
1978         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1979                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1980                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1981                 return 0;
1982         }
1983         return 1;
1984 }
1985
1986 /**
1987  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1988  * @sp: Pointer to device specifc structure
1989  * Description :
1990  * New procedure to clear mac address reading  problems on Alpha platforms
1991  *
1992  */
1993
1994 static void fix_mac_address(nic_t * sp)
1995 {
1996         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1997         u64 val64;
1998         int i = 0;
1999
2000         while (fix_mac[i] != END_SIGN) {
2001                 writeq(fix_mac[i++], &bar0->gpio_control);
2002                 udelay(10);
2003                 val64 = readq(&bar0->gpio_control);
2004         }
2005 }
2006
2007 /**
2008  *  start_nic - Turns the device on
2009  *  @nic : device private variable.
2010  *  Description:
2011  *  This function actually turns the device on. Before this  function is
2012  *  called,all Registers are configured from their reset states
2013  *  and shared memory is allocated but the NIC is still quiescent. On
2014  *  calling this function, the device interrupts are cleared and the NIC is
2015  *  literally switched on by writing into the adapter control register.
2016  *  Return Value:
2017  *  SUCCESS on success and -1 on failure.
2018  */
2019
2020 static int start_nic(struct s2io_nic *nic)
2021 {
2022         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2023         struct net_device *dev = nic->dev;
2024         register u64 val64 = 0;
2025         u16 subid, i;
2026         mac_info_t *mac_control;
2027         struct config_param *config;
2028
2029         mac_control = &nic->mac_control;
2030         config = &nic->config;
2031
2032         /*  PRC Initialization and configuration */
2033         for (i = 0; i < config->rx_ring_num; i++) {
2034                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2035                        &bar0->prc_rxd0_n[i]);
2036
2037                 val64 = readq(&bar0->prc_ctrl_n[i]);
2038                 if (nic->config.bimodal)
2039                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2040                 if (nic->rxd_mode == RXD_MODE_1)
2041                         val64 |= PRC_CTRL_RC_ENABLED;
2042                 else
2043                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2044                 if (nic->device_type == XFRAME_II_DEVICE)
2045                         val64 |= PRC_CTRL_GROUP_READS;
2046                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2047                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2048                 writeq(val64, &bar0->prc_ctrl_n[i]);
2049         }
2050
2051         if (nic->rxd_mode == RXD_MODE_3B) {
2052                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2053                 val64 = readq(&bar0->rx_pa_cfg);
2054                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2055                 writeq(val64, &bar0->rx_pa_cfg);
2056         }
2057
2058         /*
2059          * Enabling MC-RLDRAM. After enabling the device, we timeout
2060          * for around 100ms, which is approximately the time required
2061          * for the device to be ready for operation.
2062          */
2063         val64 = readq(&bar0->mc_rldram_mrs);
2064         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2065         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2066         val64 = readq(&bar0->mc_rldram_mrs);
2067
2068         msleep(100);    /* Delay by around 100 ms. */
2069
2070         /* Enabling ECC Protection. */
2071         val64 = readq(&bar0->adapter_control);
2072         val64 &= ~ADAPTER_ECC_EN;
2073         writeq(val64, &bar0->adapter_control);
2074
2075         /*
2076          * Clearing any possible Link state change interrupts that
2077          * could have popped up just before Enabling the card.
2078          */
2079         val64 = readq(&bar0->mac_rmac_err_reg);
2080         if (val64)
2081                 writeq(val64, &bar0->mac_rmac_err_reg);
2082
2083         /*
2084          * Verify if the device is ready to be enabled, if so enable
2085          * it.
2086          */
2087         val64 = readq(&bar0->adapter_status);
2088         if (!verify_xena_quiescence(nic)) {
2089                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2090                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2091                           (unsigned long long) val64);
2092                 return FAILURE;
2093         }
2094
2095         /*
2096          * With some switches, link might be already up at this point.
2097          * Because of this weird behavior, when we enable laser,
2098          * we may not get link. We need to handle this. We cannot
2099          * figure out which switch is misbehaving. So we are forced to
2100          * make a global change.
2101          */
2102
2103         /* Enabling Laser. */
2104         val64 = readq(&bar0->adapter_control);
2105         val64 |= ADAPTER_EOI_TX_ON;
2106         writeq(val64, &bar0->adapter_control);
2107
2108         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2109                 /*
2110                  * Dont see link state interrupts initally on some switches,
2111                  * so directly scheduling the link state task here.
2112                  */
2113                 schedule_work(&nic->set_link_task);
2114         }
2115         /* SXE-002: Initialize link and activity LED */
2116         subid = nic->pdev->subsystem_device;
2117         if (((subid & 0xFF) >= 0x07) &&
2118             (nic->device_type == XFRAME_I_DEVICE)) {
2119                 val64 = readq(&bar0->gpio_control);
2120                 val64 |= 0x0000800000000000ULL;
2121                 writeq(val64, &bar0->gpio_control);
2122                 val64 = 0x0411040400000000ULL;
2123                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2124         }
2125
2126         return SUCCESS;
2127 }
2128 /**
2129  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2130  */
2131 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2132 {
2133         nic_t *nic = fifo_data->nic;
2134         struct sk_buff *skb;
2135         TxD_t *txds;
2136         u16 j, frg_cnt;
2137
2138         txds = txdlp;
2139         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2140                 pci_unmap_single(nic->pdev, (dma_addr_t)
2141                         txds->Buffer_Pointer, sizeof(u64),
2142                         PCI_DMA_TODEVICE);
2143                 txds++;
2144         }
2145
2146         skb = (struct sk_buff *) ((unsigned long)
2147                         txds->Host_Control);
2148         if (!skb) {
2149                 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2150                 return NULL;
2151         }
2152         pci_unmap_single(nic->pdev, (dma_addr_t)
2153                          txds->Buffer_Pointer,
2154                          skb->len - skb->data_len,
2155                          PCI_DMA_TODEVICE);
2156         frg_cnt = skb_shinfo(skb)->nr_frags;
2157         if (frg_cnt) {
2158                 txds++;
2159                 for (j = 0; j < frg_cnt; j++, txds++) {
2160                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2161                         if (!txds->Buffer_Pointer)
2162                                 break;
2163                         pci_unmap_page(nic->pdev, (dma_addr_t)
2164                                         txds->Buffer_Pointer,
2165                                        frag->size, PCI_DMA_TODEVICE);
2166                 }
2167         }
2168         memset(txdlp,0, (sizeof(TxD_t) * fifo_data->max_txds));
2169         return(skb);
2170 }
2171
2172 /**
2173  *  free_tx_buffers - Free all queued Tx buffers
2174  *  @nic : device private variable.
2175  *  Description:
2176  *  Free all queued Tx buffers.
2177  *  Return Value: void
2178 */
2179
2180 static void free_tx_buffers(struct s2io_nic *nic)
2181 {
2182         struct net_device *dev = nic->dev;
2183         struct sk_buff *skb;
2184         TxD_t *txdp;
2185         int i, j;
2186         mac_info_t *mac_control;
2187         struct config_param *config;
2188         int cnt = 0;
2189
2190         mac_control = &nic->mac_control;
2191         config = &nic->config;
2192
2193         for (i = 0; i < config->tx_fifo_num; i++) {
2194                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2195                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2196                             list_virt_addr;
2197                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2198                         if (skb) {
2199                                 dev_kfree_skb(skb);
2200                                 cnt++;
2201                         }
2202                 }
2203                 DBG_PRINT(INTR_DBG,
2204                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2205                           dev->name, cnt, i);
2206                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2207                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2208         }
2209 }
2210
2211 /**
2212  *   stop_nic -  To stop the nic
2213  *   @nic ; device private variable.
2214  *   Description:
2215  *   This function does exactly the opposite of what the start_nic()
2216  *   function does. This function is called to stop the device.
2217  *   Return Value:
2218  *   void.
2219  */
2220
2221 static void stop_nic(struct s2io_nic *nic)
2222 {
2223         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2224         register u64 val64 = 0;
2225         u16 interruptible;
2226         mac_info_t *mac_control;
2227         struct config_param *config;
2228
2229         mac_control = &nic->mac_control;
2230         config = &nic->config;
2231
2232         /*  Disable all interrupts */
2233         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2234         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2235         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2236         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2237
2238         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2239         val64 = readq(&bar0->adapter_control);
2240         val64 &= ~(ADAPTER_CNTL_EN);
2241         writeq(val64, &bar0->adapter_control);
2242 }
2243
2244 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2245 {
2246         struct net_device *dev = nic->dev;
2247         struct sk_buff *frag_list;
2248         void *tmp;
2249
2250         /* Buffer-1 receives L3/L4 headers */
2251         ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2252                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2253                         PCI_DMA_FROMDEVICE);
2254
2255         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2256         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2257         if (skb_shinfo(skb)->frag_list == NULL) {
2258                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2259                 return -ENOMEM ;
2260         }
2261         frag_list = skb_shinfo(skb)->frag_list;
2262         frag_list->next = NULL;
2263         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2264         frag_list->data = tmp;
2265         frag_list->tail = tmp;
2266
2267         /* Buffer-2 receives L4 data payload */
2268         ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2269                                 frag_list->data, dev->mtu,
2270                                 PCI_DMA_FROMDEVICE);
2271         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2272         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2273
2274         return SUCCESS;
2275 }
2276
2277 /**
2278  *  fill_rx_buffers - Allocates the Rx side skbs
2279  *  @nic:  device private variable
2280  *  @ring_no: ring number
2281  *  Description:
2282  *  The function allocates Rx side skbs and puts the physical
2283  *  address of these buffers into the RxD buffer pointers, so that the NIC
2284  *  can DMA the received frame into these locations.
2285  *  The NIC supports 3 receive modes, viz
2286  *  1. single buffer,
2287  *  2. three buffer and
2288  *  3. Five buffer modes.
2289  *  Each mode defines how many fragments the received frame will be split
2290  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2291  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2292  *  is split into 3 fragments. As of now only single buffer mode is
2293  *  supported.
2294  *   Return Value:
2295  *  SUCCESS on success or an appropriate -ve value on failure.
2296  */
2297
2298 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2299 {
2300         struct net_device *dev = nic->dev;
2301         struct sk_buff *skb;
2302         RxD_t *rxdp;
2303         int off, off1, size, block_no, block_no1;
2304         u32 alloc_tab = 0;
2305         u32 alloc_cnt;
2306         mac_info_t *mac_control;
2307         struct config_param *config;
2308         u64 tmp;
2309         buffAdd_t *ba;
2310         unsigned long flags;
2311         RxD_t *first_rxdp = NULL;
2312
2313         mac_control = &nic->mac_control;
2314         config = &nic->config;
2315         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2316             atomic_read(&nic->rx_bufs_left[ring_no]);
2317
2318         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2319         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2320         while (alloc_tab < alloc_cnt) {
2321                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2322                     block_index;
2323                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2324
2325                 rxdp = mac_control->rings[ring_no].
2326                                 rx_blocks[block_no].rxds[off].virt_addr;
2327
2328                 if ((block_no == block_no1) && (off == off1) &&
2329                                         (rxdp->Host_Control)) {
2330                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2331                                   dev->name);
2332                         DBG_PRINT(INTR_DBG, " info equated\n");
2333                         goto end;
2334                 }
2335                 if (off && (off == rxd_count[nic->rxd_mode])) {
2336                         mac_control->rings[ring_no].rx_curr_put_info.
2337                             block_index++;
2338                         if (mac_control->rings[ring_no].rx_curr_put_info.
2339                             block_index == mac_control->rings[ring_no].
2340                                         block_count)
2341                                 mac_control->rings[ring_no].rx_curr_put_info.
2342                                         block_index = 0;
2343                         block_no = mac_control->rings[ring_no].
2344                                         rx_curr_put_info.block_index;
2345                         if (off == rxd_count[nic->rxd_mode])
2346                                 off = 0;
2347                         mac_control->rings[ring_no].rx_curr_put_info.
2348                                 offset = off;
2349                         rxdp = mac_control->rings[ring_no].
2350                                 rx_blocks[block_no].block_virt_addr;
2351                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2352                                   dev->name, rxdp);
2353                 }
2354                 if(!napi) {
2355                         spin_lock_irqsave(&nic->put_lock, flags);
2356                         mac_control->rings[ring_no].put_pos =
2357                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2358                         spin_unlock_irqrestore(&nic->put_lock, flags);
2359                 } else {
2360                         mac_control->rings[ring_no].put_pos =
2361                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2362                 }
2363                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2364                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2365                                 (rxdp->Control_2 & BIT(0)))) {
2366                         mac_control->rings[ring_no].rx_curr_put_info.
2367                                         offset = off;
2368                         goto end;
2369                 }
2370                 /* calculate size of skb based on ring mode */
2371                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2372                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2373                 if (nic->rxd_mode == RXD_MODE_1)
2374                         size += NET_IP_ALIGN;
2375                 else if (nic->rxd_mode == RXD_MODE_3B)
2376                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2377                 else
2378                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2379
2380                 /* allocate skb */
2381                 skb = dev_alloc_skb(size);
2382                 if(!skb) {
2383                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2384                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2385                         if (first_rxdp) {
2386                                 wmb();
2387                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2388                         }
2389                         return -ENOMEM ;
2390                 }
2391                 if (nic->rxd_mode == RXD_MODE_1) {
2392                         /* 1 buffer mode - normal operation mode */
2393                         memset(rxdp, 0, sizeof(RxD1_t));
2394                         skb_reserve(skb, NET_IP_ALIGN);
2395                         ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2396                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2397                                 PCI_DMA_FROMDEVICE);
2398                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2399
2400                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2401                         /*
2402                          * 2 or 3 buffer mode -
2403                          * Both 2 buffer mode and 3 buffer mode provides 128
2404                          * byte aligned receive buffers.
2405                          *
2406                          * 3 buffer mode provides header separation where in
2407                          * skb->data will have L3/L4 headers where as
2408                          * skb_shinfo(skb)->frag_list will have the L4 data
2409                          * payload
2410                          */
2411
2412                         memset(rxdp, 0, sizeof(RxD3_t));
2413                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2414                         skb_reserve(skb, BUF0_LEN);
2415                         tmp = (u64)(unsigned long) skb->data;
2416                         tmp += ALIGN_SIZE;
2417                         tmp &= ~ALIGN_SIZE;
2418                         skb->data = (void *) (unsigned long)tmp;
2419                         skb->tail = (void *) (unsigned long)tmp;
2420
2421                         if (!(((RxD3_t*)rxdp)->Buffer0_ptr))
2422                                 ((RxD3_t*)rxdp)->Buffer0_ptr =
2423                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2424                                            PCI_DMA_FROMDEVICE);
2425                         else
2426                                 pci_dma_sync_single_for_device(nic->pdev,
2427                                     (dma_addr_t) ((RxD3_t*)rxdp)->Buffer0_ptr,
2428                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2429                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2430                         if (nic->rxd_mode == RXD_MODE_3B) {
2431                                 /* Two buffer mode */
2432
2433                                 /*
2434                                  * Buffer2 will have L3/L4 header plus
2435                                  * L4 payload
2436                                  */
2437                                 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2438                                 (nic->pdev, skb->data, dev->mtu + 4,
2439                                                 PCI_DMA_FROMDEVICE);
2440
2441                                 /* Buffer-1 will be dummy buffer. Not used */
2442                                 if (!(((RxD3_t*)rxdp)->Buffer1_ptr)) {
2443                                         ((RxD3_t*)rxdp)->Buffer1_ptr =
2444                                                 pci_map_single(nic->pdev,
2445                                                 ba->ba_1, BUF1_LEN,
2446                                                 PCI_DMA_FROMDEVICE);
2447                                 }
2448                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2449                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2450                                                                 (dev->mtu + 4);
2451                         } else {
2452                                 /* 3 buffer mode */
2453                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2454                                         dev_kfree_skb_irq(skb);
2455                                         if (first_rxdp) {
2456                                                 wmb();
2457                                                 first_rxdp->Control_1 |=
2458                                                         RXD_OWN_XENA;
2459                                         }
2460                                         return -ENOMEM ;
2461                                 }
2462                         }
2463                         rxdp->Control_2 |= BIT(0);
2464                 }
2465                 rxdp->Host_Control = (unsigned long) (skb);
2466                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2467                         rxdp->Control_1 |= RXD_OWN_XENA;
2468                 off++;
2469                 if (off == (rxd_count[nic->rxd_mode] + 1))
2470                         off = 0;
2471                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2472
2473                 rxdp->Control_2 |= SET_RXD_MARKER;
2474                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2475                         if (first_rxdp) {
2476                                 wmb();
2477                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2478                         }
2479                         first_rxdp = rxdp;
2480                 }
2481                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2482                 alloc_tab++;
2483         }
2484
2485       end:
2486         /* Transfer ownership of first descriptor to adapter just before
2487          * exiting. Before that, use memory barrier so that ownership
2488          * and other fields are seen by adapter correctly.
2489          */
2490         if (first_rxdp) {
2491                 wmb();
2492                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2493         }
2494
2495         return SUCCESS;
2496 }
2497
2498 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2499 {
2500         struct net_device *dev = sp->dev;
2501         int j;
2502         struct sk_buff *skb;
2503         RxD_t *rxdp;
2504         mac_info_t *mac_control;
2505         buffAdd_t *ba;
2506
2507         mac_control = &sp->mac_control;
2508         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2509                 rxdp = mac_control->rings[ring_no].
2510                                 rx_blocks[blk].rxds[j].virt_addr;
2511                 skb = (struct sk_buff *)
2512                         ((unsigned long) rxdp->Host_Control);
2513                 if (!skb) {
2514                         continue;
2515                 }
2516                 if (sp->rxd_mode == RXD_MODE_1) {
2517                         pci_unmap_single(sp->pdev, (dma_addr_t)
2518                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2519                                  dev->mtu +
2520                                  HEADER_ETHERNET_II_802_3_SIZE
2521                                  + HEADER_802_2_SIZE +
2522                                  HEADER_SNAP_SIZE,
2523                                  PCI_DMA_FROMDEVICE);
2524                         memset(rxdp, 0, sizeof(RxD1_t));
2525                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2526                         ba = &mac_control->rings[ring_no].
2527                                 ba[blk][j];
2528                         pci_unmap_single(sp->pdev, (dma_addr_t)
2529                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2530                                  BUF0_LEN,
2531                                  PCI_DMA_FROMDEVICE);
2532                         pci_unmap_single(sp->pdev, (dma_addr_t)
2533                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2534                                  BUF1_LEN,
2535                                  PCI_DMA_FROMDEVICE);
2536                         pci_unmap_single(sp->pdev, (dma_addr_t)
2537                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2538                                  dev->mtu + 4,
2539                                  PCI_DMA_FROMDEVICE);
2540                         memset(rxdp, 0, sizeof(RxD3_t));
2541                 } else {
2542                         pci_unmap_single(sp->pdev, (dma_addr_t)
2543                                 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2544                                 PCI_DMA_FROMDEVICE);
2545                         pci_unmap_single(sp->pdev, (dma_addr_t)
2546                                 ((RxD3_t*)rxdp)->Buffer1_ptr,
2547                                 l3l4hdr_size + 4,
2548                                 PCI_DMA_FROMDEVICE);
2549                         pci_unmap_single(sp->pdev, (dma_addr_t)
2550                                 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2551                                 PCI_DMA_FROMDEVICE);
2552                         memset(rxdp, 0, sizeof(RxD3_t));
2553                 }
2554                 dev_kfree_skb(skb);
2555                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2556         }
2557 }
2558
2559 /**
2560  *  free_rx_buffers - Frees all Rx buffers
2561  *  @sp: device private variable.
2562  *  Description:
2563  *  This function will free all Rx buffers allocated by host.
2564  *  Return Value:
2565  *  NONE.
2566  */
2567
2568 static void free_rx_buffers(struct s2io_nic *sp)
2569 {
2570         struct net_device *dev = sp->dev;
2571         int i, blk = 0, buf_cnt = 0;
2572         mac_info_t *mac_control;
2573         struct config_param *config;
2574
2575         mac_control = &sp->mac_control;
2576         config = &sp->config;
2577
2578         for (i = 0; i < config->rx_ring_num; i++) {
2579                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2580                         free_rxd_blk(sp,i,blk);
2581
2582                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2583                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2584                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2585                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2586                 atomic_set(&sp->rx_bufs_left[i], 0);
2587                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2588                           dev->name, buf_cnt, i);
2589         }
2590 }
2591
2592 /**
2593  * s2io_poll - Rx interrupt handler for NAPI support
2594  * @dev : pointer to the device structure.
2595  * @budget : The number of packets that were budgeted to be processed
2596  * during  one pass through the 'Poll" function.
2597  * Description:
2598  * Comes into picture only if NAPI support has been incorporated. It does
2599  * the same thing that rx_intr_handler does, but not in a interrupt context
2600  * also It will process only a given number of packets.
2601  * Return value:
2602  * 0 on success and 1 if there are No Rx packets to be processed.
