]> err.no Git - linux-2.6/blob - drivers/net/e1000e/netdev.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46
47 #include "e1000.h"
48
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name[] = "e1000e";
51 const char e1000e_driver_version[] = DRV_VERSION;
52
53 static const struct e1000_info *e1000_info_tbl[] = {
54         [board_82571]           = &e1000_82571_info,
55         [board_82572]           = &e1000_82572_info,
56         [board_82573]           = &e1000_82573_info,
57         [board_80003es2lan]     = &e1000_es2_info,
58         [board_ich8lan]         = &e1000_ich8_info,
59         [board_ich9lan]         = &e1000_ich9_info,
60 };
61
62 #ifdef DEBUG
63 /**
64  * e1000_get_hw_dev_name - return device name string
65  * used by hardware layer to print debugging information
66  **/
67 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68 {
69         return hw->adapter->netdev->name;
70 }
71 #endif
72
73 /**
74  * e1000_desc_unused - calculate if we have unused descriptors
75  **/
76 static int e1000_desc_unused(struct e1000_ring *ring)
77 {
78         if (ring->next_to_clean > ring->next_to_use)
79                 return ring->next_to_clean - ring->next_to_use - 1;
80
81         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82 }
83
84 /**
85  * e1000_receive_skb - helper function to handle rx indications
86  * @adapter: board private structure
87  * @status: descriptor status field as written by hardware
88  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89  * @skb: pointer to sk_buff to be indicated to stack
90  **/
91 static void e1000_receive_skb(struct e1000_adapter *adapter,
92                               struct net_device *netdev,
93                               struct sk_buff *skb,
94                               u8 status, __le16 vlan)
95 {
96         skb->protocol = eth_type_trans(skb, netdev);
97
98         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100                                          le16_to_cpu(vlan) &
101                                          E1000_RXD_SPC_VLAN_MASK);
102         else
103                 netif_receive_skb(skb);
104
105         netdev->last_rx = jiffies;
106 }
107
108 /**
109  * e1000_rx_checksum - Receive Checksum Offload for 82543
110  * @adapter:     board private structure
111  * @status_err:  receive descriptor status and error fields
112  * @csum:       receive descriptor csum field
113  * @sk_buff:     socket buffer with received data
114  **/
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116                               u32 csum, struct sk_buff *skb)
117 {
118         u16 status = (u16)status_err;
119         u8 errors = (u8)(status_err >> 24);
120         skb->ip_summed = CHECKSUM_NONE;
121
122         /* Ignore Checksum bit is set */
123         if (status & E1000_RXD_STAT_IXSM)
124                 return;
125         /* TCP/UDP checksum error bit is set */
126         if (errors & E1000_RXD_ERR_TCPE) {
127                 /* let the stack verify checksum errors */
128                 adapter->hw_csum_err++;
129                 return;
130         }
131
132         /* TCP/UDP Checksum has not been calculated */
133         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134                 return;
135
136         /* It must be a TCP or UDP packet with a valid checksum */
137         if (status & E1000_RXD_STAT_TCPCS) {
138                 /* TCP checksum is good */
139                 skb->ip_summed = CHECKSUM_UNNECESSARY;
140         } else {
141                 /* IP fragment with UDP payload */
142                 /* Hardware complements the payload checksum, so we undo it
143                  * and then put the value in host order for further stack use.
144                  */
145                 __sum16 sum = (__force __sum16)htons(csum);
146                 skb->csum = csum_unfold(~sum);
147                 skb->ip_summed = CHECKSUM_COMPLETE;
148         }
149         adapter->hw_csum_good++;
150 }
151
152 /**
153  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154  * @adapter: address of board private structure
155  **/
156 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157                                    int cleaned_count)
158 {
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         struct e1000_ring *rx_ring = adapter->rx_ring;
162         struct e1000_rx_desc *rx_desc;
163         struct e1000_buffer *buffer_info;
164         struct sk_buff *skb;
165         unsigned int i;
166         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
167
168         i = rx_ring->next_to_use;
169         buffer_info = &rx_ring->buffer_info[i];
170
171         while (cleaned_count--) {
172                 skb = buffer_info->skb;
173                 if (skb) {
174                         skb_trim(skb, 0);
175                         goto map_skb;
176                 }
177
178                 skb = netdev_alloc_skb(netdev, bufsz);
179                 if (!skb) {
180                         /* Better luck next round */
181                         adapter->alloc_rx_buff_failed++;
182                         break;
183                 }
184
185                 /* Make buffer alignment 2 beyond a 16 byte boundary
186                  * this will result in a 16 byte aligned IP header after
187                  * the 14 byte MAC header is removed
188                  */
189                 skb_reserve(skb, NET_IP_ALIGN);
190
191                 buffer_info->skb = skb;
192 map_skb:
193                 buffer_info->dma = pci_map_single(pdev, skb->data,
194                                                   adapter->rx_buffer_len,
195                                                   PCI_DMA_FROMDEVICE);
196                 if (pci_dma_mapping_error(buffer_info->dma)) {
197                         dev_err(&pdev->dev, "RX DMA map failed\n");
198                         adapter->rx_dma_failed++;
199                         break;
200                 }
201
202                 rx_desc = E1000_RX_DESC(*rx_ring, i);
203                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
204
205                 i++;
206                 if (i == rx_ring->count)
207                         i = 0;
208                 buffer_info = &rx_ring->buffer_info[i];
209         }
210
211         if (rx_ring->next_to_use != i) {
212                 rx_ring->next_to_use = i;
213                 if (i-- == 0)
214                         i = (rx_ring->count - 1);
215
216                 /* Force memory writes to complete before letting h/w
217                  * know there are new descriptors to fetch.  (Only
218                  * applicable for weak-ordered memory model archs,
219                  * such as IA-64). */
220                 wmb();
221                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222         }
223 }
224
225 /**
226  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227  * @adapter: address of board private structure
228  **/
229 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230                                       int cleaned_count)
231 {
232         struct net_device *netdev = adapter->netdev;
233         struct pci_dev *pdev = adapter->pdev;
234         union e1000_rx_desc_packet_split *rx_desc;
235         struct e1000_ring *rx_ring = adapter->rx_ring;
236         struct e1000_buffer *buffer_info;
237         struct e1000_ps_page *ps_page;
238         struct sk_buff *skb;
239         unsigned int i, j;
240
241         i = rx_ring->next_to_use;
242         buffer_info = &rx_ring->buffer_info[i];
243
244         while (cleaned_count--) {
245                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
246
247                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
248                         ps_page = &buffer_info->ps_pages[j];
249                         if (j >= adapter->rx_ps_pages) {
250                                 /* all unused desc entries get hw null ptr */
251                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
252                                 continue;
253                         }
254                         if (!ps_page->page) {
255                                 ps_page->page = alloc_page(GFP_ATOMIC);
256                                 if (!ps_page->page) {
257                                         adapter->alloc_rx_buff_failed++;
258                                         goto no_buffers;
259                                 }
260                                 ps_page->dma = pci_map_page(pdev,
261                                                    ps_page->page,
262                                                    0, PAGE_SIZE,
263                                                    PCI_DMA_FROMDEVICE);
264                                 if (pci_dma_mapping_error(ps_page->dma)) {
265                                         dev_err(&adapter->pdev->dev,
266                                           "RX DMA page map failed\n");
267                                         adapter->rx_dma_failed++;
268                                         goto no_buffers;
269                                 }
270                         }
271                         /*
272                          * Refresh the desc even if buffer_addrs
273                          * didn't change because each write-back
274                          * erases this info.
275                          */
276                         rx_desc->read.buffer_addr[j+1] =
277                              cpu_to_le64(ps_page->dma);
278                 }
279
280                 skb = netdev_alloc_skb(netdev,
281                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
282
283                 if (!skb) {
284                         adapter->alloc_rx_buff_failed++;
285                         break;
286                 }
287
288                 /* Make buffer alignment 2 beyond a 16 byte boundary
289                  * this will result in a 16 byte aligned IP header after
290                  * the 14 byte MAC header is removed
291                  */
292                 skb_reserve(skb, NET_IP_ALIGN);
293
294                 buffer_info->skb = skb;
295                 buffer_info->dma = pci_map_single(pdev, skb->data,
296                                                   adapter->rx_ps_bsize0,
297                                                   PCI_DMA_FROMDEVICE);
298                 if (pci_dma_mapping_error(buffer_info->dma)) {
299                         dev_err(&pdev->dev, "RX DMA map failed\n");
300                         adapter->rx_dma_failed++;
301                         /* cleanup skb */
302                         dev_kfree_skb_any(skb);
303                         buffer_info->skb = NULL;
304                         break;
305                 }
306
307                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
308
309                 i++;
310                 if (i == rx_ring->count)
311                         i = 0;
312                 buffer_info = &rx_ring->buffer_info[i];
313         }
314
315 no_buffers:
316         if (rx_ring->next_to_use != i) {
317                 rx_ring->next_to_use = i;
318
319                 if (!(i--))
320                         i = (rx_ring->count - 1);
321
322                 /* Force memory writes to complete before letting h/w
323                  * know there are new descriptors to fetch.  (Only
324                  * applicable for weak-ordered memory model archs,
325                  * such as IA-64). */
326                 wmb();
327                 /* Hardware increments by 16 bytes, but packet split
328                  * descriptors are 32 bytes...so we increment tail
329                  * twice as much.
330                  */
331                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
332         }
333 }
334
335 /**
336  * e1000_clean_rx_irq - Send received data up the network stack; legacy
337  * @adapter: board private structure
338  *
339  * the return value indicates whether actual cleaning was done, there
340  * is no guarantee that everything was cleaned
341  **/
342 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
343                                int *work_done, int work_to_do)
344 {
345         struct net_device *netdev = adapter->netdev;
346         struct pci_dev *pdev = adapter->pdev;
347         struct e1000_ring *rx_ring = adapter->rx_ring;
348         struct e1000_rx_desc *rx_desc, *next_rxd;
349         struct e1000_buffer *buffer_info, *next_buffer;
350         u32 length;
351         unsigned int i;
352         int cleaned_count = 0;
353         bool cleaned = 0;
354         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
355
356         i = rx_ring->next_to_clean;
357         rx_desc = E1000_RX_DESC(*rx_ring, i);
358         buffer_info = &rx_ring->buffer_info[i];
359
360         while (rx_desc->status & E1000_RXD_STAT_DD) {
361                 struct sk_buff *skb;
362                 u8 status;
363
364                 if (*work_done >= work_to_do)
365                         break;
366                 (*work_done)++;
367
368                 status = rx_desc->status;
369                 skb = buffer_info->skb;
370                 buffer_info->skb = NULL;
371
372                 prefetch(skb->data - NET_IP_ALIGN);
373
374                 i++;
375                 if (i == rx_ring->count)
376                         i = 0;
377                 next_rxd = E1000_RX_DESC(*rx_ring, i);
378                 prefetch(next_rxd);
379
380                 next_buffer = &rx_ring->buffer_info[i];
381
382                 cleaned = 1;
383                 cleaned_count++;
384                 pci_unmap_single(pdev,
385                                  buffer_info->dma,
386                                  adapter->rx_buffer_len,
387                                  PCI_DMA_FROMDEVICE);
388                 buffer_info->dma = 0;
389
390                 length = le16_to_cpu(rx_desc->length);
391
392                 /* !EOP means multiple descriptors were used to store a single
393                  * packet, also make sure the frame isn't just CRC only */
394                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
395                         /* All receives must fit into a single buffer */
396                         ndev_dbg(netdev, "%s: Receive packet consumed "
397                                  "multiple buffers\n", netdev->name);
398                         /* recycle */
399                         buffer_info->skb = skb;
400                         goto next_desc;
401                 }
402
403                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
404                         /* recycle */
405                         buffer_info->skb = skb;
406                         goto next_desc;
407                 }
408
409                 total_rx_bytes += length;
410                 total_rx_packets++;
411
412                 /* code added for copybreak, this should improve
413                  * performance for small packets with large amounts
414                  * of reassembly being done in the stack */
415                 if (length < copybreak) {
416                         struct sk_buff *new_skb =
417                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
418                         if (new_skb) {
419                                 skb_reserve(new_skb, NET_IP_ALIGN);
420                                 memcpy(new_skb->data - NET_IP_ALIGN,
421                                        skb->data - NET_IP_ALIGN,
422                                        length + NET_IP_ALIGN);
423                                 /* save the skb in buffer_info as good */
424                                 buffer_info->skb = skb;
425                                 skb = new_skb;
426                         }
427                         /* else just continue with the old one */
428                 }
429                 /* end copybreak code */
430                 skb_put(skb, length);
431
432                 /* Receive Checksum Offload */
433                 e1000_rx_checksum(adapter,
434                                   (u32)(status) |
435                                   ((u32)(rx_desc->errors) << 24),
436                                   le16_to_cpu(rx_desc->csum), skb);
437
438                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
439
440 next_desc:
441                 rx_desc->status = 0;
442
443                 /* return some buffers to hardware, one at a time is too slow */
444                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
445                         adapter->alloc_rx_buf(adapter, cleaned_count);
446                         cleaned_count = 0;
447                 }
448
449                 /* use prefetched values */
450                 rx_desc = next_rxd;
451                 buffer_info = next_buffer;
452         }
453         rx_ring->next_to_clean = i;
454
455         cleaned_count = e1000_desc_unused(rx_ring);
456         if (cleaned_count)
457                 adapter->alloc_rx_buf(adapter, cleaned_count);
458
459         adapter->total_rx_packets += total_rx_packets;
460         adapter->total_rx_bytes += total_rx_bytes;
461         adapter->net_stats.rx_packets += total_rx_packets;
462         adapter->net_stats.rx_bytes += total_rx_bytes;
463         return cleaned;
464 }
465
466 static void e1000_put_txbuf(struct e1000_adapter *adapter,
467                              struct e1000_buffer *buffer_info)
468 {
469         if (buffer_info->dma) {
470                 pci_unmap_page(adapter->pdev, buffer_info->dma,
471                                buffer_info->length, PCI_DMA_TODEVICE);
472                 buffer_info->dma = 0;
473         }
474         if (buffer_info->skb) {
475                 dev_kfree_skb_any(buffer_info->skb);
476                 buffer_info->skb = NULL;
477         }
478 }
479
480 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
481 {
482         struct e1000_ring *tx_ring = adapter->tx_ring;
483         unsigned int i = tx_ring->next_to_clean;
484         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
485         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
486         struct net_device *netdev = adapter->netdev;
487
488         /* detected Tx unit hang */
489         ndev_err(netdev,
490                  "Detected Tx Unit Hang:\n"
491                  "  TDH                  <%x>\n"
492                  "  TDT                  <%x>\n"
493                  "  next_to_use          <%x>\n"
494                  "  next_to_clean        <%x>\n"
495                  "buffer_info[next_to_clean]:\n"
496                  "  time_stamp           <%lx>\n"
497                  "  next_to_watch        <%x>\n"
498                  "  jiffies              <%lx>\n"
499                  "  next_to_watch.status <%x>\n",
500                  readl(adapter->hw.hw_addr + tx_ring->head),
501                  readl(adapter->hw.hw_addr + tx_ring->tail),
502                  tx_ring->next_to_use,
503                  tx_ring->next_to_clean,
504                  tx_ring->buffer_info[eop].time_stamp,
505                  eop,
506                  jiffies,
507                  eop_desc->upper.fields.status);
508 }
509
510 /**
511  * e1000_clean_tx_irq - Reclaim resources after transmit completes
512  * @adapter: board private structure
513  *
514  * the return value indicates whether actual cleaning was done, there
515  * is no guarantee that everything was cleaned
516  **/
517 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
518 {
519         struct net_device *netdev = adapter->netdev;
520         struct e1000_hw *hw = &adapter->hw;
521         struct e1000_ring *tx_ring = adapter->tx_ring;
522         struct e1000_tx_desc *tx_desc, *eop_desc;
523         struct e1000_buffer *buffer_info;
524         unsigned int i, eop;
525         unsigned int count = 0;
526         bool cleaned = 0;
527         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
528
529         i = tx_ring->next_to_clean;
530         eop = tx_ring->buffer_info[i].next_to_watch;
531         eop_desc = E1000_TX_DESC(*tx_ring, eop);
532
533         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
534                 for (cleaned = 0; !cleaned; ) {
535                         tx_desc = E1000_TX_DESC(*tx_ring, i);
536                         buffer_info = &tx_ring->buffer_info[i];
537                         cleaned = (i == eop);
538
539                         if (cleaned) {
540                                 struct sk_buff *skb = buffer_info->skb;
541                                 unsigned int segs, bytecount;
542                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
543                                 /* multiply data chunks by size of headers */
544                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
545                                             skb->len;
546                                 total_tx_packets += segs;
547                                 total_tx_bytes += bytecount;
548                         }
549
550                         e1000_put_txbuf(adapter, buffer_info);
551                         tx_desc->upper.data = 0;
552
553                         i++;
554                         if (i == tx_ring->count)
555                                 i = 0;
556                 }
557
558                 eop = tx_ring->buffer_info[i].next_to_watch;
559                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
560 #define E1000_TX_WEIGHT 64
561                 /* weight of a sort for tx, to avoid endless transmit cleanup */
562                 if (count++ == E1000_TX_WEIGHT)
563                         break;
564         }
565
566         tx_ring->next_to_clean = i;
567
568 #define TX_WAKE_THRESHOLD 32
569         if (cleaned && netif_carrier_ok(netdev) &&
570                      e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
571                 /* Make sure that anybody stopping the queue after this
572                  * sees the new next_to_clean.
