]> err.no Git - linux-2.6/blob - drivers/net/forcedeth.c
[netdrvr forcedeth] remove superfluous rx engine stop/start
[linux-2.6] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *
102  * Known bugs:
103  * We suspect that on some hardware no TX done interrupts are generated.
104  * This means recovery from netif_stop_queue only happens if the hw timer
105  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
106  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
107  * If your hardware reliably generates tx done interrupts, then you can remove
108  * DEV_NEED_TIMERIRQ from the driver_data flags.
109  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
110  * superfluous timer interrupts from the nic.
111  */
112 #define FORCEDETH_VERSION               "0.45"
113 #define DRV_NAME                        "forcedeth"
114
115 #include <linux/module.h>
116 #include <linux/types.h>
117 #include <linux/pci.h>
118 #include <linux/interrupt.h>
119 #include <linux/netdevice.h>
120 #include <linux/etherdevice.h>
121 #include <linux/delay.h>
122 #include <linux/spinlock.h>
123 #include <linux/ethtool.h>
124 #include <linux/timer.h>
125 #include <linux/skbuff.h>
126 #include <linux/mii.h>
127 #include <linux/random.h>
128 #include <linux/init.h>
129 #include <linux/if_vlan.h>
130
131 #include <asm/irq.h>
132 #include <asm/io.h>
133 #include <asm/uaccess.h>
134 #include <asm/system.h>
135
136 #if 0
137 #define dprintk                 printk
138 #else
139 #define dprintk(x...)           do { } while (0)
140 #endif
141
142
143 /*
144  * Hardware access:
145  */
146
147 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
148 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
149 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
150 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
151 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
152
153 enum {
154         NvRegIrqStatus = 0x000,
155 #define NVREG_IRQSTAT_MIIEVENT  0x040
156 #define NVREG_IRQSTAT_MASK              0x1ff
157         NvRegIrqMask = 0x004,
158 #define NVREG_IRQ_RX_ERROR              0x0001
159 #define NVREG_IRQ_RX                    0x0002
160 #define NVREG_IRQ_RX_NOBUF              0x0004
161 #define NVREG_IRQ_TX_ERR                0x0008
162 #define NVREG_IRQ_TX_OK                 0x0010
163 #define NVREG_IRQ_TIMER                 0x0020
164 #define NVREG_IRQ_LINK                  0x0040
165 #define NVREG_IRQ_TX_ERROR              0x0080
166 #define NVREG_IRQ_TX1                   0x0100
167 #define NVREG_IRQMASK_WANTED            0x00df
168
169 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
170                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
171                                         NVREG_IRQ_TX1))
172
173         NvRegUnknownSetupReg6 = 0x008,
174 #define NVREG_UNKSETUP6_VAL             3
175
176 /*
177  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
178  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
179  */
180         NvRegPollingInterval = 0x00c,
181 #define NVREG_POLL_DEFAULT      970
182         NvRegMisc1 = 0x080,
183 #define NVREG_MISC1_HD          0x02
184 #define NVREG_MISC1_FORCE       0x3b0f3c
185
186         NvRegTransmitterControl = 0x084,
187 #define NVREG_XMITCTL_START     0x01
188         NvRegTransmitterStatus = 0x088,
189 #define NVREG_XMITSTAT_BUSY     0x01
190
191         NvRegPacketFilterFlags = 0x8c,
192 #define NVREG_PFF_ALWAYS        0x7F0008
193 #define NVREG_PFF_PROMISC       0x80
194 #define NVREG_PFF_MYADDR        0x20
195
196         NvRegOffloadConfig = 0x90,
197 #define NVREG_OFFLOAD_HOMEPHY   0x601
198 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
199         NvRegReceiverControl = 0x094,
200 #define NVREG_RCVCTL_START      0x01
201         NvRegReceiverStatus = 0x98,
202 #define NVREG_RCVSTAT_BUSY      0x01
203
204         NvRegRandomSeed = 0x9c,
205 #define NVREG_RNDSEED_MASK      0x00ff
206 #define NVREG_RNDSEED_FORCE     0x7f00
207 #define NVREG_RNDSEED_FORCE2    0x2d00
208 #define NVREG_RNDSEED_FORCE3    0x7400
209
210         NvRegUnknownSetupReg1 = 0xA0,
211 #define NVREG_UNKSETUP1_VAL     0x16070f
212         NvRegUnknownSetupReg2 = 0xA4,
213 #define NVREG_UNKSETUP2_VAL     0x16
214         NvRegMacAddrA = 0xA8,
215         NvRegMacAddrB = 0xAC,
216         NvRegMulticastAddrA = 0xB0,
217 #define NVREG_MCASTADDRA_FORCE  0x01
218         NvRegMulticastAddrB = 0xB4,
219         NvRegMulticastMaskA = 0xB8,
220         NvRegMulticastMaskB = 0xBC,
221
222         NvRegPhyInterface = 0xC0,
223 #define PHY_RGMII               0x10000000
224
225         NvRegTxRingPhysAddr = 0x100,
226         NvRegRxRingPhysAddr = 0x104,
227         NvRegRingSizes = 0x108,
228 #define NVREG_RINGSZ_TXSHIFT 0
229 #define NVREG_RINGSZ_RXSHIFT 16
230         NvRegUnknownTransmitterReg = 0x10c,
231         NvRegLinkSpeed = 0x110,
232 #define NVREG_LINKSPEED_FORCE 0x10000
233 #define NVREG_LINKSPEED_10      1000
234 #define NVREG_LINKSPEED_100     100
235 #define NVREG_LINKSPEED_1000    50
236 #define NVREG_LINKSPEED_MASK    (0xFFF)
237         NvRegUnknownSetupReg5 = 0x130,
238 #define NVREG_UNKSETUP5_BIT31   (1<<31)
239         NvRegUnknownSetupReg3 = 0x13c,
240 #define NVREG_UNKSETUP3_VAL1    0x200010
241         NvRegTxRxControl = 0x144,
242 #define NVREG_TXRXCTL_KICK      0x0001
243 #define NVREG_TXRXCTL_BIT1      0x0002
244 #define NVREG_TXRXCTL_BIT2      0x0004
245 #define NVREG_TXRXCTL_IDLE      0x0008
246 #define NVREG_TXRXCTL_RESET     0x0010
247 #define NVREG_TXRXCTL_RXCHECK   0x0400
248 #define NVREG_TXRXCTL_DESC_1    0
249 #define NVREG_TXRXCTL_DESC_2    0x02100
250 #define NVREG_TXRXCTL_DESC_3    0x02200
251         NvRegMIIStatus = 0x180,
252 #define NVREG_MIISTAT_ERROR             0x0001
253 #define NVREG_MIISTAT_LINKCHANGE        0x0008
254 #define NVREG_MIISTAT_MASK              0x000f
255 #define NVREG_MIISTAT_MASK2             0x000f
256         NvRegUnknownSetupReg4 = 0x184,
257 #define NVREG_UNKSETUP4_VAL     8
258
259         NvRegAdapterControl = 0x188,
260 #define NVREG_ADAPTCTL_START    0x02
261 #define NVREG_ADAPTCTL_LINKUP   0x04
262 #define NVREG_ADAPTCTL_PHYVALID 0x40000
263 #define NVREG_ADAPTCTL_RUNNING  0x100000
264 #define NVREG_ADAPTCTL_PHYSHIFT 24
265         NvRegMIISpeed = 0x18c,
266 #define NVREG_MIISPEED_BIT8     (1<<8)
267 #define NVREG_MIIDELAY  5
268         NvRegMIIControl = 0x190,
269 #define NVREG_MIICTL_INUSE      0x08000
270 #define NVREG_MIICTL_WRITE      0x00400
271 #define NVREG_MIICTL_ADDRSHIFT  5
272         NvRegMIIData = 0x194,
273         NvRegWakeUpFlags = 0x200,
274 #define NVREG_WAKEUPFLAGS_VAL           0x7770
275 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
276 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
277 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
278 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
279 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
280 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
281 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
282 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
283 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
284 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
285
286         NvRegPatternCRC = 0x204,
287         NvRegPatternMask = 0x208,
288         NvRegPowerCap = 0x268,
289 #define NVREG_POWERCAP_D3SUPP   (1<<30)
290 #define NVREG_POWERCAP_D2SUPP   (1<<26)
291 #define NVREG_POWERCAP_D1SUPP   (1<<25)
292         NvRegPowerState = 0x26c,
293 #define NVREG_POWERSTATE_POWEREDUP      0x8000
294 #define NVREG_POWERSTATE_VALID          0x0100
295 #define NVREG_POWERSTATE_MASK           0x0003
296 #define NVREG_POWERSTATE_D0             0x0000
297 #define NVREG_POWERSTATE_D1             0x0001
298 #define NVREG_POWERSTATE_D2             0x0002
299 #define NVREG_POWERSTATE_D3             0x0003
300 };
301
302 /* Big endian: should work, but is untested */
303 struct ring_desc {
304         u32 PacketBuffer;
305         u32 FlagLen;
306 };
307
308 struct ring_desc_ex {
309         u32 PacketBufferHigh;
310         u32 PacketBufferLow;
311         u32 Reserved;
312         u32 FlagLen;
313 };
314
315 typedef union _ring_type {
316         struct ring_desc* orig;
317         struct ring_desc_ex* ex;
318 } ring_type;
319
320 #define FLAG_MASK_V1 0xffff0000
321 #define FLAG_MASK_V2 0xffffc000
322 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
323 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
324
325 #define NV_TX_LASTPACKET        (1<<16)
326 #define NV_TX_RETRYERROR        (1<<19)
327 #define NV_TX_FORCED_INTERRUPT  (1<<24)
328 #define NV_TX_DEFERRED          (1<<26)
