2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. This method will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
81 #include <linux/platform_device.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
97 #include "gianfar_mii.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct platform_device *pdev);
122 static int gfar_remove(struct platform_device *pdev);
123 static void free_skb_resources(struct gfar_private *priv);
124 static void gfar_set_multi(struct net_device *dev);
125 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
126 static void gfar_configure_serdes(struct net_device *dev);
127 static int gfar_poll(struct napi_struct *napi, int budget);
128 #ifdef CONFIG_NET_POLL_CONTROLLER
129 static void gfar_netpoll(struct net_device *dev);
131 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
132 static int gfar_clean_tx_ring(struct net_device *dev);
133 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
134 static void gfar_vlan_rx_register(struct net_device *netdev,
135 struct vlan_group *grp);
136 void gfar_halt(struct net_device *dev);
138 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 extern const struct ethtool_ops gfar_ethtool_ops;
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 /* Returns 1 if incoming frames use an FCB */
151 static inline int gfar_uses_fcb(struct gfar_private *priv)
153 return (priv->vlan_enable || priv->rx_csum_enable);
156 /* Set up the ethernet device structure, private data,
157 * and anything else we need before we start */
158 static int gfar_probe(struct platform_device *pdev)
161 struct net_device *dev = NULL;
162 struct gfar_private *priv = NULL;
163 struct gianfar_platform_data *einfo;
166 DECLARE_MAC_BUF(mac);
168 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
171 printk(KERN_ERR "gfar %d: Missing additional data!\n",
177 /* Create an ethernet device instance */
178 dev = alloc_etherdev(sizeof (*priv));
183 priv = netdev_priv(dev);
186 /* Set the info in the priv to the current info */
189 /* fill out IRQ fields */
190 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
191 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
192 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
193 priv->interruptError = platform_get_irq_byname(pdev, "error");
194 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
197 priv->interruptTransmit = platform_get_irq(pdev, 0);
198 if (priv->interruptTransmit < 0)
202 /* get a pointer to the register memory */
203 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
204 priv->regs = ioremap(r->start, sizeof (struct gfar));
206 if (NULL == priv->regs) {
211 spin_lock_init(&priv->txlock);
212 spin_lock_init(&priv->rxlock);
213 spin_lock_init(&priv->bflock);
215 platform_set_drvdata(pdev, dev);
217 /* Stop the DMA engine now, in case it was running before */
218 /* (The firmware could have used it, and left it running). */
219 /* To do this, we write Graceful Receive Stop and Graceful */
220 /* Transmit Stop, and then wait until the corresponding bits */
221 /* in IEVENT indicate the stops have completed. */
222 tempval = gfar_read(&priv->regs->dmactrl);
223 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
224 gfar_write(&priv->regs->dmactrl, tempval);
226 tempval = gfar_read(&priv->regs->dmactrl);
227 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
228 gfar_write(&priv->regs->dmactrl, tempval);
230 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
233 /* Reset MAC layer */
234 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
236 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
237 gfar_write(&priv->regs->maccfg1, tempval);
239 /* Initialize MACCFG2. */
240 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
242 /* Initialize ECNTRL */
243 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
245 /* Copy the station address into the dev structure, */
246 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
248 /* Set the dev->base_addr to the gfar reg region */
249 dev->base_addr = (unsigned long) (priv->regs);
251 SET_NETDEV_DEV(dev, &pdev->dev);
253 /* Fill in the dev structure */
254 dev->open = gfar_enet_open;
255 dev->hard_start_xmit = gfar_start_xmit;
256 dev->tx_timeout = gfar_timeout;
257 dev->watchdog_timeo = TX_TIMEOUT;
258 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
259 #ifdef CONFIG_NET_POLL_CONTROLLER
260 dev->poll_controller = gfar_netpoll;
262 dev->stop = gfar_close;
263 dev->change_mtu = gfar_change_mtu;
265 dev->set_multicast_list = gfar_set_multi;
267 dev->ethtool_ops = &gfar_ethtool_ops;
269 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
270 priv->rx_csum_enable = 1;
271 dev->features |= NETIF_F_IP_CSUM;
273 priv->rx_csum_enable = 0;
277 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
278 dev->vlan_rx_register = gfar_vlan_rx_register;
280 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
282 priv->vlan_enable = 1;
285 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
286 priv->extended_hash = 1;
287 priv->hash_width = 9;
289 priv->hash_regs[0] = &priv->regs->igaddr0;
290 priv->hash_regs[1] = &priv->regs->igaddr1;
291 priv->hash_regs[2] = &priv->regs->igaddr2;
292 priv->hash_regs[3] = &priv->regs->igaddr3;
293 priv->hash_regs[4] = &priv->regs->igaddr4;
294 priv->hash_regs[5] = &priv->regs->igaddr5;
295 priv->hash_regs[6] = &priv->regs->igaddr6;
296 priv->hash_regs[7] = &priv->regs->igaddr7;
297 priv->hash_regs[8] = &priv->regs->gaddr0;
298 priv->hash_regs[9] = &priv->regs->gaddr1;
299 priv->hash_regs[10] = &priv->regs->gaddr2;
300 priv->hash_regs[11] = &priv->regs->gaddr3;
301 priv->hash_regs[12] = &priv->regs->gaddr4;
302 priv->hash_regs[13] = &priv->regs->gaddr5;
303 priv->hash_regs[14] = &priv->regs->gaddr6;
304 priv->hash_regs[15] = &priv->regs->gaddr7;
307 priv->extended_hash = 0;
308 priv->hash_width = 8;
310 priv->hash_regs[0] = &priv->regs->gaddr0;
311 priv->hash_regs[1] = &priv->regs->gaddr1;
312 priv->hash_regs[2] = &priv->regs->gaddr2;
313 priv->hash_regs[3] = &priv->regs->gaddr3;
314 priv->hash_regs[4] = &priv->regs->gaddr4;