573                  */
574                 smp_mb();
575
576                 if (netif_queue_stopped(netdev) &&
577                     !(test_bit(__E1000_DOWN, &adapter->state))) {
578                         netif_wake_queue(netdev);
579                         ++adapter->restart_queue;
580                 }
581         }
582
583         if (adapter->detect_tx_hung) {
584                 /* Detect a transmit hang in hardware, this serializes the
585                  * check with the clearing of time_stamp and movement of i */
586                 adapter->detect_tx_hung = 0;
587                 if (tx_ring->buffer_info[eop].dma &&
588                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
589                                + (adapter->tx_timeout_factor * HZ))
590                     && !(er32(STATUS) &
591                          E1000_STATUS_TXOFF)) {
592                         e1000_print_tx_hang(adapter);
593                         netif_stop_queue(netdev);
594                 }
595         }
596         adapter->total_tx_bytes += total_tx_bytes;
597         adapter->total_tx_packets += total_tx_packets;
598         adapter->net_stats.tx_packets += total_tx_packets;
599         adapter->net_stats.tx_bytes += total_tx_bytes;
600         return cleaned;
601 }
602
603 /**
604  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
605  * @adapter: board private structure
606  *
607  * the return value indicates whether actual cleaning was done, there
608  * is no guarantee that everything was cleaned
609  **/
610 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
611                                   int *work_done, int work_to_do)
612 {
613         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
614         struct net_device *netdev = adapter->netdev;
615         struct pci_dev *pdev = adapter->pdev;
616         struct e1000_ring *rx_ring = adapter->rx_ring;
617         struct e1000_buffer *buffer_info, *next_buffer;
618         struct e1000_ps_page *ps_page;
619         struct sk_buff *skb;
620         unsigned int i, j;
621         u32 length, staterr;
622         int cleaned_count = 0;
623         bool cleaned = 0;
624         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
625
626         i = rx_ring->next_to_clean;
627         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
628         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
629         buffer_info = &rx_ring->buffer_info[i];
630
631         while (staterr & E1000_RXD_STAT_DD) {
632                 if (*work_done >= work_to_do)
633                         break;
634                 (*work_done)++;
635                 skb = buffer_info->skb;
636
637                 /* in the packet split case this is header only */
638                 prefetch(skb->data - NET_IP_ALIGN);
639
640                 i++;
641                 if (i == rx_ring->count)
642                         i = 0;
643                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
644                 prefetch(next_rxd);
645
646                 next_buffer = &rx_ring->buffer_info[i];
647
648                 cleaned = 1;
649                 cleaned_count++;
650                 pci_unmap_single(pdev, buffer_info->dma,
651                                  adapter->rx_ps_bsize0,
652                                  PCI_DMA_FROMDEVICE);
653                 buffer_info->dma = 0;
654
655                 if (!(staterr & E1000_RXD_STAT_EOP)) {
656                         ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
657                                  "up the full packet\n", netdev->name);
658                         dev_kfree_skb_irq(skb);
659                         goto next_desc;
660                 }
661
662                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
663                         dev_kfree_skb_irq(skb);
664                         goto next_desc;
665                 }
666
667                 length = le16_to_cpu(rx_desc->wb.middle.length0);
668
669                 if (!length) {
670                         ndev_dbg(netdev, "%s: Last part of the packet spanning"
671                                  " multiple descriptors\n", netdev->name);
672                         dev_kfree_skb_irq(skb);
673                         goto next_desc;
674                 }
675
676                 /* Good Receive */
677                 skb_put(skb, length);
678
679                 {
680                 /* this looks ugly, but it seems compiler issues make it
681                    more efficient than reusing j */
682                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
683
684                 /* page alloc/put takes too long and effects small packet
685                  * throughput, so unsplit small packets and save the alloc/put*/
686                 if (l1 && (l1 <= copybreak) &&
687                     ((length + l1) <= adapter->rx_ps_bsize0)) {
688                         u8 *vaddr;
689
690                         ps_page = &buffer_info->ps_pages[0];
691
692                         /* there is no documentation about how to call
693                          * kmap_atomic, so we can't hold the mapping
694                          * very long */
695                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
696                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
697                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
698                         memcpy(skb_tail_pointer(skb), vaddr, l1);
699                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
700                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
701                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
702
703                         skb_put(skb, l1);
704                         goto copydone;
705                 } /* if */
706                 }
707
708                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
709                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
710                         if (!length)
711                                 break;
712
713                         ps_page = &buffer_info->ps_pages[j];
714                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
715                                        PCI_DMA_FROMDEVICE);
716                         ps_page->dma = 0;
717                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
718                         ps_page->page = NULL;
719                         skb->len += length;
720                         skb->data_len += length;
721                         skb->truesize += length;
722                 }
723
724 copydone:
725                 total_rx_bytes += skb->len;
726                 total_rx_packets++;
727
728                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
729                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
730
731                 if (rx_desc->wb.upper.header_status &
732                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
733                         adapter->rx_hdr_split++;
734
735                 e1000_receive_skb(adapter, netdev, skb,
736                                   staterr, rx_desc->wb.middle.vlan);
737
738 next_desc:
739                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
740                 buffer_info->skb = NULL;
741
742                 /* return some buffers to hardware, one at a time is too slow */
743                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
744                         adapter->alloc_rx_buf(adapter, cleaned_count);
745                         cleaned_count = 0;
746                 }
747
748                 /* use prefetched values */
749                 rx_desc = next_rxd;
750                 buffer_info = next_buffer;
751
752                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
753         }
754         rx_ring->next_to_clean = i;
755
756         cleaned_count = e1000_desc_unused(rx_ring);
757         if (cleaned_count)
758                 adapter->alloc_rx_buf(adapter, cleaned_count);
759
760         adapter->total_rx_packets += total_rx_packets;
761         adapter->total_rx_bytes += total_rx_bytes;
762         adapter->net_stats.rx_packets += total_rx_packets;
763         adapter->net_stats.rx_bytes += total_rx_bytes;
764         return cleaned;
765 }
766
767 /**
768  * e1000_clean_rx_ring - Free Rx Buffers per Queue
769  * @adapter: board private structure
770  **/
771 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
772 {
773         struct e1000_ring *rx_ring = adapter->rx_ring;
774         struct e1000_buffer *buffer_info;
775         struct e1000_ps_page *ps_page;
776         struct pci_dev *pdev = adapter->pdev;
777         unsigned int i, j;
778
779         /* Free all the Rx ring sk_buffs */
780         for (i = 0; i < rx_ring->count; i++) {
781                 buffer_info = &rx_ring->buffer_info[i];
782                 if (buffer_info->dma) {
783                         if (adapter->clean_rx == e1000_clean_rx_irq)
784                                 pci_unmap_single(pdev, buffer_info->dma,
785                                                  adapter->rx_buffer_len,
786                                                  PCI_DMA_FROMDEVICE);
787                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
788                                 pci_unmap_single(pdev, buffer_info->dma,
789                                                  adapter->rx_ps_bsize0,
790                                                  PCI_DMA_FROMDEVICE);
791                         buffer_info->dma = 0;
792                 }
793
794                 if (buffer_info->skb) {
795                         dev_kfree_skb(buffer_info->skb);
796                         buffer_info->skb = NULL;
797                 }
798
799                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
800                         ps_page = &buffer_info->ps_pages[j];
801                         if (!ps_page->page)
802                                 break;
803                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
804                                        PCI_DMA_FROMDEVICE);
805                         ps_page->dma = 0;
806                         put_page(ps_page->page);
807                         ps_page->page = NULL;
808                 }
809         }
810
811         /* there also may be some cached data from a chained receive */
812         if (rx_ring->rx_skb_top) {
813                 dev_kfree_skb(rx_ring->rx_skb_top);
814                 rx_ring->rx_skb_top = NULL;
815         }
816
817         /* Zero out the descriptor ring */
818         memset(rx_ring->desc, 0, rx_ring->size);
819
820         rx_ring->next_to_clean = 0;
821         rx_ring->next_to_use = 0;
822
823         writel(0, adapter->hw.hw_addr + rx_ring->head);
824         writel(0, adapter->hw.hw_addr + rx_ring->tail);
825 }
826
827 /**
828  * e1000_intr_msi - Interrupt Handler
829  * @irq: interrupt number
830  * @data: pointer to a network interface device structure
831  **/
832 static irqreturn_t e1000_intr_msi(int irq, void *data)
833 {
834         struct net_device *netdev = data;
835         struct e1000_adapter *adapter = netdev_priv(netdev);
836         struct e1000_hw *hw = &adapter->hw;
837         u32 icr = er32(ICR);
838
839         /* read ICR disables interrupts using IAM */
840
841         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
842                 hw->mac.get_link_status = 1;
843                 /* ICH8 workaround-- Call gig speed drop workaround on cable
844                  * disconnect (LSC) before accessing any PHY registers */
845                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
846                     (!(er32(STATUS) & E1000_STATUS_LU)))
847                         e1000e_gig_downshift_workaround_ich8lan(hw);
848
849                 /* 80003ES2LAN workaround-- For packet buffer work-around on
850                  * link down event; disable receives here in the ISR and reset
851                  * adapter in watchdog */
852                 if (netif_carrier_ok(netdev) &&
853                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
854                         /* disable receives */
855                         u32 rctl = er32(RCTL);
856                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
857                 }
858                 /* guard against interrupt when we're going down */
859                 if (!test_bit(__E1000_DOWN, &adapter->state))
860                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
861         }
862
863         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
864                 adapter->total_tx_bytes = 0;
865                 adapter->total_tx_packets = 0;
866                 adapter->total_rx_bytes = 0;
867                 adapter->total_rx_packets = 0;
868                 __netif_rx_schedule(netdev, &adapter->napi);
869         }
870
871         return IRQ_HANDLED;
872 }
873
874 /**
875  * e1000_intr - Interrupt Handler
876  * @irq: interrupt number
877  * @data: pointer to a network interface device structure
878  **/
879 static irqreturn_t e1000_intr(int irq, void *data)
880 {
881         struct net_device *netdev = data;
882         struct e1000_adapter *adapter = netdev_priv(netdev);
883         struct e1000_hw *hw = &adapter->hw;
884
885         u32 rctl, icr = er32(ICR);
886         if (!icr)
887                 return IRQ_NONE;  /* Not our interrupt */
888
889         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
890          * not set, then the adapter didn't send an interrupt */
891         if (!(icr & E1000_ICR_INT_ASSERTED))
892                 return IRQ_NONE;
893
894         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
895          * need for the IMC write */
896
897         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
898                 hw->mac.get_link_status = 1;
899                 /* ICH8 workaround-- Call gig speed drop workaround on cable
900                  * disconnect (LSC) before accessing any PHY registers */
901                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
902                     (!(er32(STATUS) & E1000_STATUS_LU)))
903                         e1000e_gig_downshift_workaround_ich8lan(hw);
904
905                 /* 80003ES2LAN workaround--
906                  * For packet buffer work-around on link down event;
907                  * disable receives here in the ISR and
908                  * reset adapter in watchdog
909                  */
910                 if (netif_carrier_ok(netdev) &&
911                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
912                         /* disable receives */
913                         rctl = er32(RCTL);
914                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
915                 }
916                 /* guard against interrupt when we're going down */
917                 if (!test_bit(__E1000_DOWN, &adapter->state))
918                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
919         }
920
921         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
922                 adapter->total_tx_bytes = 0;
923                 adapter->total_tx_packets = 0;
924                 adapter->total_rx_bytes = 0;
925                 adapter->total_rx_packets = 0;
926                 __netif_rx_schedule(netdev, &adapter->napi);
927         }
928
929         return IRQ_HANDLED;
930 }
931
932 static int e1000_request_irq(struct e1000_adapter *adapter)
933 {
934         struct net_device *netdev = adapter->netdev;
935         irq_handler_t handler = e1000_intr;
936         int irq_flags = IRQF_SHARED;
937         int err;
938
939         if (!pci_enable_msi(adapter->pdev)) {
940                 adapter->flags |= FLAG_MSI_ENABLED;
941                 handler = e1000_intr_msi;
942                 irq_flags = 0;
943         }
944
945         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
946                           netdev);
947         if (err) {
948                 ndev_err(netdev,
949                        "Unable to allocate %s interrupt (return: %d)\n",
950                         adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
951                         err);
952                 if (adapter->flags & FLAG_MSI_ENABLED)
953                         pci_disable_msi(adapter->pdev);
954         }
955
956         return err;
957 }
958
959 static void e1000_free_irq(struct e1000_adapter *adapter)
960 {
961         struct net_device *netdev = adapter->netdev;
962
963         free_irq(adapter->pdev->irq, netdev);
964         if (adapter->flags & FLAG_MSI_ENABLED) {
965                 pci_disable_msi(adapter->pdev);
966                 adapter->flags &= ~FLAG_MSI_ENABLED;
967         }
968 }
969
970 /**
971  * e1000_irq_disable - Mask off interrupt generation on the NIC
972  **/
973 static void e1000_irq_disable(struct e1000_adapter *adapter)
974 {
975         struct e1000_hw *hw = &adapter->hw;
976
977         ew32(IMC, ~0);
978         e1e_flush();
979         synchronize_irq(adapter->pdev->irq);
980 }
981
982 /**
983  * e1000_irq_enable - Enable default interrupt generation settings
984  **/
985 static void e1000_irq_enable(struct e1000_adapter *adapter)
986 {
987         struct e1000_hw *hw = &adapter->hw;
988
989         ew32(IMS, IMS_ENABLE_MASK);
990         e1e_flush();
991 }
992
993 /**
994  * e1000_get_hw_control - get control of the h/w from f/w
995  * @adapter: address of board private structure
996  *
997  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
998  * For ASF and Pass Through versions of f/w this means that
999  * the driver is loaded. For AMT version (only with 82573)
1000  * of the f/w this means that the network i/f is open.
1001  **/
1002 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1003 {
1004         struct e1000_hw *hw = &adapter->hw;
1005         u32 ctrl_ext;
1006         u32 swsm;
1007
1008         /* Let firmware know the driver has taken over */
1009         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1010                 swsm = er32(SWSM);
1011                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1012         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1013                 ctrl_ext = er32(CTRL_EXT);
1014                 ew32(CTRL_EXT,
1015                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1016         }
1017 }
1018
1019 /**
1020  * e1000_release_hw_control - release control of the h/w to f/w
1021  * @adapter: address of board private structure
1022  *
1023  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1024  * For ASF and Pass Through versions of f/w this means that the
1025  * driver is no longer loaded. For AMT version (only with 82573) i
1026  * of the f/w this means that the network i/f is closed.