329 #define NV_TX_CARRIERLOST       (1<<27)
330 #define NV_TX_LATECOLLISION     (1<<28)
331 #define NV_TX_UNDERFLOW         (1<<29)
332 #define NV_TX_ERROR             (1<<30)
333 #define NV_TX_VALID             (1<<31)
334
335 #define NV_TX2_LASTPACKET       (1<<29)
336 #define NV_TX2_RETRYERROR       (1<<18)
337 #define NV_TX2_FORCED_INTERRUPT (1<<30)
338 #define NV_TX2_DEFERRED         (1<<25)
339 #define NV_TX2_CARRIERLOST      (1<<26)
340 #define NV_TX2_LATECOLLISION    (1<<27)
341 #define NV_TX2_UNDERFLOW        (1<<28)
342 /* error and valid are the same for both */
343 #define NV_TX2_ERROR            (1<<30)
344 #define NV_TX2_VALID            (1<<31)
345 #define NV_TX2_TSO              (1<<28)
346 #define NV_TX2_TSO_SHIFT        14
347 #define NV_TX2_CHECKSUM_L3      (1<<27)
348 #define NV_TX2_CHECKSUM_L4      (1<<26)
349
350 #define NV_RX_DESCRIPTORVALID   (1<<16)
351 #define NV_RX_MISSEDFRAME       (1<<17)
352 #define NV_RX_SUBSTRACT1        (1<<18)
353 #define NV_RX_ERROR1            (1<<23)
354 #define NV_RX_ERROR2            (1<<24)
355 #define NV_RX_ERROR3            (1<<25)
356 #define NV_RX_ERROR4            (1<<26)
357 #define NV_RX_CRCERR            (1<<27)
358 #define NV_RX_OVERFLOW          (1<<28)
359 #define NV_RX_FRAMINGERR        (1<<29)
360 #define NV_RX_ERROR             (1<<30)
361 #define NV_RX_AVAIL             (1<<31)
362
363 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
364 #define NV_RX2_CHECKSUMOK1      (0x10000000)
365 #define NV_RX2_CHECKSUMOK2      (0x14000000)
366 #define NV_RX2_CHECKSUMOK3      (0x18000000)
367 #define NV_RX2_DESCRIPTORVALID  (1<<29)
368 #define NV_RX2_SUBSTRACT1       (1<<25)
369 #define NV_RX2_ERROR1           (1<<18)
370 #define NV_RX2_ERROR2           (1<<19)
371 #define NV_RX2_ERROR3           (1<<20)
372 #define NV_RX2_ERROR4           (1<<21)
373 #define NV_RX2_CRCERR           (1<<22)
374 #define NV_RX2_OVERFLOW         (1<<23)
375 #define NV_RX2_FRAMINGERR       (1<<24)
376 /* error and avail are the same for both */
377 #define NV_RX2_ERROR            (1<<30)
378 #define NV_RX2_AVAIL            (1<<31)
379
380 /* Miscelaneous hardware related defines: */
381 #define NV_PCI_REGSZ            0x270
382
383 /* various timeout delays: all in usec */
384 #define NV_TXRX_RESET_DELAY     4
385 #define NV_TXSTOP_DELAY1        10
386 #define NV_TXSTOP_DELAY1MAX     500000
387 #define NV_TXSTOP_DELAY2        100
388 #define NV_RXSTOP_DELAY1        10
389 #define NV_RXSTOP_DELAY1MAX     500000
390 #define NV_RXSTOP_DELAY2        100
391 #define NV_SETUP5_DELAY         5
392 #define NV_SETUP5_DELAYMAX      50000
393 #define NV_POWERUP_DELAY        5
394 #define NV_POWERUP_DELAYMAX     5000
395 #define NV_MIIBUSY_DELAY        50
396 #define NV_MIIPHY_DELAY 10
397 #define NV_MIIPHY_DELAYMAX      10000
398
399 #define NV_WAKEUPPATTERNS       5
400 #define NV_WAKEUPMASKENTRIES    4
401
402 /* General driver defaults */
403 #define NV_WATCHDOG_TIMEO       (5*HZ)
404
405 #define RX_RING         128
406 #define TX_RING         64
407 /* 
408  * If your nic mysteriously hangs then try to reduce the limits
409  * to 1/0: It might be required to set NV_TX_LASTPACKET in the
410  * last valid ring entry. But this would be impossible to
411  * implement - probably a disassembly error.
412  */
413 #define TX_LIMIT_STOP   63
414 #define TX_LIMIT_START  62
415
416 /* rx/tx mac addr + type + vlan + align + slack*/
417 #define NV_RX_HEADERS           (64)
418 /* even more slack. */
419 #define NV_RX_ALLOC_PAD         (64)
420
421 /* maximum mtu size */
422 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
423 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
424
425 #define OOM_REFILL      (1+HZ/20)
426 #define POLL_WAIT       (1+HZ/100)
427 #define LINK_TIMEOUT    (3*HZ)
428
429 /* 
430  * desc_ver values:
431  * The nic supports three different descriptor types:
432  * - DESC_VER_1: Original
433  * - DESC_VER_2: support for jumbo frames.
434  * - DESC_VER_3: 64-bit format.
435  */
436 #define DESC_VER_1      1
437 #define DESC_VER_2      2
438 #define DESC_VER_3      3
439
440 /* PHY defines */
441 #define PHY_OUI_MARVELL 0x5043
442 #define PHY_OUI_CICADA  0x03f1
443 #define PHYID1_OUI_MASK 0x03ff
444 #define PHYID1_OUI_SHFT 6
445 #define PHYID2_OUI_MASK 0xfc00
446 #define PHYID2_OUI_SHFT 10
447 #define PHY_INIT1       0x0f000
448 #define PHY_INIT2       0x0e00
449 #define PHY_INIT3       0x01000
450 #define PHY_INIT4       0x0200
451 #define PHY_INIT5       0x0004
452 #define PHY_INIT6       0x02000
453 #define PHY_GIGABIT     0x0100
454
455 #define PHY_TIMEOUT     0x1
456 #define PHY_ERROR       0x2
457
458 #define PHY_100 0x1
459 #define PHY_1000        0x2
460 #define PHY_HALF        0x100
461
462 /* FIXME: MII defines that should be added to <linux/mii.h> */
463 #define MII_1000BT_CR   0x09
464 #define MII_1000BT_SR   0x0a
465 #define ADVERTISE_1000FULL      0x0200
466 #define ADVERTISE_1000HALF      0x0100
467 #define LPA_1000FULL    0x0800
468 #define LPA_1000HALF    0x0400
469
470
471 /*
472  * SMP locking:
473  * All hardware access under dev->priv->lock, except the performance
474  * critical parts:
475  * - rx is (pseudo-) lockless: it relies on the single-threading provided
476  *      by the arch code for interrupts.
477  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
478  *      needs dev->priv->lock :-(
479  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
480  */
481
482 /* in dev: base, irq */
483 struct fe_priv {
484         spinlock_t lock;
485
486         /* General data:
487          * Locking: spin_lock(&np->lock); */
488         struct net_device_stats stats;
489         int in_shutdown;
490         u32 linkspeed;
491         int duplex;
492         int autoneg;
493         int fixed_mode;
494         int phyaddr;
495         int wolenabled;
496         unsigned int phy_oui;
497         u16 gigabit;
498
499         /* General data: RO fields */
500         dma_addr_t ring_addr;
501         struct pci_dev *pci_dev;
502         u32 orig_mac[2];
503         u32 irqmask;
504         u32 desc_ver;
505         u32 txrxctl_bits;
506
507         void __iomem *base;
508
509         /* rx specific fields.
510          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
511          */
512         ring_type rx_ring;
513         unsigned int cur_rx, refill_rx;
514         struct sk_buff *rx_skbuff[RX_RING];
515         dma_addr_t rx_dma[RX_RING];
516         unsigned int rx_buf_sz;
517         unsigned int pkt_limit;
518         struct timer_list oom_kick;
519         struct timer_list nic_poll;
520
521         /* media detection workaround.
522          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
523          */
524         int need_linktimer;
525         unsigned long link_timeout;
526         /*
527          * tx specific fields.
528          */
529         ring_type tx_ring;
530         unsigned int next_tx, nic_tx;
531         struct sk_buff *tx_skbuff[TX_RING];
532         dma_addr_t tx_dma[TX_RING];
533         u32 tx_flags;
534 };
535
536 /*
537  * Maximum number of loops until we assume that a bit in the irq mask
538  * is stuck. Overridable with module param.
539  */
540 static int max_interrupt_work = 5;
541
542 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
543 {
544         return netdev_priv(dev);
545 }
546
547 static inline u8 __iomem *get_hwbase(struct net_device *dev)
548 {
549         return ((struct fe_priv *)netdev_priv(dev))->base;
550 }
551
552 static inline void pci_push(u8 __iomem *base)
553 {
554         /* force out pending posted writes */
555         readl(base);
556 }
557
558 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
559 {
560         return le32_to_cpu(prd->FlagLen)
561                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
562 }
563
564 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
565 {
566         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
567 }
568
569 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
570                                 int delay, int delaymax, const char *msg)
571 {
572         u8 __iomem *base = get_hwbase(dev);
573
574         pci_push(base);
575         do {
576                 udelay(delay);
577                 delaymax -= delay;
578                 if (delaymax < 0) {
579                         if (msg)
580                                 printk(msg);
581                         return 1;
582                 }
583         } while ((readl(base + offset) & mask) != target);
584         return 0;
585 }
586
587 #define MII_READ        (-1)
588 /* mii_rw: read/write a register on the PHY.
