1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
50 #define DRV_VERSION "0.3.3.3-k2"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_80003es2lan] = &e1000_es2_info,
59 [board_ich8lan] = &e1000_ich8_info,
60 [board_ich9lan] = &e1000_ich9_info,
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
68 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
70 return hw->adapter->netdev->name;
75 * e1000_desc_unused - calculate if we have unused descriptors
77 static int e1000_desc_unused(struct e1000_ring *ring)
79 if (ring->next_to_clean > ring->next_to_use)
80 return ring->next_to_clean - ring->next_to_use - 1;
82 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
86 * e1000_receive_skb - helper function to handle Rx indications
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
92 static void e1000_receive_skb(struct e1000_adapter *adapter,
93 struct net_device *netdev,
95 u8 status, __le16 vlan)
97 skb->protocol = eth_type_trans(skb, netdev);
99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
103 netif_receive_skb(skb);
105 netdev->last_rx = jiffies;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
148 skb->ip_summed = CHECKSUM_COMPLETE;
150 adapter->hw_csum_good++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
179 skb = netdev_alloc_skb(netdev, bufsz);
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb, NET_IP_ALIGN);
193 buffer_info->skb = skb;
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208 if (i == rx_ring->count)
210 buffer_info = &rx_ring->buffer_info[i];
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
216 i = (rx_ring->count - 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
260 if (!ps_page->page) {
261 adapter->alloc_rx_buff_failed++;
264 ps_page->dma = pci_map_page(pdev,
268 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288 adapter->alloc_rx_buff_failed++;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb, NET_IP_ALIGN);
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315 if (i == rx_ring->count)
317 buffer_info = &rx_ring->buffer_info[i];
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
325 i = (rx_ring->count - 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @rx_ring: pointer to receive ring structure
347 * @cleaned_count: number of buffers to allocate this pass
350 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_rx_desc *rx_desc;
356 struct e1000_ring *rx_ring = adapter->rx_ring;
357 struct e1000_buffer *buffer_info;
360 unsigned int bufsz = 256 -
361 16 /* for skb_reserve */ -
364 i = rx_ring->next_to_use;
365 buffer_info = &rx_ring->buffer_info[i];
367 while (cleaned_count--) {
368 skb = buffer_info->skb;
374 skb = netdev_alloc_skb(netdev, bufsz);
375 if (unlikely(!skb)) {
376 /* Better luck next round */
377 adapter->alloc_rx_buff_failed++;
381 /* Make buffer alignment 2 beyond a 16 byte boundary
382 * this will result in a 16 byte aligned IP header after
383 * the 14 byte MAC header is removed
385 skb_reserve(skb, NET_IP_ALIGN);
387 buffer_info->skb = skb;
389 /* allocate a new page if necessary */
390 if (!buffer_info->page) {
391 buffer_info->page = alloc_page(GFP_ATOMIC);
392 if (unlikely(!buffer_info->page)) {
393 adapter->alloc_rx_buff_failed++;
398 if (!buffer_info->dma)
399 buffer_info->dma = pci_map_page(pdev,
400 buffer_info->page, 0,
404 rx_desc = E1000_RX_DESC(*rx_ring, i);
405 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407 if (unlikely(++i == rx_ring->count))
409 buffer_info = &rx_ring->buffer_info[i];
412 if (likely(rx_ring->next_to_use != i)) {
413 rx_ring->next_to_use = i;
414 if (unlikely(i-- == 0))
415 i = (rx_ring->count - 1);
417 /* Force memory writes to complete before letting h/w
418 * know there are new descriptors to fetch. (Only
419 * applicable for weak-ordered memory model archs,
422 writel(i, adapter->hw.hw_addr + rx_ring->tail);
427 * e1000_clean_rx_irq - Send received data up the network stack; legacy
428 * @adapter: board private structure
430 * the return value indicates whether actual cleaning was done, there
431 * is no guarantee that everything was cleaned
433 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
434 int *work_done, int work_to_do)
436 struct net_device *netdev = adapter->netdev;
437 struct pci_dev *pdev = adapter->pdev;
438 struct e1000_ring *rx_ring = adapter->rx_ring;
439 struct e1000_rx_desc *rx_desc, *next_rxd;
440 struct e1000_buffer *buffer_info, *next_buffer;
443 int cleaned_count = 0;
445 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447 i = rx_ring->next_to_clean;
448 rx_desc = E1000_RX_DESC(*rx_ring, i);
449 buffer_info = &rx_ring->buffer_info[i];
451 while (rx_desc->status & E1000_RXD_STAT_DD) {
455 if (*work_done >= work_to_do)
459 status = rx_desc->status;
460 skb = buffer_info->skb;
461 buffer_info->skb = NULL;
463 prefetch(skb->data - NET_IP_ALIGN);
466 if (i == rx_ring->count)
468 next_rxd = E1000_RX_DESC(*rx_ring, i);
471 next_buffer = &rx_ring->buffer_info[i];
475 pci_unmap_single(pdev,
477 adapter->rx_buffer_len,
479 buffer_info->dma = 0;
481 length = le16_to_cpu(rx_desc->length);
483 /* !EOP means multiple descriptors were used to store a single
484 * packet, also make sure the frame isn't just CRC only */
485 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
486 /* All receives must fit into a single buffer */
487 e_dbg("%s: Receive packet consumed multiple buffers\n",
490 buffer_info->skb = skb;
494 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496 buffer_info->skb = skb;
500 total_rx_bytes += length;
504 * code added for copybreak, this should improve
505 * performance for small packets with large amounts
506 * of reassembly being done in the stack
508 if (length < copybreak) {
509 struct sk_buff *new_skb =
510 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
512 skb_reserve(new_skb, NET_IP_ALIGN);
513 skb_copy_to_linear_data_offset(new_skb,
519 /* save the skb in buffer_info as good */
520 buffer_info->skb = skb;
523 /* else just continue with the old one */
525 /* end copybreak code */
526 skb_put(skb, length);
528 /* Receive Checksum Offload */