1027  *
1028  **/
1029 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1030 {
1031         struct e1000_hw *hw = &adapter->hw;
1032         u32 ctrl_ext;
1033         u32 swsm;
1034
1035         /* Let firmware taken over control of h/w */
1036         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1037                 swsm = er32(SWSM);
1038                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1039         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1040                 ctrl_ext = er32(CTRL_EXT);
1041                 ew32(CTRL_EXT,
1042                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1043         }
1044 }
1045
1046 /**
1047  * @e1000_alloc_ring - allocate memory for a ring structure
1048  **/
1049 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1050                                 struct e1000_ring *ring)
1051 {
1052         struct pci_dev *pdev = adapter->pdev;
1053
1054         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1055                                         GFP_KERNEL);
1056         if (!ring->desc)
1057                 return -ENOMEM;
1058
1059         return 0;
1060 }
1061
1062 /**
1063  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1064  * @adapter: board private structure
1065  *
1066  * Return 0 on success, negative on failure
1067  **/
1068 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1069 {
1070         struct e1000_ring *tx_ring = adapter->tx_ring;
1071         int err = -ENOMEM, size;
1072
1073         size = sizeof(struct e1000_buffer) * tx_ring->count;
1074         tx_ring->buffer_info = vmalloc(size);
1075         if (!tx_ring->buffer_info)
1076                 goto err;
1077         memset(tx_ring->buffer_info, 0, size);
1078
1079         /* round up to nearest 4K */
1080         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1081         tx_ring->size = ALIGN(tx_ring->size, 4096);
1082
1083         err = e1000_alloc_ring_dma(adapter, tx_ring);
1084         if (err)
1085                 goto err;
1086
1087         tx_ring->next_to_use = 0;
1088         tx_ring->next_to_clean = 0;
1089         spin_lock_init(&adapter->tx_queue_lock);
1090
1091         return 0;
1092 err:
1093         vfree(tx_ring->buffer_info);
1094         ndev_err(adapter->netdev,
1095         "Unable to allocate memory for the transmit descriptor ring\n");
1096         return err;
1097 }
1098
1099 /**
1100  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1101  * @adapter: board private structure
1102  *
1103  * Returns 0 on success, negative on failure
1104  **/
1105 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1106 {
1107         struct e1000_ring *rx_ring = adapter->rx_ring;
1108         struct e1000_buffer *buffer_info;
1109         int i, size, desc_len, err = -ENOMEM;
1110
1111         size = sizeof(struct e1000_buffer) * rx_ring->count;
1112         rx_ring->buffer_info = vmalloc(size);
1113         if (!rx_ring->buffer_info)
1114                 goto err;
1115         memset(rx_ring->buffer_info, 0, size);
1116
1117         for (i = 0; i < rx_ring->count; i++) {
1118                 buffer_info = &rx_ring->buffer_info[i];
1119                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1120                                                 sizeof(struct e1000_ps_page),
1121                                                 GFP_KERNEL);
1122                 if (!buffer_info->ps_pages)
1123                         goto err_pages;
1124         }
1125
1126         desc_len = sizeof(union e1000_rx_desc_packet_split);
1127
1128         /* Round up to nearest 4K */
1129         rx_ring->size = rx_ring->count * desc_len;
1130         rx_ring->size = ALIGN(rx_ring->size, 4096);
1131
1132         err = e1000_alloc_ring_dma(adapter, rx_ring);
1133         if (err)
1134                 goto err_pages;
1135
1136         rx_ring->next_to_clean = 0;
1137         rx_ring->next_to_use = 0;
1138         rx_ring->rx_skb_top = NULL;
1139
1140         return 0;
1141
1142 err_pages:
1143         for (i = 0; i < rx_ring->count; i++) {
1144                 buffer_info = &rx_ring->buffer_info[i];
1145                 kfree(buffer_info->ps_pages);
1146         }
1147 err:
1148         vfree(rx_ring->buffer_info);
1149         ndev_err(adapter->netdev,
1150         "Unable to allocate memory for the transmit descriptor ring\n");
1151         return err;
1152 }
1153
1154 /**
1155  * e1000_clean_tx_ring - Free Tx Buffers
1156  * @adapter: board private structure
1157  **/
1158 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1159 {
1160         struct e1000_ring *tx_ring = adapter->tx_ring;
1161         struct e1000_buffer *buffer_info;
1162         unsigned long size;
1163         unsigned int i;
1164
1165         for (i = 0; i < tx_ring->count; i++) {
1166                 buffer_info = &tx_ring->buffer_info[i];
1167                 e1000_put_txbuf(adapter, buffer_info);
1168         }
1169
1170         size = sizeof(struct e1000_buffer) * tx_ring->count;
1171         memset(tx_ring->buffer_info, 0, size);
1172
1173         memset(tx_ring->desc, 0, tx_ring->size);
1174
1175         tx_ring->next_to_use = 0;
1176         tx_ring->next_to_clean = 0;
1177
1178         writel(0, adapter->hw.hw_addr + tx_ring->head);
1179         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1180 }
1181
1182 /**
1183  * e1000e_free_tx_resources - Free Tx Resources per Queue
1184  * @adapter: board private structure
1185  *
1186  * Free all transmit software resources
1187  **/
1188 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1189 {
1190         struct pci_dev *pdev = adapter->pdev;
1191         struct e1000_ring *tx_ring = adapter->tx_ring;
1192
1193         e1000_clean_tx_ring(adapter);
1194
1195         vfree(tx_ring->buffer_info);
1196         tx_ring->buffer_info = NULL;
1197
1198         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1199                           tx_ring->dma);
1200         tx_ring->desc = NULL;
1201 }
1202
1203 /**
1204  * e1000e_free_rx_resources - Free Rx Resources
1205  * @adapter: board private structure
1206  *
1207  * Free all receive software resources
1208  **/
1209
1210 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1211 {
1212         struct pci_dev *pdev = adapter->pdev;
1213         struct e1000_ring *rx_ring = adapter->rx_ring;
1214         int i;
1215
1216         e1000_clean_rx_ring(adapter);
1217
1218         for (i = 0; i < rx_ring->count; i++) {
1219                 kfree(rx_ring->buffer_info[i].ps_pages);
1220         }
1221
1222         vfree(rx_ring->buffer_info);
1223         rx_ring->buffer_info = NULL;
1224
1225         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1226                           rx_ring->dma);
1227         rx_ring->desc = NULL;
1228 }
1229
1230 /**
1231  * e1000_update_itr - update the dynamic ITR value based on statistics
1232  * @adapter: pointer to adapter
1233  * @itr_setting: current adapter->itr
1234  * @packets: the number of packets during this measurement interval
1235  * @bytes: the number of bytes during this measurement interval
1236  *
1237  *      Stores a new ITR value based on packets and byte
1238  *      counts during the last interrupt.  The advantage of per interrupt
1239  *      computation is faster updates and more accurate ITR for the current
1240  *      traffic pattern.  Constants in this function were computed
1241  *      based on theoretical maximum wire speed and thresholds were set based
1242  *      on testing data as well as attempting to minimize response time
1243  *      while increasing bulk throughput.
1244  *      this functionality is controlled by the InterruptThrottleRate module
1245  *      parameter (see e1000_param.c)
1246  **/
1247 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1248                                      u16 itr_setting, int packets,
1249                                      int bytes)
1250 {
1251         unsigned int retval = itr_setting;
1252
1253         if (packets == 0)
1254                 goto update_itr_done;
1255
1256         switch (itr_setting) {
1257         case lowest_latency:
1258                 /* handle TSO and jumbo frames */
1259                 if (bytes/packets > 8000)
1260                         retval = bulk_latency;
1261                 else if ((packets < 5) && (bytes > 512)) {
1262                         retval = low_latency;
1263                 }
1264                 break;
1265         case low_latency:  /* 50 usec aka 20000 ints/s */
1266                 if (bytes > 10000) {
1267                         /* this if handles the TSO accounting */
1268                         if (bytes/packets > 8000) {
1269                                 retval = bulk_latency;
1270                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1271                                 retval = bulk_latency;
1272                         } else if ((packets > 35)) {
1273                                 retval = lowest_latency;
1274                         }
1275                 } else if (bytes/packets > 2000) {
1276                         retval = bulk_latency;
1277                 } else if (packets <= 2 && bytes < 512) {
1278                         retval = lowest_latency;
1279                 }
1280                 break;
1281         case bulk_latency: /* 250 usec aka 4000 ints/s */
1282                 if (bytes > 25000) {
1283                         if (packets > 35) {
1284                                 retval = low_latency;
1285                         }
1286                 } else if (bytes < 6000) {
1287                         retval = low_latency;
1288                 }
1289                 break;
1290         }
1291
1292 update_itr_done:
1293         return retval;
1294 }
1295
1296 static void e1000_set_itr(struct e1000_adapter *adapter)
1297 {
1298         struct e1000_hw *hw = &adapter->hw;
1299         u16 current_itr;
1300         u32 new_itr = adapter->itr;
1301
1302         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1303         if (adapter->link_speed != SPEED_1000) {
1304                 current_itr = 0;
1305                 new_itr = 4000;
1306                 goto set_itr_now;
1307         }
1308
1309         adapter->tx_itr = e1000_update_itr(adapter,
1310                                     adapter->tx_itr,
1311                                     adapter->total_tx_packets,
1312                                     adapter->total_tx_bytes);
1313         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1314         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1315                 adapter->tx_itr = low_latency;
1316
1317         adapter->rx_itr = e1000_update_itr(adapter,
1318                                     adapter->rx_itr,
1319                                     adapter->total_rx_packets,
1320                                     adapter->total_rx_bytes);
1321         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1322         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1323                 adapter->rx_itr = low_latency;
1324
1325         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1326
1327         switch (current_itr) {
1328         /* counts and packets in update_itr are dependent on these numbers */
1329         case lowest_latency:
1330                 new_itr = 70000;
1331                 break;
1332         case low_latency:
1333                 new_itr = 20000; /* aka hwitr = ~200 */
1334                 break;
1335         case bulk_latency:
1336                 new_itr = 4000;
1337                 break;
1338         default:
1339                 break;
1340         }
1341
1342 set_itr_now:
1343         if (new_itr != adapter->itr) {
1344                 /* this attempts to bias the interrupt rate towards Bulk
1345                  * by adding intermediate steps when interrupt rate is
1346                  * increasing */
1347                 new_itr = new_itr > adapter->itr ?
1348                              min(adapter->itr + (new_itr >> 2), new_itr) :
1349                              new_itr;
1350                 adapter->itr = new_itr;
1351                 ew32(ITR, 1000000000 / (new_itr * 256));
1352         }
1353 }
1354
1355 /**
1356  * e1000_clean - NAPI Rx polling callback
1357  * @adapter: board private structure
1358  * @budget: amount of packets driver is allowed to process this poll
1359  **/
1360 static int e1000_clean(struct napi_struct *napi, int budget)
1361 {
1362         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1363         struct net_device *poll_dev = adapter->netdev;
1364         int tx_cleaned = 0, work_done = 0;
1365
1366         /* Must NOT use netdev_priv macro here. */
1367         adapter = poll_dev->priv;
1368
1369         /* e1000_clean is called per-cpu.  This lock protects
1370          * tx_ring from being cleaned by multiple cpus
1371          * simultaneously.  A failure obtaining the lock means
1372          * tx_ring is currently being cleaned anyway. */
1373         if (spin_trylock(&adapter->tx_queue_lock)) {
1374                 tx_cleaned = e1000_clean_tx_irq(adapter);
1375                 spin_unlock(&adapter->tx_queue_lock);
1376         }
1377
1378         adapter->clean_rx(adapter, &work_done, budget);
1379
1380         if (tx_cleaned)
1381                 work_done = budget;
1382
1383         /* If budget not fully consumed, exit the polling mode */
1384         if (work_done < budget) {
1385                 if (adapter->itr_setting & 3)
1386                         e1000_set_itr(adapter);
1387                 netif_rx_complete(poll_dev, napi);
1388                 e1000_irq_enable(adapter);
1389         }
1390
1391         return work_done;
1392 }
1393
1394 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1395 {
1396         struct e1000_adapter *adapter = netdev_priv(netdev);
1397         struct e1000_hw *hw = &adapter->hw;
1398         u32 vfta, index;
1399
1400         /* don't update vlan cookie if already programmed */
1401         if ((adapter->hw.mng_cookie.status &
1402              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1403             (vid == adapter->mng_vlan_id))
1404                 return;
1405         /* add VID to filter table */
1406         index = (vid >> 5) & 0x7F;
1407         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1408         vfta |= (1 << (vid & 0x1F));
1409         e1000e_write_vfta(hw, index, vfta);
1410 }
1411
1412 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1413 {
1414         struct e1000_adapter *adapter = netdev_priv(netdev);
1415         struct e1000_hw *hw = &adapter->hw;
1416         u32 vfta, index;
1417
1418         if (!test_bit(__E1000_DOWN, &adapter->state))
1419                 e1000_irq_disable(adapter);
1420         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1421
1422         if (!test_bit(__E1000_DOWN, &adapter->state))
1423                 e1000_irq_enable(adapter);
1424
1425         if ((adapter->hw.mng_cookie.status &
1426              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1427             (vid == adapter->mng_vlan_id)) {
1428                 /* release control to f/w */
1429                 e1000_release_hw_control(adapter);
1430                 return;
1431         }
1432
1433         /* remove VID from filter table */
1434         index = (vid >> 5) & 0x7F;
1435         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1436         vfta &= ~(1 << (vid & 0x1F));
1437         e1000e_write_vfta(hw, index, vfta);
1438 }
1439
1440 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1441 {
1442         struct net_device *netdev = adapter->netdev;
1443         u16 vid = adapter->hw.mng_cookie.vlan_id;
1444         u16 old_vid = adapter->mng_vlan_id;
1445
1446         if (!adapter->vlgrp)
1447                 return;
1448
1449         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1450                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1451                 if (adapter->hw.mng_cookie.status &
1452                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1453                         e1000_vlan_rx_add_vid(netdev, vid);
1454                         adapter->mng_vlan_id = vid;
1455                 }
1456
1457                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1458                                 (vid != old_vid) &&
1459                     !vlan_group_get_device(adapter->vlgrp, old_vid))
1460                         e1000_vlan_rx_kill_vid(netdev, old_vid);
1461         } else {
1462                 adapter->mng_vlan_id = vid;
1463         }
1464 }
1465
1466
1467 static void e1000_vlan_rx_register(struct net_device *netdev,
1468                                    struct vlan_group *grp)
1469 {
1470         struct e1000_adapter *adapter = netdev_priv(netdev);
1471         struct e1000_hw *hw = &adapter->hw;
1472         u32 ctrl, rctl;
1473
1474         if (!test_bit(__E1000_DOWN, &adapter->state))
1475                 e1000_irq_disable(adapter);
1476         adapter->vlgrp = grp;
1477
1478         if (grp) {
1479                 /* enable VLAN tag insert/strip */
1480                 ctrl = er32(CTRL);
1481                 ctrl |= E1000_CTRL_VME;
1482                 ew32(CTRL, ctrl);
1483
1484                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1485                         /* enable VLAN receive filtering */
1486                         rctl = er32(RCTL);
1487                         rctl |= E1000_RCTL_VFE;
1488                         rctl &= ~E1000_RCTL_CFIEN;
1489                         ew32(RCTL, rctl);
1490                         e1000_update_mng_vlan(adapter);
1491                 }
1492         } else {
1493                 /* disable VLAN tag insert/strip */
1494                 ctrl = er32(CTRL);
1495                 ctrl &= ~E1000_CTRL_VME;
1496                 ew32(CTRL, ctrl);
1497
1498                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1499                         /* disable VLAN filtering */
1500                         rctl = er32(RCTL);
1501                         rctl &= ~E1000_RCTL_VFE;
1502                         ew32(RCTL, rctl);
1503                         if (adapter->mng_vlan_id !=
1504                             (u16)E1000_MNG_VLAN_NONE) {
1505                                 e1000_vlan_rx_kill_vid(netdev,
1506                                                        adapter->mng_vlan_id);
1507                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1508                         }
1509                 }
1510         }
1511
1512         if (!test_bit(__E1000_DOWN, &adapter->state))
1513                 e1000_irq_enable(adapter);
1514 }
1515
1516 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1517 {
1518         u16 vid;
1519
1520         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1521
1522         if (!adapter->vlgrp)
1523                 return;
1524
1525         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1526                 if (!vlan_group_get_device(adapter->vlgrp, vid))
1527                         continue;
1528                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1529         }
1530 }
1531
1532 static void e1000_init_manageability(struct e1000_adapter *adapter)
1533 {
1534         struct e1000_hw *hw = &adapter->hw;
1535         u32 manc, manc2h;
1536
1537         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1538                 return;
1539
1540         manc = er32(MANC);
1541
1542         /* enable receiving management packets to the host. this will probably
1543          * generate destination unreachable messages from the host OS, but
1544          * the packets will be handled on SMBUS */
1545         manc |= E1000_MANC_EN_MNG2HOST;
1546         manc2h = er32(MANC2H);
1547 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1548 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1549         manc2h |= E1000_MNG2HOST_PORT_623;
1550         manc2h |= E1000_MNG2HOST_PORT_664;
1551         ew32(MANC2H, manc2h);
1552         ew32(MANC, manc);
1553 }
1554
1555 /**
1556  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1557  * @adapter: board private structure
1558  *
1559  * Configure the Tx unit of the MAC after a reset.
