1 /*********************************************************************
3 * vlsi_ir.c: VLSI82C147 PCI IrDA controller driver for Linux
5 * Copyright (c) 2001-2003 Martin Diehl
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 ********************************************************************/
24 #include <linux/module.h>
26 #define DRIVER_NAME "vlsi_ir"
27 #define DRIVER_VERSION "v0.5"
28 #define DRIVER_DESCRIPTION "IrDA SIR/MIR/FIR driver for VLSI 82C147"
29 #define DRIVER_AUTHOR "Martin Diehl <info@mdiehl.de>"
31 MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
32 MODULE_AUTHOR(DRIVER_AUTHOR);
33 MODULE_LICENSE("GPL");
35 /********************************************************/
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/slab.h>
41 #include <linux/netdevice.h>
42 #include <linux/skbuff.h>
43 #include <linux/delay.h>
44 #include <linux/time.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <asm/uaccess.h>
48 #include <asm/byteorder.h>
50 #include <net/irda/irda.h>
51 #include <net/irda/irda_device.h>
52 #include <net/irda/wrapper.h>
53 #include <net/irda/crc.h>
57 /********************************************************/
59 static /* const */ char drivername[] = DRIVER_NAME;
61 static struct pci_device_id vlsi_irda_table [] = {
63 .class = PCI_CLASS_WIRELESS_IRDA << 8,
64 .class_mask = PCI_CLASS_SUBCLASS_MASK << 8,
65 .vendor = PCI_VENDOR_ID_VLSI,
66 .device = PCI_DEVICE_ID_VLSI_82C147,
67 .subvendor = PCI_ANY_ID,
68 .subdevice = PCI_ANY_ID,
73 MODULE_DEVICE_TABLE(pci, vlsi_irda_table);
75 /********************************************************/
77 /* clksrc: which clock source to be used
78 * 0: auto - try PLL, fallback to 40MHz XCLK
79 * 1: on-chip 48MHz PLL
80 * 2: external 48MHz XCLK
81 * 3: external 40MHz XCLK (HP OB-800)
84 static int clksrc = 0; /* default is 0(auto) */
85 module_param(clksrc, int, 0);
86 MODULE_PARM_DESC(clksrc, "clock input source selection");
88 /* ringsize: size of the tx and rx descriptor rings
89 * independent for tx and rx
90 * specify as ringsize=tx[,rx]
91 * allowed values: 4, 8, 16, 32, 64
92 * Due to the IrDA 1.x max. allowed window size=7,
93 * there should be no gain when using rings larger than 8
96 static int ringsize[] = {8,8}; /* default is tx=8 / rx=8 */
97 module_param_array(ringsize, int, NULL, 0);
98 MODULE_PARM_DESC(ringsize, "TX, RX ring descriptor size");
100 /* sirpulse: tuning of the SIR pulse width within IrPHY 1.3 limits
101 * 0: very short, 1.5us (exception: 6us at 2.4 kbaud)
102 * 1: nominal 3/16 bittime width
103 * note: IrDA compliant peer devices should be happy regardless
104 * which one is used. Primary goal is to save some power
105 * on the sender's side - at 9.6kbaud for example the short
106 * pulse width saves more than 90% of the transmitted IR power.
109 static int sirpulse = 1; /* default is 3/16 bittime */
110 module_param(sirpulse, int, 0);
111 MODULE_PARM_DESC(sirpulse, "SIR pulse width tuning");
113 /* qos_mtt_bits: encoded min-turn-time value we require the peer device
114 * to use before transmitting to us. "Type 1" (per-station)
115 * bitfield according to IrLAP definition (section 6.6.8)
116 * Don't know which transceiver is used by my OB800 - the
117 * pretty common HP HDLS-1100 requires 1 msec - so lets use this.
120 static int qos_mtt_bits = 0x07; /* default is 1 ms or more */
121 module_param(qos_mtt_bits, int, 0);
122 MODULE_PARM_DESC(qos_mtt_bits, "IrLAP bitfield representing min-turn-time");
124 /********************************************************/
126 static void vlsi_reg_debug(unsigned iobase, const char *s)
130 printk(KERN_DEBUG "%s: ", s);
131 for (i = 0; i < 0x20; i++)
132 printk("%02x", (unsigned)inb((iobase+i)));
136 static void vlsi_ring_debug(struct vlsi_ring *r)
138 struct ring_descr *rd;
141 printk(KERN_DEBUG "%s - ring %p / size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
142 __FUNCTION__, r, r->size, r->mask, r->len, r->dir, r->rd[0].hw);
143 printk(KERN_DEBUG "%s - head = %d / tail = %d\n", __FUNCTION__,
144 atomic_read(&r->head) & r->mask, atomic_read(&r->tail) & r->mask);
145 for (i = 0; i < r->size; i++) {
147 printk(KERN_DEBUG "%s - ring descr %u: ", __FUNCTION__, i);
148 printk("skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
149 printk(KERN_DEBUG "%s - hw: status=%02x count=%u addr=0x%08x\n",
150 __FUNCTION__, (unsigned) rd_get_status(rd),
151 (unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
155 /********************************************************/
157 /* needed regardless of CONFIG_PROC_FS */
158 static struct proc_dir_entry *vlsi_proc_root = NULL;
160 #ifdef CONFIG_PROC_FS
162 static void vlsi_proc_pdev(struct seq_file *seq, struct pci_dev *pdev)
164 unsigned iobase = pci_resource_start(pdev, 0);
167 seq_printf(seq, "\n%s (vid/did: %04x/%04x)\n",
168 pci_name(pdev), (int)pdev->vendor, (int)pdev->device);
169 seq_printf(seq, "pci-power-state: %u\n", (unsigned) pdev->current_state);
170 seq_printf(seq, "resources: irq=%u / io=0x%04x / dma_mask=0x%016Lx\n",
171 pdev->irq, (unsigned)pci_resource_start(pdev, 0), (unsigned long long)pdev->dma_mask);
172 seq_printf(seq, "hw registers: ");
173 for (i = 0; i < 0x20; i++)
174 seq_printf(seq, "%02x", (unsigned)inb((iobase+i)));
175 seq_printf(seq, "\n");
178 static void vlsi_proc_ndev(struct seq_file *seq, struct net_device *ndev)
180 vlsi_irda_dev_t *idev = ndev->priv;
183 unsigned delta1, delta2;
185 unsigned iobase = ndev->base_addr;
187 seq_printf(seq, "\n%s link state: %s / %s / %s / %s\n", ndev->name,
188 netif_device_present(ndev) ? "attached" : "detached",