2603  */
2604
2605 static int s2io_poll(struct net_device *dev, int *budget)
2606 {
2607         nic_t *nic = dev->priv;
2608         int pkt_cnt = 0, org_pkts_to_process;
2609         mac_info_t *mac_control;
2610         struct config_param *config;
2611         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2612         int i;
2613
2614         atomic_inc(&nic->isr_cnt);
2615         mac_control = &nic->mac_control;
2616         config = &nic->config;
2617
2618         nic->pkts_to_process = *budget;
2619         if (nic->pkts_to_process > dev->quota)
2620                 nic->pkts_to_process = dev->quota;
2621         org_pkts_to_process = nic->pkts_to_process;
2622
2623         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2624         readl(&bar0->rx_traffic_int);
2625
2626         for (i = 0; i < config->rx_ring_num; i++) {
2627                 rx_intr_handler(&mac_control->rings[i]);
2628                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2629                 if (!nic->pkts_to_process) {
2630                         /* Quota for the current iteration has been met */
2631                         goto no_rx;
2632                 }
2633         }
2634         if (!pkt_cnt)
2635                 pkt_cnt = 1;
2636
2637         dev->quota -= pkt_cnt;
2638         *budget -= pkt_cnt;
2639         netif_rx_complete(dev);
2640
2641         for (i = 0; i < config->rx_ring_num; i++) {
2642                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2643                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2644                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2645                         break;
2646                 }
2647         }
2648         /* Re enable the Rx interrupts. */
2649         writeq(0x0, &bar0->rx_traffic_mask);
2650         readl(&bar0->rx_traffic_mask);
2651         atomic_dec(&nic->isr_cnt);
2652         return 0;
2653
2654 no_rx:
2655         dev->quota -= pkt_cnt;
2656         *budget -= pkt_cnt;
2657
2658         for (i = 0; i < config->rx_ring_num; i++) {
2659                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2660                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2661                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2662                         break;
2663                 }
2664         }
2665         atomic_dec(&nic->isr_cnt);
2666         return 1;
2667 }
2668
2669 #ifdef CONFIG_NET_POLL_CONTROLLER
2670 /**
2671  * s2io_netpoll - netpoll event handler entry point
2672  * @dev : pointer to the device structure.
2673  * Description:
2674  *      This function will be called by upper layer to check for events on the
2675  * interface in situations where interrupts are disabled. It is used for
2676  * specific in-kernel networking tasks, such as remote consoles and kernel
2677  * debugging over the network (example netdump in RedHat).
2678  */
2679 static void s2io_netpoll(struct net_device *dev)
2680 {
2681         nic_t *nic = dev->priv;
2682         mac_info_t *mac_control;
2683         struct config_param *config;
2684         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2685         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2686         int i;
2687
2688         disable_irq(dev->irq);
2689
2690         atomic_inc(&nic->isr_cnt);
2691         mac_control = &nic->mac_control;
2692         config = &nic->config;
2693
2694         writeq(val64, &bar0->rx_traffic_int);
2695         writeq(val64, &bar0->tx_traffic_int);
2696
2697         /* we need to free up the transmitted skbufs or else netpoll will
2698          * run out of skbs and will fail and eventually netpoll application such
2699          * as netdump will fail.
2700          */
2701         for (i = 0; i < config->tx_fifo_num; i++)
2702                 tx_intr_handler(&mac_control->fifos[i]);
2703
2704         /* check for received packet and indicate up to network */
2705         for (i = 0; i < config->rx_ring_num; i++)
2706                 rx_intr_handler(&mac_control->rings[i]);
2707
2708         for (i = 0; i < config->rx_ring_num; i++) {
2709                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2710                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2711                         DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2712                         break;
2713                 }
2714         }
2715         atomic_dec(&nic->isr_cnt);
2716         enable_irq(dev->irq);
2717         return;
2718 }
2719 #endif
2720
2721 /**
2722  *  rx_intr_handler - Rx interrupt handler
2723  *  @nic: device private variable.
2724  *  Description:
2725  *  If the interrupt is because of a received frame or if the
2726  *  receive ring contains fresh as yet un-processed frames,this function is
2727  *  called. It picks out the RxD at which place the last Rx processing had
2728  *  stopped and sends the skb to the OSM's Rx handler and then increments
2729  *  the offset.
2730  *  Return Value:
2731  *  NONE.
2732  */
2733 static void rx_intr_handler(ring_info_t *ring_data)
2734 {
2735         nic_t *nic = ring_data->nic;
2736         struct net_device *dev = (struct net_device *) nic->dev;
2737         int get_block, put_block, put_offset;
2738         rx_curr_get_info_t get_info, put_info;
2739         RxD_t *rxdp;
2740         struct sk_buff *skb;
2741         int pkt_cnt = 0;
2742         int i;
2743
2744         spin_lock(&nic->rx_lock);
2745         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2746                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2747                           __FUNCTION__, dev->name);
2748                 spin_unlock(&nic->rx_lock);
2749                 return;
2750         }
2751
2752         get_info = ring_data->rx_curr_get_info;
2753         get_block = get_info.block_index;
2754         put_info = ring_data->rx_curr_put_info;
2755         put_block = put_info.block_index;
2756         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2757         if (!napi) {
2758                 spin_lock(&nic->put_lock);
2759                 put_offset = ring_data->put_pos;
2760                 spin_unlock(&nic->put_lock);
2761         } else
2762                 put_offset = ring_data->put_pos;
2763
2764         while (RXD_IS_UP2DT(rxdp)) {
2765                 /*
2766                  * If your are next to put index then it's
2767                  * FIFO full condition
2768                  */
2769                 if ((get_block == put_block) &&
2770                     (get_info.offset + 1) == put_info.offset) {
2771                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2772                         break;
2773                 }
2774                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2775                 if (skb == NULL) {
2776                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2777                                   dev->name);
2778                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2779                         spin_unlock(&nic->rx_lock);
2780                         return;
2781                 }
2782                 if (nic->rxd_mode == RXD_MODE_1) {
2783                         pci_unmap_single(nic->pdev, (dma_addr_t)
2784                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2785                                  dev->mtu +
2786                                  HEADER_ETHERNET_II_802_3_SIZE +
2787                                  HEADER_802_2_SIZE +
2788                                  HEADER_SNAP_SIZE,
2789                                  PCI_DMA_FROMDEVICE);
2790                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2791                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2792                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2793                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2794                         pci_unmap_single(nic->pdev, (dma_addr_t)
2795                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2796                                  dev->mtu + 4,
2797                                  PCI_DMA_FROMDEVICE);
2798                 } else {
2799                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2800                                          ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2801                                          PCI_DMA_FROMDEVICE);
2802                         pci_unmap_single(nic->pdev, (dma_addr_t)
2803                                          ((RxD3_t*)rxdp)->Buffer1_ptr,
2804                                          l3l4hdr_size + 4,
2805                                          PCI_DMA_FROMDEVICE);
2806                         pci_unmap_single(nic->pdev, (dma_addr_t)
2807                                          ((RxD3_t*)rxdp)->Buffer2_ptr,
2808                                          dev->mtu, PCI_DMA_FROMDEVICE);
2809                 }
2810                 prefetch(skb->data);
2811                 rx_osm_handler(ring_data, rxdp);
2812                 get_info.offset++;
2813                 ring_data->rx_curr_get_info.offset = get_info.offset;
2814                 rxdp = ring_data->rx_blocks[get_block].
2815                                 rxds[get_info.offset].virt_addr;
2816                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2817                         get_info.offset = 0;
2818                         ring_data->rx_curr_get_info.offset = get_info.offset;
2819                         get_block++;
2820                         if (get_block == ring_data->block_count)
2821                                 get_block = 0;
2822                         ring_data->rx_curr_get_info.block_index = get_block;
2823                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2824                 }
2825
2826                 nic->pkts_to_process -= 1;
2827                 if ((napi) && (!nic->pkts_to_process))
2828                         break;
2829                 pkt_cnt++;
2830                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2831                         break;
2832         }
2833         if (nic->lro) {
2834                 /* Clear all LRO sessions before exiting */
2835                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2836                         lro_t *lro = &nic->lro0_n[i];
2837                         if (lro->in_use) {
2838                                 update_L3L4_header(nic, lro);
2839                                 queue_rx_frame(lro->parent);
2840                                 clear_lro_session(lro);
2841                         }
2842                 }
2843         }
2844
2845         spin_unlock(&nic->rx_lock);
2846 }
2847
2848 /**
2849  *  tx_intr_handler - Transmit interrupt handler
2850  *  @nic : device private variable
2851  *  Description:
2852  *  If an interrupt was raised to indicate DMA complete of the
2853  *  Tx packet, this function is called. It identifies the last TxD
2854  *  whose buffer was freed and frees all skbs whose data have already
2855  *  DMA'ed into the NICs internal memory.
2856  *  Return Value:
2857  *  NONE
2858  */
2859
2860 static void tx_intr_handler(fifo_info_t *fifo_data)
2861 {
2862         nic_t *nic = fifo_data->nic;
2863         struct net_device *dev = (struct net_device *) nic->dev;
2864         tx_curr_get_info_t get_info, put_info;
2865         struct sk_buff *skb;
2866         TxD_t *txdlp;
2867
2868         get_info = fifo_data->tx_curr_get_info;
2869         put_info = fifo_data->tx_curr_put_info;
2870         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2871             list_virt_addr;
2872         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2873                (get_info.offset != put_info.offset) &&
2874                (txdlp->Host_Control)) {
2875                 /* Check for TxD errors */
2876                 if (txdlp->Control_1 & TXD_T_CODE) {
2877                         unsigned long long err;
2878                         err = txdlp->Control_1 & TXD_T_CODE;
2879                         if (err & 0x1) {
2880                                 nic->mac_control.stats_info->sw_stat.
2881                                                 parity_err_cnt++;
2882                         }
2883                         if ((err >> 48) == 0xA) {
2884                                 DBG_PRINT(TX_DBG, "TxD returned due \
2885                                                 to loss of link\n");
2886                         }
2887                         else {
2888                                 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2889                         }
2890                 }
2891
2892                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2893                 if (skb == NULL) {
2894                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2895                         __FUNCTION__);
2896                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2897                         return;
2898                 }
2899
2900                 /* Updating the statistics block */
2901                 nic->stats.tx_bytes += skb->len;
2902                 dev_kfree_skb_irq(skb);
2903
2904                 get_info.offset++;
2905                 if (get_info.offset == get_info.fifo_len + 1)
2906                         get_info.offset = 0;
2907                 txdlp = (TxD_t *) fifo_data->list_info
2908                     [get_info.offset].list_virt_addr;
2909                 fifo_data->tx_curr_get_info.offset =
2910                     get_info.offset;
2911         }
2912
2913         spin_lock(&nic->tx_lock);
2914         if (netif_queue_stopped(dev))
2915                 netif_wake_queue(dev);
2916         spin_unlock(&nic->tx_lock);
2917 }
2918
2919 /**
2920  *  s2io_mdio_write - Function to write in to MDIO registers
2921  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2922  *  @addr     : address value
2923  *  @value    : data value
2924  *  @dev      : pointer to net_device structure
2925  *  Description:
2926  *  This function is used to write values to the MDIO registers
2927  *  NONE
2928  */
2929 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2930 {
2931         u64 val64 = 0x0;
2932         nic_t *sp = dev->priv;
2933         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2934
2935         //address transaction
2936         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2937                         | MDIO_MMD_DEV_ADDR(mmd_type)
2938                         | MDIO_MMS_PRT_ADDR(0x0);
2939         writeq(val64, &bar0->mdio_control);
2940         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2941         writeq(val64, &bar0->mdio_control);
2942         udelay(100);
2943
2944         //Data transaction
2945         val64 = 0x0;
2946         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2947                         | MDIO_MMD_DEV_ADDR(mmd_type)
2948                         | MDIO_MMS_PRT_ADDR(0x0)
2949                         | MDIO_MDIO_DATA(value)
2950                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2951         writeq(val64, &bar0->mdio_control);
2952         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2953         writeq(val64, &bar0->mdio_control);
2954         udelay(100);
2955
2956         val64 = 0x0;
2957         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2958         | MDIO_MMD_DEV_ADDR(mmd_type)
2959         | MDIO_MMS_PRT_ADDR(0x0)
2960         | MDIO_OP(MDIO_OP_READ_TRANS);
2961         writeq(val64, &bar0->mdio_control);
2962         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2963         writeq(val64, &bar0->mdio_control);
2964         udelay(100);
2965
2966 }
2967
2968 /**
2969  *  s2io_mdio_read - Function to write in to MDIO registers
2970  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2971  *  @addr     : address value
2972  *  @dev      : pointer to net_device structure
2973  *  Description:
2974  *  This function is used to read values to the MDIO registers
2975  *  NONE
2976  */
2977 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2978 {
2979         u64 val64 = 0x0;
2980         u64 rval64 = 0x0;
2981         nic_t *sp = dev->priv;
2982         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2983
2984         /* address transaction */
2985         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2986                         | MDIO_MMD_DEV_ADDR(mmd_type)
2987                         | MDIO_MMS_PRT_ADDR(0x0);
2988         writeq(val64, &bar0->mdio_control);
2989         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2990         writeq(val64, &bar0->mdio_control);
2991         udelay(100);
2992
2993         /* Data transaction */
2994         val64 = 0x0;
2995         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2996                         | MDIO_MMD_DEV_ADDR(mmd_type)
2997                         | MDIO_MMS_PRT_ADDR(0x0)
2998                         | MDIO_OP(MDIO_OP_READ_TRANS);
2999         writeq(val64, &bar0->mdio_control);
3000         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3001         writeq(val64, &bar0->mdio_control);
3002         udelay(100);
3003
3004         /* Read the value from regs */
3005         rval64 = readq(&bar0->mdio_control);
3006         rval64 = rval64 & 0xFFFF0000;
3007         rval64 = rval64 >> 16;
3008         return rval64;
3009 }
3010 /**
3011  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3012  *  @counter      : couter value to be updated
3013  *  @flag         : flag to indicate the status
3014  *  @type         : counter type
3015  *  Description:
3016  *  This function is to check the status of the xpak counters value
3017  *  NONE
3018  */
3019
3020 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3021 {
3022         u64 mask = 0x3;
3023         u64 val64;
3024         int i;
3025         for(i = 0; i <index; i++)
3026                 mask = mask << 0x2;
3027
3028         if(flag > 0)
3029         {
3030                 *counter = *counter + 1;
3031                 val64 = *regs_stat & mask;
3032                 val64 = val64 >> (index * 0x2);
3033                 val64 = val64 + 1;
3034                 if(val64 == 3)
3035                 {
3036                         switch(type)
3037                         {
3038                         case 1:
3039                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3040                                           "service. Excessive temperatures may "
3041                                           "result in premature transceiver "
3042                                           "failure \n");
3043                         break;
3044                         case 2:
3045                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3046                                           "service Excessive bias currents may "
3047                                           "indicate imminent laser diode "
3048                                           "failure \n");
3049                         break;
3050                         case 3:
3051                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3052                                           "service Excessive laser output "
3053                                           "power may saturate far-end "
3054                                           "receiver\n");
3055                         break;
3056                         default:
3057                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3058                                           "type \n");
3059                         }
3060                         val64 = 0x0;
3061                 }
3062                 val64 = val64 << (index * 0x2);
3063                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3064
3065         } else {
3066                 *regs_stat = *regs_stat & (~mask);
3067         }
3068 }
3069
3070 /**
3071  *  s2io_updt_xpak_counter - Function to update the xpak counters
3072  *  @dev         : pointer to net_device struct
3073  *  Description:
3074  *  This function is to upate the status of the xpak counters value
3075  *  NONE
3076  */
3077 static void s2io_updt_xpak_counter(struct net_device *dev)
3078 {
3079         u16 flag  = 0x0;
3080         u16 type  = 0x0;
3081         u16 val16 = 0x0;
3082         u64 val64 = 0x0;
3083         u64 addr  = 0x0;
3084
3085         nic_t *sp = dev->priv;
3086         StatInfo_t *stat_info = sp->mac_control.stats_info;
3087
3088         /* Check the communication with the MDIO slave */
3089         addr = 0x0000;
3090         val64 = 0x0;
3091         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3092         if((val64 == 0xFFFF) || (val64 == 0x0000))
3093         {
3094                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3095                           "Returned %llx\n", (unsigned long long)val64);
3096                 return;
3097         }
3098
3099         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3100         if(val64 != 0x2040)
3101         {
3102                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3103                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3104                           (unsigned long long)val64);
3105                 return;
3106         }
3107
3108         /* Loading the DOM register to MDIO register */
3109         addr = 0xA100;
3110         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3111         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3112
3113         /* Reading the Alarm flags */
3114         addr = 0xA070;
3115         val64 = 0x0;
3116         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3117
3118         flag = CHECKBIT(val64, 0x7);
3119         type = 1;
3120         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3121                                 &stat_info->xpak_stat.xpak_regs_stat,
3122                                 0x0, flag, type);
3123
3124         if(CHECKBIT(val64, 0x6))
3125                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3126
3127         flag = CHECKBIT(val64, 0x3);
3128         type = 2;
3129         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3130                                 &stat_info->xpak_stat.xpak_regs_stat,
3131                                 0x2, flag, type);
3132
3133         if(CHECKBIT(val64, 0x2))
3134                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3135
3136         flag = CHECKBIT(val64, 0x1);
3137         type = 3;
3138         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3139                                 &stat_info->xpak_stat.xpak_regs_stat,
3140                                 0x4, flag, type);
3141
3142         if(CHECKBIT(val64, 0x0))
3143                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3144
3145         /* Reading the Warning flags */
3146         addr = 0xA074;
3147         val64 = 0x0;
3148         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3149
3150         if(CHECKBIT(val64, 0x7))
3151                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3152
3153         if(CHECKBIT(val64, 0x6))
3154                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3155
3156         if(CHECKBIT(val64, 0x3))
3157                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3158
3159         if(CHECKBIT(val64, 0x2))
3160                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3161
3162         if(CHECKBIT(val64, 0x1))
3163                 stat_info->xpak_stat.warn_laser_output_power_high++;
3164
3165         if(CHECKBIT(val64, 0x0))
3166                 stat_info->xpak_stat.warn_laser_output_power_low++;
3167 }
3168
3169 /**
3170  *  alarm_intr_handler - Alarm Interrrupt handler
3171  *  @nic: device private variable
3172  *  Description: If the interrupt was neither because of Rx packet or Tx
3173  *  complete, this function is called. If the interrupt was to indicate
3174  *  a loss of link, the OSM link status handler is invoked for any other
3175  *  alarm interrupt the block that raised the interrupt is displayed
3176  *  and a H/W reset is issued.
3177  *  Return Value:
3178  *  NONE
3179 */
3180
3181 static void alarm_intr_handler(struct s2io_nic *nic)
3182 {
3183         struct net_device *dev = (struct net_device *) nic->dev;
3184         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3185         register u64 val64 = 0, err_reg = 0;
3186         u64 cnt;
3187         int i;
3188         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3189         /* Handling the XPAK counters update */
3190         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3191                 /* waiting for an hour */
3192                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3193         } else {
3194                 s2io_updt_xpak_counter(dev);
3195                 /* reset the count to zero */
3196                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3197         }
3198
3199         /* Handling link status change error Intr */
3200         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3201                 err_reg = readq(&bar0->mac_rmac_err_reg);
3202                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3203                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3204                         schedule_work(&nic->set_link_task);
3205                 }
3206         }
3207
3208         /* Handling Ecc errors */
3209         val64 = readq(&bar0->mc_err_reg);
3210         writeq(val64, &bar0->mc_err_reg);
3211         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3212                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3213                         nic->mac_control.stats_info->sw_stat.
3214                                 double_ecc_errs++;
3215                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3216                                   dev->name);
3217                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3218                         if (nic->device_type != XFRAME_II_DEVICE) {
3219                                 /* Reset XframeI only if critical error */
3220                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3221                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3222                                         netif_stop_queue(dev);
3223                                         schedule_work(&nic->rst_timer_task);
3224                                         nic->mac_control.stats_info->sw_stat.
3225                                                         soft_reset_cnt++;
3226                                 }
3227                         }
3228                 } else {
3229                         nic->mac_control.stats_info->sw_stat.
3230                                 single_ecc_errs++;
3231                 }
3232         }
3233
3234         /* In case of a serious error, the device will be Reset. */
3235         val64 = readq(&bar0->serr_source);
3236         if (val64 & SERR_SOURCE_ANY) {
3237                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3238                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3239                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3240                           (unsigned long long)val64);
3241                 netif_stop_queue(dev);
3242                 schedule_work(&nic->rst_timer_task);
3243                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3244         }
3245
3246         /*
3247          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3248          * Error occurs, the adapter will be recycled by disabling the
3249          * adapter enable bit and enabling it again after the device
3250          * becomes Quiescent.
3251          */
3252         val64 = readq(&bar0->pcc_err_reg);
3253         writeq(val64, &bar0->pcc_err_reg);
3254         if (val64 & PCC_FB_ECC_DB_ERR) {
3255                 u64 ac = readq(&bar0->adapter_control);
3256                 ac &= ~(ADAPTER_CNTL_EN);
3257                 writeq(ac, &bar0->adapter_control);
3258                 ac = readq(&bar0->adapter_control);
3259                 schedule_work(&nic->set_link_task);
3260         }
3261         /* Check for data parity error */
3262         val64 = readq(&bar0->pic_int_status);
3263         if (val64 & PIC_INT_GPIO) {
3264                 val64 = readq(&bar0->gpio_int_reg);
3265                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3266                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3267                         schedule_work(&nic->rst_timer_task);
3268                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3269                 }
3270         }
3271
3272         /* Check for ring full counter */
3273         if (nic->device_type & XFRAME_II_DEVICE) {
3274                 val64 = readq(&bar0->ring_bump_counter1);
3275                 for (i=0; i<4; i++) {
3276                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3277                         cnt >>= 64 - ((i+1)*16);
3278                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3279                                 += cnt;
3280                 }
3281
3282                 val64 = readq(&bar0->ring_bump_counter2);
3283                 for (i=0; i<4; i++) {
3284                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3285                         cnt >>= 64 - ((i+1)*16);
3286                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3287                                 += cnt;
3288                 }
3289         }
3290
3291         /* Other type of interrupts are not being handled now,  TODO */
3292 }
3293
3294 /**
3295  *  wait_for_cmd_complete - waits for a command to complete.
3296  *  @sp : private member of the device structure, which is a pointer to the
3297  *  s2io_nic structure.
3298  *  Description: Function that waits for a command to Write into RMAC
3299  *  ADDR DATA registers to be completed and returns either success or
3300  *  error depending on whether the command was complete or not.
3301  *  Return value:
3302  *   SUCCESS on success and FAILURE on failure.
