]> err.no Git - linux-2.6/blob - drivers/net/igb/igb_main.c
e5dff61f162e76ca02ae5b3ea5d0fb51efe2e363
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44
45 #include "igb.h"
46
47 #define DRV_VERSION "1.0.8-k2"
48 char igb_driver_name[] = "igb";
49 char igb_driver_version[] = DRV_VERSION;
50 static const char igb_driver_string[] =
51                                 "Intel(R) Gigabit Ethernet Network Driver";
52 static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
53
54
55 static const struct e1000_info *igb_info_tbl[] = {
56         [board_82575] = &e1000_82575_info,
57 };
58
59 static struct pci_device_id igb_pci_tbl[] = {
60         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
61         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
63         /* required last entry */
64         {0, }
65 };
66
67 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
68
69 void igb_reset(struct igb_adapter *);
70 static int igb_setup_all_tx_resources(struct igb_adapter *);
71 static int igb_setup_all_rx_resources(struct igb_adapter *);
72 static void igb_free_all_tx_resources(struct igb_adapter *);
73 static void igb_free_all_rx_resources(struct igb_adapter *);
74 static void igb_free_tx_resources(struct igb_ring *);
75 static void igb_free_rx_resources(struct igb_ring *);
76 void igb_update_stats(struct igb_adapter *);
77 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
78 static void __devexit igb_remove(struct pci_dev *pdev);
79 static int igb_sw_init(struct igb_adapter *);
80 static int igb_open(struct net_device *);
81 static int igb_close(struct net_device *);
82 static void igb_configure_tx(struct igb_adapter *);
83 static void igb_configure_rx(struct igb_adapter *);
84 static void igb_setup_rctl(struct igb_adapter *);
85 static void igb_clean_all_tx_rings(struct igb_adapter *);
86 static void igb_clean_all_rx_rings(struct igb_adapter *);
87 static void igb_clean_tx_ring(struct igb_ring *);
88 static void igb_clean_rx_ring(struct igb_ring *);
89 static void igb_set_multi(struct net_device *);
90 static void igb_update_phy_info(unsigned long);
91 static void igb_watchdog(unsigned long);
92 static void igb_watchdog_task(struct work_struct *);
93 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
94                                   struct igb_ring *);
95 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
96 static struct net_device_stats *igb_get_stats(struct net_device *);
97 static int igb_change_mtu(struct net_device *, int);
98 static int igb_set_mac(struct net_device *, void *);
99 static irqreturn_t igb_intr(int irq, void *);
100 static irqreturn_t igb_intr_msi(int irq, void *);
101 static irqreturn_t igb_msix_other(int irq, void *);
102 static irqreturn_t igb_msix_rx(int irq, void *);
103 static irqreturn_t igb_msix_tx(int irq, void *);
104 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
105 static bool igb_clean_tx_irq(struct igb_ring *);
106 static int igb_clean(struct napi_struct *, int);
107 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
108 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
109 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
110 static void igb_tx_timeout(struct net_device *);
111 static void igb_reset_task(struct work_struct *);
112 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
113 static void igb_vlan_rx_add_vid(struct net_device *, u16);
114 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
115 static void igb_restore_vlan(struct igb_adapter *);
116
117 static int igb_suspend(struct pci_dev *, pm_message_t);
118 #ifdef CONFIG_PM
119 static int igb_resume(struct pci_dev *);
120 #endif
121 static void igb_shutdown(struct pci_dev *);
122
123 #ifdef CONFIG_NET_POLL_CONTROLLER
124 /* for netdump / net console */
125 static void igb_netpoll(struct net_device *);
126 #endif
127
128 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
129                      pci_channel_state_t);
130 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
131 static void igb_io_resume(struct pci_dev *);
132
133 static struct pci_error_handlers igb_err_handler = {
134         .error_detected = igb_io_error_detected,
135         .slot_reset = igb_io_slot_reset,
136         .resume = igb_io_resume,
137 };
138
139
140 static struct pci_driver igb_driver = {
141         .name     = igb_driver_name,
142         .id_table = igb_pci_tbl,
143         .probe    = igb_probe,
144         .remove   = __devexit_p(igb_remove),
145 #ifdef CONFIG_PM
146         /* Power Managment Hooks */
147         .suspend  = igb_suspend,
148         .resume   = igb_resume,
149 #endif
150         .shutdown = igb_shutdown,
151         .err_handler = &igb_err_handler
152 };
153
154 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
155 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
156 MODULE_LICENSE("GPL");
157 MODULE_VERSION(DRV_VERSION);
158
159 #ifdef DEBUG
160 /**
161  * igb_get_hw_dev_name - return device name string
162  * used by hardware layer to print debugging information
163  **/
164 char *igb_get_hw_dev_name(struct e1000_hw *hw)
165 {
166         struct igb_adapter *adapter = hw->back;
167         return adapter->netdev->name;
168 }
169 #endif
170
171 /**
172  * igb_init_module - Driver Registration Routine
173  *
174  * igb_init_module is the first routine called when the driver is
175  * loaded. All it does is register with the PCI subsystem.
176  **/
177 static int __init igb_init_module(void)
178 {
179         int ret;
180         printk(KERN_INFO "%s - version %s\n",
181                igb_driver_string, igb_driver_version);
182
183         printk(KERN_INFO "%s\n", igb_copyright);
184
185         ret = pci_register_driver(&igb_driver);
186         return ret;
187 }
188
189 module_init(igb_init_module);
190
191 /**
192  * igb_exit_module - Driver Exit Cleanup Routine
193  *
194  * igb_exit_module is called just before the driver is removed
195  * from memory.
196  **/
197 static void __exit igb_exit_module(void)
198 {
199         pci_unregister_driver(&igb_driver);
200 }
201
202 module_exit(igb_exit_module);
203
204 /**
205  * igb_alloc_queues - Allocate memory for all rings
206  * @adapter: board private structure to initialize
207  *
208  * We allocate one ring per queue at run-time since we don't know the
209  * number of queues at compile-time.
210  **/
211 static int igb_alloc_queues(struct igb_adapter *adapter)
212 {
213         int i;
214
215         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
216                                    sizeof(struct igb_ring), GFP_KERNEL);
217         if (!adapter->tx_ring)
218                 return -ENOMEM;
219
220         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
221                                    sizeof(struct igb_ring), GFP_KERNEL);
222         if (!adapter->rx_ring) {
223                 kfree(adapter->tx_ring);
224                 return -ENOMEM;
225         }
226
227         for (i = 0; i < adapter->num_rx_queues; i++) {
228                 struct igb_ring *ring = &(adapter->rx_ring[i]);
229                 ring->adapter = adapter;
230                 ring->itr_register = E1000_ITR;
231
232                 if (!ring->napi.poll)
233                         netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
234                                        adapter->napi.weight /
235                                        adapter->num_rx_queues);
236         }
237         return 0;
238 }
239
240 #define IGB_N0_QUEUE -1
241 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
242                               int tx_queue, int msix_vector)
243 {
244         u32 msixbm = 0;
245         struct e1000_hw *hw = &adapter->hw;
246                 /* The 82575 assigns vectors using a bitmask, which matches the
247                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
248                    or more queues to a vector, we write the appropriate bits
249                    into the MSIXBM register for that vector. */
250                 if (rx_queue > IGB_N0_QUEUE) {
251                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
252                         adapter->rx_ring[rx_queue].eims_value = msixbm;
253                 }
254                 if (tx_queue > IGB_N0_QUEUE) {
255                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
256                         adapter->tx_ring[tx_queue].eims_value =
257                                   E1000_EICR_TX_QUEUE0 << tx_queue;
258                 }
259                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
260 }
261
262 /**
263  * igb_configure_msix - Configure MSI-X hardware
264  *
265  * igb_configure_msix sets up the hardware to properly
266  * generate MSI-X interrupts.
267  **/
268 static void igb_configure_msix(struct igb_adapter *adapter)
269 {
270         u32 tmp;
271         int i, vector = 0;
272         struct e1000_hw *hw = &adapter->hw;
273
274         adapter->eims_enable_mask = 0;
275
276         for (i = 0; i < adapter->num_tx_queues; i++) {
277                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
278                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
279                 adapter->eims_enable_mask |= tx_ring->eims_value;
280                 if (tx_ring->itr_val)
281                         writel(1000000000 / (tx_ring->itr_val * 256),
282                                hw->hw_addr + tx_ring->itr_register);
283                 else
284                         writel(1, hw->hw_addr + tx_ring->itr_register);
285         }
286
287         for (i = 0; i < adapter->num_rx_queues; i++) {
288                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
289                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
290                 adapter->eims_enable_mask |= rx_ring->eims_value;
291                 if (rx_ring->itr_val)
292                         writel(1000000000 / (rx_ring->itr_val * 256),
293                                hw->hw_addr + rx_ring->itr_register);
294                 else
295                         writel(1, hw->hw_addr + rx_ring->itr_register);
296         }
297
298
299         /* set vector for other causes, i.e. link changes */
300                 array_wr32(E1000_MSIXBM(0), vector++,
301                                       E1000_EIMS_OTHER);
302
303                 /* disable IAM for ICR interrupt bits */
304                 wr32(E1000_IAM, 0);
305
306                 tmp = rd32(E1000_CTRL_EXT);
307                 /* enable MSI-X PBA support*/
308                 tmp |= E1000_CTRL_EXT_PBA_CLR;
309
310                 /* Auto-Mask interrupts upon ICR read. */
311                 tmp |= E1000_CTRL_EXT_EIAME;
312                 tmp |= E1000_CTRL_EXT_IRCA;
313
314                 wr32(E1000_CTRL_EXT, tmp);
315                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
316
317         wrfl();
318 }
319
320 /**
321  * igb_request_msix - Initialize MSI-X interrupts
322  *
323  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
324  * kernel.
325  **/
326 static int igb_request_msix(struct igb_adapter *adapter)
327 {
328         struct net_device *netdev = adapter->netdev;
329         int i, err = 0, vector = 0;
330
331         vector = 0;
332
333         for (i = 0; i < adapter->num_tx_queues; i++) {
334                 struct igb_ring *ring = &(adapter->tx_ring[i]);
335                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
336                 err = request_irq(adapter->msix_entries[vector].vector,
337                                   &igb_msix_tx, 0, ring->name,
338                                   &(adapter->tx_ring[i]));
339                 if (err)
340                         goto out;
341                 ring->itr_register = E1000_EITR(0) + (vector << 2);
342                 ring->itr_val = adapter->itr;
343                 vector++;
344         }
345         for (i = 0; i < adapter->num_rx_queues; i++) {
346                 struct igb_ring *ring = &(adapter->rx_ring[i]);
347                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
348                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
349                 else
350                         memcpy(ring->name, netdev->name, IFNAMSIZ);
351                 err = request_irq(adapter->msix_entries[vector].vector,
352                                   &igb_msix_rx, 0, ring->name,
353                                   &(adapter->rx_ring[i]));
354                 if (err)
355                         goto out;
356                 ring->itr_register = E1000_EITR(0) + (vector << 2);
357                 ring->itr_val = adapter->itr;
358                 vector++;
359         }
360
361         err = request_irq(adapter->msix_entries[vector].vector,
362                           &igb_msix_other, 0, netdev->name, netdev);
363         if (err)
364                 goto out;
365
366         adapter->napi.poll = igb_clean_rx_ring_msix;
367         for (i = 0; i < adapter->num_rx_queues; i++)
368                 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
369         igb_configure_msix(adapter);
370         return 0;
371 out:
372         return err;
373 }
374
375 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
376 {
377         if (adapter->msix_entries) {
378                 pci_disable_msix(adapter->pdev);
379                 kfree(adapter->msix_entries);
380                 adapter->msix_entries = NULL;
381         } else if (adapter->msi_enabled)
382                 pci_disable_msi(adapter->pdev);
383         return;
384 }
385
386
387 /**
388  * igb_set_interrupt_capability - set MSI or MSI-X if supported
389  *
390  * Attempt to configure interrupts using the best available
391  * capabilities of the hardware and kernel.
392  **/
393 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
394 {
395         int err;
396         int numvecs, i;
397
398         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
399         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
400                                         GFP_KERNEL);
401         if (!adapter->msix_entries)
402                 goto msi_only;
403
404         for (i = 0; i < numvecs; i++)
405                 adapter->msix_entries[i].entry = i;
406
407         err = pci_enable_msix(adapter->pdev,
408                               adapter->msix_entries,
409                               numvecs);
410         if (err == 0)
411                 return;
412
413         igb_reset_interrupt_capability(adapter);
414
415         /* If we can't do MSI-X, try MSI */
416 msi_only:
417         adapter->num_rx_queues = 1;
418         if (!pci_enable_msi(adapter->pdev))
419                 adapter->msi_enabled = 1;
420         return;
421 }
422
423 /**
424  * igb_request_irq - initialize interrupts
425  *
426  * Attempts to configure interrupts using the best available
427  * capabilities of the hardware and kernel.
428  **/
429 static int igb_request_irq(struct igb_adapter *adapter)
430 {
431         struct net_device *netdev = adapter->netdev;
432         struct e1000_hw *hw = &adapter->hw;
433         int err = 0;
434
435         if (adapter->msix_entries) {
436                 err = igb_request_msix(adapter);
437                 if (!err) {
438                         /* enable IAM, auto-mask,
439                          * DO NOT USE EIAM or IAM in legacy mode */
440                         wr32(E1000_IAM, IMS_ENABLE_MASK);
441                         goto request_done;
442                 }
443                 /* fall back to MSI */
444                 igb_reset_interrupt_capability(adapter);
445                 if (!pci_enable_msi(adapter->pdev))
446                         adapter->msi_enabled = 1;
447                 igb_free_all_tx_resources(adapter);
448                 igb_free_all_rx_resources(adapter);
449                 adapter->num_rx_queues = 1;
450                 igb_alloc_queues(adapter);
451         }
452         if (adapter->msi_enabled) {
453                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
454                                   netdev->name, netdev);
455                 if (!err)
456                         goto request_done;
457                 /* fall back to legacy interrupts */
458                 igb_reset_interrupt_capability(adapter);
459                 adapter->msi_enabled = 0;
460         }
461
462         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
463                           netdev->name, netdev);
464
465         if (err)
466                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
467                         err);
468
469 request_done:
470         return err;
471 }
472
473 static void igb_free_irq(struct igb_adapter *adapter)
474 {
475         struct net_device *netdev = adapter->netdev;
476
477         if (adapter->msix_entries) {
478                 int vector = 0, i;
479
480                 for (i = 0; i < adapter->num_tx_queues; i++)
481                         free_irq(adapter->msix_entries[vector++].vector,
482                                 &(adapter->tx_ring[i]));
483                 for (i = 0; i < adapter->num_rx_queues; i++)
484                         free_irq(adapter->msix_entries[vector++].vector,
485                                 &(adapter->rx_ring[i]));
486
487                 free_irq(adapter->msix_entries[vector++].vector, netdev);
488                 return;
489         }
490
491         free_irq(adapter->pdev->irq, netdev);
492 }
493
494 /**
495  * igb_irq_disable - Mask off interrupt generation on the NIC
496  * @adapter: board private structure
497  **/
498 static void igb_irq_disable(struct igb_adapter *adapter)
499 {
500         struct e1000_hw *hw = &adapter->hw;
501
502         if (adapter->msix_entries) {
503                 wr32(E1000_EIMC, ~0);
504                 wr32(E1000_EIAC, 0);
505         }
506         wr32(E1000_IMC, ~0);
507         wrfl();
508         synchronize_irq(adapter->pdev->irq);
509 }
510
511 /**
512  * igb_irq_enable - Enable default interrupt generation settings
513  * @adapter: board private structure
514  **/
515 static void igb_irq_enable(struct igb_adapter *adapter)
516 {
517         struct e1000_hw *hw = &adapter->hw;
518
519         if (adapter->msix_entries) {
520                 wr32(E1000_EIMS,
521                                 adapter->eims_enable_mask);
522                 wr32(E1000_EIAC,
523                                 adapter->eims_enable_mask);
524                 wr32(E1000_IMS, E1000_IMS_LSC);
525         } else
526         wr32(E1000_IMS, IMS_ENABLE_MASK);
527 }
528
529 static void igb_update_mng_vlan(struct igb_adapter *adapter)
530 {
531         struct net_device *netdev = adapter->netdev;
532         u16 vid = adapter->hw.mng_cookie.vlan_id;
533         u16 old_vid = adapter->mng_vlan_id;
534         if (adapter->vlgrp) {
535                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
536                         if (adapter->hw.mng_cookie.status &
537                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
538                                 igb_vlan_rx_add_vid(netdev, vid);
539                                 adapter->mng_vlan_id = vid;
540                         } else
541                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
542
543                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
544                                         (vid != old_vid) &&
545                             !vlan_group_get_device(adapter->vlgrp, old_vid))
546                                 igb_vlan_rx_kill_vid(netdev, old_vid);
547                 } else
548                         adapter->mng_vlan_id = vid;
549         }
550 }
551
552 /**
553  * igb_release_hw_control - release control of the h/w to f/w
554  * @adapter: address of board private structure
555  *
556  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
557  * For ASF and Pass Through versions of f/w this means that the
558  * driver is no longer loaded.