529 e1000_rx_checksum(adapter,
531 ((u32)(rx_desc->errors) << 24),
532 le16_to_cpu(rx_desc->csum), skb);
534 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
539 /* return some buffers to hardware, one at a time is too slow */
540 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
541 adapter->alloc_rx_buf(adapter, cleaned_count);
545 /* use prefetched values */
547 buffer_info = next_buffer;
549 rx_ring->next_to_clean = i;
551 cleaned_count = e1000_desc_unused(rx_ring);
553 adapter->alloc_rx_buf(adapter, cleaned_count);
555 adapter->total_rx_bytes += total_rx_bytes;
556 adapter->total_rx_packets += total_rx_packets;
557 adapter->net_stats.rx_bytes += total_rx_bytes;
558 adapter->net_stats.rx_packets += total_rx_packets;
562 static void e1000_put_txbuf(struct e1000_adapter *adapter,
563 struct e1000_buffer *buffer_info)
565 if (buffer_info->dma) {
566 pci_unmap_page(adapter->pdev, buffer_info->dma,
567 buffer_info->length, PCI_DMA_TODEVICE);
568 buffer_info->dma = 0;
570 if (buffer_info->skb) {
571 dev_kfree_skb_any(buffer_info->skb);
572 buffer_info->skb = NULL;
576 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
578 struct e1000_ring *tx_ring = adapter->tx_ring;
579 unsigned int i = tx_ring->next_to_clean;
580 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
581 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
583 /* detected Tx unit hang */
584 e_err("Detected Tx Unit Hang:\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
593 " next_to_watch.status <%x>\n",
594 readl(adapter->hw.hw_addr + tx_ring->head),
595 readl(adapter->hw.hw_addr + tx_ring->tail),
596 tx_ring->next_to_use,
597 tx_ring->next_to_clean,
598 tx_ring->buffer_info[eop].time_stamp,
601 eop_desc->upper.fields.status);
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
611 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
613 struct net_device *netdev = adapter->netdev;
614 struct e1000_hw *hw = &adapter->hw;
615 struct e1000_ring *tx_ring = adapter->tx_ring;
616 struct e1000_tx_desc *tx_desc, *eop_desc;
617 struct e1000_buffer *buffer_info;
619 unsigned int count = 0;
621 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
623 i = tx_ring->next_to_clean;
624 eop = tx_ring->buffer_info[i].next_to_watch;
625 eop_desc = E1000_TX_DESC(*tx_ring, eop);
627 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
628 for (cleaned = 0; !cleaned; ) {
629 tx_desc = E1000_TX_DESC(*tx_ring, i);
630 buffer_info = &tx_ring->buffer_info[i];
631 cleaned = (i == eop);
634 struct sk_buff *skb = buffer_info->skb;
635 unsigned int segs, bytecount;
636 segs = skb_shinfo(skb)->gso_segs ?: 1;
637 /* multiply data chunks by size of headers */
638 bytecount = ((segs - 1) * skb_headlen(skb)) +
640 total_tx_packets += segs;
641 total_tx_bytes += bytecount;
644 e1000_put_txbuf(adapter, buffer_info);
645 tx_desc->upper.data = 0;
648 if (i == tx_ring->count)
652 eop = tx_ring->buffer_info[i].next_to_watch;
653 eop_desc = E1000_TX_DESC(*tx_ring, eop);
654 #define E1000_TX_WEIGHT 64
655 /* weight of a sort for tx, to avoid endless transmit cleanup */
656 if (count++ == E1000_TX_WEIGHT)
660 tx_ring->next_to_clean = i;
662 #define TX_WAKE_THRESHOLD 32
663 if (cleaned && netif_carrier_ok(netdev) &&
664 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
665 /* Make sure that anybody stopping the queue after this
666 * sees the new next_to_clean.
670 if (netif_queue_stopped(netdev) &&
671 !(test_bit(__E1000_DOWN, &adapter->state))) {
672 netif_wake_queue(netdev);
673 ++adapter->restart_queue;
677 if (adapter->detect_tx_hung) {
679 * Detect a transmit hang in hardware, this serializes the
680 * check with the clearing of time_stamp and movement of i
682 adapter->detect_tx_hung = 0;
683 if (tx_ring->buffer_info[eop].dma &&
684 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
685 + (adapter->tx_timeout_factor * HZ))
686 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
687 e1000_print_tx_hang(adapter);
688 netif_stop_queue(netdev);
691 adapter->total_tx_bytes += total_tx_bytes;
692 adapter->total_tx_packets += total_tx_packets;
693 adapter->net_stats.tx_bytes += total_tx_bytes;
694 adapter->net_stats.tx_packets += total_tx_packets;
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
706 int *work_done, int work_to_do)
708 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
709 struct net_device *netdev = adapter->netdev;
710 struct pci_dev *pdev = adapter->pdev;
711 struct e1000_ring *rx_ring = adapter->rx_ring;
712 struct e1000_buffer *buffer_info, *next_buffer;
713 struct e1000_ps_page *ps_page;
717 int cleaned_count = 0;
719 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
721 i = rx_ring->next_to_clean;
722 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
724 buffer_info = &rx_ring->buffer_info[i];
726 while (staterr & E1000_RXD_STAT_DD) {
727 if (*work_done >= work_to_do)
730 skb = buffer_info->skb;
732 /* in the packet split case this is header only */
733 prefetch(skb->data - NET_IP_ALIGN);
736 if (i == rx_ring->count)
738 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
741 next_buffer = &rx_ring->buffer_info[i];
745 pci_unmap_single(pdev, buffer_info->dma,
746 adapter->rx_ps_bsize0,
748 buffer_info->dma = 0;
750 if (!(staterr & E1000_RXD_STAT_EOP)) {
751 e_dbg("%s: Packet Split buffers didn't pick up the "
752 "full packet\n", netdev->name);
753 dev_kfree_skb_irq(skb);
757 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
758 dev_kfree_skb_irq(skb);
762 length = le16_to_cpu(rx_desc->wb.middle.length0);
765 e_dbg("%s: Last part of the packet spanning multiple "
766 "descriptors\n", netdev->name);
767 dev_kfree_skb_irq(skb);
772 skb_put(skb, length);
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
779 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
786 if (l1 && (l1 <= copybreak) &&
787 ((length + l1) <= adapter->rx_ps_bsize0)) {
790 ps_page = &buffer_info->ps_pages[0];
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
797 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
798 PAGE_SIZE, PCI_DMA_FROMDEVICE);