3303  */
3304
3305 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3306 {
3307         int ret = FAILURE, cnt = 0;
3308         u64 val64;
3309
3310         while (TRUE) {
3311                 val64 = readq(addr);
3312                 if (!(val64 & busy_bit)) {
3313                         ret = SUCCESS;
3314                         break;
3315                 }
3316
3317                 if(in_interrupt())
3318                         mdelay(50);
3319                 else
3320                         msleep(50);
3321
3322                 if (cnt++ > 10)
3323                         break;
3324         }
3325         return ret;
3326 }
3327 /*
3328  * check_pci_device_id - Checks if the device id is supported
3329  * @id : device id
3330  * Description: Function to check if the pci device id is supported by driver.
3331  * Return value: Actual device id if supported else PCI_ANY_ID
3332  */
3333 static u16 check_pci_device_id(u16 id)
3334 {
3335         switch (id) {
3336         case PCI_DEVICE_ID_HERC_WIN:
3337         case PCI_DEVICE_ID_HERC_UNI:
3338                 return XFRAME_II_DEVICE;
3339         case PCI_DEVICE_ID_S2IO_UNI:
3340         case PCI_DEVICE_ID_S2IO_WIN:
3341                 return XFRAME_I_DEVICE;
3342         default:
3343                 return PCI_ANY_ID;
3344         }
3345 }
3346
3347 /**
3348  *  s2io_reset - Resets the card.
3349  *  @sp : private member of the device structure.
3350  *  Description: Function to Reset the card. This function then also
3351  *  restores the previously saved PCI configuration space registers as
3352  *  the card reset also resets the configuration space.
3353  *  Return value:
3354  *  void.
3355  */
3356
3357 static void s2io_reset(nic_t * sp)
3358 {
3359         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3360         u64 val64;
3361         u16 subid, pci_cmd;
3362         int i;
3363         u16 val16;
3364         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3365                         __FUNCTION__, sp->dev->name);
3366
3367         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3368         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3369
3370         if (sp->device_type == XFRAME_II_DEVICE) {
3371                 int ret;
3372                 ret = pci_set_power_state(sp->pdev, 3);
3373                 if (!ret)
3374                         ret = pci_set_power_state(sp->pdev, 0);
3375                 else {
3376                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3377                                         __FUNCTION__);
3378                         goto old_way;
3379                 }
3380                 msleep(20);
3381                 goto new_way;
3382         }
3383 old_way:
3384         val64 = SW_RESET_ALL;
3385         writeq(val64, &bar0->sw_reset);
3386 new_way:
3387         if (strstr(sp->product_name, "CX4")) {
3388                 msleep(750);
3389         }
3390         msleep(250);
3391         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3392
3393                 /* Restore the PCI state saved during initialization. */
3394                 pci_restore_state(sp->pdev);
3395                 pci_read_config_word(sp->pdev, 0x2, &val16);
3396                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3397                         break;
3398                 msleep(200);
3399         }
3400
3401         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3402                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3403         }
3404
3405         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3406
3407         s2io_init_pci(sp);
3408
3409         /* Set swapper to enable I/O register access */
3410         s2io_set_swapper(sp);
3411
3412         /* Restore the MSIX table entries from local variables */
3413         restore_xmsi_data(sp);
3414
3415         /* Clear certain PCI/PCI-X fields after reset */
3416         if (sp->device_type == XFRAME_II_DEVICE) {
3417                 /* Clear "detected parity error" bit */
3418                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3419
3420                 /* Clearing PCIX Ecc status register */
3421                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3422
3423                 /* Clearing PCI_STATUS error reflected here */
3424                 writeq(BIT(62), &bar0->txpic_int_reg);
3425         }
3426
3427         /* Reset device statistics maintained by OS */
3428         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3429
3430         /* SXE-002: Configure link and activity LED to turn it off */
3431         subid = sp->pdev->subsystem_device;
3432         if (((subid & 0xFF) >= 0x07) &&
3433             (sp->device_type == XFRAME_I_DEVICE)) {
3434                 val64 = readq(&bar0->gpio_control);
3435                 val64 |= 0x0000800000000000ULL;
3436                 writeq(val64, &bar0->gpio_control);
3437                 val64 = 0x0411040400000000ULL;
3438                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3439         }
3440
3441         /*
3442          * Clear spurious ECC interrupts that would have occured on
3443          * XFRAME II cards after reset.
3444          */
3445         if (sp->device_type == XFRAME_II_DEVICE) {
3446                 val64 = readq(&bar0->pcc_err_reg);
3447                 writeq(val64, &bar0->pcc_err_reg);
3448         }
3449
3450         sp->device_enabled_once = FALSE;
3451 }
3452
3453 /**
3454  *  s2io_set_swapper - to set the swapper controle on the card
3455  *  @sp : private member of the device structure,
3456  *  pointer to the s2io_nic structure.
3457  *  Description: Function to set the swapper control on the card
3458  *  correctly depending on the 'endianness' of the system.
3459  *  Return value:
3460  *  SUCCESS on success and FAILURE on failure.
3461  */
3462
3463 static int s2io_set_swapper(nic_t * sp)
3464 {
3465         struct net_device *dev = sp->dev;
3466         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3467         u64 val64, valt, valr;
3468
3469         /*
3470          * Set proper endian settings and verify the same by reading
3471          * the PIF Feed-back register.
3472          */
3473
3474         val64 = readq(&bar0->pif_rd_swapper_fb);
3475         if (val64 != 0x0123456789ABCDEFULL) {
3476                 int i = 0;
3477                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3478                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3479                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3480                                 0};                     /* FE=0, SE=0 */
3481
3482                 while(i<4) {
3483                         writeq(value[i], &bar0->swapper_ctrl);
3484                         val64 = readq(&bar0->pif_rd_swapper_fb);
3485                         if (val64 == 0x0123456789ABCDEFULL)
3486                                 break;
3487                         i++;
3488                 }
3489                 if (i == 4) {
3490                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3491                                 dev->name);
3492                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3493                                 (unsigned long long) val64);
3494                         return FAILURE;
3495                 }
3496                 valr = value[i];
3497         } else {
3498                 valr = readq(&bar0->swapper_ctrl);
3499         }
3500
3501         valt = 0x0123456789ABCDEFULL;
3502         writeq(valt, &bar0->xmsi_address);
3503         val64 = readq(&bar0->xmsi_address);
3504
3505         if(val64 != valt) {
3506                 int i = 0;
3507                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3508                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3509                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3510                                 0};                     /* FE=0, SE=0 */
3511
3512                 while(i<4) {
3513                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3514                         writeq(valt, &bar0->xmsi_address);
3515                         val64 = readq(&bar0->xmsi_address);
3516                         if(val64 == valt)
3517                                 break;
3518                         i++;
3519                 }
3520                 if(i == 4) {
3521                         unsigned long long x = val64;
3522                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3523                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3524                         return FAILURE;
3525                 }
3526         }
3527         val64 = readq(&bar0->swapper_ctrl);
3528         val64 &= 0xFFFF000000000000ULL;
3529
3530 #ifdef  __BIG_ENDIAN
3531         /*
3532          * The device by default set to a big endian format, so a
3533          * big endian driver need not set anything.
3534          */
3535         val64 |= (SWAPPER_CTRL_TXP_FE |
3536                  SWAPPER_CTRL_TXP_SE |
3537                  SWAPPER_CTRL_TXD_R_FE |
3538                  SWAPPER_CTRL_TXD_W_FE |
3539                  SWAPPER_CTRL_TXF_R_FE |
3540                  SWAPPER_CTRL_RXD_R_FE |
3541                  SWAPPER_CTRL_RXD_W_FE |
3542                  SWAPPER_CTRL_RXF_W_FE |
3543                  SWAPPER_CTRL_XMSI_FE |
3544                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3545         if (sp->intr_type == INTA)
3546                 val64 |= SWAPPER_CTRL_XMSI_SE;
3547         writeq(val64, &bar0->swapper_ctrl);
3548 #else
3549         /*
3550          * Initially we enable all bits to make it accessible by the
3551          * driver, then we selectively enable only those bits that
3552          * we want to set.
3553          */
3554         val64 |= (SWAPPER_CTRL_TXP_FE |
3555                  SWAPPER_CTRL_TXP_SE |
3556                  SWAPPER_CTRL_TXD_R_FE |
3557                  SWAPPER_CTRL_TXD_R_SE |
3558                  SWAPPER_CTRL_TXD_W_FE |
3559                  SWAPPER_CTRL_TXD_W_SE |
3560                  SWAPPER_CTRL_TXF_R_FE |
3561                  SWAPPER_CTRL_RXD_R_FE |
3562                  SWAPPER_CTRL_RXD_R_SE |
3563                  SWAPPER_CTRL_RXD_W_FE |
3564                  SWAPPER_CTRL_RXD_W_SE |
3565                  SWAPPER_CTRL_RXF_W_FE |
3566                  SWAPPER_CTRL_XMSI_FE |
3567                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3568         if (sp->intr_type == INTA)
3569                 val64 |= SWAPPER_CTRL_XMSI_SE;
3570         writeq(val64, &bar0->swapper_ctrl);
3571 #endif
3572         val64 = readq(&bar0->swapper_ctrl);
3573
3574         /*
3575          * Verifying if endian settings are accurate by reading a
3576          * feedback register.
3577          */
3578         val64 = readq(&bar0->pif_rd_swapper_fb);
3579         if (val64 != 0x0123456789ABCDEFULL) {
3580                 /* Endian settings are incorrect, calls for another dekko. */
3581                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3582                           dev->name);
3583                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3584                           (unsigned long long) val64);
3585                 return FAILURE;
3586         }
3587
3588         return SUCCESS;
3589 }
3590
3591 static int wait_for_msix_trans(nic_t *nic, int i)
3592 {
3593         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3594         u64 val64;
3595         int ret = 0, cnt = 0;
3596
3597         do {
3598                 val64 = readq(&bar0->xmsi_access);
3599                 if (!(val64 & BIT(15)))
3600                         break;
3601                 mdelay(1);
3602                 cnt++;
3603         } while(cnt < 5);
3604         if (cnt == 5) {
3605                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3606                 ret = 1;
3607         }
3608
3609         return ret;
3610 }
3611
3612 static void restore_xmsi_data(nic_t *nic)
3613 {
3614         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3615         u64 val64;
3616         int i;
3617
3618         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3619                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3620                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3621                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3622                 writeq(val64, &bar0->xmsi_access);
3623                 if (wait_for_msix_trans(nic, i)) {
3624                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3625                         continue;
3626                 }
3627         }
3628 }
3629
3630 static void store_xmsi_data(nic_t *nic)
3631 {
3632         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3633         u64 val64, addr, data;
3634         int i;
3635
3636         /* Store and display */
3637         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3638                 val64 = (BIT(15) | vBIT(i, 26, 6));
3639                 writeq(val64, &bar0->xmsi_access);
3640                 if (wait_for_msix_trans(nic, i)) {
3641                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3642                         continue;
3643                 }
3644                 addr = readq(&bar0->xmsi_address);
3645                 data = readq(&bar0->xmsi_data);
3646                 if (addr && data) {
3647                         nic->msix_info[i].addr = addr;
3648                         nic->msix_info[i].data = data;
3649                 }
3650         }
3651 }
3652
3653 int s2io_enable_msi(nic_t *nic)
3654 {
3655         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3656         u16 msi_ctrl, msg_val;
3657         struct config_param *config = &nic->config;
3658         struct net_device *dev = nic->dev;
3659         u64 val64, tx_mat, rx_mat;
3660         int i, err;
3661
3662         val64 = readq(&bar0->pic_control);
3663         val64 &= ~BIT(1);
3664         writeq(val64, &bar0->pic_control);
3665
3666         err = pci_enable_msi(nic->pdev);
3667         if (err) {
3668                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3669                           nic->dev->name);
3670                 return err;
3671         }
3672
3673         /*
3674          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3675          * for interrupt handling.
3676          */
3677         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3678         msg_val ^= 0x1;
3679         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3680         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3681
3682         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3683         msi_ctrl |= 0x10;
3684         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3685
3686         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3687         tx_mat = readq(&bar0->tx_mat0_n[0]);
3688         for (i=0; i<config->tx_fifo_num; i++) {
3689                 tx_mat |= TX_MAT_SET(i, 1);
3690         }
3691         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3692
3693         rx_mat = readq(&bar0->rx_mat);
3694         for (i=0; i<config->rx_ring_num; i++) {
3695                 rx_mat |= RX_MAT_SET(i, 1);
3696         }
3697         writeq(rx_mat, &bar0->rx_mat);
3698
3699         dev->irq = nic->pdev->irq;
3700         return 0;
3701 }
3702
3703 static int s2io_enable_msi_x(nic_t *nic)
3704 {
3705         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3706         u64 tx_mat, rx_mat;
3707         u16 msi_control; /* Temp variable */
3708         int ret, i, j, msix_indx = 1;
3709
3710         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3711                                GFP_KERNEL);
3712         if (nic->entries == NULL) {
3713                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3714                 return -ENOMEM;
3715         }
3716         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3717
3718         nic->s2io_entries =
3719                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3720                                    GFP_KERNEL);
3721         if (nic->s2io_entries == NULL) {
3722                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3723                 kfree(nic->entries);
3724                 return -ENOMEM;
3725         }
3726         memset(nic->s2io_entries, 0,
3727                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3728
3729         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3730                 nic->entries[i].entry = i;
3731                 nic->s2io_entries[i].entry = i;
3732                 nic->s2io_entries[i].arg = NULL;
3733                 nic->s2io_entries[i].in_use = 0;
3734         }
3735
3736         tx_mat = readq(&bar0->tx_mat0_n[0]);
3737         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3738                 tx_mat |= TX_MAT_SET(i, msix_indx);
3739                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3740                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3741                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3742         }
3743         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3744
3745         if (!nic->config.bimodal) {
3746                 rx_mat = readq(&bar0->rx_mat);
3747                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3748                         rx_mat |= RX_MAT_SET(j, msix_indx);
3749                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3750                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3751                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3752                 }
3753                 writeq(rx_mat, &bar0->rx_mat);
3754         } else {
3755                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3756                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3757                         tx_mat |= TX_MAT_SET(i, msix_indx);
3758                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3759                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3760                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3761                 }
3762                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3763         }
3764
3765         nic->avail_msix_vectors = 0;
3766         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3767         /* We fail init if error or we get less vectors than min required */
3768         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3769                 nic->avail_msix_vectors = ret;
3770                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3771         }
3772         if (ret) {
3773                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3774                 kfree(nic->entries);
3775                 kfree(nic->s2io_entries);
3776                 nic->entries = NULL;
3777                 nic->s2io_entries = NULL;
3778                 nic->avail_msix_vectors = 0;
3779                 return -ENOMEM;
3780         }
3781         if (!nic->avail_msix_vectors)
3782                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3783
3784         /*
3785          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3786          * in the herc NIC. (Temp change, needs to be removed later)
3787          */
3788         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3789         msi_control |= 0x1; /* Enable MSI */
3790         pci_write_config_word(nic->pdev, 0x42, msi_control);
3791
3792         return 0;
3793 }
3794
3795 /* ********************************************************* *
3796  * Functions defined below concern the OS part of the driver *
3797  * ********************************************************* */
3798
3799 /**
3800  *  s2io_open - open entry point of the driver
3801  *  @dev : pointer to the device structure.
3802  *  Description:
3803  *  This function is the open entry point of the driver. It mainly calls a
3804  *  function to allocate Rx buffers and inserts them into the buffer
3805  *  descriptors and then enables the Rx part of the NIC.
3806  *  Return value:
3807  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3808  *   file on failure.
3809  */
3810
3811 static int s2io_open(struct net_device *dev)
3812 {
3813         nic_t *sp = dev->priv;
3814         int err = 0;
3815
3816         /*
3817          * Make sure you have link off by default every time
3818          * Nic is initialized
3819          */
3820         netif_carrier_off(dev);
3821         sp->last_link_state = 0;
3822
3823         /* Initialize H/W and enable interrupts */
3824         err = s2io_card_up(sp);
3825         if (err) {
3826                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3827                           dev->name);
3828                 goto hw_init_failed;
3829         }
3830
3831         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3832                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3833                 s2io_card_down(sp);
3834                 err = -ENODEV;
3835                 goto hw_init_failed;
3836         }
3837
3838         netif_start_queue(dev);
3839         return 0;
3840
3841 hw_init_failed:
3842         if (sp->intr_type == MSI_X) {
3843                 if (sp->entries)
3844                         kfree(sp->entries);
3845                 if (sp->s2io_entries)
3846                         kfree(sp->s2io_entries);
3847         }
3848         return err;
3849 }
3850
3851 /**
3852  *  s2io_close -close entry point of the driver
3853  *  @dev : device pointer.
3854  *  Description:
3855  *  This is the stop entry point of the driver. It needs to undo exactly
3856  *  whatever was done by the open entry point,thus it's usually referred to
3857  *  as the close function.Among other things this function mainly stops the
3858  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3859  *  Return value:
3860  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3861  *  file on failure.
3862  */
3863
3864 static int s2io_close(struct net_device *dev)
3865 {
3866         nic_t *sp = dev->priv;
3867
3868         flush_scheduled_work();
3869         netif_stop_queue(dev);
3870         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3871         s2io_card_down(sp);
3872
3873         sp->device_close_flag = TRUE;   /* Device is shut down. */
3874         return 0;
3875 }
3876
3877 /**
3878  *  s2io_xmit - Tx entry point of te driver
3879  *  @skb : the socket buffer containing the Tx data.
3880  *  @dev : device pointer.
3881  *  Description :
3882  *  This function is the Tx entry point of the driver. S2IO NIC supports
3883  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3884  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3885  *  not be upadted.
3886  *  Return value:
3887  *  0 on success & 1 on failure.
3888  */
3889
3890 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3891 {
3892         nic_t *sp = dev->priv;
3893         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3894         register u64 val64;
3895         TxD_t *txdp;
3896         TxFIFO_element_t __iomem *tx_fifo;
3897         unsigned long flags;
3898         u16 vlan_tag = 0;
3899         int vlan_priority = 0;
3900         mac_info_t *mac_control;
3901         struct config_param *config;
3902         int offload_type;
3903
3904         mac_control = &sp->mac_control;
3905         config = &sp->config;
3906
3907         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3908         spin_lock_irqsave(&sp->tx_lock, flags);
3909         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3910                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3911                           dev->name);
3912                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3913                 dev_kfree_skb(skb);
3914                 return 0;
3915         }
3916
3917         queue = 0;
3918
3919         /* Get Fifo number to Transmit based on vlan priority */
3920         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3921                 vlan_tag = vlan_tx_tag_get(skb);
3922                 vlan_priority = vlan_tag >> 13;
3923                 queue = config->fifo_mapping[vlan_priority];
3924         }
3925
3926         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3927         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3928         txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3929                 list_virt_addr;
3930
3931         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3932         /* Avoid "put" pointer going beyond "get" pointer */
3933         if (txdp->Host_Control ||
3934                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3935                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3936                 netif_stop_queue(dev);
3937                 dev_kfree_skb(skb);
3938                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3939                 return 0;
3940         }
3941
3942         /* A buffer with no data will be dropped */
3943         if (!skb->len) {
3944                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3945                 dev_kfree_skb(skb);
3946                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3947                 return 0;
3948         }
3949
3950         offload_type = s2io_offload_type(skb);
3951         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3952                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3953                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3954         }
3955         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3956                 txdp->Control_2 |=
3957                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3958                      TXD_TX_CKO_UDP_EN);
3959         }
3960         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3961         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3962         txdp->Control_2 |= config->tx_intr_type;
3963
3964         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3965                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3966                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3967         }
3968
3969         frg_len = skb->len - skb->data_len;
3970         if (offload_type == SKB_GSO_UDP) {
3971                 int ufo_size;
3972
3973                 ufo_size = s2io_udp_mss(skb);
3974                 ufo_size &= ~7;
3975                 txdp->Control_1 |= TXD_UFO_EN;
3976                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3977                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3978 #ifdef __BIG_ENDIAN
3979                 sp->ufo_in_band_v[put_off] =
3980                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3981 #else
3982                 sp->ufo_in_band_v[put_off] =
3983                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3984 #endif
3985                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3986                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3987                                         sp->ufo_in_band_v,
3988                                         sizeof(u64), PCI_DMA_TODEVICE);
3989                 txdp++;
3990         }
3991
3992         txdp->Buffer_Pointer = pci_map_single
3993             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3994         txdp->Host_Control = (unsigned long) skb;
3995         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3996         if (offload_type == SKB_GSO_UDP)
3997                 txdp->Control_1 |= TXD_UFO_EN;
3998
3999         frg_cnt = skb_shinfo(skb)->nr_frags;
4000         /* For fragmented SKB. */
4001         for (i = 0; i < frg_cnt; i++) {
4002                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4003                 /* A '0' length fragment will be ignored */
4004                 if (!frag->size)
4005                         continue;
4006                 txdp++;
4007                 txdp->Buffer_Pointer = (u64) pci_map_page
4008                     (sp->pdev, frag->page, frag->page_offset,
4009                      frag->size, PCI_DMA_TODEVICE);
4010                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4011                 if (offload_type == SKB_GSO_UDP)
4012                         txdp->Control_1 |= TXD_UFO_EN;
4013         }
4014         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4015
4016         if (offload_type == SKB_GSO_UDP)
4017                 frg_cnt++; /* as Txd0 was used for inband header */
4018
4019         tx_fifo = mac_control->tx_FIFO_start[queue];
4020         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4021         writeq(val64, &tx_fifo->TxDL_Pointer);
4022
4023         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4024                  TX_FIFO_LAST_LIST);
4025         if (offload_type)
4026                 val64 |= TX_FIFO_SPECIAL_FUNC;
4027
4028         writeq(val64, &tx_fifo->List_Control);
4029
4030         mmiowb();
4031
4032         put_off++;
4033         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4034                 put_off = 0;
4035         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4036
4037         /* Avoid "put" pointer going beyond "get" pointer */
4038         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4039                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4040                 DBG_PRINT(TX_DBG,
4041                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4042                           put_off, get_off);
4043                 netif_stop_queue(dev);
4044         }
4045
4046         dev->trans_start = jiffies;
4047         spin_unlock_irqrestore(&sp->tx_lock, flags);
4048
4049         return 0;
4050 }
4051
4052 static void
4053 s2io_alarm_handle(unsigned long data)
4054 {
4055         nic_t *sp = (nic_t *)data;
4056
4057         alarm_intr_handler(sp);
4058         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4059 }
4060
4061 static int s2io_chk_rx_buffers(nic_t *sp, int rng_n)
4062 {
4063         int rxb_size, level;
4064
4065         if (!sp->lro) {
4066                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4067                 level = rx_buffer_level(sp, rxb_size, rng_n);
4068
4069                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4070                         int ret;
4071                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4072                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4073                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4074                                 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4075                                           __FUNCTION__);
4076                                 clear_bit(0, (&sp->tasklet_status));
4077                                 return -1;
4078                         }
4079                         clear_bit(0, (&sp->tasklet_status));
4080                 } else if (level == LOW)
4081                         tasklet_schedule(&sp->task);
4082
4083         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4084                         DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
4085                         DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4086         }
4087         return 0;
4088 }
4089
4090 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4091 {
4092         struct net_device *dev = (struct net_device *) dev_id;
4093         nic_t *sp = dev->priv;
4094         int i;
4095         mac_info_t *mac_control;
4096         struct config_param *config;
4097
4098         atomic_inc(&sp->isr_cnt);
4099         mac_control = &sp->mac_control;
4100         config = &sp->config;
4101         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4102
4103         /* If Intr is because of Rx Traffic */
4104         for (i = 0; i < config->rx_ring_num; i++)
4105                 rx_intr_handler(&mac_control->rings[i]);
4106
4107         /* If Intr is because of Tx Traffic */
4108         for (i = 0; i < config->tx_fifo_num; i++)
4109                 tx_intr_handler(&mac_control->fifos[i]);
4110
4111         /*
4112          * If the Rx buffer count is below the panic threshold then
4113          * reallocate the buffers from the interrupt handler itself,
4114          * else schedule a tasklet to reallocate the buffers.