559  *
560  **/
561 static void igb_release_hw_control(struct igb_adapter *adapter)
562 {
563         struct e1000_hw *hw = &adapter->hw;
564         u32 ctrl_ext;
565
566         /* Let firmware take over control of h/w */
567         ctrl_ext = rd32(E1000_CTRL_EXT);
568         wr32(E1000_CTRL_EXT,
569                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
570 }
571
572
573 /**
574  * igb_get_hw_control - get control of the h/w from f/w
575  * @adapter: address of board private structure
576  *
577  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
578  * For ASF and Pass Through versions of f/w this means that
579  * the driver is loaded.
580  *
581  **/
582 static void igb_get_hw_control(struct igb_adapter *adapter)
583 {
584         struct e1000_hw *hw = &adapter->hw;
585         u32 ctrl_ext;
586
587         /* Let firmware know the driver has taken over */
588         ctrl_ext = rd32(E1000_CTRL_EXT);
589         wr32(E1000_CTRL_EXT,
590                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
591 }
592
593 static void igb_init_manageability(struct igb_adapter *adapter)
594 {
595         struct e1000_hw *hw = &adapter->hw;
596
597         if (adapter->en_mng_pt) {
598                 u32 manc2h = rd32(E1000_MANC2H);
599                 u32 manc = rd32(E1000_MANC);
600
601                 /* enable receiving management packets to the host */
602                 /* this will probably generate destination unreachable messages
603                  * from the host OS, but the packets will be handled on SMBUS */
604                 manc |= E1000_MANC_EN_MNG2HOST;
605 #define E1000_MNG2HOST_PORT_623 (1 << 5)
606 #define E1000_MNG2HOST_PORT_664 (1 << 6)
607                 manc2h |= E1000_MNG2HOST_PORT_623;
608                 manc2h |= E1000_MNG2HOST_PORT_664;
609                 wr32(E1000_MANC2H, manc2h);
610
611                 wr32(E1000_MANC, manc);
612         }
613 }
614
615 /**
616  * igb_configure - configure the hardware for RX and TX
617  * @adapter: private board structure
618  **/
619 static void igb_configure(struct igb_adapter *adapter)
620 {
621         struct net_device *netdev = adapter->netdev;
622         int i;
623
624         igb_get_hw_control(adapter);
625         igb_set_multi(netdev);
626
627         igb_restore_vlan(adapter);
628         igb_init_manageability(adapter);
629
630         igb_configure_tx(adapter);
631         igb_setup_rctl(adapter);
632         igb_configure_rx(adapter);
633
634         igb_rx_fifo_flush_82575(&adapter->hw);
635
636         /* call IGB_DESC_UNUSED which always leaves
637          * at least 1 descriptor unused to make sure
638          * next_to_use != next_to_clean */
639         for (i = 0; i < adapter->num_rx_queues; i++) {
640                 struct igb_ring *ring = &adapter->rx_ring[i];
641                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
642         }
643
644
645         adapter->tx_queue_len = netdev->tx_queue_len;
646 }
647
648
649 /**
650  * igb_up - Open the interface and prepare it to handle traffic
651  * @adapter: board private structure
652  **/
653
654 int igb_up(struct igb_adapter *adapter)
655 {
656         struct e1000_hw *hw = &adapter->hw;
657         int i;
658
659         /* hardware has been reset, we need to reload some things */
660         igb_configure(adapter);
661
662         clear_bit(__IGB_DOWN, &adapter->state);
663
664         napi_enable(&adapter->napi);
665
666         if (adapter->msix_entries) {
667                 for (i = 0; i < adapter->num_rx_queues; i++)
668                         napi_enable(&adapter->rx_ring[i].napi);
669                 igb_configure_msix(adapter);
670         }
671
672         /* Clear any pending interrupts. */
673         rd32(E1000_ICR);
674         igb_irq_enable(adapter);
675
676         /* Fire a link change interrupt to start the watchdog. */
677         wr32(E1000_ICS, E1000_ICS_LSC);
678         return 0;
679 }
680
681 void igb_down(struct igb_adapter *adapter)
682 {
683         struct e1000_hw *hw = &adapter->hw;
684         struct net_device *netdev = adapter->netdev;
685         u32 tctl, rctl;
686         int i;
687
688         /* signal that we're down so the interrupt handler does not
689          * reschedule our watchdog timer */
690         set_bit(__IGB_DOWN, &adapter->state);
691
692         /* disable receives in the hardware */
693         rctl = rd32(E1000_RCTL);
694         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
695         /* flush and sleep below */
696
697         netif_stop_queue(netdev);
698
699         /* disable transmits in the hardware */
700         tctl = rd32(E1000_TCTL);
701         tctl &= ~E1000_TCTL_EN;
702         wr32(E1000_TCTL, tctl);
703         /* flush both disables and wait for them to finish */
704         wrfl();
705         msleep(10);
706
707         napi_disable(&adapter->napi);
708
709         if (adapter->msix_entries)
710                 for (i = 0; i < adapter->num_rx_queues; i++)
711                         napi_disable(&adapter->rx_ring[i].napi);
712         igb_irq_disable(adapter);
713
714         del_timer_sync(&adapter->watchdog_timer);
715         del_timer_sync(&adapter->phy_info_timer);
716
717         netdev->tx_queue_len = adapter->tx_queue_len;
718         netif_carrier_off(netdev);
719         adapter->link_speed = 0;
720         adapter->link_duplex = 0;
721
722         if (!pci_channel_offline(adapter->pdev))
723                 igb_reset(adapter);
724         igb_clean_all_tx_rings(adapter);
725         igb_clean_all_rx_rings(adapter);
726 }
727
728 void igb_reinit_locked(struct igb_adapter *adapter)
729 {
730         WARN_ON(in_interrupt());
731         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
732                 msleep(1);
733         igb_down(adapter);
734         igb_up(adapter);
735         clear_bit(__IGB_RESETTING, &adapter->state);
736 }
737
738 void igb_reset(struct igb_adapter *adapter)
739 {
740         struct e1000_hw *hw = &adapter->hw;
741         struct e1000_fc_info *fc = &adapter->hw.fc;
742         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
743         u16 hwm;
744
745         /* Repartition Pba for greater than 9k mtu
746          * To take effect CTRL.RST is required.
747          */
748         pba = E1000_PBA_34K;
749
750         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
751                 /* adjust PBA for jumbo frames */
752                 wr32(E1000_PBA, pba);
753
754                 /* To maintain wire speed transmits, the Tx FIFO should be
755                  * large enough to accommodate two full transmit packets,
756                  * rounded up to the next 1KB and expressed in KB.  Likewise,
757                  * the Rx FIFO should be large enough to accommodate at least
758                  * one full receive packet and is similarly rounded up and
759                  * expressed in KB. */
760                 pba = rd32(E1000_PBA);
761                 /* upper 16 bits has Tx packet buffer allocation size in KB */
762                 tx_space = pba >> 16;
763                 /* lower 16 bits has Rx packet buffer allocation size in KB */
764                 pba &= 0xffff;
765                 /* the tx fifo also stores 16 bytes of information about the tx
766                  * but don't include ethernet FCS because hardware appends it */
767                 min_tx_space = (adapter->max_frame_size +
768                                 sizeof(struct e1000_tx_desc) -
769                                 ETH_FCS_LEN) * 2;
770                 min_tx_space = ALIGN(min_tx_space, 1024);
771                 min_tx_space >>= 10;
772                 /* software strips receive CRC, so leave room for it */
773                 min_rx_space = adapter->max_frame_size;
774                 min_rx_space = ALIGN(min_rx_space, 1024);
775                 min_rx_space >>= 10;
776
777                 /* If current Tx allocation is less than the min Tx FIFO size,
778                  * and the min Tx FIFO size is less than the current Rx FIFO
779                  * allocation, take space away from current Rx allocation */
780                 if (tx_space < min_tx_space &&
781                     ((min_tx_space - tx_space) < pba)) {
782                         pba = pba - (min_tx_space - tx_space);
783
784                         /* if short on rx space, rx wins and must trump tx
785                          * adjustment */
786                         if (pba < min_rx_space)
787                                 pba = min_rx_space;
788                 }
789         }
790         wr32(E1000_PBA, pba);
791
792         /* flow control settings */
793         /* The high water mark must be low enough to fit one full frame
794          * (or the size used for early receive) above it in the Rx FIFO.
795          * Set it to the lower of:
796          * - 90% of the Rx FIFO size, or
797          * - the full Rx FIFO size minus one full frame */
798         hwm = min(((pba << 10) * 9 / 10),
799                   ((pba << 10) - adapter->max_frame_size));
800
801         fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
802         fc->low_water = fc->high_water - 8;
803         fc->pause_time = 0xFFFF;
804         fc->send_xon = 1;
805         fc->type = fc->original_type;
806
807         /* Allow time for pending master requests to run */
808         adapter->hw.mac.ops.reset_hw(&adapter->hw);
809         wr32(E1000_WUC, 0);
810
811         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
812                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
813
814         igb_update_mng_vlan(adapter);
815
816         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
817         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
818
819         igb_reset_adaptive(&adapter->hw);
820         if (adapter->hw.phy.ops.get_phy_info)
821                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
822 }
823
824 /**
825  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
826  * @pdev: PCI device information struct
827  *
828  * Returns true if an adapter needs ioport resources
829  **/
830 static int igb_is_need_ioport(struct pci_dev *pdev)
831 {
832         switch (pdev->device) {
833         /* Currently there are no adapters that need ioport resources */
834         default:
835                 return false;
836         }
837 }
838
839 /**
840  * igb_probe - Device Initialization Routine
841  * @pdev: PCI device information struct
842  * @ent: entry in igb_pci_tbl
843  *
844  * Returns 0 on success, negative on failure
845  *
846  * igb_probe initializes an adapter identified by a pci_dev structure.
847  * The OS initialization, configuring of the adapter private structure,
848  * and a hardware reset occur.
849  **/
850 static int __devinit igb_probe(struct pci_dev *pdev,
851                                const struct pci_device_id *ent)
852 {
853         struct net_device *netdev;
854         struct igb_adapter *adapter;
855         struct e1000_hw *hw;
856         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
857         unsigned long mmio_start, mmio_len;
858         int i, err, pci_using_dac;
859         u16 eeprom_data = 0;
860         u16 eeprom_apme_mask = IGB_EEPROM_APME;
861         u32 part_num;
862         int bars, need_ioport;
863
864         /* do not allocate ioport bars when not needed */
865         need_ioport = igb_is_need_ioport(pdev);
866         if (need_ioport) {
867                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
868                 err = pci_enable_device(pdev);
869         } else {
870                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
871                 err = pci_enable_device_mem(pdev);
872         }
873         if (err)
874                 return err;
875
876         pci_using_dac = 0;
877         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
878         if (!err) {
879                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
880                 if (!err)
881                         pci_using_dac = 1;
882         } else {
883                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
884                 if (err) {
885                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
886                         if (err) {
887                                 dev_err(&pdev->dev, "No usable DMA "
888                                         "configuration, aborting\n");
889                                 goto err_dma;
890                         }
891                 }
892         }
893
894         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
895         if (err)
896                 goto err_pci_reg;
897
898         pci_set_master(pdev);
899         pci_save_state(pdev);
900
901         err = -ENOMEM;
902         netdev = alloc_etherdev(sizeof(struct igb_adapter));
903         if (!netdev)
904                 goto err_alloc_etherdev;
905
906         SET_NETDEV_DEV(netdev, &pdev->dev);
907
908         pci_set_drvdata(pdev, netdev);
909         adapter = netdev_priv(netdev);
910         adapter->netdev = netdev;
911         adapter->pdev = pdev;
912         hw = &adapter->hw;
913         hw->back = adapter;
914         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
915         adapter->bars = bars;
916         adapter->need_ioport = need_ioport;
917
918         mmio_start = pci_resource_start(pdev, 0);
919         mmio_len = pci_resource_len(pdev, 0);
920
921         err = -EIO;
922         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
923         if (!adapter->hw.hw_addr)
924                 goto err_ioremap;
925
926         netdev->open = &igb_open;
927         netdev->stop = &igb_close;
928         netdev->get_stats = &igb_get_stats;
929         netdev->set_multicast_list = &igb_set_multi;
930         netdev->set_mac_address = &igb_set_mac;
931         netdev->change_mtu = &igb_change_mtu;
932         netdev->do_ioctl = &igb_ioctl;
933         igb_set_ethtool_ops(netdev);
934         netdev->tx_timeout = &igb_tx_timeout;
935         netdev->watchdog_timeo = 5 * HZ;
936         netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
937         netdev->vlan_rx_register = igb_vlan_rx_register;
938         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
939         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
940 #ifdef CONFIG_NET_POLL_CONTROLLER
941         netdev->poll_controller = igb_netpoll;
942 #endif
943         netdev->hard_start_xmit = &igb_xmit_frame_adv;
944
945         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
946
947         netdev->mem_start = mmio_start;
948         netdev->mem_end = mmio_start + mmio_len;
949
950         /* PCI config space info */
951         hw->vendor_id = pdev->vendor;
952         hw->device_id = pdev->device;
953         hw->revision_id = pdev->revision;
954         hw->subsystem_vendor_id = pdev->subsystem_vendor;
955         hw->subsystem_device_id = pdev->subsystem_device;
956
957         /* setup the private structure */
958         hw->back = adapter;
959         /* Copy the default MAC, PHY and NVM function pointers */
960         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
961         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
962         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
963         /* Initialize skew-specific constants */
964         err = ei->get_invariants(hw);
965         if (err)
966                 goto err_hw_init;
967
968         err = igb_sw_init(adapter);
969         if (err)
970                 goto err_sw_init;
971
972         igb_get_bus_info_pcie(hw);
973
974         hw->phy.autoneg_wait_to_complete = false;
975         hw->mac.adaptive_ifs = true;
976
977         /* Copper options */
978         if (hw->phy.media_type == e1000_media_type_copper) {
979                 hw->phy.mdix = AUTO_ALL_MODES;
980                 hw->phy.disable_polarity_correction = false;
981                 hw->phy.ms_type = e1000_ms_hw_default;
982         }
983
984         if (igb_check_reset_block(hw))
985                 dev_info(&pdev->dev,
986                         "PHY reset is blocked due to SOL/IDER session.\n");
987
988         netdev->features = NETIF_F_SG |
989                            NETIF_F_HW_CSUM |
990                            NETIF_F_HW_VLAN_TX |
991                            NETIF_F_HW_VLAN_RX |
992                            NETIF_F_HW_VLAN_FILTER;
993
994         netdev->features |= NETIF_F_TSO;
995         netdev->features |= NETIF_F_TSO6;
996
997         netdev->vlan_features |= NETIF_F_TSO;
998         netdev->vlan_features |= NETIF_F_TSO6;
999         netdev->vlan_features |= NETIF_F_HW_CSUM;
1000         netdev->vlan_features |= NETIF_F_SG;
1001
1002         if (pci_using_dac)
1003                 netdev->features |= NETIF_F_HIGHDMA;
1004
1005         netdev->features |= NETIF_F_LLTX;
1006         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1007
1008         /* before reading the NVM, reset the controller to put the device in a
1009          * known good starting state */
1010         hw->mac.ops.reset_hw(hw);
1011
1012         /* make sure the NVM is good */
1013         if (igb_validate_nvm_checksum(hw) < 0) {
1014                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1015                 err = -EIO;
1016                 goto err_eeprom;
1017         }
1018
1019         /* copy the MAC address out of the NVM */
1020         if (hw->mac.ops.read_mac_addr(hw))
1021                 dev_err(&pdev->dev, "NVM Read Error\n");
1022
1023         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1024         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1025
1026         if (!is_valid_ether_addr(netdev->perm_addr)) {
1027                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1028                 err = -EIO;
1029                 goto err_eeprom;
1030         }
1031
1032         init_timer(&adapter->watchdog_timer);
1033         adapter->watchdog_timer.function = &igb_watchdog;
1034         adapter->watchdog_timer.data = (unsigned long) adapter;
1035
1036         init_timer(&adapter->phy_info_timer);
1037         adapter->phy_info_timer.function = &igb_update_phy_info;
1038         adapter->phy_info_timer.data = (unsigned long) adapter;
1039
1040         INIT_WORK(&adapter->reset_task, igb_reset_task);
1041         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1042
1043         /* Initialize link & ring properties that are user-changeable */
1044         adapter->tx_ring->count = 256;
1045         for (i = 0; i < adapter->num_tx_queues; i++)
1046                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1047         adapter->rx_ring->count = 256;
1048         for (i = 0; i < adapter->num_rx_queues; i++)
1049                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1050
1051         adapter->fc_autoneg = true;
1052         hw->mac.autoneg = true;
1053         hw->phy.autoneg_advertised = 0x2f;
1054
1055         hw->fc.original_type = e1000_fc_default;
1056         hw->fc.type = e1000_fc_default;
1057
1058         adapter->itr_setting = 3;
1059         adapter->itr = IGB_START_ITR;
1060
1061         igb_validate_mdi_setting(hw);
1062
1063         adapter->rx_csum = 1;
1064
1065         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1066          * enable the ACPI Magic Packet filter
1067          */
1068
1069         if (hw->bus.func == 0 ||
1070             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1071                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1072                                      &eeprom_data);
1073
1074         if (eeprom_data & eeprom_apme_mask)
1075                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1076
1077         /* now that we have the eeprom settings, apply the special cases where
1078          * the eeprom may be wrong or the board simply won't support wake on
1079          * lan on a particular port */
1080         switch (pdev->device) {
1081         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1082                 adapter->eeprom_wol = 0;
1083                 break;
1084         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1085                 /* Wake events only supported on port A for dual fiber
1086                  * regardless of eeprom setting */
1087                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1088                         adapter->eeprom_wol = 0;
1089                 break;
1090         }
1091
1092         /* initialize the wol settings based on the eeprom settings */
1093         adapter->wol = adapter->eeprom_wol;
1094
1095         /* reset the hardware with the new settings */
1096         igb_reset(adapter);
1097
1098         /* let the f/w know that the h/w is now under the control of the
1099          * driver. */
1100         igb_get_hw_control(adapter);
1101
1102         /* tell the stack to leave us alone until igb_open() is called */
1103         netif_carrier_off(netdev);
1104         netif_stop_queue(netdev);
1105
1106         strcpy(netdev->name, "eth%d");
1107         err = register_netdev(netdev);
1108         if (err)
1109                 goto err_register;
1110
1111         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1112         /* print bus type/speed/width info */
1113         dev_info(&pdev->dev,
1114                  "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1115                  netdev->name,
1116                  ((hw->bus.speed == e1000_bus_speed_2500)
1117                   ? "2.5Gb/s" : "unknown"),
1118                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1119                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1120                   ? "Width x1" : "unknown"),
1121                  netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1122                  netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1123
1124         igb_read_part_num(hw, &part_num);
1125         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1126                 (part_num >> 8), (part_num & 0xff));
1127
1128         dev_info(&pdev->dev,
1129                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1130                 adapter->msix_entries ? "MSI-X" :
1131                 adapter->msi_enabled ? "MSI" : "legacy",
1132                 adapter->num_rx_queues, adapter->num_tx_queues);
1133
1134         return 0;
1135
1136 err_register:
1137         igb_release_hw_control(adapter);
1138 err_eeprom:
1139         if (!igb_check_reset_block(hw))
1140                 hw->phy.ops.reset_phy(hw);
1141
1142         if (hw->flash_address)
1143                 iounmap(hw->flash_address);
1144
1145         igb_remove_device(hw);
1146         kfree(adapter->tx_ring);
1147         kfree(adapter->rx_ring);
1148 err_sw_init:
1149 err_hw_init:
1150         iounmap(hw->hw_addr);
1151 err_ioremap:
1152         free_netdev(netdev);
1153 err_alloc_etherdev:
1154         pci_release_selected_regions(pdev, bars);
1155 err_pci_reg:
1156 err_dma:
1157         pci_disable_device(pdev);
1158         return err;
1159 }
1160
1161 /**
1162  * igb_remove - Device Removal Routine
1163  * @pdev: PCI device information struct
1164  *
1165  * igb_remove is called by the PCI subsystem to alert the driver
1166  * that it should release a PCI device.  The could be caused by a
1167  * Hot-Plug event, or because the driver is going to be removed from
1168  * memory.
