]> err.no Git - linux-2.6/blob - drivers/net/fs_enet/fs_enet-main.c
Merge git://git.infradead.org/battery-2.6
[linux-2.6] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39
40 #include <linux/vmalloc.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
44
45 #ifdef CONFIG_PPC_CPM_NEW_BINDING
46 #include <asm/of_platform.h>
47 #endif
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 #ifndef CONFIG_PPC_CPM_NEW_BINDING
54 static char version[] __devinitdata =
55     DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
56 #endif
57
58 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
59 MODULE_DESCRIPTION("Freescale Ethernet Driver");
60 MODULE_LICENSE("GPL");
61 MODULE_VERSION(DRV_MODULE_VERSION);
62
63 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
64 module_param(fs_enet_debug, int, 0);
65 MODULE_PARM_DESC(fs_enet_debug,
66                  "Freescale bitmapped debugging message enable value");
67
68 #ifdef CONFIG_NET_POLL_CONTROLLER
69 static void fs_enet_netpoll(struct net_device *dev);
70 #endif
71
72 static void fs_set_multicast_list(struct net_device *dev)
73 {
74         struct fs_enet_private *fep = netdev_priv(dev);
75
76         (*fep->ops->set_multicast_list)(dev);
77 }
78
79 static void skb_align(struct sk_buff *skb, int align)
80 {
81         int off = ((unsigned long)skb->data) & (align - 1);
82
83         if (off)
84                 skb_reserve(skb, align - off);
85 }
86
87 /* NAPI receive function */
88 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
89 {
90         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
91         struct net_device *dev = fep->ndev;
92         const struct fs_platform_info *fpi = fep->fpi;
93         cbd_t __iomem *bdp;
94         struct sk_buff *skb, *skbn, *skbt;
95         int received = 0;
96         u16 pkt_len, sc;
97         int curidx;
98
99         /*
100          * First, grab all of the stats for the incoming packet.
101          * These get messed up if we get called due to a busy condition.
102          */
103         bdp = fep->cur_rx;
104
105         /* clear RX status bits for napi*/
106         (*fep->ops->napi_clear_rx_event)(dev);
107
108         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
109                 curidx = bdp - fep->rx_bd_base;
110
111                 /*
112                  * Since we have allocated space to hold a complete frame,
113                  * the last indicator should be set.
114                  */
115                 if ((sc & BD_ENET_RX_LAST) == 0)
116                         printk(KERN_WARNING DRV_MODULE_NAME
117                                ": %s rcv is not +last\n",
118                                dev->name);
119
120                 /*
121                  * Check for errors.
122                  */
123                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
124                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
125                         fep->stats.rx_errors++;
126                         /* Frame too long or too short. */
127                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
128                                 fep->stats.rx_length_errors++;
129                         /* Frame alignment */
130                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
131                                 fep->stats.rx_frame_errors++;
132                         /* CRC Error */
133                         if (sc & BD_ENET_RX_CR)
134                                 fep->stats.rx_crc_errors++;
135                         /* FIFO overrun */
136                         if (sc & BD_ENET_RX_OV)
137                                 fep->stats.rx_crc_errors++;
138
139                         skb = fep->rx_skbuff[curidx];
140
141                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
142                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
143                                 DMA_FROM_DEVICE);
144
145                         skbn = skb;
146
147                 } else {
148                         skb = fep->rx_skbuff[curidx];
149
150                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
151                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
152                                 DMA_FROM_DEVICE);
153
154                         /*
155                          * Process the incoming frame.
156                          */
157                         fep->stats.rx_packets++;
158                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
159                         fep->stats.rx_bytes += pkt_len + 4;
160
161                         if (pkt_len <= fpi->rx_copybreak) {
162                                 /* +2 to make IP header L1 cache aligned */
163                                 skbn = dev_alloc_skb(pkt_len + 2);
164                                 if (skbn != NULL) {
165                                         skb_reserve(skbn, 2);   /* align IP header */
166                                         skb_copy_from_linear_data(skb,
167                                                       skbn->data, pkt_len);
168                                         /* swap */
169                                         skbt = skb;
170                                         skb = skbn;
171                                         skbn = skbt;
172                                 }
173                         } else {
174                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
175
176                                 if (skbn)
177                                         skb_align(skbn, ENET_RX_ALIGN);
178                         }
179
180                         if (skbn != NULL) {
181                                 skb_put(skb, pkt_len);  /* Make room */
182                                 skb->protocol = eth_type_trans(skb, dev);
183                                 received++;
184                                 netif_receive_skb(skb);
185                         } else {
186                                 printk(KERN_WARNING DRV_MODULE_NAME
187                                        ": %s Memory squeeze, dropping packet.\n",
188                                        dev->name);
189                                 fep->stats.rx_dropped++;
190                                 skbn = skb;
191                         }
192                 }
193
194                 fep->rx_skbuff[curidx] = skbn;
195                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
196                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
197                              DMA_FROM_DEVICE));
198                 CBDW_DATLEN(bdp, 0);
199                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
200
201                 /*
202                  * Update BD pointer to next entry.
203                  */
204                 if ((sc & BD_ENET_RX_WRAP) == 0)
205                         bdp++;
206                 else
207                         bdp = fep->rx_bd_base;
208
209                 (*fep->ops->rx_bd_done)(dev);
210
211                 if (received >= budget)
212                         break;
213         }
214
215         fep->cur_rx = bdp;
216
217         if (received < budget) {
218                 /* done */
219                 netif_rx_complete(dev, napi);
220                 (*fep->ops->napi_enable_rx)(dev);
221         }
222         return received;
223 }
224
225 /* non NAPI receive function */
226 static int fs_enet_rx_non_napi(struct net_device *dev)
227 {
228         struct fs_enet_private *fep = netdev_priv(dev);
229         const struct fs_platform_info *fpi = fep->fpi;
230         cbd_t __iomem *bdp;
231         struct sk_buff *skb, *skbn, *skbt;
232         int received = 0;
233         u16 pkt_len, sc;
234         int curidx;
235         /*
236          * First, grab all of the stats for the incoming packet.