315 priv->hash_regs[5] = &priv->regs->gaddr5;
316 priv->hash_regs[6] = &priv->regs->gaddr6;
317 priv->hash_regs[7] = &priv->regs->gaddr7;
320 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
321 priv->padding = DEFAULT_PADDING;
325 if (dev->features & NETIF_F_IP_CSUM)
326 dev->hard_header_len += GMAC_FCB_LEN;
328 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
329 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
330 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
332 priv->txcoalescing = DEFAULT_TX_COALESCE;
333 priv->txcount = DEFAULT_TXCOUNT;
334 priv->txtime = DEFAULT_TXTIME;
335 priv->rxcoalescing = DEFAULT_RX_COALESCE;
336 priv->rxcount = DEFAULT_RXCOUNT;
337 priv->rxtime = DEFAULT_RXTIME;
339 /* Enable most messages by default */
340 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
342 err = register_netdev(dev);
345 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
350 /* Create all the sysfs files */
351 gfar_init_sysfs(dev);
353 /* Print out the device info */
354 printk(KERN_INFO DEVICE_NAME "%s\n",
355 dev->name, print_mac(mac, dev->dev_addr));
357 /* Even more device info helps when determining which kernel */
358 /* provided which set of benchmarks. */
359 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
360 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
361 dev->name, priv->rx_ring_size, priv->tx_ring_size);
372 static int gfar_remove(struct platform_device *pdev)
374 struct net_device *dev = platform_get_drvdata(pdev);
375 struct gfar_private *priv = netdev_priv(dev);
377 platform_set_drvdata(pdev, NULL);
386 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
388 struct net_device *dev = platform_get_drvdata(pdev);
389 struct gfar_private *priv = netdev_priv(dev);
393 int magic_packet = priv->wol_en &&
394 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
396 netif_device_detach(dev);
398 if (netif_running(dev)) {
399 spin_lock_irqsave(&priv->txlock, flags);
400 spin_lock(&priv->rxlock);
402 gfar_halt_nodisable(dev);
404 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
405 tempval = gfar_read(&priv->regs->maccfg1);
407 tempval &= ~MACCFG1_TX_EN;
410 tempval &= ~MACCFG1_RX_EN;
412 gfar_write(&priv->regs->maccfg1, tempval);
414 spin_unlock(&priv->rxlock);
415 spin_unlock_irqrestore(&priv->txlock, flags);
417 #ifdef CONFIG_GFAR_NAPI
418 napi_disable(&priv->napi);
422 /* Enable interrupt on Magic Packet */
423 gfar_write(&priv->regs->imask, IMASK_MAG);
425 /* Enable Magic Packet mode */
426 tempval = gfar_read(&priv->regs->maccfg2);
427 tempval |= MACCFG2_MPEN;
428 gfar_write(&priv->regs->maccfg2, tempval);
430 phy_stop(priv->phydev);
437 static int gfar_resume(struct platform_device *pdev)
439 struct net_device *dev = platform_get_drvdata(pdev);
440 struct gfar_private *priv = netdev_priv(dev);
443 int magic_packet = priv->wol_en &&
444 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
446 if (!netif_running(dev)) {
447 netif_device_attach(dev);
451 if (!magic_packet && priv->phydev)
452 phy_start(priv->phydev);
454 /* Disable Magic Packet mode, in case something
458 spin_lock_irqsave(&priv->txlock, flags);
459 spin_lock(&priv->rxlock);
461 tempval = gfar_read(&priv->regs->maccfg2);
462 tempval &= ~MACCFG2_MPEN;
463 gfar_write(&priv->regs->maccfg2, tempval);
467 spin_unlock(&priv->rxlock);
468 spin_unlock_irqrestore(&priv->txlock, flags);
470 netif_device_attach(dev);
472 #ifdef CONFIG_GFAR_NAPI
473 napi_enable(&priv->napi);
479 #define gfar_suspend NULL
480 #define gfar_resume NULL
483 /* Reads the controller's registers to determine what interface
484 * connects it to the PHY.
486 static phy_interface_t gfar_get_interface(struct net_device *dev)
488 struct gfar_private *priv = netdev_priv(dev);
489 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
491 if (ecntrl & ECNTRL_SGMII_MODE)
492 return PHY_INTERFACE_MODE_SGMII;
494 if (ecntrl & ECNTRL_TBI_MODE) {
495 if (ecntrl & ECNTRL_REDUCED_MODE)
496 return PHY_INTERFACE_MODE_RTBI;
498 return PHY_INTERFACE_MODE_TBI;
501 if (ecntrl & ECNTRL_REDUCED_MODE) {
502 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
503 return PHY_INTERFACE_MODE_RMII;
505 phy_interface_t interface = priv->einfo->interface;
508 * This isn't autodetected right now, so it must
509 * be set by the device tree or platform code.
511 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
512 return PHY_INTERFACE_MODE_RGMII_ID;
514 return PHY_INTERFACE_MODE_RGMII;
518 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
519 return PHY_INTERFACE_MODE_GMII;
521 return PHY_INTERFACE_MODE_MII;
525 /* Initializes driver's PHY state, and attaches to the PHY.
526 * Returns 0 on success.
528 static int init_phy(struct net_device *dev)
530 struct gfar_private *priv = netdev_priv(dev);
531 uint gigabit_support =
532 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
533 SUPPORTED_1000baseT_Full : 0;
534 struct phy_device *phydev;
535 char phy_id[BUS_ID_SIZE];
536 phy_interface_t interface;
540 priv->oldduplex = -1;
542 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
544 interface = gfar_get_interface(dev);
546 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
548 if (interface == PHY_INTERFACE_MODE_SGMII)
549 gfar_configure_serdes(dev);
551 if (IS_ERR(phydev)) {
552 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
553 return PTR_ERR(phydev);
556 /* Remove any features not supported by the controller */
557 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
558 phydev->advertising = phydev->supported;
560 priv->phydev = phydev;
566 * Initialize TBI PHY interface for communicating with the
567 * SERDES lynx PHY on the chip. We communicate with this PHY
568 * through the MDIO bus on each controller, treating it as a
569 * "normal" PHY at the address found in the TBIPA register. We assume
570 * that the TBIPA register is valid. Either the MDIO bus code will set
571 * it to a value that doesn't conflict with other PHYs on the bus, or the
572 * value doesn't matter, as there are no other PHYs on the bus.