1169  **/
1170 static void __devexit igb_remove(struct pci_dev *pdev)
1171 {
1172         struct net_device *netdev = pci_get_drvdata(pdev);
1173         struct igb_adapter *adapter = netdev_priv(netdev);
1174
1175         /* flush_scheduled work may reschedule our watchdog task, so
1176          * explicitly disable watchdog tasks from being rescheduled  */
1177         set_bit(__IGB_DOWN, &adapter->state);
1178         del_timer_sync(&adapter->watchdog_timer);
1179         del_timer_sync(&adapter->phy_info_timer);
1180
1181         flush_scheduled_work();
1182
1183         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1184          * would have already happened in close and is redundant. */
1185         igb_release_hw_control(adapter);
1186
1187         unregister_netdev(netdev);
1188
1189         if (!igb_check_reset_block(&adapter->hw))
1190                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1191
1192         igb_remove_device(&adapter->hw);
1193         igb_reset_interrupt_capability(adapter);
1194
1195         kfree(adapter->tx_ring);
1196         kfree(adapter->rx_ring);
1197
1198         iounmap(adapter->hw.hw_addr);
1199         if (adapter->hw.flash_address)
1200                 iounmap(adapter->hw.flash_address);
1201         pci_release_selected_regions(pdev, adapter->bars);
1202
1203         free_netdev(netdev);
1204
1205         pci_disable_device(pdev);
1206 }
1207
1208 /**
1209  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1210  * @adapter: board private structure to initialize
1211  *
1212  * igb_sw_init initializes the Adapter private data structure.
1213  * Fields are initialized based on PCI device information and
1214  * OS network device settings (MTU size).
1215  **/
1216 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1217 {
1218         struct e1000_hw *hw = &adapter->hw;
1219         struct net_device *netdev = adapter->netdev;
1220         struct pci_dev *pdev = adapter->pdev;
1221
1222         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1223
1224         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1225         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1226         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1227         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1228
1229         /* Number of supported queues. */
1230         /* Having more queues than CPUs doesn't make sense. */
1231         adapter->num_tx_queues = 1;
1232         adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1233
1234         igb_set_interrupt_capability(adapter);
1235
1236         if (igb_alloc_queues(adapter)) {
1237                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1238                 return -ENOMEM;
1239         }
1240
1241         /* Explicitly disable IRQ since the NIC can be in any state. */
1242         igb_irq_disable(adapter);
1243
1244         set_bit(__IGB_DOWN, &adapter->state);
1245         return 0;
1246 }
1247
1248 /**
1249  * igb_open - Called when a network interface is made active
1250  * @netdev: network interface device structure
1251  *
1252  * Returns 0 on success, negative value on failure
1253  *
1254  * The open entry point is called when a network interface is made
1255  * active by the system (IFF_UP).  At this point all resources needed
1256  * for transmit and receive operations are allocated, the interrupt
1257  * handler is registered with the OS, the watchdog timer is started,
1258  * and the stack is notified that the interface is ready.
1259  **/
1260 static int igb_open(struct net_device *netdev)
1261 {
1262         struct igb_adapter *adapter = netdev_priv(netdev);
1263         struct e1000_hw *hw = &adapter->hw;
1264         int err;
1265         int i;
1266
1267         /* disallow open during test */
1268         if (test_bit(__IGB_TESTING, &adapter->state))
1269                 return -EBUSY;
1270
1271         /* allocate transmit descriptors */
1272         err = igb_setup_all_tx_resources(adapter);
1273         if (err)
1274                 goto err_setup_tx;
1275
1276         /* allocate receive descriptors */
1277         err = igb_setup_all_rx_resources(adapter);
1278         if (err)
1279                 goto err_setup_rx;
1280
1281         /* e1000_power_up_phy(adapter); */
1282
1283         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1284         if ((adapter->hw.mng_cookie.status &
1285              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1286                 igb_update_mng_vlan(adapter);
1287
1288         /* before we allocate an interrupt, we must be ready to handle it.
1289          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1290          * as soon as we call pci_request_irq, so we have to setup our
1291          * clean_rx handler before we do so.  */
1292         igb_configure(adapter);
1293
1294         err = igb_request_irq(adapter);
1295         if (err)
1296                 goto err_req_irq;
1297
1298         /* From here on the code is the same as igb_up() */
1299         clear_bit(__IGB_DOWN, &adapter->state);
1300
1301         napi_enable(&adapter->napi);
1302         if (adapter->msix_entries)
1303                 for (i = 0; i < adapter->num_rx_queues; i++)
1304                         napi_enable(&adapter->rx_ring[i].napi);
1305
1306         igb_irq_enable(adapter);
1307
1308         /* Clear any pending interrupts. */
1309         rd32(E1000_ICR);
1310         /* Fire a link status change interrupt to start the watchdog. */
1311         wr32(E1000_ICS, E1000_ICS_LSC);
1312
1313         return 0;
1314
1315 err_req_irq:
1316         igb_release_hw_control(adapter);
1317         /* e1000_power_down_phy(adapter); */
1318         igb_free_all_rx_resources(adapter);
1319 err_setup_rx:
1320         igb_free_all_tx_resources(adapter);
1321 err_setup_tx:
1322         igb_reset(adapter);
1323
1324         return err;
1325 }
1326
1327 /**
1328  * igb_close - Disables a network interface
1329  * @netdev: network interface device structure
1330  *
1331  * Returns 0, this is not allowed to fail
1332  *
1333  * The close entry point is called when an interface is de-activated
1334  * by the OS.  The hardware is still under the driver's control, but
1335  * needs to be disabled.  A global MAC reset is issued to stop the
1336  * hardware, and all transmit and receive resources are freed.
1337  **/
1338 static int igb_close(struct net_device *netdev)
1339 {
1340         struct igb_adapter *adapter = netdev_priv(netdev);
1341
1342         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1343         igb_down(adapter);
1344
1345         igb_free_irq(adapter);
1346
1347         igb_free_all_tx_resources(adapter);
1348         igb_free_all_rx_resources(adapter);
1349
1350         /* kill manageability vlan ID if supported, but not if a vlan with
1351          * the same ID is registered on the host OS (let 8021q kill it) */
1352         if ((adapter->hw.mng_cookie.status &
1353                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1354              !(adapter->vlgrp &&
1355                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1356                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1357
1358         return 0;
1359 }
1360
1361 /**
1362  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1363  * @adapter: board private structure
1364  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1365  *
1366  * Return 0 on success, negative on failure
1367  **/
1368
1369 int igb_setup_tx_resources(struct igb_adapter *adapter,
1370                            struct igb_ring *tx_ring)
1371 {
1372         struct pci_dev *pdev = adapter->pdev;
1373         int size;
1374
1375         size = sizeof(struct igb_buffer) * tx_ring->count;
1376         tx_ring->buffer_info = vmalloc(size);
1377         if (!tx_ring->buffer_info)
1378                 goto err;
1379         memset(tx_ring->buffer_info, 0, size);
1380
1381         /* round up to nearest 4K */
1382         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1383                         + sizeof(u32);
1384         tx_ring->size = ALIGN(tx_ring->size, 4096);
1385
1386         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1387                                              &tx_ring->dma);
1388
1389         if (!tx_ring->desc)
1390                 goto err;
1391
1392         tx_ring->adapter = adapter;
1393         tx_ring->next_to_use = 0;
1394         tx_ring->next_to_clean = 0;
1395         spin_lock_init(&tx_ring->tx_clean_lock);
1396         spin_lock_init(&tx_ring->tx_lock);
1397         return 0;
1398
1399 err:
1400         vfree(tx_ring->buffer_info);
1401         dev_err(&adapter->pdev->dev,
1402                 "Unable to allocate memory for the transmit descriptor ring\n");
1403         return -ENOMEM;
1404 }
1405
1406 /**
1407  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1408  *                                (Descriptors) for all queues
1409  * @adapter: board private structure
1410  *
1411  * Return 0 on success, negative on failure
1412  **/
1413 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1414 {
1415         int i, err = 0;
1416
1417         for (i = 0; i < adapter->num_tx_queues; i++) {
1418                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1419                 if (err) {
1420                         dev_err(&adapter->pdev->dev,
1421                                 "Allocation for Tx Queue %u failed\n", i);
1422                         for (i--; i >= 0; i--)
1423                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1424                         break;
1425                 }
1426         }
1427
1428         return err;
1429 }
1430
1431 /**
1432  * igb_configure_tx - Configure transmit Unit after Reset
1433  * @adapter: board private structure
1434  *
1435  * Configure the Tx unit of the MAC after a reset.
1436  **/
1437 static void igb_configure_tx(struct igb_adapter *adapter)
1438 {
1439         u64 tdba, tdwba;
1440         struct e1000_hw *hw = &adapter->hw;
1441         u32 tctl;
1442         u32 txdctl, txctrl;
1443         int i;
1444
1445         for (i = 0; i < adapter->num_tx_queues; i++) {
1446                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1447
1448                 wr32(E1000_TDLEN(i),
1449                                 ring->count * sizeof(struct e1000_tx_desc));
1450                 tdba = ring->dma;
1451                 wr32(E1000_TDBAL(i),
1452                                 tdba & 0x00000000ffffffffULL);
1453                 wr32(E1000_TDBAH(i), tdba >> 32);
1454
1455                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1456                 tdwba |= 1; /* enable head wb */
1457                 wr32(E1000_TDWBAL(i),
1458                                 tdwba & 0x00000000ffffffffULL);
1459                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1460
1461                 ring->head = E1000_TDH(i);
1462                 ring->tail = E1000_TDT(i);
1463                 writel(0, hw->hw_addr + ring->tail);
1464                 writel(0, hw->hw_addr + ring->head);
1465                 txdctl = rd32(E1000_TXDCTL(i));
1466                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1467                 wr32(E1000_TXDCTL(i), txdctl);
1468
1469                 /* Turn off Relaxed Ordering on head write-backs.  The
1470                  * writebacks MUST be delivered in order or it will
1471                  * completely screw up our bookeeping.
1472                  */
1473                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1474                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1475                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1476         }
1477
1478
1479
1480         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1481
1482         /* Program the Transmit Control Register */
1483
1484         tctl = rd32(E1000_TCTL);
1485         tctl &= ~E1000_TCTL_CT;
1486         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1487                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1488
1489         igb_config_collision_dist(hw);
1490
1491         /* Setup Transmit Descriptor Settings for eop descriptor */
1492         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1493
1494         /* Enable transmits */
1495         tctl |= E1000_TCTL_EN;
1496
1497         wr32(E1000_TCTL, tctl);
1498 }
1499
1500 /**
1501  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1502  * @adapter: board private structure
1503  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1504  *
1505  * Returns 0 on success, negative on failure
1506  **/
1507
1508 int igb_setup_rx_resources(struct igb_adapter *adapter,
1509                            struct igb_ring *rx_ring)
1510 {
1511         struct pci_dev *pdev = adapter->pdev;
1512         int size, desc_len;
1513
1514         size = sizeof(struct igb_buffer) * rx_ring->count;
1515         rx_ring->buffer_info = vmalloc(size);
1516         if (!rx_ring->buffer_info)
1517                 goto err;
1518         memset(rx_ring->buffer_info, 0, size);
1519
1520         desc_len = sizeof(union e1000_adv_rx_desc);
1521
1522         /* Round up to nearest 4K */
1523         rx_ring->size = rx_ring->count * desc_len;
1524         rx_ring->size = ALIGN(rx_ring->size, 4096);
1525
1526         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1527                                              &rx_ring->dma);
1528
1529         if (!rx_ring->desc)
1530                 goto err;
1531
1532         rx_ring->next_to_clean = 0;
1533         rx_ring->next_to_use = 0;
1534         rx_ring->pending_skb = NULL;
1535
1536         rx_ring->adapter = adapter;
1537         /* FIXME: do we want to setup ring->napi->poll here? */
1538         rx_ring->napi.poll = adapter->napi.poll;
1539
1540         return 0;
1541
1542 err:
1543         vfree(rx_ring->buffer_info);
1544         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1545                 "the receive descriptor ring\n");
1546         return -ENOMEM;
1547 }
1548
1549 /**
1550  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1551  *                                (Descriptors) for all queues
1552  * @adapter: board private structure
1553  *
1554  * Return 0 on success, negative on failure
1555  **/
1556 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1557 {
1558         int i, err = 0;
1559
1560         for (i = 0; i < adapter->num_rx_queues; i++) {
1561                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1562                 if (err) {
1563                         dev_err(&adapter->pdev->dev,
1564                                 "Allocation for Rx Queue %u failed\n", i);
1565                         for (i--; i >= 0; i--)
1566                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1567                         break;
1568                 }
1569         }
1570
1571         return err;
1572 }
1573
1574 /**
1575  * igb_setup_rctl - configure the receive control registers
1576  * @adapter: Board private structure
1577  **/
1578 static void igb_setup_rctl(struct igb_adapter *adapter)
1579 {
1580         struct e1000_hw *hw = &adapter->hw;
1581         u32 rctl;
1582         u32 srrctl = 0;
1583         int i;
1584
1585         rctl = rd32(E1000_RCTL);
1586
1587         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1588
1589         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1590                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1591                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1592
1593         /* disable the stripping of CRC because it breaks
1594          * BMC firmware connected over SMBUS
1595         rctl |= E1000_RCTL_SECRC;
1596         */
1597
1598         rctl &= ~E1000_RCTL_SBP;
1599
1600         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1601                 rctl &= ~E1000_RCTL_LPE;
1602         else
1603                 rctl |= E1000_RCTL_LPE;
1604         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1605                 /* Setup buffer sizes */
1606                 rctl &= ~E1000_RCTL_SZ_4096;
1607                 rctl |= E1000_RCTL_BSEX;
1608                 switch (adapter->rx_buffer_len) {
1609                 case IGB_RXBUFFER_256:
1610                         rctl |= E1000_RCTL_SZ_256;
1611                         rctl &= ~E1000_RCTL_BSEX;
1612                         break;
1613                 case IGB_RXBUFFER_512:
1614                         rctl |= E1000_RCTL_SZ_512;
1615                         rctl &= ~E1000_RCTL_BSEX;
1616                         break;
1617                 case IGB_RXBUFFER_1024:
1618                         rctl |= E1000_RCTL_SZ_1024;
1619                         rctl &= ~E1000_RCTL_BSEX;
1620                         break;
1621                 case IGB_RXBUFFER_2048:
1622                 default:
1623                         rctl |= E1000_RCTL_SZ_2048;
1624                         rctl &= ~E1000_RCTL_BSEX;
1625                         break;
1626                 case IGB_RXBUFFER_4096:
1627                         rctl |= E1000_RCTL_SZ_4096;
1628                         break;
1629                 case IGB_RXBUFFER_8192:
1630                         rctl |= E1000_RCTL_SZ_8192;
1631                         break;
1632                 case IGB_RXBUFFER_16384:
1633                         rctl |= E1000_RCTL_SZ_16384;
1634                         break;
1635                 }
1636         } else {
1637                 rctl &= ~E1000_RCTL_BSEX;
1638                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1639         }
1640
1641         /* 82575 and greater support packet-split where the protocol
1642          * header is placed in skb->data and the packet data is
1643          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1644          * In the case of a non-split, skb->data is linearly filled,
1645          * followed by the page buffers.  Therefore, skb->data is
1646          * sized to hold the largest protocol header.