237          * These get messed up if we get called due to a busy condition.
238          */
239         bdp = fep->cur_rx;
240
241         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
242
243                 curidx = bdp - fep->rx_bd_base;
244
245                 /*
246                  * Since we have allocated space to hold a complete frame,
247                  * the last indicator should be set.
248                  */
249                 if ((sc & BD_ENET_RX_LAST) == 0)
250                         printk(KERN_WARNING DRV_MODULE_NAME
251                                ": %s rcv is not +last\n",
252                                dev->name);
253
254                 /*
255                  * Check for errors.
256                  */
257                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
258                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
259                         fep->stats.rx_errors++;
260                         /* Frame too long or too short. */
261                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
262                                 fep->stats.rx_length_errors++;
263                         /* Frame alignment */
264                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
265                                 fep->stats.rx_frame_errors++;
266                         /* CRC Error */
267                         if (sc & BD_ENET_RX_CR)
268                                 fep->stats.rx_crc_errors++;
269                         /* FIFO overrun */
270                         if (sc & BD_ENET_RX_OV)
271                                 fep->stats.rx_crc_errors++;
272
273                         skb = fep->rx_skbuff[curidx];
274
275                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
276                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
277                                 DMA_FROM_DEVICE);
278
279                         skbn = skb;
280
281                 } else {
282
283                         skb = fep->rx_skbuff[curidx];
284
285                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
286                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
287                                 DMA_FROM_DEVICE);
288
289                         /*
290                          * Process the incoming frame.
291                          */
292                         fep->stats.rx_packets++;
293                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
294                         fep->stats.rx_bytes += pkt_len + 4;
295
296                         if (pkt_len <= fpi->rx_copybreak) {
297                                 /* +2 to make IP header L1 cache aligned */
298                                 skbn = dev_alloc_skb(pkt_len + 2);
299                                 if (skbn != NULL) {
300                                         skb_reserve(skbn, 2);   /* align IP header */
301                                         skb_copy_from_linear_data(skb,
302                                                       skbn->data, pkt_len);
303                                         /* swap */
304                                         skbt = skb;
305                                         skb = skbn;
306                                         skbn = skbt;
307                                 }
308                         } else {
309                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
310
311                                 if (skbn)
312                                         skb_align(skbn, ENET_RX_ALIGN);
313                         }
314
315                         if (skbn != NULL) {
316                                 skb_put(skb, pkt_len);  /* Make room */
317                                 skb->protocol = eth_type_trans(skb, dev);
318                                 received++;
319                                 netif_rx(skb);
320                         } else {
321                                 printk(KERN_WARNING DRV_MODULE_NAME
322                                        ": %s Memory squeeze, dropping packet.\n",
323                                        dev->name);
324                                 fep->stats.rx_dropped++;
325                                 skbn = skb;
326                         }
327                 }
328
329                 fep->rx_skbuff[curidx] = skbn;
330                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
331                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
332                              DMA_FROM_DEVICE));
333                 CBDW_DATLEN(bdp, 0);
334                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
335
336                 /*
337                  * Update BD pointer to next entry.
338                  */
339                 if ((sc & BD_ENET_RX_WRAP) == 0)
340                         bdp++;
341                 else
342                         bdp = fep->rx_bd_base;
343
344                 (*fep->ops->rx_bd_done)(dev);
345         }
346
347         fep->cur_rx = bdp;
348
349         return 0;
350 }
351
352 static void fs_enet_tx(struct net_device *dev)
353 {
354         struct fs_enet_private *fep = netdev_priv(dev);
355         cbd_t __iomem *bdp;
356         struct sk_buff *skb;
357         int dirtyidx, do_wake, do_restart;
358         u16 sc;
359
360         spin_lock(&fep->tx_lock);
361         bdp = fep->dirty_tx;
362
363         do_wake = do_restart = 0;
364         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
365                 dirtyidx = bdp - fep->tx_bd_base;
366
367                 if (fep->tx_free == fep->tx_ring)
368                         break;
369
370                 skb = fep->tx_skbuff[dirtyidx];
371
372                 /*
373                  * Check for errors.
374                  */
375                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
376                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
377
378                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
379                                 fep->stats.tx_heartbeat_errors++;
380                         if (sc & BD_ENET_TX_LC) /* Late collision */
381                                 fep->stats.tx_window_errors++;
382                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
383                                 fep->stats.tx_aborted_errors++;
384                         if (sc & BD_ENET_TX_UN) /* Underrun */
385                                 fep->stats.tx_fifo_errors++;
386                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
387                                 fep->stats.tx_carrier_errors++;
388
389                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
390                                 fep->stats.tx_errors++;
391                                 do_restart = 1;
392                         }
393                 } else
394                         fep->stats.tx_packets++;
395
396                 if (sc & BD_ENET_TX_READY)
397                         printk(KERN_WARNING DRV_MODULE_NAME
398                                ": %s HEY! Enet xmit interrupt and TX_READY.\n",
399                                dev->name);
400
401                 /*
402                  * Deferred means some collisions occurred during transmit,
403                  * but we eventually sent the packet OK.
404                  */
405                 if (sc & BD_ENET_TX_DEF)
406                         fep->stats.collisions++;
407
408                 /* unmap */
409                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
410                                 skb->len, DMA_TO_DEVICE);
411
412                 /*
413                  * Free the sk buffer associated with this last transmit.