574 static void gfar_configure_serdes(struct net_device *dev)
576 struct gfar_private *priv = netdev_priv(dev);
577 struct gfar_mii __iomem *regs =
578 (void __iomem *)&priv->regs->gfar_mii_regs;
579 int tbipa = gfar_read(&priv->regs->tbipa);
581 /* Single clk mode, mii mode off(for serdes communication) */
582 gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
584 gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
585 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
586 ADVERTISE_1000XPSE_ASYM);
588 gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
589 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
592 static void init_registers(struct net_device *dev)
594 struct gfar_private *priv = netdev_priv(dev);
597 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
599 /* Initialize IMASK */
600 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
602 /* Init hash registers to zero */
603 gfar_write(&priv->regs->igaddr0, 0);
604 gfar_write(&priv->regs->igaddr1, 0);
605 gfar_write(&priv->regs->igaddr2, 0);
606 gfar_write(&priv->regs->igaddr3, 0);
607 gfar_write(&priv->regs->igaddr4, 0);
608 gfar_write(&priv->regs->igaddr5, 0);
609 gfar_write(&priv->regs->igaddr6, 0);
610 gfar_write(&priv->regs->igaddr7, 0);
612 gfar_write(&priv->regs->gaddr0, 0);
613 gfar_write(&priv->regs->gaddr1, 0);
614 gfar_write(&priv->regs->gaddr2, 0);
615 gfar_write(&priv->regs->gaddr3, 0);
616 gfar_write(&priv->regs->gaddr4, 0);
617 gfar_write(&priv->regs->gaddr5, 0);
618 gfar_write(&priv->regs->gaddr6, 0);
619 gfar_write(&priv->regs->gaddr7, 0);
621 /* Zero out the rmon mib registers if it has them */
622 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
623 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
625 /* Mask off the CAM interrupts */
626 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
627 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
630 /* Initialize the max receive buffer length */
631 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
633 /* Initialize the Minimum Frame Length Register */
634 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
639 /* Halt the receive and transmit queues */
640 static void gfar_halt_nodisable(struct net_device *dev)
642 struct gfar_private *priv = netdev_priv(dev);
643 struct gfar __iomem *regs = priv->regs;
646 /* Mask all interrupts */
647 gfar_write(®s->imask, IMASK_INIT_CLEAR);
649 /* Clear all interrupts */
650 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
652 /* Stop the DMA, and wait for it to stop */
653 tempval = gfar_read(&priv->regs->dmactrl);
654 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
655 != (DMACTRL_GRS | DMACTRL_GTS)) {
656 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
657 gfar_write(&priv->regs->dmactrl, tempval);
659 while (!(gfar_read(&priv->regs->ievent) &
660 (IEVENT_GRSC | IEVENT_GTSC)))
666 /* Halt the receive and transmit queues */
667 void gfar_halt(struct net_device *dev)
669 struct gfar_private *priv = netdev_priv(dev);
670 struct gfar __iomem *regs = priv->regs;
673 /* Disable Rx and Tx */
674 tempval = gfar_read(®s->maccfg1);
675 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
676 gfar_write(®s->maccfg1, tempval);
679 void stop_gfar(struct net_device *dev)
681 struct gfar_private *priv = netdev_priv(dev);
682 struct gfar __iomem *regs = priv->regs;
685 phy_stop(priv->phydev);
688 spin_lock_irqsave(&priv->txlock, flags);
689 spin_lock(&priv->rxlock);
693 spin_unlock(&priv->rxlock);
694 spin_unlock_irqrestore(&priv->txlock, flags);
697 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
698 free_irq(priv->interruptError, dev);
699 free_irq(priv->interruptTransmit, dev);
700 free_irq(priv->interruptReceive, dev);
702 free_irq(priv->interruptTransmit, dev);
705 free_skb_resources(priv);
707 dma_free_coherent(&dev->dev,
708 sizeof(struct txbd8)*priv->tx_ring_size
709 + sizeof(struct rxbd8)*priv->rx_ring_size,
711 gfar_read(®s->tbase0));
714 /* If there are any tx skbs or rx skbs still around, free them.
715 * Then free tx_skbuff and rx_skbuff */
716 static void free_skb_resources(struct gfar_private *priv)
722 /* Go through all the buffer descriptors and free their data buffers */
723 txbdp = priv->tx_bd_base;
725 for (i = 0; i < priv->tx_ring_size; i++) {
727 if (priv->tx_skbuff[i]) {
728 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
731 dev_kfree_skb_any(priv->tx_skbuff[i]);
732 priv->tx_skbuff[i] = NULL;
738 kfree(priv->tx_skbuff);
740 rxbdp = priv->rx_bd_base;
742 /* rx_skbuff is not guaranteed to be allocated, so only
743 * free it and its contents if it is allocated */
744 if(priv->rx_skbuff != NULL) {
745 for (i = 0; i < priv->rx_ring_size; i++) {
746 if (priv->rx_skbuff[i]) {
747 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
748 priv->rx_buffer_size,
751 dev_kfree_skb_any(priv->rx_skbuff[i]);
752 priv->rx_skbuff[i] = NULL;
762 kfree(priv->rx_skbuff);
766 void gfar_start(struct net_device *dev)
768 struct gfar_private *priv = netdev_priv(dev);
769 struct gfar __iomem *regs = priv->regs;
772 /* Enable Rx and Tx in MACCFG1 */
773 tempval = gfar_read(®s->maccfg1);
774 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
775 gfar_write(®s->maccfg1, tempval);
777 /* Initialize DMACTRL to have WWR and WOP */
778 tempval = gfar_read(&priv->regs->dmactrl);
779 tempval |= DMACTRL_INIT_SETTINGS;
780 gfar_write(&priv->regs->dmactrl, tempval);
782 /* Make sure we aren't stopped */
783 tempval = gfar_read(&priv->regs->dmactrl);
784 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
785 gfar_write(&priv->regs->dmactrl, tempval);
787 /* Clear THLT/RHLT, so that the DMA starts polling now */
788 gfar_write(®s->tstat, TSTAT_CLEAR_THALT);
789 gfar_write(®s->rstat, RSTAT_CLEAR_RHALT);
791 /* Unmask the interrupts we look for */
792 gfar_write(®s->imask, IMASK_DEFAULT);
795 /* Bring the controller up and running */
796 int startup_gfar(struct net_device *dev)
803 struct gfar_private *priv = netdev_priv(dev);
804 struct gfar __iomem *regs = priv->regs;
809 gfar_write(®s->imask, IMASK_INIT_CLEAR);