1647          */
1648         /* allocations using alloc_page take too long for regular MTU
1649          * so only enable packet split for jumbo frames */
1650         if (rctl & E1000_RCTL_LPE) {
1651                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1652                 srrctl = adapter->rx_ps_hdr_size <<
1653                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1654                 /* buffer size is ALWAYS one page */
1655                 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1656                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1657         } else {
1658                 adapter->rx_ps_hdr_size = 0;
1659                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1660         }
1661
1662         for (i = 0; i < adapter->num_rx_queues; i++)
1663                 wr32(E1000_SRRCTL(i), srrctl);
1664
1665         wr32(E1000_RCTL, rctl);
1666 }
1667
1668 /**
1669  * igb_configure_rx - Configure receive Unit after Reset
1670  * @adapter: board private structure
1671  *
1672  * Configure the Rx unit of the MAC after a reset.
1673  **/
1674 static void igb_configure_rx(struct igb_adapter *adapter)
1675 {
1676         u64 rdba;
1677         struct e1000_hw *hw = &adapter->hw;
1678         u32 rctl, rxcsum;
1679         u32 rxdctl;
1680         int i;
1681
1682         /* disable receives while setting up the descriptors */
1683         rctl = rd32(E1000_RCTL);
1684         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1685         wrfl();
1686         mdelay(10);
1687
1688         if (adapter->itr_setting > 3)
1689                 wr32(E1000_ITR,
1690                                 1000000000 / (adapter->itr * 256));
1691
1692         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1693          * the Base and Length of the Rx Descriptor Ring */
1694         for (i = 0; i < adapter->num_rx_queues; i++) {
1695                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1696                 rdba = ring->dma;
1697                 wr32(E1000_RDBAL(i),
1698                                 rdba & 0x00000000ffffffffULL);
1699                 wr32(E1000_RDBAH(i), rdba >> 32);
1700                 wr32(E1000_RDLEN(i),
1701                                ring->count * sizeof(union e1000_adv_rx_desc));
1702
1703                 ring->head = E1000_RDH(i);
1704                 ring->tail = E1000_RDT(i);
1705                 writel(0, hw->hw_addr + ring->tail);
1706                 writel(0, hw->hw_addr + ring->head);
1707
1708                 rxdctl = rd32(E1000_RXDCTL(i));
1709                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1710                 rxdctl &= 0xFFF00000;
1711                 rxdctl |= IGB_RX_PTHRESH;
1712                 rxdctl |= IGB_RX_HTHRESH << 8;
1713                 rxdctl |= IGB_RX_WTHRESH << 16;
1714                 wr32(E1000_RXDCTL(i), rxdctl);
1715         }
1716
1717         if (adapter->num_rx_queues > 1) {
1718                 u32 random[10];
1719                 u32 mrqc;
1720                 u32 j, shift;
1721                 union e1000_reta {
1722                         u32 dword;
1723                         u8  bytes[4];
1724                 } reta;
1725
1726                 get_random_bytes(&random[0], 40);
1727
1728                 shift = 6;
1729                 for (j = 0; j < (32 * 4); j++) {
1730                         reta.bytes[j & 3] =
1731                                 (j % adapter->num_rx_queues) << shift;
1732                         if ((j & 3) == 3)
1733                                 writel(reta.dword,
1734                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1735                 }
1736                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1737
1738                 /* Fill out hash function seeds */
1739                 for (j = 0; j < 10; j++)
1740                         array_wr32(E1000_RSSRK(0), j, random[j]);
1741
1742                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1743                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1744                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1745                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1746                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1747                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1748                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1749                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1750
1751
1752                 wr32(E1000_MRQC, mrqc);
1753
1754                 /* Multiqueue and raw packet checksumming are mutually
1755                  * exclusive.  Note that this not the same as TCP/IP
1756                  * checksumming, which works fine. */
1757                 rxcsum = rd32(E1000_RXCSUM);
1758                 rxcsum |= E1000_RXCSUM_PCSD;
1759                 wr32(E1000_RXCSUM, rxcsum);
1760         } else {
1761                 /* Enable Receive Checksum Offload for TCP and UDP */
1762                 rxcsum = rd32(E1000_RXCSUM);
1763                 if (adapter->rx_csum) {
1764                         rxcsum |= E1000_RXCSUM_TUOFL;
1765
1766                         /* Enable IPv4 payload checksum for UDP fragments
1767                          * Must be used in conjunction with packet-split. */
1768                         if (adapter->rx_ps_hdr_size)
1769                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1770                 } else {
1771                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1772                         /* don't need to clear IPPCSE as it defaults to 0 */
1773                 }
1774                 wr32(E1000_RXCSUM, rxcsum);
1775         }
1776
1777         if (adapter->vlgrp)
1778                 wr32(E1000_RLPML,
1779                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1780         else
1781                 wr32(E1000_RLPML, adapter->max_frame_size);
1782
1783         /* Enable Receives */
1784         wr32(E1000_RCTL, rctl);
1785 }
1786
1787 /**
1788  * igb_free_tx_resources - Free Tx Resources per Queue
1789  * @adapter: board private structure
1790  * @tx_ring: Tx descriptor ring for a specific queue
1791  *
1792  * Free all transmit software resources
1793  **/
1794 static void igb_free_tx_resources(struct igb_ring *tx_ring)
1795 {
1796         struct pci_dev *pdev = tx_ring->adapter->pdev;
1797
1798         igb_clean_tx_ring(tx_ring);
1799
1800         vfree(tx_ring->buffer_info);
1801         tx_ring->buffer_info = NULL;
1802
1803         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1804
1805         tx_ring->desc = NULL;
1806 }
1807
1808 /**
1809  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1810  * @adapter: board private structure
1811  *
1812  * Free all transmit software resources
1813  **/
1814 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1815 {
1816         int i;
1817
1818         for (i = 0; i < adapter->num_tx_queues; i++)
1819                 igb_free_tx_resources(&adapter->tx_ring[i]);
1820 }
1821
1822 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1823                                            struct igb_buffer *buffer_info)
1824 {
1825         if (buffer_info->dma) {
1826                 pci_unmap_page(adapter->pdev,
1827                                 buffer_info->dma,
1828                                 buffer_info->length,
1829                                 PCI_DMA_TODEVICE);
1830                 buffer_info->dma = 0;
1831         }
1832         if (buffer_info->skb) {
1833                 dev_kfree_skb_any(buffer_info->skb);
1834                 buffer_info->skb = NULL;
1835         }
1836         buffer_info->time_stamp = 0;
1837         /* buffer_info must be completely set up in the transmit path */
1838 }
1839
1840 /**
1841  * igb_clean_tx_ring - Free Tx Buffers
1842  * @adapter: board private structure
1843  * @tx_ring: ring to be cleaned
1844  **/
1845 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
1846 {
1847         struct igb_adapter *adapter = tx_ring->adapter;
1848         struct igb_buffer *buffer_info;
1849         unsigned long size;
1850         unsigned int i;
1851
1852         if (!tx_ring->buffer_info)
1853                 return;
1854         /* Free all the Tx ring sk_buffs */
1855
1856         for (i = 0; i < tx_ring->count; i++) {
1857                 buffer_info = &tx_ring->buffer_info[i];
1858                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1859         }
1860
1861         size = sizeof(struct igb_buffer) * tx_ring->count;
1862         memset(tx_ring->buffer_info, 0, size);
1863
1864         /* Zero out the descriptor ring */
1865
1866         memset(tx_ring->desc, 0, tx_ring->size);
1867
1868         tx_ring->next_to_use = 0;
1869         tx_ring->next_to_clean = 0;
1870
1871         writel(0, adapter->hw.hw_addr + tx_ring->head);
1872         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1873 }
1874
1875 /**
1876  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1877  * @adapter: board private structure
1878  **/
1879 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1880 {
1881         int i;
1882
1883         for (i = 0; i < adapter->num_tx_queues; i++)
1884                 igb_clean_tx_ring(&adapter->tx_ring[i]);
1885 }
1886
1887 /**
1888  * igb_free_rx_resources - Free Rx Resources
1889  * @adapter: board private structure
1890  * @rx_ring: ring to clean the resources from
1891  *
1892  * Free all receive software resources
1893  **/
1894 static void igb_free_rx_resources(struct igb_ring *rx_ring)
1895 {
1896         struct pci_dev *pdev = rx_ring->adapter->pdev;
1897
1898         igb_clean_rx_ring(rx_ring);
1899
1900         vfree(rx_ring->buffer_info);
1901         rx_ring->buffer_info = NULL;
1902
1903         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1904
1905         rx_ring->desc = NULL;
1906 }
1907
1908 /**
1909  * igb_free_all_rx_resources - Free Rx Resources for All Queues
1910  * @adapter: board private structure
1911  *
1912  * Free all receive software resources
1913  **/
1914 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1915 {
1916         int i;
1917
1918         for (i = 0; i < adapter->num_rx_queues; i++)
1919                 igb_free_rx_resources(&adapter->rx_ring[i]);
1920 }
1921
1922 /**
1923  * igb_clean_rx_ring - Free Rx Buffers per Queue
1924  * @adapter: board private structure
1925  * @rx_ring: ring to free buffers from
1926  **/
1927 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
1928 {
1929         struct igb_adapter *adapter = rx_ring->adapter;
1930         struct igb_buffer *buffer_info;
1931         struct pci_dev *pdev = adapter->pdev;
1932         unsigned long size;
1933         unsigned int i;
1934
1935         if (!rx_ring->buffer_info)
1936                 return;
1937         /* Free all the Rx ring sk_buffs */
1938         for (i = 0; i < rx_ring->count; i++) {
1939                 buffer_info = &rx_ring->buffer_info[i];
1940                 if (buffer_info->dma) {
1941                         if (adapter->rx_ps_hdr_size)
1942                                 pci_unmap_single(pdev, buffer_info->dma,
1943                                                  adapter->rx_ps_hdr_size,
1944                                                  PCI_DMA_FROMDEVICE);
1945                         else
1946                                 pci_unmap_single(pdev, buffer_info->dma,
1947                                                  adapter->rx_buffer_len,
1948                                                  PCI_DMA_FROMDEVICE);
1949                         buffer_info->dma = 0;
1950                 }
1951
1952                 if (buffer_info->skb) {
1953                         dev_kfree_skb(buffer_info->skb);
1954                         buffer_info->skb = NULL;
1955                 }
1956                 if (buffer_info->page) {
1957                         pci_unmap_page(pdev, buffer_info->page_dma,
1958                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1959                         put_page(buffer_info->page);
1960                         buffer_info->page = NULL;
1961                         buffer_info->page_dma = 0;
1962                 }
1963         }
1964
1965         /* there also may be some cached data from a chained receive */
1966         if (rx_ring->pending_skb) {
1967                 dev_kfree_skb(rx_ring->pending_skb);
1968                 rx_ring->pending_skb = NULL;
1969         }
1970
1971         size = sizeof(struct igb_buffer) * rx_ring->count;
1972         memset(rx_ring->buffer_info, 0, size);
1973
1974         /* Zero out the descriptor ring */
1975         memset(rx_ring->desc, 0, rx_ring->size);
1976
1977         rx_ring->next_to_clean = 0;
1978         rx_ring->next_to_use = 0;
1979
1980         writel(0, adapter->hw.hw_addr + rx_ring->head);
1981         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1982 }
1983
1984 /**
1985  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1986  * @adapter: board private structure
1987  **/
1988 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1989 {
1990         int i;
1991
1992         for (i = 0; i < adapter->num_rx_queues; i++)
1993                 igb_clean_rx_ring(&adapter->rx_ring[i]);
1994 }
1995
1996 /**
1997  * igb_set_mac - Change the Ethernet Address of the NIC
1998  * @netdev: network interface device structure
1999  * @p: pointer to an address structure
2000  *
2001  * Returns 0 on success, negative on failure
2002  **/
2003 static int igb_set_mac(struct net_device *netdev, void *p)
2004 {
2005         struct igb_adapter *adapter = netdev_priv(netdev);
2006         struct sockaddr *addr = p;
2007
2008         if (!is_valid_ether_addr(addr->sa_data))
2009                 return -EADDRNOTAVAIL;
2010
2011         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2012         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2013
2014         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2015
2016         return 0;
2017 }
2018
2019 /**
2020  * igb_set_multi - Multicast and Promiscuous mode set
2021  * @netdev: network interface device structure
2022  *
2023  * The set_multi entry point is called whenever the multicast address
2024  * list or the network interface flags are updated.  This routine is
2025  * responsible for configuring the hardware for proper multicast,
2026  * promiscuous mode, and all-multi behavior.
2027  **/
2028 static void igb_set_multi(struct net_device *netdev)
2029 {
2030         struct igb_adapter *adapter = netdev_priv(netdev);
2031         struct e1000_hw *hw = &adapter->hw;
2032         struct e1000_mac_info *mac = &hw->mac;
2033         struct dev_mc_list *mc_ptr;
2034         u8  *mta_list;
2035         u32 rctl;
2036         int i;
2037
2038         /* Check for Promiscuous and All Multicast modes */
2039
2040         rctl = rd32(E1000_RCTL);
2041
2042         if (netdev->flags & IFF_PROMISC)
2043                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2044         else if (netdev->flags & IFF_ALLMULTI) {
2045                 rctl |= E1000_RCTL_MPE;
2046                 rctl &= ~E1000_RCTL_UPE;
2047         } else
2048                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2049
2050         wr32(E1000_RCTL, rctl);
2051
2052         if (!netdev->mc_count) {
2053                 /* nothing to program, so clear mc list */
2054                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2055                                           mac->rar_entry_count);
2056                 return;
2057         }
2058
2059         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2060         if (!mta_list)
2061                 return;
2062
2063         /* The shared function expects a packed array of only addresses. */
2064         mc_ptr = netdev->mc_list;
2065
2066         for (i = 0; i < netdev->mc_count; i++) {
2067                 if (!mc_ptr)
2068                         break;
2069                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2070                 mc_ptr = mc_ptr->next;
2071         }
2072         igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2073         kfree(mta_list);
2074 }
2075
2076 /* Need to wait a few seconds after link up to get diagnostic information from
2077  * the phy */
2078 static void igb_update_phy_info(unsigned long data)
2079 {
2080         struct igb_adapter *adapter = (struct igb_adapter *) data;
2081         if (adapter->hw.phy.ops.get_phy_info)
2082                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2083 }
2084
2085 /**
2086  * igb_watchdog - Timer Call-back
2087  * @data: pointer to adapter cast into an unsigned long
2088  **/
2089 static void igb_watchdog(unsigned long data)
2090 {
2091         struct igb_adapter *adapter = (struct igb_adapter *)data;
2092         /* Do the rest outside of interrupt context */
2093         schedule_work(&adapter->watchdog_task);
2094 }
2095
2096 static void igb_watchdog_task(struct work_struct *work)
2097 {
2098         struct igb_adapter *adapter = container_of(work,
2099                                         struct igb_adapter, watchdog_task);
2100         struct e1000_hw *hw = &adapter->hw;
2101
2102         struct net_device *netdev = adapter->netdev;
2103         struct igb_ring *tx_ring = adapter->tx_ring;
2104         struct e1000_mac_info *mac = &adapter->hw.mac;
2105         u32 link;
2106         s32 ret_val;
2107
2108         if ((netif_carrier_ok(netdev)) &&
2109             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2110                 goto link_up;
2111
2112         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2113         if ((ret_val == E1000_ERR_PHY) &&
2114             (hw->phy.type == e1000_phy_igp_3) &&
2115             (rd32(E1000_CTRL) &
2116              E1000_PHY_CTRL_GBE_DISABLE))
2117                 dev_info(&adapter->pdev->dev,
2118                          "Gigabit has been disabled, downgrading speed\n");
2119
2120         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2121             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2122                 link = mac->serdes_has_link;
2123         else
2124                 link = rd32(E1000_STATUS) &
2125                                       E1000_STATUS_LU;
2126
2127         if (link) {
2128                 if (!netif_carrier_ok(netdev)) {
2129                         u32 ctrl;
2130                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2131                                                    &adapter->link_speed,
2132                                                    &adapter->link_duplex);
2133
2134                         ctrl = rd32(E1000_CTRL);
2135                         dev_info(&adapter->pdev->dev,
2136                                  "NIC Link is Up %d Mbps %s, "
2137                                  "Flow Control: %s\n",
2138                                  adapter->link_speed,
2139                                  adapter->link_duplex == FULL_DUPLEX ?