799 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
800 memcpy(skb_tail_pointer(skb), vaddr, l1);
801 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
802 pci_dma_sync_single_for_device(pdev, ps_page->dma,
803 PAGE_SIZE, PCI_DMA_FROMDEVICE);
810 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
811 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
815 ps_page = &buffer_info->ps_pages[j];
816 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
819 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
820 ps_page->page = NULL;
822 skb->data_len += length;
823 skb->truesize += length;
827 total_rx_bytes += skb->len;
830 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
831 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
833 if (rx_desc->wb.upper.header_status &
834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
835 adapter->rx_hdr_split++;
837 e1000_receive_skb(adapter, netdev, skb,
838 staterr, rx_desc->wb.middle.vlan);
841 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
842 buffer_info->skb = NULL;
844 /* return some buffers to hardware, one at a time is too slow */
845 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
846 adapter->alloc_rx_buf(adapter, cleaned_count);
850 /* use prefetched values */
852 buffer_info = next_buffer;
854 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
856 rx_ring->next_to_clean = i;
858 cleaned_count = e1000_desc_unused(rx_ring);
860 adapter->alloc_rx_buf(adapter, cleaned_count);
862 adapter->total_rx_bytes += total_rx_bytes;
863 adapter->total_rx_packets += total_rx_packets;
864 adapter->net_stats.rx_bytes += total_rx_bytes;
865 adapter->net_stats.rx_packets += total_rx_packets;
870 * e1000_consume_page - helper function
872 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
877 skb->data_len += length;
878 skb->truesize += length;
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
889 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
890 int *work_done, int work_to_do)
892 struct net_device *netdev = adapter->netdev;
893 struct pci_dev *pdev = adapter->pdev;
894 struct e1000_ring *rx_ring = adapter->rx_ring;
895 struct e1000_rx_desc *rx_desc, *next_rxd;
896 struct e1000_buffer *buffer_info, *next_buffer;
899 int cleaned_count = 0;
900 bool cleaned = false;
901 unsigned int total_rx_bytes=0, total_rx_packets=0;
903 i = rx_ring->next_to_clean;
904 rx_desc = E1000_RX_DESC(*rx_ring, i);
905 buffer_info = &rx_ring->buffer_info[i];
907 while (rx_desc->status & E1000_RXD_STAT_DD) {
911 if (*work_done >= work_to_do)
915 status = rx_desc->status;
916 skb = buffer_info->skb;
917 buffer_info->skb = NULL;
920 if (i == rx_ring->count)
922 next_rxd = E1000_RX_DESC(*rx_ring, i);
925 next_buffer = &rx_ring->buffer_info[i];
929 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
931 buffer_info->dma = 0;
933 length = le16_to_cpu(rx_desc->length);
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status & E1000_RXD_STAT_EOP) &&
937 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
938 /* recycle both page and skb */
939 buffer_info->skb = skb;
940 /* an error means any chain goes out the window
942 if (rx_ring->rx_skb_top)
943 dev_kfree_skb(rx_ring->rx_skb_top);
944 rx_ring->rx_skb_top = NULL;
948 #define rxtop rx_ring->rx_skb_top
949 if (!(status & E1000_RXD_STAT_EOP)) {
950 /* this descriptor is only the beginning (or middle) */
952 /* this is the beginning of a chain */
954 skb_fill_page_desc(rxtop, 0, buffer_info->page,
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop,
959 skb_shinfo(rxtop)->nr_frags,
960 buffer_info->page, 0, length);
961 /* re-use the skb, only consumed the page */
962 buffer_info->skb = skb;
964 e1000_consume_page(buffer_info, rxtop, length);
968 /* end of the chain */
969 skb_fill_page_desc(rxtop,
970 skb_shinfo(rxtop)->nr_frags,
971 buffer_info->page, 0, length);
972 /* re-use the current skb, we only consumed the
974 buffer_info->skb = skb;
977 e1000_consume_page(buffer_info, skb, length);
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length <= copybreak &&
982 skb_tailroom(skb) >= length) {
984 vaddr = kmap_atomic(buffer_info->page,
985 KM_SKB_DATA_SOFTIRQ);
986 memcpy(skb_tail_pointer(skb), vaddr,
989 KM_SKB_DATA_SOFTIRQ);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb, length);
994 skb_fill_page_desc(skb, 0,
995 buffer_info->page, 0,
997 e1000_consume_page(buffer_info, skb,
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter,
1006 ((u32)(rx_desc->errors) << 24),
1007 le16_to_cpu(rx_desc->csum), skb);
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes += skb->len;
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb, ETH_HLEN)) {
1015 e_err("pskb_may_pull failed.\n");
1020 e1000_receive_skb(adapter, netdev, skb, status,
1024 rx_desc->status = 0;
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1028 adapter->alloc_rx_buf(adapter, cleaned_count);
1032 /* use prefetched values */
1034 buffer_info = next_buffer;
1036 rx_ring->next_to_clean = i;
1038 cleaned_count = e1000_desc_unused(rx_ring);
1040 adapter->alloc_rx_buf(adapter, cleaned_count);
1042 adapter->total_rx_bytes += total_rx_bytes;
1043 adapter->total_rx_packets += total_rx_packets;
1044 adapter->net_stats.rx_bytes += total_rx_bytes;
1045 adapter->net_stats.rx_packets += total_rx_packets;
1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1051 * @adapter: board private structure
1053 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1055 struct e1000_ring *rx_ring = adapter->rx_ring;
1056 struct e1000_buffer *buffer_info;
1057 struct e1000_ps_page *ps_page;
1058 struct pci_dev *pdev = adapter->pdev;
1061 /* Free all the Rx ring sk_buffs */
1062 for (i = 0; i < rx_ring->count; i++) {
1063 buffer_info = &rx_ring->buffer_info[i];
1064 if (buffer_info->dma) {
1065 if (adapter->clean_rx == e1000_clean_rx_irq)
1066 pci_unmap_single(pdev, buffer_info->dma,
1067 adapter->rx_buffer_len,
1068 PCI_DMA_FROMDEVICE);
1069 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1070 pci_unmap_page(pdev, buffer_info->dma,
1072 PCI_DMA_FROMDEVICE);