414                  */
415                 dev_kfree_skb_irq(skb);
416                 fep->tx_skbuff[dirtyidx] = NULL;
417
418                 /*
419                  * Update pointer to next buffer descriptor to be transmitted.
420                  */
421                 if ((sc & BD_ENET_TX_WRAP) == 0)
422                         bdp++;
423                 else
424                         bdp = fep->tx_bd_base;
425
426                 /*
427                  * Since we have freed up a buffer, the ring is no longer
428                  * full.
429                  */
430                 if (!fep->tx_free++)
431                         do_wake = 1;
432         }
433
434         fep->dirty_tx = bdp;
435
436         if (do_restart)
437                 (*fep->ops->tx_restart)(dev);
438
439         spin_unlock(&fep->tx_lock);
440
441         if (do_wake)
442                 netif_wake_queue(dev);
443 }
444
445 /*
446  * The interrupt handler.
447  * This is called from the MPC core interrupt.
448  */
449 static irqreturn_t
450 fs_enet_interrupt(int irq, void *dev_id)
451 {
452         struct net_device *dev = dev_id;
453         struct fs_enet_private *fep;
454         const struct fs_platform_info *fpi;
455         u32 int_events;
456         u32 int_clr_events;
457         int nr, napi_ok;
458         int handled;
459
460         fep = netdev_priv(dev);
461         fpi = fep->fpi;
462
463         nr = 0;
464         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
465                 nr++;
466
467                 int_clr_events = int_events;
468                 if (fpi->use_napi)
469                         int_clr_events &= ~fep->ev_napi_rx;
470
471                 (*fep->ops->clear_int_events)(dev, int_clr_events);
472
473                 if (int_events & fep->ev_err)
474                         (*fep->ops->ev_error)(dev, int_events);
475
476                 if (int_events & fep->ev_rx) {
477                         if (!fpi->use_napi)
478                                 fs_enet_rx_non_napi(dev);
479                         else {
480                                 napi_ok = napi_schedule_prep(&fep->napi);
481
482                                 (*fep->ops->napi_disable_rx)(dev);
483                                 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
484
485                                 /* NOTE: it is possible for FCCs in NAPI mode    */
486                                 /* to submit a spurious interrupt while in poll  */
487                                 if (napi_ok)
488                                         __netif_rx_schedule(dev, &fep->napi);
489                         }
490                 }
491
492                 if (int_events & fep->ev_tx)
493                         fs_enet_tx(dev);
494         }
495
496         handled = nr > 0;
497         return IRQ_RETVAL(handled);
498 }
499
500 void fs_init_bds(struct net_device *dev)
501 {
502         struct fs_enet_private *fep = netdev_priv(dev);
503         cbd_t __iomem *bdp;
504         struct sk_buff *skb;
505         int i;
506
507         fs_cleanup_bds(dev);
508
509         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
510         fep->tx_free = fep->tx_ring;
511         fep->cur_rx = fep->rx_bd_base;
512
513         /*
514          * Initialize the receive buffer descriptors.
515          */
516         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
517                 skb = dev_alloc_skb(ENET_RX_FRSIZE);
518                 if (skb == NULL) {
519                         printk(KERN_WARNING DRV_MODULE_NAME
520                                ": %s Memory squeeze, unable to allocate skb\n",
521                                dev->name);
522                         break;
523                 }
524                 skb_align(skb, ENET_RX_ALIGN);
525                 fep->rx_skbuff[i] = skb;
526                 CBDW_BUFADDR(bdp,
527                         dma_map_single(fep->dev, skb->data,
528                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
529                                 DMA_FROM_DEVICE));
530                 CBDW_DATLEN(bdp, 0);    /* zero */
531                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
532                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
533         }
534         /*
535          * if we failed, fillup remainder
536          */
537         for (; i < fep->rx_ring; i++, bdp++) {
538                 fep->rx_skbuff[i] = NULL;
539                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
540         }
541
542         /*
543          * ...and the same for transmit.
544          */
545         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
546                 fep->tx_skbuff[i] = NULL;
547                 CBDW_BUFADDR(bdp, 0);
548                 CBDW_DATLEN(bdp, 0);
549                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
550         }
551 }
552
553 void fs_cleanup_bds(struct net_device *dev)
554 {
555         struct fs_enet_private *fep = netdev_priv(dev);
556         struct sk_buff *skb;
557         cbd_t __iomem *bdp;
558         int i;
559
560         /*
561          * Reset SKB transmit buffers.
562          */
563         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
564                 if ((skb = fep->tx_skbuff[i]) == NULL)
565                         continue;
566
567                 /* unmap */
568                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
569                                 skb->len, DMA_TO_DEVICE);
570
571                 fep->tx_skbuff[i] = NULL;
572                 dev_kfree_skb(skb);
573         }
574
575         /*
576          * Reset SKB receive buffers
577          */
578         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
579                 if ((skb = fep->rx_skbuff[i]) == NULL)
580                         continue;
581
582                 /* unmap */
583                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
584                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
585                         DMA_FROM_DEVICE);
586
587                 fep->rx_skbuff[i] = NULL;
588
589                 dev_kfree_skb(skb);
590         }
591 }
592
593 /**********************************************************************************/
594
595 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
596 {
597         struct fs_enet_private *fep = netdev_priv(dev);
598         cbd_t __iomem *bdp;
599         int curidx;
600         u16 sc;
601         unsigned long flags;
602
603         spin_lock_irqsave(&fep->tx_lock, flags);
604
605         /*
606          * Fill in a Tx ring entry
607          */
608         bdp = fep->cur_tx;
609
610         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
611                 netif_stop_queue(dev);
612                 spin_unlock_irqrestore(&fep->tx_lock, flags);
613
614                 /*
615                  * Ooops.  All transmit buffers are full.  Bail out.
616                  * This should not happen, since the tx queue should be stopped.