1560  **/
1561 static void e1000_configure_tx(struct e1000_adapter *adapter)
1562 {
1563         struct e1000_hw *hw = &adapter->hw;
1564         struct e1000_ring *tx_ring = adapter->tx_ring;
1565         u64 tdba;
1566         u32 tdlen, tctl, tipg, tarc;
1567         u32 ipgr1, ipgr2;
1568
1569         /* Setup the HW Tx Head and Tail descriptor pointers */
1570         tdba = tx_ring->dma;
1571         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1572         ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1573         ew32(TDBAH, (tdba >> 32));
1574         ew32(TDLEN, tdlen);
1575         ew32(TDH, 0);
1576         ew32(TDT, 0);
1577         tx_ring->head = E1000_TDH;
1578         tx_ring->tail = E1000_TDT;
1579
1580         /* Set the default values for the Tx Inter Packet Gap timer */
1581         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
1582         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
1583         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
1584
1585         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1586                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
1587
1588         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1589         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1590         ew32(TIPG, tipg);
1591
1592         /* Set the Tx Interrupt Delay register */
1593         ew32(TIDV, adapter->tx_int_delay);
1594         /* tx irq moderation */
1595         ew32(TADV, adapter->tx_abs_int_delay);
1596
1597         /* Program the Transmit Control Register */
1598         tctl = er32(TCTL);
1599         tctl &= ~E1000_TCTL_CT;
1600         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1601                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1602
1603         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1604                 tarc = er32(TARC0);
1605                 /* set the speed mode bit, we'll clear it if we're not at
1606                  * gigabit link later */
1607 #define SPEED_MODE_BIT (1 << 21)
1608                 tarc |= SPEED_MODE_BIT;
1609                 ew32(TARC0, tarc);
1610         }
1611
1612         /* errata: program both queues to unweighted RR */
1613         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1614                 tarc = er32(TARC0);
1615                 tarc |= 1;
1616                 ew32(TARC0, tarc);
1617                 tarc = er32(TARC1);
1618                 tarc |= 1;
1619                 ew32(TARC1, tarc);
1620         }
1621
1622         e1000e_config_collision_dist(hw);
1623
1624         /* Setup Transmit Descriptor Settings for eop descriptor */
1625         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1626
1627         /* only set IDE if we are delaying interrupts using the timers */
1628         if (adapter->tx_int_delay)
1629                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1630
1631         /* enable Report Status bit */
1632         adapter->txd_cmd |= E1000_TXD_CMD_RS;
1633
1634         ew32(TCTL, tctl);
1635
1636         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1637 }
1638
1639 /**
1640  * e1000_setup_rctl - configure the receive control registers
1641  * @adapter: Board private structure
1642  **/
1643 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1644                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1645 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1646 {
1647         struct e1000_hw *hw = &adapter->hw;
1648         u32 rctl, rfctl;
1649         u32 psrctl = 0;
1650         u32 pages = 0;
1651
1652         /* Program MC offset vector base */
1653         rctl = er32(RCTL);
1654         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1655         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1656                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1657                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1658
1659         /* Do not Store bad packets */
1660         rctl &= ~E1000_RCTL_SBP;
1661
1662         /* Enable Long Packet receive */
1663         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1664                 rctl &= ~E1000_RCTL_LPE;
1665         else
1666                 rctl |= E1000_RCTL_LPE;
1667
1668         /* Enable hardware CRC frame stripping */
1669         rctl |= E1000_RCTL_SECRC;
1670
1671         /* Setup buffer sizes */
1672         rctl &= ~E1000_RCTL_SZ_4096;
1673         rctl |= E1000_RCTL_BSEX;
1674         switch (adapter->rx_buffer_len) {
1675         case 256:
1676                 rctl |= E1000_RCTL_SZ_256;
1677                 rctl &= ~E1000_RCTL_BSEX;
1678                 break;
1679         case 512:
1680                 rctl |= E1000_RCTL_SZ_512;
1681                 rctl &= ~E1000_RCTL_BSEX;
1682                 break;
1683         case 1024:
1684                 rctl |= E1000_RCTL_SZ_1024;
1685                 rctl &= ~E1000_RCTL_BSEX;
1686                 break;
1687         case 2048:
1688         default:
1689                 rctl |= E1000_RCTL_SZ_2048;
1690                 rctl &= ~E1000_RCTL_BSEX;
1691                 break;
1692         case 4096:
1693                 rctl |= E1000_RCTL_SZ_4096;
1694                 break;
1695         case 8192:
1696                 rctl |= E1000_RCTL_SZ_8192;
1697                 break;
1698         case 16384:
1699                 rctl |= E1000_RCTL_SZ_16384;
1700                 break;
1701         }
1702
1703         /*
1704          * 82571 and greater support packet-split where the protocol
1705          * header is placed in skb->data and the packet data is
1706          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1707          * In the case of a non-split, skb->data is linearly filled,
1708          * followed by the page buffers.  Therefore, skb->data is
1709          * sized to hold the largest protocol header.
1710          *
1711          * allocations using alloc_page take too long for regular MTU
1712          * so only enable packet split for jumbo frames
1713          *
1714          * Using pages when the page size is greater than 16k wastes
1715          * a lot of memory, since we allocate 3 pages at all times
1716          * per packet.
1717          */
1718         adapter->rx_ps_pages = 0;
1719         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1720         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1721                 adapter->rx_ps_pages = pages;
1722
1723         if (adapter->rx_ps_pages) {
1724                 /* Configure extra packet-split registers */
1725                 rfctl = er32(RFCTL);
1726                 rfctl |= E1000_RFCTL_EXTEN;
1727                 /* disable packet split support for IPv6 extension headers,
1728                  * because some malformed IPv6 headers can hang the RX */
1729                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1730                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1731
1732                 ew32(RFCTL, rfctl);
1733
1734                 /* Enable Packet split descriptors */
1735                 rctl |= E1000_RCTL_DTYP_PS;
1736
1737                 psrctl |= adapter->rx_ps_bsize0 >>
1738                         E1000_PSRCTL_BSIZE0_SHIFT;
1739
1740                 switch (adapter->rx_ps_pages) {
1741                 case 3:
1742                         psrctl |= PAGE_SIZE <<
1743                                 E1000_PSRCTL_BSIZE3_SHIFT;
1744                 case 2:
1745                         psrctl |= PAGE_SIZE <<
1746                                 E1000_PSRCTL_BSIZE2_SHIFT;
1747                 case 1:
1748                         psrctl |= PAGE_SIZE >>
1749                                 E1000_PSRCTL_BSIZE1_SHIFT;
1750                         break;
1751                 }
1752
1753                 ew32(PSRCTL, psrctl);
1754         }
1755
1756         ew32(RCTL, rctl);
1757 }
1758
1759 /**
1760  * e1000_configure_rx - Configure Receive Unit after Reset
1761  * @adapter: board private structure
1762  *
1763  * Configure the Rx unit of the MAC after a reset.
1764  **/
1765 static void e1000_configure_rx(struct e1000_adapter *adapter)
1766 {
1767         struct e1000_hw *hw = &adapter->hw;
1768         struct e1000_ring *rx_ring = adapter->rx_ring;
1769         u64 rdba;
1770         u32 rdlen, rctl, rxcsum, ctrl_ext;
1771
1772         if (adapter->rx_ps_pages) {
1773                 /* this is a 32 byte descriptor */
1774                 rdlen = rx_ring->count *
1775                         sizeof(union e1000_rx_desc_packet_split);
1776                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1777                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1778         } else {
1779                 rdlen = rx_ring->count *
1780                         sizeof(struct e1000_rx_desc);
1781                 adapter->clean_rx = e1000_clean_rx_irq;
1782                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1783         }
1784
1785         /* disable receives while setting up the descriptors */
1786         rctl = er32(RCTL);
1787         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1788         e1e_flush();
1789         msleep(10);
1790
1791         /* set the Receive Delay Timer Register */
1792         ew32(RDTR, adapter->rx_int_delay);
1793
1794         /* irq moderation */
1795         ew32(RADV, adapter->rx_abs_int_delay);
1796         if (adapter->itr_setting != 0)
1797                 ew32(ITR,
1798                         1000000000 / (adapter->itr * 256));
1799
1800         ctrl_ext = er32(CTRL_EXT);
1801         /* Reset delay timers after every interrupt */
1802         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1803         /* Auto-Mask interrupts upon ICR access */
1804         ctrl_ext |= E1000_CTRL_EXT_IAME;
1805         ew32(IAM, 0xffffffff);
1806         ew32(CTRL_EXT, ctrl_ext);
1807         e1e_flush();
1808
1809         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1810          * the Base and Length of the Rx Descriptor Ring */
1811         rdba = rx_ring->dma;
1812         ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1813         ew32(RDBAH, (rdba >> 32));
1814         ew32(RDLEN, rdlen);
1815         ew32(RDH, 0);
1816         ew32(RDT, 0);
1817         rx_ring->head = E1000_RDH;
1818         rx_ring->tail = E1000_RDT;
1819
1820         /* Enable Receive Checksum Offload for TCP and UDP */
1821         rxcsum = er32(RXCSUM);
1822         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1823                 rxcsum |= E1000_RXCSUM_TUOFL;
1824
1825                 /* IPv4 payload checksum for UDP fragments must be
1826                  * used in conjunction with packet-split. */
1827                 if (adapter->rx_ps_pages)
1828                         rxcsum |= E1000_RXCSUM_IPPCSE;
1829         } else {
1830                 rxcsum &= ~E1000_RXCSUM_TUOFL;
1831                 /* no need to clear IPPCSE as it defaults to 0 */
1832         }
1833         ew32(RXCSUM, rxcsum);
1834
1835         /* Enable early receives on supported devices, only takes effect when
1836          * packet size is equal or larger than the specified value (in 8 byte
1837          * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1838         if ((adapter->flags & FLAG_HAS_ERT) &&
1839             (adapter->netdev->mtu > ETH_DATA_LEN))
1840                 ew32(ERT, E1000_ERT_2048);
1841
1842         /* Enable Receives */
1843         ew32(RCTL, rctl);
1844 }
1845
1846 /**
1847  *  e1000_mc_addr_list_update - Update Multicast addresses
1848  *  @hw: pointer to the HW structure
1849  *  @mc_addr_list: array of multicast addresses to program
1850  *  @mc_addr_count: number of multicast addresses to program
1851  *  @rar_used_count: the first RAR register free to program
1852  *  @rar_count: total number of supported Receive Address Registers
1853  *
1854  *  Updates the Receive Address Registers and Multicast Table Array.
1855  *  The caller must have a packed mc_addr_list of multicast addresses.
1856  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1857  *  unless there are workarounds that change this.  Currently no func pointer
1858  *  exists and all implementations are handled in the generic version of this
1859  *  function.
1860  **/
1861 static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
1862                                u32 mc_addr_count, u32 rar_used_count,
1863                                u32 rar_count)
1864 {
1865         hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
1866                                         rar_used_count, rar_count);
1867 }
1868
1869 /**
1870  * e1000_set_multi - Multicast and Promiscuous mode set
1871  * @netdev: network interface device structure
1872  *
1873  * The set_multi entry point is called whenever the multicast address
1874  * list or the network interface flags are updated.  This routine is
1875  * responsible for configuring the hardware for proper multicast,
1876  * promiscuous mode, and all-multi behavior.
1877  **/
1878 static void e1000_set_multi(struct net_device *netdev)
1879 {
1880         struct e1000_adapter *adapter = netdev_priv(netdev);
1881         struct e1000_hw *hw = &adapter->hw;
1882         struct e1000_mac_info *mac = &hw->mac;
1883         struct dev_mc_list *mc_ptr;
1884         u8  *mta_list;
1885         u32 rctl;
1886         int i;
1887
1888         /* Check for Promiscuous and All Multicast modes */
1889
1890         rctl = er32(RCTL);
1891
1892         if (netdev->flags & IFF_PROMISC) {
1893                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1894         } else if (netdev->flags & IFF_ALLMULTI) {
1895                 rctl |= E1000_RCTL_MPE;
1896                 rctl &= ~E1000_RCTL_UPE;
1897         } else {
1898                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1899         }
1900
1901         ew32(RCTL, rctl);
1902
1903         if (netdev->mc_count) {
1904                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1905                 if (!mta_list)
1906                         return;
1907
1908                 /* prepare a packed array of only addresses. */
1909                 mc_ptr = netdev->mc_list;
1910
1911                 for (i = 0; i < netdev->mc_count; i++) {
1912                         if (!mc_ptr)
1913                                 break;
1914                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1915                                ETH_ALEN);
1916                         mc_ptr = mc_ptr->next;
1917                 }
1918
1919                 e1000_mc_addr_list_update(hw, mta_list, i, 1,
1920                                           mac->rar_entry_count);
1921                 kfree(mta_list);
1922         } else {
1923                 /*
1924                  * if we're called from probe, we might not have
1925                  * anything to do here, so clear out the list
1926                  */
1927                 e1000_mc_addr_list_update(hw, NULL, 0, 1,
1928                                           mac->rar_entry_count);
1929         }
1930 }
1931
1932 /**
1933  * e1000_configure - configure the hardware for RX and TX
1934  * @adapter: private board structure
1935  **/
1936 static void e1000_configure(struct e1000_adapter *adapter)
1937 {
1938         e1000_set_multi(adapter->netdev);
1939
1940         e1000_restore_vlan(adapter);
1941         e1000_init_manageability(adapter);
1942
1943         e1000_configure_tx(adapter);
1944         e1000_setup_rctl(adapter);
1945         e1000_configure_rx(adapter);
1946         adapter->alloc_rx_buf(adapter,
1947                               e1000_desc_unused(adapter->rx_ring));
1948 }
1949
1950 /**
1951  * e1000e_power_up_phy - restore link in case the phy was powered down
1952  * @adapter: address of board private structure
1953  *
1954  * The phy may be powered down to save power and turn off link when the
1955  * driver is unloaded and wake on lan is not enabled (among others)
1956  * *** this routine MUST be followed by a call to e1000e_reset ***
1957  **/
1958 void e1000e_power_up_phy(struct e1000_adapter *adapter)
1959 {
1960         u16 mii_reg = 0;
1961
1962         /* Just clear the power down bit to wake the phy back up */
1963         if (adapter->hw.media_type == e1000_media_type_copper) {
1964                 /* according to the manual, the phy will retain its
1965                  * settings across a power-down/up cycle */
1966                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
1967                 mii_reg &= ~MII_CR_POWER_DOWN;
1968                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
1969         }
1970
1971         adapter->hw.mac.ops.setup_link(&adapter->hw);
1972 }
1973
1974 /**
1975  * e1000_power_down_phy - Power down the PHY
1976  *
1977  * Power down the PHY so no link is implied when interface is down
1978  * The PHY cannot be powered down is management or WoL is active
1979  */
1980 static void e1000_power_down_phy(struct e1000_adapter *adapter)
1981 {
1982         struct e1000_hw *hw = &adapter->hw;
1983         u16 mii_reg;
1984
1985         /* WoL is enabled */
1986         if (adapter->wol)
1987                 return;
1988
1989         /* non-copper PHY? */
1990         if (adapter->hw.media_type != e1000_media_type_copper)
1991                 return;
1992
1993         /* reset is blocked because of a SoL/IDER session */
1994         if (e1000e_check_mng_mode(hw) ||
1995             e1000_check_reset_block(hw))
1996                 return;
1997
1998         /* manageability (AMT) is enabled */
1999         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2000                 return;
2001
2002         /* power down the PHY */
2003         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2004         mii_reg |= MII_CR_POWER_DOWN;
2005         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2006         mdelay(1);
2007 }
2008
2009 /**
2010  * e1000e_reset - bring the hardware into a known good state
2011  *
2012  * This function boots the hardware and enables some settings that
2013  * require a configuration cycle of the hardware - those cannot be
2014  * set/changed during runtime. After reset the device needs to be
2015  * properly configured for rx, tx etc.
2016  */
2017 void e1000e_reset(struct e1000_adapter *adapter)
2018 {
2019         struct e1000_mac_info *mac = &adapter->hw.mac;
2020         struct e1000_hw *hw = &adapter->hw;
2021         u32 tx_space, min_tx_space, min_rx_space;
2022         u32 pba;
2023         u16 hwm;
2024
2025         ew32(PBA, adapter->pba);
2026
2027         if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2028                 /* To maintain wire speed transmits, the Tx FIFO should be
2029                  * large enough to accommodate two full transmit packets,
2030                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2031                  * the Rx FIFO should be large enough to accommodate at least
2032                  * one full receive packet and is similarly rounded up and
2033                  * expressed in KB. */
2034                 pba = er32(PBA);
2035                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2036                 tx_space = pba >> 16;
2037                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2038                 pba &= 0xffff;
2039                 /* the tx fifo also stores 16 bytes of information about the tx
2040                  * but don't include ethernet FCS because hardware appends it */
2041                 min_tx_space = (mac->max_frame_size +
2042                                 sizeof(struct e1000_tx_desc) -
2043                                 ETH_FCS_LEN) * 2;
2044                 min_tx_space = ALIGN(min_tx_space, 1024);
2045                 min_tx_space >>= 10;
2046                 /* software strips receive CRC, so leave room for it */
2047                 min_rx_space = mac->max_frame_size;
2048                 min_rx_space = ALIGN(min_rx_space, 1024);
2049                 min_rx_space >>= 10;
2050
2051                 /* If current Tx allocation is less than the min Tx FIFO size,
2052                  * and the min Tx FIFO size is less than the current Rx FIFO
2053                  * allocation, take space away from current Rx allocation */
2054                 if ((tx_space < min_tx_space) &&
2055                     ((min_tx_space - tx_space) < pba)) {
2056                         pba -= min_tx_space - tx_space;
2057
2058                         /* if short on rx space, rx wins and must trump tx
2059                          * adjustment or use Early Receive if available */
2060                         if ((pba < min_rx_space) &&
2061                             (!(adapter->flags & FLAG_HAS_ERT)))
2062                                 /* ERT enabled in e1000_configure_rx */
2063                                 pba = min_rx_space;
2064                 }
2065
2066                 ew32(PBA, pba);
2067         }
2068
2069
2070         /* flow control settings */
2071         /* The high water mark must be low enough to fit one full frame
2072          * (or the size used for early receive) above it in the Rx FIFO.