2140                                  "Full Duplex" : "Half Duplex",
2141                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2142                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2143                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2144                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2145
2146                         /* tweak tx_queue_len according to speed/duplex and
2147                          * adjust the timeout factor */
2148                         netdev->tx_queue_len = adapter->tx_queue_len;
2149                         adapter->tx_timeout_factor = 1;
2150                         switch (adapter->link_speed) {
2151                         case SPEED_10:
2152                                 netdev->tx_queue_len = 10;
2153                                 adapter->tx_timeout_factor = 14;
2154                                 break;
2155                         case SPEED_100:
2156                                 netdev->tx_queue_len = 100;
2157                                 /* maybe add some timeout factor ? */
2158                                 break;
2159                         }
2160
2161                         netif_carrier_on(netdev);
2162                         netif_wake_queue(netdev);
2163
2164                         if (!test_bit(__IGB_DOWN, &adapter->state))
2165                                 mod_timer(&adapter->phy_info_timer,
2166                                           round_jiffies(jiffies + 2 * HZ));
2167                 }
2168         } else {
2169                 if (netif_carrier_ok(netdev)) {
2170                         adapter->link_speed = 0;
2171                         adapter->link_duplex = 0;
2172                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2173                         netif_carrier_off(netdev);
2174                         netif_stop_queue(netdev);
2175                         if (!test_bit(__IGB_DOWN, &adapter->state))
2176                                 mod_timer(&adapter->phy_info_timer,
2177                                           round_jiffies(jiffies + 2 * HZ));
2178                 }
2179         }
2180
2181 link_up:
2182         igb_update_stats(adapter);
2183
2184         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2185         adapter->tpt_old = adapter->stats.tpt;
2186         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2187         adapter->colc_old = adapter->stats.colc;
2188
2189         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2190         adapter->gorc_old = adapter->stats.gorc;
2191         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2192         adapter->gotc_old = adapter->stats.gotc;
2193
2194         igb_update_adaptive(&adapter->hw);
2195
2196         if (!netif_carrier_ok(netdev)) {
2197                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2198                         /* We've lost link, so the controller stops DMA,
2199                          * but we've got queued Tx work that's never going
2200                          * to get done, so reset controller to flush Tx.
2201                          * (Do the reset outside of interrupt context). */
2202                         adapter->tx_timeout_count++;
2203                         schedule_work(&adapter->reset_task);
2204                 }
2205         }
2206
2207         /* Cause software interrupt to ensure rx ring is cleaned */
2208         wr32(E1000_ICS, E1000_ICS_RXDMT0);
2209
2210         /* Force detection of hung controller every watchdog period */
2211         tx_ring->detect_tx_hung = true;
2212
2213         /* Reset the timer */
2214         if (!test_bit(__IGB_DOWN, &adapter->state))
2215                 mod_timer(&adapter->watchdog_timer,
2216                           round_jiffies(jiffies + 2 * HZ));
2217 }
2218
2219 enum latency_range {
2220         lowest_latency = 0,
2221         low_latency = 1,
2222         bulk_latency = 2,
2223         latency_invalid = 255
2224 };
2225
2226
2227 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2228                               struct igb_ring *rx_ring)
2229 {
2230         struct e1000_hw *hw = &adapter->hw;
2231         int new_val;
2232
2233         new_val = rx_ring->itr_val / 2;
2234         if (new_val < IGB_MIN_DYN_ITR)
2235                 new_val = IGB_MIN_DYN_ITR;
2236
2237         if (new_val != rx_ring->itr_val) {
2238                 rx_ring->itr_val = new_val;
2239                 wr32(rx_ring->itr_register,
2240                                 1000000000 / (new_val * 256));
2241         }
2242 }
2243
2244 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2245                               struct igb_ring *rx_ring)
2246 {
2247         struct e1000_hw *hw = &adapter->hw;
2248         int new_val;
2249
2250         new_val = rx_ring->itr_val * 2;
2251         if (new_val > IGB_MAX_DYN_ITR)
2252                 new_val = IGB_MAX_DYN_ITR;
2253
2254         if (new_val != rx_ring->itr_val) {
2255                 rx_ring->itr_val = new_val;
2256                 wr32(rx_ring->itr_register,
2257                                 1000000000 / (new_val * 256));
2258         }
2259 }
2260
2261 /**
2262  * igb_update_itr - update the dynamic ITR value based on statistics
2263  *      Stores a new ITR value based on packets and byte
2264  *      counts during the last interrupt.  The advantage of per interrupt
2265  *      computation is faster updates and more accurate ITR for the current
2266  *      traffic pattern.  Constants in this function were computed
2267  *      based on theoretical maximum wire speed and thresholds were set based
2268  *      on testing data as well as attempting to minimize response time
2269  *      while increasing bulk throughput.
2270  *      this functionality is controlled by the InterruptThrottleRate module
2271  *      parameter (see igb_param.c)
2272  *      NOTE:  These calculations are only valid when operating in a single-
2273  *             queue environment.
2274  * @adapter: pointer to adapter
2275  * @itr_setting: current adapter->itr
2276  * @packets: the number of packets during this measurement interval
2277  * @bytes: the number of bytes during this measurement interval
2278  **/
2279 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2280                                    int packets, int bytes)
2281 {
2282         unsigned int retval = itr_setting;
2283
2284         if (packets == 0)
2285                 goto update_itr_done;
2286
2287         switch (itr_setting) {
2288         case lowest_latency:
2289                 /* handle TSO and jumbo frames */
2290                 if (bytes/packets > 8000)
2291                         retval = bulk_latency;
2292                 else if ((packets < 5) && (bytes > 512))
2293                         retval = low_latency;
2294                 break;
2295         case low_latency:  /* 50 usec aka 20000 ints/s */
2296                 if (bytes > 10000) {
2297                         /* this if handles the TSO accounting */
2298                         if (bytes/packets > 8000) {
2299                                 retval = bulk_latency;
2300                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2301                                 retval = bulk_latency;
2302                         } else if ((packets > 35)) {
2303                                 retval = lowest_latency;
2304                         }
2305                 } else if (bytes/packets > 2000) {
2306                         retval = bulk_latency;
2307                 } else if (packets <= 2 && bytes < 512) {
2308                         retval = lowest_latency;
2309                 }
2310                 break;
2311         case bulk_latency: /* 250 usec aka 4000 ints/s */
2312                 if (bytes > 25000) {
2313                         if (packets > 35)
2314                                 retval = low_latency;
2315                 } else if (bytes < 6000) {
2316                         retval = low_latency;
2317                 }
2318                 break;
2319         }
2320
2321 update_itr_done:
2322         return retval;
2323 }
2324
2325 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2326                         int rx_only)
2327 {
2328         u16 current_itr;
2329         u32 new_itr = adapter->itr;
2330
2331         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2332         if (adapter->link_speed != SPEED_1000) {
2333                 current_itr = 0;
2334                 new_itr = 4000;
2335                 goto set_itr_now;
2336         }
2337
2338         adapter->rx_itr = igb_update_itr(adapter,
2339                                     adapter->rx_itr,
2340                                     adapter->rx_ring->total_packets,
2341                                     adapter->rx_ring->total_bytes);
2342         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2343         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2344                 adapter->rx_itr = low_latency;
2345
2346         if (!rx_only) {
2347                 adapter->tx_itr = igb_update_itr(adapter,
2348                                             adapter->tx_itr,
2349                                             adapter->tx_ring->total_packets,
2350                                             adapter->tx_ring->total_bytes);
2351                 /* conservative mode (itr 3) eliminates the
2352                  * lowest_latency setting */
2353                 if (adapter->itr_setting == 3 &&
2354                     adapter->tx_itr == lowest_latency)
2355                         adapter->tx_itr = low_latency;
2356
2357                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2358         } else {
2359                 current_itr = adapter->rx_itr;
2360         }
2361
2362         switch (current_itr) {
2363         /* counts and packets in update_itr are dependent on these numbers */
2364         case lowest_latency:
2365                 new_itr = 70000;
2366                 break;
2367         case low_latency:
2368                 new_itr = 20000; /* aka hwitr = ~200 */
2369                 break;
2370         case bulk_latency:
2371                 new_itr = 4000;
2372                 break;
2373         default:
2374                 break;
2375         }
2376
2377 set_itr_now:
2378         if (new_itr != adapter->itr) {
2379                 /* this attempts to bias the interrupt rate towards Bulk
2380                  * by adding intermediate steps when interrupt rate is
2381                  * increasing */
2382                 new_itr = new_itr > adapter->itr ?
2383                              min(adapter->itr + (new_itr >> 2), new_itr) :
2384                              new_itr;
2385                 /* Don't write the value here; it resets the adapter's
2386                  * internal timer, and causes us to delay far longer than
2387                  * we should between interrupts.  Instead, we write the ITR
2388                  * value at the beginning of the next interrupt so the timing
2389                  * ends up being correct.
2390                  */
2391                 adapter->itr = new_itr;
2392                 adapter->set_itr = 1;
2393         }
2394
2395         return;
2396 }
2397
2398
2399 #define IGB_TX_FLAGS_CSUM               0x00000001
2400 #define IGB_TX_FLAGS_VLAN               0x00000002
2401 #define IGB_TX_FLAGS_TSO                0x00000004
2402 #define IGB_TX_FLAGS_IPV4               0x00000008
2403 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2404 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2405
2406 static inline int igb_tso_adv(struct igb_adapter *adapter,
2407                               struct igb_ring *tx_ring,
2408                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2409 {
2410         struct e1000_adv_tx_context_desc *context_desc;
2411         unsigned int i;
2412         int err;
2413         struct igb_buffer *buffer_info;
2414         u32 info = 0, tu_cmd = 0;
2415         u32 mss_l4len_idx, l4len;
2416         *hdr_len = 0;
2417
2418         if (skb_header_cloned(skb)) {
2419                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2420                 if (err)
2421                         return err;
2422         }
2423
2424         l4len = tcp_hdrlen(skb);
2425         *hdr_len += l4len;
2426
2427         if (skb->protocol == htons(ETH_P_IP)) {
2428                 struct iphdr *iph = ip_hdr(skb);
2429                 iph->tot_len = 0;
2430                 iph->check = 0;
2431                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2432                                                          iph->daddr, 0,
2433                                                          IPPROTO_TCP,
2434                                                          0);
2435         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2436                 ipv6_hdr(skb)->payload_len = 0;
2437                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2438                                                        &ipv6_hdr(skb)->daddr,
2439                                                        0, IPPROTO_TCP, 0);
2440         }
2441
2442         i = tx_ring->next_to_use;
2443
2444         buffer_info = &tx_ring->buffer_info[i];
2445         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2446         /* VLAN MACLEN IPLEN */
2447         if (tx_flags & IGB_TX_FLAGS_VLAN)
2448                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2449         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2450         *hdr_len += skb_network_offset(skb);
2451         info |= skb_network_header_len(skb);
2452         *hdr_len += skb_network_header_len(skb);
2453         context_desc->vlan_macip_lens = cpu_to_le32(info);
2454
2455         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2456         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2457
2458         if (skb->protocol == htons(ETH_P_IP))
2459                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2460         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2461
2462         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2463
2464         /* MSS L4LEN IDX */
2465         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2466         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2467
2468         /* Context index must be unique per ring.  Luckily, so is the interrupt
2469          * mask value. */
2470         mss_l4len_idx |= tx_ring->eims_value >> 4;
2471
2472         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2473         context_desc->seqnum_seed = 0;
2474
2475         buffer_info->time_stamp = jiffies;
2476         buffer_info->dma = 0;
2477         i++;
2478         if (i == tx_ring->count)
2479                 i = 0;
2480
2481         tx_ring->next_to_use = i;
2482
2483         return true;
2484 }
2485
2486 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2487                                         struct igb_ring *tx_ring,
2488                                         struct sk_buff *skb, u32 tx_flags)
2489 {
2490         struct e1000_adv_tx_context_desc *context_desc;
2491         unsigned int i;
2492         struct igb_buffer *buffer_info;
2493         u32 info = 0, tu_cmd = 0;
2494
2495         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2496             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2497                 i = tx_ring->next_to_use;
2498                 buffer_info = &tx_ring->buffer_info[i];
2499                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2500
2501                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2502                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2503                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2504                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2505                         info |= skb_network_header_len(skb);
2506
2507                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2508
2509                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2510
2511                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2512                         switch (skb->protocol) {
2513                         case __constant_htons(ETH_P_IP):
2514                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2515                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2516                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2517                                 break;
2518                         case __constant_htons(ETH_P_IPV6):
2519                                 /* XXX what about other V6 headers?? */
2520                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2521                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2522                                 break;
2523                         default:
2524                                 if (unlikely(net_ratelimit()))
2525                                         dev_warn(&adapter->pdev->dev,
2526                                             "partial checksum but proto=%x!\n",
2527                                             skb->protocol);
2528                                 break;
2529                         }
2530                 }
2531
2532                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2533                 context_desc->seqnum_seed = 0;
2534                 context_desc->mss_l4len_idx =
2535                                           cpu_to_le32(tx_ring->eims_value >> 4);
2536
2537                 buffer_info->time_stamp = jiffies;
2538                 buffer_info->dma = 0;
2539
2540                 i++;
2541                 if (i == tx_ring->count)
2542                         i = 0;
2543                 tx_ring->next_to_use = i;
2544
2545                 return true;
2546         }
2547
2548
2549         return false;
2550 }
2551
2552 #define IGB_MAX_TXD_PWR 16
2553 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2554
2555 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2556                                  struct igb_ring *tx_ring,
2557                                  struct sk_buff *skb)
2558 {
2559         struct igb_buffer *buffer_info;
2560         unsigned int len = skb_headlen(skb);
2561         unsigned int count = 0, i;
2562         unsigned int f;
2563
2564         i = tx_ring->next_to_use;
2565
2566         buffer_info = &tx_ring->buffer_info[i];
2567         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2568         buffer_info->length = len;
2569         /* set time_stamp *before* dma to help avoid a possible race */
2570         buffer_info->time_stamp = jiffies;
2571         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2572                                           PCI_DMA_TODEVICE);
2573         count++;
2574         i++;
2575         if (i == tx_ring->count)
2576                 i = 0;
2577
2578         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2579                 struct skb_frag_struct *frag;
2580
2581                 frag = &skb_shinfo(skb)->frags[f];
2582                 len = frag->size;
2583
2584                 buffer_info = &tx_ring->buffer_info[i];
2585                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2586                 buffer_info->length = len;
2587                 buffer_info->time_stamp = jiffies;
2588                 buffer_info->dma = pci_map_page(adapter->pdev,
2589                                                 frag->page,
2590                                                 frag->page_offset,
2591                                                 len,
2592                                                 PCI_DMA_TODEVICE);
2593
2594                 count++;
2595                 i++;
2596                 if (i == tx_ring->count)
2597                         i = 0;
2598         }
2599
2600         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2601         tx_ring->buffer_info[i].skb = skb;
2602
2603         return count;
2604 }
2605
2606 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2607                                     struct igb_ring *tx_ring,
2608                                     int tx_flags, int count, u32 paylen,
2609                                     u8 hdr_len)
2610 {
2611         union e1000_adv_tx_desc *tx_desc = NULL;
2612         struct igb_buffer *buffer_info;
2613         u32 olinfo_status = 0, cmd_type_len;
2614         unsigned int i;
2615
2616         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2617                         E1000_ADVTXD_DCMD_DEXT);
2618
2619         if (tx_flags & IGB_TX_FLAGS_VLAN)
2620                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2621
2622         if (tx_flags & IGB_TX_FLAGS_TSO) {
2623                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2624
2625                 /* insert tcp checksum */
2626                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2627
2628                 /* insert ip checksum */
2629                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2630                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2631
2632         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2633                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2634         }
2635
2636         if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2637                         IGB_TX_FLAGS_VLAN))
2638                 olinfo_status |= tx_ring->eims_value >> 4;
2639
2640         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2641