811 /* Allocate memory for the buffer descriptors */
812 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
813 sizeof (struct txbd8) * priv->tx_ring_size +
814 sizeof (struct rxbd8) * priv->rx_ring_size,
818 if (netif_msg_ifup(priv))
819 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
824 priv->tx_bd_base = (struct txbd8 *) vaddr;
826 /* enet DMA only understands physical addresses */
827 gfar_write(®s->tbase0, addr);
829 /* Start the rx descriptor ring where the tx ring leaves off */
830 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
831 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
832 priv->rx_bd_base = (struct rxbd8 *) vaddr;
833 gfar_write(®s->rbase0, addr);
835 /* Setup the skbuff rings */
837 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
838 priv->tx_ring_size, GFP_KERNEL);
840 if (NULL == priv->tx_skbuff) {
841 if (netif_msg_ifup(priv))
842 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
848 for (i = 0; i < priv->tx_ring_size; i++)
849 priv->tx_skbuff[i] = NULL;
852 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
853 priv->rx_ring_size, GFP_KERNEL);
855 if (NULL == priv->rx_skbuff) {
856 if (netif_msg_ifup(priv))
857 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
863 for (i = 0; i < priv->rx_ring_size; i++)
864 priv->rx_skbuff[i] = NULL;
866 /* Initialize some variables in our dev structure */
867 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
868 priv->cur_rx = priv->rx_bd_base;
869 priv->skb_curtx = priv->skb_dirtytx = 0;
872 /* Initialize Transmit Descriptor Ring */
873 txbdp = priv->tx_bd_base;
874 for (i = 0; i < priv->tx_ring_size; i++) {
881 /* Set the last descriptor in the ring to indicate wrap */
883 txbdp->status |= TXBD_WRAP;
885 rxbdp = priv->rx_bd_base;
886 for (i = 0; i < priv->rx_ring_size; i++) {
889 skb = gfar_new_skb(dev);
892 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
895 goto err_rxalloc_fail;
898 priv->rx_skbuff[i] = skb;
900 gfar_new_rxbdp(dev, rxbdp, skb);
905 /* Set the last descriptor in the ring to wrap */
907 rxbdp->status |= RXBD_WRAP;
909 /* If the device has multiple interrupts, register for
910 * them. Otherwise, only register for the one */
911 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
912 /* Install our interrupt handlers for Error,
913 * Transmit, and Receive */
914 if (request_irq(priv->interruptError, gfar_error,
915 0, "enet_error", dev) < 0) {
916 if (netif_msg_intr(priv))
917 printk(KERN_ERR "%s: Can't get IRQ %d\n",
918 dev->name, priv->interruptError);
924 if (request_irq(priv->interruptTransmit, gfar_transmit,
925 0, "enet_tx", dev) < 0) {
926 if (netif_msg_intr(priv))
927 printk(KERN_ERR "%s: Can't get IRQ %d\n",
928 dev->name, priv->interruptTransmit);
935 if (request_irq(priv->interruptReceive, gfar_receive,
936 0, "enet_rx", dev) < 0) {
937 if (netif_msg_intr(priv))
938 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
939 dev->name, priv->interruptReceive);
945 if (request_irq(priv->interruptTransmit, gfar_interrupt,
946 0, "gfar_interrupt", dev) < 0) {
947 if (netif_msg_intr(priv))
948 printk(KERN_ERR "%s: Can't get IRQ %d\n",
949 dev->name, priv->interruptError);
956 phy_start(priv->phydev);
958 /* Configure the coalescing support */
959 if (priv->txcoalescing)
960 gfar_write(®s->txic,
961 mk_ic_value(priv->txcount, priv->txtime));
963 gfar_write(®s->txic, 0);
965 if (priv->rxcoalescing)
966 gfar_write(®s->rxic,
967 mk_ic_value(priv->rxcount, priv->rxtime));
969 gfar_write(®s->rxic, 0);
971 if (priv->rx_csum_enable)
972 rctrl |= RCTRL_CHECKSUMMING;
974 if (priv->extended_hash) {
975 rctrl |= RCTRL_EXTHASH;
977 gfar_clear_exact_match(dev);
981 if (priv->vlan_enable)
985 rctrl &= ~RCTRL_PAL_MASK;
986 rctrl |= RCTRL_PADDING(priv->padding);
989 /* Init rctrl based on our settings */
990 gfar_write(&priv->regs->rctrl, rctrl);
992 if (dev->features & NETIF_F_IP_CSUM)
993 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
995 /* Set the extraction length and index */
996 attrs = ATTRELI_EL(priv->rx_stash_size) |
997 ATTRELI_EI(priv->rx_stash_index);
999 gfar_write(&priv->regs->attreli, attrs);
1001 /* Start with defaults, and add stashing or locking
1002 * depending on the approprate variables */
1003 attrs = ATTR_INIT_SETTINGS;
1005 if (priv->bd_stash_en)
1006 attrs |= ATTR_BDSTASH;
1008 if (priv->rx_stash_size != 0)
1009 attrs |= ATTR_BUFSTASH;
1011 gfar_write(&priv->regs->attr, attrs);
1013 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1014 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1015 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1017 /* Start the controller */
1023 free_irq(priv->interruptTransmit, dev);
1025 free_irq(priv->interruptError, dev);
1029 free_skb_resources(priv);
1031 dma_free_coherent(&dev->dev,
1032 sizeof(struct txbd8)*priv->tx_ring_size
1033 + sizeof(struct rxbd8)*priv->rx_ring_size,
1035 gfar_read(®s->tbase0));
1040 /* Called when something needs to use the ethernet device */
1041 /* Returns 0 for success. */
1042 static int gfar_enet_open(struct net_device *dev)
1044 struct gfar_private *priv = netdev_priv(dev);
1047 napi_enable(&priv->napi);
1049 /* Initialize a bunch of registers */
1050 init_registers(dev);
1052 gfar_set_mac_address(dev);
1054 err = init_phy(dev);
1057 napi_disable(&priv->napi);
1061 err = startup_gfar(dev);
1063 napi_disable(&priv->napi);
1067 netif_start_queue(dev);
1072 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1074 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1076 memset(fcb, 0, GMAC_FCB_LEN);
1081 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1085 /* If we're here, it's a IP packet with a TCP or UDP
1086 * payload. We set it to checksum, using a pseudo-header
1089 flags = TXFCB_DEFAULT;
1091 /* Tell the controller what the protocol is */
1092 /* And provide the already calculated phcs */
1093 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1095 fcb->phcs = udp_hdr(skb)->check;
1097 fcb->phcs = tcp_hdr(skb)->check;
1099 /* l3os is the distance between the start of the
1100 * frame (skb->data) and the start of the IP hdr.