189 netif_running(ndev) ? "running" : "not running",
190 netif_carrier_ok(ndev) ? "carrier ok" : "no carrier",
191 netif_queue_stopped(ndev) ? "queue stopped" : "queue running");
193 if (!netif_running(ndev))
196 seq_printf(seq, "\nhw-state:\n");
197 pci_read_config_byte(idev->pdev, VLSI_PCI_IRMISC, &byte);
198 seq_printf(seq, "IRMISC:%s%s%s uart%s",
199 (byte&IRMISC_IRRAIL) ? " irrail" : "",
200 (byte&IRMISC_IRPD) ? " irpd" : "",
201 (byte&IRMISC_UARTTST) ? " uarttest" : "",
202 (byte&IRMISC_UARTEN) ? "@" : " disabled\n");
203 if (byte&IRMISC_UARTEN) {
204 seq_printf(seq, "0x%s\n",
205 (byte&2) ? ((byte&1) ? "3e8" : "2e8")
206 : ((byte&1) ? "3f8" : "2f8"));
208 pci_read_config_byte(idev->pdev, VLSI_PCI_CLKCTL, &byte);
209 seq_printf(seq, "CLKCTL: PLL %s%s%s / clock %s / wakeup %s\n",
210 (byte&CLKCTL_PD_INV) ? "powered" : "down",
211 (byte&CLKCTL_LOCK) ? " locked" : "",
212 (byte&CLKCTL_EXTCLK) ? ((byte&CLKCTL_XCKSEL)?" / 40 MHz XCLK":" / 48 MHz XCLK") : "",
213 (byte&CLKCTL_CLKSTP) ? "stopped" : "running",
214 (byte&CLKCTL_WAKE) ? "enabled" : "disabled");
215 pci_read_config_byte(idev->pdev, VLSI_PCI_MSTRPAGE, &byte);
216 seq_printf(seq, "MSTRPAGE: 0x%02x\n", (unsigned)byte);
218 byte = inb(iobase+VLSI_PIO_IRINTR);
219 seq_printf(seq, "IRINTR:%s%s%s%s%s%s%s%s\n",
220 (byte&IRINTR_ACTEN) ? " ACTEN" : "",
221 (byte&IRINTR_RPKTEN) ? " RPKTEN" : "",
222 (byte&IRINTR_TPKTEN) ? " TPKTEN" : "",
223 (byte&IRINTR_OE_EN) ? " OE_EN" : "",
224 (byte&IRINTR_ACTIVITY) ? " ACTIVITY" : "",
225 (byte&IRINTR_RPKTINT) ? " RPKTINT" : "",
226 (byte&IRINTR_TPKTINT) ? " TPKTINT" : "",
227 (byte&IRINTR_OE_INT) ? " OE_INT" : "");
228 word = inw(iobase+VLSI_PIO_RINGPTR);
229 seq_printf(seq, "RINGPTR: rx=%u / tx=%u\n", RINGPTR_GET_RX(word), RINGPTR_GET_TX(word));
230 word = inw(iobase+VLSI_PIO_RINGBASE);
231 seq_printf(seq, "RINGBASE: busmap=0x%08x\n",
232 ((unsigned)word << 10)|(MSTRPAGE_VALUE<<24));
233 word = inw(iobase+VLSI_PIO_RINGSIZE);
234 seq_printf(seq, "RINGSIZE: rx=%u / tx=%u\n", RINGSIZE_TO_RXSIZE(word),
235 RINGSIZE_TO_TXSIZE(word));
237 word = inw(iobase+VLSI_PIO_IRCFG);
238 seq_printf(seq, "IRCFG:%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
239 (word&IRCFG_LOOP) ? " LOOP" : "",
240 (word&IRCFG_ENTX) ? " ENTX" : "",
241 (word&IRCFG_ENRX) ? " ENRX" : "",
242 (word&IRCFG_MSTR) ? " MSTR" : "",
243 (word&IRCFG_RXANY) ? " RXANY" : "",
244 (word&IRCFG_CRC16) ? " CRC16" : "",
245 (word&IRCFG_FIR) ? " FIR" : "",
246 (word&IRCFG_MIR) ? " MIR" : "",
247 (word&IRCFG_SIR) ? " SIR" : "",
248 (word&IRCFG_SIRFILT) ? " SIRFILT" : "",
249 (word&IRCFG_SIRTEST) ? " SIRTEST" : "",
250 (word&IRCFG_TXPOL) ? " TXPOL" : "",
251 (word&IRCFG_RXPOL) ? " RXPOL" : "");
252 word = inw(iobase+VLSI_PIO_IRENABLE);
253 seq_printf(seq, "IRENABLE:%s%s%s%s%s%s%s%s\n",
254 (word&IRENABLE_PHYANDCLOCK) ? " PHYANDCLOCK" : "",
255 (word&IRENABLE_CFGER) ? " CFGERR" : "",
256 (word&IRENABLE_FIR_ON) ? " FIR_ON" : "",
257 (word&IRENABLE_MIR_ON) ? " MIR_ON" : "",
258 (word&IRENABLE_SIR_ON) ? " SIR_ON" : "",
259 (word&IRENABLE_ENTXST) ? " ENTXST" : "",
260 (word&IRENABLE_ENRXST) ? " ENRXST" : "",
261 (word&IRENABLE_CRC16_ON) ? " CRC16_ON" : "");
262 word = inw(iobase+VLSI_PIO_PHYCTL);
263 seq_printf(seq, "PHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
264 (unsigned)PHYCTL_TO_BAUD(word),
265 (unsigned)PHYCTL_TO_PLSWID(word),
266 (unsigned)PHYCTL_TO_PREAMB(word));
267 word = inw(iobase+VLSI_PIO_NPHYCTL);
268 seq_printf(seq, "NPHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
269 (unsigned)PHYCTL_TO_BAUD(word),
270 (unsigned)PHYCTL_TO_PLSWID(word),
271 (unsigned)PHYCTL_TO_PREAMB(word));
272 word = inw(iobase+VLSI_PIO_MAXPKT);
273 seq_printf(seq, "MAXPKT: max. rx packet size = %u\n", word);
274 word = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
275 seq_printf(seq, "RCVBCNT: rx-fifo filling level = %u\n", word);
277 seq_printf(seq, "\nsw-state:\n");
278 seq_printf(seq, "IrPHY setup: %d baud - %s encoding\n", idev->baud,
279 (idev->mode==IFF_SIR)?"SIR":((idev->mode==IFF_MIR)?"MIR":"FIR"));
280 do_gettimeofday(&now);
281 if (now.tv_usec >= idev->last_rx.tv_usec) {
282 delta2 = now.tv_usec - idev->last_rx.tv_usec;
286 delta2 = 1000000 + now.tv_usec - idev->last_rx.tv_usec;
289 seq_printf(seq, "last rx: %lu.%06u sec\n",
290 now.tv_sec - idev->last_rx.tv_sec - delta1, delta2);
292 seq_printf(seq, "RX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu",
293 idev->stats.rx_packets, idev->stats.rx_bytes, idev->stats.rx_errors,
294 idev->stats.rx_dropped);
295 seq_printf(seq, " / overrun=%lu / length=%lu / frame=%lu / crc=%lu\n",
296 idev->stats.rx_over_errors, idev->stats.rx_length_errors,
297 idev->stats.rx_frame_errors, idev->stats.rx_crc_errors);
298 seq_printf(seq, "TX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu / fifo=%lu\n",
299 idev->stats.tx_packets, idev->stats.tx_bytes, idev->stats.tx_errors,
300 idev->stats.tx_dropped, idev->stats.tx_fifo_errors);
304 static void vlsi_proc_ring(struct seq_file *seq, struct vlsi_ring *r)
306 struct ring_descr *rd;
310 seq_printf(seq, "size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
311 r->size, r->mask, r->len, r->dir, r->rd[0].hw);
312 h = atomic_read(&r->head) & r->mask;
313 t = atomic_read(&r->tail) & r->mask;
314 seq_printf(seq, "head = %d / tail = %d ", h, t);
316 seq_printf(seq, "(empty)\n");
318 if (((t+1)&r->mask) == h)
319 seq_printf(seq, "(full)\n");
321 seq_printf(seq, "(level = %d)\n", ((unsigned)(t-h) & r->mask));
323 j = (unsigned) rd_get_count(rd);
324 seq_printf(seq, "current: rd = %d / status = %02x / len = %u\n",