2073          * Set it to the lower of:
2074          * - 90% of the Rx FIFO size, and
2075          * - the full Rx FIFO size minus the early receive size (for parts
2076          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2077          * - the full Rx FIFO size minus one full frame */
2078         if (adapter->flags & FLAG_HAS_ERT)
2079                 hwm = min(((adapter->pba << 10) * 9 / 10),
2080                           ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2081         else
2082                 hwm = min(((adapter->pba << 10) * 9 / 10),
2083                           ((adapter->pba << 10) - mac->max_frame_size));
2084
2085         mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2086         mac->fc_low_water = mac->fc_high_water - 8;
2087
2088         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2089                 mac->fc_pause_time = 0xFFFF;
2090         else
2091                 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2092         mac->fc = mac->original_fc;
2093
2094         /* Allow time for pending master requests to run */
2095         mac->ops.reset_hw(hw);
2096         ew32(WUC, 0);
2097
2098         if (mac->ops.init_hw(hw))
2099                 ndev_err(adapter->netdev, "Hardware Error\n");
2100
2101         e1000_update_mng_vlan(adapter);
2102
2103         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2104         ew32(VET, ETH_P_8021Q);
2105
2106         e1000e_reset_adaptive(hw);
2107         e1000_get_phy_info(hw);
2108
2109         if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2110                 u16 phy_data = 0;
2111                 /* speed up time to link by disabling smart power down, ignore
2112                  * the return value of this function because there is nothing
2113                  * different we would do if it failed */
2114                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2115                 phy_data &= ~IGP02E1000_PM_SPD;
2116                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2117         }
2118 }
2119
2120 int e1000e_up(struct e1000_adapter *adapter)
2121 {
2122         struct e1000_hw *hw = &adapter->hw;
2123
2124         /* hardware has been reset, we need to reload some things */
2125         e1000_configure(adapter);
2126
2127         clear_bit(__E1000_DOWN, &adapter->state);
2128
2129         napi_enable(&adapter->napi);
2130         e1000_irq_enable(adapter);
2131
2132         /* fire a link change interrupt to start the watchdog */
2133         ew32(ICS, E1000_ICS_LSC);
2134         return 0;
2135 }
2136
2137 void e1000e_down(struct e1000_adapter *adapter)
2138 {
2139         struct net_device *netdev = adapter->netdev;
2140         struct e1000_hw *hw = &adapter->hw;
2141         u32 tctl, rctl;
2142
2143         /* signal that we're down so the interrupt handler does not
2144          * reschedule our watchdog timer */
2145         set_bit(__E1000_DOWN, &adapter->state);
2146
2147         /* disable receives in the hardware */
2148         rctl = er32(RCTL);
2149         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2150         /* flush and sleep below */
2151
2152         netif_stop_queue(netdev);
2153
2154         /* disable transmits in the hardware */
2155         tctl = er32(TCTL);
2156         tctl &= ~E1000_TCTL_EN;
2157         ew32(TCTL, tctl);
2158         /* flush both disables and wait for them to finish */
2159         e1e_flush();
2160         msleep(10);
2161
2162         napi_disable(&adapter->napi);
2163         e1000_irq_disable(adapter);
2164
2165         del_timer_sync(&adapter->watchdog_timer);
2166         del_timer_sync(&adapter->phy_info_timer);
2167
2168         netdev->tx_queue_len = adapter->tx_queue_len;
2169         netif_carrier_off(netdev);
2170         adapter->link_speed = 0;
2171         adapter->link_duplex = 0;
2172
2173         e1000e_reset(adapter);
2174         e1000_clean_tx_ring(adapter);
2175         e1000_clean_rx_ring(adapter);
2176
2177         /*
2178          * TODO: for power management, we could drop the link and
2179          * pci_disable_device here.
2180          */
2181 }
2182
2183 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2184 {
2185         might_sleep();
2186         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2187                 msleep(1);
2188         e1000e_down(adapter);
2189         e1000e_up(adapter);
2190         clear_bit(__E1000_RESETTING, &adapter->state);
2191 }
2192
2193 /**
2194  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2195  * @adapter: board private structure to initialize
2196  *
2197  * e1000_sw_init initializes the Adapter private data structure.
2198  * Fields are initialized based on PCI device information and
2199  * OS network device settings (MTU size).
2200  **/
2201 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2202 {
2203         struct e1000_hw *hw = &adapter->hw;
2204         struct net_device *netdev = adapter->netdev;
2205
2206         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2207         adapter->rx_ps_bsize0 = 128;
2208         hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2209         hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2210
2211         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2212         if (!adapter->tx_ring)
2213                 goto err;
2214
2215         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2216         if (!adapter->rx_ring)
2217                 goto err;
2218
2219         spin_lock_init(&adapter->tx_queue_lock);
2220
2221         /* Explicitly disable IRQ since the NIC can be in any state. */
2222         e1000_irq_disable(adapter);
2223
2224         spin_lock_init(&adapter->stats_lock);
2225
2226         set_bit(__E1000_DOWN, &adapter->state);
2227         return 0;
2228
2229 err:
2230         ndev_err(netdev, "Unable to allocate memory for queues\n");
2231         kfree(adapter->rx_ring);
2232         kfree(adapter->tx_ring);
2233         return -ENOMEM;
2234 }
2235
2236 /**
2237  * e1000_open - Called when a network interface is made active
2238  * @netdev: network interface device structure
2239  *
2240  * Returns 0 on success, negative value on failure
2241  *
2242  * The open entry point is called when a network interface is made
2243  * active by the system (IFF_UP).  At this point all resources needed
2244  * for transmit and receive operations are allocated, the interrupt
2245  * handler is registered with the OS, the watchdog timer is started,
2246  * and the stack is notified that the interface is ready.
2247  **/
2248 static int e1000_open(struct net_device *netdev)
2249 {
2250         struct e1000_adapter *adapter = netdev_priv(netdev);
2251         struct e1000_hw *hw = &adapter->hw;
2252         int err;
2253
2254         /* disallow open during test */
2255         if (test_bit(__E1000_TESTING, &adapter->state))
2256                 return -EBUSY;
2257
2258         /* allocate transmit descriptors */
2259         err = e1000e_setup_tx_resources(adapter);
2260         if (err)
2261                 goto err_setup_tx;
2262
2263         /* allocate receive descriptors */
2264         err = e1000e_setup_rx_resources(adapter);
2265         if (err)
2266                 goto err_setup_rx;
2267
2268         e1000e_power_up_phy(adapter);
2269
2270         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2271         if ((adapter->hw.mng_cookie.status &
2272              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2273                 e1000_update_mng_vlan(adapter);
2274
2275         /* If AMT is enabled, let the firmware know that the network
2276          * interface is now open */
2277         if ((adapter->flags & FLAG_HAS_AMT) &&
2278             e1000e_check_mng_mode(&adapter->hw))
2279                 e1000_get_hw_control(adapter);
2280
2281         /* before we allocate an interrupt, we must be ready to handle it.
2282          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2283          * as soon as we call pci_request_irq, so we have to setup our
2284          * clean_rx handler before we do so.  */
2285         e1000_configure(adapter);
2286
2287         err = e1000_request_irq(adapter);
2288         if (err)
2289                 goto err_req_irq;
2290
2291         /* From here on the code is the same as e1000e_up() */
2292         clear_bit(__E1000_DOWN, &adapter->state);
2293
2294         napi_enable(&adapter->napi);
2295
2296         e1000_irq_enable(adapter);
2297
2298         /* fire a link status change interrupt to start the watchdog */
2299         ew32(ICS, E1000_ICS_LSC);
2300
2301         return 0;
2302
2303 err_req_irq:
2304         e1000_release_hw_control(adapter);
2305         e1000_power_down_phy(adapter);
2306         e1000e_free_rx_resources(adapter);
2307 err_setup_rx:
2308         e1000e_free_tx_resources(adapter);
2309 err_setup_tx:
2310         e1000e_reset(adapter);
2311
2312         return err;
2313 }
2314
2315 /**
2316  * e1000_close - Disables a network interface
2317  * @netdev: network interface device structure
2318  *
2319  * Returns 0, this is not allowed to fail
2320  *
2321  * The close entry point is called when an interface is de-activated
2322  * by the OS.  The hardware is still under the drivers control, but
2323  * needs to be disabled.  A global MAC reset is issued to stop the
2324  * hardware, and all transmit and receive resources are freed.
2325  **/
2326 static int e1000_close(struct net_device *netdev)
2327 {
2328         struct e1000_adapter *adapter = netdev_priv(netdev);
2329
2330         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2331         e1000e_down(adapter);
2332         e1000_power_down_phy(adapter);
2333         e1000_free_irq(adapter);
2334
2335         e1000e_free_tx_resources(adapter);
2336         e1000e_free_rx_resources(adapter);
2337
2338         /* kill manageability vlan ID if supported, but not if a vlan with
2339          * the same ID is registered on the host OS (let 8021q kill it) */
2340         if ((adapter->hw.mng_cookie.status &
2341                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2342              !(adapter->vlgrp &&
2343                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2344                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2345
2346         /* If AMT is enabled, let the firmware know that the network
2347          * interface is now closed */
2348         if ((adapter->flags & FLAG_HAS_AMT) &&
2349             e1000e_check_mng_mode(&adapter->hw))
2350                 e1000_release_hw_control(adapter);
2351
2352         return 0;
2353 }
2354 /**
2355  * e1000_set_mac - Change the Ethernet Address of the NIC
2356  * @netdev: network interface device structure
2357  * @p: pointer to an address structure
2358  *
2359  * Returns 0 on success, negative on failure
2360  **/
2361 static int e1000_set_mac(struct net_device *netdev, void *p)
2362 {
2363         struct e1000_adapter *adapter = netdev_priv(netdev);
2364         struct sockaddr *addr = p;
2365
2366         if (!is_valid_ether_addr(addr->sa_data))
2367                 return -EADDRNOTAVAIL;
2368
2369         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2370         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2371
2372         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2373
2374         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2375                 /* activate the work around */
2376                 e1000e_set_laa_state_82571(&adapter->hw, 1);
2377
2378                 /* Hold a copy of the LAA in RAR[14] This is done so that
2379                  * between the time RAR[0] gets clobbered  and the time it
2380                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2381                  * of the RARs and no incoming packets directed to this port
2382                  * are dropped. Eventually the LAA will be in RAR[0] and
2383                  * RAR[14] */
2384                 e1000e_rar_set(&adapter->hw,
2385                               adapter->hw.mac.addr,
2386                               adapter->hw.mac.rar_entry_count - 1);
2387         }
2388
2389         return 0;
2390 }
2391
2392 /* Need to wait a few seconds after link up to get diagnostic information from
2393  * the phy */
2394 static void e1000_update_phy_info(unsigned long data)
2395 {
2396         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2397         e1000_get_phy_info(&adapter->hw);
2398 }
2399
2400 /**
2401  * e1000e_update_stats - Update the board statistics counters
2402  * @adapter: board private structure
2403  **/
2404 void e1000e_update_stats(struct e1000_adapter *adapter)
2405 {
2406         struct e1000_hw *hw = &adapter->hw;
2407         struct pci_dev *pdev = adapter->pdev;
2408         unsigned long irq_flags;
2409         u16 phy_tmp;
2410
2411 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2412
2413         /*
2414          * Prevent stats update while adapter is being reset, or if the pci
2415          * connection is down.
2416          */
2417         if (adapter->link_speed == 0)
2418                 return;
2419         if (pci_channel_offline(pdev))
2420                 return;
2421
2422         spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2423
2424         /* these counters are modified from e1000_adjust_tbi_stats,
2425          * called from the interrupt context, so they must only
2426          * be written while holding adapter->stats_lock
2427          */
2428
2429         adapter->stats.crcerrs += er32(CRCERRS);
2430         adapter->stats.gprc += er32(GPRC);
2431         adapter->stats.gorcl += er32(GORCL);
2432         adapter->stats.gorch += er32(GORCH);
2433         adapter->stats.bprc += er32(BPRC);
2434         adapter->stats.mprc += er32(MPRC);
2435         adapter->stats.roc += er32(ROC);
2436
2437         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2438                 adapter->stats.prc64 += er32(PRC64);
2439                 adapter->stats.prc127 += er32(PRC127);
2440                 adapter->stats.prc255 += er32(PRC255);
2441                 adapter->stats.prc511 += er32(PRC511);
2442                 adapter->stats.prc1023 += er32(PRC1023);
2443                 adapter->stats.prc1522 += er32(PRC1522);
2444                 adapter->stats.symerrs += er32(SYMERRS);
2445                 adapter->stats.sec += er32(SEC);
2446         }
2447
2448         adapter->stats.mpc += er32(MPC);
2449         adapter->stats.scc += er32(SCC);
2450         adapter->stats.ecol += er32(ECOL);
2451         adapter->stats.mcc += er32(MCC);
2452         adapter->stats.latecol += er32(LATECOL);
2453         adapter->stats.dc += er32(DC);
2454         adapter->stats.rlec += er32(RLEC);
2455         adapter->stats.xonrxc += er32(XONRXC);
2456         adapter->stats.xontxc += er32(XONTXC);
2457         adapter->stats.xoffrxc += er32(XOFFRXC);
2458         adapter->stats.xofftxc += er32(XOFFTXC);
2459         adapter->stats.fcruc += er32(FCRUC);
2460         adapter->stats.gptc += er32(GPTC);
2461         adapter->stats.gotcl += er32(GOTCL);
2462         adapter->stats.gotch += er32(GOTCH);
2463         adapter->stats.rnbc += er32(RNBC);
2464         adapter->stats.ruc += er32(RUC);
2465         adapter->stats.rfc += er32(RFC);
2466         adapter->stats.rjc += er32(RJC);
2467         adapter->stats.torl += er32(TORL);
2468         adapter->stats.torh += er32(TORH);
2469         adapter->stats.totl += er32(TOTL);
2470         adapter->stats.toth += er32(TOTH);
2471         adapter->stats.tpr += er32(TPR);
2472
2473         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2474                 adapter->stats.ptc64 += er32(PTC64);
2475                 adapter->stats.ptc127 += er32(PTC127);
2476                 adapter->stats.ptc255 += er32(PTC255);
2477                 adapter->stats.ptc511 += er32(PTC511);
2478                 adapter->stats.ptc1023 += er32(PTC1023);
2479                 adapter->stats.ptc1522 += er32(PTC1522);
2480         }
2481
2482         adapter->stats.mptc += er32(MPTC);
2483         adapter->stats.bptc += er32(BPTC);
2484
2485         /* used for adaptive IFS */
2486
2487         hw->mac.tx_packet_delta = er32(TPT);
2488         adapter->stats.tpt += hw->mac.tx_packet_delta;
2489         hw->mac.collision_delta = er32(COLC);
2490         adapter->stats.colc += hw->mac.collision_delta;
2491
2492         adapter->stats.algnerrc += er32(ALGNERRC);
2493         adapter->stats.rxerrc += er32(RXERRC);
2494         adapter->stats.tncrs += er32(TNCRS);
2495         adapter->stats.cexterr += er32(CEXTERR);
2496         adapter->stats.tsctc += er32(TSCTC);
2497         adapter->stats.tsctfc += er32(TSCTFC);
2498
2499         adapter->stats.iac += er32(IAC);
2500
2501         if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2502                 adapter->stats.icrxoc += er32(ICRXOC);
2503                 adapter->stats.icrxptc += er32(ICRXPTC);
2504                 adapter->stats.icrxatc += er32(ICRXATC);
2505                 adapter->stats.ictxptc += er32(ICTXPTC);
2506                 adapter->stats.ictxatc += er32(ICTXATC);
2507                 adapter->stats.ictxqec += er32(ICTXQEC);
2508                 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2509                 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2510         }
2511
2512         /* Fill out the OS statistics structure */
2513         adapter->net_stats.multicast = adapter->stats.mprc;
2514         adapter->net_stats.collisions = adapter->stats.colc;
2515
2516         /* Rx Errors */
2517
2518         /* RLEC on some newer hardware can be incorrect so build
2519         * our own version based on RUC and ROC */
2520         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2521                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2522                 adapter->stats.ruc + adapter->stats.roc +
2523                 adapter->stats.cexterr;
2524         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2525                                               adapter->stats.roc;
2526         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2527         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2528         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2529
2530         /* Tx Errors */
2531         adapter->net_stats.tx_errors = adapter->stats.ecol +
2532                                        adapter->stats.latecol;
2533         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2534         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2535         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2536
2537         /* Tx Dropped needs to be maintained elsewhere */
2538
2539         /* Phy Stats */
2540         if (hw->media_type == e1000_media_type_copper) {
2541                 if ((adapter->link_speed == SPEED_1000) &&
2542                    (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2543                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2544                         adapter->phy_stats.idle_errors += phy_tmp;
2545                 }
2546         }
2547
2548         /* Management Stats */
2549         adapter->stats.mgptc += er32(MGTPTC);
2550         adapter->stats.mgprc += er32(MGTPRC);
2551         adapter->stats.mgpdc += er32(MGTPDC);
2552
2553         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2554 }
2555
2556 static void e1000_print_link_info(struct e1000_adapter *adapter)
2557 {
2558         struct net_device *netdev = adapter->netdev;
2559         struct e1000_hw *hw = &adapter->hw;
2560         u32 ctrl = er32(CTRL);
2561
2562         ndev_info(netdev,
2563                 "Link is Up %d Mbps %s, Flow Control: %s\n",
2564                 adapter->link_speed,
2565                 (adapter->link_duplex == FULL_DUPLEX) ?