1101 * l4os is the distance between the start of the
1102 * l3 hdr and the l4 hdr */
1103 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1104 fcb->l4os = skb_network_header_len(skb);
1109 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1111 fcb->flags |= TXFCB_VLN;
1112 fcb->vlctl = vlan_tx_tag_get(skb);
1115 /* This is called by the kernel when a frame is ready for transmission. */
1116 /* It is pointed to by the dev->hard_start_xmit function pointer */
1117 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1119 struct gfar_private *priv = netdev_priv(dev);
1120 struct txfcb *fcb = NULL;
1121 struct txbd8 *txbdp;
1123 unsigned long flags;
1125 /* Update transmit stats */
1126 dev->stats.tx_bytes += skb->len;
1129 spin_lock_irqsave(&priv->txlock, flags);
1131 /* Point at the first free tx descriptor */
1132 txbdp = priv->cur_tx;
1134 /* Clear all but the WRAP status flags */
1135 status = txbdp->status & TXBD_WRAP;
1137 /* Set up checksumming */
1138 if (likely((dev->features & NETIF_F_IP_CSUM)
1139 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1140 fcb = gfar_add_fcb(skb, txbdp);
1142 gfar_tx_checksum(skb, fcb);
1145 if (priv->vlan_enable &&
1146 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1147 if (unlikely(NULL == fcb)) {
1148 fcb = gfar_add_fcb(skb, txbdp);
1152 gfar_tx_vlan(skb, fcb);
1155 /* Set buffer length and pointer */
1156 txbdp->length = skb->len;
1157 txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1158 skb->len, DMA_TO_DEVICE);
1160 /* Save the skb pointer so we can free it later */
1161 priv->tx_skbuff[priv->skb_curtx] = skb;
1163 /* Update the current skb pointer (wrapping if this was the last) */
1165 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1167 /* Flag the BD as interrupt-causing */
1168 status |= TXBD_INTERRUPT;
1170 /* Flag the BD as ready to go, last in frame, and */
1171 /* in need of CRC */
1172 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1174 dev->trans_start = jiffies;
1176 /* The powerpc-specific eieio() is used, as wmb() has too strong
1177 * semantics (it requires synchronization between cacheable and
1178 * uncacheable mappings, which eieio doesn't provide and which we
1179 * don't need), thus requiring a more expensive sync instruction. At
1180 * some point, the set of architecture-independent barrier functions
1181 * should be expanded to include weaker barriers.
1185 txbdp->status = status;
1187 /* If this was the last BD in the ring, the next one */
1188 /* is at the beginning of the ring */
1189 if (txbdp->status & TXBD_WRAP)
1190 txbdp = priv->tx_bd_base;
1194 /* If the next BD still needs to be cleaned up, then the bds
1195 are full. We need to tell the kernel to stop sending us stuff. */
1196 if (txbdp == priv->dirty_tx) {
1197 netif_stop_queue(dev);
1199 dev->stats.tx_fifo_errors++;
1202 /* Update the current txbd to the next one */
1203 priv->cur_tx = txbdp;
1205 /* Tell the DMA to go go go */
1206 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1209 spin_unlock_irqrestore(&priv->txlock, flags);
1214 /* Stops the kernel queue, and halts the controller */
1215 static int gfar_close(struct net_device *dev)
1217 struct gfar_private *priv = netdev_priv(dev);
1219 napi_disable(&priv->napi);
1223 /* Disconnect from the PHY */
1224 phy_disconnect(priv->phydev);
1225 priv->phydev = NULL;
1227 netif_stop_queue(dev);
1232 /* Changes the mac address if the controller is not running. */
1233 static int gfar_set_mac_address(struct net_device *dev)
1235 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1241 /* Enables and disables VLAN insertion/extraction */
1242 static void gfar_vlan_rx_register(struct net_device *dev,
1243 struct vlan_group *grp)
1245 struct gfar_private *priv = netdev_priv(dev);
1246 unsigned long flags;
1249 spin_lock_irqsave(&priv->rxlock, flags);
1254 /* Enable VLAN tag insertion */
1255 tempval = gfar_read(&priv->regs->tctrl);
1256 tempval |= TCTRL_VLINS;
1258 gfar_write(&priv->regs->tctrl, tempval);
1260 /* Enable VLAN tag extraction */
1261 tempval = gfar_read(&priv->regs->rctrl);
1262 tempval |= RCTRL_VLEX;
1263 gfar_write(&priv->regs->rctrl, tempval);
1265 /* Disable VLAN tag insertion */
1266 tempval = gfar_read(&priv->regs->tctrl);
1267 tempval &= ~TCTRL_VLINS;
1268 gfar_write(&priv->regs->tctrl, tempval);
1270 /* Disable VLAN tag extraction */
1271 tempval = gfar_read(&priv->regs->rctrl);
1272 tempval &= ~RCTRL_VLEX;
1273 gfar_write(&priv->regs->rctrl, tempval);
1276 spin_unlock_irqrestore(&priv->rxlock, flags);
1279 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1281 int tempsize, tempval;
1282 struct gfar_private *priv = netdev_priv(dev);
1283 int oldsize = priv->rx_buffer_size;
1284 int frame_size = new_mtu + ETH_HLEN;
1286 if (priv->vlan_enable)
1287 frame_size += VLAN_HLEN;
1289 if (gfar_uses_fcb(priv))
1290 frame_size += GMAC_FCB_LEN;
1292 frame_size += priv->padding;
1294 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1295 if (netif_msg_drv(priv))
1296 printk(KERN_ERR "%s: Invalid MTU setting\n",
1302 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1303 INCREMENTAL_BUFFER_SIZE;
1305 /* Only stop and start the controller if it isn't already
1306 * stopped, and we changed something */
1307 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1310 priv->rx_buffer_size = tempsize;
1314 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1315 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1317 /* If the mtu is larger than the max size for standard
1318 * ethernet frames (ie, a jumbo frame), then set maccfg2
1319 * to allow huge frames, and to check the length */
1320 tempval = gfar_read(&priv->regs->maccfg2);
1322 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1323 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1325 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1327 gfar_write(&priv->regs->maccfg2, tempval);
1329 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1335 /* gfar_timeout gets called when a packet has not been
1336 * transmitted after a set amount of time.