325 h, (unsigned)rd_get_status(rd), j);
327 seq_printf(seq, " data:");
330 for (i = 0; i < j; i++)
331 seq_printf(seq, " %02x", (unsigned)((unsigned char *)rd->buf)[i]);
332 seq_printf(seq, "\n");
335 for (i = 0; i < r->size; i++) {
337 seq_printf(seq, "> ring descr %u: ", i);
338 seq_printf(seq, "skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
339 seq_printf(seq, " hw: status=%02x count=%u busaddr=0x%08x\n",
340 (unsigned) rd_get_status(rd),
341 (unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
345 static int vlsi_seq_show(struct seq_file *seq, void *v)
347 struct net_device *ndev = seq->private;
348 vlsi_irda_dev_t *idev = ndev->priv;
351 seq_printf(seq, "\n%s %s\n\n", DRIVER_NAME, DRIVER_VERSION);
352 seq_printf(seq, "clksrc: %s\n",
353 (clksrc>=2) ? ((clksrc==3)?"40MHz XCLK":"48MHz XCLK")
354 : ((clksrc==1)?"48MHz PLL":"autodetect"));
355 seq_printf(seq, "ringsize: tx=%d / rx=%d\n",
356 ringsize[0], ringsize[1]);
357 seq_printf(seq, "sirpulse: %s\n", (sirpulse)?"3/16 bittime":"short");
358 seq_printf(seq, "qos_mtt_bits: 0x%02x\n", (unsigned)qos_mtt_bits);
360 spin_lock_irqsave(&idev->lock, flags);
361 if (idev->pdev != NULL) {
362 vlsi_proc_pdev(seq, idev->pdev);
364 if (idev->pdev->current_state == 0)
365 vlsi_proc_ndev(seq, ndev);
367 seq_printf(seq, "\nPCI controller down - resume_ok = %d\n",
369 if (netif_running(ndev) && idev->rx_ring && idev->tx_ring) {
370 seq_printf(seq, "\n--------- RX ring -----------\n\n");
371 vlsi_proc_ring(seq, idev->rx_ring);
372 seq_printf(seq, "\n--------- TX ring -----------\n\n");
373 vlsi_proc_ring(seq, idev->tx_ring);
376 seq_printf(seq, "\n");
377 spin_unlock_irqrestore(&idev->lock, flags);
382 static int vlsi_seq_open(struct inode *inode, struct file *file)
384 return single_open(file, vlsi_seq_show, PDE(inode)->data);
387 static const struct file_operations vlsi_proc_fops = {
388 .owner = THIS_MODULE,
389 .open = vlsi_seq_open,
392 .release = single_release,
395 #define VLSI_PROC_FOPS (&vlsi_proc_fops)
397 #else /* CONFIG_PROC_FS */
398 #define VLSI_PROC_FOPS NULL
401 /********************************************************/
403 static struct vlsi_ring *vlsi_alloc_ring(struct pci_dev *pdev, struct ring_descr_hw *hwmap,
404 unsigned size, unsigned len, int dir)
407 struct ring_descr *rd;
411 if (!size || ((size-1)&size)!=0) /* must be >0 and power of 2 */
414 r = kmalloc(sizeof(*r) + size * sizeof(struct ring_descr), GFP_KERNEL);
417 memset(r, 0, sizeof(*r));
422 r->rd = (struct ring_descr *)(r+1);
425 atomic_set(&r->head, 0);
426 atomic_set(&r->tail, 0);
428 for (i = 0; i < size; i++) {
430 memset(rd, 0, sizeof(*rd));
432 rd->buf = kmalloc(len, GFP_KERNEL|GFP_DMA);
434 || !(busaddr = pci_map_single(pdev, rd->buf, len, dir))) {
436 IRDA_ERROR("%s: failed to create PCI-MAP for %p",
437 __FUNCTION__, rd->buf);
441 for (j = 0; j < i; j++) {
443 busaddr = rd_get_addr(rd);
444 rd_set_addr_status(rd, 0, 0);
446 pci_unmap_single(pdev, busaddr, len, dir);
453 rd_set_addr_status(rd, busaddr, 0);
454 /* initially, the dma buffer is owned by the CPU */
460 static int vlsi_free_ring(struct vlsi_ring *r)
462 struct ring_descr *rd;
466 for (i = 0; i < r->size; i++) {
469 dev_kfree_skb_any(rd->skb);
470 busaddr = rd_get_addr(rd);
471 rd_set_addr_status(rd, 0, 0);
473 pci_unmap_single(r->pdev, busaddr, r->len, r->dir);
480 static int vlsi_create_hwif(vlsi_irda_dev_t *idev)
483 struct ring_descr_hw *hwmap;
485 idev->virtaddr = NULL;
488 ringarea = pci_alloc_consistent(idev->pdev, HW_RING_AREA_SIZE, &idev->busaddr);
490 IRDA_ERROR("%s: insufficient memory for descriptor rings\n",
494 memset(ringarea, 0, HW_RING_AREA_SIZE);
496 hwmap = (struct ring_descr_hw *)ringarea;
497 idev->rx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[1],
498 XFER_BUF_SIZE, PCI_DMA_FROMDEVICE);
499 if (idev->rx_ring == NULL)
502 hwmap += MAX_RING_DESCR;
503 idev->tx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[0],
504 XFER_BUF_SIZE, PCI_DMA_TODEVICE);
505 if (idev->tx_ring == NULL)
508 idev->virtaddr = ringarea;
512 vlsi_free_ring(idev->rx_ring);
514 idev->rx_ring = idev->tx_ring = NULL;
515 pci_free_consistent(idev->pdev, HW_RING_AREA_SIZE, ringarea, idev->busaddr);
521 static int vlsi_destroy_hwif(vlsi_irda_dev_t *idev)
523 vlsi_free_ring(idev->rx_ring);
524 vlsi_free_ring(idev->tx_ring);
525 idev->rx_ring = idev->tx_ring = NULL;
528 pci_free_consistent(idev->pdev,HW_RING_AREA_SIZE,idev->virtaddr,idev->busaddr);
530 idev->virtaddr = NULL;
536 /********************************************************/
538 static int vlsi_process_rx(struct vlsi_ring *r, struct ring_descr *rd)
544 struct net_device *ndev = (struct net_device *)pci_get_drvdata(r->pdev);
545 vlsi_irda_dev_t *idev = ndev->priv;
547 pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
548 /* dma buffer now owned by the CPU */
549 status = rd_get_status(rd);
550 if (status & RD_RX_ERROR) {
551 if (status & RD_RX_OVER)
553 if (status & RD_RX_LENGTH)
554 ret |= VLSI_RX_LENGTH;
555 if (status & RD_RX_PHYERR)
556 ret |= VLSI_RX_FRAME;
557 if (status & RD_RX_CRCERR)
562 len = rd_get_count(rd);
563 crclen = (idev->mode==IFF_FIR) ? sizeof(u32) : sizeof(u16);
564 len -= crclen; /* remove trailing CRC */
566 IRDA_DEBUG(0, "%s: strange frame (len=%d)\n", __FUNCTION__, len);
571 if (idev->mode == IFF_SIR) { /* hw checks CRC in MIR, FIR mode */
573 /* rd->buf is a streaming PCI_DMA_FROMDEVICE map. Doing the
574 * endian-adjustment there just in place will dirty a cache line
575 * which belongs to the map and thus we must be sure it will
576 * get flushed before giving the buffer back to hardware.