2566                                 "Full Duplex" : "Half Duplex",
2567                 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2568                                 "RX/TX" :
2569                 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2570                 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2571 }
2572
2573 /**
2574  * e1000_watchdog - Timer Call-back
2575  * @data: pointer to adapter cast into an unsigned long
2576  **/
2577 static void e1000_watchdog(unsigned long data)
2578 {
2579         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2580
2581         /* Do the rest outside of interrupt context */
2582         schedule_work(&adapter->watchdog_task);
2583
2584         /* TODO: make this use queue_delayed_work() */
2585 }
2586
2587 static void e1000_watchdog_task(struct work_struct *work)
2588 {
2589         struct e1000_adapter *adapter = container_of(work,
2590                                         struct e1000_adapter, watchdog_task);
2591
2592         struct net_device *netdev = adapter->netdev;
2593         struct e1000_mac_info *mac = &adapter->hw.mac;
2594         struct e1000_ring *tx_ring = adapter->tx_ring;
2595         struct e1000_hw *hw = &adapter->hw;
2596         u32 link, tctl;
2597         s32 ret_val;
2598         int tx_pending = 0;
2599
2600         if ((netif_carrier_ok(netdev)) &&
2601             (er32(STATUS) & E1000_STATUS_LU))
2602                 goto link_up;
2603
2604         ret_val = mac->ops.check_for_link(hw);
2605         if ((ret_val == E1000_ERR_PHY) &&
2606             (adapter->hw.phy.type == e1000_phy_igp_3) &&
2607             (er32(CTRL) &
2608              E1000_PHY_CTRL_GBE_DISABLE)) {
2609                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2610                 ndev_info(netdev,
2611                         "Gigabit has been disabled, downgrading speed\n");
2612         }
2613
2614         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2615             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2616                 e1000_update_mng_vlan(adapter);
2617
2618         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2619            !(er32(TXCW) & E1000_TXCW_ANE))
2620                 link = adapter->hw.mac.serdes_has_link;
2621         else
2622                 link = er32(STATUS) & E1000_STATUS_LU;
2623
2624         if (link) {
2625                 if (!netif_carrier_ok(netdev)) {
2626                         bool txb2b = 1;
2627                         mac->ops.get_link_up_info(&adapter->hw,
2628                                                    &adapter->link_speed,
2629                                                    &adapter->link_duplex);
2630                         e1000_print_link_info(adapter);
2631                         /* tweak tx_queue_len according to speed/duplex
2632                          * and adjust the timeout factor */
2633                         netdev->tx_queue_len = adapter->tx_queue_len;
2634                         adapter->tx_timeout_factor = 1;
2635                         switch (adapter->link_speed) {
2636                         case SPEED_10:
2637                                 txb2b = 0;
2638                                 netdev->tx_queue_len = 10;
2639                                 adapter->tx_timeout_factor = 14;
2640                                 break;
2641                         case SPEED_100:
2642                                 txb2b = 0;
2643                                 netdev->tx_queue_len = 100;
2644                                 /* maybe add some timeout factor ? */
2645                                 break;
2646                         }
2647
2648                         /* workaround: re-program speed mode bit after
2649                          * link-up event */
2650                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2651                             !txb2b) {
2652                                 u32 tarc0;
2653                                 tarc0 = er32(TARC0);
2654                                 tarc0 &= ~SPEED_MODE_BIT;
2655                                 ew32(TARC0, tarc0);
2656                         }
2657
2658                         /* disable TSO for pcie and 10/100 speeds, to avoid
2659                          * some hardware issues */
2660                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
2661                                 switch (adapter->link_speed) {
2662                                 case SPEED_10:
2663                                 case SPEED_100:
2664                                         ndev_info(netdev,
2665                                         "10/100 speed: disabling TSO\n");
2666                                         netdev->features &= ~NETIF_F_TSO;
2667                                         netdev->features &= ~NETIF_F_TSO6;
2668                                         break;
2669                                 case SPEED_1000:
2670                                         netdev->features |= NETIF_F_TSO;
2671                                         netdev->features |= NETIF_F_TSO6;
2672                                         break;
2673                                 default:
2674                                         /* oops */
2675                                         break;
2676                                 }
2677                         }
2678
2679                         /* enable transmits in the hardware, need to do this
2680                          * after setting TARC0 */
2681                         tctl = er32(TCTL);
2682                         tctl |= E1000_TCTL_EN;
2683                         ew32(TCTL, tctl);
2684
2685                         netif_carrier_on(netdev);
2686                         netif_wake_queue(netdev);
2687
2688                         if (!test_bit(__E1000_DOWN, &adapter->state))
2689                                 mod_timer(&adapter->phy_info_timer,
2690                                           round_jiffies(jiffies + 2 * HZ));
2691                 } else {
2692                         /* make sure the receive unit is started */
2693                         if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
2694                                 u32 rctl = er32(RCTL);
2695                                 ew32(RCTL, rctl |
2696                                                 E1000_RCTL_EN);
2697                         }
2698                 }
2699         } else {
2700                 if (netif_carrier_ok(netdev)) {
2701                         adapter->link_speed = 0;
2702                         adapter->link_duplex = 0;
2703                         ndev_info(netdev, "Link is Down\n");
2704                         netif_carrier_off(netdev);
2705                         netif_stop_queue(netdev);
2706                         if (!test_bit(__E1000_DOWN, &adapter->state))
2707                                 mod_timer(&adapter->phy_info_timer,
2708                                           round_jiffies(jiffies + 2 * HZ));
2709
2710                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2711                                 schedule_work(&adapter->reset_task);
2712                 }
2713         }
2714
2715 link_up:
2716         e1000e_update_stats(adapter);
2717
2718         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2719         adapter->tpt_old = adapter->stats.tpt;
2720         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2721         adapter->colc_old = adapter->stats.colc;
2722
2723         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2724         adapter->gorcl_old = adapter->stats.gorcl;
2725         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2726         adapter->gotcl_old = adapter->stats.gotcl;
2727
2728         e1000e_update_adaptive(&adapter->hw);
2729
2730         if (!netif_carrier_ok(netdev)) {
2731                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2732                                tx_ring->count);
2733                 if (tx_pending) {
2734                         /* We've lost link, so the controller stops DMA,
2735                          * but we've got queued Tx work that's never going
2736                          * to get done, so reset controller to flush Tx.
2737                          * (Do the reset outside of interrupt context). */
2738                         adapter->tx_timeout_count++;
2739                         schedule_work(&adapter->reset_task);
2740                 }
2741         }
2742
2743         /* Cause software interrupt to ensure rx ring is cleaned */
2744         ew32(ICS, E1000_ICS_RXDMT0);
2745
2746         /* Force detection of hung controller every watchdog period */
2747         adapter->detect_tx_hung = 1;
2748
2749         /* With 82571 controllers, LAA may be overwritten due to controller
2750          * reset from the other port. Set the appropriate LAA in RAR[0] */
2751         if (e1000e_get_laa_state_82571(hw))
2752                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2753
2754         /* Reset the timer */
2755         if (!test_bit(__E1000_DOWN, &adapter->state))
2756                 mod_timer(&adapter->watchdog_timer,
2757                           round_jiffies(jiffies + 2 * HZ));
2758 }
2759
2760 #define E1000_TX_FLAGS_CSUM             0x00000001
2761 #define E1000_TX_FLAGS_VLAN             0x00000002
2762 #define E1000_TX_FLAGS_TSO              0x00000004
2763 #define E1000_TX_FLAGS_IPV4             0x00000008
2764 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2765 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2766
2767 static int e1000_tso(struct e1000_adapter *adapter,
2768                      struct sk_buff *skb)
2769 {
2770         struct e1000_ring *tx_ring = adapter->tx_ring;
2771         struct e1000_context_desc *context_desc;
2772         struct e1000_buffer *buffer_info;
2773         unsigned int i;
2774         u32 cmd_length = 0;
2775         u16 ipcse = 0, tucse, mss;
2776         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2777         int err;
2778
2779         if (skb_is_gso(skb)) {
2780                 if (skb_header_cloned(skb)) {
2781                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2782                         if (err)
2783                                 return err;
2784                 }
2785
2786                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2787                 mss = skb_shinfo(skb)->gso_size;
2788                 if (skb->protocol == htons(ETH_P_IP)) {
2789                         struct iphdr *iph = ip_hdr(skb);
2790                         iph->tot_len = 0;
2791                         iph->check = 0;
2792                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2793                                                                  iph->daddr, 0,
2794                                                                  IPPROTO_TCP,
2795                                                                  0);
2796                         cmd_length = E1000_TXD_CMD_IP;
2797                         ipcse = skb_transport_offset(skb) - 1;
2798                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2799                         ipv6_hdr(skb)->payload_len = 0;
2800                         tcp_hdr(skb)->check =
2801                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2802                                                  &ipv6_hdr(skb)->daddr,
2803                                                  0, IPPROTO_TCP, 0);
2804                         ipcse = 0;
2805                 }
2806                 ipcss = skb_network_offset(skb);
2807                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2808                 tucss = skb_transport_offset(skb);
2809                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2810                 tucse = 0;
2811
2812                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2813                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2814
2815                 i = tx_ring->next_to_use;
2816                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2817                 buffer_info = &tx_ring->buffer_info[i];
2818
2819                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2820                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2821                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2822                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2823                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2824                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2825                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2826                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2827                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2828
2829                 buffer_info->time_stamp = jiffies;
2830                 buffer_info->next_to_watch = i;
2831
2832                 i++;
2833                 if (i == tx_ring->count)
2834                         i = 0;
2835                 tx_ring->next_to_use = i;
2836
2837                 return 1;
2838         }
2839
2840         return 0;
2841 }
2842
2843 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2844 {
2845         struct e1000_ring *tx_ring = adapter->tx_ring;
2846         struct e1000_context_desc *context_desc;
2847         struct e1000_buffer *buffer_info;
2848         unsigned int i;
2849         u8 css;
2850
2851         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2852                 css = skb_transport_offset(skb);
2853
2854                 i = tx_ring->next_to_use;
2855                 buffer_info = &tx_ring->buffer_info[i];
2856                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2857
2858                 context_desc->lower_setup.ip_config = 0;
2859                 context_desc->upper_setup.tcp_fields.tucss = css;
2860                 context_desc->upper_setup.tcp_fields.tucso =
2861                                         css + skb->csum_offset;
2862                 context_desc->upper_setup.tcp_fields.tucse = 0;
2863                 context_desc->tcp_seg_setup.data = 0;
2864                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2865
2866                 buffer_info->time_stamp = jiffies;
2867                 buffer_info->next_to_watch = i;
2868
2869                 i++;
2870                 if (i == tx_ring->count)
2871                         i = 0;
2872                 tx_ring->next_to_use = i;
2873
2874                 return 1;
2875         }
2876
2877         return 0;
2878 }
2879
2880 #define E1000_MAX_PER_TXD       8192
2881 #define E1000_MAX_TXD_PWR       12
2882
2883 static int e1000_tx_map(struct e1000_adapter *adapter,
2884                         struct sk_buff *skb, unsigned int first,
2885                         unsigned int max_per_txd, unsigned int nr_frags,
2886                         unsigned int mss)
2887 {
2888         struct e1000_ring *tx_ring = adapter->tx_ring;
2889         struct e1000_buffer *buffer_info;
2890         unsigned int len = skb->len - skb->data_len;
2891         unsigned int offset = 0, size, count = 0, i;
2892         unsigned int f;
2893
2894         i = tx_ring->next_to_use;
2895
2896         while (len) {
2897                 buffer_info = &tx_ring->buffer_info[i];
2898                 size = min(len, max_per_txd);
2899
2900                 /* Workaround for premature desc write-backs
2901                  * in TSO mode.  Append 4-byte sentinel desc */
2902                 if (mss && !nr_frags && size == len && size > 8)
2903                         size -= 4;
2904
2905                 buffer_info->length = size;
2906                 /* set time_stamp *before* dma to help avoid a possible race */
2907                 buffer_info->time_stamp = jiffies;
2908                 buffer_info->dma =
2909                         pci_map_single(adapter->pdev,
2910                                 skb->data + offset,
2911                                 size,
2912                                 PCI_DMA_TODEVICE);
2913                 if (pci_dma_mapping_error(buffer_info->dma)) {
2914                         dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2915                         adapter->tx_dma_failed++;
2916                         return -1;
2917                 }
2918                 buffer_info->next_to_watch = i;
2919
2920                 len -= size;
2921                 offset += size;
2922                 count++;
2923                 i++;
2924                 if (i == tx_ring->count)
2925                         i = 0;
2926         }
2927
2928         for (f = 0; f < nr_frags; f++) {
2929                 struct skb_frag_struct *frag;
2930
2931                 frag = &skb_shinfo(skb)->frags[f];
2932                 len = frag->size;
2933                 offset = frag->page_offset;
2934
2935                 while (len) {
2936                         buffer_info = &tx_ring->buffer_info[i];
2937                         size = min(len, max_per_txd);
2938                         /* Workaround for premature desc write-backs
2939                          * in TSO mode.  Append 4-byte sentinel desc */
2940                         if (mss && f == (nr_frags-1) && size == len && size > 8)
2941                                 size -= 4;
2942
2943                         buffer_info->length = size;
2944                         buffer_info->time_stamp = jiffies;
2945                         buffer_info->dma =
2946                                 pci_map_page(adapter->pdev,
2947                                         frag->page,
2948                                         offset,
2949                                         size,
2950                                         PCI_DMA_TODEVICE);
2951                         if (pci_dma_mapping_error(buffer_info->dma)) {
2952                                 dev_err(&adapter->pdev->dev,
2953                                         "TX DMA page map failed\n");
2954                                 adapter->tx_dma_failed++;
2955                                 return -1;
2956                         }
2957
2958                         buffer_info->next_to_watch = i;
2959
2960                         len -= size;
2961                         offset += size;
2962                         count++;
2963
2964                         i++;
2965                         if (i == tx_ring->count)
2966                                 i = 0;
2967                 }
2968         }
2969
2970         if (i == 0)
2971                 i = tx_ring->count - 1;
2972         else
2973                 i--;
2974
2975         tx_ring->buffer_info[i].skb = skb;
2976         tx_ring->buffer_info[first].next_to_watch = i;
2977
2978         return count;
2979 }
2980
2981 static void e1000_tx_queue(struct e1000_adapter *adapter,
2982                            int tx_flags, int count)
2983 {
2984         struct e1000_ring *tx_ring = adapter->tx_ring;
2985         struct e1000_tx_desc *tx_desc = NULL;
2986         struct e1000_buffer *buffer_info;
2987         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2988         unsigned int i;
2989
2990         if (tx_flags & E1000_TX_FLAGS_TSO) {
2991                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2992                              E1000_TXD_CMD_TSE;
2993                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2994
2995                 if (tx_flags & E1000_TX_FLAGS_IPV4)
2996                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2997         }
2998
2999         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3000                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3001                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3002         }
3003
3004         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3005                 txd_lower |= E1000_TXD_CMD_VLE;
3006                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3007         }
3008
3009         i = tx_ring->next_to_use;
3010
3011         while (count--) {
3012                 buffer_info = &tx_ring->buffer_info[i];
3013                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3014                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3015                 tx_desc->lower.data =
3016                         cpu_to_le32(txd_lower | buffer_info->length);
3017                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3018
3019                 i++;
3020                 if (i == tx_ring->count)
3021                         i = 0;
3022         }
3023
3024         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026         /* Force memory writes to complete before letting h/w
3027          * know there are new descriptors to fetch.  (Only
3028          * applicable for weak-ordered memory model archs,
3029          * such as IA-64). */
3030         wmb();
3031
3032         tx_ring->next_to_use = i;
3033         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3034         /* we need this if more than one processor can write to our tail
3035          * at a time, it synchronizes IO on IA64/Altix systems */
3036         mmiowb();
3037 }
3038
3039 #define MINIMUM_DHCP_PACKET_SIZE 282
3040 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3041                                     struct sk_buff *skb)
3042 {
3043         struct e1000_hw *hw =  &adapter->hw;
3044         u16 length, offset;
3045
3046         if (vlan_tx_tag_present(skb)) {
3047                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3048                     && (adapter->hw.mng_cookie.status &
3049                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3050                         return 0;
3051         }
3052
3053         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3054                 return 0;
3055
3056         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3057                 return 0;
3058
3059         {
3060                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3061                 struct udphdr *udp;
3062
3063                 if (ip->protocol != IPPROTO_UDP)
3064                         return 0;
3065
3066                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3067                 if (ntohs(udp->dest) != 67)
3068                         return 0;
3069
3070                 offset = (u8 *)udp + 8 - skb->data;
3071                 length = skb->len - offset;
3072                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3073         }
3074
3075         return 0;
3076 }
3077
3078 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3079 {
3080         struct e1000_adapter *adapter = netdev_priv(netdev);
3081
3082         netif_stop_queue(netdev);
3083         /* Herbert's original patch had:
3084          *  smp_mb__after_netif_stop_queue();
3085          * but since that doesn't exist yet, just open code it. */
3086         smp_mb();
3087
3088         /* We need to check again in a case another CPU has just
3089          * made room available. */
3090         if (e1000_desc_unused(adapter->tx_ring) < size)
3091                 return -EBUSY;
3092
3093         /* A reprieve! */
3094         netif_start_queue(netdev);
3095         ++adapter->restart_queue;
3096         return 0;
3097 }
3098
3099 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3100 {
3101         struct e1000_adapter *adapter = netdev_priv(netdev);
3102
3103         if (e1000_desc_unused(adapter->tx_ring) >= size)
3104                 return 0;
3105         return __e1000_maybe_stop_tx(netdev, size);
3106 }
3107
3108 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3109 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3110 {
3111         struct e1000_adapter *adapter = netdev_priv(netdev);
3112         struct e1000_ring *tx_ring = adapter->tx_ring;
3113         unsigned int first;
3114         unsigned int max_per_txd = E1000_MAX_PER_TXD;
3115         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3116         unsigned int tx_flags = 0;
3117         unsigned int len = skb->len - skb->data_len;
3118         unsigned long irq_flags;
3119         unsigned int nr_frags;
3120         unsigned int mss;
3121         int count = 0;
3122         int tso;
3123         unsigned int f;
3124
3125         if (test_bit(__E1000_DOWN, &adapter->state)) {
3126                 dev_kfree_skb_any(skb);
3127                 return NETDEV_TX_OK;
3128         }
3129
3130         if (skb->len <= 0) {
3131                 dev_kfree_skb_any(skb);
3132                 return NETDEV_TX_OK;
3133         }
3134
3135         mss = skb_shinfo(skb)->gso_size;
3136         /* The controller does a simple calculation to
3137          * make sure there is enough room in the FIFO before
3138          * initiating the DMA for each buffer.  The calc is:
3139          * 4 = ceil(buffer len/mss).  To make sure we don't
3140          * overrun the FIFO, adjust the max buffer len if mss
3141          * drops. */
3142         if (mss) {
3143                 u8 hdr_len;
3144                 max_per_txd = min(mss << 2, max_per_txd);
3145                 max_txd_pwr = fls(max_per_txd) - 1;
3146
3147                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3148                 * points to just header, pull a few bytes of payload from
3149                 * frags into skb->data */
3150                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3151                 if (skb->data_len && (hdr_len == len)) {
3152                         unsigned int pull_size;
3153
3154                         pull_size = min((unsigned int)4, skb->data_len);
3155                         if (!__pskb_pull_tail(skb, pull_size)) {
3156                                 ndev_err(netdev,
3157                                          "__pskb_pull_tail failed.\n");
3158                                 dev_kfree_skb_any(skb);
3159                                 return NETDEV_TX_OK;
3160                         }
3161                         len = skb->len - skb->data_len;
3162                 }
3163         }
3164
3165         /* reserve a descriptor for the offload context */
3166         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3167                 count++;
3168         count++;
3169
3170         count += TXD_USE_COUNT(len, max_txd_pwr);
3171
3172         nr_frags = skb_shinfo(skb)->nr_frags;
3173         for (f = 0; f < nr_frags; f++)
3174                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3175                                        max_txd_pwr);
3176
3177         if (adapter->hw.mac.tx_pkt_filtering)
3178                 e1000_transfer_dhcp_info(adapter, skb);
3179
3180         if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3181                 /* Collision - tell upper layer to requeue */
3182                 return NETDEV_TX_LOCKED;
3183
3184         /* need: count + 2 desc gap to keep tail from touching
3185          * head, otherwise try next time */
3186         if (e1000_maybe_stop_tx(netdev, count + 2)) {
3187                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3188                 return NETDEV_TX_BUSY;
3189         }
3190
3191         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3192                 tx_flags |= E1000_TX_FLAGS_VLAN;
3193                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3194         }
3195
3196         first = tx_ring->next_to_use;
3197
3198         tso = e1000_tso(adapter, skb);
3199         if (tso < 0) {
3200                 dev_kfree_skb_any(skb);
3201                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3202                 return NETDEV_TX_OK;
3203         }
3204
3205         if (tso)
3206                 tx_flags |= E1000_TX_FLAGS_TSO;
3207         else if (e1000_tx_csum(adapter, skb))
3208                 tx_flags |= E1000_TX_FLAGS_CSUM;
3209
3210         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3211          * 82571 hardware supports TSO capabilities for IPv6 as well...