1073 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1074 pci_unmap_single(pdev, buffer_info->dma,
1075 adapter->rx_ps_bsize0,
1076 PCI_DMA_FROMDEVICE);
1077 buffer_info->dma = 0;
1080 if (buffer_info->page) {
1081 put_page(buffer_info->page);
1082 buffer_info->page = NULL;
1085 if (buffer_info->skb) {
1086 dev_kfree_skb(buffer_info->skb);
1087 buffer_info->skb = NULL;
1090 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1091 ps_page = &buffer_info->ps_pages[j];
1094 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1095 PCI_DMA_FROMDEVICE);
1097 put_page(ps_page->page);
1098 ps_page->page = NULL;
1102 /* there also may be some cached data from a chained receive */
1103 if (rx_ring->rx_skb_top) {
1104 dev_kfree_skb(rx_ring->rx_skb_top);
1105 rx_ring->rx_skb_top = NULL;
1108 /* Zero out the descriptor ring */
1109 memset(rx_ring->desc, 0, rx_ring->size);
1111 rx_ring->next_to_clean = 0;
1112 rx_ring->next_to_use = 0;
1114 writel(0, adapter->hw.hw_addr + rx_ring->head);
1115 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1119 * e1000_intr_msi - Interrupt Handler
1120 * @irq: interrupt number
1121 * @data: pointer to a network interface device structure
1123 static irqreturn_t e1000_intr_msi(int irq, void *data)
1125 struct net_device *netdev = data;
1126 struct e1000_adapter *adapter = netdev_priv(netdev);
1127 struct e1000_hw *hw = &adapter->hw;
1128 u32 icr = er32(ICR);
1131 * read ICR disables interrupts using IAM
1134 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1135 hw->mac.get_link_status = 1;
1137 * ICH8 workaround-- Call gig speed drop workaround on cable
1138 * disconnect (LSC) before accessing any PHY registers
1140 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1141 (!(er32(STATUS) & E1000_STATUS_LU)))
1142 e1000e_gig_downshift_workaround_ich8lan(hw);
1145 * 80003ES2LAN workaround-- For packet buffer work-around on
1146 * link down event; disable receives here in the ISR and reset
1147 * adapter in watchdog
1149 if (netif_carrier_ok(netdev) &&
1150 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1151 /* disable receives */
1152 u32 rctl = er32(RCTL);
1153 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1154 adapter->flags |= FLAG_RX_RESTART_NOW;
1156 /* guard against interrupt when we're going down */
1157 if (!test_bit(__E1000_DOWN, &adapter->state))
1158 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1161 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1162 adapter->total_tx_bytes = 0;
1163 adapter->total_tx_packets = 0;
1164 adapter->total_rx_bytes = 0;
1165 adapter->total_rx_packets = 0;
1166 __netif_rx_schedule(netdev, &adapter->napi);
1173 * e1000_intr - Interrupt Handler
1174 * @irq: interrupt number
1175 * @data: pointer to a network interface device structure
1177 static irqreturn_t e1000_intr(int irq, void *data)
1179 struct net_device *netdev = data;
1180 struct e1000_adapter *adapter = netdev_priv(netdev);
1181 struct e1000_hw *hw = &adapter->hw;
1183 u32 rctl, icr = er32(ICR);
1185 return IRQ_NONE; /* Not our interrupt */
1188 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1189 * not set, then the adapter didn't send an interrupt
1191 if (!(icr & E1000_ICR_INT_ASSERTED))
1195 * Interrupt Auto-Mask...upon reading ICR,
1196 * interrupts are masked. No need for the
1200 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1201 hw->mac.get_link_status = 1;
1203 * ICH8 workaround-- Call gig speed drop workaround on cable
1204 * disconnect (LSC) before accessing any PHY registers
1206 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1207 (!(er32(STATUS) & E1000_STATUS_LU)))
1208 e1000e_gig_downshift_workaround_ich8lan(hw);
1211 * 80003ES2LAN workaround--
1212 * For packet buffer work-around on link down event;
1213 * disable receives here in the ISR and
1214 * reset adapter in watchdog
1216 if (netif_carrier_ok(netdev) &&
1217 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1218 /* disable receives */
1220 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1221 adapter->flags |= FLAG_RX_RESTART_NOW;
1223 /* guard against interrupt when we're going down */
1224 if (!test_bit(__E1000_DOWN, &adapter->state))
1225 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1228 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1229 adapter->total_tx_bytes = 0;
1230 adapter->total_tx_packets = 0;
1231 adapter->total_rx_bytes = 0;
1232 adapter->total_rx_packets = 0;
1233 __netif_rx_schedule(netdev, &adapter->napi);
1239 static int e1000_request_irq(struct e1000_adapter *adapter)
1241 struct net_device *netdev = adapter->netdev;
1242 irq_handler_t handler = e1000_intr;
1243 int irq_flags = IRQF_SHARED;
1246 if (!pci_enable_msi(adapter->pdev)) {
1247 adapter->flags |= FLAG_MSI_ENABLED;
1248 handler = e1000_intr_msi;
1252 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
1255 e_err("Unable to allocate %s interrupt (return: %d)\n",
1256 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx", err);
1257 if (adapter->flags & FLAG_MSI_ENABLED)
1258 pci_disable_msi(adapter->pdev);
1264 static void e1000_free_irq(struct e1000_adapter *adapter)
1266 struct net_device *netdev = adapter->netdev;
1268 free_irq(adapter->pdev->irq, netdev);
1269 if (adapter->flags & FLAG_MSI_ENABLED) {
1270 pci_disable_msi(adapter->pdev);
1271 adapter->flags &= ~FLAG_MSI_ENABLED;
1276 * e1000_irq_disable - Mask off interrupt generation on the NIC
1278 static void e1000_irq_disable(struct e1000_adapter *adapter)
1280 struct e1000_hw *hw = &adapter->hw;
1284 synchronize_irq(adapter->pdev->irq);
1288 * e1000_irq_enable - Enable default interrupt generation settings
1290 static void e1000_irq_enable(struct e1000_adapter *adapter)
1292 struct e1000_hw *hw = &adapter->hw;
1294 ew32(IMS, IMS_ENABLE_MASK);
1299 * e1000_get_hw_control - get control of the h/w from f/w
1300 * @adapter: address of board private structure
1302 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1303 * For ASF and Pass Through versions of f/w this means that
1304 * the driver is loaded. For AMT version (only with 82573)
1305 * of the f/w this means that the network i/f is open.