577 * vlsi_fill_rx() will do this anyway - but here we rely on.
579 le16_to_cpus(rd->buf+len);
580 if (irda_calc_crc16(INIT_FCS,rd->buf,len+crclen) != GOOD_FCS) {
581 IRDA_DEBUG(0, "%s: crc error\n", __FUNCTION__);
588 IRDA_WARNING("%s: rx packet lost\n", __FUNCTION__);
596 memcpy(skb_put(skb,len), rd->buf, len);
597 skb_reset_mac_header(skb);
602 ndev->last_rx = jiffies;
605 rd_set_status(rd, 0);
607 /* buffer still owned by CPU */
609 return (ret) ? -ret : len;
612 static void vlsi_fill_rx(struct vlsi_ring *r)
614 struct ring_descr *rd;
616 for (rd = ring_last(r); rd != NULL; rd = ring_put(r)) {
617 if (rd_is_active(rd)) {
618 IRDA_WARNING("%s: driver bug: rx descr race with hw\n",
624 rd->skb = dev_alloc_skb(IRLAP_SKB_ALLOCSIZE);
626 skb_reserve(rd->skb,1);
627 rd->skb->protocol = htons(ETH_P_IRDA);
630 break; /* probably not worth logging? */
632 /* give dma buffer back to busmaster */
633 pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
638 static void vlsi_rx_interrupt(struct net_device *ndev)
640 vlsi_irda_dev_t *idev = ndev->priv;
641 struct vlsi_ring *r = idev->rx_ring;
642 struct ring_descr *rd;
645 for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
647 if (rd_is_active(rd))
650 ret = vlsi_process_rx(r, rd);
654 idev->stats.rx_errors++;
655 if (ret & VLSI_RX_DROP)
656 idev->stats.rx_dropped++;
657 if (ret & VLSI_RX_OVER)
658 idev->stats.rx_over_errors++;
659 if (ret & VLSI_RX_LENGTH)
660 idev->stats.rx_length_errors++;
661 if (ret & VLSI_RX_FRAME)
662 idev->stats.rx_frame_errors++;
663 if (ret & VLSI_RX_CRC)
664 idev->stats.rx_crc_errors++;
667 idev->stats.rx_packets++;
668 idev->stats.rx_bytes += ret;
672 do_gettimeofday(&idev->last_rx); /* remember "now" for later mtt delay */
676 if (ring_first(r) == NULL) {
677 /* we are in big trouble, if this should ever happen */
678 IRDA_ERROR("%s: rx ring exhausted!\n", __FUNCTION__);
682 outw(0, ndev->base_addr+VLSI_PIO_PROMPT);
685 /* caller must have stopped the controller from busmastering */
687 static void vlsi_unarm_rx(vlsi_irda_dev_t *idev)
689 struct vlsi_ring *r = idev->rx_ring;
690 struct ring_descr *rd;
693 for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
696 if (rd_is_active(rd)) {
697 rd_set_status(rd, 0);
698 if (rd_get_count(rd)) {
699 IRDA_DEBUG(0, "%s - dropping rx packet\n", __FUNCTION__);
703 pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
705 dev_kfree_skb_any(rd->skb);
710 ret = vlsi_process_rx(r, rd);
714 idev->stats.rx_errors++;
715 if (ret & VLSI_RX_DROP)
716 idev->stats.rx_dropped++;
717 if (ret & VLSI_RX_OVER)
718 idev->stats.rx_over_errors++;
719 if (ret & VLSI_RX_LENGTH)
720 idev->stats.rx_length_errors++;
721 if (ret & VLSI_RX_FRAME)
722 idev->stats.rx_frame_errors++;
723 if (ret & VLSI_RX_CRC)
724 idev->stats.rx_crc_errors++;
727 idev->stats.rx_packets++;
728 idev->stats.rx_bytes += ret;
733 /********************************************************/
735 static int vlsi_process_tx(struct vlsi_ring *r, struct ring_descr *rd)
741 pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
742 /* dma buffer now owned by the CPU */
743 status = rd_get_status(rd);
744 if (status & RD_TX_UNDRN)
748 rd_set_status(rd, 0);
752 dev_kfree_skb_any(rd->skb);
755 else /* tx-skb already freed? - should never happen */
756 len = rd_get_count(rd); /* incorrect for SIR! (due to wrapping) */
759 /* dma buffer still owned by the CPU */
761 return (ret) ? -ret : len;
764 static int vlsi_set_baud(vlsi_irda_dev_t *idev, unsigned iobase)
773 baudrate = idev->new_baud;
774 IRDA_DEBUG(2, "%s: %d -> %d\n", __FUNCTION__, idev->baud, idev->new_baud);
775 if (baudrate == 4000000) {
778 nphyctl = PHYCTL_FIR;
780 else if (baudrate == 1152000) {
782 config = IRCFG_MIR | IRCFG_CRC16;
783 nphyctl = PHYCTL_MIR(clksrc==3);
787 config = IRCFG_SIR | IRCFG_SIRFILT | IRCFG_RXANY;
790 IRDA_WARNING("%s: undefined baudrate %d - fallback to 9600!\n",
791 __FUNCTION__, baudrate);
800 nphyctl = PHYCTL_SIR(baudrate,sirpulse,clksrc==3);
804 config |= IRCFG_MSTR | IRCFG_ENRX;
806 fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
808 IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __FUNCTION__, fifocnt);
811 outw(0, iobase+VLSI_PIO_IRENABLE);
812 outw(config, iobase+VLSI_PIO_IRCFG);
813 outw(nphyctl, iobase+VLSI_PIO_NPHYCTL);
815 outw(IRENABLE_PHYANDCLOCK, iobase+VLSI_PIO_IRENABLE);
818 udelay(1); /* chip applies IRCFG on next rising edge of its 8MHz clock */
820 /* read back settings for validation */
822 config = inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_MASK;
825 config ^= IRENABLE_FIR_ON;
826 else if (mode == IFF_MIR)
827 config ^= (IRENABLE_MIR_ON|IRENABLE_CRC16_ON);
829 config ^= IRENABLE_SIR_ON;
831 if (config != (IRENABLE_PHYANDCLOCK|IRENABLE_ENRXST)) {
832 IRDA_WARNING("%s: failed to set %s mode!\n", __FUNCTION__,
833 (mode==IFF_SIR)?"SIR":((mode==IFF_MIR)?"MIR":"FIR"));
837 if (inw(iobase+VLSI_PIO_PHYCTL) != nphyctl) {
838 IRDA_WARNING("%s: failed to apply baudrate %d\n",
839 __FUNCTION__, baudrate);
844 idev->baud = baudrate;
851 vlsi_reg_debug(iobase,__FUNCTION__);
856 static int vlsi_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
858 vlsi_irda_dev_t *idev = ndev->priv;
859 struct vlsi_ring *r = idev->tx_ring;
860 struct ring_descr *rd;
862 unsigned iobase = ndev->base_addr;
867 struct timeval now, ready;
870 speed = irda_get_next_speed(skb);
871 spin_lock_irqsave(&idev->lock, flags);
872 if (speed != -1 && speed != idev->baud) {
873 netif_stop_queue(ndev);
874 idev->new_baud = speed;
875 status = RD_TX_CLRENTX; /* stop tx-ring after this frame */
881 /* handle zero packets - should be speed change */
883 msg = "bogus zero-length packet";
887 /* due to the completely asynch tx operation we might have
888 * IrLAP racing with the hardware here, f.e. if the controller
889 * is just sending the last packet with current speed while
890 * the LAP is already switching the speed using synchronous
891 * len=0 packet. Immediate execution would lead to hw lockup
892 * requiring a powercycle to reset. Good candidate to trigger
893 * this is the final UA:RSP packet after receiving a DISC:CMD
894 * when getting the LAP down.