589  *
590  * Caller must guarantee serialization
591  */
592 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
593 {
594         u8 __iomem *base = get_hwbase(dev);
595         u32 reg;
596         int retval;
597
598         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
599
600         reg = readl(base + NvRegMIIControl);
601         if (reg & NVREG_MIICTL_INUSE) {
602                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
603                 udelay(NV_MIIBUSY_DELAY);
604         }
605
606         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
607         if (value != MII_READ) {
608                 writel(value, base + NvRegMIIData);
609                 reg |= NVREG_MIICTL_WRITE;
610         }
611         writel(reg, base + NvRegMIIControl);
612
613         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
614                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
615                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
616                                 dev->name, miireg, addr);
617                 retval = -1;
618         } else if (value != MII_READ) {
619                 /* it was a write operation - fewer failures are detectable */
620                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
621                                 dev->name, value, miireg, addr);
622                 retval = 0;
623         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
624                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
625                                 dev->name, miireg, addr);
626                 retval = -1;
627         } else {
628                 retval = readl(base + NvRegMIIData);
629                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
630                                 dev->name, miireg, addr, retval);
631         }
632
633         return retval;
634 }
635
636 static int phy_reset(struct net_device *dev)
637 {
638         struct fe_priv *np = netdev_priv(dev);
639         u32 miicontrol;
640         unsigned int tries = 0;
641
642         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
643         miicontrol |= BMCR_RESET;
644         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
645                 return -1;
646         }
647
648         /* wait for 500ms */
649         msleep(500);
650
651         /* must wait till reset is deasserted */
652         while (miicontrol & BMCR_RESET) {
653                 msleep(10);
654                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
655                 /* FIXME: 100 tries seem excessive */
656                 if (tries++ > 100)
657                         return -1;
658         }
659         return 0;
660 }
661
662 static int phy_init(struct net_device *dev)
663 {
664         struct fe_priv *np = get_nvpriv(dev);
665         u8 __iomem *base = get_hwbase(dev);
666         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
667
668         /* set advertise register */
669         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
670         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
671         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
672                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
673                 return PHY_ERROR;
674         }
675
676         /* get phy interface type */
677         phyinterface = readl(base + NvRegPhyInterface);
678
679         /* see if gigabit phy */
680         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
681         if (mii_status & PHY_GIGABIT) {
682                 np->gigabit = PHY_GIGABIT;
683                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
684                 mii_control_1000 &= ~ADVERTISE_1000HALF;
685                 if (phyinterface & PHY_RGMII)
686                         mii_control_1000 |= ADVERTISE_1000FULL;
687                 else
688                         mii_control_1000 &= ~ADVERTISE_1000FULL;
689
690                 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
691                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
692                         return PHY_ERROR;
693                 }
694         }
695         else
696                 np->gigabit = 0;
697
698         /* reset the phy */
699         if (phy_reset(dev)) {
700                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
701                 return PHY_ERROR;
702         }
703
704         /* phy vendor specific configuration */
705         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
706                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
707                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
708                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
709                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
710                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
711                         return PHY_ERROR;
712                 }
713                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
714                 phy_reserved |= PHY_INIT5;
715                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
716                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
717                         return PHY_ERROR;
718                 }
719         }
720         if (np->phy_oui == PHY_OUI_CICADA) {
721                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
722                 phy_reserved |= PHY_INIT6;
723                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
724                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
725                         return PHY_ERROR;
726                 }
727         }
728
729         /* restart auto negotiation */
730         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
731         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
732         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
733                 return PHY_ERROR;
734         }
735
736         return 0;
737 }
738
739 static void nv_start_rx(struct net_device *dev)
740 {
741         struct fe_priv *np = netdev_priv(dev);
742         u8 __iomem *base = get_hwbase(dev);
743
744         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
745         /* Already running? Stop it. */
746         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
747                 writel(0, base + NvRegReceiverControl);
748                 pci_push(base);
749         }
750         writel(np->linkspeed, base + NvRegLinkSpeed);
751         pci_push(base);
752         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
753         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
754                                 dev->name, np->duplex, np->linkspeed);
755         pci_push(base);
756 }
757
758 static void nv_stop_rx(struct net_device *dev)
759 {
760         u8 __iomem *base = get_hwbase(dev);
761
762         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
763         writel(0, base + NvRegReceiverControl);
764         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
765                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
766                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
767
768         udelay(NV_RXSTOP_DELAY2);
769         writel(0, base + NvRegLinkSpeed);
770 }
771
772 static void nv_start_tx(struct net_device *dev)
773 {
774         u8 __iomem *base = get_hwbase(dev);
775
776         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
777         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
778         pci_push(base);
779 }
780
781 static void nv_stop_tx(struct net_device *dev)
782 {
783         u8 __iomem *base = get_hwbase(dev);
784
785         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
786         writel(0, base + NvRegTransmitterControl);
787         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
788                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
789                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
790
791         udelay(NV_TXSTOP_DELAY2);
792         writel(0, base + NvRegUnknownTransmitterReg);
793 }
794
795 static void nv_txrx_reset(struct net_device *dev)
796 {
797         struct fe_priv *np = netdev_priv(dev);
798         u8 __iomem *base = get_hwbase(dev);
799
800         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
801         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
802         pci_push(base);
803         udelay(NV_TXRX_RESET_DELAY);
804         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
805         pci_push(base);
806 }
807
808 /*
809  * nv_get_stats: dev->get_stats function
810  * Get latest stats value from the nic.
811  * Called with read_lock(&dev_base_lock) held for read -
812  * only synchronized against unregister_netdevice.
813  */
814 static struct net_device_stats *nv_get_stats(struct net_device *dev)
815 {
816         struct fe_priv *np = netdev_priv(dev);
817
818         /* It seems that the nic always generates interrupts and doesn't
819          * accumulate errors internally. Thus the current values in np->stats
820          * are already up to date.
821          */
822         return &np->stats;
823 }
824
825 /*
826  * nv_alloc_rx: fill rx ring entries.
827  * Return 1 if the allocations for the skbs failed and the
828  * rx engine is without Available descriptors
829  */
830 static int nv_alloc_rx(struct net_device *dev)
831 {
832         struct fe_priv *np = netdev_priv(dev);
833         unsigned int refill_rx = np->refill_rx;
834         int nr;
835
836         while (np->cur_rx != refill_rx) {
837                 struct sk_buff *skb;
838
839                 nr = refill_rx % RX_RING;
840                 if (np->rx_skbuff[nr] == NULL) {
841
842                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
843                         if (!skb)
844                                 break;
845
846                         skb->dev = dev;
847                         np->rx_skbuff[nr] = skb;
848                 } else {
849                         skb = np->rx_skbuff[nr];
850                 }
851                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len,
852                                                 PCI_DMA_FROMDEVICE);
853                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
854                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
855                         wmb();
856                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
857                 } else {
858                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
859                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
860                         wmb();
861                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
862                 }
863                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
864                                         dev->name, refill_rx);
865                 refill_rx++;
866         }
867         np->refill_rx = refill_rx;
868         if (np->cur_rx - refill_rx == RX_RING)
869                 return 1;
870         return 0;
871 }
872
873 static void nv_do_rx_refill(unsigned long data)
874 {
875         struct net_device *dev = (struct net_device *) data;
876         struct fe_priv *np = netdev_priv(dev);
877
878         disable_irq(dev->irq);
879         if (nv_alloc_rx(dev)) {
880                 spin_lock(&np->lock);
881                 if (!np->in_shutdown)
882                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
883                 spin_unlock(&np->lock);
884         }
885         enable_irq(dev->irq);
886 }
887
888 static void nv_init_rx(struct net_device *dev) 
889 {
890         struct fe_priv *np = netdev_priv(dev);
891         int i;
892
893         np->cur_rx = RX_RING;
894         np->refill_rx = 0;
895         for (i = 0; i < RX_RING; i++)
896                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
897                         np->rx_ring.orig[i].FlagLen = 0;
898                 else
899                         np->rx_ring.ex[i].FlagLen = 0;
900 }
901
902 static void nv_init_tx(struct net_device *dev)
903 {
904         struct fe_priv *np = netdev_priv(dev);
905         int i;
906
907         np->next_tx = np->nic_tx = 0;
908         for (i = 0; i < TX_RING; i++) {
909                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
910                         np->tx_ring.orig[i].FlagLen = 0;
911                 else
912                         np->tx_ring.ex[i].FlagLen = 0;
913                 np->tx_skbuff[i] = NULL;
914         }
915 }
916
917 static int nv_init_ring(struct net_device *dev)
918 {
919         nv_init_tx(dev);
920         nv_init_rx(dev);
921         return nv_alloc_rx(dev);
922 }
923
924 static void nv_release_txskb(struct net_device *dev, unsigned int skbnr)
925 {
926         struct fe_priv *np = netdev_priv(dev);
927         struct sk_buff *skb = np->tx_skbuff[skbnr];
928         unsigned int j, entry, fragments;
929                         
930         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d, skb %p\n",
931                 dev->name, skbnr, np->tx_skbuff[skbnr]);
932         
933         entry = skbnr;
934         if ((fragments = skb_shinfo(skb)->nr_frags) != 0) {
935                 for (j = fragments; j >= 1; j--) {
936                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j-1];
937                         pci_unmap_page(np->pci_dev, np->tx_dma[entry],
938                                        frag->size,
939                                        PCI_DMA_TODEVICE);
940                         entry = (entry - 1) % TX_RING;
941                 }
942         }
943         pci_unmap_single(np->pci_dev, np->tx_dma[entry],
944                          skb->len - skb->data_len,
945                          PCI_DMA_TODEVICE);
946         dev_kfree_skb_irq(skb);
947         np->tx_skbuff[skbnr] = NULL;
948 }
949
950 static void nv_drain_tx(struct net_device *dev)
951 {
952         struct fe_priv *np = netdev_priv(dev);
953         unsigned int i;
954         
955         for (i = 0; i < TX_RING; i++) {
956                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
957                         np->tx_ring.orig[i].FlagLen = 0;
958                 else
959                         np->tx_ring.ex[i].FlagLen = 0;
960                 if (np->tx_skbuff[i]) {
961                         nv_release_txskb(dev, i);
962                         np->stats.tx_dropped++;
963                 }
964         }
965 }
966
967 static void nv_drain_rx(struct net_device *dev)
968 {
969         struct fe_priv *np = netdev_priv(dev);
970         int i;
971         for (i = 0; i < RX_RING; i++) {
972                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
973                         np->rx_ring.orig[i].FlagLen = 0;
974                 else
975                         np->rx_ring.ex[i].FlagLen = 0;
976                 wmb();
977                 if (np->rx_skbuff[i]) {
978                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
979                                                 np->rx_skbuff[i]->len,
980                                                 PCI_DMA_FROMDEVICE);
981                         dev_kfree_skb(np->rx_skbuff[i]);
982                         np->rx_skbuff[i] = NULL;
983                 }
984         }
985 }
986
987 static void drain_ring(struct net_device *dev)
988 {
989         nv_drain_tx(dev);
990         nv_drain_rx(dev);
991 }
992
993 /*
994  * nv_start_xmit: dev->hard_start_xmit function
995  * Called with dev->xmit_lock held.