3212          * no longer assume, we must. */
3213         if (skb->protocol == htons(ETH_P_IP))
3214                 tx_flags |= E1000_TX_FLAGS_IPV4;
3215
3216         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3217         if (count < 0) {
3218                 /* handle pci_map_single() error in e1000_tx_map */
3219                 dev_kfree_skb_any(skb);
3220                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3221                 return NETDEV_TX_OK;
3222         }
3223
3224         e1000_tx_queue(adapter, tx_flags, count);
3225
3226         netdev->trans_start = jiffies;
3227
3228         /* Make sure there is space in the ring for the next send. */
3229         e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3230
3231         spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3232         return NETDEV_TX_OK;
3233 }
3234
3235 /**
3236  * e1000_tx_timeout - Respond to a Tx Hang
3237  * @netdev: network interface device structure
3238  **/
3239 static void e1000_tx_timeout(struct net_device *netdev)
3240 {
3241         struct e1000_adapter *adapter = netdev_priv(netdev);
3242
3243         /* Do the reset outside of interrupt context */
3244         adapter->tx_timeout_count++;
3245         schedule_work(&adapter->reset_task);
3246 }
3247
3248 static void e1000_reset_task(struct work_struct *work)
3249 {
3250         struct e1000_adapter *adapter;
3251         adapter = container_of(work, struct e1000_adapter, reset_task);
3252
3253         e1000e_reinit_locked(adapter);
3254 }
3255
3256 /**
3257  * e1000_get_stats - Get System Network Statistics
3258  * @netdev: network interface device structure
3259  *
3260  * Returns the address of the device statistics structure.
3261  * The statistics are actually updated from the timer callback.
3262  **/
3263 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3264 {
3265         struct e1000_adapter *adapter = netdev_priv(netdev);
3266
3267         /* only return the current stats */
3268         return &adapter->net_stats;
3269 }
3270
3271 /**
3272  * e1000_change_mtu - Change the Maximum Transfer Unit
3273  * @netdev: network interface device structure
3274  * @new_mtu: new value for maximum frame size
3275  *
3276  * Returns 0 on success, negative on failure
3277  **/
3278 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3279 {
3280         struct e1000_adapter *adapter = netdev_priv(netdev);
3281         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3282
3283         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3284             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3285                 ndev_err(netdev, "Invalid MTU setting\n");
3286                 return -EINVAL;
3287         }
3288
3289         /* Jumbo frame size limits */
3290         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3291                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3292                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3293                         return -EINVAL;
3294                 }
3295                 if (adapter->hw.phy.type == e1000_phy_ife) {
3296                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3297                         return -EINVAL;
3298                 }
3299         }
3300
3301 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3302         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3303                 ndev_err(netdev, "MTU > 9216 not supported.\n");
3304                 return -EINVAL;
3305         }
3306
3307         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3308                 msleep(1);
3309         /* e1000e_down has a dependency on max_frame_size */
3310         adapter->hw.mac.max_frame_size = max_frame;
3311         if (netif_running(netdev))
3312                 e1000e_down(adapter);
3313
3314         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3315          * means we reserve 2 more, this pushes us to allocate from the next
3316          * larger slab size.
3317          * i.e. RXBUFFER_2048 --> size-4096 slab */
3318
3319         if (max_frame <= 256)
3320                 adapter->rx_buffer_len = 256;
3321         else if (max_frame <= 512)
3322                 adapter->rx_buffer_len = 512;
3323         else if (max_frame <= 1024)
3324                 adapter->rx_buffer_len = 1024;
3325         else if (max_frame <= 2048)
3326                 adapter->rx_buffer_len = 2048;
3327         else
3328                 adapter->rx_buffer_len = 4096;
3329
3330         /* adjust allocation if LPE protects us, and we aren't using SBP */
3331         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3332              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3333                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3334                                          + ETH_FCS_LEN ;
3335
3336         ndev_info(netdev, "changing MTU from %d to %d\n",
3337                 netdev->mtu, new_mtu);
3338         netdev->mtu = new_mtu;
3339
3340         if (netif_running(netdev))
3341                 e1000e_up(adapter);
3342         else
3343                 e1000e_reset(adapter);
3344
3345         clear_bit(__E1000_RESETTING, &adapter->state);
3346
3347         return 0;
3348 }
3349
3350 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3351                            int cmd)
3352 {
3353         struct e1000_adapter *adapter = netdev_priv(netdev);
3354         struct mii_ioctl_data *data = if_mii(ifr);
3355         unsigned long irq_flags;
3356
3357         if (adapter->hw.media_type != e1000_media_type_copper)
3358                 return -EOPNOTSUPP;
3359
3360         switch (cmd) {
3361         case SIOCGMIIPHY:
3362                 data->phy_id = adapter->hw.phy.addr;
3363                 break;
3364         case SIOCGMIIREG:
3365                 if (!capable(CAP_NET_ADMIN))
3366                         return -EPERM;
3367                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3368                 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3369                                    &data->val_out)) {
3370                         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3371                         return -EIO;
3372                 }
3373                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3374                 break;
3375         case SIOCSMIIREG:
3376         default:
3377                 return -EOPNOTSUPP;
3378         }
3379         return 0;
3380 }
3381
3382 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3383 {
3384         switch (cmd) {
3385         case SIOCGMIIPHY:
3386         case SIOCGMIIREG:
3387         case SIOCSMIIREG:
3388                 return e1000_mii_ioctl(netdev, ifr, cmd);
3389         default:
3390                 return -EOPNOTSUPP;
3391         }
3392 }
3393
3394 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3395 {
3396         struct net_device *netdev = pci_get_drvdata(pdev);
3397         struct e1000_adapter *adapter = netdev_priv(netdev);
3398         struct e1000_hw *hw = &adapter->hw;
3399         u32 ctrl, ctrl_ext, rctl, status;
3400         u32 wufc = adapter->wol;
3401         int retval = 0;
3402
3403         netif_device_detach(netdev);
3404
3405         if (netif_running(netdev)) {
3406                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3407                 e1000e_down(adapter);
3408                 e1000_free_irq(adapter);
3409         }
3410
3411         retval = pci_save_state(pdev);
3412         if (retval)
3413                 return retval;
3414
3415         status = er32(STATUS);
3416         if (status & E1000_STATUS_LU)
3417                 wufc &= ~E1000_WUFC_LNKC;
3418
3419         if (wufc) {
3420                 e1000_setup_rctl(adapter);
3421                 e1000_set_multi(netdev);
3422
3423                 /* turn on all-multi mode if wake on multicast is enabled */
3424                 if (wufc & E1000_WUFC_MC) {
3425                         rctl = er32(RCTL);
3426                         rctl |= E1000_RCTL_MPE;
3427                         ew32(RCTL, rctl);
3428                 }
3429
3430                 ctrl = er32(CTRL);
3431                 /* advertise wake from D3Cold */
3432                 #define E1000_CTRL_ADVD3WUC 0x00100000
3433                 /* phy power management enable */
3434                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3435                 ctrl |= E1000_CTRL_ADVD3WUC |
3436                         E1000_CTRL_EN_PHY_PWR_MGMT;
3437                 ew32(CTRL, ctrl);
3438
3439                 if (adapter->hw.media_type == e1000_media_type_fiber ||
3440                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
3441                         /* keep the laser running in D3 */
3442                         ctrl_ext = er32(CTRL_EXT);
3443                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3444                         ew32(CTRL_EXT, ctrl_ext);
3445                 }
3446
3447                 /* Allow time for pending master requests to run */
3448                 e1000e_disable_pcie_master(&adapter->hw);
3449
3450                 ew32(WUC, E1000_WUC_PME_EN);
3451                 ew32(WUFC, wufc);
3452                 pci_enable_wake(pdev, PCI_D3hot, 1);
3453                 pci_enable_wake(pdev, PCI_D3cold, 1);
3454         } else {
3455                 ew32(WUC, 0);
3456                 ew32(WUFC, 0);
3457                 pci_enable_wake(pdev, PCI_D3hot, 0);
3458                 pci_enable_wake(pdev, PCI_D3cold, 0);
3459         }
3460
3461         /* make sure adapter isn't asleep if manageability is enabled */
3462         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3463                 pci_enable_wake(pdev, PCI_D3hot, 1);
3464                 pci_enable_wake(pdev, PCI_D3cold, 1);
3465         }
3466
3467         if (adapter->hw.phy.type == e1000_phy_igp_3)
3468                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3469
3470         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3471          * would have already happened in close and is redundant. */
3472         e1000_release_hw_control(adapter);
3473
3474         pci_disable_device(pdev);
3475
3476         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3477
3478         return 0;
3479 }
3480
3481 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3482 {
3483         int pos;
3484         u16 val;
3485
3486         /*
3487          * 82573 workaround - disable L1 ASPM on mobile chipsets
3488          *
3489          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3490          * resulting in lost data or garbage information on the pci-e link
3491          * level. This could result in (false) bad EEPROM checksum errors,
3492          * long ping times (up to 2s) or even a system freeze/hang.
3493          *
3494          * Unfortunately this feature saves about 1W power consumption when
3495          * active.
3496          */
3497         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3498         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3499         if (val & 0x2) {
3500                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3501                 val &= ~0x2;
3502                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3503         }
3504 }
3505
3506 #ifdef CONFIG_PM
3507 static int e1000_resume(struct pci_dev *pdev)
3508 {
3509         struct net_device *netdev = pci_get_drvdata(pdev);
3510         struct e1000_adapter *adapter = netdev_priv(netdev);
3511         struct e1000_hw *hw = &adapter->hw;
3512         u32 err;
3513
3514         pci_set_power_state(pdev, PCI_D0);
3515         pci_restore_state(pdev);
3516         e1000e_disable_l1aspm(pdev);
3517         err = pci_enable_device(pdev);
3518         if (err) {
3519                 dev_err(&pdev->dev,
3520                         "Cannot enable PCI device from suspend\n");
3521                 return err;
3522         }
3523
3524         pci_set_master(pdev);
3525
3526         pci_enable_wake(pdev, PCI_D3hot, 0);
3527         pci_enable_wake(pdev, PCI_D3cold, 0);
3528
3529         if (netif_running(netdev)) {
3530                 err = e1000_request_irq(adapter);
3531                 if (err)
3532                         return err;
3533         }
3534
3535         e1000e_power_up_phy(adapter);
3536         e1000e_reset(adapter);
3537         ew32(WUS, ~0);
3538
3539         e1000_init_manageability(adapter);
3540
3541         if (netif_running(netdev))
3542                 e1000e_up(adapter);
3543
3544         netif_device_attach(netdev);
3545
3546         /* If the controller has AMT, do not set DRV_LOAD until the interface
3547          * is up.  For all other cases, let the f/w know that the h/w is now
3548          * under the control of the driver. */
3549         if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3550                 e1000_get_hw_control(adapter);
3551
3552         return 0;
3553 }
3554 #endif
3555
3556 static void e1000_shutdown(struct pci_dev *pdev)
3557 {
3558         e1000_suspend(pdev, PMSG_SUSPEND);
3559 }
3560
3561 #ifdef CONFIG_NET_POLL_CONTROLLER
3562 /*
3563  * Polling 'interrupt' - used by things like netconsole to send skbs
3564  * without having to re-enable interrupts. It's not called while
3565  * the interrupt routine is executing.
3566  */
3567 static void e1000_netpoll(struct net_device *netdev)
3568 {
3569         struct e1000_adapter *adapter = netdev_priv(netdev);
3570
3571         disable_irq(adapter->pdev->irq);
3572         e1000_intr(adapter->pdev->irq, netdev);
3573
3574         e1000_clean_tx_irq(adapter);
3575
3576         enable_irq(adapter->pdev->irq);
3577 }
3578 #endif
3579
3580 /**
3581  * e1000_io_error_detected - called when PCI error is detected
3582  * @pdev: Pointer to PCI device
3583  * @state: The current pci connection state
3584  *
3585  * This function is called after a PCI bus error affecting
3586  * this device has been detected.
3587  */
3588 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3589                                                 pci_channel_state_t state)
3590 {
3591         struct net_device *netdev = pci_get_drvdata(pdev);
3592         struct e1000_adapter *adapter = netdev_priv(netdev);
3593
3594         netif_device_detach(netdev);
3595
3596         if (netif_running(netdev))
3597                 e1000e_down(adapter);
3598         pci_disable_device(pdev);
3599
3600         /* Request a slot slot reset. */
3601         return PCI_ERS_RESULT_NEED_RESET;
3602 }
3603
3604 /**
3605  * e1000_io_slot_reset - called after the pci bus has been reset.
3606  * @pdev: Pointer to PCI device
3607  *
3608  * Restart the card from scratch, as if from a cold-boot. Implementation
3609  * resembles the first-half of the e1000_resume routine.
3610  */
3611 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3612 {
3613         struct net_device *netdev = pci_get_drvdata(pdev);
3614         struct e1000_adapter *adapter = netdev_priv(netdev);
3615         struct e1000_hw *hw = &adapter->hw;
3616
3617         e1000e_disable_l1aspm(pdev);
3618         if (pci_enable_device(pdev)) {
3619                 dev_err(&pdev->dev,
3620                         "Cannot re-enable PCI device after reset.\n");
3621                 return PCI_ERS_RESULT_DISCONNECT;
3622         }
3623         pci_set_master(pdev);
3624
3625         pci_enable_wake(pdev, PCI_D3hot, 0);
3626         pci_enable_wake(pdev, PCI_D3cold, 0);
3627
3628         e1000e_reset(adapter);
3629         ew32(WUS, ~0);
3630
3631         return PCI_ERS_RESULT_RECOVERED;
3632 }
3633
3634 /**
3635  * e1000_io_resume - called when traffic can start flowing again.
3636  * @pdev: Pointer to PCI device
3637  *
3638  * This callback is called when the error recovery driver tells us that
3639  * its OK to resume normal operation. Implementation resembles the
3640  * second-half of the e1000_resume routine.