895 * Note that we are not protected by the queue_stop approach
896 * because the final UA:RSP arrives _without_ request to apply
897 * new-speed-after-this-packet - hence the driver doesn't know
898 * this was the last packet and doesn't stop the queue. So the
899 * forced switch to default speed from LAP gets through as fast
900 * as only some 10 usec later while the UA:RSP is still processed
901 * by the hardware and we would get screwed.
904 if (ring_first(idev->tx_ring) == NULL) {
905 /* no race - tx-ring already empty */
906 vlsi_set_baud(idev, iobase);
907 netif_wake_queue(ndev);
911 /* keep the speed change pending like it would
912 * for any len>0 packet. tx completion interrupt
913 * will apply it when the tx ring becomes empty.
915 spin_unlock_irqrestore(&idev->lock, flags);
916 dev_kfree_skb_any(skb);
920 /* sanity checks - simply drop the packet */
924 msg = "ring full, but queue wasn't stopped";
928 if (rd_is_active(rd)) {
929 msg = "entry still owned by hw";
934 msg = "tx ring entry without pci buffer";
939 msg = "ring entry with old skb still attached";
943 /* no need for serialization or interrupt disable during mtt */
944 spin_unlock_irqrestore(&idev->lock, flags);
946 if ((mtt = irda_get_mtt(skb)) > 0) {
948 ready.tv_usec = idev->last_rx.tv_usec + mtt;
949 ready.tv_sec = idev->last_rx.tv_sec;
950 if (ready.tv_usec >= 1000000) {
951 ready.tv_usec -= 1000000;
952 ready.tv_sec++; /* IrLAP 1.1: mtt always < 1 sec */
955 do_gettimeofday(&now);
956 if (now.tv_sec > ready.tv_sec
957 || (now.tv_sec==ready.tv_sec && now.tv_usec>=ready.tv_usec))
960 /* must not sleep here - called under netif_tx_lock! */
964 /* tx buffer already owned by CPU due to pci_dma_sync_single_for_cpu()
965 * after subsequent tx-completion
968 if (idev->mode == IFF_SIR) {
969 status |= RD_TX_DISCRC; /* no hw-crc creation */
970 len = async_wrap_skb(skb, rd->buf, r->len);
972 /* Some rare worst case situation in SIR mode might lead to
973 * potential buffer overflow. The wrapper detects this, returns
974 * with a shortened frame (without FCS/EOF) but doesn't provide
975 * any error indication about the invalid packet which we are
977 * Therefore we log if the buffer got filled to the point, where the
978 * wrapper would abort, i.e. when there are less than 5 bytes left to
979 * allow appending the FCS/EOF.
983 IRDA_WARNING("%s: possible buffer overflow with SIR wrapping!\n",
987 /* hw deals with MIR/FIR mode wrapping */
988 status |= RD_TX_PULSE; /* send 2 us highspeed indication pulse */
991 msg = "frame exceeds tx buffer length";
995 skb_copy_from_linear_data(skb, rd->buf, len);
998 rd->skb = skb; /* remember skb for tx-complete stats */
1000 rd_set_count(rd, len);
1001 rd_set_status(rd, status); /* not yet active! */
1003 /* give dma buffer back to busmaster-hw (flush caches to make
1004 * CPU-driven changes visible from the pci bus).
1007 pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
1009 /* Switching to TX mode here races with the controller
1010 * which may stop TX at any time when fetching an inactive descriptor
1011 * or one with CLR_ENTX set. So we switch on TX only, if TX was not running
1012 * _after_ the new descriptor was activated on the ring. This ensures
1013 * we will either find TX already stopped or we can be sure, there
1014 * will be a TX-complete interrupt even if the chip stopped doing
1015 * TX just after we found it still running. The ISR will then find
1016 * the non-empty ring and restart TX processing. The enclosing
1017 * spinlock provides the correct serialization to prevent race with isr.
1020 spin_lock_irqsave(&idev->lock,flags);
1024 if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
1027 fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1029 IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __FUNCTION__, fifocnt);
1032 config = inw(iobase+VLSI_PIO_IRCFG);
1034 outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
1036 outw(0, iobase+VLSI_PIO_PROMPT);
1038 ndev->trans_start = jiffies;
1040 if (ring_put(r) == NULL) {
1041 netif_stop_queue(ndev);
1042 IRDA_DEBUG(3, "%s: tx ring full - queue stopped\n", __FUNCTION__);
1044 spin_unlock_irqrestore(&idev->lock, flags);
1049 spin_unlock_irqrestore(&idev->lock, flags);
1051 IRDA_WARNING("%s: dropping packet - %s\n", __FUNCTION__, msg);
1052 dev_kfree_skb_any(skb);
1053 idev->stats.tx_errors++;
1054 idev->stats.tx_dropped++;
1055 /* Don't even think about returning NET_XMIT_DROP (=1) here!
1056 * In fact any retval!=0 causes the packet scheduler to requeue the
1057 * packet for later retry of transmission - which isn't exactly
1058 * what we want after we've just called dev_kfree_skb_any ;-)
1063 static void vlsi_tx_interrupt(struct net_device *ndev)
1065 vlsi_irda_dev_t *idev = ndev->priv;
1066 struct vlsi_ring *r = idev->tx_ring;
1067 struct ring_descr *rd;
1072 for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
1074 if (rd_is_active(rd))
1077 ret = vlsi_process_tx(r, rd);
1081 idev->stats.tx_errors++;
1082 if (ret & VLSI_TX_DROP)
1083 idev->stats.tx_dropped++;
1084 if (ret & VLSI_TX_FIFO)
1085 idev->stats.tx_fifo_errors++;
1088 idev->stats.tx_packets++;
1089 idev->stats.tx_bytes += ret;
1093 iobase = ndev->base_addr;
1095 if (idev->new_baud && rd == NULL) /* tx ring empty and speed change pending */
1096 vlsi_set_baud(idev, iobase);
1098 config = inw(iobase+VLSI_PIO_IRCFG);
1099 if (rd == NULL) /* tx ring empty: re-enable rx */
1100 outw((config & ~IRCFG_ENTX) | IRCFG_ENRX, iobase+VLSI_PIO_IRCFG);
1102 else if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
1105 fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1107 IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n",
1108 __FUNCTION__, fifocnt);
1110 outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
1113 outw(0, iobase+VLSI_PIO_PROMPT);
1115 if (netif_queue_stopped(ndev) && !idev->new_baud) {
1116 netif_wake_queue(ndev);
1117 IRDA_DEBUG(3, "%s: queue awoken\n", __FUNCTION__);
1121 /* caller must have stopped the controller from busmastering */
1123 static void vlsi_unarm_tx(vlsi_irda_dev_t *idev)
1125 struct vlsi_ring *r = idev->tx_ring;
1126 struct ring_descr *rd;
1129 for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
1132 if (rd_is_active(rd)) {
1133 rd_set_status(rd, 0);
1134 rd_set_count(rd, 0);
1135 pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
1137 dev_kfree_skb_any(rd->skb);
1140 IRDA_DEBUG(0, "%s - dropping tx packet\n", __FUNCTION__);
1141 ret = -VLSI_TX_DROP;
1144 ret = vlsi_process_tx(r, rd);
1148 idev->stats.tx_errors++;
1149 if (ret & VLSI_TX_DROP)
1150 idev->stats.tx_dropped++;
1151 if (ret & VLSI_TX_FIFO)
1152 idev->stats.tx_fifo_errors++;
1155 idev->stats.tx_packets++;
1156 idev->stats.tx_bytes += ret;
1162 /********************************************************/
1164 static int vlsi_start_clock(struct pci_dev *pdev)
1169 if (clksrc < 2) { /* auto or PLL: try PLL */
1170 clkctl = CLKCTL_PD_INV | CLKCTL_CLKSTP;
1171 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1173 /* procedure to detect PLL lock synchronisation:
1174 * after 0.5 msec initial delay we expect to find 3 PLL lock
1175 * indications within 10 msec for successful PLL detection.