996  */
997 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
998 {
999         struct fe_priv *np = netdev_priv(dev);
1000         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1001         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1002         unsigned int nr = (np->next_tx + fragments) % TX_RING;
1003         unsigned int i;
1004
1005         spin_lock_irq(&np->lock);
1006
1007         if ((np->next_tx - np->nic_tx + fragments) > TX_LIMIT_STOP) {
1008                 spin_unlock_irq(&np->lock);
1009                 netif_stop_queue(dev);
1010                 return NETDEV_TX_BUSY;
1011         }
1012
1013         np->tx_skbuff[nr] = skb;
1014         
1015         if (fragments) {
1016                 dprintk(KERN_DEBUG "%s: nv_start_xmit: buffer contains %d fragments\n", dev->name, fragments);
1017                 /* setup descriptors in reverse order */
1018                 for (i = fragments; i >= 1; i--) {
1019                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1020                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset, frag->size,
1021                                                         PCI_DMA_TODEVICE);
1022
1023                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1024                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1025                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra);
1026                         } else {
1027                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1028                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1029                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra);
1030                         }
1031                         
1032                         nr = (nr - 1) % TX_RING;
1033
1034                         if (np->desc_ver == DESC_VER_1)
1035                                 tx_flags_extra &= ~NV_TX_LASTPACKET;
1036                         else
1037                                 tx_flags_extra &= ~NV_TX2_LASTPACKET;           
1038                 }
1039         }
1040
1041 #ifdef NETIF_F_TSO
1042         if (skb_shinfo(skb)->tso_size)
1043                 tx_flags_extra |= NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1044         else
1045 #endif
1046         tx_flags_extra |= (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1047
1048         np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len-skb->data_len,
1049                                         PCI_DMA_TODEVICE);
1050         
1051         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1052                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1053                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra);
1054         } else {
1055                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1056                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1057                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra);
1058         }       
1059
1060         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission. tx_flags_extra: %x\n",
1061                                 dev->name, np->next_tx, tx_flags_extra);
1062         {
1063                 int j;
1064                 for (j=0; j<64; j++) {
1065                         if ((j%16) == 0)
1066                                 dprintk("\n%03x:", j);
1067                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1068                 }
1069                 dprintk("\n");
1070         }
1071
1072         np->next_tx += 1 + fragments;
1073
1074         dev->trans_start = jiffies;
1075         spin_unlock_irq(&np->lock);
1076         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1077         pci_push(get_hwbase(dev));
1078         return NETDEV_TX_OK;
1079 }
1080
1081 /*
1082  * nv_tx_done: check for completed packets, release the skbs.
1083  *
1084  * Caller must own np->lock.
1085  */
1086 static void nv_tx_done(struct net_device *dev)
1087 {
1088         struct fe_priv *np = netdev_priv(dev);
1089         u32 Flags;
1090         unsigned int i;
1091         struct sk_buff *skb;
1092
1093         while (np->nic_tx != np->next_tx) {
1094                 i = np->nic_tx % TX_RING;
1095
1096                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1097                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1098                 else
1099                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1100
1101                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1102                                         dev->name, np->nic_tx, Flags);
1103                 if (Flags & NV_TX_VALID)
1104                         break;
1105                 if (np->desc_ver == DESC_VER_1) {
1106                         if (Flags & NV_TX_LASTPACKET) {
1107                                 skb = np->tx_skbuff[i];
1108                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1109                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1110                                         if (Flags & NV_TX_UNDERFLOW)
1111                                                 np->stats.tx_fifo_errors++;
1112                                         if (Flags & NV_TX_CARRIERLOST)
1113                                                 np->stats.tx_carrier_errors++;
1114                                         np->stats.tx_errors++;
1115                                 } else {
1116                                         np->stats.tx_packets++;
1117                                         np->stats.tx_bytes += skb->len;
1118                                 }
1119                                 nv_release_txskb(dev, i);
1120                         }
1121                 } else {
1122                         if (Flags & NV_TX2_LASTPACKET) {
1123                                 skb = np->tx_skbuff[i];
1124                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1125                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1126                                         if (Flags & NV_TX2_UNDERFLOW)
1127                                                 np->stats.tx_fifo_errors++;
1128                                         if (Flags & NV_TX2_CARRIERLOST)
1129                                                 np->stats.tx_carrier_errors++;
1130                                         np->stats.tx_errors++;
1131                                 } else {
1132                                         np->stats.tx_packets++;
1133                                         np->stats.tx_bytes += skb->len;
1134                                 }                               
1135                                 nv_release_txskb(dev, i);
1136                         }
1137                 }
1138                 np->nic_tx++;
1139         }
1140         if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1141                 netif_wake_queue(dev);
1142 }
1143
1144 /*
1145  * nv_tx_timeout: dev->tx_timeout function
1146  * Called with dev->xmit_lock held.
1147  */
1148 static void nv_tx_timeout(struct net_device *dev)
1149 {
1150         struct fe_priv *np = netdev_priv(dev);
1151         u8 __iomem *base = get_hwbase(dev);
1152
1153         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
1154                         readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
1155
1156         {
1157                 int i;
1158
1159                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1160                                 dev->name, (unsigned long)np->ring_addr,
1161                                 np->next_tx, np->nic_tx);
1162                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1163                 for (i=0;i<0x400;i+= 32) {
1164                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1165                                         i,
1166                                         readl(base + i + 0), readl(base + i + 4),
1167                                         readl(base + i + 8), readl(base + i + 12),
1168                                         readl(base + i + 16), readl(base + i + 20),
1169                                         readl(base + i + 24), readl(base + i + 28));
1170                 }
1171                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1172                 for (i=0;i<TX_RING;i+= 4) {
1173                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1174                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1175                                        i, 
1176                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1177                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1178                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1179                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1180                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1181                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1182                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1183                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1184                         } else {
1185                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1186                                        i, 
1187                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1188                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1189                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1190                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1191                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1192                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1193                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1194                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1195                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1196                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1197                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1198                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1199                         }
1200                 }
1201         }
1202
1203         spin_lock_irq(&np->lock);
1204
1205         /* 1) stop tx engine */
1206         nv_stop_tx(dev);
1207
1208         /* 2) check that the packets were not sent already: */
1209         nv_tx_done(dev);
1210
1211         /* 3) if there are dead entries: clear everything */
1212         if (np->next_tx != np->nic_tx) {
1213                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1214                 nv_drain_tx(dev);
1215                 np->next_tx = np->nic_tx = 0;
1216                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1217                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1218                 else
1219                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1220                 netif_wake_queue(dev);
1221         }
1222
1223         /* 4) restart tx engine */
1224         nv_start_tx(dev);
1225         spin_unlock_irq(&np->lock);
1226 }
1227
1228 /*
1229  * Called when the nic notices a mismatch between the actual data len on the
1230  * wire and the len indicated in the 802 header
1231  */
1232 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1233 {
1234         int hdrlen;     /* length of the 802 header */
1235         int protolen;   /* length as stored in the proto field */
1236
1237         /* 1) calculate len according to header */
1238         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1239                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1240                 hdrlen = VLAN_HLEN;
1241         } else {
1242                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1243                 hdrlen = ETH_HLEN;
1244         }
1245         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1246                                 dev->name, datalen, protolen, hdrlen);
1247         if (protolen > ETH_DATA_LEN)
1248                 return datalen; /* Value in proto field not a len, no checks possible */
1249
1250         protolen += hdrlen;
1251         /* consistency checks: */
1252         if (datalen > ETH_ZLEN) {
1253                 if (datalen >= protolen) {
1254                         /* more data on wire than in 802 header, trim of
1255                          * additional data.
1256                          */
1257                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1258                                         dev->name, protolen);
1259                         return protolen;
1260                 } else {
1261                         /* less data on wire than mentioned in header.
1262                          * Discard the packet.
1263                          */
1264                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1265                                         dev->name);
1266                         return -1;
1267                 }
1268         } else {
1269                 /* short packet. Accept only if 802 values are also short */
1270                 if (protolen > ETH_ZLEN) {
1271                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1272                                         dev->name);
1273                         return -1;
1274                 }
1275                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1276                                 dev->name, datalen);
1277                 return datalen;
1278         }
1279 }
1280
1281 static void nv_rx_process(struct net_device *dev)
1282 {
1283         struct fe_priv *np = netdev_priv(dev);
1284         u32 Flags;
1285
1286         for (;;) {
1287                 struct sk_buff *skb;
1288                 int len;
1289                 int i;
1290                 if (np->cur_rx - np->refill_rx >= RX_RING)
1291                         break;  /* we scanned the whole ring - do not continue */
1292
1293                 i = np->cur_rx % RX_RING;
1294                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1295                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1296                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1297                 } else {
1298                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1299                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1300                 }
1301
1302                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1303                                         dev->name, np->cur_rx, Flags);
1304
1305                 if (Flags & NV_RX_AVAIL)
1306                         break;  /* still owned by hardware, */
1307
1308                 /*
1309                  * the packet is for us - immediately tear down the pci mapping.
1310                  * TODO: check if a prefetch of the first cacheline improves
1311                  * the performance.