617                  */
618                 printk(KERN_WARNING DRV_MODULE_NAME
619                        ": %s tx queue full!.\n", dev->name);
620                 return NETDEV_TX_BUSY;
621         }
622
623         curidx = bdp - fep->tx_bd_base;
624         /*
625          * Clear all of the status flags.
626          */
627         CBDC_SC(bdp, BD_ENET_TX_STATS);
628
629         /*
630          * Save skb pointer.
631          */
632         fep->tx_skbuff[curidx] = skb;
633
634         fep->stats.tx_bytes += skb->len;
635
636         /*
637          * Push the data cache so the CPM does not get stale memory data.
638          */
639         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
640                                 skb->data, skb->len, DMA_TO_DEVICE));
641         CBDW_DATLEN(bdp, skb->len);
642
643         dev->trans_start = jiffies;
644
645         /*
646          * If this was the last BD in the ring, start at the beginning again.
647          */
648         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
649                 fep->cur_tx++;
650         else
651                 fep->cur_tx = fep->tx_bd_base;
652
653         if (!--fep->tx_free)
654                 netif_stop_queue(dev);
655
656         /* Trigger transmission start */
657         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
658              BD_ENET_TX_LAST | BD_ENET_TX_TC;
659
660         /* note that while FEC does not have this bit
661          * it marks it as available for software use
662          * yay for hw reuse :) */
663         if (skb->len <= 60)
664                 sc |= BD_ENET_TX_PAD;
665         CBDS_SC(bdp, sc);
666
667         (*fep->ops->tx_kickstart)(dev);
668
669         spin_unlock_irqrestore(&fep->tx_lock, flags);
670
671         return NETDEV_TX_OK;
672 }
673
674 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
675                 irq_handler_t irqf)
676 {
677         struct fs_enet_private *fep = netdev_priv(dev);
678
679         (*fep->ops->pre_request_irq)(dev, irq);
680         return request_irq(irq, irqf, IRQF_SHARED, name, dev);
681 }
682
683 static void fs_free_irq(struct net_device *dev, int irq)
684 {
685         struct fs_enet_private *fep = netdev_priv(dev);
686
687         free_irq(irq, dev);
688         (*fep->ops->post_free_irq)(dev, irq);
689 }
690
691 static void fs_timeout(struct net_device *dev)
692 {
693         struct fs_enet_private *fep = netdev_priv(dev);
694         unsigned long flags;
695         int wake = 0;
696
697         fep->stats.tx_errors++;
698
699         spin_lock_irqsave(&fep->lock, flags);
700
701         if (dev->flags & IFF_UP) {
702                 phy_stop(fep->phydev);
703                 (*fep->ops->stop)(dev);
704                 (*fep->ops->restart)(dev);
705                 phy_start(fep->phydev);
706         }
707
708         phy_start(fep->phydev);
709         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
710         spin_unlock_irqrestore(&fep->lock, flags);
711
712         if (wake)
713                 netif_wake_queue(dev);
714 }
715
716 /*-----------------------------------------------------------------------------
717  *  generic link-change handler - should be sufficient for most cases
718  *-----------------------------------------------------------------------------*/
719 static void generic_adjust_link(struct  net_device *dev)
720 {
721         struct fs_enet_private *fep = netdev_priv(dev);
722         struct phy_device *phydev = fep->phydev;
723         int new_state = 0;
724
725         if (phydev->link) {
726                 /* adjust to duplex mode */
727                 if (phydev->duplex != fep->oldduplex) {
728                         new_state = 1;
729                         fep->oldduplex = phydev->duplex;
730                 }
731
732                 if (phydev->speed != fep->oldspeed) {
733                         new_state = 1;
734                         fep->oldspeed = phydev->speed;
735                 }
736
737                 if (!fep->oldlink) {
738                         new_state = 1;
739                         fep->oldlink = 1;
740                         netif_schedule(dev);
741                         netif_carrier_on(dev);
742                         netif_start_queue(dev);
743                 }
744
745                 if (new_state)
746                         fep->ops->restart(dev);
747         } else if (fep->oldlink) {
748                 new_state = 1;
749                 fep->oldlink = 0;
750                 fep->oldspeed = 0;
751                 fep->oldduplex = -1;
752                 netif_carrier_off(dev);
753                 netif_stop_queue(dev);
754         }
755
756         if (new_state && netif_msg_link(fep))
757                 phy_print_status(phydev);
758 }
759
760
761 static void fs_adjust_link(struct net_device *dev)
762 {
763         struct fs_enet_private *fep = netdev_priv(dev);
764         unsigned long flags;
765
766         spin_lock_irqsave(&fep->lock, flags);
767
768         if(fep->ops->adjust_link)
769                 fep->ops->adjust_link(dev);
770         else
771                 generic_adjust_link(dev);
772
773         spin_unlock_irqrestore(&fep->lock, flags);
774 }
775
776 static int fs_init_phy(struct net_device *dev)
777 {
778         struct fs_enet_private *fep = netdev_priv(dev);
779         struct phy_device *phydev;
780
781         fep->oldlink = 0;
782         fep->oldspeed = 0;
783         fep->oldduplex = -1;
784         if(fep->fpi->bus_id)
785                 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
786                                 PHY_INTERFACE_MODE_MII);
787         else {
788                 printk("No phy bus ID specified in BSP code\n");
789                 return -EINVAL;
790         }
791         if (IS_ERR(phydev)) {
792                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
793                 return PTR_ERR(phydev);
794         }
795
796         fep->phydev = phydev;
797
798         return 0;
799 }
800
801 static int fs_enet_open(struct net_device *dev)
802 {
803         struct fs_enet_private *fep = netdev_priv(dev);
804         int r;
805         int err;
806
807         if (fep->fpi->use_napi)
808                 napi_enable(&fep->napi);
809
810         /* Install our interrupt handler. */
811         r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
812         if (r != 0) {
813                 printk(KERN_ERR DRV_MODULE_NAME
814                        ": %s Could not allocate FS_ENET IRQ!", dev->name);
815                 if (fep->fpi->use_napi)
816                         napi_disable(&fep->napi);