1307 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1309 struct e1000_hw *hw = &adapter->hw;
1313 /* Let firmware know the driver has taken over */
1314 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1316 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1317 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1318 ctrl_ext = er32(CTRL_EXT);
1319 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1324 * e1000_release_hw_control - release control of the h/w to f/w
1325 * @adapter: address of board private structure
1327 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1328 * For ASF and Pass Through versions of f/w this means that the
1329 * driver is no longer loaded. For AMT version (only with 82573) i
1330 * of the f/w this means that the network i/f is closed.
1333 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1335 struct e1000_hw *hw = &adapter->hw;
1339 /* Let firmware taken over control of h/w */
1340 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1342 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1343 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1344 ctrl_ext = er32(CTRL_EXT);
1345 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1350 * @e1000_alloc_ring - allocate memory for a ring structure
1352 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1353 struct e1000_ring *ring)
1355 struct pci_dev *pdev = adapter->pdev;
1357 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1366 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1367 * @adapter: board private structure
1369 * Return 0 on success, negative on failure
1371 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1373 struct e1000_ring *tx_ring = adapter->tx_ring;
1374 int err = -ENOMEM, size;
1376 size = sizeof(struct e1000_buffer) * tx_ring->count;
1377 tx_ring->buffer_info = vmalloc(size);
1378 if (!tx_ring->buffer_info)
1380 memset(tx_ring->buffer_info, 0, size);
1382 /* round up to nearest 4K */
1383 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1384 tx_ring->size = ALIGN(tx_ring->size, 4096);
1386 err = e1000_alloc_ring_dma(adapter, tx_ring);
1390 tx_ring->next_to_use = 0;
1391 tx_ring->next_to_clean = 0;
1392 spin_lock_init(&adapter->tx_queue_lock);
1396 vfree(tx_ring->buffer_info);
1397 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1402 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1403 * @adapter: board private structure
1405 * Returns 0 on success, negative on failure
1407 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1409 struct e1000_ring *rx_ring = adapter->rx_ring;
1410 struct e1000_buffer *buffer_info;
1411 int i, size, desc_len, err = -ENOMEM;
1413 size = sizeof(struct e1000_buffer) * rx_ring->count;
1414 rx_ring->buffer_info = vmalloc(size);
1415 if (!rx_ring->buffer_info)
1417 memset(rx_ring->buffer_info, 0, size);
1419 for (i = 0; i < rx_ring->count; i++) {
1420 buffer_info = &rx_ring->buffer_info[i];
1421 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1422 sizeof(struct e1000_ps_page),
1424 if (!buffer_info->ps_pages)
1428 desc_len = sizeof(union e1000_rx_desc_packet_split);
1430 /* Round up to nearest 4K */
1431 rx_ring->size = rx_ring->count * desc_len;
1432 rx_ring->size = ALIGN(rx_ring->size, 4096);
1434 err = e1000_alloc_ring_dma(adapter, rx_ring);
1438 rx_ring->next_to_clean = 0;
1439 rx_ring->next_to_use = 0;
1440 rx_ring->rx_skb_top = NULL;
1445 for (i = 0; i < rx_ring->count; i++) {
1446 buffer_info = &rx_ring->buffer_info[i];
1447 kfree(buffer_info->ps_pages);
1450 vfree(rx_ring->buffer_info);
1451 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1456 * e1000_clean_tx_ring - Free Tx Buffers
1457 * @adapter: board private structure
1459 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1461 struct e1000_ring *tx_ring = adapter->tx_ring;
1462 struct e1000_buffer *buffer_info;
1466 for (i = 0; i < tx_ring->count; i++) {
1467 buffer_info = &tx_ring->buffer_info[i];
1468 e1000_put_txbuf(adapter, buffer_info);
1471 size = sizeof(struct e1000_buffer) * tx_ring->count;
1472 memset(tx_ring->buffer_info, 0, size);
1474 memset(tx_ring->desc, 0, tx_ring->size);
1476 tx_ring->next_to_use = 0;
1477 tx_ring->next_to_clean = 0;
1479 writel(0, adapter->hw.hw_addr + tx_ring->head);
1480 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1484 * e1000e_free_tx_resources - Free Tx Resources per Queue
1485 * @adapter: board private structure
1487 * Free all transmit software resources
1489 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1491 struct pci_dev *pdev = adapter->pdev;
1492 struct e1000_ring *tx_ring = adapter->tx_ring;
1494 e1000_clean_tx_ring(adapter);
1496 vfree(tx_ring->buffer_info);
1497 tx_ring->buffer_info = NULL;
1499 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1501 tx_ring->desc = NULL;
1505 * e1000e_free_rx_resources - Free Rx Resources
1506 * @adapter: board private structure
1508 * Free all receive software resources
1511 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1513 struct pci_dev *pdev = adapter->pdev;
1514 struct e1000_ring *rx_ring = adapter->rx_ring;
1517 e1000_clean_rx_ring(adapter);
1519 for (i = 0; i < rx_ring->count; i++) {
1520 kfree(rx_ring->buffer_info[i].ps_pages);
1523 vfree(rx_ring->buffer_info);
1524 rx_ring->buffer_info = NULL;
1526 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1528 rx_ring->desc = NULL;
1532 * e1000_update_itr - update the dynamic ITR value based on statistics
1533 * @adapter: pointer to adapter
1534 * @itr_setting: current adapter->itr
1535 * @packets: the number of packets during this measurement interval
1536 * @bytes: the number of bytes during this measurement interval
1538 * Stores a new ITR value based on packets and byte
1539 * counts during the last interrupt. The advantage of per interrupt
1540 * computation is faster updates and more accurate ITR for the current
1541 * traffic pattern. Constants in this function were computed
1542 * based on theoretical maximum wire speed and thresholds were set based
1543 * on testing data as well as attempting to minimize response time
1544 * while increasing bulk throughput.