1312                  */
1313                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1314                                 np->rx_skbuff[i]->len,
1315                                 PCI_DMA_FROMDEVICE);
1316
1317                 {
1318                         int j;
1319                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1320                         for (j=0; j<64; j++) {
1321                                 if ((j%16) == 0)
1322                                         dprintk("\n%03x:", j);
1323                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1324                         }
1325                         dprintk("\n");
1326                 }
1327                 /* look at what we actually got: */
1328                 if (np->desc_ver == DESC_VER_1) {
1329                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1330                                 goto next_pkt;
1331
1332                         if (Flags & NV_RX_MISSEDFRAME) {
1333                                 np->stats.rx_missed_errors++;
1334                                 np->stats.rx_errors++;
1335                                 goto next_pkt;
1336                         }
1337                         if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1338                                 np->stats.rx_errors++;
1339                                 goto next_pkt;
1340                         }
1341                         if (Flags & NV_RX_CRCERR) {
1342                                 np->stats.rx_crc_errors++;
1343                                 np->stats.rx_errors++;
1344                                 goto next_pkt;
1345                         }
1346                         if (Flags & NV_RX_OVERFLOW) {
1347                                 np->stats.rx_over_errors++;
1348                                 np->stats.rx_errors++;
1349                                 goto next_pkt;
1350                         }
1351                         if (Flags & NV_RX_ERROR4) {
1352                                 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1353                                 if (len < 0) {
1354                                         np->stats.rx_errors++;
1355                                         goto next_pkt;
1356                                 }
1357                         }
1358                         /* framing errors are soft errors. */
1359                         if (Flags & NV_RX_FRAMINGERR) {
1360                                 if (Flags & NV_RX_SUBSTRACT1) {
1361                                         len--;
1362                                 }
1363                         }
1364                 } else {
1365                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1366                                 goto next_pkt;
1367
1368                         if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1369                                 np->stats.rx_errors++;
1370                                 goto next_pkt;
1371                         }
1372                         if (Flags & NV_RX2_CRCERR) {
1373                                 np->stats.rx_crc_errors++;
1374                                 np->stats.rx_errors++;
1375                                 goto next_pkt;
1376                         }
1377                         if (Flags & NV_RX2_OVERFLOW) {
1378                                 np->stats.rx_over_errors++;
1379                                 np->stats.rx_errors++;
1380                                 goto next_pkt;
1381                         }
1382                         if (Flags & NV_RX2_ERROR4) {
1383                                 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1384                                 if (len < 0) {
1385                                         np->stats.rx_errors++;
1386                                         goto next_pkt;
1387                                 }
1388                         }
1389                         /* framing errors are soft errors */
1390                         if (Flags & NV_RX2_FRAMINGERR) {
1391                                 if (Flags & NV_RX2_SUBSTRACT1) {
1392                                         len--;
1393                                 }
1394                         }
1395                         Flags &= NV_RX2_CHECKSUMMASK;
1396                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1397                                         Flags == NV_RX2_CHECKSUMOK2 ||
1398                                         Flags == NV_RX2_CHECKSUMOK3) {
1399                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1400                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1401                         } else {
1402                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1403                         }
1404                 }
1405                 /* got a valid packet - forward it to the network core */
1406                 skb = np->rx_skbuff[i];
1407                 np->rx_skbuff[i] = NULL;
1408
1409                 skb_put(skb, len);
1410                 skb->protocol = eth_type_trans(skb, dev);
1411                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1412                                         dev->name, np->cur_rx, len, skb->protocol);
1413                 netif_rx(skb);
1414                 dev->last_rx = jiffies;
1415                 np->stats.rx_packets++;
1416                 np->stats.rx_bytes += len;
1417 next_pkt:
1418                 np->cur_rx++;
1419         }
1420 }
1421
1422 static void set_bufsize(struct net_device *dev)
1423 {
1424         struct fe_priv *np = netdev_priv(dev);
1425
1426         if (dev->mtu <= ETH_DATA_LEN)
1427                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1428         else
1429                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1430 }
1431
1432 /*
1433  * nv_change_mtu: dev->change_mtu function
1434  * Called with dev_base_lock held for read.
1435  */
1436 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1437 {
1438         struct fe_priv *np = netdev_priv(dev);
1439         int old_mtu;
1440
1441         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1442                 return -EINVAL;
1443
1444         old_mtu = dev->mtu;
1445         dev->mtu = new_mtu;
1446
1447         /* return early if the buffer sizes will not change */
1448         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1449                 return 0;
1450         if (old_mtu == new_mtu)
1451                 return 0;
1452
1453         /* synchronized against open : rtnl_lock() held by caller */
1454         if (netif_running(dev)) {
1455                 u8 __iomem *base = get_hwbase(dev);
1456                 /*
1457                  * It seems that the nic preloads valid ring entries into an
1458                  * internal buffer. The procedure for flushing everything is
1459                  * guessed, there is probably a simpler approach.
1460                  * Changing the MTU is a rare event, it shouldn't matter.
1461                  */
1462                 disable_irq(dev->irq);
1463                 spin_lock_bh(&dev->xmit_lock);
1464                 spin_lock(&np->lock);
1465                 /* stop engines */
1466                 nv_stop_rx(dev);
1467                 nv_stop_tx(dev);
1468                 nv_txrx_reset(dev);
1469                 /* drain rx queue */
1470                 nv_drain_rx(dev);
1471                 nv_drain_tx(dev);
1472                 /* reinit driver view of the rx queue */
1473                 nv_init_rx(dev);
1474                 nv_init_tx(dev);
1475                 /* alloc new rx buffers */
1476                 set_bufsize(dev);
1477                 if (nv_alloc_rx(dev)) {
1478                         if (!np->in_shutdown)
1479                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1480                 }
1481                 /* reinit nic view of the rx queue */
1482                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1483                 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
1484                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1485                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1486                 else
1487                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1488                 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1489                         base + NvRegRingSizes);
1490                 pci_push(base);
1491                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1492                 pci_push(base);
1493
1494                 /* restart rx engine */
1495                 nv_start_rx(dev);
1496                 nv_start_tx(dev);
1497                 spin_unlock(&np->lock);
1498                 spin_unlock_bh(&dev->xmit_lock);
1499                 enable_irq(dev->irq);
1500         }
1501         return 0;
1502 }
1503
1504 static void nv_copy_mac_to_hw(struct net_device *dev)
1505 {
1506         u8 __iomem *base = get_hwbase(dev);
1507         u32 mac[2];
1508
1509         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1510                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1511         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1512
1513         writel(mac[0], base + NvRegMacAddrA);
1514         writel(mac[1], base + NvRegMacAddrB);
1515 }
1516
1517 /*
1518  * nv_set_mac_address: dev->set_mac_address function
1519  * Called with rtnl_lock() held.
1520  */
1521 static int nv_set_mac_address(struct net_device *dev, void *addr)
1522 {
1523         struct fe_priv *np = netdev_priv(dev);
1524         struct sockaddr *macaddr = (struct sockaddr*)addr;
1525
1526         if(!is_valid_ether_addr(macaddr->sa_data))
1527                 return -EADDRNOTAVAIL;
1528
1529         /* synchronized against open : rtnl_lock() held by caller */
1530         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1531
1532         if (netif_running(dev)) {
1533                 spin_lock_bh(&dev->xmit_lock);
1534                 spin_lock_irq(&np->lock);
1535
1536                 /* stop rx engine */
1537                 nv_stop_rx(dev);
1538
1539                 /* set mac address */
1540                 nv_copy_mac_to_hw(dev);
1541
1542                 /* restart rx engine */
1543                 nv_start_rx(dev);
1544                 spin_unlock_irq(&np->lock);
1545                 spin_unlock_bh(&dev->xmit_lock);
1546         } else {
1547                 nv_copy_mac_to_hw(dev);
1548         }
1549         return 0;
1550 }
1551
1552 /*
1553  * nv_set_multicast: dev->set_multicast function
1554  * Called with dev->xmit_lock held.
1555  */
1556 static void nv_set_multicast(struct net_device *dev)
1557 {
1558         struct fe_priv *np = netdev_priv(dev);
1559         u8 __iomem *base = get_hwbase(dev);
1560         u32 addr[2];
1561         u32 mask[2];
1562         u32 pff;
1563
1564         memset(addr, 0, sizeof(addr));
1565         memset(mask, 0, sizeof(mask));
1566
1567         if (dev->flags & IFF_PROMISC) {
1568                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1569                 pff = NVREG_PFF_PROMISC;
1570         } else {
1571                 pff = NVREG_PFF_MYADDR;
1572
1573                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1574                         u32 alwaysOff[2];
1575                         u32 alwaysOn[2];
1576
1577                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1578                         if (dev->flags & IFF_ALLMULTI) {
1579                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1580                         } else {
1581                                 struct dev_mc_list *walk;
1582
1583                                 walk = dev->mc_list;
1584                                 while (walk != NULL) {
1585                                         u32 a, b;
1586                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1587                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1588                                         alwaysOn[0] &= a;
1589                                         alwaysOff[0] &= ~a;
1590                                         alwaysOn[1] &= b;
1591                                         alwaysOff[1] &= ~b;
1592                                         walk = walk->next;
1593                                 }
1594                         }
1595                         addr[0] = alwaysOn[0];
1596                         addr[1] = alwaysOn[1];
1597                         mask[0] = alwaysOn[0] | alwaysOff[0];
1598                         mask[1] = alwaysOn[1] | alwaysOff[1];
1599                 }
1600         }
1601         addr[0] |= NVREG_MCASTADDRA_FORCE;
1602         pff |= NVREG_PFF_ALWAYS;
1603         spin_lock_irq(&np->lock);
1604         nv_stop_rx(dev);
1605         writel(addr[0], base + NvRegMulticastAddrA);
1606         writel(addr[1], base + NvRegMulticastAddrB);
1607         writel(mask[0], base + NvRegMulticastMaskA);
1608         writel(mask[1], base + NvRegMulticastMaskB);
1609         writel(pff, base + NvRegPacketFilterFlags);
1610         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1611                 dev->name);
1612         nv_start_rx(dev);
1613         spin_unlock_irq(&np->lock);
1614 }
1615
1616 /**
1617  * nv_update_linkspeed: Setup the MAC according to the link partner
1618  * @dev: Network device to be configured
1619  *
1620  * The function queries the PHY and checks if there is a link partner.
1621  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1622  * set to 10 MBit HD.
1623  *
1624  * The function returns 0 if there is no link partner and 1 if there is
1625  * a good link partner.
1626  */
1627 static int nv_update_linkspeed(struct net_device *dev)
1628 {
1629         struct fe_priv *np = netdev_priv(dev);
1630         u8 __iomem *base = get_hwbase(dev);
1631         int adv, lpa;
1632         int newls = np->linkspeed;
1633         int newdup = np->duplex;
1634         int mii_status;
1635         int retval = 0;
1636         u32 control_1000, status_1000, phyreg;
1637
1638         /* BMSR_LSTATUS is latched, read it twice:
1639          * we want the current value.