817                 return -EINVAL;
818         }
819
820         err = fs_init_phy(dev);
821         if (err) {
822                 if (fep->fpi->use_napi)
823                         napi_disable(&fep->napi);
824                 return err;
825         }
826         phy_start(fep->phydev);
827
828         return 0;
829 }
830
831 static int fs_enet_close(struct net_device *dev)
832 {
833         struct fs_enet_private *fep = netdev_priv(dev);
834         unsigned long flags;
835
836         netif_stop_queue(dev);
837         netif_carrier_off(dev);
838         if (fep->fpi->use_napi)
839                 napi_disable(&fep->napi);
840         phy_stop(fep->phydev);
841
842         spin_lock_irqsave(&fep->lock, flags);
843         spin_lock(&fep->tx_lock);
844         (*fep->ops->stop)(dev);
845         spin_unlock(&fep->tx_lock);
846         spin_unlock_irqrestore(&fep->lock, flags);
847
848         /* release any irqs */
849         phy_disconnect(fep->phydev);
850         fep->phydev = NULL;
851         fs_free_irq(dev, fep->interrupt);
852
853         return 0;
854 }
855
856 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
857 {
858         struct fs_enet_private *fep = netdev_priv(dev);
859         return &fep->stats;
860 }
861
862 /*************************************************************************/
863
864 static void fs_get_drvinfo(struct net_device *dev,
865                             struct ethtool_drvinfo *info)
866 {
867         strcpy(info->driver, DRV_MODULE_NAME);
868         strcpy(info->version, DRV_MODULE_VERSION);
869 }
870
871 static int fs_get_regs_len(struct net_device *dev)
872 {
873         struct fs_enet_private *fep = netdev_priv(dev);
874
875         return (*fep->ops->get_regs_len)(dev);
876 }
877
878 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
879                          void *p)
880 {
881         struct fs_enet_private *fep = netdev_priv(dev);
882         unsigned long flags;
883         int r, len;
884
885         len = regs->len;
886
887         spin_lock_irqsave(&fep->lock, flags);
888         r = (*fep->ops->get_regs)(dev, p, &len);
889         spin_unlock_irqrestore(&fep->lock, flags);
890
891         if (r == 0)
892                 regs->version = 0;
893 }
894
895 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
896 {
897         struct fs_enet_private *fep = netdev_priv(dev);
898
899         if (!fep->phydev)
900                 return -ENODEV;
901
902         return phy_ethtool_gset(fep->phydev, cmd);
903 }
904
905 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
906 {
907         struct fs_enet_private *fep = netdev_priv(dev);
908
909         if (!fep->phydev)
910                 return -ENODEV;
911
912         return phy_ethtool_sset(fep->phydev, cmd);
913 }
914
915 static int fs_nway_reset(struct net_device *dev)
916 {
917         return 0;
918 }
919
920 static u32 fs_get_msglevel(struct net_device *dev)
921 {
922         struct fs_enet_private *fep = netdev_priv(dev);
923         return fep->msg_enable;
924 }
925
926 static void fs_set_msglevel(struct net_device *dev, u32 value)
927 {
928         struct fs_enet_private *fep = netdev_priv(dev);
929         fep->msg_enable = value;
930 }
931
932 static const struct ethtool_ops fs_ethtool_ops = {
933         .get_drvinfo = fs_get_drvinfo,
934         .get_regs_len = fs_get_regs_len,
935         .get_settings = fs_get_settings,
936         .set_settings = fs_set_settings,
937         .nway_reset = fs_nway_reset,
938         .get_link = ethtool_op_get_link,
939         .get_msglevel = fs_get_msglevel,
940         .set_msglevel = fs_set_msglevel,
941         .set_tx_csum = ethtool_op_set_tx_csum,  /* local! */
942         .set_sg = ethtool_op_set_sg,
943         .get_regs = fs_get_regs,
944 };
945
946 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
947 {
948         struct fs_enet_private *fep = netdev_priv(dev);
949         struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
950
951         if (!netif_running(dev))
952                 return -EINVAL;
953
954         return phy_mii_ioctl(fep->phydev, mii, cmd);
955 }
956
957 extern int fs_mii_connect(struct net_device *dev);
958 extern void fs_mii_disconnect(struct net_device *dev);
959
960 #ifndef CONFIG_PPC_CPM_NEW_BINDING
961 static struct net_device *fs_init_instance(struct device *dev,
962                 struct fs_platform_info *fpi)
963 {
964         struct net_device *ndev = NULL;
965         struct fs_enet_private *fep = NULL;
966         int privsize, i, r, err = 0, registered = 0;
967
968         fpi->fs_no = fs_get_id(fpi);
969         /* guard */
970         if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
971                 return ERR_PTR(-EINVAL);
972
973         privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
974                             (fpi->rx_ring + fpi->tx_ring));
975
976         ndev = alloc_etherdev(privsize);
977         if (!ndev) {
978                 err = -ENOMEM;
979                 goto err;
980         }
981
982         fep = netdev_priv(ndev);
983
984         fep->dev = dev;
985         dev_set_drvdata(dev, ndev);
986         fep->fpi = fpi;
987         if (fpi->init_ioports)
988                 fpi->init_ioports((struct fs_platform_info *)fpi);
989
990 #ifdef CONFIG_FS_ENET_HAS_FEC
991         if (fs_get_fec_index(fpi->fs_no) >= 0)
992                 fep->ops = &fs_fec_ops;
993 #endif
994
995 #ifdef CONFIG_FS_ENET_HAS_SCC
996         if (fs_get_scc_index(fpi->fs_no) >=0)
997                 fep->ops = &fs_scc_ops;
998 #endif
999
1000 #ifdef CONFIG_FS_ENET_HAS_FCC
1001         if (fs_get_fcc_index(fpi->fs_no) >= 0)
1002                 fep->ops = &fs_fcc_ops;
1003 #endif
1004
1005         if (fep->ops == NULL) {
1006                 printk(KERN_ERR DRV_MODULE_NAME
1007                        ": %s No matching ops found (%d).\n",
1008                        ndev->name, fpi->fs_no);
1009                 err = -EINVAL;
1010                 goto err;
1011         }
1012
1013         r = (*fep->ops->setup_data)(ndev);
1014         if (r != 0) {
1015                 printk(KERN_ERR DRV_MODULE_NAME
1016                        ": %s setup_data failed\n",
1017                         ndev->name);
1018                 err = r;
1019                 goto err;
1020         }
1021
1022         /* point rx_skbuff, tx_skbuff */
1023         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1024         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1025
1026         /* init locks */
1027         spin_lock_init(&fep->lock);
1028         spin_lock_init(&fep->tx_lock);
1029
1030         /*
1031          * Set the Ethernet address.