4115          */
4116         for (i = 0; i < config->rx_ring_num; i++)
4117                 s2io_chk_rx_buffers(sp, i);
4118
4119         atomic_dec(&sp->isr_cnt);
4120         return IRQ_HANDLED;
4121 }
4122
4123 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4124 {
4125         ring_info_t *ring = (ring_info_t *)dev_id;
4126         nic_t *sp = ring->nic;
4127
4128         atomic_inc(&sp->isr_cnt);
4129
4130         rx_intr_handler(ring);
4131         s2io_chk_rx_buffers(sp, ring->ring_no);
4132
4133         atomic_dec(&sp->isr_cnt);
4134         return IRQ_HANDLED;
4135 }
4136
4137 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4138 {
4139         fifo_info_t *fifo = (fifo_info_t *)dev_id;
4140         nic_t *sp = fifo->nic;
4141
4142         atomic_inc(&sp->isr_cnt);
4143         tx_intr_handler(fifo);
4144         atomic_dec(&sp->isr_cnt);
4145         return IRQ_HANDLED;
4146 }
4147 static void s2io_txpic_intr_handle(nic_t *sp)
4148 {
4149         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4150         u64 val64;
4151
4152         val64 = readq(&bar0->pic_int_status);
4153         if (val64 & PIC_INT_GPIO) {
4154                 val64 = readq(&bar0->gpio_int_reg);
4155                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4156                     (val64 & GPIO_INT_REG_LINK_UP)) {
4157                         /*
4158                          * This is unstable state so clear both up/down
4159                          * interrupt and adapter to re-evaluate the link state.
4160                          */
4161                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4162                         val64 |= GPIO_INT_REG_LINK_UP;
4163                         writeq(val64, &bar0->gpio_int_reg);
4164                         val64 = readq(&bar0->gpio_int_mask);
4165                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4166                                    GPIO_INT_MASK_LINK_DOWN);
4167                         writeq(val64, &bar0->gpio_int_mask);
4168                 }
4169                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4170                         val64 = readq(&bar0->adapter_status);
4171                                 /* Enable Adapter */
4172                         val64 = readq(&bar0->adapter_control);
4173                         val64 |= ADAPTER_CNTL_EN;
4174                         writeq(val64, &bar0->adapter_control);
4175                         val64 |= ADAPTER_LED_ON;
4176                         writeq(val64, &bar0->adapter_control);
4177                         if (!sp->device_enabled_once)
4178                                 sp->device_enabled_once = 1;
4179
4180                         s2io_link(sp, LINK_UP);
4181                         /*
4182                          * unmask link down interrupt and mask link-up
4183                          * intr
4184                          */
4185                         val64 = readq(&bar0->gpio_int_mask);
4186                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4187                         val64 |= GPIO_INT_MASK_LINK_UP;
4188                         writeq(val64, &bar0->gpio_int_mask);
4189
4190                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4191                         val64 = readq(&bar0->adapter_status);
4192                         s2io_link(sp, LINK_DOWN);
4193                         /* Link is down so unmaks link up interrupt */
4194                         val64 = readq(&bar0->gpio_int_mask);
4195                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4196                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4197                         writeq(val64, &bar0->gpio_int_mask);
4198                 }
4199         }
4200         val64 = readq(&bar0->gpio_int_mask);
4201 }
4202
4203 /**
4204  *  s2io_isr - ISR handler of the device .
4205  *  @irq: the irq of the device.
4206  *  @dev_id: a void pointer to the dev structure of the NIC.
4207  *  Description:  This function is the ISR handler of the device. It
4208  *  identifies the reason for the interrupt and calls the relevant
4209  *  service routines. As a contongency measure, this ISR allocates the
4210  *  recv buffers, if their numbers are below the panic value which is
4211  *  presently set to 25% of the original number of rcv buffers allocated.
4212  *  Return value:
4213  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4214  *   IRQ_NONE: will be returned if interrupt is not from our device
4215  */
4216 static irqreturn_t s2io_isr(int irq, void *dev_id)
4217 {
4218         struct net_device *dev = (struct net_device *) dev_id;
4219         nic_t *sp = dev->priv;
4220         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4221         int i;
4222         u64 reason = 0;
4223         mac_info_t *mac_control;
4224         struct config_param *config;
4225
4226         atomic_inc(&sp->isr_cnt);
4227         mac_control = &sp->mac_control;
4228         config = &sp->config;
4229
4230         /*
4231          * Identify the cause for interrupt and call the appropriate
4232          * interrupt handler. Causes for the interrupt could be;
4233          * 1. Rx of packet.
4234          * 2. Tx complete.
4235          * 3. Link down.
4236          * 4. Error in any functional blocks of the NIC.
4237          */
4238         reason = readq(&bar0->general_int_status);
4239
4240         if (!reason) {
4241                 /* The interrupt was not raised by us. */
4242                 atomic_dec(&sp->isr_cnt);
4243                 return IRQ_NONE;
4244         }
4245         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4246                 /* Disable device and get out */
4247                 atomic_dec(&sp->isr_cnt);
4248                 return IRQ_NONE;
4249         }
4250
4251         if (napi) {
4252                 if (reason & GEN_INTR_RXTRAFFIC) {
4253                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4254                                 __netif_rx_schedule(dev);
4255                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4256                         }
4257                         else
4258                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4259                 }
4260         } else {
4261                 /*
4262                  * Rx handler is called by default, without checking for the
4263                  * cause of interrupt.
4264                  * rx_traffic_int reg is an R1 register, writing all 1's
4265                  * will ensure that the actual interrupt causing bit get's
4266                  * cleared and hence a read can be avoided.
4267                  */
4268                 if (reason & GEN_INTR_RXTRAFFIC)
4269                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4270
4271                 for (i = 0; i < config->rx_ring_num; i++) {
4272                         rx_intr_handler(&mac_control->rings[i]);
4273                 }
4274         }
4275
4276         /*
4277          * tx_traffic_int reg is an R1 register, writing all 1's
4278          * will ensure that the actual interrupt causing bit get's
4279          * cleared and hence a read can be avoided.
4280          */
4281         if (reason & GEN_INTR_TXTRAFFIC)
4282                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4283
4284         for (i = 0; i < config->tx_fifo_num; i++)
4285                 tx_intr_handler(&mac_control->fifos[i]);
4286
4287         if (reason & GEN_INTR_TXPIC)
4288                 s2io_txpic_intr_handle(sp);
4289         /*
4290          * If the Rx buffer count is below the panic threshold then
4291          * reallocate the buffers from the interrupt handler itself,
4292          * else schedule a tasklet to reallocate the buffers.
4293          */
4294         if (!napi) {
4295                 for (i = 0; i < config->rx_ring_num; i++)
4296                         s2io_chk_rx_buffers(sp, i);
4297         }
4298
4299         writeq(0, &bar0->general_int_mask);
4300         readl(&bar0->general_int_status);
4301
4302         atomic_dec(&sp->isr_cnt);
4303         return IRQ_HANDLED;
4304 }
4305
4306 /**
4307  * s2io_updt_stats -
4308  */
4309 static void s2io_updt_stats(nic_t *sp)
4310 {
4311         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4312         u64 val64;
4313         int cnt = 0;
4314
4315         if (atomic_read(&sp->card_state) == CARD_UP) {
4316                 /* Apprx 30us on a 133 MHz bus */
4317                 val64 = SET_UPDT_CLICKS(10) |
4318                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4319                 writeq(val64, &bar0->stat_cfg);
4320                 do {
4321                         udelay(100);
4322                         val64 = readq(&bar0->stat_cfg);
4323                         if (!(val64 & BIT(0)))
4324                                 break;
4325                         cnt++;
4326                         if (cnt == 5)
4327                                 break; /* Updt failed */
4328                 } while(1);
4329         } else {
4330                 memset(sp->mac_control.stats_info, 0, sizeof(StatInfo_t));
4331         }
4332 }
4333
4334 /**
4335  *  s2io_get_stats - Updates the device statistics structure.
4336  *  @dev : pointer to the device structure.
4337  *  Description:
4338  *  This function updates the device statistics structure in the s2io_nic
4339  *  structure and returns a pointer to the same.
4340  *  Return value:
4341  *  pointer to the updated net_device_stats structure.
4342  */
4343
4344 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4345 {
4346         nic_t *sp = dev->priv;
4347         mac_info_t *mac_control;
4348         struct config_param *config;
4349
4350
4351         mac_control = &sp->mac_control;
4352         config = &sp->config;
4353
4354         /* Configure Stats for immediate updt */
4355         s2io_updt_stats(sp);
4356
4357         sp->stats.tx_packets =
4358                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4359         sp->stats.tx_errors =
4360                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4361         sp->stats.rx_errors =
4362                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4363         sp->stats.multicast =
4364                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4365         sp->stats.rx_length_errors =
4366                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4367
4368         return (&sp->stats);
4369 }
4370
4371 /**
4372  *  s2io_set_multicast - entry point for multicast address enable/disable.
4373  *  @dev : pointer to the device structure
4374  *  Description:
4375  *  This function is a driver entry point which gets called by the kernel
4376  *  whenever multicast addresses must be enabled/disabled. This also gets
4377  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4378  *  determine, if multicast address must be enabled or if promiscuous mode
4379  *  is to be disabled etc.
4380  *  Return value:
4381  *  void.
4382  */
4383
4384 static void s2io_set_multicast(struct net_device *dev)
4385 {
4386         int i, j, prev_cnt;
4387         struct dev_mc_list *mclist;
4388         nic_t *sp = dev->priv;
4389         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4390         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4391             0xfeffffffffffULL;
4392         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4393         void __iomem *add;
4394
4395         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4396                 /*  Enable all Multicast addresses */
4397                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4398                        &bar0->rmac_addr_data0_mem);
4399                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4400                        &bar0->rmac_addr_data1_mem);
4401                 val64 = RMAC_ADDR_CMD_MEM_WE |
4402                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4403                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4404                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4405                 /* Wait till command completes */
4406                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4407                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4408
4409                 sp->m_cast_flg = 1;
4410                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4411         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4412                 /*  Disable all Multicast addresses */
4413                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4414                        &bar0->rmac_addr_data0_mem);
4415                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4416                        &bar0->rmac_addr_data1_mem);
4417                 val64 = RMAC_ADDR_CMD_MEM_WE |
4418                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4419                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4420                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4421                 /* Wait till command completes */
4422                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4423                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4424
4425                 sp->m_cast_flg = 0;
4426                 sp->all_multi_pos = 0;
4427         }
4428
4429         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4430                 /*  Put the NIC into promiscuous mode */
4431                 add = &bar0->mac_cfg;
4432                 val64 = readq(&bar0->mac_cfg);
4433                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4434
4435                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4436                 writel((u32) val64, add);
4437                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4438                 writel((u32) (val64 >> 32), (add + 4));
4439
4440                 val64 = readq(&bar0->mac_cfg);
4441                 sp->promisc_flg = 1;
4442                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4443                           dev->name);
4444         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4445                 /*  Remove the NIC from promiscuous mode */
4446                 add = &bar0->mac_cfg;
4447                 val64 = readq(&bar0->mac_cfg);
4448                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4449
4450                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4451                 writel((u32) val64, add);
4452                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4453                 writel((u32) (val64 >> 32), (add + 4));
4454
4455                 val64 = readq(&bar0->mac_cfg);
4456                 sp->promisc_flg = 0;
4457                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4458                           dev->name);
4459         }
4460
4461         /*  Update individual M_CAST address list */
4462         if ((!sp->m_cast_flg) && dev->mc_count) {
4463                 if (dev->mc_count >
4464                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4465                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4466                                   dev->name);
4467                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4468                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4469                         return;
4470                 }
4471
4472                 prev_cnt = sp->mc_addr_count;
4473                 sp->mc_addr_count = dev->mc_count;
4474
4475                 /* Clear out the previous list of Mc in the H/W. */
4476                 for (i = 0; i < prev_cnt; i++) {
4477                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4478                                &bar0->rmac_addr_data0_mem);
4479                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4480                                 &bar0->rmac_addr_data1_mem);
4481                         val64 = RMAC_ADDR_CMD_MEM_WE |
4482                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4483                             RMAC_ADDR_CMD_MEM_OFFSET
4484                             (MAC_MC_ADDR_START_OFFSET + i);
4485                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4486
4487                         /* Wait for command completes */
4488                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4489                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4490                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4491                                           dev->name);
4492                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4493                                 return;
4494                         }
4495                 }
4496
4497                 /* Create the new Rx filter list and update the same in H/W. */
4498                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4499                      i++, mclist = mclist->next) {
4500                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4501                                ETH_ALEN);
4502                         mac_addr = 0;
4503                         for (j = 0; j < ETH_ALEN; j++) {
4504                                 mac_addr |= mclist->dmi_addr[j];
4505                                 mac_addr <<= 8;
4506                         }
4507                         mac_addr >>= 8;
4508                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4509                                &bar0->rmac_addr_data0_mem);
4510                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4511                                 &bar0->rmac_addr_data1_mem);
4512                         val64 = RMAC_ADDR_CMD_MEM_WE |
4513                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4514                             RMAC_ADDR_CMD_MEM_OFFSET
4515                             (i + MAC_MC_ADDR_START_OFFSET);
4516                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4517
4518                         /* Wait for command completes */
4519                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4520                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4521                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4522                                           dev->name);
4523                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4524                                 return;
4525                         }
4526                 }
4527         }
4528 }
4529
4530 /**
4531  *  s2io_set_mac_addr - Programs the Xframe mac address
4532  *  @dev : pointer to the device structure.
4533  *  @addr: a uchar pointer to the new mac address which is to be set.
4534  *  Description : This procedure will program the Xframe to receive
4535  *  frames with new Mac Address
4536  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4537  *  as defined in errno.h file on failure.
4538  */
4539
4540 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4541 {
4542         nic_t *sp = dev->priv;
4543         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4544         register u64 val64, mac_addr = 0;
4545         int i;
4546
4547         /*
4548          * Set the new MAC address as the new unicast filter and reflect this
4549          * change on the device address registered with the OS. It will be
4550          * at offset 0.
4551          */
4552         for (i = 0; i < ETH_ALEN; i++) {
4553                 mac_addr <<= 8;
4554                 mac_addr |= addr[i];
4555         }
4556
4557         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4558                &bar0->rmac_addr_data0_mem);
4559
4560         val64 =
4561             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4562             RMAC_ADDR_CMD_MEM_OFFSET(0);
4563         writeq(val64, &bar0->rmac_addr_cmd_mem);
4564         /* Wait till command completes */
4565         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4566                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4567                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4568                 return FAILURE;
4569         }
4570
4571         return SUCCESS;
4572 }
4573
4574 /**
4575  * s2io_ethtool_sset - Sets different link parameters.
4576  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4577  * @info: pointer to the structure with parameters given by ethtool to set
4578  * link information.
4579  * Description:
4580  * The function sets different link parameters provided by the user onto
4581  * the NIC.
4582  * Return value:
4583  * 0 on success.
4584 */
4585
4586 static int s2io_ethtool_sset(struct net_device *dev,
4587                              struct ethtool_cmd *info)
4588 {
4589         nic_t *sp = dev->priv;
4590         if ((info->autoneg == AUTONEG_ENABLE) ||
4591             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4592                 return -EINVAL;
4593         else {
4594                 s2io_close(sp->dev);
4595                 s2io_open(sp->dev);
4596         }
4597
4598         return 0;
4599 }
4600
4601 /**
4602  * s2io_ethtol_gset - Return link specific information.
4603  * @sp : private member of the device structure, pointer to the
4604  *      s2io_nic structure.
4605  * @info : pointer to the structure with parameters given by ethtool
4606  * to return link information.
4607  * Description:
4608  * Returns link specific information like speed, duplex etc.. to ethtool.
4609  * Return value :
4610  * return 0 on success.
4611  */
4612
4613 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4614 {
4615         nic_t *sp = dev->priv;
4616         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4617         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4618         info->port = PORT_FIBRE;
4619         /* info->transceiver?? TODO */
4620
4621         if (netif_carrier_ok(sp->dev)) {
4622                 info->speed = 10000;
4623                 info->duplex = DUPLEX_FULL;
4624         } else {
4625                 info->speed = -1;
4626                 info->duplex = -1;
4627         }
4628
4629         info->autoneg = AUTONEG_DISABLE;
4630         return 0;
4631 }
4632
4633 /**
4634  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4635  * @sp : private member of the device structure, which is a pointer to the
4636  * s2io_nic structure.
4637  * @info : pointer to the structure with parameters given by ethtool to
4638  * return driver information.
4639  * Description:
4640  * Returns driver specefic information like name, version etc.. to ethtool.
4641  * Return value:
4642  *  void
4643  */
4644
4645 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4646                                   struct ethtool_drvinfo *info)
4647 {
4648         nic_t *sp = dev->priv;
4649
4650         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4651         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4652         strncpy(info->fw_version, "", sizeof(info->fw_version));
4653         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4654         info->regdump_len = XENA_REG_SPACE;
4655         info->eedump_len = XENA_EEPROM_SPACE;
4656         info->testinfo_len = S2IO_TEST_LEN;
4657         info->n_stats = S2IO_STAT_LEN;
4658 }
4659
4660 /**
4661  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4662  *  @sp: private member of the device structure, which is a pointer to the
4663  *  s2io_nic structure.
4664  *  @regs : pointer to the structure with parameters given by ethtool for
4665  *  dumping the registers.
4666  *  @reg_space: The input argumnet into which all the registers are dumped.
4667  *  Description:
4668  *  Dumps the entire register space of xFrame NIC into the user given
4669  *  buffer area.
4670  * Return value :
4671  * void .
4672 */
4673
4674 static void s2io_ethtool_gregs(struct net_device *dev,
4675                                struct ethtool_regs *regs, void *space)
4676 {
4677         int i;
4678         u64 reg;
4679         u8 *reg_space = (u8 *) space;
4680         nic_t *sp = dev->priv;
4681
4682         regs->len = XENA_REG_SPACE;
4683         regs->version = sp->pdev->subsystem_device;
4684
4685         for (i = 0; i < regs->len; i += 8) {
4686                 reg = readq(sp->bar0 + i);
4687                 memcpy((reg_space + i), &reg, 8);
4688         }
4689 }
4690
4691 /**
4692  *  s2io_phy_id  - timer function that alternates adapter LED.
4693  *  @data : address of the private member of the device structure, which
4694  *  is a pointer to the s2io_nic structure, provided as an u32.
4695  * Description: This is actually the timer function that alternates the
4696  * adapter LED bit of the adapter control bit to set/reset every time on
4697  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4698  *  once every second.
4699 */
4700 static void s2io_phy_id(unsigned long data)
4701 {
4702         nic_t *sp = (nic_t *) data;
4703         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4704         u64 val64 = 0;
4705         u16 subid;
4706
4707         subid = sp->pdev->subsystem_device;
4708         if ((sp->device_type == XFRAME_II_DEVICE) ||
4709                    ((subid & 0xFF) >= 0x07)) {
4710                 val64 = readq(&bar0->gpio_control);
4711                 val64 ^= GPIO_CTRL_GPIO_0;
4712                 writeq(val64, &bar0->gpio_control);
4713         } else {
4714                 val64 = readq(&bar0->adapter_control);
4715                 val64 ^= ADAPTER_LED_ON;
4716                 writeq(val64, &bar0->adapter_control);
4717         }
4718
4719         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4720 }
4721
4722 /**
4723  * s2io_ethtool_idnic - To physically identify the nic on the system.
4724  * @sp : private member of the device structure, which is a pointer to the
4725  * s2io_nic structure.
4726  * @id : pointer to the structure with identification parameters given by
4727  * ethtool.
4728  * Description: Used to physically identify the NIC on the system.
4729  * The Link LED will blink for a time specified by the user for
4730  * identification.