2642         i = tx_ring->next_to_use;
2643         while (count--) {
2644                 buffer_info = &tx_ring->buffer_info[i];
2645                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2646                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2647                 tx_desc->read.cmd_type_len =
2648                         cpu_to_le32(cmd_type_len | buffer_info->length);
2649                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2650                 i++;
2651                 if (i == tx_ring->count)
2652                         i = 0;
2653         }
2654
2655         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2656         /* Force memory writes to complete before letting h/w
2657          * know there are new descriptors to fetch.  (Only
2658          * applicable for weak-ordered memory model archs,
2659          * such as IA-64). */
2660         wmb();
2661
2662         tx_ring->next_to_use = i;
2663         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2664         /* we need this if more than one processor can write to our tail
2665          * at a time, it syncronizes IO on IA64/Altix systems */
2666         mmiowb();
2667 }
2668
2669 static int __igb_maybe_stop_tx(struct net_device *netdev,
2670                                struct igb_ring *tx_ring, int size)
2671 {
2672         struct igb_adapter *adapter = netdev_priv(netdev);
2673
2674         netif_stop_queue(netdev);
2675         /* Herbert's original patch had:
2676          *  smp_mb__after_netif_stop_queue();
2677          * but since that doesn't exist yet, just open code it. */
2678         smp_mb();
2679
2680         /* We need to check again in a case another CPU has just
2681          * made room available. */
2682         if (IGB_DESC_UNUSED(tx_ring) < size)
2683                 return -EBUSY;
2684
2685         /* A reprieve! */
2686         netif_start_queue(netdev);
2687         ++adapter->restart_queue;
2688         return 0;
2689 }
2690
2691 static int igb_maybe_stop_tx(struct net_device *netdev,
2692                              struct igb_ring *tx_ring, int size)
2693 {
2694         if (IGB_DESC_UNUSED(tx_ring) >= size)
2695                 return 0;
2696         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2697 }
2698
2699 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2700
2701 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2702                                    struct net_device *netdev,
2703                                    struct igb_ring *tx_ring)
2704 {
2705         struct igb_adapter *adapter = netdev_priv(netdev);
2706         unsigned int tx_flags = 0;
2707         unsigned int len;
2708         unsigned long irq_flags;
2709         u8 hdr_len = 0;
2710         int tso = 0;
2711
2712         len = skb_headlen(skb);
2713
2714         if (test_bit(__IGB_DOWN, &adapter->state)) {
2715                 dev_kfree_skb_any(skb);
2716                 return NETDEV_TX_OK;
2717         }
2718
2719         if (skb->len <= 0) {
2720                 dev_kfree_skb_any(skb);
2721                 return NETDEV_TX_OK;
2722         }
2723
2724         if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2725                 /* Collision - tell upper layer to requeue */
2726                 return NETDEV_TX_LOCKED;
2727
2728         /* need: 1 descriptor per page,
2729          *       + 2 desc gap to keep tail from touching head,
2730          *       + 1 desc for skb->data,
2731          *       + 1 desc for context descriptor,
2732          * otherwise try next time */
2733         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2734                 /* this is a hard error */
2735                 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2736                 return NETDEV_TX_BUSY;
2737         }
2738
2739         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2740                 tx_flags |= IGB_TX_FLAGS_VLAN;
2741                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2742         }
2743
2744         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2745                                               &hdr_len) : 0;
2746
2747         if (tso < 0) {
2748                 dev_kfree_skb_any(skb);
2749                 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2750                 return NETDEV_TX_OK;
2751         }
2752
2753         if (tso)
2754                 tx_flags |= IGB_TX_FLAGS_TSO;
2755         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2756                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2757                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2758
2759         if (skb->protocol == htons(ETH_P_IP))
2760                 tx_flags |= IGB_TX_FLAGS_IPV4;
2761
2762         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2763                          igb_tx_map_adv(adapter, tx_ring, skb),
2764                          skb->len, hdr_len);
2765
2766         netdev->trans_start = jiffies;
2767
2768         /* Make sure there is space in the ring for the next send. */
2769         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2770
2771         spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2772         return NETDEV_TX_OK;
2773 }
2774
2775 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2776 {
2777         struct igb_adapter *adapter = netdev_priv(netdev);
2778         struct igb_ring *tx_ring = &adapter->tx_ring[0];
2779
2780         /* This goes back to the question of how to logically map a tx queue
2781          * to a flow.  Right now, performance is impacted slightly negatively
2782          * if using multiple tx queues.  If the stack breaks away from a
2783          * single qdisc implementation, we can look at this again. */
2784         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2785 }
2786
2787 /**
2788  * igb_tx_timeout - Respond to a Tx Hang
2789  * @netdev: network interface device structure
2790  **/
2791 static void igb_tx_timeout(struct net_device *netdev)
2792 {
2793         struct igb_adapter *adapter = netdev_priv(netdev);
2794         struct e1000_hw *hw = &adapter->hw;
2795
2796         /* Do the reset outside of interrupt context */
2797         adapter->tx_timeout_count++;
2798         schedule_work(&adapter->reset_task);
2799         wr32(E1000_EICS, adapter->eims_enable_mask &
2800                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2801 }
2802
2803 static void igb_reset_task(struct work_struct *work)
2804 {
2805         struct igb_adapter *adapter;
2806         adapter = container_of(work, struct igb_adapter, reset_task);
2807
2808         igb_reinit_locked(adapter);
2809 }
2810
2811 /**
2812  * igb_get_stats - Get System Network Statistics
2813  * @netdev: network interface device structure
2814  *
2815  * Returns the address of the device statistics structure.
2816  * The statistics are actually updated from the timer callback.
2817  **/
2818 static struct net_device_stats *
2819 igb_get_stats(struct net_device *netdev)
2820 {
2821         struct igb_adapter *adapter = netdev_priv(netdev);
2822
2823         /* only return the current stats */
2824         return &adapter->net_stats;
2825 }
2826
2827 /**
2828  * igb_change_mtu - Change the Maximum Transfer Unit
2829  * @netdev: network interface device structure
2830  * @new_mtu: new value for maximum frame size
2831  *
2832  * Returns 0 on success, negative on failure
2833  **/
2834 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2835 {
2836         struct igb_adapter *adapter = netdev_priv(netdev);
2837         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2838
2839         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2840             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2841                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2842                 return -EINVAL;
2843         }
2844
2845 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2846         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2847                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2848                 return -EINVAL;
2849         }
2850
2851         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2852                 msleep(1);
2853         /* igb_down has a dependency on max_frame_size */
2854         adapter->max_frame_size = max_frame;
2855         if (netif_running(netdev))
2856                 igb_down(adapter);
2857
2858         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2859          * means we reserve 2 more, this pushes us to allocate from the next
2860          * larger slab size.
2861          * i.e. RXBUFFER_2048 --> size-4096 slab
2862          */
2863
2864         if (max_frame <= IGB_RXBUFFER_256)
2865                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2866         else if (max_frame <= IGB_RXBUFFER_512)
2867                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2868         else if (max_frame <= IGB_RXBUFFER_1024)
2869                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2870         else if (max_frame <= IGB_RXBUFFER_2048)
2871                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2872         else
2873                 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2874         /* adjust allocation if LPE protects us, and we aren't using SBP */
2875         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2876              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2877                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2878
2879         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2880                  netdev->mtu, new_mtu);
2881         netdev->mtu = new_mtu;
2882
2883         if (netif_running(netdev))
2884                 igb_up(adapter);
2885         else
2886                 igb_reset(adapter);
2887
2888         clear_bit(__IGB_RESETTING, &adapter->state);
2889
2890         return 0;
2891 }
2892
2893 /**
2894  * igb_update_stats - Update the board statistics counters
2895  * @adapter: board private structure
2896  **/
2897
2898 void igb_update_stats(struct igb_adapter *adapter)
2899 {
2900         struct e1000_hw *hw = &adapter->hw;
2901         struct pci_dev *pdev = adapter->pdev;
2902         u16 phy_tmp;
2903
2904 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2905
2906         /*
2907          * Prevent stats update while adapter is being reset, or if the pci
2908          * connection is down.
2909          */
2910         if (adapter->link_speed == 0)
2911                 return;
2912         if (pci_channel_offline(pdev))
2913                 return;
2914
2915         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2916         adapter->stats.gprc += rd32(E1000_GPRC);
2917         adapter->stats.gorc += rd32(E1000_GORCL);
2918         rd32(E1000_GORCH); /* clear GORCL */
2919         adapter->stats.bprc += rd32(E1000_BPRC);
2920         adapter->stats.mprc += rd32(E1000_MPRC);
2921         adapter->stats.roc += rd32(E1000_ROC);
2922
2923         adapter->stats.prc64 += rd32(E1000_PRC64);
2924         adapter->stats.prc127 += rd32(E1000_PRC127);
2925         adapter->stats.prc255 += rd32(E1000_PRC255);
2926         adapter->stats.prc511 += rd32(E1000_PRC511);
2927         adapter->stats.prc1023 += rd32(E1000_PRC1023);
2928         adapter->stats.prc1522 += rd32(E1000_PRC1522);
2929         adapter->stats.symerrs += rd32(E1000_SYMERRS);
2930         adapter->stats.sec += rd32(E1000_SEC);
2931
2932         adapter->stats.mpc += rd32(E1000_MPC);
2933         adapter->stats.scc += rd32(E1000_SCC);
2934         adapter->stats.ecol += rd32(E1000_ECOL);
2935         adapter->stats.mcc += rd32(E1000_MCC);
2936         adapter->stats.latecol += rd32(E1000_LATECOL);
2937         adapter->stats.dc += rd32(E1000_DC);
2938         adapter->stats.rlec += rd32(E1000_RLEC);
2939         adapter->stats.xonrxc += rd32(E1000_XONRXC);
2940         adapter->stats.xontxc += rd32(E1000_XONTXC);
2941         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2942         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2943         adapter->stats.fcruc += rd32(E1000_FCRUC);
2944         adapter->stats.gptc += rd32(E1000_GPTC);
2945         adapter->stats.gotc += rd32(E1000_GOTCL);
2946         rd32(E1000_GOTCH); /* clear GOTCL */
2947         adapter->stats.rnbc += rd32(E1000_RNBC);
2948         adapter->stats.ruc += rd32(E1000_RUC);
2949         adapter->stats.rfc += rd32(E1000_RFC);
2950         adapter->stats.rjc += rd32(E1000_RJC);
2951         adapter->stats.tor += rd32(E1000_TORH);
2952         adapter->stats.tot += rd32(E1000_TOTH);
2953         adapter->stats.tpr += rd32(E1000_TPR);
2954
2955         adapter->stats.ptc64 += rd32(E1000_PTC64);
2956         adapter->stats.ptc127 += rd32(E1000_PTC127);
2957         adapter->stats.ptc255 += rd32(E1000_PTC255);
2958         adapter->stats.ptc511 += rd32(E1000_PTC511);
2959         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2960         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2961
2962         adapter->stats.mptc += rd32(E1000_MPTC);
2963         adapter->stats.bptc += rd32(E1000_BPTC);
2964
2965         /* used for adaptive IFS */
2966
2967         hw->mac.tx_packet_delta = rd32(E1000_TPT);
2968         adapter->stats.tpt += hw->mac.tx_packet_delta;
2969         hw->mac.collision_delta = rd32(E1000_COLC);
2970         adapter->stats.colc += hw->mac.collision_delta;
2971
2972         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2973         adapter->stats.rxerrc += rd32(E1000_RXERRC);
2974         adapter->stats.tncrs += rd32(E1000_TNCRS);
2975         adapter->stats.tsctc += rd32(E1000_TSCTC);
2976         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2977
2978         adapter->stats.iac += rd32(E1000_IAC);
2979         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2980         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2981         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2982         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2983         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2984         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2985         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2986         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2987
2988         /* Fill out the OS statistics structure */
2989         adapter->net_stats.multicast = adapter->stats.mprc;
2990         adapter->net_stats.collisions = adapter->stats.colc;
2991
2992         /* Rx Errors */
2993
2994         /* RLEC on some newer hardware can be incorrect so build
2995         * our own version based on RUC and ROC */
2996         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2997                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2998                 adapter->stats.ruc + adapter->stats.roc +
2999                 adapter->stats.cexterr;
3000         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3001                                               adapter->stats.roc;
3002         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3003         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3004         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3005
3006         /* Tx Errors */
3007         adapter->net_stats.tx_errors = adapter->stats.ecol +
3008                                        adapter->stats.latecol;
3009         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3010         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3011         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3012
3013         /* Tx Dropped needs to be maintained elsewhere */
3014
3015         /* Phy Stats */
3016         if (hw->phy.media_type == e1000_media_type_copper) {
3017                 if ((adapter->link_speed == SPEED_1000) &&
3018                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3019                                               &phy_tmp))) {
3020                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3021                         adapter->phy_stats.idle_errors += phy_tmp;
3022                 }
3023         }
3024
3025         /* Management Stats */
3026         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3027         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3028         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3029 }
3030
3031
3032 static irqreturn_t igb_msix_other(int irq, void *data)
3033 {
3034         struct net_device *netdev = data;
3035         struct igb_adapter *adapter = netdev_priv(netdev);
3036         struct e1000_hw *hw = &adapter->hw;
3037         u32 eicr;
3038         /* disable interrupts from the "other" bit, avoid re-entry */
3039         wr32(E1000_EIMC, E1000_EIMS_OTHER);
3040
3041         eicr = rd32(E1000_EICR);
3042
3043         if (eicr & E1000_EIMS_OTHER) {
3044                 u32 icr = rd32(E1000_ICR);
3045                 /* reading ICR causes bit 31 of EICR to be cleared */
3046                 if (!(icr & E1000_ICR_LSC))
3047                         goto no_link_interrupt;
3048                 hw->mac.get_link_status = 1;
3049                 /* guard against interrupt when we're going down */
3050                 if (!test_bit(__IGB_DOWN, &adapter->state))
3051                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3052         }
3053
3054 no_link_interrupt:
3055         wr32(E1000_IMS, E1000_IMS_LSC);
3056         wr32(E1000_EIMS, E1000_EIMS_OTHER);
3057
3058         return IRQ_HANDLED;
3059 }
3060
3061 static irqreturn_t igb_msix_tx(int irq, void *data)
3062 {
3063         struct igb_ring *tx_ring = data;
3064         struct igb_adapter *adapter = tx_ring->adapter;
3065         struct e1000_hw *hw = &adapter->hw;
3066
3067         if (!tx_ring->itr_val)
3068                 wr32(E1000_EIMC, tx_ring->eims_value);
3069
3070         tx_ring->total_bytes = 0;
3071         tx_ring->total_packets = 0;
3072         if (!igb_clean_tx_irq(tx_ring))
3073                 /* Ring was not completely cleaned, so fire another interrupt */
3074                 wr32(E1000_EICS, tx_ring->eims_value);
3075
3076         if (!tx_ring->itr_val)
3077                 wr32(E1000_EIMS, tx_ring->eims_value);
3078         return IRQ_HANDLED;
3079 }
3080
3081 static irqreturn_t igb_msix_rx(int irq, void *data)
3082 {
3083         struct igb_ring *rx_ring = data;
3084         struct igb_adapter *adapter = rx_ring->adapter;
3085         struct e1000_hw *hw = &adapter->hw;
3086
3087         if (!rx_ring->itr_val)
3088                 wr32(E1000_EIMC, rx_ring->eims_value);
3089
3090         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3091                 rx_ring->total_bytes = 0;
3092                 rx_ring->total_packets = 0;
3093                 rx_ring->no_itr_adjust = 0;
3094                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3095         } else {
3096                 if (!rx_ring->no_itr_adjust) {
3097                         igb_lower_rx_eitr(adapter, rx_ring);
3098                         rx_ring->no_itr_adjust = 1;
3099                 }
3100         }
3101
3102         return IRQ_HANDLED;
3103 }
3104
3105
3106 /**
3107  * igb_intr_msi - Interrupt Handler
3108  * @irq: interrupt number
3109  * @data: pointer to a network interface device structure
3110  **/
3111 static irqreturn_t igb_intr_msi(int irq, void *data)
3112 {
3113         struct net_device *netdev = data;
3114         struct igb_adapter *adapter = netdev_priv(netdev);
3115         struct napi_struct *napi = &adapter->napi;
3116         struct e1000_hw *hw = &adapter->hw;
3117         /* read ICR disables interrupts using IAM */
3118         u32 icr = rd32(E1000_ICR);
3119
3120         /* Write the ITR value calculated at the end of the
3121          * previous interrupt.
3122          */
3123         if (adapter->set_itr) {
3124                 wr32(E1000_ITR,
3125                         1000000000 / (adapter->itr * 256));
3126                 adapter->set_itr = 0;
3127         }
3128
3129         /* read ICR disables interrupts using IAM */
3130         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3131                 hw->mac.get_link_status = 1;
3132                 if (!test_bit(__IGB_DOWN, &adapter->state))
3133                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3134         }
3135
3136         if (netif_rx_schedule_prep(netdev, napi)) {
3137                 adapter->tx_ring->total_bytes = 0;
3138                 adapter->tx_ring->total_packets = 0;
3139                 adapter->rx_ring->total_bytes = 0;
3140                 adapter->rx_ring->total_packets = 0;
3141                 __netif_rx_schedule(netdev, napi);
3142         }
3143
3144         return IRQ_HANDLED;
3145 }
3146
3147 /**
3148  * igb_intr - Interrupt Handler
3149  * @irq: interrupt number
3150  * @data: pointer to a network interface device structure
3151  **/
3152 static irqreturn_t igb_intr(int irq, void *data)
3153 {
3154         struct net_device *netdev = data;
3155         struct igb_adapter *adapter = netdev_priv(netdev);
3156         struct napi_struct *napi = &adapter->napi;
3157         struct e1000_hw *hw = &adapter->hw;
3158         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3159          * need for the IMC write */
3160         u32 icr = rd32(E1000_ICR);
3161         u32 eicr = 0;
3162         if (!icr)
3163                 return IRQ_NONE;  /* Not our interrupt */
3164
3165         /* Write the ITR value calculated at the end of the
3166          * previous interrupt.