1032          */
1033         for (i = 0; i < 6; i++)
1034                 ndev->dev_addr[i] = fpi->macaddr[i];
1035
1036         r = (*fep->ops->allocate_bd)(ndev);
1037
1038         if (fep->ring_base == NULL) {
1039                 printk(KERN_ERR DRV_MODULE_NAME
1040                        ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1041                 err = r;
1042                 goto err;
1043         }
1044
1045         /*
1046          * Set receive and transmit descriptor base.
1047          */
1048         fep->rx_bd_base = fep->ring_base;
1049         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1050
1051         /* initialize ring size variables */
1052         fep->tx_ring = fpi->tx_ring;
1053         fep->rx_ring = fpi->rx_ring;
1054
1055         /*
1056          * The FEC Ethernet specific entries in the device structure.
1057          */
1058         ndev->open = fs_enet_open;
1059         ndev->hard_start_xmit = fs_enet_start_xmit;
1060         ndev->tx_timeout = fs_timeout;
1061         ndev->watchdog_timeo = 2 * HZ;
1062         ndev->stop = fs_enet_close;
1063         ndev->get_stats = fs_enet_get_stats;
1064         ndev->set_multicast_list = fs_set_multicast_list;
1065
1066 #ifdef CONFIG_NET_POLL_CONTROLLER
1067         ndev->poll_controller = fs_enet_netpoll;
1068 #endif
1069
1070         netif_napi_add(ndev, &fep->napi,
1071                        fs_enet_rx_napi, fpi->napi_weight);
1072
1073         ndev->ethtool_ops = &fs_ethtool_ops;
1074         ndev->do_ioctl = fs_ioctl;
1075
1076         init_timer(&fep->phy_timer_list);
1077
1078         netif_carrier_off(ndev);
1079
1080         err = register_netdev(ndev);
1081         if (err != 0) {
1082                 printk(KERN_ERR DRV_MODULE_NAME
1083                        ": %s register_netdev failed.\n", ndev->name);
1084                 goto err;
1085         }
1086         registered = 1;
1087
1088
1089         return ndev;
1090
1091 err:
1092         if (ndev != NULL) {
1093                 if (registered)
1094                         unregister_netdev(ndev);
1095
1096                 if (fep != NULL) {
1097                         (*fep->ops->free_bd)(ndev);
1098                         (*fep->ops->cleanup_data)(ndev);
1099                 }
1100
1101                 free_netdev(ndev);
1102         }
1103
1104         dev_set_drvdata(dev, NULL);
1105
1106         return ERR_PTR(err);
1107 }
1108
1109 static int fs_cleanup_instance(struct net_device *ndev)
1110 {
1111         struct fs_enet_private *fep;
1112         const struct fs_platform_info *fpi;
1113         struct device *dev;
1114
1115         if (ndev == NULL)
1116                 return -EINVAL;
1117
1118         fep = netdev_priv(ndev);
1119         if (fep == NULL)
1120                 return -EINVAL;
1121
1122         fpi = fep->fpi;
1123
1124         unregister_netdev(ndev);
1125
1126         dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1127                           (void __force *)fep->ring_base, fep->ring_mem_addr);
1128
1129         /* reset it */
1130         (*fep->ops->cleanup_data)(ndev);
1131
1132         dev = fep->dev;
1133         if (dev != NULL) {
1134                 dev_set_drvdata(dev, NULL);
1135                 fep->dev = NULL;
1136         }
1137
1138         free_netdev(ndev);
1139
1140         return 0;
1141 }
1142 #endif
1143
1144 /**************************************************************************************/
1145
1146 /* handy pointer to the immap */
1147 void __iomem *fs_enet_immap = NULL;
1148
1149 static int setup_immap(void)
1150 {
1151 #ifdef CONFIG_CPM1
1152         fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
1153         WARN_ON(!fs_enet_immap);
1154 #elif defined(CONFIG_CPM2)
1155         fs_enet_immap = cpm2_immr;
1156 #endif
1157
1158         return 0;
1159 }
1160
1161 static void cleanup_immap(void)
1162 {
1163 #if defined(CONFIG_CPM1)
1164         iounmap(fs_enet_immap);
1165 #endif
1166 }
1167
1168 /**************************************************************************************/
1169
1170 #ifdef CONFIG_PPC_CPM_NEW_BINDING
1171 static int __devinit find_phy(struct device_node *np,
1172                               struct fs_platform_info *fpi)
1173 {
1174         struct device_node *phynode, *mdionode;
1175         struct resource res;
1176         int ret = 0, len;
1177         const u32 *data;
1178
1179         data  = of_get_property(np, "fixed-link", NULL);
1180         if (data) {
1181                 snprintf(fpi->bus_id, 16, "%x:%02x", 0, *data);
1182                 return 0;
1183         }
1184
1185         data = of_get_property(np, "phy-handle", &len);
1186         if (!data || len != 4)
1187                 return -EINVAL;
1188
1189         phynode = of_find_node_by_phandle(*data);
1190         if (!phynode)
1191                 return -EINVAL;
1192
1193         mdionode = of_get_parent(phynode);
1194         if (!mdionode)
1195                 goto out_put_phy;
1196
1197         ret = of_address_to_resource(mdionode, 0, &res);
1198         if (ret)