1179 for (i = 500; i <= 10000; i += 50) { /* max 10 msec */
1180 pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &lock);
1181 if (lock&CLKCTL_LOCK) {
1188 if (clksrc == 1) { /* explicitly asked for PLL hence bail out */
1189 IRDA_ERROR("%s: no PLL or failed to lock!\n",
1191 clkctl = CLKCTL_CLKSTP;
1192 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1195 else /* was: clksrc=0(auto) */
1196 clksrc = 3; /* fallback to 40MHz XCLK (OB800) */
1198 IRDA_DEBUG(0, "%s: PLL not locked, fallback to clksrc=%d\n",
1199 __FUNCTION__, clksrc);
1202 clksrc = 1; /* got successful PLL lock */
1206 /* we get here if either no PLL detected in auto-mode or
1207 an external clock source was explicitly specified */
1209 clkctl = CLKCTL_EXTCLK | CLKCTL_CLKSTP;
1211 clkctl |= CLKCTL_XCKSEL;
1212 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1214 /* no way to test for working XCLK */
1217 pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
1219 /* ok, now going to connect the chip with the clock source */
1221 clkctl &= ~CLKCTL_CLKSTP;
1222 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1227 static void vlsi_stop_clock(struct pci_dev *pdev)
1231 /* disconnect chip from clock source */
1232 pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
1233 clkctl |= CLKCTL_CLKSTP;
1234 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1236 /* disable all clock sources */
1237 clkctl &= ~(CLKCTL_EXTCLK | CLKCTL_PD_INV);
1238 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1241 /********************************************************/
1243 /* writing all-zero to the VLSI PCI IO register area seems to prevent
1244 * some occasional situations where the hardware fails (symptoms are
1245 * what appears as stalled tx/rx state machines, i.e. everything ok for
1246 * receive or transmit but hw makes no progress or is unable to access
1247 * the bus memory locations).
1248 * Best place to call this is immediately after/before the internal clock
1249 * gets started/stopped.
1252 static inline void vlsi_clear_regs(unsigned iobase)
1255 const unsigned chip_io_extent = 32;
1257 for (i = 0; i < chip_io_extent; i += sizeof(u16))
1258 outw(0, iobase + i);
1261 static int vlsi_init_chip(struct pci_dev *pdev)
1263 struct net_device *ndev = pci_get_drvdata(pdev);
1264 vlsi_irda_dev_t *idev = ndev->priv;
1268 /* start the clock and clean the registers */
1270 if (vlsi_start_clock(pdev)) {
1271 IRDA_ERROR("%s: no valid clock source\n", __FUNCTION__);
1274 iobase = ndev->base_addr;
1275 vlsi_clear_regs(iobase);
1277 outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* w/c pending IRQ, disable all INT */
1279 outw(0, iobase+VLSI_PIO_IRENABLE); /* disable IrPHY-interface */
1281 /* disable everything, particularly IRCFG_MSTR - (also resetting the RING_PTR) */
1283 outw(0, iobase+VLSI_PIO_IRCFG);
1286 outw(MAX_PACKET_LENGTH, iobase+VLSI_PIO_MAXPKT); /* max possible value=0x0fff */
1288 outw(BUS_TO_RINGBASE(idev->busaddr), iobase+VLSI_PIO_RINGBASE);
1290 outw(TX_RX_TO_RINGSIZE(idev->tx_ring->size, idev->rx_ring->size),
1291 iobase+VLSI_PIO_RINGSIZE);
1293 ptr = inw(iobase+VLSI_PIO_RINGPTR);
1294 atomic_set(&idev->rx_ring->head, RINGPTR_GET_RX(ptr));
1295 atomic_set(&idev->rx_ring->tail, RINGPTR_GET_RX(ptr));
1296 atomic_set(&idev->tx_ring->head, RINGPTR_GET_TX(ptr));
1297 atomic_set(&idev->tx_ring->tail, RINGPTR_GET_TX(ptr));
1299 vlsi_set_baud(idev, iobase); /* idev->new_baud used as provided by caller */
1301 outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* just in case - w/c pending IRQ's */
1304 /* DO NOT BLINDLY ENABLE IRINTR_ACTEN!
1305 * basically every received pulse fires an ACTIVITY-INT
1306 * leading to >>1000 INT's per second instead of few 10
1309 outb(IRINTR_RPKTEN|IRINTR_TPKTEN, iobase+VLSI_PIO_IRINTR);
1314 static int vlsi_start_hw(vlsi_irda_dev_t *idev)
1316 struct pci_dev *pdev = idev->pdev;
1317 struct net_device *ndev = pci_get_drvdata(pdev);
1318 unsigned iobase = ndev->base_addr;
1321 /* we don't use the legacy UART, disable its address decoding */
1323 pci_read_config_byte(pdev, VLSI_PCI_IRMISC, &byte);
1324 byte &= ~(IRMISC_UARTEN | IRMISC_UARTTST);
1325 pci_write_config_byte(pdev, VLSI_PCI_IRMISC, byte);
1327 /* enable PCI busmaster access to our 16MB page */
1329 pci_write_config_byte(pdev, VLSI_PCI_MSTRPAGE, MSTRPAGE_VALUE);
1330 pci_set_master(pdev);
1332 if (vlsi_init_chip(pdev) < 0) {
1333 pci_disable_device(pdev);
1337 vlsi_fill_rx(idev->rx_ring);
1339 do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */
1341 outw(0, iobase+VLSI_PIO_PROMPT); /* kick hw state machine */
1346 static int vlsi_stop_hw(vlsi_irda_dev_t *idev)
1348 struct pci_dev *pdev = idev->pdev;
1349 struct net_device *ndev = pci_get_drvdata(pdev);
1350 unsigned iobase = ndev->base_addr;
1351 unsigned long flags;
1353 spin_lock_irqsave(&idev->lock,flags);
1354 outw(0, iobase+VLSI_PIO_IRENABLE);
1355 outw(0, iobase+VLSI_PIO_IRCFG); /* disable everything */
1357 /* disable and w/c irqs */
1358 outb(0, iobase+VLSI_PIO_IRINTR);
1360 outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR);
1361 spin_unlock_irqrestore(&idev->lock,flags);
1363 vlsi_unarm_tx(idev);
1364 vlsi_unarm_rx(idev);
1366 vlsi_clear_regs(iobase);
1367 vlsi_stop_clock(pdev);
1369 pci_disable_device(pdev);
1374 /**************************************************************/
1376 static struct net_device_stats * vlsi_get_stats(struct net_device *ndev)
1378 vlsi_irda_dev_t *idev = ndev->priv;
1380 return &idev->stats;
1383 static void vlsi_tx_timeout(struct net_device *ndev)
1385 vlsi_irda_dev_t *idev = ndev->priv;
1388 vlsi_reg_debug(ndev->base_addr, __FUNCTION__);
1389 vlsi_ring_debug(idev->tx_ring);
1391 if (netif_running(ndev))
1392 netif_stop_queue(ndev);
1396 /* now simply restart the whole thing */
1398 if (!idev->new_baud)
1399 idev->new_baud = idev->baud; /* keep current baudrate */
1401 if (vlsi_start_hw(idev))
1402 IRDA_ERROR("%s: failed to restart hw - %s(%s) unusable!\n",
1403 __FUNCTION__, pci_name(idev->pdev), ndev->name);
1405 netif_start_queue(ndev);
1408 static int vlsi_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1410 vlsi_irda_dev_t *idev = ndev->priv;
1411 struct if_irda_req *irq = (struct if_irda_req *) rq;
1412 unsigned long flags;
1417 case SIOCSBANDWIDTH:
1418 if (!capable(CAP_NET_ADMIN)) {
1422 spin_lock_irqsave(&idev->lock, flags);
1423 idev->new_baud = irq->ifr_baudrate;
1424 /* when called from userland there might be a minor race window here
1425 * if the stack tries to change speed concurrently - which would be
1426 * pretty strange anyway with the userland having full control...