4731  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4732  * identification is possible only if it's link is up.
4733  * Return value:
4734  * int , returns 0 on success
4735  */
4736
4737 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4738 {
4739         u64 val64 = 0, last_gpio_ctrl_val;
4740         nic_t *sp = dev->priv;
4741         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4742         u16 subid;
4743
4744         subid = sp->pdev->subsystem_device;
4745         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4746         if ((sp->device_type == XFRAME_I_DEVICE) &&
4747                 ((subid & 0xFF) < 0x07)) {
4748                 val64 = readq(&bar0->adapter_control);
4749                 if (!(val64 & ADAPTER_CNTL_EN)) {
4750                         printk(KERN_ERR
4751                                "Adapter Link down, cannot blink LED\n");
4752                         return -EFAULT;
4753                 }
4754         }
4755         if (sp->id_timer.function == NULL) {
4756                 init_timer(&sp->id_timer);
4757                 sp->id_timer.function = s2io_phy_id;
4758                 sp->id_timer.data = (unsigned long) sp;
4759         }
4760         mod_timer(&sp->id_timer, jiffies);
4761         if (data)
4762                 msleep_interruptible(data * HZ);
4763         else
4764                 msleep_interruptible(MAX_FLICKER_TIME);
4765         del_timer_sync(&sp->id_timer);
4766
4767         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4768                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4769                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4770         }
4771
4772         return 0;
4773 }
4774
4775 /**
4776  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4777  * @sp : private member of the device structure, which is a pointer to the
4778  *      s2io_nic structure.
4779  * @ep : pointer to the structure with pause parameters given by ethtool.
4780  * Description:
4781  * Returns the Pause frame generation and reception capability of the NIC.
4782  * Return value:
4783  *  void
4784  */
4785 static void s2io_ethtool_getpause_data(struct net_device *dev,
4786                                        struct ethtool_pauseparam *ep)
4787 {
4788         u64 val64;
4789         nic_t *sp = dev->priv;
4790         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4791
4792         val64 = readq(&bar0->rmac_pause_cfg);
4793         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4794                 ep->tx_pause = TRUE;
4795         if (val64 & RMAC_PAUSE_RX_ENABLE)
4796                 ep->rx_pause = TRUE;
4797         ep->autoneg = FALSE;
4798 }
4799
4800 /**
4801  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4802  * @sp : private member of the device structure, which is a pointer to the
4803  *      s2io_nic structure.
4804  * @ep : pointer to the structure with pause parameters given by ethtool.
4805  * Description:
4806  * It can be used to set or reset Pause frame generation or reception
4807  * support of the NIC.
4808  * Return value:
4809  * int, returns 0 on Success
4810  */
4811
4812 static int s2io_ethtool_setpause_data(struct net_device *dev,
4813                                struct ethtool_pauseparam *ep)
4814 {
4815         u64 val64;
4816         nic_t *sp = dev->priv;
4817         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4818
4819         val64 = readq(&bar0->rmac_pause_cfg);
4820         if (ep->tx_pause)
4821                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4822         else
4823                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4824         if (ep->rx_pause)
4825                 val64 |= RMAC_PAUSE_RX_ENABLE;
4826         else
4827                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4828         writeq(val64, &bar0->rmac_pause_cfg);
4829         return 0;
4830 }
4831
4832 /**
4833  * read_eeprom - reads 4 bytes of data from user given offset.
4834  * @sp : private member of the device structure, which is a pointer to the
4835  *      s2io_nic structure.
4836  * @off : offset at which the data must be written
4837  * @data : Its an output parameter where the data read at the given
4838  *      offset is stored.
4839  * Description:
4840  * Will read 4 bytes of data from the user given offset and return the
4841  * read data.
4842  * NOTE: Will allow to read only part of the EEPROM visible through the
4843  *   I2C bus.
4844  * Return value:
4845  *  -1 on failure and 0 on success.
4846  */
4847
4848 #define S2IO_DEV_ID             5
4849 static int read_eeprom(nic_t * sp, int off, u64 * data)
4850 {
4851         int ret = -1;
4852         u32 exit_cnt = 0;
4853         u64 val64;
4854         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4855
4856         if (sp->device_type == XFRAME_I_DEVICE) {
4857                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4858                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4859                     I2C_CONTROL_CNTL_START;
4860                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4861
4862                 while (exit_cnt < 5) {
4863                         val64 = readq(&bar0->i2c_control);
4864                         if (I2C_CONTROL_CNTL_END(val64)) {
4865                                 *data = I2C_CONTROL_GET_DATA(val64);
4866                                 ret = 0;
4867                                 break;
4868                         }
4869                         msleep(50);
4870                         exit_cnt++;
4871                 }
4872         }
4873
4874         if (sp->device_type == XFRAME_II_DEVICE) {
4875                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4876                         SPI_CONTROL_BYTECNT(0x3) |
4877                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4878                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4879                 val64 |= SPI_CONTROL_REQ;
4880                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4881                 while (exit_cnt < 5) {
4882                         val64 = readq(&bar0->spi_control);
4883                         if (val64 & SPI_CONTROL_NACK) {
4884                                 ret = 1;
4885                                 break;
4886                         } else if (val64 & SPI_CONTROL_DONE) {
4887                                 *data = readq(&bar0->spi_data);
4888                                 *data &= 0xffffff;
4889                                 ret = 0;
4890                                 break;
4891                         }
4892                         msleep(50);
4893                         exit_cnt++;
4894                 }
4895         }
4896         return ret;
4897 }
4898
4899 /**
4900  *  write_eeprom - actually writes the relevant part of the data value.
4901  *  @sp : private member of the device structure, which is a pointer to the
4902  *       s2io_nic structure.
4903  *  @off : offset at which the data must be written
4904  *  @data : The data that is to be written
4905  *  @cnt : Number of bytes of the data that are actually to be written into
4906  *  the Eeprom. (max of 3)
4907  * Description:
4908  *  Actually writes the relevant part of the data value into the Eeprom
4909  *  through the I2C bus.
4910  * Return value:
4911  *  0 on success, -1 on failure.
4912  */
4913
4914 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4915 {
4916         int exit_cnt = 0, ret = -1;
4917         u64 val64;
4918         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4919
4920         if (sp->device_type == XFRAME_I_DEVICE) {
4921                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4922                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4923                     I2C_CONTROL_CNTL_START;
4924                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4925
4926                 while (exit_cnt < 5) {
4927                         val64 = readq(&bar0->i2c_control);
4928                         if (I2C_CONTROL_CNTL_END(val64)) {
4929                                 if (!(val64 & I2C_CONTROL_NACK))
4930                                         ret = 0;
4931                                 break;
4932                         }
4933                         msleep(50);
4934                         exit_cnt++;
4935                 }
4936         }
4937
4938         if (sp->device_type == XFRAME_II_DEVICE) {
4939                 int write_cnt = (cnt == 8) ? 0 : cnt;
4940                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4941
4942                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4943                         SPI_CONTROL_BYTECNT(write_cnt) |
4944                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4945                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4946                 val64 |= SPI_CONTROL_REQ;
4947                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4948                 while (exit_cnt < 5) {
4949                         val64 = readq(&bar0->spi_control);
4950                         if (val64 & SPI_CONTROL_NACK) {
4951                                 ret = 1;
4952                                 break;
4953                         } else if (val64 & SPI_CONTROL_DONE) {
4954                                 ret = 0;
4955                                 break;
4956                         }
4957                         msleep(50);
4958                         exit_cnt++;
4959                 }
4960         }
4961         return ret;
4962 }
4963 static void s2io_vpd_read(nic_t *nic)
4964 {
4965         u8 *vpd_data;
4966         u8 data;
4967         int i=0, cnt, fail = 0;
4968         int vpd_addr = 0x80;
4969
4970         if (nic->device_type == XFRAME_II_DEVICE) {
4971                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4972                 vpd_addr = 0x80;
4973         }
4974         else {
4975                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4976                 vpd_addr = 0x50;
4977         }
4978         strcpy(nic->serial_num, "NOT AVAILABLE");
4979
4980         vpd_data = kmalloc(256, GFP_KERNEL);
4981         if (!vpd_data)
4982                 return;
4983
4984         for (i = 0; i < 256; i +=4 ) {
4985                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4986                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
4987                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4988                 for (cnt = 0; cnt <5; cnt++) {
4989                         msleep(2);
4990                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4991                         if (data == 0x80)
4992                                 break;
4993                 }
4994                 if (cnt >= 5) {
4995                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4996                         fail = 1;
4997                         break;
4998                 }
4999                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5000                                       (u32 *)&vpd_data[i]);
5001         }
5002
5003         if(!fail) {
5004                 /* read serial number of adapter */
5005                 for (cnt = 0; cnt < 256; cnt++) {
5006                 if ((vpd_data[cnt] == 'S') &&
5007                         (vpd_data[cnt+1] == 'N') &&
5008                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5009                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5010                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5011                                         vpd_data[cnt+2]);
5012                                 break;
5013                         }
5014                 }
5015         }
5016
5017         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5018                 memset(nic->product_name, 0, vpd_data[1]);
5019                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5020         }
5021         kfree(vpd_data);
5022 }
5023
5024 /**
5025  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5026  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5027  *  @eeprom : pointer to the user level structure provided by ethtool,
5028  *  containing all relevant information.
5029  *  @data_buf : user defined value to be written into Eeprom.
5030  *  Description: Reads the values stored in the Eeprom at given offset
5031  *  for a given length. Stores these values int the input argument data
5032  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5033  *  Return value:
5034  *  int  0 on success
5035  */
5036
5037 static int s2io_ethtool_geeprom(struct net_device *dev,
5038                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5039 {
5040         u32 i, valid;
5041         u64 data;
5042         nic_t *sp = dev->priv;
5043
5044         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5045
5046         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5047                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5048
5049         for (i = 0; i < eeprom->len; i += 4) {
5050                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5051                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5052                         return -EFAULT;
5053                 }
5054                 valid = INV(data);
5055                 memcpy((data_buf + i), &valid, 4);
5056         }
5057         return 0;
5058 }
5059
5060 /**
5061  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5062  *  @sp : private member of the device structure, which is a pointer to the
5063  *  s2io_nic structure.
5064  *  @eeprom : pointer to the user level structure provided by ethtool,
5065  *  containing all relevant information.
5066  *  @data_buf ; user defined value to be written into Eeprom.
5067  *  Description:
5068  *  Tries to write the user provided value in the Eeprom, at the offset
5069  *  given by the user.
5070  *  Return value:
5071  *  0 on success, -EFAULT on failure.
5072  */
5073
5074 static int s2io_ethtool_seeprom(struct net_device *dev,
5075                                 struct ethtool_eeprom *eeprom,
5076                                 u8 * data_buf)
5077 {
5078         int len = eeprom->len, cnt = 0;
5079         u64 valid = 0, data;
5080         nic_t *sp = dev->priv;
5081
5082         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5083                 DBG_PRINT(ERR_DBG,
5084                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5085                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5086                           eeprom->magic);
5087                 return -EFAULT;
5088         }
5089
5090         while (len) {
5091                 data = (u32) data_buf[cnt] & 0x000000FF;
5092                 if (data) {
5093                         valid = (u32) (data << 24);
5094                 } else
5095                         valid = data;
5096
5097                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5098                         DBG_PRINT(ERR_DBG,
5099                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5100                         DBG_PRINT(ERR_DBG,
5101                                   "write into the specified offset\n");
5102                         return -EFAULT;
5103                 }
5104                 cnt++;
5105                 len--;
5106         }
5107
5108         return 0;
5109 }
5110
5111 /**
5112  * s2io_register_test - reads and writes into all clock domains.
5113  * @sp : private member of the device structure, which is a pointer to the
5114  * s2io_nic structure.
5115  * @data : variable that returns the result of each of the test conducted b
5116  * by the driver.
5117  * Description:
5118  * Read and write into all clock domains. The NIC has 3 clock domains,
5119  * see that registers in all the three regions are accessible.
5120  * Return value:
5121  * 0 on success.
5122  */
5123
5124 static int s2io_register_test(nic_t * sp, uint64_t * data)
5125 {
5126         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5127         u64 val64 = 0, exp_val;
5128         int fail = 0;
5129
5130         val64 = readq(&bar0->pif_rd_swapper_fb);
5131         if (val64 != 0x123456789abcdefULL) {
5132                 fail = 1;
5133                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5134         }
5135
5136         val64 = readq(&bar0->rmac_pause_cfg);
5137         if (val64 != 0xc000ffff00000000ULL) {
5138                 fail = 1;
5139                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5140         }
5141
5142         val64 = readq(&bar0->rx_queue_cfg);
5143         if (sp->device_type == XFRAME_II_DEVICE)
5144                 exp_val = 0x0404040404040404ULL;
5145         else
5146                 exp_val = 0x0808080808080808ULL;
5147         if (val64 != exp_val) {
5148                 fail = 1;
5149                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5150         }
5151
5152         val64 = readq(&bar0->xgxs_efifo_cfg);
5153         if (val64 != 0x000000001923141EULL) {
5154                 fail = 1;
5155                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5156         }
5157
5158         val64 = 0x5A5A5A5A5A5A5A5AULL;
5159         writeq(val64, &bar0->xmsi_data);
5160         val64 = readq(&bar0->xmsi_data);
5161         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5162                 fail = 1;
5163                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5164         }
5165
5166         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5167         writeq(val64, &bar0->xmsi_data);
5168         val64 = readq(&bar0->xmsi_data);
5169         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5170                 fail = 1;
5171                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5172         }
5173
5174         *data = fail;
5175         return fail;
5176 }
5177
5178 /**
5179  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5180  * @sp : private member of the device structure, which is a pointer to the
5181  * s2io_nic structure.
5182  * @data:variable that returns the result of each of the test conducted by
5183  * the driver.
5184  * Description:
5185  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5186  * register.
5187  * Return value:
5188  * 0 on success.
5189  */
5190
5191 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5192 {
5193         int fail = 0;
5194         u64 ret_data, org_4F0, org_7F0;
5195         u8 saved_4F0 = 0, saved_7F0 = 0;
5196         struct net_device *dev = sp->dev;
5197
5198         /* Test Write Error at offset 0 */
5199         /* Note that SPI interface allows write access to all areas
5200          * of EEPROM. Hence doing all negative testing only for Xframe I.
5201          */
5202         if (sp->device_type == XFRAME_I_DEVICE)
5203                 if (!write_eeprom(sp, 0, 0, 3))
5204                         fail = 1;
5205
5206         /* Save current values at offsets 0x4F0 and 0x7F0 */
5207         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5208                 saved_4F0 = 1;
5209         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5210                 saved_7F0 = 1;
5211
5212         /* Test Write at offset 4f0 */
5213         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5214                 fail = 1;
5215         if (read_eeprom(sp, 0x4F0, &ret_data))
5216                 fail = 1;
5217
5218         if (ret_data != 0x012345) {
5219                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5220                         "Data written %llx Data read %llx\n",
5221                         dev->name, (unsigned long long)0x12345,
5222                         (unsigned long long)ret_data);
5223                 fail = 1;
5224         }
5225
5226         /* Reset the EEPROM data go FFFF */
5227         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5228
5229         /* Test Write Request Error at offset 0x7c */
5230         if (sp->device_type == XFRAME_I_DEVICE)
5231                 if (!write_eeprom(sp, 0x07C, 0, 3))
5232                         fail = 1;
5233
5234         /* Test Write Request at offset 0x7f0 */
5235         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5236                 fail = 1;
5237         if (read_eeprom(sp, 0x7F0, &ret_data))
5238                 fail = 1;
5239
5240         if (ret_data != 0x012345) {
5241                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5242                         "Data written %llx Data read %llx\n",
5243                         dev->name, (unsigned long long)0x12345,
5244                         (unsigned long long)ret_data);
5245                 fail = 1;
5246         }
5247
5248         /* Reset the EEPROM data go FFFF */
5249         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5250
5251         if (sp->device_type == XFRAME_I_DEVICE) {
5252                 /* Test Write Error at offset 0x80 */
5253                 if (!write_eeprom(sp, 0x080, 0, 3))
5254                         fail = 1;
5255
5256                 /* Test Write Error at offset 0xfc */
5257                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5258                         fail = 1;
5259
5260                 /* Test Write Error at offset 0x100 */
5261                 if (!write_eeprom(sp, 0x100, 0, 3))
5262                         fail = 1;
5263
5264                 /* Test Write Error at offset 4ec */
5265                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5266                         fail = 1;
5267         }
5268
5269         /* Restore values at offsets 0x4F0 and 0x7F0 */
5270         if (saved_4F0)
5271                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5272         if (saved_7F0)
5273                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5274
5275         *data = fail;
5276         return fail;
5277 }
5278
5279 /**
5280  * s2io_bist_test - invokes the MemBist test of the card .
5281  * @sp : private member of the device structure, which is a pointer to the
5282  * s2io_nic structure.
5283  * @data:variable that returns the result of each of the test conducted by
5284  * the driver.
5285  * Description:
5286  * This invokes the MemBist test of the card. We give around
5287  * 2 secs time for the Test to complete. If it's still not complete
5288  * within this peiod, we consider that the test failed.
5289  * Return value:
5290  * 0 on success and -1 on failure.
5291  */
5292
5293 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5294 {
5295         u8 bist = 0;
5296         int cnt = 0, ret = -1;
5297
5298         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5299         bist |= PCI_BIST_START;
5300         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5301
5302         while (cnt < 20) {
5303                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5304                 if (!(bist & PCI_BIST_START)) {
5305                         *data = (bist & PCI_BIST_CODE_MASK);
5306                         ret = 0;
5307                         break;
5308                 }
5309                 msleep(100);
5310                 cnt++;
5311         }
5312
5313         return ret;
5314 }
5315
5316 /**
5317  * s2io-link_test - verifies the link state of the nic
5318  * @sp ; private member of the device structure, which is a pointer to the
5319  * s2io_nic structure.
5320  * @data: variable that returns the result of each of the test conducted by
5321  * the driver.
5322  * Description:
5323  * The function verifies the link state of the NIC and updates the input
5324  * argument 'data' appropriately.
5325  * Return value:
5326  * 0 on success.
5327  */
5328
5329 static int s2io_link_test(nic_t * sp, uint64_t * data)
5330 {
5331         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5332         u64 val64;
5333
5334         val64 = readq(&bar0->adapter_status);
5335         if(!(LINK_IS_UP(val64)))
5336                 *data = 1;
5337         else
5338                 *data = 0;
5339
5340         return *data;
5341 }
5342
5343 /**
5344  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5345  * @sp - private member of the device structure, which is a pointer to the
5346  * s2io_nic structure.
5347  * @data - variable that returns the result of each of the test
5348  * conducted by the driver.
5349  * Description:
5350  *  This is one of the offline test that tests the read and write
5351  *  access to the RldRam chip on the NIC.
5352  * Return value:
5353  *  0 on success.
5354  */
5355
5356 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5357 {
5358         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5359         u64 val64;
5360         int cnt, iteration = 0, test_fail = 0;
5361
5362         val64 = readq(&bar0->adapter_control);
5363         val64 &= ~ADAPTER_ECC_EN;
5364         writeq(val64, &bar0->adapter_control);
5365
5366         val64 = readq(&bar0->mc_rldram_test_ctrl);
5367         val64 |= MC_RLDRAM_TEST_MODE;
5368         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5369
5370         val64 = readq(&bar0->mc_rldram_mrs);
5371         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5372         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5373
5374         val64 |= MC_RLDRAM_MRS_ENABLE;
5375         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5376
5377         while (iteration < 2) {
5378                 val64 = 0x55555555aaaa0000ULL;
5379                 if (iteration == 1) {
5380                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5381                 }
5382                 writeq(val64, &bar0->mc_rldram_test_d0);
5383
5384                 val64 = 0xaaaa5a5555550000ULL;
5385                 if (iteration == 1) {
5386                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5387                 }
5388                 writeq(val64, &bar0->mc_rldram_test_d1);
5389
5390                 val64 = 0x55aaaaaaaa5a0000ULL;
5391                 if (iteration == 1) {
5392                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5393                 }
5394                 writeq(val64, &bar0->mc_rldram_test_d2);
5395
5396                 val64 = (u64) (0x0000003ffffe0100ULL);
5397                 writeq(val64, &bar0->mc_rldram_test_add);
5398
5399                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5400                         MC_RLDRAM_TEST_GO;
5401                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5402
5403                 for (cnt = 0; cnt < 5; cnt++) {
5404                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5405                         if (val64 & MC_RLDRAM_TEST_DONE)
5406                                 break;
5407                         msleep(200);
5408                 }
5409
5410                 if (cnt == 5)
5411                         break;
5412
5413                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5414                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5415
5416                 for (cnt = 0; cnt < 5; cnt++) {
5417                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5418                         if (val64 & MC_RLDRAM_TEST_DONE)
5419                                 break;
5420                         msleep(500);
5421                 }
5422
5423                 if (cnt == 5)
5424                         break;
5425
5426                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5427                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5428                         test_fail = 1;
5429
5430                 iteration++;
5431         }
5432
5433         *data = test_fail;
5434
5435         /* Bring the adapter out of test mode */
5436         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5437
5438         return test_fail;
5439 }
5440
5441 /**
5442  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5443  *  @sp : private member of the device structure, which is a pointer to the
5444  *  s2io_nic structure.
5445  *  @ethtest : pointer to a ethtool command specific structure that will be
5446  *  returned to the user.
5447  *  @data : variable that returns the result of each of the test
5448  * conducted by the driver.
5449  * Description:
5450  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5451  *  the health of the card.