1199                 goto out_put_mdio;
1200
1201         data = of_get_property(phynode, "reg", &len);
1202         if (!data || len != 4)
1203                 goto out_put_mdio;
1204
1205         snprintf(fpi->bus_id, 16, "%x:%02x", res.start, *data);
1206
1207 out_put_mdio:
1208         of_node_put(mdionode);
1209 out_put_phy:
1210         of_node_put(phynode);
1211         return ret;
1212 }
1213
1214 #ifdef CONFIG_FS_ENET_HAS_FEC
1215 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1216 #else
1217 #define IS_FEC(match) 0
1218 #endif
1219
1220 static int __devinit fs_enet_probe(struct of_device *ofdev,
1221                                    const struct of_device_id *match)
1222 {
1223         struct net_device *ndev;
1224         struct fs_enet_private *fep;
1225         struct fs_platform_info *fpi;
1226         const u32 *data;
1227         const u8 *mac_addr;
1228         int privsize, len, ret = -ENODEV;
1229
1230         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1231         if (!fpi)
1232                 return -ENOMEM;
1233
1234         if (!IS_FEC(match)) {
1235                 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1236                 if (!data || len != 4)
1237                         goto out_free_fpi;
1238
1239                 fpi->cp_command = *data;
1240         }
1241
1242         fpi->rx_ring = 32;
1243         fpi->tx_ring = 32;
1244         fpi->rx_copybreak = 240;
1245         fpi->use_napi = 1;
1246         fpi->napi_weight = 17;
1247
1248         ret = find_phy(ofdev->node, fpi);
1249         if (ret)
1250                 goto out_free_fpi;
1251
1252         privsize = sizeof(*fep) +
1253                    sizeof(struct sk_buff **) *
1254                    (fpi->rx_ring + fpi->tx_ring);
1255
1256         ndev = alloc_etherdev(privsize);
1257         if (!ndev) {
1258                 ret = -ENOMEM;
1259                 goto out_free_fpi;
1260         }
1261
1262         dev_set_drvdata(&ofdev->dev, ndev);
1263
1264         fep = netdev_priv(ndev);
1265         fep->dev = &ofdev->dev;
1266         fep->ndev = ndev;
1267         fep->fpi = fpi;
1268         fep->ops = match->data;
1269
1270         ret = fep->ops->setup_data(ndev);
1271         if (ret)
1272                 goto out_free_dev;
1273
1274         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1275         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1276
1277         spin_lock_init(&fep->lock);
1278         spin_lock_init(&fep->tx_lock);
1279
1280         mac_addr = of_get_mac_address(ofdev->node);
1281         if (mac_addr)
1282                 memcpy(ndev->dev_addr, mac_addr, 6);
1283
1284         ret = fep->ops->allocate_bd(ndev);
1285         if (ret)
1286                 goto out_cleanup_data;
1287
1288         fep->rx_bd_base = fep->ring_base;
1289         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1290
1291         fep->tx_ring = fpi->tx_ring;
1292         fep->rx_ring = fpi->rx_ring;
1293
1294         ndev->open = fs_enet_open;
1295         ndev->hard_start_xmit = fs_enet_start_xmit;
1296         ndev->tx_timeout = fs_timeout;
1297         ndev->watchdog_timeo = 2 * HZ;
1298         ndev->stop = fs_enet_close;
1299         ndev->get_stats = fs_enet_get_stats;
1300         ndev->set_multicast_list = fs_set_multicast_list;
1301
1302         if (fpi->use_napi)
1303                 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1304                                fpi->napi_weight);
1305
1306         ndev->ethtool_ops = &fs_ethtool_ops;
1307         ndev->do_ioctl = fs_ioctl;
1308
1309         init_timer(&fep->phy_timer_list);
1310
1311         netif_carrier_off(ndev);
1312
1313         ret = register_netdev(ndev);
1314         if (ret)
1315                 goto out_free_bd;
1316
1317         printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
1318                ndev->name,
1319                ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1320                ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1321
1322         return 0;
1323
1324 out_free_bd:
1325         fep->ops->free_bd(ndev);
1326 out_cleanup_data:
1327         fep->ops->cleanup_data(ndev);
1328 out_free_dev:
1329         free_netdev(ndev);
1330         dev_set_drvdata(&ofdev->dev, NULL);
1331 out_free_fpi:
1332         kfree(fpi);
1333         return ret;
1334 }
1335
1336 static int fs_enet_remove(struct of_device *ofdev)
1337 {
1338         struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1339         struct fs_enet_private *fep = netdev_priv(ndev);
1340
1341         unregister_netdev(ndev);
1342
1343         fep->ops->free_bd(ndev);
1344         fep->ops->cleanup_data(ndev);
1345         dev_set_drvdata(fep->dev, NULL);
1346
1347         free_netdev(ndev);
1348         return 0;
1349 }
1350
1351 static struct of_device_id fs_enet_match[] = {
1352 #ifdef CONFIG_FS_ENET_HAS_SCC
1353         {
1354                 .compatible = "fsl,cpm1-scc-enet",
1355                 .data = (void *)&fs_scc_ops,
1356         },
1357 #endif
1358 #ifdef CONFIG_FS_ENET_HAS_FCC