1545 * this functionality is controlled by the InterruptThrottleRate module
1546 * parameter (see e1000_param.c)
1548 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1549 u16 itr_setting, int packets,
1552 unsigned int retval = itr_setting;
1555 goto update_itr_done;
1557 switch (itr_setting) {
1558 case lowest_latency:
1559 /* handle TSO and jumbo frames */
1560 if (bytes/packets > 8000)
1561 retval = bulk_latency;
1562 else if ((packets < 5) && (bytes > 512)) {
1563 retval = low_latency;
1566 case low_latency: /* 50 usec aka 20000 ints/s */
1567 if (bytes > 10000) {
1568 /* this if handles the TSO accounting */
1569 if (bytes/packets > 8000) {
1570 retval = bulk_latency;
1571 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1572 retval = bulk_latency;
1573 } else if ((packets > 35)) {
1574 retval = lowest_latency;
1576 } else if (bytes/packets > 2000) {
1577 retval = bulk_latency;
1578 } else if (packets <= 2 && bytes < 512) {
1579 retval = lowest_latency;
1582 case bulk_latency: /* 250 usec aka 4000 ints/s */
1583 if (bytes > 25000) {
1585 retval = low_latency;
1587 } else if (bytes < 6000) {
1588 retval = low_latency;
1597 static void e1000_set_itr(struct e1000_adapter *adapter)
1599 struct e1000_hw *hw = &adapter->hw;
1601 u32 new_itr = adapter->itr;
1603 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1604 if (adapter->link_speed != SPEED_1000) {
1610 adapter->tx_itr = e1000_update_itr(adapter,
1612 adapter->total_tx_packets,
1613 adapter->total_tx_bytes);
1614 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1615 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1616 adapter->tx_itr = low_latency;
1618 adapter->rx_itr = e1000_update_itr(adapter,
1620 adapter->total_rx_packets,
1621 adapter->total_rx_bytes);
1622 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1623 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1624 adapter->rx_itr = low_latency;
1626 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1628 switch (current_itr) {
1629 /* counts and packets in update_itr are dependent on these numbers */
1630 case lowest_latency:
1634 new_itr = 20000; /* aka hwitr = ~200 */
1644 if (new_itr != adapter->itr) {
1646 * this attempts to bias the interrupt rate towards Bulk
1647 * by adding intermediate steps when interrupt rate is
1650 new_itr = new_itr > adapter->itr ?
1651 min(adapter->itr + (new_itr >> 2), new_itr) :
1653 adapter->itr = new_itr;
1654 ew32(ITR, 1000000000 / (new_itr * 256));
1659 * e1000_clean - NAPI Rx polling callback
1660 * @napi: struct associated with this polling callback
1661 * @budget: amount of packets driver is allowed to process this poll
1663 static int e1000_clean(struct napi_struct *napi, int budget)
1665 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1666 struct net_device *poll_dev = adapter->netdev;
1667 int tx_cleaned = 0, work_done = 0;
1669 /* Must NOT use netdev_priv macro here. */
1670 adapter = poll_dev->priv;
1673 * e1000_clean is called per-cpu. This lock protects
1674 * tx_ring from being cleaned by multiple cpus
1675 * simultaneously. A failure obtaining the lock means
1676 * tx_ring is currently being cleaned anyway.
1678 if (spin_trylock(&adapter->tx_queue_lock)) {
1679 tx_cleaned = e1000_clean_tx_irq(adapter);
1680 spin_unlock(&adapter->tx_queue_lock);
1683 adapter->clean_rx(adapter, &work_done, budget);
1688 /* If budget not fully consumed, exit the polling mode */
1689 if (work_done < budget) {
1690 if (adapter->itr_setting & 3)
1691 e1000_set_itr(adapter);
1692 netif_rx_complete(poll_dev, napi);
1693 e1000_irq_enable(adapter);
1699 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1701 struct e1000_adapter *adapter = netdev_priv(netdev);
1702 struct e1000_hw *hw = &adapter->hw;
1705 /* don't update vlan cookie if already programmed */
1706 if ((adapter->hw.mng_cookie.status &
1707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1708 (vid == adapter->mng_vlan_id))
1710 /* add VID to filter table */
1711 index = (vid >> 5) & 0x7F;
1712 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1713 vfta |= (1 << (vid & 0x1F));
1714 e1000e_write_vfta(hw, index, vfta);
1717 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1719 struct e1000_adapter *adapter = netdev_priv(netdev);
1720 struct e1000_hw *hw = &adapter->hw;
1723 if (!test_bit(__E1000_DOWN, &adapter->state))
1724 e1000_irq_disable(adapter);
1725 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1727 if (!test_bit(__E1000_DOWN, &adapter->state))
1728 e1000_irq_enable(adapter);
1730 if ((adapter->hw.mng_cookie.status &
1731 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1732 (vid == adapter->mng_vlan_id)) {
1733 /* release control to f/w */
1734 e1000_release_hw_control(adapter);
1738 /* remove VID from filter table */
1739 index = (vid >> 5) & 0x7F;
1740 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1741 vfta &= ~(1 << (vid & 0x1F));
1742 e1000e_write_vfta(hw, index, vfta);
1745 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1747 struct net_device *netdev = adapter->netdev;
1748 u16 vid = adapter->hw.mng_cookie.vlan_id;
1749 u16 old_vid = adapter->mng_vlan_id;
1751 if (!adapter->vlgrp)
1754 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1755 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1756 if (adapter->hw.mng_cookie.status &
1757 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1758 e1000_vlan_rx_add_vid(netdev, vid);
1759 adapter->mng_vlan_id = vid;
1762 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1764 !vlan_group_get_device(adapter->vlgrp, old_vid))
1765 e1000_vlan_rx_kill_vid(netdev, old_vid);
1767 adapter->mng_vlan_id = vid;
1772 static void e1000_vlan_rx_register(struct net_device *netdev,
1773 struct vlan_group *grp)
1775 struct e1000_adapter *adapter = netdev_priv(netdev);
1776 struct e1000_hw *hw = &adapter->hw;
1779 if (!test_bit(__E1000_DOWN, &adapter->state))