5452  * Return value:
5453  *  void
5454  */
5455
5456 static void s2io_ethtool_test(struct net_device *dev,
5457                               struct ethtool_test *ethtest,
5458                               uint64_t * data)
5459 {
5460         nic_t *sp = dev->priv;
5461         int orig_state = netif_running(sp->dev);
5462
5463         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5464                 /* Offline Tests. */
5465                 if (orig_state)
5466                         s2io_close(sp->dev);
5467
5468                 if (s2io_register_test(sp, &data[0]))
5469                         ethtest->flags |= ETH_TEST_FL_FAILED;
5470
5471                 s2io_reset(sp);
5472
5473                 if (s2io_rldram_test(sp, &data[3]))
5474                         ethtest->flags |= ETH_TEST_FL_FAILED;
5475
5476                 s2io_reset(sp);
5477
5478                 if (s2io_eeprom_test(sp, &data[1]))
5479                         ethtest->flags |= ETH_TEST_FL_FAILED;
5480
5481                 if (s2io_bist_test(sp, &data[4]))
5482                         ethtest->flags |= ETH_TEST_FL_FAILED;
5483
5484                 if (orig_state)
5485                         s2io_open(sp->dev);
5486
5487                 data[2] = 0;
5488         } else {
5489                 /* Online Tests. */
5490                 if (!orig_state) {
5491                         DBG_PRINT(ERR_DBG,
5492                                   "%s: is not up, cannot run test\n",
5493                                   dev->name);
5494                         data[0] = -1;
5495                         data[1] = -1;
5496                         data[2] = -1;
5497                         data[3] = -1;
5498                         data[4] = -1;
5499                 }
5500
5501                 if (s2io_link_test(sp, &data[2]))
5502                         ethtest->flags |= ETH_TEST_FL_FAILED;
5503
5504                 data[0] = 0;
5505                 data[1] = 0;
5506                 data[3] = 0;
5507                 data[4] = 0;
5508         }
5509 }
5510
5511 static void s2io_get_ethtool_stats(struct net_device *dev,
5512                                    struct ethtool_stats *estats,
5513                                    u64 * tmp_stats)
5514 {
5515         int i = 0;
5516         nic_t *sp = dev->priv;
5517         StatInfo_t *stat_info = sp->mac_control.stats_info;
5518
5519         s2io_updt_stats(sp);
5520         tmp_stats[i++] =
5521                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5522                 le32_to_cpu(stat_info->tmac_frms);
5523         tmp_stats[i++] =
5524                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5525                 le32_to_cpu(stat_info->tmac_data_octets);
5526         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5527         tmp_stats[i++] =
5528                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5529                 le32_to_cpu(stat_info->tmac_mcst_frms);
5530         tmp_stats[i++] =
5531                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5532                 le32_to_cpu(stat_info->tmac_bcst_frms);
5533         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5534         tmp_stats[i++] =
5535                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5536                 le32_to_cpu(stat_info->tmac_ttl_octets);
5537         tmp_stats[i++] =
5538                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5539                 le32_to_cpu(stat_info->tmac_ucst_frms);
5540         tmp_stats[i++] =
5541                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5542                 le32_to_cpu(stat_info->tmac_nucst_frms);
5543         tmp_stats[i++] =
5544                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5545                 le32_to_cpu(stat_info->tmac_any_err_frms);
5546         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5547         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5548         tmp_stats[i++] =
5549                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5550                 le32_to_cpu(stat_info->tmac_vld_ip);
5551         tmp_stats[i++] =
5552                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5553                 le32_to_cpu(stat_info->tmac_drop_ip);
5554         tmp_stats[i++] =
5555                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5556                 le32_to_cpu(stat_info->tmac_icmp);
5557         tmp_stats[i++] =
5558                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5559                 le32_to_cpu(stat_info->tmac_rst_tcp);
5560         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5561         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5562                 le32_to_cpu(stat_info->tmac_udp);
5563         tmp_stats[i++] =
5564                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5565                 le32_to_cpu(stat_info->rmac_vld_frms);
5566         tmp_stats[i++] =
5567                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5568                 le32_to_cpu(stat_info->rmac_data_octets);
5569         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5570         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5571         tmp_stats[i++] =
5572                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5573                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5574         tmp_stats[i++] =
5575                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5576                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5577         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5578         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5579         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5580         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5581         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5582         tmp_stats[i++] =
5583                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5584                 le32_to_cpu(stat_info->rmac_ttl_octets);
5585         tmp_stats[i++] =
5586                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5587                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5588         tmp_stats[i++] =
5589                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5590                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5591         tmp_stats[i++] =
5592                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5593                 le32_to_cpu(stat_info->rmac_discarded_frms);
5594         tmp_stats[i++] =
5595                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5596                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5597         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5598         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5599         tmp_stats[i++] =
5600                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5601                 le32_to_cpu(stat_info->rmac_usized_frms);
5602         tmp_stats[i++] =
5603                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5604                 le32_to_cpu(stat_info->rmac_osized_frms);
5605         tmp_stats[i++] =
5606                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5607                 le32_to_cpu(stat_info->rmac_frag_frms);
5608         tmp_stats[i++] =
5609                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5610                 le32_to_cpu(stat_info->rmac_jabber_frms);
5611         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5612         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5613         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5614         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5615         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5616         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5617         tmp_stats[i++] =
5618                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5619                 le32_to_cpu(stat_info->rmac_ip);
5620         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5621         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5622         tmp_stats[i++] =
5623                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5624                 le32_to_cpu(stat_info->rmac_drop_ip);
5625         tmp_stats[i++] =
5626                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5627                 le32_to_cpu(stat_info->rmac_icmp);
5628         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5629         tmp_stats[i++] =
5630                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5631                 le32_to_cpu(stat_info->rmac_udp);
5632         tmp_stats[i++] =
5633                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5634                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5635         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5636         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5637         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5638         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5639         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5640         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5641         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5642         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5643         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5644         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5645         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5646         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5647         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5648         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5649         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5650         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5651         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5652         tmp_stats[i++] =
5653                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5654                 le32_to_cpu(stat_info->rmac_pause_cnt);
5655         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5656         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5657         tmp_stats[i++] =
5658                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5659                 le32_to_cpu(stat_info->rmac_accepted_ip);
5660         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5661         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5662         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5663         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5664         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5665         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5666         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5667         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5668         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5669         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5670         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5671         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5672         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5673         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5674         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5675         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5676         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5677         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5678         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5679         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5680         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5681         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5682         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5683         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5684         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5685         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5686         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5687         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5688         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5689         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5690         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5691         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5692         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5693         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5694         tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5695         tmp_stats[i++] = 0;
5696         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5697         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5698         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5699         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5700         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5701         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5702         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5703         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5704         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5705         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5706         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5707         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5708         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5709         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5710         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5711         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5712         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5713         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5714         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5715         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5716         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5717         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5718         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5719         if (stat_info->sw_stat.num_aggregations) {
5720                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5721                 int count = 0;
5722                 /*
5723                  * Since 64-bit divide does not work on all platforms,
5724                  * do repeated subtraction.
5725                  */
5726                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5727                         tmp -= stat_info->sw_stat.num_aggregations;
5728                         count++;
5729                 }
5730                 tmp_stats[i++] = count;
5731         }
5732         else
5733                 tmp_stats[i++] = 0;
5734 }
5735
5736 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5737 {
5738         return (XENA_REG_SPACE);
5739 }
5740
5741
5742 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5743 {
5744         nic_t *sp = dev->priv;
5745
5746         return (sp->rx_csum);
5747 }
5748
5749 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5750 {
5751         nic_t *sp = dev->priv;
5752
5753         if (data)
5754                 sp->rx_csum = 1;
5755         else
5756                 sp->rx_csum = 0;
5757
5758         return 0;
5759 }
5760
5761 static int s2io_get_eeprom_len(struct net_device *dev)
5762 {
5763         return (XENA_EEPROM_SPACE);
5764 }
5765
5766 static int s2io_ethtool_self_test_count(struct net_device *dev)
5767 {
5768         return (S2IO_TEST_LEN);
5769 }
5770
5771 static void s2io_ethtool_get_strings(struct net_device *dev,
5772                                      u32 stringset, u8 * data)
5773 {
5774         switch (stringset) {
5775         case ETH_SS_TEST:
5776                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5777                 break;
5778         case ETH_SS_STATS:
5779                 memcpy(data, &ethtool_stats_keys,
5780                        sizeof(ethtool_stats_keys));
5781         }
5782 }
5783 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5784 {
5785         return (S2IO_STAT_LEN);
5786 }
5787
5788 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5789 {
5790         if (data)
5791                 dev->features |= NETIF_F_IP_CSUM;
5792         else
5793                 dev->features &= ~NETIF_F_IP_CSUM;
5794
5795         return 0;
5796 }
5797
5798 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5799 {
5800         return (dev->features & NETIF_F_TSO) != 0;
5801 }
5802 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5803 {
5804         if (data)
5805                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5806         else
5807                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5808
5809         return 0;
5810 }
5811
5812 static const struct ethtool_ops netdev_ethtool_ops = {
5813         .get_settings = s2io_ethtool_gset,
5814         .set_settings = s2io_ethtool_sset,
5815         .get_drvinfo = s2io_ethtool_gdrvinfo,
5816         .get_regs_len = s2io_ethtool_get_regs_len,
5817         .get_regs = s2io_ethtool_gregs,
5818         .get_link = ethtool_op_get_link,
5819         .get_eeprom_len = s2io_get_eeprom_len,
5820         .get_eeprom = s2io_ethtool_geeprom,
5821         .set_eeprom = s2io_ethtool_seeprom,
5822         .get_pauseparam = s2io_ethtool_getpause_data,
5823         .set_pauseparam = s2io_ethtool_setpause_data,
5824         .get_rx_csum = s2io_ethtool_get_rx_csum,
5825         .set_rx_csum = s2io_ethtool_set_rx_csum,
5826         .get_tx_csum = ethtool_op_get_tx_csum,
5827         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5828         .get_sg = ethtool_op_get_sg,
5829         .set_sg = ethtool_op_set_sg,
5830         .get_tso = s2io_ethtool_op_get_tso,
5831         .set_tso = s2io_ethtool_op_set_tso,
5832         .get_ufo = ethtool_op_get_ufo,
5833         .set_ufo = ethtool_op_set_ufo,
5834         .self_test_count = s2io_ethtool_self_test_count,
5835         .self_test = s2io_ethtool_test,
5836         .get_strings = s2io_ethtool_get_strings,
5837         .phys_id = s2io_ethtool_idnic,
5838         .get_stats_count = s2io_ethtool_get_stats_count,
5839         .get_ethtool_stats = s2io_get_ethtool_stats
5840 };
5841
5842 /**
5843  *  s2io_ioctl - Entry point for the Ioctl
5844  *  @dev :  Device pointer.
5845  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5846  *  a proprietary structure used to pass information to the driver.
5847  *  @cmd :  This is used to distinguish between the different commands that
5848  *  can be passed to the IOCTL functions.
5849  *  Description:
5850  *  Currently there are no special functionality supported in IOCTL, hence
5851  *  function always return EOPNOTSUPPORTED
5852  */
5853
5854 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5855 {
5856         return -EOPNOTSUPP;
5857 }
5858
5859 /**
5860  *  s2io_change_mtu - entry point to change MTU size for the device.
5861  *   @dev : device pointer.
5862  *   @new_mtu : the new MTU size for the device.
5863  *   Description: A driver entry point to change MTU size for the device.
5864  *   Before changing the MTU the device must be stopped.
5865  *  Return value:
5866  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5867  *   file on failure.
5868  */
5869
5870 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5871 {
5872         nic_t *sp = dev->priv;
5873
5874         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5875                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5876                           dev->name);
5877                 return -EPERM;
5878         }
5879
5880         dev->mtu = new_mtu;
5881         if (netif_running(dev)) {
5882                 s2io_card_down(sp);
5883                 netif_stop_queue(dev);
5884                 if (s2io_card_up(sp)) {
5885                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5886                                   __FUNCTION__);
5887                 }
5888                 if (netif_queue_stopped(dev))
5889                         netif_wake_queue(dev);
5890         } else { /* Device is down */
5891                 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5892                 u64 val64 = new_mtu;
5893
5894                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5895         }
5896
5897         return 0;
5898 }
5899
5900 /**
5901  *  s2io_tasklet - Bottom half of the ISR.
5902  *  @dev_adr : address of the device structure in dma_addr_t format.
5903  *  Description:
5904  *  This is the tasklet or the bottom half of the ISR. This is
5905  *  an extension of the ISR which is scheduled by the scheduler to be run
5906  *  when the load on the CPU is low. All low priority tasks of the ISR can
5907  *  be pushed into the tasklet. For now the tasklet is used only to
5908  *  replenish the Rx buffers in the Rx buffer descriptors.
5909  *  Return value:
5910  *  void.
5911  */
5912
5913 static void s2io_tasklet(unsigned long dev_addr)
5914 {
5915         struct net_device *dev = (struct net_device *) dev_addr;
5916         nic_t *sp = dev->priv;
5917         int i, ret;
5918         mac_info_t *mac_control;
5919         struct config_param *config;
5920
5921         mac_control = &sp->mac_control;
5922         config = &sp->config;
5923
5924         if (!TASKLET_IN_USE) {
5925                 for (i = 0; i < config->rx_ring_num; i++) {
5926                         ret = fill_rx_buffers(sp, i);
5927                         if (ret == -ENOMEM) {
5928                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5929                                           dev->name);
5930                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5931                                 break;
5932                         } else if (ret == -EFILL) {
5933                                 DBG_PRINT(ERR_DBG,
5934                                           "%s: Rx Ring %d is full\n",
5935                                           dev->name, i);
5936                                 break;
5937                         }
5938                 }
5939                 clear_bit(0, (&sp->tasklet_status));
5940         }
5941 }
5942
5943 /**
5944  * s2io_set_link - Set the LInk status
5945  * @data: long pointer to device private structue
5946  * Description: Sets the link status for the adapter
5947  */
5948
5949 static void s2io_set_link(struct work_struct *work)
5950 {
5951         nic_t *nic = container_of(work, nic_t, set_link_task);
5952         struct net_device *dev = nic->dev;
5953         XENA_dev_config_t __iomem *bar0 = nic->bar0;
5954         register u64 val64;
5955         u16 subid;
5956
5957         if (test_and_set_bit(0, &(nic->link_state))) {
5958                 /* The card is being reset, no point doing anything */
5959                 return;
5960         }
5961
5962         subid = nic->pdev->subsystem_device;
5963         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5964                 /*
5965                  * Allow a small delay for the NICs self initiated
5966                  * cleanup to complete.
5967                  */
5968                 msleep(100);
5969         }
5970
5971         val64 = readq(&bar0->adapter_status);
5972         if (LINK_IS_UP(val64)) {
5973                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5974                         if (verify_xena_quiescence(nic)) {
5975                                 val64 = readq(&bar0->adapter_control);
5976                                 val64 |= ADAPTER_CNTL_EN;
5977                                 writeq(val64, &bar0->adapter_control);
5978                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5979                                         nic->device_type, subid)) {
5980                                         val64 = readq(&bar0->gpio_control);
5981                                         val64 |= GPIO_CTRL_GPIO_0;
5982                                         writeq(val64, &bar0->gpio_control);
5983                                         val64 = readq(&bar0->gpio_control);
5984                                 } else {
5985                                         val64 |= ADAPTER_LED_ON;
5986                                         writeq(val64, &bar0->adapter_control);
5987                                 }
5988                                 nic->device_enabled_once = TRUE;
5989                         } else {
5990                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5991                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5992                                 netif_stop_queue(dev);
5993                         }
5994                 }
5995                 val64 = readq(&bar0->adapter_status);
5996                 if (!LINK_IS_UP(val64)) {
5997                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
5998                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
5999                         DBG_PRINT(ERR_DBG, "device \n");
6000                 } else
6001                         s2io_link(nic, LINK_UP);
6002         } else {
6003                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6004                                                       subid)) {
6005                         val64 = readq(&bar0->gpio_control);
6006                         val64 &= ~GPIO_CTRL_GPIO_0;
6007                         writeq(val64, &bar0->gpio_control);
6008                         val64 = readq(&bar0->gpio_control);
6009                 }
6010                 s2io_link(nic, LINK_DOWN);
6011         }
6012         clear_bit(0, &(nic->link_state));
6013 }
6014
6015 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
6016                            struct sk_buff **skb, u64 *temp0, u64 *temp1,
6017                            u64 *temp2, int size)
6018 {
6019         struct net_device *dev = sp->dev;
6020         struct sk_buff *frag_list;
6021
6022         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6023                 /* allocate skb */
6024                 if (*skb) {
6025                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6026                         /*
6027                          * As Rx frame are not going to be processed,
6028                          * using same mapped address for the Rxd
6029                          * buffer pointer
6030                          */
6031                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
6032                 } else {
6033                         *skb = dev_alloc_skb(size);
6034                         if (!(*skb)) {
6035                                 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6036                                 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6037                                 return -ENOMEM ;
6038                         }
6039                         /* storing the mapped addr in a temp variable
6040                          * such it will be used for next rxd whose
6041                          * Host Control is NULL
6042                          */
6043                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
6044                                 pci_map_single( sp->pdev, (*skb)->data,
6045                                         size - NET_IP_ALIGN,
6046                                         PCI_DMA_FROMDEVICE);
6047                         rxdp->Host_Control = (unsigned long) (*skb);
6048                 }
6049         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6050                 /* Two buffer Mode */
6051                 if (*skb) {
6052                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6053                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6054                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6055                 } else {
6056                         *skb = dev_alloc_skb(size);
6057                         if (!(*skb)) {
6058                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6059                                         dev->name);
6060                                 return -ENOMEM;
6061                         }
6062                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6063                                 pci_map_single(sp->pdev, (*skb)->data,
6064                                                dev->mtu + 4,
6065                                                PCI_DMA_FROMDEVICE);
6066                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6067                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6068                                                 PCI_DMA_FROMDEVICE);
6069                         rxdp->Host_Control = (unsigned long) (*skb);
6070
6071                         /* Buffer-1 will be dummy buffer not used */
6072                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6073                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6074                                                PCI_DMA_FROMDEVICE);
6075                 }
6076         } else if ((rxdp->Host_Control == 0)) {
6077                 /* Three buffer mode */
6078                 if (*skb) {
6079                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6080                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6081                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6082                 } else {
6083                         *skb = dev_alloc_skb(size);
6084                         if (!(*skb)) {
6085                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6086                                           dev->name);
6087                                 return -ENOMEM;
6088                         }
6089                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6090                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6091                                                PCI_DMA_FROMDEVICE);
6092                         /* Buffer-1 receives L3/L4 headers */
6093                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6094                                 pci_map_single( sp->pdev, (*skb)->data,
6095                                                 l3l4hdr_size + 4,
6096                                                 PCI_DMA_FROMDEVICE);
6097                         /*
6098                          * skb_shinfo(skb)->frag_list will have L4
6099                          * data payload
6100                          */
6101                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6102                                                                    ALIGN_SIZE);
6103                         if (skb_shinfo(*skb)->frag_list == NULL) {
6104                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6105                                           failed\n ", dev->name);
6106                                 return -ENOMEM ;
6107                         }
6108                         frag_list = skb_shinfo(*skb)->frag_list;
6109                         frag_list->next = NULL;
6110                         /*
6111                          * Buffer-2 receives L4 data payload
6112                          */
6113                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6114                                 pci_map_single( sp->pdev, frag_list->data,
6115                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6116                 }
6117         }
6118         return 0;
6119 }
6120 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6121 {
6122         struct net_device *dev = sp->dev;
6123         if (sp->rxd_mode == RXD_MODE_1) {
6124                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6125         } else if (sp->rxd_mode == RXD_MODE_3B) {
6126                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6127                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6128                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6129         } else {
6130                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6131                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6132                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6133         }
6134 }
6135
6136 static  int rxd_owner_bit_reset(nic_t *sp)
6137 {
6138         int i, j, k, blk_cnt = 0, size;
6139         mac_info_t * mac_control = &sp->mac_control;
6140         struct config_param *config = &sp->config;
6141         struct net_device *dev = sp->dev;
6142         RxD_t *rxdp = NULL;
6143         struct sk_buff *skb = NULL;
6144         buffAdd_t *ba = NULL;
6145         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6146
6147         /* Calculate the size based on ring mode */
6148         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6149                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6150         if (sp->rxd_mode == RXD_MODE_1)
6151                 size += NET_IP_ALIGN;
6152         else if (sp->rxd_mode == RXD_MODE_3B)
6153                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6154         else
6155                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6156
6157         for (i = 0; i < config->rx_ring_num; i++) {
6158                 blk_cnt = config->rx_cfg[i].num_rxd /
6159                         (rxd_count[sp->rxd_mode] +1);
6160
6161                 for (j = 0; j < blk_cnt; j++) {
6162                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6163                                 rxdp = mac_control->rings[i].