1359         {
1360                 .compatible = "fsl,cpm2-fcc-enet",
1361                 .data = (void *)&fs_fcc_ops,
1362         },
1363 #endif
1364 #ifdef CONFIG_FS_ENET_HAS_FEC
1365         {
1366                 .compatible = "fsl,pq1-fec-enet",
1367                 .data = (void *)&fs_fec_ops,
1368         },
1369 #endif
1370         {}
1371 };
1372
1373 static struct of_platform_driver fs_enet_driver = {
1374         .name   = "fs_enet",
1375         .match_table = fs_enet_match,
1376         .probe = fs_enet_probe,
1377         .remove = fs_enet_remove,
1378 };
1379
1380 static int __init fs_init(void)
1381 {
1382         int r = setup_immap();
1383         if (r != 0)
1384                 return r;
1385
1386         r = of_register_platform_driver(&fs_enet_driver);
1387         if (r != 0)
1388                 goto out;
1389
1390         return 0;
1391
1392 out:
1393         cleanup_immap();
1394         return r;
1395 }
1396
1397 static void __exit fs_cleanup(void)
1398 {
1399         of_unregister_platform_driver(&fs_enet_driver);
1400         cleanup_immap();
1401 }
1402 #else
1403 static int __devinit fs_enet_probe(struct device *dev)
1404 {
1405         struct net_device *ndev;
1406
1407         /* no fixup - no device */
1408         if (dev->platform_data == NULL) {
1409                 printk(KERN_INFO "fs_enet: "
1410                                 "probe called with no platform data; "
1411                                 "remove unused devices\n");
1412                 return -ENODEV;
1413         }
1414
1415         ndev = fs_init_instance(dev, dev->platform_data);
1416         if (IS_ERR(ndev))
1417                 return PTR_ERR(ndev);
1418         return 0;
1419 }
1420
1421 static int fs_enet_remove(struct device *dev)
1422 {
1423         return fs_cleanup_instance(dev_get_drvdata(dev));
1424 }
1425
1426 static struct device_driver fs_enet_fec_driver = {
1427         .name           = "fsl-cpm-fec",
1428         .bus            = &platform_bus_type,
1429         .probe          = fs_enet_probe,
1430         .remove         = fs_enet_remove,
1431 #ifdef CONFIG_PM
1432 /*      .suspend        = fs_enet_suspend,      TODO */
1433 /*      .resume         = fs_enet_resume,       TODO */
1434 #endif
1435 };
1436
1437 static struct device_driver fs_enet_scc_driver = {
1438         .name           = "fsl-cpm-scc",
1439         .bus            = &platform_bus_type,
1440         .probe          = fs_enet_probe,
1441         .remove         = fs_enet_remove,
1442 #ifdef CONFIG_PM
1443 /*      .suspend        = fs_enet_suspend,      TODO */
1444 /*      .resume         = fs_enet_resume,       TODO */
1445 #endif
1446 };
1447
1448 static struct device_driver fs_enet_fcc_driver = {
1449         .name           = "fsl-cpm-fcc",
1450         .bus            = &platform_bus_type,
1451         .probe          = fs_enet_probe,
1452         .remove         = fs_enet_remove,
1453 #ifdef CONFIG_PM
1454 /*      .suspend        = fs_enet_suspend,      TODO */
1455 /*      .resume         = fs_enet_resume,       TODO */
1456 #endif
1457 };
1458
1459 static int __init fs_init(void)
1460 {
1461         int r;
1462
1463         printk(KERN_INFO
1464                         "%s", version);
1465
1466         r = setup_immap();
1467         if (r != 0)
1468                 return r;
1469
1470 #ifdef CONFIG_FS_ENET_HAS_FCC
1471         /* let's insert mii stuff */
1472         r = fs_enet_mdio_bb_init();
1473
1474         if (r != 0) {
1475                 printk(KERN_ERR DRV_MODULE_NAME
1476                         "BB PHY init failed.\n");
1477                 return r;
1478         }
1479         r = driver_register(&fs_enet_fcc_driver);
1480         if (r != 0)
1481                 goto err;
1482 #endif
1483
1484 #ifdef CONFIG_FS_ENET_HAS_FEC
1485         r =  fs_enet_mdio_fec_init();
1486         if (r != 0) {
1487                 printk(KERN_ERR DRV_MODULE_NAME
1488                         "FEC PHY init failed.\n");
1489                 return r;
1490         }
1491
1492         r = driver_register(&fs_enet_fec_driver);
1493         if (r != 0)
1494                 goto err;
1495 #endif
1496
1497 #ifdef CONFIG_FS_ENET_HAS_SCC
1498         r = driver_register(&fs_enet_scc_driver);
1499         if (r != 0)
1500                 goto err;
1501 #endif
1502
1503         return 0;
1504 err:
1505         cleanup_immap();
1506         return r;
1507 }
1508
1509 static void __exit fs_cleanup(void)
1510 {
1511         driver_unregister(&fs_enet_fec_driver);
1512         driver_unregister(&fs_enet_fcc_driver);
1513         driver_unregister(&fs_enet_scc_driver);
1514         cleanup_immap();
1515 }
1516 #endif
1517
1518 #ifdef CONFIG_NET_POLL_CONTROLLER
1519 static void fs_enet_netpoll(struct net_device *dev)
1520 {
1521        disable_irq(dev->irq);
1522        fs_enet_interrupt(dev->irq, dev, NULL);
1523        enable_irq(dev->irq);
1524 }
1525 #endif
1526
1527 /**************************************************************************************/
1528
1529 module_init(fs_init);
1530 module_exit(fs_cleanup);