1780 e1000_irq_disable(adapter);
1781 adapter->vlgrp = grp;
1784 /* enable VLAN tag insert/strip */
1786 ctrl |= E1000_CTRL_VME;
1789 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1790 /* enable VLAN receive filtering */
1792 rctl &= ~E1000_RCTL_CFIEN;
1794 e1000_update_mng_vlan(adapter);
1797 /* disable VLAN tag insert/strip */
1799 ctrl &= ~E1000_CTRL_VME;
1802 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1803 if (adapter->mng_vlan_id !=
1804 (u16)E1000_MNG_VLAN_NONE) {
1805 e1000_vlan_rx_kill_vid(netdev,
1806 adapter->mng_vlan_id);
1807 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1812 if (!test_bit(__E1000_DOWN, &adapter->state))
1813 e1000_irq_enable(adapter);
1816 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1820 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1822 if (!adapter->vlgrp)
1825 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1826 if (!vlan_group_get_device(adapter->vlgrp, vid))
1828 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1832 static void e1000_init_manageability(struct e1000_adapter *adapter)
1834 struct e1000_hw *hw = &adapter->hw;
1837 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1843 * enable receiving management packets to the host. this will probably
1844 * generate destination unreachable messages from the host OS, but
1845 * the packets will be handled on SMBUS
1847 manc |= E1000_MANC_EN_MNG2HOST;
1848 manc2h = er32(MANC2H);
1849 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1850 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1851 manc2h |= E1000_MNG2HOST_PORT_623;
1852 manc2h |= E1000_MNG2HOST_PORT_664;
1853 ew32(MANC2H, manc2h);
1858 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1859 * @adapter: board private structure
1861 * Configure the Tx unit of the MAC after a reset.
1863 static void e1000_configure_tx(struct e1000_adapter *adapter)
1865 struct e1000_hw *hw = &adapter->hw;
1866 struct e1000_ring *tx_ring = adapter->tx_ring;
1868 u32 tdlen, tctl, tipg, tarc;
1871 /* Setup the HW Tx Head and Tail descriptor pointers */
1872 tdba = tx_ring->dma;
1873 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1874 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1875 ew32(TDBAH, (tdba >> 32));
1879 tx_ring->head = E1000_TDH;
1880 tx_ring->tail = E1000_TDT;
1882 /* Set the default values for the Tx Inter Packet Gap timer */
1883 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1884 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1885 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1887 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1888 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1890 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1891 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1894 /* Set the Tx Interrupt Delay register */
1895 ew32(TIDV, adapter->tx_int_delay);
1896 /* Tx irq moderation */
1897 ew32(TADV, adapter->tx_abs_int_delay);
1899 /* Program the Transmit Control Register */
1901 tctl &= ~E1000_TCTL_CT;
1902 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1903 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1905 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1906 tarc = er32(TARC(0));
1908 * set the speed mode bit, we'll clear it if we're not at
1909 * gigabit link later
1911 #define SPEED_MODE_BIT (1 << 21)
1912 tarc |= SPEED_MODE_BIT;
1913 ew32(TARC(0), tarc);
1916 /* errata: program both queues to unweighted RR */
1917 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1918 tarc = er32(TARC(0));
1920 ew32(TARC(0), tarc);
1921 tarc = er32(TARC(1));
1923 ew32(TARC(1), tarc);
1926 e1000e_config_collision_dist(hw);
1928 /* Setup Transmit Descriptor Settings for eop descriptor */
1929 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1931 /* only set IDE if we are delaying interrupts using the timers */
1932 if (adapter->tx_int_delay)
1933 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1935 /* enable Report Status bit */
1936 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1940 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1944 * e1000_setup_rctl - configure the receive control registers
1945 * @adapter: Board private structure
1947 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1948 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1949 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1951 struct e1000_hw *hw = &adapter->hw;
1956 /* Program MC offset vector base */
1958 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1959 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1960 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1961 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1963 /* Do not Store bad packets */
1964 rctl &= ~E1000_RCTL_SBP;
1966 /* Enable Long Packet receive */
1967 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1968 rctl &= ~E1000_RCTL_LPE;
1970 rctl |= E1000_RCTL_LPE;
1972 /* Enable hardware CRC frame stripping */
1973 rctl |= E1000_RCTL_SECRC;
1975 /* Setup buffer sizes */
1976 rctl &= ~E1000_RCTL_SZ_4096;
1977 rctl |= E1000_RCTL_BSEX;
1978 switch (adapter->rx_buffer_len) {
1980 rctl |= E1000_RCTL_SZ_256;
1981 rctl &= ~E1000_RCTL_BSEX;
1984 rctl |= E1000_RCTL_SZ_512;
1985 rctl &= ~E1000_RCTL_BSEX;
1988 rctl |= E1000_RCTL_SZ_1024;
1989 rctl &= ~E1000_RCTL_BSEX;
1993 rctl |= E1000_RCTL_SZ_2048;
1994 rctl &= ~E1000_RCTL_BSEX;
1997 rctl |= E1000_RCTL_SZ_4096;
2000 rctl |= E1000_RCTL_SZ_8192;
2003 rctl |= E1000_RCTL_SZ_16384;
2008 * 82571 and greater support packet-split where the protocol
2009 * header is placed in skb->data and the packet data is
2010 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2011 * In the case of a non-split, skb->data is linearly filled,
2012 * followed by the page buffers. Therefore, skb->data is
2013 * sized to hold the largest protocol header.