3167          */
3168         if (adapter->set_itr) {
3169                 wr32(E1000_ITR,
3170                         1000000000 / (adapter->itr * 256));
3171                 adapter->set_itr = 0;
3172         }
3173
3174         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3175          * not set, then the adapter didn't send an interrupt */
3176         if (!(icr & E1000_ICR_INT_ASSERTED))
3177                 return IRQ_NONE;
3178
3179         eicr = rd32(E1000_EICR);
3180
3181         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3182                 hw->mac.get_link_status = 1;
3183                 /* guard against interrupt when we're going down */
3184                 if (!test_bit(__IGB_DOWN, &adapter->state))
3185                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3186         }
3187
3188         if (netif_rx_schedule_prep(netdev, napi)) {
3189                 adapter->tx_ring->total_bytes = 0;
3190                 adapter->rx_ring->total_bytes = 0;
3191                 adapter->tx_ring->total_packets = 0;
3192                 adapter->rx_ring->total_packets = 0;
3193                 __netif_rx_schedule(netdev, napi);
3194         }
3195
3196         return IRQ_HANDLED;
3197 }
3198
3199 /**
3200  * igb_clean - NAPI Rx polling callback
3201  * @adapter: board private structure
3202  **/
3203 static int igb_clean(struct napi_struct *napi, int budget)
3204 {
3205         struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3206                                                    napi);
3207         struct net_device *netdev = adapter->netdev;
3208         int tx_clean_complete = 1, work_done = 0;
3209         int i;
3210
3211         /* Must NOT use netdev_priv macro here. */
3212         adapter = netdev->priv;
3213
3214         /* Keep link state information with original netdev */
3215         if (!netif_carrier_ok(netdev))
3216                 goto quit_polling;
3217
3218         /* igb_clean is called per-cpu.  This lock protects tx_ring[i] from
3219          * being cleaned by multiple cpus simultaneously.  A failure obtaining
3220          * the lock means tx_ring[i] is currently being cleaned anyway. */
3221         for (i = 0; i < adapter->num_tx_queues; i++) {
3222                 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3223                         tx_clean_complete &= igb_clean_tx_irq(&adapter->tx_ring[i]);
3224                         spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3225                 }
3226         }
3227
3228         for (i = 0; i < adapter->num_rx_queues; i++)
3229                 igb_clean_rx_irq_adv(&adapter->rx_ring[i], &work_done,
3230                                      adapter->rx_ring[i].napi.weight);
3231
3232         /* If no Tx and not enough Rx work done, exit the polling mode */
3233         if ((tx_clean_complete && (work_done < budget)) ||
3234             !netif_running(netdev)) {
3235 quit_polling:
3236                 if (adapter->itr_setting & 3)
3237                         igb_set_itr(adapter, E1000_ITR, false);
3238                 netif_rx_complete(netdev, napi);
3239                 if (!test_bit(__IGB_DOWN, &adapter->state))
3240                         igb_irq_enable(adapter);
3241                 return 0;
3242         }
3243
3244         return 1;
3245 }
3246
3247 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3248 {
3249         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3250         struct igb_adapter *adapter = rx_ring->adapter;
3251         struct e1000_hw *hw = &adapter->hw;
3252         struct net_device *netdev = adapter->netdev;
3253         int work_done = 0;
3254
3255         /* Keep link state information with original netdev */
3256         if (!netif_carrier_ok(netdev))
3257                 goto quit_polling;
3258
3259         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3260
3261
3262         /* If not enough Rx work done, exit the polling mode */
3263         if ((work_done == 0) || !netif_running(netdev)) {
3264 quit_polling:
3265                 netif_rx_complete(netdev, napi);
3266
3267                 wr32(E1000_EIMS, rx_ring->eims_value);
3268                 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3269                     (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3270                         int mean_size = rx_ring->total_bytes /
3271                                         rx_ring->total_packets;
3272                         if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3273                                 igb_raise_rx_eitr(adapter, rx_ring);
3274                         else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3275                                 igb_lower_rx_eitr(adapter, rx_ring);
3276                 }
3277                 return 0;
3278         }
3279
3280         return 1;
3281 }
3282
3283 static inline u32 get_head(struct igb_ring *tx_ring)
3284 {
3285         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3286         return le32_to_cpu(*(volatile __le32 *)end);
3287 }
3288
3289 /**
3290  * igb_clean_tx_irq - Reclaim resources after transmit completes
3291  * @adapter: board private structure
3292  * returns true if ring is completely cleaned
3293  **/
3294 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3295 {
3296         struct igb_adapter *adapter = tx_ring->adapter;
3297         struct e1000_hw *hw = &adapter->hw;
3298         struct net_device *netdev = adapter->netdev;
3299         struct e1000_tx_desc *tx_desc;
3300         struct igb_buffer *buffer_info;
3301         struct sk_buff *skb;
3302         unsigned int i;
3303         u32 head, oldhead;
3304         unsigned int count = 0;
3305         bool cleaned = false;
3306         bool retval = true;
3307         unsigned int total_bytes = 0, total_packets = 0;
3308
3309         rmb();
3310         head = get_head(tx_ring);
3311         i = tx_ring->next_to_clean;
3312         while (1) {
3313                 while (i != head) {
3314                         cleaned = true;
3315                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3316                         buffer_info = &tx_ring->buffer_info[i];
3317                         skb = buffer_info->skb;
3318
3319                         if (skb) {
3320                                 unsigned int segs, bytecount;
3321                                 /* gso_segs is currently only valid for tcp */
3322                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3323                                 /* multiply data chunks by size of headers */
3324                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3325                                             skb->len;
3326                                 total_packets += segs;
3327                                 total_bytes += bytecount;
3328                         }
3329
3330                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3331                         tx_desc->upper.data = 0;
3332
3333                         i++;
3334                         if (i == tx_ring->count)
3335                                 i = 0;
3336
3337                         count++;
3338                         if (count == IGB_MAX_TX_CLEAN) {
3339                                 retval = false;
3340                                 goto done_cleaning;
3341                         }
3342                 }
3343                 oldhead = head;
3344                 rmb();
3345                 head = get_head(tx_ring);
3346                 if (head == oldhead)
3347                         goto done_cleaning;
3348         }  /* while (1) */
3349
3350 done_cleaning:
3351         tx_ring->next_to_clean = i;
3352
3353         if (unlikely(cleaned &&
3354                      netif_carrier_ok(netdev) &&
3355                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3356                 /* Make sure that anybody stopping the queue after this
3357                  * sees the new next_to_clean.
3358                  */
3359                 smp_mb();
3360                 if (netif_queue_stopped(netdev) &&
3361                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3362                         netif_wake_queue(netdev);
3363                         ++adapter->restart_queue;
3364                 }
3365         }
3366
3367         if (tx_ring->detect_tx_hung) {
3368                 /* Detect a transmit hang in hardware, this serializes the
3369                  * check with the clearing of time_stamp and movement of i */
3370                 tx_ring->detect_tx_hung = false;
3371                 if (tx_ring->buffer_info[i].time_stamp &&
3372                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3373                                (adapter->tx_timeout_factor * HZ))
3374                     && !(rd32(E1000_STATUS) &
3375                          E1000_STATUS_TXOFF)) {
3376
3377                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3378                         /* detected Tx unit hang */
3379                         dev_err(&adapter->pdev->dev,
3380                                 "Detected Tx Unit Hang\n"
3381                                 "  Tx Queue             <%lu>\n"
3382                                 "  TDH                  <%x>\n"
3383                                 "  TDT                  <%x>\n"
3384                                 "  next_to_use          <%x>\n"
3385                                 "  next_to_clean        <%x>\n"
3386                                 "  head (WB)            <%x>\n"
3387                                 "buffer_info[next_to_clean]\n"
3388                                 "  time_stamp           <%lx>\n"
3389                                 "  jiffies              <%lx>\n"
3390                                 "  desc.status          <%x>\n",
3391                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3392                                         sizeof(struct igb_ring)),
3393                                 readl(adapter->hw.hw_addr + tx_ring->head),
3394                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3395                                 tx_ring->next_to_use,
3396                                 tx_ring->next_to_clean,
3397                                 head,
3398                                 tx_ring->buffer_info[i].time_stamp,
3399                                 jiffies,
3400                                 tx_desc->upper.fields.status);
3401                         netif_stop_queue(netdev);
3402                 }
3403         }
3404         tx_ring->total_bytes += total_bytes;
3405         tx_ring->total_packets += total_packets;
3406         adapter->net_stats.tx_bytes += total_bytes;
3407         adapter->net_stats.tx_packets += total_packets;
3408         return retval;
3409 }
3410
3411
3412 /**
3413  * igb_receive_skb - helper function to handle rx indications
3414  * @adapter: board private structure
3415  * @status: descriptor status field as written by hardware
3416  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3417  * @skb: pointer to sk_buff to be indicated to stack
3418  **/
3419 static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
3420                             struct sk_buff *skb)
3421 {
3422         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3423                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3424                                          le16_to_cpu(vlan) &
3425                                          E1000_RXD_SPC_VLAN_MASK);
3426         else
3427                 netif_receive_skb(skb);
3428 }
3429
3430
3431 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3432                                        u32 status_err, struct sk_buff *skb)
3433 {
3434         skb->ip_summed = CHECKSUM_NONE;
3435
3436         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3437         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3438                 return;
3439         /* TCP/UDP checksum error bit is set */
3440         if (status_err &
3441             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3442                 /* let the stack verify checksum errors */
3443                 adapter->hw_csum_err++;
3444                 return;
3445         }
3446         /* It must be a TCP or UDP packet with a valid checksum */
3447         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3448                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3449
3450         adapter->hw_csum_good++;
3451 }
3452
3453 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3454                                  int *work_done, int budget)
3455 {
3456         struct igb_adapter *adapter = rx_ring->adapter;
3457         struct net_device *netdev = adapter->netdev;
3458         struct pci_dev *pdev = adapter->pdev;
3459         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3460         struct igb_buffer *buffer_info , *next_buffer;
3461         struct sk_buff *skb;
3462         unsigned int i, j;
3463         u32 length, hlen, staterr;
3464         bool cleaned = false;
3465         int cleaned_count = 0;
3466         unsigned int total_bytes = 0, total_packets = 0;
3467
3468         i = rx_ring->next_to_clean;
3469         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3470         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3471
3472         while (staterr & E1000_RXD_STAT_DD) {
3473                 if (*work_done >= budget)
3474                         break;
3475                 (*work_done)++;
3476                 buffer_info = &rx_ring->buffer_info[i];
3477
3478                 /* HW will not DMA in data larger than the given buffer, even
3479                  * if it parses the (NFS, of course) header to be larger.  In
3480                  * that case, it fills the header buffer and spills the rest
3481                  * into the page.
3482                  */
3483                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3484                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3485                 if (hlen > adapter->rx_ps_hdr_size)
3486                         hlen = adapter->rx_ps_hdr_size;
3487
3488                 length = le16_to_cpu(rx_desc->wb.upper.length);
3489                 cleaned = true;
3490                 cleaned_count++;
3491
3492                 if (rx_ring->pending_skb != NULL) {
3493                         skb = rx_ring->pending_skb;
3494                         rx_ring->pending_skb = NULL;
3495                         j = rx_ring->pending_skb_page;
3496                 } else {
3497                         skb = buffer_info->skb;
3498                         prefetch(skb->data - NET_IP_ALIGN);
3499                         buffer_info->skb = NULL;
3500                         if (hlen) {
3501                                 pci_unmap_single(pdev, buffer_info->dma,
3502                                                  adapter->rx_ps_hdr_size +
3503                                                    NET_IP_ALIGN,
3504                                                  PCI_DMA_FROMDEVICE);
3505                                 skb_put(skb, hlen);
3506                         } else {
3507                                 pci_unmap_single(pdev, buffer_info->dma,
3508                                                  adapter->rx_buffer_len +
3509                                                    NET_IP_ALIGN,
3510                                                  PCI_DMA_FROMDEVICE);
3511                                 skb_put(skb, length);
3512                                 goto send_up;
3513                         }
3514                         j = 0;
3515                 }
3516
3517                 while (length) {
3518                         pci_unmap_page(pdev, buffer_info->page_dma,
3519                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3520                         buffer_info->page_dma = 0;
3521                         skb_fill_page_desc(skb, j, buffer_info->page,
3522                                                 0, length);
3523                         buffer_info->page = NULL;
3524
3525                         skb->len += length;
3526                         skb->data_len += length;
3527                         skb->truesize += length;
3528                         rx_desc->wb.upper.status_error = 0;
3529                         if (staterr & E1000_RXD_STAT_EOP)
3530                                 break;
3531
3532                         j++;
3533                         cleaned_count++;
3534                         i++;
3535                         if (i == rx_ring->count)
3536                                 i = 0;
3537
3538                         buffer_info = &rx_ring->buffer_info[i];
3539                         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3540                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3541                         length = le16_to_cpu(rx_desc->wb.upper.length);
3542                         if (!(staterr & E1000_RXD_STAT_DD)) {
3543                                 rx_ring->pending_skb = skb;
3544                                 rx_ring->pending_skb_page = j;
3545                                 goto out;
3546                         }
3547                 }
3548 send_up:
3549                 pskb_trim(skb, skb->len - 4);
3550                 i++;
3551                 if (i == rx_ring->count)
3552                         i = 0;
3553                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3554                 prefetch(next_rxd);
3555                 next_buffer = &rx_ring->buffer_info[i];
3556
3557                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3558                         dev_kfree_skb_irq(skb);
3559                         goto next_desc;
3560                 }
3561                 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3562
3563                 total_bytes += skb->len;
3564                 total_packets++;
3565
3566                 igb_rx_checksum_adv(adapter, staterr, skb);
3567
3568                 skb->protocol = eth_type_trans(skb, netdev);
3569
3570                 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3571
3572                 netdev->last_rx = jiffies;
3573
3574 next_desc:
3575                 rx_desc->wb.upper.status_error = 0;
3576
3577                 /* return some buffers to hardware, one at a time is too slow */
3578                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3579                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3580                         cleaned_count = 0;
3581                 }
3582
3583                 /* use prefetched values */
3584                 rx_desc = next_rxd;
3585                 buffer_info = next_buffer;
3586
3587                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3588         }
3589 out:
3590         rx_ring->next_to_clean = i;
3591         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3592
3593         if (cleaned_count)
3594                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3595
3596         rx_ring->total_packets += total_packets;
3597         rx_ring->total_bytes += total_bytes;
3598         rx_ring->rx_stats.packets += total_packets;
3599         rx_ring->rx_stats.bytes += total_bytes;
3600         adapter->net_stats.rx_bytes += total_bytes;
3601         adapter->net_stats.rx_packets += total_packets;
3602         return cleaned;
3603 }
3604
3605
3606 /**
3607  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3608  * @adapter: address of board private structure
3609  **/
3610 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3611                                      int cleaned_count)
3612 {
3613         struct igb_adapter *adapter = rx_ring->adapter;
3614         struct net_device *netdev = adapter->netdev;
3615         struct pci_dev *pdev = adapter->pdev;
3616         union e1000_adv_rx_desc *rx_desc;
3617         struct igb_buffer *buffer_info;