1640          */
1641         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1642         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1643
1644         if (!(mii_status & BMSR_LSTATUS)) {
1645                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1646                                 dev->name);
1647                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1648                 newdup = 0;
1649                 retval = 0;
1650                 goto set_speed;
1651         }
1652
1653         if (np->autoneg == 0) {
1654                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1655                                 dev->name, np->fixed_mode);
1656                 if (np->fixed_mode & LPA_100FULL) {
1657                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1658                         newdup = 1;
1659                 } else if (np->fixed_mode & LPA_100HALF) {
1660                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1661                         newdup = 0;
1662                 } else if (np->fixed_mode & LPA_10FULL) {
1663                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1664                         newdup = 1;
1665                 } else {
1666                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1667                         newdup = 0;
1668                 }
1669                 retval = 1;
1670                 goto set_speed;
1671         }
1672         /* check auto negotiation is complete */
1673         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1674                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1675                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1676                 newdup = 0;
1677                 retval = 0;
1678                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1679                 goto set_speed;
1680         }
1681
1682         retval = 1;
1683         if (np->gigabit == PHY_GIGABIT) {
1684                 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1685                 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1686
1687                 if ((control_1000 & ADVERTISE_1000FULL) &&
1688                         (status_1000 & LPA_1000FULL)) {
1689                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1690                                 dev->name);
1691                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1692                         newdup = 1;
1693                         goto set_speed;
1694                 }
1695         }
1696
1697         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1698         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1699         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1700                                 dev->name, adv, lpa);
1701
1702         /* FIXME: handle parallel detection properly */
1703         lpa = lpa & adv;
1704         if (lpa & LPA_100FULL) {
1705                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1706                 newdup = 1;
1707         } else if (lpa & LPA_100HALF) {
1708                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1709                 newdup = 0;
1710         } else if (lpa & LPA_10FULL) {
1711                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1712                 newdup = 1;
1713         } else if (lpa & LPA_10HALF) {
1714                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1715                 newdup = 0;
1716         } else {
1717                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1718                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1719                 newdup = 0;
1720         }
1721
1722 set_speed:
1723         if (np->duplex == newdup && np->linkspeed == newls)
1724                 return retval;
1725
1726         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1727                         dev->name, np->linkspeed, np->duplex, newls, newdup);
1728
1729         np->duplex = newdup;
1730         np->linkspeed = newls;
1731
1732         if (np->gigabit == PHY_GIGABIT) {
1733                 phyreg = readl(base + NvRegRandomSeed);
1734                 phyreg &= ~(0x3FF00);
1735                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1736                         phyreg |= NVREG_RNDSEED_FORCE3;
1737                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1738                         phyreg |= NVREG_RNDSEED_FORCE2;
1739                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1740                         phyreg |= NVREG_RNDSEED_FORCE;
1741                 writel(phyreg, base + NvRegRandomSeed);
1742         }
1743
1744         phyreg = readl(base + NvRegPhyInterface);
1745         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1746         if (np->duplex == 0)
1747                 phyreg |= PHY_HALF;
1748         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1749                 phyreg |= PHY_100;
1750         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1751                 phyreg |= PHY_1000;
1752         writel(phyreg, base + NvRegPhyInterface);
1753
1754         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1755                 base + NvRegMisc1);
1756         pci_push(base);
1757         writel(np->linkspeed, base + NvRegLinkSpeed);
1758         pci_push(base);
1759
1760         return retval;
1761 }
1762
1763 static void nv_linkchange(struct net_device *dev)
1764 {
1765         if (nv_update_linkspeed(dev)) {
1766                 if (!netif_carrier_ok(dev)) {
1767                         netif_carrier_on(dev);
1768                         printk(KERN_INFO "%s: link up.\n", dev->name);
1769                         nv_start_rx(dev);
1770                 }
1771         } else {
1772                 if (netif_carrier_ok(dev)) {
1773                         netif_carrier_off(dev);
1774                         printk(KERN_INFO "%s: link down.\n", dev->name);
1775                         nv_stop_rx(dev);
1776                 }
1777         }
1778 }
1779
1780 static void nv_link_irq(struct net_device *dev)
1781 {
1782         u8 __iomem *base = get_hwbase(dev);
1783         u32 miistat;
1784
1785         miistat = readl(base + NvRegMIIStatus);
1786         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1787         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1788
1789         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1790                 nv_linkchange(dev);
1791         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1792 }
1793
1794 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1795 {
1796         struct net_device *dev = (struct net_device *) data;
1797         struct fe_priv *np = netdev_priv(dev);
1798         u8 __iomem *base = get_hwbase(dev);
1799         u32 events;
1800         int i;
1801
1802         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1803
1804         for (i=0; ; i++) {
1805                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1806                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1807                 pci_push(base);
1808                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
1809                 if (!(events & np->irqmask))
1810                         break;
1811
1812                 if (events & (NVREG_IRQ_TX1|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_ERROR|NVREG_IRQ_TX_ERR)) {
1813                         spin_lock(&np->lock);
1814                         nv_tx_done(dev);
1815                         spin_unlock(&np->lock);
1816                 }
1817
1818                 if (events & (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF)) {
1819                         nv_rx_process(dev);
1820                         if (nv_alloc_rx(dev)) {
1821                                 spin_lock(&np->lock);
1822                                 if (!np->in_shutdown)
1823                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1824                                 spin_unlock(&np->lock);
1825                         }
1826                 }
1827
1828                 if (events & NVREG_IRQ_LINK) {
1829                         spin_lock(&np->lock);
1830                         nv_link_irq(dev);
1831                         spin_unlock(&np->lock);
1832                 }
1833                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
1834                         spin_lock(&np->lock);
1835                         nv_linkchange(dev);
1836                         spin_unlock(&np->lock);
1837                         np->link_timeout = jiffies + LINK_TIMEOUT;
1838                 }
1839                 if (events & (NVREG_IRQ_TX_ERR)) {
1840                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
1841                                                 dev->name, events);
1842                 }
1843                 if (events & (NVREG_IRQ_UNKNOWN)) {
1844                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
1845                                                 dev->name, events);
1846                 }
1847                 if (i > max_interrupt_work) {
1848                         spin_lock(&np->lock);
1849                         /* disable interrupts on the nic */
1850                         writel(0, base + NvRegIrqMask);
1851                         pci_push(base);
1852
1853                         if (!np->in_shutdown)
1854                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
1855                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
1856                         spin_unlock(&np->lock);
1857                         break;
1858                 }
1859
1860         }
1861         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
1862
1863         return IRQ_RETVAL(i);
1864 }
1865
1866 static void nv_do_nic_poll(unsigned long data)
1867 {
1868         struct net_device *dev = (struct net_device *) data;
1869         struct fe_priv *np = netdev_priv(dev);
1870         u8 __iomem *base = get_hwbase(dev);
1871
1872         disable_irq(dev->irq);
1873         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
1874         /*
1875          * reenable interrupts on the nic, we have to do this before calling
1876          * nv_nic_irq because that may decide to do otherwise
1877          */
1878         writel(np->irqmask, base + NvRegIrqMask);
1879         pci_push(base);
1880         nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
1881         enable_irq(dev->irq);
1882 }
1883
1884 #ifdef CONFIG_NET_POLL_CONTROLLER
1885 static void nv_poll_controller(struct net_device *dev)
1886 {
1887         nv_do_nic_poll((unsigned long) dev);
1888 }
1889 #endif
1890
1891 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1892 {
1893         struct fe_priv *np = netdev_priv(dev);
1894         strcpy(info->driver, "forcedeth");
1895         strcpy(info->version, FORCEDETH_VERSION);
1896         strcpy(info->bus_info, pci_name(np->pci_dev));
1897 }
1898
1899 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1900 {
1901         struct fe_priv *np = netdev_priv(dev);
1902         wolinfo->supported = WAKE_MAGIC;
1903
1904         spin_lock_irq(&np->lock);
1905         if (np->wolenabled)
1906                 wolinfo->wolopts = WAKE_MAGIC;
1907         spin_unlock_irq(&np->lock);
1908 }
1909
1910 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1911 {
1912         struct fe_priv *np = netdev_priv(dev);
1913         u8 __iomem *base = get_hwbase(dev);
1914
1915         spin_lock_irq(&np->lock);
1916         if (wolinfo->wolopts == 0) {
1917                 writel(0, base + NvRegWakeUpFlags);
1918                 np->wolenabled = 0;
1919         }
1920         if (wolinfo->wolopts & WAKE_MAGIC) {
1921                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
1922                 np->wolenabled = 1;
1923         }
1924         spin_unlock_irq(&np->lock);
1925         return 0;
1926 }
1927
1928 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1929 {
1930         struct fe_priv *np = netdev_priv(dev);
1931         int adv;
1932
1933         spin_lock_irq(&np->lock);
1934         ecmd->port = PORT_MII;
1935         if (!netif_running(dev)) {
1936                 /* We do not track link speed / duplex setting if the
1937                  * interface is disabled. Force a link check */
1938                 nv_update_linkspeed(dev);
1939         }
1940         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
1941                 case NVREG_LINKSPEED_10:
1942                         ecmd->speed = SPEED_10;
1943                         break;
1944                 case NVREG_LINKSPEED_100:
1945                         ecmd->speed = SPEED_100;
1946                         break;
1947                 case NVREG_LINKSPEED_1000:
1948                         ecmd->speed = SPEED_1000;
1949                         break;
1950         }
1951         ecmd->duplex = DUPLEX_HALF;
1952         if (np->duplex)
1953                 ecmd->duplex = DUPLEX_FULL;
1954
1955         ecmd->autoneg = np->autoneg;
1956
1957         ecmd->advertising = ADVERTISED_MII;
1958         if (np->autoneg) {
1959                 ecmd->advertising |= ADVERTISED_Autoneg;
1960                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1961         } else {
1962                 adv = np->fixed_mode;
1963         }
1964         if (adv & ADVERTISE_10HALF)
1965                 ecmd->advertising |= ADVERTISED_10baseT_Half;
1966         if (adv & ADVERTISE_10FULL)
1967                 ecmd->advertising |= ADVERTISED_10baseT_Full;
1968         if (adv & ADVERTISE_100HALF)
1969                 ecmd->advertising |= ADVERTISED_100baseT_Half;
1970         if (adv & ADVERTISE_100FULL)
1971                 ecmd->advertising |= ADVERTISED_100baseT_Full;
1972         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
1973                 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1974                 if (adv & ADVERTISE_1000FULL)
1975                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
1976         }
1977
1978         ecmd->supported = (SUPPORTED_Autoneg |
1979                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
1980                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