6164                                         rx_blocks[j].rxds[k].virt_addr;
6165                                 if(sp->rxd_mode >= RXD_MODE_3A)
6166                                         ba = &mac_control->rings[i].ba[j][k];
6167                                 set_rxd_buffer_pointer(sp, rxdp, ba,
6168                                                        &skb,(u64 *)&temp0_64,
6169                                                        (u64 *)&temp1_64,
6170                                                        (u64 *)&temp2_64, size);
6171
6172                                 set_rxd_buffer_size(sp, rxdp, size);
6173                                 wmb();
6174                                 /* flip the Ownership bit to Hardware */
6175                                 rxdp->Control_1 |= RXD_OWN_XENA;
6176                         }
6177                 }
6178         }
6179         return 0;
6180
6181 }
6182
6183 static int s2io_add_isr(nic_t * sp)
6184 {
6185         int ret = 0;
6186         struct net_device *dev = sp->dev;
6187         int err = 0;
6188
6189         if (sp->intr_type == MSI)
6190                 ret = s2io_enable_msi(sp);
6191         else if (sp->intr_type == MSI_X)
6192                 ret = s2io_enable_msi_x(sp);
6193         if (ret) {
6194                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6195                 sp->intr_type = INTA;
6196         }
6197
6198         /* Store the values of the MSIX table in the nic_t structure */
6199         store_xmsi_data(sp);
6200
6201         /* After proper initialization of H/W, register ISR */
6202         if (sp->intr_type == MSI) {
6203                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6204                         IRQF_SHARED, sp->name, dev);
6205                 if (err) {
6206                         pci_disable_msi(sp->pdev);
6207                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6208                                   dev->name);
6209                         return -1;
6210                 }
6211         }
6212         if (sp->intr_type == MSI_X) {
6213                 int i;
6214
6215                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6216                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6217                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6218                                         dev->name, i);
6219                                 err = request_irq(sp->entries[i].vector,
6220                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6221                                                   sp->s2io_entries[i].arg);
6222                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6223                                 (unsigned long long)sp->msix_info[i].addr);
6224                         } else {
6225                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6226                                         dev->name, i);
6227                                 err = request_irq(sp->entries[i].vector,
6228                                           s2io_msix_ring_handle, 0, sp->desc[i],
6229                                                   sp->s2io_entries[i].arg);
6230                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6231                                 (unsigned long long)sp->msix_info[i].addr);
6232                         }
6233                         if (err) {
6234                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6235                                           "failed\n", dev->name, i);
6236                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6237                                 return -1;
6238                         }
6239                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6240                 }
6241         }
6242         if (sp->intr_type == INTA) {
6243                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6244                                 sp->name, dev);
6245                 if (err) {
6246                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6247                                   dev->name);
6248                         return -1;
6249                 }
6250         }
6251         return 0;
6252 }
6253 static void s2io_rem_isr(nic_t * sp)
6254 {
6255         int cnt = 0;
6256         struct net_device *dev = sp->dev;
6257
6258         if (sp->intr_type == MSI_X) {
6259                 int i;
6260                 u16 msi_control;
6261
6262                 for (i=1; (sp->s2io_entries[i].in_use ==
6263                         MSIX_REGISTERED_SUCCESS); i++) {
6264                         int vector = sp->entries[i].vector;
6265                         void *arg = sp->s2io_entries[i].arg;
6266
6267                         free_irq(vector, arg);
6268                 }
6269                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6270                 msi_control &= 0xFFFE; /* Disable MSI */
6271                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6272
6273                 pci_disable_msix(sp->pdev);
6274         } else {
6275                 free_irq(sp->pdev->irq, dev);
6276                 if (sp->intr_type == MSI) {
6277                         u16 val;
6278
6279                         pci_disable_msi(sp->pdev);
6280                         pci_read_config_word(sp->pdev, 0x4c, &val);
6281                         val ^= 0x1;
6282                         pci_write_config_word(sp->pdev, 0x4c, val);
6283                 }
6284         }
6285         /* Waiting till all Interrupt handlers are complete */
6286         cnt = 0;
6287         do {
6288                 msleep(10);
6289                 if (!atomic_read(&sp->isr_cnt))
6290                         break;
6291                 cnt++;
6292         } while(cnt < 5);
6293 }
6294
6295 static void s2io_card_down(nic_t * sp)
6296 {
6297         int cnt = 0;
6298         XENA_dev_config_t __iomem *bar0 = sp->bar0;
6299         unsigned long flags;
6300         register u64 val64 = 0;
6301
6302         del_timer_sync(&sp->alarm_timer);
6303         /* If s2io_set_link task is executing, wait till it completes. */
6304         while (test_and_set_bit(0, &(sp->link_state))) {
6305                 msleep(50);
6306         }
6307         atomic_set(&sp->card_state, CARD_DOWN);
6308
6309         /* disable Tx and Rx traffic on the NIC */
6310         stop_nic(sp);
6311
6312         s2io_rem_isr(sp);
6313
6314         /* Kill tasklet. */
6315         tasklet_kill(&sp->task);
6316
6317         /* Check if the device is Quiescent and then Reset the NIC */
6318         do {
6319                 /* As per the HW requirement we need to replenish the
6320                  * receive buffer to avoid the ring bump. Since there is
6321                  * no intention of processing the Rx frame at this pointwe are
6322                  * just settting the ownership bit of rxd in Each Rx
6323                  * ring to HW and set the appropriate buffer size
6324                  * based on the ring mode
6325                  */
6326                 rxd_owner_bit_reset(sp);
6327
6328                 val64 = readq(&bar0->adapter_status);
6329                 if (verify_xena_quiescence(sp)) {
6330                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6331                         break;
6332                 }
6333
6334                 msleep(50);
6335                 cnt++;
6336                 if (cnt == 10) {
6337                         DBG_PRINT(ERR_DBG,
6338                                   "s2io_close:Device not Quiescent ");
6339                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6340                                   (unsigned long long) val64);
6341                         break;
6342                 }
6343         } while (1);
6344         s2io_reset(sp);
6345
6346         spin_lock_irqsave(&sp->tx_lock, flags);
6347         /* Free all Tx buffers */
6348         free_tx_buffers(sp);
6349         spin_unlock_irqrestore(&sp->tx_lock, flags);
6350
6351         /* Free all Rx buffers */
6352         spin_lock_irqsave(&sp->rx_lock, flags);
6353         free_rx_buffers(sp);
6354         spin_unlock_irqrestore(&sp->rx_lock, flags);
6355
6356         clear_bit(0, &(sp->link_state));
6357 }
6358
6359 static int s2io_card_up(nic_t * sp)
6360 {
6361         int i, ret = 0;
6362         mac_info_t *mac_control;
6363         struct config_param *config;
6364         struct net_device *dev = (struct net_device *) sp->dev;
6365         u16 interruptible;
6366
6367         /* Initialize the H/W I/O registers */
6368         if (init_nic(sp) != 0) {
6369                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6370                           dev->name);
6371                 s2io_reset(sp);
6372                 return -ENODEV;
6373         }
6374
6375         /*
6376          * Initializing the Rx buffers. For now we are considering only 1
6377          * Rx ring and initializing buffers into 30 Rx blocks
6378          */
6379         mac_control = &sp->mac_control;
6380         config = &sp->config;
6381
6382         for (i = 0; i < config->rx_ring_num; i++) {
6383                 if ((ret = fill_rx_buffers(sp, i))) {
6384                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6385                                   dev->name);
6386                         s2io_reset(sp);
6387                         free_rx_buffers(sp);
6388                         return -ENOMEM;
6389                 }
6390                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6391                           atomic_read(&sp->rx_bufs_left[i]));
6392         }
6393         /* Maintain the state prior to the open */
6394         if (sp->promisc_flg)
6395                 sp->promisc_flg = 0;
6396         if (sp->m_cast_flg) {
6397                 sp->m_cast_flg = 0;
6398                 sp->all_multi_pos= 0;
6399         }
6400
6401         /* Setting its receive mode */
6402         s2io_set_multicast(dev);
6403
6404         if (sp->lro) {
6405                 /* Initialize max aggregatable pkts per session based on MTU */
6406                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6407                 /* Check if we can use(if specified) user provided value */
6408                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6409                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6410         }
6411
6412         /* Enable Rx Traffic and interrupts on the NIC */
6413         if (start_nic(sp)) {
6414                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6415                 s2io_reset(sp);
6416                 free_rx_buffers(sp);
6417                 return -ENODEV;
6418         }
6419
6420         /* Add interrupt service routine */
6421         if (s2io_add_isr(sp) != 0) {
6422                 if (sp->intr_type == MSI_X)
6423                         s2io_rem_isr(sp);
6424                 s2io_reset(sp);
6425                 free_rx_buffers(sp);
6426                 return -ENODEV;
6427         }
6428
6429         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6430
6431         /* Enable tasklet for the device */
6432         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6433
6434         /*  Enable select interrupts */
6435         if (sp->intr_type != INTA)
6436                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6437         else {
6438                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6439                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6440                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6441                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6442         }
6443
6444
6445         atomic_set(&sp->card_state, CARD_UP);
6446         return 0;
6447 }
6448
6449 /**
6450  * s2io_restart_nic - Resets the NIC.
6451  * @data : long pointer to the device private structure
6452  * Description:
6453  * This function is scheduled to be run by the s2io_tx_watchdog
6454  * function after 0.5 secs to reset the NIC. The idea is to reduce
6455  * the run time of the watch dog routine which is run holding a
6456  * spin lock.
6457  */
6458
6459 static void s2io_restart_nic(struct work_struct *work)
6460 {
6461         nic_t *sp = container_of(work, nic_t, rst_timer_task);
6462         struct net_device *dev = sp->dev;
6463
6464         s2io_card_down(sp);
6465         if (s2io_card_up(sp)) {
6466                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6467                           dev->name);
6468         }
6469         netif_wake_queue(dev);
6470         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6471                   dev->name);
6472
6473 }
6474
6475 /**
6476  *  s2io_tx_watchdog - Watchdog for transmit side.
6477  *  @dev : Pointer to net device structure
6478  *  Description:
6479  *  This function is triggered if the Tx Queue is stopped
6480  *  for a pre-defined amount of time when the Interface is still up.
6481  *  If the Interface is jammed in such a situation, the hardware is
6482  *  reset (by s2io_close) and restarted again (by s2io_open) to
6483  *  overcome any problem that might have been caused in the hardware.
6484  *  Return value:
6485  *  void
6486  */
6487
6488 static void s2io_tx_watchdog(struct net_device *dev)
6489 {
6490         nic_t *sp = dev->priv;
6491
6492         if (netif_carrier_ok(dev)) {
6493                 schedule_work(&sp->rst_timer_task);
6494                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6495         }
6496 }
6497
6498 /**
6499  *   rx_osm_handler - To perform some OS related operations on SKB.
6500  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6501  *   @skb : the socket buffer pointer.
6502  *   @len : length of the packet
6503  *   @cksum : FCS checksum of the frame.
6504  *   @ring_no : the ring from which this RxD was extracted.
6505  *   Description:
6506  *   This function is called by the Rx interrupt serivce routine to perform
6507  *   some OS related operations on the SKB before passing it to the upper
6508  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6509  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6510  *   to the upper layer. If the checksum is wrong, it increments the Rx
6511  *   packet error count, frees the SKB and returns error.
6512  *   Return value:
6513  *   SUCCESS on success and -1 on failure.
6514  */
6515 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6516 {
6517         nic_t *sp = ring_data->nic;
6518         struct net_device *dev = (struct net_device *) sp->dev;
6519         struct sk_buff *skb = (struct sk_buff *)
6520                 ((unsigned long) rxdp->Host_Control);
6521         int ring_no = ring_data->ring_no;
6522         u16 l3_csum, l4_csum;
6523         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6524         lro_t *lro;
6525
6526         skb->dev = dev;
6527
6528         if (err) {
6529                 /* Check for parity error */
6530                 if (err & 0x1) {
6531                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6532                 }
6533
6534                 /*
6535                 * Drop the packet if bad transfer code. Exception being
6536                 * 0x5, which could be due to unsupported IPv6 extension header.
6537                 * In this case, we let stack handle the packet.
6538                 * Note that in this case, since checksum will be incorrect,
6539                 * stack will validate the same.
6540                 */
6541                 if (err && ((err >> 48) != 0x5)) {
6542                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6543                                 dev->name, err);
6544                         sp->stats.rx_crc_errors++;
6545                         dev_kfree_skb(skb);
6546                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6547                         rxdp->Host_Control = 0;
6548                         return 0;
6549                 }
6550         }
6551
6552         /* Updating statistics */
6553         rxdp->Host_Control = 0;
6554         sp->rx_pkt_count++;
6555         sp->stats.rx_packets++;
6556         if (sp->rxd_mode == RXD_MODE_1) {
6557                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6558
6559                 sp->stats.rx_bytes += len;
6560                 skb_put(skb, len);
6561
6562         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6563                 int get_block = ring_data->rx_curr_get_info.block_index;
6564                 int get_off = ring_data->rx_curr_get_info.offset;
6565                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6566                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6567                 unsigned char *buff = skb_push(skb, buf0_len);
6568
6569                 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6570                 sp->stats.rx_bytes += buf0_len + buf2_len;
6571                 memcpy(buff, ba->ba_0, buf0_len);
6572
6573                 if (sp->rxd_mode == RXD_MODE_3A) {
6574                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6575
6576                         skb_put(skb, buf1_len);
6577                         skb->len += buf2_len;
6578                         skb->data_len += buf2_len;
6579                         skb->truesize += buf2_len;
6580                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6581                         sp->stats.rx_bytes += buf1_len;
6582
6583                 } else
6584                         skb_put(skb, buf2_len);
6585         }
6586
6587         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6588             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6589             (sp->rx_csum)) {
6590                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6591                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6592                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6593                         /*
6594                          * NIC verifies if the Checksum of the received
6595                          * frame is Ok or not and accordingly returns
6596                          * a flag in the RxD.
6597                          */
6598                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6599                         if (sp->lro) {
6600                                 u32 tcp_len;
6601                                 u8 *tcp;
6602                                 int ret = 0;
6603
6604                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6605                                                 &tcp_len, &lro, rxdp, sp);
6606                                 switch (ret) {
6607                                         case 3: /* Begin anew */
6608                                                 lro->parent = skb;
6609                                                 goto aggregate;
6610                                         case 1: /* Aggregate */
6611                                         {
6612                                                 lro_append_pkt(sp, lro,
6613                                                         skb, tcp_len);
6614                                                 goto aggregate;
6615                                         }
6616                                         case 4: /* Flush session */
6617                                         {
6618                                                 lro_append_pkt(sp, lro,
6619                                                         skb, tcp_len);
6620                                                 queue_rx_frame(lro->parent);
6621                                                 clear_lro_session(lro);
6622                                                 sp->mac_control.stats_info->
6623                                                     sw_stat.flush_max_pkts++;
6624                                                 goto aggregate;
6625                                         }
6626                                         case 2: /* Flush both */
6627                                                 lro->parent->data_len =
6628                                                         lro->frags_len;
6629                                                 sp->mac_control.stats_info->
6630                                                      sw_stat.sending_both++;
6631                                                 queue_rx_frame(lro->parent);
6632                                                 clear_lro_session(lro);
6633                                                 goto send_up;
6634                                         case 0: /* sessions exceeded */
6635                                         case -1: /* non-TCP or not
6636                                                   * L2 aggregatable
6637                                                   */
6638                                         case 5: /*
6639                                                  * First pkt in session not
6640                                                  * L3/L4 aggregatable
6641                                                  */
6642                                                 break;
6643                                         default:
6644                                                 DBG_PRINT(ERR_DBG,
6645                                                         "%s: Samadhana!!\n",
6646                                                          __FUNCTION__);
6647                                                 BUG();
6648                                 }
6649                         }
6650                 } else {
6651                         /*
6652                          * Packet with erroneous checksum, let the
6653                          * upper layers deal with it.
6654                          */
6655                         skb->ip_summed = CHECKSUM_NONE;
6656                 }
6657         } else {
6658                 skb->ip_summed = CHECKSUM_NONE;
6659         }
6660
6661         if (!sp->lro) {
6662                 skb->protocol = eth_type_trans(skb, dev);
6663                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6664                         /* Queueing the vlan frame to the upper layer */
6665                         if (napi)
6666                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6667                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6668                         else
6669                                 vlan_hwaccel_rx(skb, sp->vlgrp,
6670                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6671                 } else {
6672                         if (napi)
6673                                 netif_receive_skb(skb);
6674                         else
6675                                 netif_rx(skb);
6676                 }
6677         } else {
6678 send_up:
6679                 queue_rx_frame(skb);
6680         }
6681         dev->last_rx = jiffies;
6682 aggregate:
6683         atomic_dec(&sp->rx_bufs_left[ring_no]);
6684         return SUCCESS;
6685 }
6686
6687 /**
6688  *  s2io_link - stops/starts the Tx queue.
6689  *  @sp : private member of the device structure, which is a pointer to the
6690  *  s2io_nic structure.
6691  *  @link : inidicates whether link is UP/DOWN.
6692  *  Description:
6693  *  This function stops/starts the Tx queue depending on whether the link
6694  *  status of the NIC is is down or up. This is called by the Alarm
6695  *  interrupt handler whenever a link change interrupt comes up.
6696  *  Return value:
6697  *  void.
6698  */
6699
6700 static void s2io_link(nic_t * sp, int link)
6701 {
6702         struct net_device *dev = (struct net_device *) sp->dev;
6703
6704         if (link != sp->last_link_state) {
6705                 if (link == LINK_DOWN) {
6706                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6707                         netif_carrier_off(dev);
6708                 } else {
6709                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6710                         netif_carrier_on(dev);
6711                 }
6712         }
6713         sp->last_link_state = link;
6714 }
6715
6716 /**
6717  *  get_xena_rev_id - to identify revision ID of xena.
6718  *  @pdev : PCI Dev structure
6719  *  Description:
6720  *  Function to identify the Revision ID of xena.
6721  *  Return value:
6722  *  returns the revision ID of the device.
6723  */
6724
6725 static int get_xena_rev_id(struct pci_dev *pdev)
6726 {
6727         u8 id = 0;
6728         int ret;
6729         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6730         return id;
6731 }
6732
6733 /**
6734  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6735  *  @sp : private member of the device structure, which is a pointer to the
6736  *  s2io_nic structure.
6737  *  Description:
6738  *  This function initializes a few of the PCI and PCI-X configuration registers
6739  *  with recommended values.
6740  *  Return value:
6741  *  void
6742  */
6743
6744 static void s2io_init_pci(nic_t * sp)
6745 {
6746         u16 pci_cmd = 0, pcix_cmd = 0;
6747
6748         /* Enable Data Parity Error Recovery in PCI-X command register. */
6749         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6750                              &(pcix_cmd));
6751         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6752                               (pcix_cmd | 1));
6753         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6754                              &(pcix_cmd));
6755
6756         /* Set the PErr Response bit in PCI command register. */
6757         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6758         pci_write_config_word(sp->pdev, PCI_COMMAND,
6759                               (pci_cmd | PCI_COMMAND_PARITY));
6760         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6761 }
6762
6763 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6764 {
6765         if ( tx_fifo_num > 8) {
6766                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6767                          "supported\n");
6768                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6769                 tx_fifo_num = 8;
6770         }
6771         if ( rx_ring_num > 8) {
6772                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6773                          "supported\n");
6774                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6775                 rx_ring_num = 8;
6776         }
6777         if (*dev_intr_type != INTA)
6778                 napi = 0;
6779
6780 #ifndef CONFIG_PCI_MSI
6781         if (*dev_intr_type != INTA) {
6782                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6783                           "MSI/MSI-X. Defaulting to INTA\n");
6784                 *dev_intr_type = INTA;
6785         }
6786 #else
6787         if (*dev_intr_type > MSI_X) {
6788                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6789                           "Defaulting to INTA\n");
6790                 *dev_intr_type = INTA;
6791         }
6792 #endif
6793         if ((*dev_intr_type == MSI_X) &&
6794                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6795                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6796                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6797                                         "Defaulting to INTA\n");
6798                 *dev_intr_type = INTA;
6799         }
6800         if (rx_ring_mode > 3) {
6801                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6802                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6803                 rx_ring_mode = 3;
6804         }
6805         return SUCCESS;
6806 }
6807
6808 /**
6809  *  s2io_init_nic - Initialization of the adapter .
6810  *  @pdev : structure containing the PCI related information of the device.
6811  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6812  *  Description:
6813  *  The function initializes an adapter identified by the pci_dec structure.
6814  *  All OS related initialization including memory and device structure and
6815  *  initlaization of the device private variable is done. Also the swapper
6816  *  control register is initialized to enable read and write into the I/O
6817  *  registers of the device.
6818  *  Return value:
6819  *  returns 0 on success and negative on failure.
6820  */
6821
6822 static int __devinit
6823 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6824 {
6825         nic_t *sp;
6826         struct net_device *dev;
6827         int i, j, ret;
6828         int dma_flag = FALSE;
6829         u32 mac_up, mac_down;
6830         u64 val64 = 0, tmp64 = 0;
6831         XENA_dev_config_t __iomem *bar0 = NULL;
6832         u16 subid;
6833         mac_info_t *mac_control;
6834         struct config_param *config;
6835         int mode;
6836         u8 dev_intr_type = intr_type;
6837
6838         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6839                 return ret;
6840
6841         if ((ret = pci_enable_device(pdev))) {
6842                 DBG_PRINT(ERR_DBG,
6843                           "s2io_init_nic: pci_enable_device failed\n");
6844                 return ret;
6845         }
6846
6847         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6848                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6849                 dma_flag = TRUE;
6850                 if (pci_set_consistent_dma_mask
6851                     (pdev, DMA_64BIT_MASK)) {
6852                         DBG_PRINT(ERR_DBG,
6853                                   "Unable to obtain 64bit DMA for \
6854                                         consistent allocations\n");
6855                         pci_disable_device(pdev);
6856                         return -ENOMEM;
6857                 }
6858         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6859                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6860         } else {
6861                 pci_disable_device(pdev);
6862                 return -ENOMEM;
6863         }
6864         if (dev_intr_type != MSI_X) {
6865                 if (pci_request_regions(pdev, s2io_driver_name)) {
6866                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6867                         pci_disable_device(pdev);
6868                         return -ENODEV;
6869                 }
6870         }
6871         else {
6872                 if (!(request_mem_region(pci_resource_start(pdev, 0),
6873                          pci_resource_len(pdev, 0), s2io_driver_name))) {
6874                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6875                         pci_disable_device(pdev);
6876                         return -ENODEV;
6877                 }
6878                 if (!(request_mem_region(pci_resource_start(pdev, 2),
6879                          pci_resource_len(pdev, 2), s2io_driver_name))) {
6880                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6881                         release_mem_region(pci_resource_start(pdev, 0),
6882                                    pci_resource_len(pdev, 0));
6883                         pci_disable_device(pdev);
6884                         return -ENODEV;
6885                 }
6886         }
6887
6888         dev = alloc_etherdev(sizeof(nic_t));
6889         if (dev == NULL) {
6890                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6891                 pci_disable_device(pdev);
6892                 pci_release_regions(pdev);
6893                 return -ENODEV;
6894         }
6895
6896         pci_set_master(pdev);
6897         pci_set_drvdata(pdev, dev);
6898         SET_MODULE_OWNER(dev);
6899         SET_NETDEV_DEV(dev, &pdev->dev);
6900
6901         /*  Private member variable initialized to s2io NIC structure */
6902         sp = dev->priv;
6903         memset(sp, 0, sizeof(nic_t));
6904         sp->dev = dev;
6905         sp->pdev = pdev;
6906         sp->high_dma_flag = dma_flag;
6907         sp->device_enabled_once = FALSE;
6908         if (rx_ring_mode == 1)
6909                 sp->rxd_mode = RXD_MODE_1;
6910         if (rx_ring_mode == 2)
6911                 sp->rxd_mode = RXD_MODE_3B;
6912         if (rx_ring_mode == 3)
6913                 sp->rxd_mode = RXD_MODE_3A;
6914
6915         sp->intr_type = dev_intr_type;
6916
6917         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6918                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6919                 sp->device_type = XFRAME_II_DEVICE;
6920         else
6921                 sp->device_type = XFRAME_I_DEVICE;
6922
6923         sp->lro = lro;
6924
6925         /* Initialize some PCI/PCI-X fields of the NIC. */
6926         s2io_init_pci(sp);
6927
6928         /*
6929          * Setting the device configuration parameters.