1337 * For now, assume that clearing out all the structures, and
1338 * starting over will fix the problem. */
1339 static void gfar_timeout(struct net_device *dev)
1341 dev->stats.tx_errors++;
1343 if (dev->flags & IFF_UP) {
1348 netif_tx_schedule_all(dev);
1351 /* Interrupt Handler for Transmit complete */
1352 static int gfar_clean_tx_ring(struct net_device *dev)
1355 struct gfar_private *priv = netdev_priv(dev);
1358 bdp = priv->dirty_tx;
1359 while ((bdp->status & TXBD_READY) == 0) {
1360 /* If dirty_tx and cur_tx are the same, then either the */
1361 /* ring is empty or full now (it could only be full in the beginning, */
1362 /* obviously). If it is empty, we are done. */
1363 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1368 /* Deferred means some collisions occurred during transmit, */
1369 /* but we eventually sent the packet. */
1370 if (bdp->status & TXBD_DEF)
1371 dev->stats.collisions++;
1373 /* Free the sk buffer associated with this TxBD */
1374 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1376 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1378 (priv->skb_dirtytx +
1379 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1381 /* Clean BD length for empty detection */
1384 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1385 if (bdp->status & TXBD_WRAP)
1386 bdp = priv->tx_bd_base;
1390 /* Move dirty_tx to be the next bd */
1391 priv->dirty_tx = bdp;
1393 /* We freed a buffer, so now we can restart transmission */
1394 if (netif_queue_stopped(dev))
1395 netif_wake_queue(dev);
1396 } /* while ((bdp->status & TXBD_READY) == 0) */
1398 dev->stats.tx_packets += howmany;
1403 /* Interrupt Handler for Transmit complete */
1404 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1406 struct net_device *dev = (struct net_device *) dev_id;
1407 struct gfar_private *priv = netdev_priv(dev);
1410 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1413 spin_lock(&priv->txlock);
1415 gfar_clean_tx_ring(dev);
1417 /* If we are coalescing the interrupts, reset the timer */
1418 /* Otherwise, clear it */
1419 if (likely(priv->txcoalescing)) {
1420 gfar_write(&priv->regs->txic, 0);
1421 gfar_write(&priv->regs->txic,
1422 mk_ic_value(priv->txcount, priv->txtime));
1425 spin_unlock(&priv->txlock);
1430 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1431 struct sk_buff *skb)
1433 struct gfar_private *priv = netdev_priv(dev);
1434 u32 * status_len = (u32 *)bdp;
1437 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1438 priv->rx_buffer_size, DMA_FROM_DEVICE);
1440 flags = RXBD_EMPTY | RXBD_INTERRUPT;
1442 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1447 *status_len = (u32)flags << 16;
1451 struct sk_buff * gfar_new_skb(struct net_device *dev)
1453 unsigned int alignamount;
1454 struct gfar_private *priv = netdev_priv(dev);
1455 struct sk_buff *skb = NULL;
1457 /* We have to allocate the skb, so keep trying till we succeed */
1458 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1463 alignamount = RXBUF_ALIGNMENT -
1464 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1466 /* We need the data buffer to be aligned properly. We will reserve
1467 * as many bytes as needed to align the data properly
1469 skb_reserve(skb, alignamount);
1474 static inline void count_errors(unsigned short status, struct net_device *dev)
1476 struct gfar_private *priv = netdev_priv(dev);
1477 struct net_device_stats *stats = &dev->stats;
1478 struct gfar_extra_stats *estats = &priv->extra_stats;
1480 /* If the packet was truncated, none of the other errors
1482 if (status & RXBD_TRUNCATED) {
1483 stats->rx_length_errors++;
1489 /* Count the errors, if there were any */
1490 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1491 stats->rx_length_errors++;
1493 if (status & RXBD_LARGE)
1498 if (status & RXBD_NONOCTET) {
1499 stats->rx_frame_errors++;
1500 estats->rx_nonoctet++;
1502 if (status & RXBD_CRCERR) {
1503 estats->rx_crcerr++;
1504 stats->rx_crc_errors++;
1506 if (status & RXBD_OVERRUN) {
1507 estats->rx_overrun++;
1508 stats->rx_crc_errors++;
1512 irqreturn_t gfar_receive(int irq, void *dev_id)
1514 struct net_device *dev = (struct net_device *) dev_id;
1515 struct gfar_private *priv = netdev_priv(dev);
1519 /* Clear IEVENT, so interrupts aren't called again
1520 * because of the packets that have already arrived */
1521 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1523 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1524 tempval = gfar_read(&priv->regs->imask);
1525 tempval &= IMASK_RTX_DISABLED;
1526 gfar_write(&priv->regs->imask, tempval);
1528 __netif_rx_schedule(dev, &priv->napi);
1530 if (netif_msg_rx_err(priv))
1531 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1532 dev->name, gfar_read(&priv->regs->ievent),
1533 gfar_read(&priv->regs->imask));
1539 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1541 /* If valid headers were found, and valid sums
1542 * were verified, then we tell the kernel that no
1543 * checksumming is necessary. Otherwise, it is */
1544 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1545 skb->ip_summed = CHECKSUM_UNNECESSARY;
1547 skb->ip_summed = CHECKSUM_NONE;
1551 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1553 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1555 /* Remove the FCB from the skb */
1556 skb_pull(skb, GMAC_FCB_LEN);
1561 /* gfar_process_frame() -- handle one incoming packet if skb
1563 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1566 struct gfar_private *priv = netdev_priv(dev);
1567 struct rxfcb *fcb = NULL;
1570 if (netif_msg_rx_err(priv))
1571 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1572 dev->stats.rx_dropped++;
1573 priv->extra_stats.rx_skbmissing++;
1577 /* Prep the skb for the packet */
1578 skb_put(skb, length);
1580 /* Grab the FCB if there is one */
1581 if (gfar_uses_fcb(priv))
1582 fcb = gfar_get_fcb(skb);
1584 /* Remove the padded bytes, if there are any */
1586 skb_pull(skb, priv->padding);
1588 if (priv->rx_csum_enable)
1589 gfar_rx_checksum(skb, fcb);
1591 /* Tell the skb what kind of packet this is */
1592 skb->protocol = eth_type_trans(skb, dev);
1594 /* Send the packet up the stack */
1595 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1596 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1599 ret = netif_receive_skb(skb);
1601 if (NET_RX_DROP == ret)
1602 priv->extra_stats.kernel_dropped++;
1608 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1609 * until the budget/quota has been reached. Returns the number
1612 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1615 struct sk_buff *skb;
1618 struct gfar_private *priv = netdev_priv(dev);
1620 /* Get the first full descriptor */
1623 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1624 struct sk_buff *newskb;
1627 /* Add another skb for the future */
1628 newskb = gfar_new_skb(dev);
1630 skb = priv->rx_skbuff[priv->skb_currx];
1632 /* We drop the frame if we failed to allocate a new buffer */
1633 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1634 bdp->status & RXBD_ERR)) {
1635 count_errors(bdp->status, dev);
1637 if (unlikely(!newskb))
1641 dma_unmap_single(&priv->dev->dev,
1643 priv->rx_buffer_size,
1646 dev_kfree_skb_any(skb);
1649 /* Increment the number of packets */
1650 dev->stats.rx_packets++;
1653 /* Remove the FCS from the packet length */
1654 pkt_len = bdp->length - 4;
1656 gfar_process_frame(dev, skb, pkt_len);
1658 dev->stats.rx_bytes += pkt_len;
1661 dev->last_rx = jiffies;
1663 priv->rx_skbuff[priv->skb_currx] = newskb;
1665 /* Setup the new bdp */
1666 gfar_new_rxbdp(dev, bdp, newskb);
1668 /* Update to the next pointer */
1669 if (bdp->status & RXBD_WRAP)
1670 bdp = priv->rx_bd_base;
1674 /* update to point at the next skb */
1676 (priv->skb_currx + 1) &
1677 RX_RING_MOD_MASK(priv->rx_ring_size);
1680 /* Update the current rxbd pointer to be the next one */
1686 static int gfar_poll(struct napi_struct *napi, int budget)
1688 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1689 struct net_device *dev = priv->dev;
1691 unsigned long flags;
1693 /* If we fail to get the lock, don't bother with the TX BDs */
1694 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1695 gfar_clean_tx_ring(dev);
1696 spin_unlock_irqrestore(&priv->txlock, flags);
1699 howmany = gfar_clean_rx_ring(dev, budget);
1701 if (howmany < budget) {
1702 netif_rx_complete(dev, napi);
1704 /* Clear the halt bit in RSTAT */
1705 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1707 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1709 /* If we are coalescing interrupts, update the timer */
1710 /* Otherwise, clear it */
1711 if (likely(priv->rxcoalescing)) {
1712 gfar_write(&priv->regs->rxic, 0);
1713 gfar_write(&priv->regs->rxic,
1714 mk_ic_value(priv->rxcount, priv->rxtime));
1721 #ifdef CONFIG_NET_POLL_CONTROLLER
1723 * Polling 'interrupt' - used by things like netconsole to send skbs
1724 * without having to re-enable interrupts. It's not called while
1725 * the interrupt routine is executing.