1981                 SUPPORTED_MII);
1982         if (np->gigabit == PHY_GIGABIT)
1983                 ecmd->supported |= SUPPORTED_1000baseT_Full;
1984
1985         ecmd->phy_address = np->phyaddr;
1986         ecmd->transceiver = XCVR_EXTERNAL;
1987
1988         /* ignore maxtxpkt, maxrxpkt for now */
1989         spin_unlock_irq(&np->lock);
1990         return 0;
1991 }
1992
1993 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1994 {
1995         struct fe_priv *np = netdev_priv(dev);
1996
1997         if (ecmd->port != PORT_MII)
1998                 return -EINVAL;
1999         if (ecmd->transceiver != XCVR_EXTERNAL)
2000                 return -EINVAL;
2001         if (ecmd->phy_address != np->phyaddr) {
2002                 /* TODO: support switching between multiple phys. Should be
2003                  * trivial, but not enabled due to lack of test hardware. */
2004                 return -EINVAL;
2005         }
2006         if (ecmd->autoneg == AUTONEG_ENABLE) {
2007                 u32 mask;
2008
2009                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2010                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2011                 if (np->gigabit == PHY_GIGABIT)
2012                         mask |= ADVERTISED_1000baseT_Full;
2013
2014                 if ((ecmd->advertising & mask) == 0)
2015                         return -EINVAL;
2016
2017         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2018                 /* Note: autonegotiation disable, speed 1000 intentionally
2019                  * forbidden - noone should need that. */
2020
2021                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2022                         return -EINVAL;
2023                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2024                         return -EINVAL;
2025         } else {
2026                 return -EINVAL;
2027         }
2028
2029         spin_lock_irq(&np->lock);
2030         if (ecmd->autoneg == AUTONEG_ENABLE) {
2031                 int adv, bmcr;
2032
2033                 np->autoneg = 1;
2034
2035                 /* advertise only what has been requested */
2036                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2037                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2038                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2039                         adv |= ADVERTISE_10HALF;
2040                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2041                         adv |= ADVERTISE_10FULL;
2042                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2043                         adv |= ADVERTISE_100HALF;
2044                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2045                         adv |= ADVERTISE_100FULL;
2046                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2047
2048                 if (np->gigabit == PHY_GIGABIT) {
2049                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2050                         adv &= ~ADVERTISE_1000FULL;
2051                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2052                                 adv |= ADVERTISE_1000FULL;
2053                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2054                 }
2055
2056                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2057                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2058                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2059
2060         } else {
2061                 int adv, bmcr;
2062
2063                 np->autoneg = 0;
2064
2065                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2066                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2067                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2068                         adv |= ADVERTISE_10HALF;
2069                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2070                         adv |= ADVERTISE_10FULL;
2071                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2072                         adv |= ADVERTISE_100HALF;
2073                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2074                         adv |= ADVERTISE_100FULL;
2075                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2076                 np->fixed_mode = adv;
2077
2078                 if (np->gigabit == PHY_GIGABIT) {
2079                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2080                         adv &= ~ADVERTISE_1000FULL;
2081                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2082                 }
2083
2084                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2085                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2086                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2087                         bmcr |= BMCR_FULLDPLX;
2088                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2089                         bmcr |= BMCR_SPEED100;
2090                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2091
2092                 if (netif_running(dev)) {
2093                         /* Wait a bit and then reconfigure the nic. */
2094                         udelay(10);
2095                         nv_linkchange(dev);
2096                 }
2097         }
2098         spin_unlock_irq(&np->lock);
2099
2100         return 0;
2101 }
2102
2103 #define FORCEDETH_REGS_VER      1
2104 #define FORCEDETH_REGS_SIZE     0x400 /* 256 32-bit registers */
2105
2106 static int nv_get_regs_len(struct net_device *dev)
2107 {
2108         return FORCEDETH_REGS_SIZE;
2109 }
2110
2111 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2112 {
2113         struct fe_priv *np = netdev_priv(dev);
2114         u8 __iomem *base = get_hwbase(dev);
2115         u32 *rbuf = buf;
2116         int i;
2117
2118         regs->version = FORCEDETH_REGS_VER;
2119         spin_lock_irq(&np->lock);
2120         for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2121                 rbuf[i] = readl(base + i*sizeof(u32));
2122         spin_unlock_irq(&np->lock);
2123 }
2124
2125 static int nv_nway_reset(struct net_device *dev)
2126 {
2127         struct fe_priv *np = netdev_priv(dev);
2128         int ret;
2129
2130         spin_lock_irq(&np->lock);
2131         if (np->autoneg) {
2132                 int bmcr;
2133
2134                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2135                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2136                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2137
2138                 ret = 0;
2139         } else {
2140                 ret = -EINVAL;
2141         }
2142         spin_unlock_irq(&np->lock);
2143
2144         return ret;
2145 }
2146
2147 static struct ethtool_ops ops = {
2148         .get_drvinfo = nv_get_drvinfo,
2149         .get_link = ethtool_op_get_link,
2150         .get_wol = nv_get_wol,
2151         .set_wol = nv_set_wol,
2152         .get_settings = nv_get_settings,
2153         .set_settings = nv_set_settings,
2154         .get_regs_len = nv_get_regs_len,
2155         .get_regs = nv_get_regs,
2156         .nway_reset = nv_nway_reset,
2157         .get_perm_addr = ethtool_op_get_perm_addr,
2158 };
2159
2160 static int nv_open(struct net_device *dev)
2161 {
2162         struct fe_priv *np = netdev_priv(dev);
2163         u8 __iomem *base = get_hwbase(dev);
2164         int ret, oom, i;
2165
2166         dprintk(KERN_DEBUG "nv_open: begin\n");
2167
2168         /* 1) erase previous misconfiguration */
2169         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2170         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2171         writel(0, base + NvRegMulticastAddrB);
2172         writel(0, base + NvRegMulticastMaskA);
2173         writel(0, base + NvRegMulticastMaskB);
2174         writel(0, base + NvRegPacketFilterFlags);
2175
2176         writel(0, base + NvRegTransmitterControl);
2177         writel(0, base + NvRegReceiverControl);
2178
2179         writel(0, base + NvRegAdapterControl);
2180
2181         /* 2) initialize descriptor rings */
2182         set_bufsize(dev);
2183         oom = nv_init_ring(dev);
2184
2185         writel(0, base + NvRegLinkSpeed);
2186         writel(0, base + NvRegUnknownTransmitterReg);
2187         nv_txrx_reset(dev);
2188         writel(0, base + NvRegUnknownSetupReg6);
2189
2190         np->in_shutdown = 0;
2191
2192         /* 3) set mac address */
2193         nv_copy_mac_to_hw(dev);
2194
2195         /* 4) give hw rings */
2196         writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
2197         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2198                 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
2199         else
2200                 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
2201         writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2202                 base + NvRegRingSizes);
2203
2204         /* 5) continue setup */
2205         writel(np->linkspeed, base + NvRegLinkSpeed);
2206         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2207         writel(np->txrxctl_bits, base + NvRegTxRxControl);
2208         pci_push(base);
2209         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2210         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2211                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2212                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2213
2214         writel(0, base + NvRegUnknownSetupReg4);
2215         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2216         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2217
2218         /* 6) continue setup */
2219         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2220         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2221         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2222         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2223
2224         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2225         get_random_bytes(&i, sizeof(i));
2226         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2227         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2228         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2229         writel(NVREG_POLL_DEFAULT, base + NvRegPollingInterval);
2230         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2231         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2232                         base + NvRegAdapterControl);
2233         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2234         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2235         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2236
2237         i = readl(base + NvRegPowerState);
2238         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2239                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2240
2241         pci_push(base);
2242         udelay(10);
2243         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2244
2245         writel(0, base + NvRegIrqMask);
2246         pci_push(base);
2247         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2248         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2249         pci_push(base);
2250
2251         ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
2252         if (ret)
2253                 goto out_drain;
2254
2255         /* ask for interrupts */
2256         writel(np->irqmask, base + NvRegIrqMask);
2257
2258         spin_lock_irq(&np->lock);
2259         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2260         writel(0, base + NvRegMulticastAddrB);
2261         writel(0, base + NvRegMulticastMaskA);
2262         writel(0, base + NvRegMulticastMaskB);
2263         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2264         /* One manual link speed update: Interrupts are enabled, future link
2265          * speed changes cause interrupts and are handled by nv_link_irq().
2266          */
2267         {
2268                 u32 miistat;
2269                 miistat = readl(base + NvRegMIIStatus);
2270                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2271                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2272         }
2273         /* set linkspeed to invalid value, thus force nv_update_linkspeed
2274          * to init hw */
2275         np->linkspeed = 0;
2276         ret = nv_update_linkspeed(dev);
2277         nv_start_rx(dev);
2278         nv_start_tx(dev);
2279         netif_start_queue(dev);
2280         if (ret) {
2281                 netif_carrier_on(dev);
2282         } else {
2283                 printk("%s: no link during initialization.\n", dev->name);
2284                 netif_carrier_off(dev);
2285         }
2286         if (oom)
2287                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2288         spin_unlock_irq(&np->lock);
2289
2290         return 0;
2291 out_drain:
2292         drain_ring(dev);
2293         return ret;
2294 }
2295
2296 static int nv_close(struct net_device *dev)
2297 {
2298         struct fe_priv *np = netdev_priv(dev);
2299         u8 __iomem *base;
2300
2301         spin_lock_irq(&np->lock);
2302         np->in_shutdown = 1;
2303         spin_unlock_irq(&np->lock);
2304         synchronize_irq(dev->irq);
2305
2306         del_timer_sync(&np->oom_kick);
2307         del_timer_sync(&np->nic_poll);
2308
2309         netif_stop_queue(dev);
2310         spin_lock_irq(&np->lock);
2311         nv_stop_tx(dev);
2312         nv_stop_rx(dev);
2313         nv_txrx_reset(dev);
2314
2315         /* disable interrupts on the nic or we will lock up */
2316         base = get_hwbase(dev);
2317         writel(0, base + NvRegIrqMask);
2318         pci_push(base);
2319         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2320
2321         spin_unlock_irq(&np->lock);
2322
2323         free_irq(dev->irq, dev);
2324
2325         drain_ring(dev);
2326
2327         if (np->wolenabled)
2328                 nv_start_rx(dev);
2329
2330         /* special op: write back the misordered MAC address - otherwise
2331          * the next nv_probe would see a wrong address.