1428 vlsi_set_baud(idev, ndev->base_addr);
1429 spin_unlock_irqrestore(&idev->lock, flags);
1431 case SIOCSMEDIABUSY:
1432 if (!capable(CAP_NET_ADMIN)) {
1436 irda_device_set_media_busy(ndev, TRUE);
1438 case SIOCGRECEIVING:
1439 /* the best we can do: check whether there are any bytes in rx fifo.
1440 * The trustable window (in case some data arrives just afterwards)
1441 * may be as short as 1usec or so at 4Mbps.
1443 fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1444 irq->ifr_receiving = (fifocnt!=0) ? 1 : 0;
1447 IRDA_WARNING("%s: notsupp - cmd=%04x\n",
1455 /********************************************************/
1457 static irqreturn_t vlsi_interrupt(int irq, void *dev_instance)
1459 struct net_device *ndev = dev_instance;
1460 vlsi_irda_dev_t *idev = ndev->priv;
1464 unsigned long flags;
1467 iobase = ndev->base_addr;
1468 spin_lock_irqsave(&idev->lock,flags);
1470 irintr = inb(iobase+VLSI_PIO_IRINTR);
1472 outb(irintr, iobase+VLSI_PIO_IRINTR); /* acknowledge asap */
1474 if (!(irintr&=IRINTR_INT_MASK)) /* not our INT - probably shared */
1479 if (unlikely(!(irintr & ~IRINTR_ACTIVITY)))
1480 break; /* nothing todo if only activity */
1482 if (irintr&IRINTR_RPKTINT)
1483 vlsi_rx_interrupt(ndev);
1485 if (irintr&IRINTR_TPKTINT)
1486 vlsi_tx_interrupt(ndev);
1488 } while (--boguscount > 0);
1489 spin_unlock_irqrestore(&idev->lock,flags);
1491 if (boguscount <= 0)
1492 IRDA_MESSAGE("%s: too much work in interrupt!\n",
1494 return IRQ_RETVAL(handled);
1497 /********************************************************/
1499 static int vlsi_open(struct net_device *ndev)
1501 vlsi_irda_dev_t *idev = ndev->priv;
1505 if (pci_request_regions(idev->pdev, drivername)) {
1506 IRDA_WARNING("%s: io resource busy\n", __FUNCTION__);
1509 ndev->base_addr = pci_resource_start(idev->pdev,0);
1510 ndev->irq = idev->pdev->irq;
1512 /* under some rare occasions the chip apparently comes up with
1513 * IRQ's pending. We better w/c pending IRQ and disable them all
1516 outb(IRINTR_INT_MASK, ndev->base_addr+VLSI_PIO_IRINTR);
1518 if (request_irq(ndev->irq, vlsi_interrupt, IRQF_SHARED,
1519 drivername, ndev)) {
1520 IRDA_WARNING("%s: couldn't get IRQ: %d\n",
1521 __FUNCTION__, ndev->irq);
1525 if ((err = vlsi_create_hwif(idev)) != 0)
1528 sprintf(hwname, "VLSI-FIR @ 0x%04x", (unsigned)ndev->base_addr);
1529 idev->irlap = irlap_open(ndev,&idev->qos,hwname);
1531 goto errout_free_ring;
1533 do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */
1535 idev->new_baud = 9600; /* start with IrPHY using 9600(SIR) mode */
1537 if ((err = vlsi_start_hw(idev)) != 0)
1538 goto errout_close_irlap;
1540 netif_start_queue(ndev);
1542 IRDA_MESSAGE("%s: device %s operational\n", __FUNCTION__, ndev->name);
1547 irlap_close(idev->irlap);
1549 vlsi_destroy_hwif(idev);
1551 free_irq(ndev->irq,ndev);
1553 pci_release_regions(idev->pdev);
1558 static int vlsi_close(struct net_device *ndev)
1560 vlsi_irda_dev_t *idev = ndev->priv;
1562 netif_stop_queue(ndev);
1565 irlap_close(idev->irlap);
1570 vlsi_destroy_hwif(idev);
1572 free_irq(ndev->irq,ndev);
1574 pci_release_regions(idev->pdev);
1576 IRDA_MESSAGE("%s: device %s stopped\n", __FUNCTION__, ndev->name);
1581 static int vlsi_irda_init(struct net_device *ndev)
1583 vlsi_irda_dev_t *idev = ndev->priv;
1584 struct pci_dev *pdev = idev->pdev;
1586 SET_MODULE_OWNER(ndev);
1588 ndev->irq = pdev->irq;
1589 ndev->base_addr = pci_resource_start(pdev,0);
1592 * see include file for details why we need these 2 masks, in this order!