1727 static void gfar_netpoll(struct net_device *dev)
1729 struct gfar_private *priv = netdev_priv(dev);
1731 /* If the device has multiple interrupts, run tx/rx */
1732 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1733 disable_irq(priv->interruptTransmit);
1734 disable_irq(priv->interruptReceive);
1735 disable_irq(priv->interruptError);
1736 gfar_interrupt(priv->interruptTransmit, dev);
1737 enable_irq(priv->interruptError);
1738 enable_irq(priv->interruptReceive);
1739 enable_irq(priv->interruptTransmit);
1741 disable_irq(priv->interruptTransmit);
1742 gfar_interrupt(priv->interruptTransmit, dev);
1743 enable_irq(priv->interruptTransmit);
1748 /* The interrupt handler for devices with one interrupt */
1749 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1751 struct net_device *dev = dev_id;
1752 struct gfar_private *priv = netdev_priv(dev);
1754 /* Save ievent for future reference */
1755 u32 events = gfar_read(&priv->regs->ievent);
1757 /* Check for reception */
1758 if (events & IEVENT_RX_MASK)
1759 gfar_receive(irq, dev_id);
1761 /* Check for transmit completion */
1762 if (events & IEVENT_TX_MASK)
1763 gfar_transmit(irq, dev_id);
1765 /* Check for errors */
1766 if (events & IEVENT_ERR_MASK)
1767 gfar_error(irq, dev_id);
1772 /* Called every time the controller might need to be made
1773 * aware of new link state. The PHY code conveys this
1774 * information through variables in the phydev structure, and this
1775 * function converts those variables into the appropriate
1776 * register values, and can bring down the device if needed.
1778 static void adjust_link(struct net_device *dev)
1780 struct gfar_private *priv = netdev_priv(dev);
1781 struct gfar __iomem *regs = priv->regs;
1782 unsigned long flags;
1783 struct phy_device *phydev = priv->phydev;
1786 spin_lock_irqsave(&priv->txlock, flags);
1788 u32 tempval = gfar_read(®s->maccfg2);
1789 u32 ecntrl = gfar_read(®s->ecntrl);
1791 /* Now we make sure that we can be in full duplex mode.
1792 * If not, we operate in half-duplex mode. */
1793 if (phydev->duplex != priv->oldduplex) {
1795 if (!(phydev->duplex))
1796 tempval &= ~(MACCFG2_FULL_DUPLEX);
1798 tempval |= MACCFG2_FULL_DUPLEX;
1800 priv->oldduplex = phydev->duplex;
1803 if (phydev->speed != priv->oldspeed) {
1805 switch (phydev->speed) {
1808 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1813 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1815 /* Reduced mode distinguishes
1816 * between 10 and 100 */
1817 if (phydev->speed == SPEED_100)
1818 ecntrl |= ECNTRL_R100;
1820 ecntrl &= ~(ECNTRL_R100);
1823 if (netif_msg_link(priv))
1825 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1826 dev->name, phydev->speed);
1830 priv->oldspeed = phydev->speed;
1833 gfar_write(®s->maccfg2, tempval);
1834 gfar_write(®s->ecntrl, ecntrl);
1836 if (!priv->oldlink) {
1840 } else if (priv->oldlink) {
1844 priv->oldduplex = -1;
1847 if (new_state && netif_msg_link(priv))
1848 phy_print_status(phydev);
1850 spin_unlock_irqrestore(&priv->txlock, flags);
1853 /* Update the hash table based on the current list of multicast
1854 * addresses we subscribe to. Also, change the promiscuity of
1855 * the device based on the flags (this function is called
1856 * whenever dev->flags is changed */
1857 static void gfar_set_multi(struct net_device *dev)
1859 struct dev_mc_list *mc_ptr;
1860 struct gfar_private *priv = netdev_priv(dev);
1861 struct gfar __iomem *regs = priv->regs;
1864 if(dev->flags & IFF_PROMISC) {
1865 /* Set RCTRL to PROM */
1866 tempval = gfar_read(®s->rctrl);
1867 tempval |= RCTRL_PROM;
1868 gfar_write(®s->rctrl, tempval);
1870 /* Set RCTRL to not PROM */
1871 tempval = gfar_read(®s->rctrl);
1872 tempval &= ~(RCTRL_PROM);
1873 gfar_write(®s->rctrl, tempval);
1876 if(dev->flags & IFF_ALLMULTI) {
1877 /* Set the hash to rx all multicast frames */
1878 gfar_write(®s->igaddr0, 0xffffffff);
1879 gfar_write(®s->igaddr1, 0xffffffff);
1880 gfar_write(®s->igaddr2, 0xffffffff);
1881 gfar_write(®s->igaddr3, 0xffffffff);
1882 gfar_write(®s->igaddr4, 0xffffffff);
1883 gfar_write(®s->igaddr5, 0xffffffff);
1884 gfar_write(®s->igaddr6, 0xffffffff);
1885 gfar_write(®s->igaddr7, 0xffffffff);
1886 gfar_write(®s->gaddr0, 0xffffffff);
1887 gfar_write(®s->gaddr1, 0xffffffff);
1888 gfar_write(®s->gaddr2, 0xffffffff);
1889 gfar_write(®s->gaddr3, 0xffffffff);
1890 gfar_write(®s->gaddr4, 0xffffffff);
1891 gfar_write(®s->gaddr5, 0xffffffff);
1892 gfar_write(®s->gaddr6, 0xffffffff);
1893 gfar_write(®s->gaddr7, 0xffffffff);
1898 /* zero out the hash */
1899 gfar_write(®s->igaddr0, 0x0);
1900 gfar_write(®s->igaddr1, 0x0);
1901 gfar_write(®s->igaddr2, 0x0);
1902 gfar_write(®s->igaddr3, 0x0);
1903 gfar_write(®s->igaddr4, 0x0);
1904 gfar_write(®s->igaddr5, 0x0);
1905 gfar_write(®s->igaddr6, 0x0);
1906 gfar_write(®s->igaddr7, 0x0);
1907 gfar_write(®s->gaddr0, 0x0);
1908 gfar_write(®s->gaddr1, 0x0);
1909 gfar_write(®s->gaddr2, 0x0);
1910 gfar_write(®s->gaddr3, 0x0);
1911 gfar_write(®s->gaddr4, 0x0);
1912 gfar_write(®s->gaddr5, 0x0);
1913 gfar_write(®s->gaddr6, 0x0);
1914 gfar_write(®s->gaddr7, 0x0);
1916 /* If we have extended hash tables, we need to
1917 * clear the exact match registers to prepare for
1919 if (priv->extended_hash) {
1920 em_num = GFAR_EM_NUM + 1;