3641  */
3642 static void e1000_io_resume(struct pci_dev *pdev)
3643 {
3644         struct net_device *netdev = pci_get_drvdata(pdev);
3645         struct e1000_adapter *adapter = netdev_priv(netdev);
3646
3647         e1000_init_manageability(adapter);
3648
3649         if (netif_running(netdev)) {
3650                 if (e1000e_up(adapter)) {
3651                         dev_err(&pdev->dev,
3652                                 "can't bring device back up after reset\n");
3653                         return;
3654                 }
3655         }
3656
3657         netif_device_attach(netdev);
3658
3659         /* If the controller has AMT, do not set DRV_LOAD until the interface
3660          * is up.  For all other cases, let the f/w know that the h/w is now
3661          * under the control of the driver. */
3662         if (!(adapter->flags & FLAG_HAS_AMT) ||
3663             !e1000e_check_mng_mode(&adapter->hw))
3664                 e1000_get_hw_control(adapter);
3665
3666 }
3667
3668 static void e1000_print_device_info(struct e1000_adapter *adapter)
3669 {
3670         struct e1000_hw *hw = &adapter->hw;
3671         struct net_device *netdev = adapter->netdev;
3672         u32 part_num;
3673
3674         /* print bus type/speed/width info */
3675         ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3676                   "%02x:%02x:%02x:%02x:%02x:%02x\n",
3677                   /* bus width */
3678                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3679                   "Width x1"),
3680                   /* MAC address */
3681                   netdev->dev_addr[0], netdev->dev_addr[1],
3682                   netdev->dev_addr[2], netdev->dev_addr[3],
3683                   netdev->dev_addr[4], netdev->dev_addr[5]);
3684         ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3685                   (hw->phy.type == e1000_phy_ife)
3686                    ? "10/100" : "1000");
3687         e1000e_read_part_num(hw, &part_num);
3688         ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3689                   hw->mac.type, hw->phy.type,
3690                   (part_num >> 8), (part_num & 0xff));
3691 }
3692
3693 /**
3694  * e1000_probe - Device Initialization Routine
3695  * @pdev: PCI device information struct
3696  * @ent: entry in e1000_pci_tbl
3697  *
3698  * Returns 0 on success, negative on failure
3699  *
3700  * e1000_probe initializes an adapter identified by a pci_dev structure.
3701  * The OS initialization, configuring of the adapter private structure,
3702  * and a hardware reset occur.
3703  **/
3704 static int __devinit e1000_probe(struct pci_dev *pdev,
3705                                  const struct pci_device_id *ent)
3706 {
3707         struct net_device *netdev;
3708         struct e1000_adapter *adapter;
3709         struct e1000_hw *hw;
3710         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3711         unsigned long mmio_start, mmio_len;
3712         unsigned long flash_start, flash_len;
3713
3714         static int cards_found;
3715         int i, err, pci_using_dac;
3716         u16 eeprom_data = 0;
3717         u16 eeprom_apme_mask = E1000_EEPROM_APME;
3718
3719         e1000e_disable_l1aspm(pdev);
3720         err = pci_enable_device(pdev);
3721         if (err)
3722                 return err;
3723
3724         pci_using_dac = 0;
3725         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3726         if (!err) {
3727                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3728                 if (!err)
3729                         pci_using_dac = 1;
3730         } else {
3731                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3732                 if (err) {
3733                         err = pci_set_consistent_dma_mask(pdev,
3734                                                           DMA_32BIT_MASK);
3735                         if (err) {
3736                                 dev_err(&pdev->dev, "No usable DMA "
3737                                         "configuration, aborting\n");
3738                                 goto err_dma;
3739                         }
3740                 }
3741         }
3742
3743         err = pci_request_regions(pdev, e1000e_driver_name);
3744         if (err)
3745                 goto err_pci_reg;
3746
3747         pci_set_master(pdev);
3748
3749         err = -ENOMEM;
3750         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3751         if (!netdev)
3752                 goto err_alloc_etherdev;
3753
3754         SET_NETDEV_DEV(netdev, &pdev->dev);
3755
3756         pci_set_drvdata(pdev, netdev);
3757         adapter = netdev_priv(netdev);
3758         hw = &adapter->hw;
3759         adapter->netdev = netdev;
3760         adapter->pdev = pdev;
3761         adapter->ei = ei;
3762         adapter->pba = ei->pba;
3763         adapter->flags = ei->flags;
3764         adapter->hw.adapter = adapter;
3765         adapter->hw.mac.type = ei->mac;
3766         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3767
3768         mmio_start = pci_resource_start(pdev, 0);
3769         mmio_len = pci_resource_len(pdev, 0);
3770
3771         err = -EIO;
3772         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3773         if (!adapter->hw.hw_addr)
3774                 goto err_ioremap;
3775
3776         if ((adapter->flags & FLAG_HAS_FLASH) &&
3777             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3778                 flash_start = pci_resource_start(pdev, 1);
3779                 flash_len = pci_resource_len(pdev, 1);
3780                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3781                 if (!adapter->hw.flash_address)
3782                         goto err_flashmap;
3783         }
3784
3785         /* construct the net_device struct */
3786         netdev->open                    = &e1000_open;
3787         netdev->stop                    = &e1000_close;
3788         netdev->hard_start_xmit         = &e1000_xmit_frame;
3789         netdev->get_stats               = &e1000_get_stats;
3790         netdev->set_multicast_list      = &e1000_set_multi;
3791         netdev->set_mac_address         = &e1000_set_mac;
3792         netdev->change_mtu              = &e1000_change_mtu;
3793         netdev->do_ioctl                = &e1000_ioctl;
3794         e1000e_set_ethtool_ops(netdev);
3795         netdev->tx_timeout              = &e1000_tx_timeout;
3796         netdev->watchdog_timeo          = 5 * HZ;
3797         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3798         netdev->vlan_rx_register        = e1000_vlan_rx_register;
3799         netdev->vlan_rx_add_vid         = e1000_vlan_rx_add_vid;
3800         netdev->vlan_rx_kill_vid        = e1000_vlan_rx_kill_vid;
3801 #ifdef CONFIG_NET_POLL_CONTROLLER
3802         netdev->poll_controller         = e1000_netpoll;
3803 #endif
3804         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3805
3806         netdev->mem_start = mmio_start;
3807         netdev->mem_end = mmio_start + mmio_len;
3808
3809         adapter->bd_number = cards_found++;
3810
3811         /* setup adapter struct */
3812         err = e1000_sw_init(adapter);
3813         if (err)
3814                 goto err_sw_init;
3815
3816         err = -EIO;
3817
3818         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3819         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3820         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3821
3822         err = ei->get_invariants(adapter);
3823         if (err)
3824                 goto err_hw_init;
3825
3826         hw->mac.ops.get_bus_info(&adapter->hw);
3827
3828         adapter->hw.phy.wait_for_link = 0;
3829
3830         /* Copper options */
3831         if (adapter->hw.media_type == e1000_media_type_copper) {
3832                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3833                 adapter->hw.phy.disable_polarity_correction = 0;
3834                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3835         }
3836
3837         if (e1000_check_reset_block(&adapter->hw))
3838                 ndev_info(netdev,
3839                           "PHY reset is blocked due to SOL/IDER session.\n");
3840
3841         netdev->features = NETIF_F_SG |
3842                            NETIF_F_HW_CSUM |
3843                            NETIF_F_HW_VLAN_TX |
3844                            NETIF_F_HW_VLAN_RX;
3845
3846         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3847                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
3848
3849         netdev->features |= NETIF_F_TSO;
3850         netdev->features |= NETIF_F_TSO6;
3851
3852         if (pci_using_dac)
3853                 netdev->features |= NETIF_F_HIGHDMA;
3854
3855         /* We should not be using LLTX anymore, but we are still TX faster with
3856          * it. */
3857         netdev->features |= NETIF_F_LLTX;
3858
3859         if (e1000e_enable_mng_pass_thru(&adapter->hw))
3860                 adapter->flags |= FLAG_MNG_PT_ENABLED;
3861
3862         /* before reading the NVM, reset the controller to
3863          * put the device in a known good starting state */
3864         adapter->hw.mac.ops.reset_hw(&adapter->hw);
3865
3866         /*
3867          * systems with ASPM and others may see the checksum fail on the first
3868          * attempt. Let's give it a few tries
3869          */
3870         for (i = 0;; i++) {
3871                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
3872                         break;
3873                 if (i == 2) {
3874                         ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
3875                         err = -EIO;
3876                         goto err_eeprom;
3877                 }
3878         }
3879
3880         /* copy the MAC address out of the NVM */
3881         if (e1000e_read_mac_addr(&adapter->hw))
3882                 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
3883
3884         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3885         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3886
3887         if (!is_valid_ether_addr(netdev->perm_addr)) {
3888                 ndev_err(netdev, "Invalid MAC Address: "
3889                          "%02x:%02x:%02x:%02x:%02x:%02x\n",
3890                          netdev->perm_addr[0], netdev->perm_addr[1],
3891                          netdev->perm_addr[2], netdev->perm_addr[3],
3892                          netdev->perm_addr[4], netdev->perm_addr[5]);
3893                 err = -EIO;
3894                 goto err_eeprom;
3895         }
3896
3897         init_timer(&adapter->watchdog_timer);
3898         adapter->watchdog_timer.function = &e1000_watchdog;
3899         adapter->watchdog_timer.data = (unsigned long) adapter;
3900
3901         init_timer(&adapter->phy_info_timer);
3902         adapter->phy_info_timer.function = &e1000_update_phy_info;
3903         adapter->phy_info_timer.data = (unsigned long) adapter;
3904
3905         INIT_WORK(&adapter->reset_task, e1000_reset_task);
3906         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
3907
3908         e1000e_check_options(adapter);
3909
3910         /* Initialize link parameters. User can change them with ethtool */
3911         adapter->hw.mac.autoneg = 1;
3912         adapter->fc_autoneg = 1;
3913         adapter->hw.mac.original_fc = e1000_fc_default;
3914         adapter->hw.mac.fc = e1000_fc_default;
3915         adapter->hw.phy.autoneg_advertised = 0x2f;
3916
3917         /* ring size defaults */
3918         adapter->rx_ring->count = 256;
3919         adapter->tx_ring->count = 256;
3920
3921         /*
3922          * Initial Wake on LAN setting - If APM wake is enabled in
3923          * the EEPROM, enable the ACPI Magic Packet filter
3924          */
3925         if (adapter->flags & FLAG_APME_IN_WUC) {
3926                 /* APME bit in EEPROM is mapped to WUC.APME */
3927                 eeprom_data = er32(WUC);
3928                 eeprom_apme_mask = E1000_WUC_APME;
3929         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
3930                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
3931                     (adapter->hw.bus.func == 1))
3932                         e1000_read_nvm(&adapter->hw,
3933                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3934                 else
3935                         e1000_read_nvm(&adapter->hw,
3936                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3937         }
3938
3939         /* fetch WoL from EEPROM */
3940         if (eeprom_data & eeprom_apme_mask)
3941                 adapter->eeprom_wol |= E1000_WUFC_MAG;
3942
3943         /*
3944          * now that we have the eeprom settings, apply the special cases
3945          * where the eeprom may be wrong or the board simply won't support
3946          * wake on lan on a particular port
3947          */
3948         if (!(adapter->flags & FLAG_HAS_WOL))
3949                 adapter->eeprom_wol = 0;
3950
3951         /* initialize the wol settings based on the eeprom settings */
3952         adapter->wol = adapter->eeprom_wol;
3953
3954         /* reset the hardware with the new settings */
3955         e1000e_reset(adapter);
3956
3957         /* If the controller has AMT, do not set DRV_LOAD until the interface
3958          * is up.  For all other cases, let the f/w know that the h/w is now
3959          * under the control of the driver. */
3960         if (!(adapter->flags & FLAG_HAS_AMT) ||
3961             !e1000e_check_mng_mode(&adapter->hw))
3962                 e1000_get_hw_control(adapter);
3963
3964         /* tell the stack to leave us alone until e1000_open() is called */
3965         netif_carrier_off(netdev);
3966         netif_stop_queue(netdev);
3967
3968         strcpy(netdev->name, "eth%d");
3969         err = register_netdev(netdev);
3970         if (err)
3971                 goto err_register;
3972
3973         e1000_print_device_info(adapter);
3974
3975         return 0;
3976
3977 err_register:
3978 err_hw_init:
3979         e1000_release_hw_control(adapter);
3980 err_eeprom:
3981         if (!e1000_check_reset_block(&adapter->hw))
3982                 e1000_phy_hw_reset(&adapter->hw);
3983
3984         if (adapter->hw.flash_address)
3985                 iounmap(adapter->hw.flash_address);
3986
3987 err_flashmap:
3988         kfree(adapter->tx_ring);
3989         kfree(adapter->rx_ring);
3990 err_sw_init:
3991         iounmap(adapter->hw.hw_addr);
3992 err_ioremap:
3993         free_netdev(netdev);
3994 err_alloc_etherdev:
3995         pci_release_regions(pdev);
3996 err_pci_reg:
3997 err_dma:
3998         pci_disable_device(pdev);
3999         return err;
4000 }
4001
4002 /**
4003  * e1000_remove - Device Removal Routine
4004  * @pdev: PCI device information struct
4005  *
4006  * e1000_remove is called by the PCI subsystem to alert the driver
4007  * that it should release a PCI device.  The could be caused by a
4008  * Hot-Plug event, or because the driver is going to be removed from
4009  * memory.
4010  **/
4011 static void __devexit e1000_remove(struct pci_dev *pdev)
4012 {
4013         struct net_device *netdev = pci_get_drvdata(pdev);
4014         struct e1000_adapter *adapter = netdev_priv(netdev);
4015
4016         /* flush_scheduled work may reschedule our watchdog task, so
4017          * explicitly disable watchdog tasks from being rescheduled  */
4018         set_bit(__E1000_DOWN, &adapter->state);
4019         del_timer_sync(&adapter->watchdog_timer);
4020         del_timer_sync(&adapter->phy_info_timer);
4021
4022         flush_scheduled_work();
4023
4024         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4025          * would have already happened in close and is redundant. */
4026         e1000_release_hw_control(adapter);
4027
4028         unregister_netdev(netdev);
4029
4030         if (!e1000_check_reset_block(&adapter->hw))
4031                 e1000_phy_hw_reset(&adapter->hw);
4032
4033         kfree(adapter->tx_ring);
4034         kfree(adapter->rx_ring);
4035
4036         iounmap(adapter->hw.hw_addr);
4037         if (adapter->hw.flash_address)
4038                 iounmap(adapter->hw.flash_address);
4039         pci_release_regions(pdev);
4040
4041         free_netdev(netdev);
4042
4043         pci_disable_device(pdev);
4044 }
4045
4046 /* PCI Error Recovery (ERS) */
4047 static struct pci_error_handlers e1000_err_handler = {
4048         .error_detected = e1000_io_error_detected,
4049         .slot_reset = e1000_io_slot_reset,
4050         .resume = e1000_io_resume,
4051 };
4052
4053 static struct pci_device_id e1000_pci_tbl[] = {
4054         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4055         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4056         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4057         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4058         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4059         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4060         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4061         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4062         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4063         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4064         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4065         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4066         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4067         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4068         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4069         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4070         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4071           board_80003es2lan },
4072         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4073           board_80003es2lan },
4074         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4075           board_80003es2lan },
4076         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4077           board_80003es2lan },
4078         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4079         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4080         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4081         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4082         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4083         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4084         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4085         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4086         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4087         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4088         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4089         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4090
4091         { }     /* terminate list */
4092 };
4093 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4094
4095 /* PCI Device API Driver */
4096 static struct pci_driver e1000_driver = {
4097         .name     = e1000e_driver_name,
4098         .id_table = e1000_pci_tbl,
4099         .probe    = e1000_probe,
4100         .remove   = __devexit_p(e1000_remove),
4101 #ifdef CONFIG_PM
4102         /* Power Managment Hooks */
4103         .suspend  = e1000_suspend,
4104         .resume   = e1000_resume,
4105 #endif
4106         .shutdown = e1000_shutdown,
4107         .err_handler = &e1000_err_handler
4108 };
4109
4110 /**
4111  * e1000_init_module - Driver Registration Routine
4112  *
4113  * e1000_init_module is the first routine called when the driver is
4114  * loaded. All it does is register with the PCI subsystem.
4115  **/
4116 static int __init e1000_init_module(void)
4117 {
4118         int ret;
4119         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4120                e1000e_driver_name, e1000e_driver_version);
4121         printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4122                e1000e_driver_name);
4123         ret = pci_register_driver(&e1000_driver);
4124
4125         return ret;
4126 }
4127 module_init(e1000_init_module);
4128
4129 /**
4130  * e1000_exit_module - Driver Exit Cleanup Routine
4131  *
4132  * e1000_exit_module is called just before the driver is removed
4133  * from memory.
4134  **/
4135 static void __exit e1000_exit_module(void)
4136 {
4137         pci_unregister_driver(&e1000_driver);
4138 }
4139 module_exit(e1000_exit_module);
4140
4141
4142 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4143 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4144 MODULE_LICENSE("GPL");
4145 MODULE_VERSION(DRV_VERSION);
4146
4147 /* e1000_main.c */