6930          * Most of these parameters can be specified by the user during
6931          * module insertion as they are module loadable parameters. If
6932          * these parameters are not not specified during load time, they
6933          * are initialized with default values.
6934          */
6935         mac_control = &sp->mac_control;
6936         config = &sp->config;
6937
6938         /* Tx side parameters. */
6939         config->tx_fifo_num = tx_fifo_num;
6940         for (i = 0; i < MAX_TX_FIFOS; i++) {
6941                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6942                 config->tx_cfg[i].fifo_priority = i;
6943         }
6944
6945         /* mapping the QoS priority to the configured fifos */
6946         for (i = 0; i < MAX_TX_FIFOS; i++)
6947                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6948
6949         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6950         for (i = 0; i < config->tx_fifo_num; i++) {
6951                 config->tx_cfg[i].f_no_snoop =
6952                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6953                 if (config->tx_cfg[i].fifo_len < 65) {
6954                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6955                         break;
6956                 }
6957         }
6958         /* + 2 because one Txd for skb->data and one Txd for UFO */
6959         config->max_txds = MAX_SKB_FRAGS + 2;
6960
6961         /* Rx side parameters. */
6962         config->rx_ring_num = rx_ring_num;
6963         for (i = 0; i < MAX_RX_RINGS; i++) {
6964                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6965                     (rxd_count[sp->rxd_mode] + 1);
6966                 config->rx_cfg[i].ring_priority = i;
6967         }
6968
6969         for (i = 0; i < rx_ring_num; i++) {
6970                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6971                 config->rx_cfg[i].f_no_snoop =
6972                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6973         }
6974
6975         /*  Setting Mac Control parameters */
6976         mac_control->rmac_pause_time = rmac_pause_time;
6977         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6978         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6979
6980
6981         /* Initialize Ring buffer parameters. */
6982         for (i = 0; i < config->rx_ring_num; i++)
6983                 atomic_set(&sp->rx_bufs_left[i], 0);
6984
6985         /* Initialize the number of ISRs currently running */
6986         atomic_set(&sp->isr_cnt, 0);
6987
6988         /*  initialize the shared memory used by the NIC and the host */
6989         if (init_shared_mem(sp)) {
6990                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6991                           dev->name);
6992                 ret = -ENOMEM;
6993                 goto mem_alloc_failed;
6994         }
6995
6996         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6997                                      pci_resource_len(pdev, 0));
6998         if (!sp->bar0) {
6999                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7000                           dev->name);
7001                 ret = -ENOMEM;
7002                 goto bar0_remap_failed;
7003         }
7004
7005         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7006                                      pci_resource_len(pdev, 2));
7007         if (!sp->bar1) {
7008                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7009                           dev->name);
7010                 ret = -ENOMEM;
7011                 goto bar1_remap_failed;
7012         }
7013
7014         dev->irq = pdev->irq;
7015         dev->base_addr = (unsigned long) sp->bar0;
7016
7017         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7018         for (j = 0; j < MAX_TX_FIFOS; j++) {
7019                 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
7020                     (sp->bar1 + (j * 0x00020000));
7021         }
7022
7023         /*  Driver entry points */
7024         dev->open = &s2io_open;
7025         dev->stop = &s2io_close;
7026         dev->hard_start_xmit = &s2io_xmit;
7027         dev->get_stats = &s2io_get_stats;
7028         dev->set_multicast_list = &s2io_set_multicast;
7029         dev->do_ioctl = &s2io_ioctl;
7030         dev->change_mtu = &s2io_change_mtu;
7031         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7032         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7033         dev->vlan_rx_register = s2io_vlan_rx_register;
7034         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7035
7036         /*
7037          * will use eth_mac_addr() for  dev->set_mac_address
7038          * mac address will be set every time dev->open() is called
7039          */
7040         dev->poll = s2io_poll;
7041         dev->weight = 32;
7042
7043 #ifdef CONFIG_NET_POLL_CONTROLLER
7044         dev->poll_controller = s2io_netpoll;
7045 #endif
7046
7047         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7048         if (sp->high_dma_flag == TRUE)
7049                 dev->features |= NETIF_F_HIGHDMA;
7050         dev->features |= NETIF_F_TSO;
7051         dev->features |= NETIF_F_TSO6;
7052         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7053                 dev->features |= NETIF_F_UFO;
7054                 dev->features |= NETIF_F_HW_CSUM;
7055         }
7056
7057         dev->tx_timeout = &s2io_tx_watchdog;
7058         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7059         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7060         INIT_WORK(&sp->set_link_task, s2io_set_link);
7061
7062         pci_save_state(sp->pdev);
7063
7064         /* Setting swapper control on the NIC, for proper reset operation */
7065         if (s2io_set_swapper(sp)) {
7066                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7067                           dev->name);
7068                 ret = -EAGAIN;
7069                 goto set_swap_failed;
7070         }
7071
7072         /* Verify if the Herc works on the slot its placed into */
7073         if (sp->device_type & XFRAME_II_DEVICE) {
7074                 mode = s2io_verify_pci_mode(sp);
7075                 if (mode < 0) {
7076                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7077                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7078                         ret = -EBADSLT;
7079                         goto set_swap_failed;
7080                 }
7081         }
7082
7083         /* Not needed for Herc */
7084         if (sp->device_type & XFRAME_I_DEVICE) {
7085                 /*
7086                  * Fix for all "FFs" MAC address problems observed on
7087                  * Alpha platforms
7088                  */
7089                 fix_mac_address(sp);
7090                 s2io_reset(sp);
7091         }
7092
7093         /*
7094          * MAC address initialization.
7095          * For now only one mac address will be read and used.
7096          */
7097         bar0 = sp->bar0;
7098         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7099             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7100         writeq(val64, &bar0->rmac_addr_cmd_mem);
7101         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7102                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7103         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7104         mac_down = (u32) tmp64;
7105         mac_up = (u32) (tmp64 >> 32);
7106
7107         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7108
7109         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7110         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7111         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7112         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7113         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7114         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7115
7116         /*  Set the factory defined MAC address initially   */
7117         dev->addr_len = ETH_ALEN;
7118         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7119
7120         /* reset Nic and bring it to known state */
7121         s2io_reset(sp);
7122
7123         /*
7124          * Initialize the tasklet status and link state flags
7125          * and the card state parameter
7126          */
7127         atomic_set(&(sp->card_state), 0);
7128         sp->tasklet_status = 0;
7129         sp->link_state = 0;
7130
7131         /* Initialize spinlocks */
7132         spin_lock_init(&sp->tx_lock);
7133
7134         if (!napi)
7135                 spin_lock_init(&sp->put_lock);
7136         spin_lock_init(&sp->rx_lock);
7137
7138         /*
7139          * SXE-002: Configure link and activity LED to init state
7140          * on driver load.
7141          */
7142         subid = sp->pdev->subsystem_device;
7143         if ((subid & 0xFF) >= 0x07) {
7144                 val64 = readq(&bar0->gpio_control);
7145                 val64 |= 0x0000800000000000ULL;
7146                 writeq(val64, &bar0->gpio_control);
7147                 val64 = 0x0411040400000000ULL;
7148                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7149                 val64 = readq(&bar0->gpio_control);
7150         }
7151
7152         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7153
7154         if (register_netdev(dev)) {
7155                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7156                 ret = -ENODEV;
7157                 goto register_failed;
7158         }
7159         s2io_vpd_read(sp);
7160         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7161         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7162                   sp->product_name, get_xena_rev_id(sp->pdev));
7163         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7164                   s2io_driver_version);
7165         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7166                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7167                           sp->def_mac_addr[0].mac_addr[0],
7168                           sp->def_mac_addr[0].mac_addr[1],
7169                           sp->def_mac_addr[0].mac_addr[2],
7170                           sp->def_mac_addr[0].mac_addr[3],
7171                           sp->def_mac_addr[0].mac_addr[4],
7172                           sp->def_mac_addr[0].mac_addr[5]);
7173         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7174         if (sp->device_type & XFRAME_II_DEVICE) {
7175                 mode = s2io_print_pci_mode(sp);
7176                 if (mode < 0) {
7177                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7178                         ret = -EBADSLT;
7179                         unregister_netdev(dev);
7180                         goto set_swap_failed;
7181                 }
7182         }
7183         switch(sp->rxd_mode) {
7184                 case RXD_MODE_1:
7185                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7186                                                 dev->name);
7187                     break;
7188                 case RXD_MODE_3B:
7189                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7190                                                 dev->name);
7191                     break;
7192                 case RXD_MODE_3A:
7193                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7194                                                 dev->name);
7195                     break;
7196         }
7197
7198         if (napi)
7199                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7200         switch(sp->intr_type) {
7201                 case INTA:
7202                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7203                     break;
7204                 case MSI:
7205                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7206                     break;
7207                 case MSI_X:
7208                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7209                     break;
7210         }
7211         if (sp->lro)
7212                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7213                           dev->name);
7214         if (ufo)
7215                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7216                                         " enabled\n", dev->name);
7217         /* Initialize device name */
7218         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7219
7220         /* Initialize bimodal Interrupts */
7221         sp->config.bimodal = bimodal;
7222         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7223                 sp->config.bimodal = 0;
7224                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7225                         dev->name);
7226         }
7227
7228         /*
7229          * Make Link state as off at this point, when the Link change
7230          * interrupt comes the state will be automatically changed to
7231          * the right state.
7232          */
7233         netif_carrier_off(dev);
7234
7235         return 0;
7236
7237       register_failed:
7238       set_swap_failed:
7239         iounmap(sp->bar1);
7240       bar1_remap_failed:
7241         iounmap(sp->bar0);
7242       bar0_remap_failed:
7243       mem_alloc_failed:
7244         free_shared_mem(sp);
7245         pci_disable_device(pdev);
7246         if (dev_intr_type != MSI_X)
7247                 pci_release_regions(pdev);
7248         else {
7249                 release_mem_region(pci_resource_start(pdev, 0),
7250                         pci_resource_len(pdev, 0));
7251                 release_mem_region(pci_resource_start(pdev, 2),
7252                         pci_resource_len(pdev, 2));
7253         }
7254         pci_set_drvdata(pdev, NULL);
7255         free_netdev(dev);
7256
7257         return ret;
7258 }
7259
7260 /**
7261  * s2io_rem_nic - Free the PCI device
7262  * @pdev: structure containing the PCI related information of the device.
7263  * Description: This function is called by the Pci subsystem to release a
7264  * PCI device and free up all resource held up by the device. This could
7265  * be in response to a Hot plug event or when the driver is to be removed
7266  * from memory.
7267  */
7268
7269 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7270 {
7271         struct net_device *dev =
7272             (struct net_device *) pci_get_drvdata(pdev);
7273         nic_t *sp;
7274
7275         if (dev == NULL) {
7276                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7277                 return;
7278         }
7279
7280         sp = dev->priv;
7281         unregister_netdev(dev);
7282
7283         free_shared_mem(sp);
7284         iounmap(sp->bar0);
7285         iounmap(sp->bar1);
7286         if (sp->intr_type != MSI_X)
7287                 pci_release_regions(pdev);
7288         else {
7289                 release_mem_region(pci_resource_start(pdev, 0),
7290                         pci_resource_len(pdev, 0));
7291                 release_mem_region(pci_resource_start(pdev, 2),
7292                         pci_resource_len(pdev, 2));
7293         }
7294         pci_set_drvdata(pdev, NULL);
7295         free_netdev(dev);
7296         pci_disable_device(pdev);
7297 }
7298
7299 /**
7300  * s2io_starter - Entry point for the driver
7301  * Description: This function is the entry point for the driver. It verifies
7302  * the module loadable parameters and initializes PCI configuration space.
7303  */
7304
7305 int __init s2io_starter(void)
7306 {
7307         return pci_register_driver(&s2io_driver);
7308 }
7309
7310 /**
7311  * s2io_closer - Cleanup routine for the driver
7312  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7313  */
7314
7315 static void s2io_closer(void)
7316 {
7317         pci_unregister_driver(&s2io_driver);
7318         DBG_PRINT(INIT_DBG, "cleanup done\n");
7319 }
7320
7321 module_init(s2io_starter);
7322 module_exit(s2io_closer);
7323
7324 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7325                 struct tcphdr **tcp, RxD_t *rxdp)
7326 {
7327         int ip_off;
7328         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7329
7330         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7331                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7332                           __FUNCTION__);
7333                 return -1;
7334         }
7335
7336         /* TODO:
7337          * By default the VLAN field in the MAC is stripped by the card, if this
7338          * feature is turned off in rx_pa_cfg register, then the ip_off field
7339          * has to be shifted by a further 2 bytes
7340          */
7341         switch (l2_type) {
7342                 case 0: /* DIX type */
7343                 case 4: /* DIX type with VLAN */
7344                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7345                         break;
7346                 /* LLC, SNAP etc are considered non-mergeable */
7347                 default:
7348                         return -1;
7349         }
7350
7351         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7352         ip_len = (u8)((*ip)->ihl);
7353         ip_len <<= 2;
7354         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7355
7356         return 0;
7357 }
7358
7359 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7360                                   struct tcphdr *tcp)
7361 {
7362         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7363         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7364            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7365                 return -1;
7366         return 0;
7367 }
7368
7369 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7370 {
7371         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7372 }
7373
7374 static void initiate_new_session(lro_t *lro, u8 *l2h,
7375                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7376 {
7377         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7378         lro->l2h = l2h;
7379         lro->iph = ip;
7380         lro->tcph = tcp;
7381         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7382         lro->tcp_ack = ntohl(tcp->ack_seq);
7383         lro->sg_num = 1;
7384         lro->total_len = ntohs(ip->tot_len);
7385         lro->frags_len = 0;
7386         /*
7387          * check if we saw TCP timestamp. Other consistency checks have
7388          * already been done.
7389          */
7390         if (tcp->doff == 8) {
7391                 u32 *ptr;
7392                 ptr = (u32 *)(tcp+1);
7393                 lro->saw_ts = 1;
7394                 lro->cur_tsval = *(ptr+1);
7395                 lro->cur_tsecr = *(ptr+2);
7396         }
7397         lro->in_use = 1;
7398 }
7399
7400 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7401 {
7402         struct iphdr *ip = lro->iph;
7403         struct tcphdr *tcp = lro->tcph;
7404         u16 nchk;
7405         StatInfo_t *statinfo = sp->mac_control.stats_info;
7406         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7407
7408         /* Update L3 header */
7409         ip->tot_len = htons(lro->total_len);
7410         ip->check = 0;
7411         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7412         ip->check = nchk;
7413
7414         /* Update L4 header */
7415         tcp->ack_seq = lro->tcp_ack;
7416         tcp->window = lro->window;
7417
7418         /* Update tsecr field if this session has timestamps enabled */
7419         if (lro->saw_ts) {
7420                 u32 *ptr = (u32 *)(tcp + 1);
7421                 *(ptr+2) = lro->cur_tsecr;
7422         }
7423
7424         /* Update counters required for calculation of
7425          * average no. of packets aggregated.
7426          */
7427         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7428         statinfo->sw_stat.num_aggregations++;
7429 }
7430
7431 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7432                 struct tcphdr *tcp, u32 l4_pyld)
7433 {
7434         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7435         lro->total_len += l4_pyld;
7436         lro->frags_len += l4_pyld;
7437         lro->tcp_next_seq += l4_pyld;
7438         lro->sg_num++;
7439
7440         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7441         lro->tcp_ack = tcp->ack_seq;
7442         lro->window = tcp->window;
7443
7444         if (lro->saw_ts) {
7445                 u32 *ptr;
7446                 /* Update tsecr and tsval from this packet */
7447                 ptr = (u32 *) (tcp + 1);
7448                 lro->cur_tsval = *(ptr + 1);
7449                 lro->cur_tsecr = *(ptr + 2);
7450         }
7451 }
7452
7453 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7454                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7455 {
7456         u8 *ptr;
7457
7458         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7459
7460         if (!tcp_pyld_len) {
7461                 /* Runt frame or a pure ack */
7462                 return -1;
7463         }
7464
7465         if (ip->ihl != 5) /* IP has options */
7466                 return -1;
7467
7468         /* If we see CE codepoint in IP header, packet is not mergeable */
7469         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7470                 return -1;
7471
7472         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7473         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7474                                     tcp->ece || tcp->cwr || !tcp->ack) {
7475                 /*
7476                  * Currently recognize only the ack control word and
7477                  * any other control field being set would result in
7478                  * flushing the LRO session
7479                  */
7480                 return -1;
7481         }
7482
7483         /*
7484          * Allow only one TCP timestamp option. Don't aggregate if
7485          * any other options are detected.
7486          */
7487         if (tcp->doff != 5 && tcp->doff != 8)
7488                 return -1;
7489
7490         if (tcp->doff == 8) {
7491                 ptr = (u8 *)(tcp + 1);
7492                 while (*ptr == TCPOPT_NOP)
7493                         ptr++;
7494                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7495                         return -1;
7496
7497                 /* Ensure timestamp value increases monotonically */
7498                 if (l_lro)
7499                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7500                                 return -1;
7501
7502                 /* timestamp echo reply should be non-zero */
7503                 if (*((u32 *)(ptr+6)) == 0)
7504                         return -1;
7505         }
7506
7507         return 0;
7508 }
7509
7510 static int
7511 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7512                       RxD_t *rxdp, nic_t *sp)
7513 {
7514         struct iphdr *ip;
7515         struct tcphdr *tcph;
7516         int ret = 0, i;
7517
7518         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7519                                          rxdp))) {
7520                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7521                           ip->saddr, ip->daddr);
7522         } else {
7523                 return ret;
7524         }
7525
7526         tcph = (struct tcphdr *)*tcp;
7527         *tcp_len = get_l4_pyld_length(ip, tcph);
7528         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7529                 lro_t *l_lro = &sp->lro0_n[i];
7530                 if (l_lro->in_use) {
7531                         if (check_for_socket_match(l_lro, ip, tcph))
7532                                 continue;
7533                         /* Sock pair matched */
7534                         *lro = l_lro;
7535
7536                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7537                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7538                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7539                                           (*lro)->tcp_next_seq,
7540                                           ntohl(tcph->seq));
7541
7542                                 sp->mac_control.stats_info->
7543                                    sw_stat.outof_sequence_pkts++;
7544                                 ret = 2;
7545                                 break;
7546                         }
7547
7548                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7549                                 ret = 1; /* Aggregate */
7550                         else
7551                                 ret = 2; /* Flush both */
7552                         break;
7553                 }
7554         }
7555
7556         if (ret == 0) {
7557                 /* Before searching for available LRO objects,
7558                  * check if the pkt is L3/L4 aggregatable. If not
7559                  * don't create new LRO session. Just send this
7560                  * packet up.
7561                  */
7562                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7563                         return 5;
7564                 }
7565
7566                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7567                         lro_t *l_lro = &sp->lro0_n[i];
7568                         if (!(l_lro->in_use)) {
7569                                 *lro = l_lro;
7570                                 ret = 3; /* Begin anew */
7571                                 break;
7572                         }
7573                 }
7574         }
7575
7576         if (ret == 0) { /* sessions exceeded */
7577                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7578                           __FUNCTION__);
7579                 *lro = NULL;
7580                 return ret;
7581         }
7582
7583         switch (ret) {
7584                 case 3:
7585                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7586                         break;
7587                 case 2:
7588                         update_L3L4_header(sp, *lro);
7589                         break;
7590                 case 1:
7591                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7592                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7593                                 update_L3L4_header(sp, *lro);
7594                                 ret = 4; /* Flush the LRO */
7595                         }
7596                         break;
7597                 default:
7598                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7599                                 __FUNCTION__);
7600                         break;
7601         }
7602
7603         return ret;
7604 }
7605
7606 static void clear_lro_session(lro_t *lro)
7607 {
7608         static u16 lro_struct_size = sizeof(lro_t);
7609
7610         memset(lro, 0, lro_struct_size);
7611 }
7612
7613 static void queue_rx_frame(struct sk_buff *skb)
7614 {
7615         struct net_device *dev = skb->dev;
7616
7617         skb->protocol = eth_type_trans(skb, dev);
7618         if (napi)
7619                 netif_receive_skb(skb);
7620         else
7621                 netif_rx(skb);
7622 }
7623
7624 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7625                            u32 tcp_len)
7626 {
7627         struct sk_buff *first = lro->parent;
7628
7629         first->len += tcp_len;
7630         first->data_len = lro->frags_len;
7631         skb_pull(skb, (skb->len - tcp_len));
7632         if (skb_shinfo(first)->frag_list)
7633                 lro->last_frag->next = skb;
7634         else
7635                 skb_shinfo(first)->frag_list = skb;
7636         lro->last_frag = skb;
7637         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7638         return;
7639 }