1921 gfar_clear_exact_match(dev);
1928 if(dev->mc_count == 0)
1931 /* Parse the list, and set the appropriate bits */
1932 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1934 gfar_set_mac_for_addr(dev, idx,
1938 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1946 /* Clears each of the exact match registers to zero, so they
1947 * don't interfere with normal reception */
1948 static void gfar_clear_exact_match(struct net_device *dev)
1951 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1953 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1954 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1957 /* Set the appropriate hash bit for the given addr */
1958 /* The algorithm works like so:
1959 * 1) Take the Destination Address (ie the multicast address), and
1960 * do a CRC on it (little endian), and reverse the bits of the
1962 * 2) Use the 8 most significant bits as a hash into a 256-entry
1963 * table. The table is controlled through 8 32-bit registers:
1964 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1965 * gaddr7. This means that the 3 most significant bits in the
1966 * hash index which gaddr register to use, and the 5 other bits
1967 * indicate which bit (assuming an IBM numbering scheme, which
1968 * for PowerPC (tm) is usually the case) in the register holds
1970 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1973 struct gfar_private *priv = netdev_priv(dev);
1974 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1975 int width = priv->hash_width;
1976 u8 whichbit = (result >> (32 - width)) & 0x1f;
1977 u8 whichreg = result >> (32 - width + 5);
1978 u32 value = (1 << (31-whichbit));
1980 tempval = gfar_read(priv->hash_regs[whichreg]);
1982 gfar_write(priv->hash_regs[whichreg], tempval);
1988 /* There are multiple MAC Address register pairs on some controllers
1989 * This function sets the numth pair to a given address
1991 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1993 struct gfar_private *priv = netdev_priv(dev);
1995 char tmpbuf[MAC_ADDR_LEN];
1997 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2001 /* Now copy it into the mac registers backwards, cuz */
2002 /* little endian is silly */
2003 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2004 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2006 gfar_write(macptr, *((u32 *) (tmpbuf)));
2008 tempval = *((u32 *) (tmpbuf + 4));
2010 gfar_write(macptr+1, tempval);
2013 /* GFAR error interrupt handler */
2014 static irqreturn_t gfar_error(int irq, void *dev_id)
2016 struct net_device *dev = dev_id;
2017 struct gfar_private *priv = netdev_priv(dev);
2019 /* Save ievent for future reference */
2020 u32 events = gfar_read(&priv->regs->ievent);
2023 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2025 /* Magic Packet is not an error. */
2026 if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2027 (events & IEVENT_MAG))
2028 events &= ~IEVENT_MAG;
2031 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2032 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2033 dev->name, events, gfar_read(&priv->regs->imask));
2035 /* Update the error counters */
2036 if (events & IEVENT_TXE) {
2037 dev->stats.tx_errors++;
2039 if (events & IEVENT_LC)
2040 dev->stats.tx_window_errors++;
2041 if (events & IEVENT_CRL)
2042 dev->stats.tx_aborted_errors++;
2043 if (events & IEVENT_XFUN) {
2044 if (netif_msg_tx_err(priv))
2045 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2046 "packet dropped.\n", dev->name);
2047 dev->stats.tx_dropped++;
2048 priv->extra_stats.tx_underrun++;
2050 /* Reactivate the Tx Queues */
2051 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2053 if (netif_msg_tx_err(priv))
2054 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2056 if (events & IEVENT_BSY) {
2057 dev->stats.rx_errors++;
2058 priv->extra_stats.rx_bsy++;
2060 gfar_receive(irq, dev_id);
2062 if (netif_msg_rx_err(priv))
2063 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2064 dev->name, gfar_read(&priv->regs->rstat));
2066 if (events & IEVENT_BABR) {
2067 dev->stats.rx_errors++;
2068 priv->extra_stats.rx_babr++;
2070 if (netif_msg_rx_err(priv))
2071 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2073 if (events & IEVENT_EBERR) {
2074 priv->extra_stats.eberr++;
2075 if (netif_msg_rx_err(priv))
2076 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2078 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2079 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2081 if (events & IEVENT_BABT) {
2082 priv->extra_stats.tx_babt++;
2083 if (netif_msg_tx_err(priv))
2084 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2089 /* work with hotplug and coldplug */
2090 MODULE_ALIAS("platform:fsl-gianfar");
2092 /* Structure for a device driver */
2093 static struct platform_driver gfar_driver = {
2094 .probe = gfar_probe,
2095 .remove = gfar_remove,
2096 .suspend = gfar_suspend,
2097 .resume = gfar_resume,
2099 .name = "fsl-gianfar",
2100 .owner = THIS_MODULE,
2104 static int __init gfar_init(void)
2106 int err = gfar_mdio_init();
2111 err = platform_driver_register(&gfar_driver);
2119 static void __exit gfar_exit(void)
2121 platform_driver_unregister(&gfar_driver);
2125 module_init(gfar_init);
2126 module_exit(gfar_exit);