2332          */
2333         writel(np->orig_mac[0], base + NvRegMacAddrA);
2334         writel(np->orig_mac[1], base + NvRegMacAddrB);
2335
2336         /* FIXME: power down nic */
2337
2338         return 0;
2339 }
2340
2341 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2342 {
2343         struct net_device *dev;
2344         struct fe_priv *np;
2345         unsigned long addr;
2346         u8 __iomem *base;
2347         int err, i;
2348
2349         dev = alloc_etherdev(sizeof(struct fe_priv));
2350         err = -ENOMEM;
2351         if (!dev)
2352                 goto out;
2353
2354         np = netdev_priv(dev);
2355         np->pci_dev = pci_dev;
2356         spin_lock_init(&np->lock);
2357         SET_MODULE_OWNER(dev);
2358         SET_NETDEV_DEV(dev, &pci_dev->dev);
2359
2360         init_timer(&np->oom_kick);
2361         np->oom_kick.data = (unsigned long) dev;
2362         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
2363         init_timer(&np->nic_poll);
2364         np->nic_poll.data = (unsigned long) dev;
2365         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
2366
2367         err = pci_enable_device(pci_dev);
2368         if (err) {
2369                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2370                                 err, pci_name(pci_dev));
2371                 goto out_free;
2372         }
2373
2374         pci_set_master(pci_dev);
2375
2376         err = pci_request_regions(pci_dev, DRV_NAME);
2377         if (err < 0)
2378                 goto out_disable;
2379
2380         err = -EINVAL;
2381         addr = 0;
2382         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2383                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2384                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2385                                 pci_resource_len(pci_dev, i),
2386                                 pci_resource_flags(pci_dev, i));
2387                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2388                                 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2389                         addr = pci_resource_start(pci_dev, i);
2390                         break;
2391                 }
2392         }
2393         if (i == DEVICE_COUNT_RESOURCE) {
2394                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2395                                         pci_name(pci_dev));
2396                 goto out_relreg;
2397         }
2398
2399         /* handle different descriptor versions */
2400         if (id->driver_data & DEV_HAS_HIGH_DMA) {
2401                 /* packet format 3: supports 40-bit addressing */
2402                 np->desc_ver = DESC_VER_3;
2403                 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2404                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2405                                         pci_name(pci_dev));
2406                 } else {
2407                         dev->features |= NETIF_F_HIGHDMA;
2408                 }
2409                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
2410         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2411                 /* packet format 2: supports jumbo frames */
2412                 np->desc_ver = DESC_VER_2;
2413                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
2414         } else {
2415                 /* original packet format */
2416                 np->desc_ver = DESC_VER_1;
2417                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
2418         }
2419
2420         np->pkt_limit = NV_PKTLIMIT_1;
2421         if (id->driver_data & DEV_HAS_LARGEDESC)
2422                 np->pkt_limit = NV_PKTLIMIT_2;
2423
2424         if (id->driver_data & DEV_HAS_CHECKSUM) {
2425                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
2426                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
2427 #ifdef NETIF_F_TSO
2428                 dev->features |= NETIF_F_TSO;
2429 #endif
2430         }
2431
2432         err = -ENOMEM;
2433         np->base = ioremap(addr, NV_PCI_REGSZ);
2434         if (!np->base)
2435                 goto out_relreg;
2436         dev->base_addr = (unsigned long)np->base;
2437
2438         dev->irq = pci_dev->irq;
2439
2440         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2441                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2442                                         sizeof(struct ring_desc) * (RX_RING + TX_RING),
2443                                         &np->ring_addr);
2444                 if (!np->rx_ring.orig)
2445                         goto out_unmap;
2446                 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
2447         } else {
2448                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
2449                                         sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2450                                         &np->ring_addr);
2451                 if (!np->rx_ring.ex)
2452                         goto out_unmap;
2453                 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
2454         }
2455
2456         dev->open = nv_open;
2457         dev->stop = nv_close;
2458         dev->hard_start_xmit = nv_start_xmit;
2459         dev->get_stats = nv_get_stats;
2460         dev->change_mtu = nv_change_mtu;
2461         dev->set_mac_address = nv_set_mac_address;
2462         dev->set_multicast_list = nv_set_multicast;
2463 #ifdef CONFIG_NET_POLL_CONTROLLER
2464         dev->poll_controller = nv_poll_controller;
2465 #endif
2466         SET_ETHTOOL_OPS(dev, &ops);
2467         dev->tx_timeout = nv_tx_timeout;
2468         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
2469
2470         pci_set_drvdata(pci_dev, dev);
2471
2472         /* read the mac address */
2473         base = get_hwbase(dev);
2474         np->orig_mac[0] = readl(base + NvRegMacAddrA);
2475         np->orig_mac[1] = readl(base + NvRegMacAddrB);
2476
2477         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
2478         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
2479         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
2480         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
2481         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
2482         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
2483         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
2484
2485         if (!is_valid_ether_addr(dev->perm_addr)) {
2486                 /*
2487                  * Bad mac address. At least one bios sets the mac address
2488                  * to 01:23:45:67:89:ab
2489                  */
2490                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
2491                         pci_name(pci_dev),
2492                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2493                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2494                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
2495                 dev->dev_addr[0] = 0x00;
2496                 dev->dev_addr[1] = 0x00;
2497                 dev->dev_addr[2] = 0x6c;
2498                 get_random_bytes(&dev->dev_addr[3], 3);
2499         }
2500
2501         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
2502                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2503                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2504
2505         /* disable WOL */
2506         writel(0, base + NvRegWakeUpFlags);
2507         np->wolenabled = 0;
2508
2509         if (np->desc_ver == DESC_VER_1) {
2510                 np->tx_flags = NV_TX_VALID;
2511         } else {
2512                 np->tx_flags = NV_TX2_VALID;
2513         }
2514         np->irqmask = NVREG_IRQMASK_WANTED;
2515         if (id->driver_data & DEV_NEED_TIMERIRQ)
2516                 np->irqmask |= NVREG_IRQ_TIMER;
2517         if (id->driver_data & DEV_NEED_LINKTIMER) {
2518                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
2519                 np->need_linktimer = 1;
2520                 np->link_timeout = jiffies + LINK_TIMEOUT;
2521         } else {
2522                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
2523                 np->need_linktimer = 0;
2524         }
2525
2526         /* find a suitable phy */
2527         for (i = 1; i < 32; i++) {
2528                 int id1, id2;
2529
2530                 spin_lock_irq(&np->lock);
2531                 id1 = mii_rw(dev, i, MII_PHYSID1, MII_READ);
2532                 spin_unlock_irq(&np->lock);
2533                 if (id1 < 0 || id1 == 0xffff)
2534                         continue;
2535                 spin_lock_irq(&np->lock);
2536                 id2 = mii_rw(dev, i, MII_PHYSID2, MII_READ);
2537                 spin_unlock_irq(&np->lock);
2538                 if (id2 < 0 || id2 == 0xffff)
2539                         continue;
2540
2541                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
2542                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
2543                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
2544                                 pci_name(pci_dev), id1, id2, i);
2545                 np->phyaddr = i;
2546                 np->phy_oui = id1 | id2;
2547                 break;
2548         }
2549         if (i == 32) {
2550                 /* PHY in isolate mode? No phy attached and user wants to
2551                  * test loopback? Very odd, but can be correct.
2552                  */
2553                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
2554                                 pci_name(pci_dev));
2555         }
2556
2557         if (i != 32) {
2558                 /* reset it */
2559                 phy_init(dev);
2560         }
2561
2562         /* set default link speed settings */
2563         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2564         np->duplex = 0;
2565         np->autoneg = 1;
2566
2567         err = register_netdev(dev);
2568         if (err) {
2569                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
2570                 goto out_freering;
2571         }
2572         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
2573                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
2574                         pci_name(pci_dev));
2575
2576         return 0;
2577
2578 out_freering:
2579         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2580                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
2581                                     np->rx_ring.orig, np->ring_addr);
2582         else
2583                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2584                                     np->rx_ring.ex, np->ring_addr);
2585         pci_set_drvdata(pci_dev, NULL);
2586 out_unmap:
2587         iounmap(get_hwbase(dev));
2588 out_relreg:
2589         pci_release_regions(pci_dev);
2590 out_disable:
2591         pci_disable_device(pci_dev);
2592 out_free:
2593         free_netdev(dev);
2594 out:
2595         return err;
2596 }
2597
2598 static void __devexit nv_remove(struct pci_dev *pci_dev)
2599 {
2600         struct net_device *dev = pci_get_drvdata(pci_dev);
2601         struct fe_priv *np = netdev_priv(dev);
2602
2603         unregister_netdev(dev);
2604
2605         /* free all structures */
2606         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2607                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
2608         else
2609                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
2610         iounmap(get_hwbase(dev));
2611         pci_release_regions(pci_dev);
2612         pci_disable_device(pci_dev);
2613         free_netdev(dev);
2614         pci_set_drvdata(pci_dev, NULL);
2615 }
2616
2617 static struct pci_device_id pci_tbl[] = {
2618         {       /* nForce Ethernet Controller */
2619                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
2620                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2621         },
2622         {       /* nForce2 Ethernet Controller */
2623                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
2624                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2625         },
2626         {       /* nForce3 Ethernet Controller */
2627                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
2628                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2629         },
2630         {       /* nForce3 Ethernet Controller */
2631                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
2632                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2633         },
2634         {       /* nForce3 Ethernet Controller */
2635                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
2636                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2637         },
2638         {       /* nForce3 Ethernet Controller */
2639                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
2640                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2641         },
2642         {       /* nForce3 Ethernet Controller */
2643                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
2644                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2645         },
2646         {       /* CK804 Ethernet Controller */
2647                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
2648                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2649         },
2650         {       /* CK804 Ethernet Controller */
2651                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
2652                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2653         },
2654         {       /* MCP04 Ethernet Controller */
2655                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
2656                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2657         },
2658         {       /* MCP04 Ethernet Controller */
2659                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
2660                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2661         },
2662         {       /* MCP51 Ethernet Controller */
2663                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
2664                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2665         },
2666         {       /* MCP51 Ethernet Controller */
2667                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
2668                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2669         },
2670         {       /* MCP55 Ethernet Controller */
2671                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
2672                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2673         },
2674         {       /* MCP55 Ethernet Controller */
2675                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
2676                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2677         },
2678         {0,},
2679 };
2680
2681 static struct pci_driver driver = {
2682         .name = "forcedeth",
2683         .id_table = pci_tbl,
2684         .probe = nv_probe,
2685         .remove = __devexit_p(nv_remove),
2686 };
2687
2688
2689 static int __init init_nic(void)
2690 {
2691         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
2692         return pci_module_init(&driver);
2693 }
2694
2695 static void __exit exit_nic(void)
2696 {
2697         pci_unregister_driver(&driver);
2698 }
2699
2700 module_param(max_interrupt_work, int, 0);
2701 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
2702
2703 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
2704 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
2705 MODULE_LICENSE("GPL");
2706
2707 MODULE_DEVICE_TABLE(pci, pci_tbl);
2708
2709 module_init(init_nic);
2710 module_exit(exit_nic);