3618         struct sk_buff *skb;
3619         unsigned int i;
3620
3621         i = rx_ring->next_to_use;
3622         buffer_info = &rx_ring->buffer_info[i];
3623
3624         while (cleaned_count--) {
3625                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3626
3627                 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3628                         buffer_info->page = alloc_page(GFP_ATOMIC);
3629                         if (!buffer_info->page) {
3630                                 adapter->alloc_rx_buff_failed++;
3631                                 goto no_buffers;
3632                         }
3633                         buffer_info->page_dma =
3634                                 pci_map_page(pdev,
3635                                              buffer_info->page,
3636                                              0, PAGE_SIZE,
3637                                              PCI_DMA_FROMDEVICE);
3638                 }
3639
3640                 if (!buffer_info->skb) {
3641                         int bufsz;
3642
3643                         if (adapter->rx_ps_hdr_size)
3644                                 bufsz = adapter->rx_ps_hdr_size;
3645                         else
3646                                 bufsz = adapter->rx_buffer_len;
3647                         bufsz += NET_IP_ALIGN;
3648                         skb = netdev_alloc_skb(netdev, bufsz);
3649
3650                         if (!skb) {
3651                                 adapter->alloc_rx_buff_failed++;
3652                                 goto no_buffers;
3653                         }
3654
3655                         /* Make buffer alignment 2 beyond a 16 byte boundary
3656                          * this will result in a 16 byte aligned IP header after
3657                          * the 14 byte MAC header is removed
3658                          */
3659                         skb_reserve(skb, NET_IP_ALIGN);
3660
3661                         buffer_info->skb = skb;
3662                         buffer_info->dma = pci_map_single(pdev, skb->data,
3663                                                           bufsz,
3664                                                           PCI_DMA_FROMDEVICE);
3665
3666                 }
3667                 /* Refresh the desc even if buffer_addrs didn't change because
3668                  * each write-back erases this info. */
3669                 if (adapter->rx_ps_hdr_size) {
3670                         rx_desc->read.pkt_addr =
3671                              cpu_to_le64(buffer_info->page_dma);
3672                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3673                 } else {
3674                         rx_desc->read.pkt_addr =
3675                              cpu_to_le64(buffer_info->dma);
3676                         rx_desc->read.hdr_addr = 0;
3677                 }
3678
3679                 i++;
3680                 if (i == rx_ring->count)
3681                         i = 0;
3682                 buffer_info = &rx_ring->buffer_info[i];
3683         }
3684
3685 no_buffers:
3686         if (rx_ring->next_to_use != i) {
3687                 rx_ring->next_to_use = i;
3688                 if (i == 0)
3689                         i = (rx_ring->count - 1);
3690                 else
3691                         i--;
3692
3693                 /* Force memory writes to complete before letting h/w
3694                  * know there are new descriptors to fetch.  (Only
3695                  * applicable for weak-ordered memory model archs,
3696                  * such as IA-64). */
3697                 wmb();
3698                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3699         }
3700 }
3701
3702 /**
3703  * igb_mii_ioctl -
3704  * @netdev:
3705  * @ifreq:
3706  * @cmd:
3707  **/
3708 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3709 {
3710         struct igb_adapter *adapter = netdev_priv(netdev);
3711         struct mii_ioctl_data *data = if_mii(ifr);
3712
3713         if (adapter->hw.phy.media_type != e1000_media_type_copper)
3714                 return -EOPNOTSUPP;
3715
3716         switch (cmd) {
3717         case SIOCGMIIPHY:
3718                 data->phy_id = adapter->hw.phy.addr;
3719                 break;
3720         case SIOCGMIIREG:
3721                 if (!capable(CAP_NET_ADMIN))
3722                         return -EPERM;
3723                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3724                                                      data->reg_num
3725                                                      & 0x1F, &data->val_out))
3726                         return -EIO;
3727                 break;
3728         case SIOCSMIIREG:
3729         default:
3730                 return -EOPNOTSUPP;
3731         }
3732         return 0;
3733 }
3734
3735 /**
3736  * igb_ioctl -
3737  * @netdev:
3738  * @ifreq:
3739  * @cmd:
3740  **/
3741 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3742 {
3743         switch (cmd) {
3744         case SIOCGMIIPHY:
3745         case SIOCGMIIREG:
3746         case SIOCSMIIREG:
3747                 return igb_mii_ioctl(netdev, ifr, cmd);
3748         default:
3749                 return -EOPNOTSUPP;
3750         }
3751 }
3752
3753 static void igb_vlan_rx_register(struct net_device *netdev,
3754                                  struct vlan_group *grp)
3755 {
3756         struct igb_adapter *adapter = netdev_priv(netdev);
3757         struct e1000_hw *hw = &adapter->hw;
3758         u32 ctrl, rctl;
3759
3760         igb_irq_disable(adapter);
3761         adapter->vlgrp = grp;
3762
3763         if (grp) {
3764                 /* enable VLAN tag insert/strip */
3765                 ctrl = rd32(E1000_CTRL);
3766                 ctrl |= E1000_CTRL_VME;
3767                 wr32(E1000_CTRL, ctrl);
3768
3769                 /* enable VLAN receive filtering */
3770                 rctl = rd32(E1000_RCTL);
3771                 rctl |= E1000_RCTL_VFE;
3772                 rctl &= ~E1000_RCTL_CFIEN;
3773                 wr32(E1000_RCTL, rctl);
3774                 igb_update_mng_vlan(adapter);
3775                 wr32(E1000_RLPML,
3776                                 adapter->max_frame_size + VLAN_TAG_SIZE);
3777         } else {
3778                 /* disable VLAN tag insert/strip */
3779                 ctrl = rd32(E1000_CTRL);
3780                 ctrl &= ~E1000_CTRL_VME;
3781                 wr32(E1000_CTRL, ctrl);
3782
3783                 /* disable VLAN filtering */
3784                 rctl = rd32(E1000_RCTL);
3785                 rctl &= ~E1000_RCTL_VFE;
3786                 wr32(E1000_RCTL, rctl);
3787                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3788                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3789                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3790                 }
3791                 wr32(E1000_RLPML,
3792                                 adapter->max_frame_size);
3793         }
3794
3795         if (!test_bit(__IGB_DOWN, &adapter->state))
3796                 igb_irq_enable(adapter);
3797 }
3798
3799 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3800 {
3801         struct igb_adapter *adapter = netdev_priv(netdev);
3802         struct e1000_hw *hw = &adapter->hw;
3803         u32 vfta, index;
3804
3805         if ((adapter->hw.mng_cookie.status &
3806              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3807             (vid == adapter->mng_vlan_id))
3808                 return;
3809         /* add VID to filter table */
3810         index = (vid >> 5) & 0x7F;
3811         vfta = array_rd32(E1000_VFTA, index);
3812         vfta |= (1 << (vid & 0x1F));
3813         igb_write_vfta(&adapter->hw, index, vfta);
3814 }
3815
3816 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3817 {
3818         struct igb_adapter *adapter = netdev_priv(netdev);
3819         struct e1000_hw *hw = &adapter->hw;
3820         u32 vfta, index;
3821
3822         igb_irq_disable(adapter);
3823         vlan_group_set_device(adapter->vlgrp, vid, NULL);
3824
3825         if (!test_bit(__IGB_DOWN, &adapter->state))
3826                 igb_irq_enable(adapter);
3827
3828         if ((adapter->hw.mng_cookie.status &
3829              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3830             (vid == adapter->mng_vlan_id)) {
3831                 /* release control to f/w */
3832                 igb_release_hw_control(adapter);
3833                 return;
3834         }
3835
3836         /* remove VID from filter table */
3837         index = (vid >> 5) & 0x7F;
3838         vfta = array_rd32(E1000_VFTA, index);
3839         vfta &= ~(1 << (vid & 0x1F));
3840         igb_write_vfta(&adapter->hw, index, vfta);
3841 }
3842
3843 static void igb_restore_vlan(struct igb_adapter *adapter)
3844 {
3845         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3846
3847         if (adapter->vlgrp) {
3848                 u16 vid;
3849                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3850                         if (!vlan_group_get_device(adapter->vlgrp, vid))
3851                                 continue;
3852                         igb_vlan_rx_add_vid(adapter->netdev, vid);
3853                 }
3854         }
3855 }
3856
3857 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3858 {
3859         struct e1000_mac_info *mac = &adapter->hw.mac;
3860
3861         mac->autoneg = 0;
3862
3863         /* Fiber NICs only allow 1000 gbps Full duplex */
3864         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3865                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3866                 dev_err(&adapter->pdev->dev,
3867                         "Unsupported Speed/Duplex configuration\n");
3868                 return -EINVAL;
3869         }
3870
3871         switch (spddplx) {
3872         case SPEED_10 + DUPLEX_HALF:
3873                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3874                 break;
3875         case SPEED_10 + DUPLEX_FULL:
3876                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3877                 break;
3878         case SPEED_100 + DUPLEX_HALF:
3879                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3880                 break;
3881         case SPEED_100 + DUPLEX_FULL:
3882                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3883                 break;
3884         case SPEED_1000 + DUPLEX_FULL:
3885                 mac->autoneg = 1;
3886                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3887                 break;
3888         case SPEED_1000 + DUPLEX_HALF: /* not supported */
3889         default:
3890                 dev_err(&adapter->pdev->dev,
3891                         "Unsupported Speed/Duplex configuration\n");
3892                 return -EINVAL;
3893         }
3894         return 0;
3895 }
3896
3897
3898 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3899 {
3900         struct net_device *netdev = pci_get_drvdata(pdev);
3901         struct igb_adapter *adapter = netdev_priv(netdev);
3902         struct e1000_hw *hw = &adapter->hw;
3903         u32 ctrl, ctrl_ext, rctl, status;
3904         u32 wufc = adapter->wol;
3905 #ifdef CONFIG_PM
3906         int retval = 0;
3907 #endif
3908
3909         netif_device_detach(netdev);
3910
3911         if (netif_running(netdev)) {
3912                 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3913                 igb_down(adapter);
3914                 igb_free_irq(adapter);
3915         }
3916
3917 #ifdef CONFIG_PM
3918         retval = pci_save_state(pdev);
3919         if (retval)
3920                 return retval;
3921 #endif
3922
3923         status = rd32(E1000_STATUS);
3924         if (status & E1000_STATUS_LU)
3925                 wufc &= ~E1000_WUFC_LNKC;
3926
3927         if (wufc) {
3928                 igb_setup_rctl(adapter);
3929                 igb_set_multi(netdev);
3930
3931                 /* turn on all-multi mode if wake on multicast is enabled */
3932                 if (wufc & E1000_WUFC_MC) {
3933                         rctl = rd32(E1000_RCTL);
3934                         rctl |= E1000_RCTL_MPE;
3935                         wr32(E1000_RCTL, rctl);
3936                 }
3937
3938                 ctrl = rd32(E1000_CTRL);
3939                 /* advertise wake from D3Cold */
3940                 #define E1000_CTRL_ADVD3WUC 0x00100000
3941                 /* phy power management enable */
3942                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3943                 ctrl |= E1000_CTRL_ADVD3WUC;
3944                 wr32(E1000_CTRL, ctrl);
3945
3946                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3947                    adapter->hw.phy.media_type ==
3948                                         e1000_media_type_internal_serdes) {
3949                         /* keep the laser running in D3 */
3950                         ctrl_ext = rd32(E1000_CTRL_EXT);
3951                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3952                         wr32(E1000_CTRL_EXT, ctrl_ext);
3953                 }
3954
3955                 /* Allow time for pending master requests to run */
3956                 igb_disable_pcie_master(&adapter->hw);
3957
3958                 wr32(E1000_WUC, E1000_WUC_PME_EN);
3959                 wr32(E1000_WUFC, wufc);
3960                 pci_enable_wake(pdev, PCI_D3hot, 1);
3961                 pci_enable_wake(pdev, PCI_D3cold, 1);
3962         } else {
3963                 wr32(E1000_WUC, 0);
3964                 wr32(E1000_WUFC, 0);
3965                 pci_enable_wake(pdev, PCI_D3hot, 0);
3966                 pci_enable_wake(pdev, PCI_D3cold, 0);
3967         }
3968
3969         /* make sure adapter isn't asleep if manageability is enabled */
3970         if (adapter->en_mng_pt) {
3971                 pci_enable_wake(pdev, PCI_D3hot, 1);
3972                 pci_enable_wake(pdev, PCI_D3cold, 1);
3973         }
3974
3975         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3976          * would have already happened in close and is redundant. */
3977         igb_release_hw_control(adapter);
3978
3979         pci_disable_device(pdev);
3980
3981         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3982
3983         return 0;
3984 }
3985
3986 #ifdef CONFIG_PM
3987 static int igb_resume(struct pci_dev *pdev)
3988 {
3989         struct net_device *netdev = pci_get_drvdata(pdev);
3990         struct igb_adapter *adapter = netdev_priv(netdev);
3991         struct e1000_hw *hw = &adapter->hw;
3992         u32 err;
3993
3994         pci_set_power_state(pdev, PCI_D0);
3995         pci_restore_state(pdev);
3996
3997         if (adapter->need_ioport)
3998                 err = pci_enable_device(pdev);
3999         else
4000                 err = pci_enable_device_mem(pdev);
4001         if (err) {
4002                 dev_err(&pdev->dev,
4003                         "igb: Cannot enable PCI device from suspend\n");
4004                 return err;
4005         }
4006         pci_set_master(pdev);
4007
4008         pci_enable_wake(pdev, PCI_D3hot, 0);
4009         pci_enable_wake(pdev, PCI_D3cold, 0);
4010
4011         if (netif_running(netdev)) {
4012                 err = igb_request_irq(adapter);
4013                 if (err)
4014                         return err;
4015         }
4016
4017         /* e1000_power_up_phy(adapter); */
4018
4019         igb_reset(adapter);
4020         wr32(E1000_WUS, ~0);
4021
4022         igb_init_manageability(adapter);
4023
4024         if (netif_running(netdev))
4025                 igb_up(adapter);
4026
4027         netif_device_attach(netdev);
4028
4029         /* let the f/w know that the h/w is now under the control of the
4030          * driver. */
4031         igb_get_hw_control(adapter);
4032
4033         return 0;
4034 }
4035 #endif
4036
4037 static void igb_shutdown(struct pci_dev *pdev)
4038 {
4039         igb_suspend(pdev, PMSG_SUSPEND);
4040 }
4041
4042 #ifdef CONFIG_NET_POLL_CONTROLLER
4043 /*
4044  * Polling 'interrupt' - used by things like netconsole to send skbs
4045  * without having to re-enable interrupts. It's not called while
4046  * the interrupt routine is executing.
4047  */
4048 static void igb_netpoll(struct net_device *netdev)
4049 {
4050         struct igb_adapter *adapter = netdev_priv(netdev);
4051         int i;
4052         int work_done = 0;
4053
4054         igb_irq_disable(adapter);
4055         for (i = 0; i < adapter->num_tx_queues; i++)
4056                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4057
4058         for (i = 0; i < adapter->num_rx_queues; i++)
4059                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4060                                      &work_done,
4061                                      adapter->rx_ring[i].napi.weight);
4062
4063         igb_irq_enable(adapter);
4064 }
4065 #endif /* CONFIG_NET_POLL_CONTROLLER */
4066
4067 /**
4068  * igb_io_error_detected - called when PCI error is detected
4069  * @pdev: Pointer to PCI device
4070  * @state: The current pci connection state
4071  *
4072  * This function is called after a PCI bus error affecting
4073  * this device has been detected.
4074  */
4075 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4076                                               pci_channel_state_t state)
4077 {
4078         struct net_device *netdev = pci_get_drvdata(pdev);
4079         struct igb_adapter *adapter = netdev_priv(netdev);
4080
4081         netif_device_detach(netdev);
4082
4083         if (netif_running(netdev))
4084                 igb_down(adapter);
4085         pci_disable_device(pdev);
4086
4087         /* Request a slot slot reset. */
4088         return PCI_ERS_RESULT_NEED_RESET;
4089 }
4090
4091 /**
4092  * igb_io_slot_reset - called after the pci bus has been reset.
4093  * @pdev: Pointer to PCI device
4094  *
4095  * Restart the card from scratch, as if from a cold-boot. Implementation
4096  * resembles the first-half of the igb_resume routine.
4097  */
4098 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4099 {
4100         struct net_device *netdev = pci_get_drvdata(pdev);
4101         struct igb_adapter *adapter = netdev_priv(netdev);
4102         struct e1000_hw *hw = &adapter->hw;
4103         int err;
4104
4105         if (adapter->need_ioport)
4106                 err = pci_enable_device(pdev);
4107         else
4108                 err = pci_enable_device_mem(pdev);
4109         if (err) {
4110                 dev_err(&pdev->dev,
4111                         "Cannot re-enable PCI device after reset.\n");
4112                 return PCI_ERS_RESULT_DISCONNECT;
4113         }
4114         pci_set_master(pdev);
4115         pci_restore_state(pdev);
4116
4117         pci_enable_wake(pdev, PCI_D3hot, 0);
4118         pci_enable_wake(pdev, PCI_D3cold, 0);
4119
4120         igb_reset(adapter);
4121         wr32(E1000_WUS, ~0);
4122
4123         return PCI_ERS_RESULT_RECOVERED;
4124 }
4125
4126 /**
4127  * igb_io_resume - called when traffic can start flowing again.
4128  * @pdev: Pointer to PCI device
4129  *
4130  * This callback is called when the error recovery driver tells us that
4131  * its OK to resume normal operation. Implementation resembles the
4132  * second-half of the igb_resume routine.
4133  */
4134 static void igb_io_resume(struct pci_dev *pdev)
4135 {
4136         struct net_device *netdev = pci_get_drvdata(pdev);
4137         struct igb_adapter *adapter = netdev_priv(netdev);
4138
4139         igb_init_manageability(adapter);
4140
4141         if (netif_running(netdev)) {
4142                 if (igb_up(adapter)) {
4143                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4144                         return;
4145                 }
4146         }
4147
4148         netif_device_attach(netdev);
4149
4150         /* let the f/w know that the h/w is now under the control of the
4151          * driver. */
4152         igb_get_hw_control(adapter);
4153
4154 }
4155
4156 /* igb_main.c */