1595 if (pci_set_dma_mask(pdev,DMA_MASK_USED_BY_HW)
1596 || pci_set_dma_mask(pdev,DMA_MASK_MSTRPAGE)) {
1597 IRDA_ERROR("%s: aborting due to PCI BM-DMA address limitations\n", __FUNCTION__);
1601 irda_init_max_qos_capabilies(&idev->qos);
1603 /* the VLSI82C147 does not support 576000! */
1605 idev->qos.baud_rate.bits = IR_2400 | IR_9600
1606 | IR_19200 | IR_38400 | IR_57600 | IR_115200
1607 | IR_1152000 | (IR_4000000 << 8);
1609 idev->qos.min_turn_time.bits = qos_mtt_bits;
1611 irda_qos_bits_to_value(&idev->qos);
1613 /* currently no public media definitions for IrDA */
1615 ndev->flags |= IFF_PORTSEL | IFF_AUTOMEDIA;
1616 ndev->if_port = IF_PORT_UNKNOWN;
1618 ndev->open = vlsi_open;
1619 ndev->stop = vlsi_close;
1620 ndev->get_stats = vlsi_get_stats;
1621 ndev->hard_start_xmit = vlsi_hard_start_xmit;
1622 ndev->do_ioctl = vlsi_ioctl;
1623 ndev->tx_timeout = vlsi_tx_timeout;
1624 ndev->watchdog_timeo = 500*HZ/1000; /* max. allowed turn time for IrLAP */
1626 SET_NETDEV_DEV(ndev, &pdev->dev);
1631 /**************************************************************/
1633 static int __devinit
1634 vlsi_irda_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1636 struct net_device *ndev;
1637 vlsi_irda_dev_t *idev;
1639 if (pci_enable_device(pdev))
1642 pdev->current_state = 0; /* hw must be running now */
1644 IRDA_MESSAGE("%s: IrDA PCI controller %s detected\n",
1645 drivername, pci_name(pdev));
1647 if ( !pci_resource_start(pdev,0)
1648 || !(pci_resource_flags(pdev,0) & IORESOURCE_IO) ) {
1649 IRDA_ERROR("%s: bar 0 invalid", __FUNCTION__);
1653 ndev = alloc_irdadev(sizeof(*idev));
1655 IRDA_ERROR("%s: Unable to allocate device memory.\n",
1662 spin_lock_init(&idev->lock);
1663 init_MUTEX(&idev->sem);
1667 if (vlsi_irda_init(ndev) < 0)
1670 if (register_netdev(ndev) < 0) {
1671 IRDA_ERROR("%s: register_netdev failed\n", __FUNCTION__);
1675 if (vlsi_proc_root != NULL) {
1676 struct proc_dir_entry *ent;
1678 ent = create_proc_entry(ndev->name, S_IFREG|S_IRUGO, vlsi_proc_root);
1680 IRDA_WARNING("%s: failed to create proc entry\n",
1684 ent->proc_fops = VLSI_PROC_FOPS;
1687 idev->proc_entry = ent;
1689 IRDA_MESSAGE("%s: registered device %s\n", drivername, ndev->name);
1691 pci_set_drvdata(pdev, ndev);
1700 pci_disable_device(pdev);
1702 pci_set_drvdata(pdev, NULL);
1706 static void __devexit vlsi_irda_remove(struct pci_dev *pdev)
1708 struct net_device *ndev = pci_get_drvdata(pdev);
1709 vlsi_irda_dev_t *idev;
1712 IRDA_ERROR("%s: lost netdevice?\n", drivername);
1716 unregister_netdev(ndev);
1720 if (idev->proc_entry) {
1721 remove_proc_entry(ndev->name, vlsi_proc_root);
1722 idev->proc_entry = NULL;
1728 pci_set_drvdata(pdev, NULL);
1730 IRDA_MESSAGE("%s: %s removed\n", drivername, pci_name(pdev));
1735 /* The Controller doesn't provide PCI PM capabilities as defined by PCI specs.
1736 * Some of the Linux PCI-PM code however depends on this, for example in
1737 * pci_set_power_state(). So we have to take care to perform the required
1738 * operations on our own (particularly reflecting the pdev->current_state)
1739 * otherwise we might get cheated by pci-pm.
1743 static int vlsi_irda_suspend(struct pci_dev *pdev, pm_message_t state)
1745 struct net_device *ndev = pci_get_drvdata(pdev);
1746 vlsi_irda_dev_t *idev;
1749 IRDA_ERROR("%s - %s: no netdevice \n",
1750 __FUNCTION__, pci_name(pdev));
1755 if (pdev->current_state != 0) { /* already suspended */
1756 if (state.event > pdev->current_state) { /* simply go deeper */
1757 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1758 pdev->current_state = state.event;
1761 IRDA_ERROR("%s - %s: invalid suspend request %u -> %u\n", __FUNCTION__, pci_name(pdev), pdev->current_state, state.event);
1766 if (netif_running(ndev)) {
1767 netif_device_detach(ndev);
1769 pci_save_state(pdev);
1770 if (!idev->new_baud)
1771 /* remember speed settings to restore on resume */
1772 idev->new_baud = idev->baud;
1775 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1776 pdev->current_state = state.event;
1777 idev->resume_ok = 1;
1782 static int vlsi_irda_resume(struct pci_dev *pdev)
1784 struct net_device *ndev = pci_get_drvdata(pdev);
1785 vlsi_irda_dev_t *idev;
1788 IRDA_ERROR("%s - %s: no netdevice \n",
1789 __FUNCTION__, pci_name(pdev));
1794 if (pdev->current_state == 0) {
1796 IRDA_WARNING("%s - %s: already resumed\n",
1797 __FUNCTION__, pci_name(pdev));
1801 pci_set_power_state(pdev, PCI_D0);
1802 pdev->current_state = PM_EVENT_ON;
1804 if (!idev->resume_ok) {
1805 /* should be obsolete now - but used to happen due to:
1806 * - pci layer initially setting pdev->current_state = 4 (unknown)
1807 * - pci layer did not walk the save_state-tree (might be APM problem)
1808 * so we could not refuse to suspend from undefined state
1809 * - vlsi_irda_suspend detected invalid state and refused to save
1810 * configuration for resume - but was too late to stop suspending
1811 * - vlsi_irda_resume got screwed when trying to resume from garbage
1813 * now we explicitly set pdev->current_state = 0 after enabling the
1814 * device and independently resume_ok should catch any garbage config.
1816 IRDA_WARNING("%s - hm, nothing to resume?\n", __FUNCTION__);
1821 if (netif_running(ndev)) {
1822 pci_restore_state(pdev);
1823 vlsi_start_hw(idev);
1824 netif_device_attach(ndev);
1826 idev->resume_ok = 0;
1831 #endif /* CONFIG_PM */
1833 /*********************************************************/
1835 static struct pci_driver vlsi_irda_driver = {
1837 .id_table = vlsi_irda_table,
1838 .probe = vlsi_irda_probe,
1839 .remove = __devexit_p(vlsi_irda_remove),
1841 .suspend = vlsi_irda_suspend,
1842 .resume = vlsi_irda_resume,
1846 #define PROC_DIR ("driver/" DRIVER_NAME)
1848 static int __init vlsi_mod_init(void)
1852 if (clksrc < 0 || clksrc > 3) {
1853 IRDA_ERROR("%s: invalid clksrc=%d\n", drivername, clksrc);
1857 for (i = 0; i < 2; i++) {
1858 switch(ringsize[i]) {
1866 IRDA_WARNING("%s: invalid %s ringsize %d, using default=8", drivername, (i)?"rx":"tx", ringsize[i]);
1872 sirpulse = !!sirpulse;
1874 /* proc_mkdir returns NULL if !CONFIG_PROC_FS.
1875 * Failure to create the procfs entry is handled like running
1876 * without procfs - it's not required for the driver to work.
1878 vlsi_proc_root = proc_mkdir(PROC_DIR, NULL);
1879 if (vlsi_proc_root) {
1880 /* protect registered procdir against module removal.
1881 * Because we are in the module init path there's no race
1882 * window after create_proc_entry (and no barrier needed).
1884 vlsi_proc_root->owner = THIS_MODULE;
1887 ret = pci_register_driver(&vlsi_irda_driver);
1889 if (ret && vlsi_proc_root)
1890 remove_proc_entry(PROC_DIR, NULL);
1895 static void __exit vlsi_mod_exit(void)
1897 pci_unregister_driver(&vlsi_irda_driver);
1899 remove_proc_entry(PROC_DIR, NULL);
1902 module_init(vlsi_mod_init);
1903 module_exit(vlsi_mod_exit);