2015 * allocations using alloc_page take too long for regular MTU
2016 * so only enable packet split for jumbo frames
2018 * Using pages when the page size is greater than 16k wastes
2019 * a lot of memory, since we allocate 3 pages at all times
2022 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2023 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2024 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2025 adapter->rx_ps_pages = pages;
2027 adapter->rx_ps_pages = 0;
2029 if (adapter->rx_ps_pages) {
2030 /* Configure extra packet-split registers */
2031 rfctl = er32(RFCTL);
2032 rfctl |= E1000_RFCTL_EXTEN;
2034 * disable packet split support for IPv6 extension headers,
2035 * because some malformed IPv6 headers can hang the Rx
2037 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2038 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2042 /* Enable Packet split descriptors */
2043 rctl |= E1000_RCTL_DTYP_PS;
2045 psrctl |= adapter->rx_ps_bsize0 >>
2046 E1000_PSRCTL_BSIZE0_SHIFT;
2048 switch (adapter->rx_ps_pages) {
2050 psrctl |= PAGE_SIZE <<
2051 E1000_PSRCTL_BSIZE3_SHIFT;
2053 psrctl |= PAGE_SIZE <<
2054 E1000_PSRCTL_BSIZE2_SHIFT;
2056 psrctl |= PAGE_SIZE >>
2057 E1000_PSRCTL_BSIZE1_SHIFT;
2061 ew32(PSRCTL, psrctl);
2065 /* just started the receive unit, no need to restart */
2066 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2070 * e1000_configure_rx - Configure Receive Unit after Reset
2071 * @adapter: board private structure
2073 * Configure the Rx unit of the MAC after a reset.
2075 static void e1000_configure_rx(struct e1000_adapter *adapter)
2077 struct e1000_hw *hw = &adapter->hw;
2078 struct e1000_ring *rx_ring = adapter->rx_ring;
2080 u32 rdlen, rctl, rxcsum, ctrl_ext;
2082 if (adapter->rx_ps_pages) {
2083 /* this is a 32 byte descriptor */
2084 rdlen = rx_ring->count *
2085 sizeof(union e1000_rx_desc_packet_split);
2086 adapter->clean_rx = e1000_clean_rx_irq_ps;
2087 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2088 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2089 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2090 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2091 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2093 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2094 adapter->clean_rx = e1000_clean_rx_irq;
2095 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2098 /* disable receives while setting up the descriptors */
2100 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2104 /* set the Receive Delay Timer Register */
2105 ew32(RDTR, adapter->rx_int_delay);
2107 /* irq moderation */
2108 ew32(RADV, adapter->rx_abs_int_delay);
2109 if (adapter->itr_setting != 0)
2110 ew32(ITR, 1000000000 / (adapter->itr * 256));
2112 ctrl_ext = er32(CTRL_EXT);
2113 /* Reset delay timers after every interrupt */
2114 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2115 /* Auto-Mask interrupts upon ICR access */
2116 ctrl_ext |= E1000_CTRL_EXT_IAME;
2117 ew32(IAM, 0xffffffff);
2118 ew32(CTRL_EXT, ctrl_ext);
2122 * Setup the HW Rx Head and Tail Descriptor Pointers and
2123 * the Base and Length of the Rx Descriptor Ring
2125 rdba = rx_ring->dma;
2126 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2127 ew32(RDBAH, (rdba >> 32));
2131 rx_ring->head = E1000_RDH;
2132 rx_ring->tail = E1000_RDT;
2134 /* Enable Receive Checksum Offload for TCP and UDP */
2135 rxcsum = er32(RXCSUM);
2136 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2137 rxcsum |= E1000_RXCSUM_TUOFL;
2140 * IPv4 payload checksum for UDP fragments must be
2141 * used in conjunction with packet-split.
2143 if (adapter->rx_ps_pages)
2144 rxcsum |= E1000_RXCSUM_IPPCSE;
2146 rxcsum &= ~E1000_RXCSUM_TUOFL;
2147 /* no need to clear IPPCSE as it defaults to 0 */
2149 ew32(RXCSUM, rxcsum);
2152 * Enable early receives on supported devices, only takes effect when
2153 * packet size is equal or larger than the specified value (in 8 byte
2154 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2156 if ((adapter->flags & FLAG_HAS_ERT) &&
2157 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2158 u32 rxdctl = er32(RXDCTL(0));
2159 ew32(RXDCTL(0), rxdctl | 0x3);
2160 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2162 * With jumbo frames and early-receive enabled, excessive
2163 * C4->C2 latencies result in dropped transactions.
2165 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2166 e1000e_driver_name, 55);
2168 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2170 PM_QOS_DEFAULT_VALUE);
2173 /* Enable Receives */
2178 * e1000_update_mc_addr_list - Update Multicast addresses
2179 * @hw: pointer to the HW structure
2180 * @mc_addr_list: array of multicast addresses to program
2181 * @mc_addr_count: number of multicast addresses to program
2182 * @rar_used_count: the first RAR register free to program
2183 * @rar_count: total number of supported Receive Address Registers
2185 * Updates the Receive Address Registers and Multicast Table Array.
2186 * The caller must have a packed mc_addr_list of multicast addresses.
2187 * The parameter rar_count will usually be hw->mac.rar_entry_count
2188 * unless there are workarounds that change this. Currently no func pointer
2189 * exists and all implementations are handled in the generic version of this
2192 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2193 u32 mc_addr_count, u32 rar_used_count,
2196 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2197 rar_used_count, rar_count);
2201 * e1000_set_multi - Multicast and Promiscuous mode set
2202 * @netdev: network interface device structure
2204 * The set_multi entry point is called whenever the multicast address
2205 * list or the network interface flags are updated. This routine is
2206 * responsible for configuring the hardware for proper multicast,
2207 * promiscuous mode, and all-multi behavior.
2209 static void e1000_set_multi(struct net_device *netdev)
2211 struct e1000_adapter *adapter = netdev_priv(netdev);
2212 struct e1000_hw *hw = &adapter->hw;
2213 struct e1000_mac_info *mac = &hw->mac;
2214 struct dev_mc_list *mc_ptr;
2219 /* Check for Promiscuous and All Multicast modes */
2223 if (netdev->flags & IFF_PROMISC) {
2224 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2225 rctl &= ~E1000_RCTL_VFE;
2227 if (netdev->flags & IFF_ALLMULTI) {
2228 rctl |= E1000_RCTL_MPE;
2229 rctl &= ~E1000_RCTL_UPE;
2231 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2233 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2234 rctl |= E1000_RCTL_VFE;
2239 if (netdev->mc_count) {
2240 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2244 /* prepare a packed array of only addresses. */
2245 mc_ptr = netdev->mc_list;
2247 for (i = 0; i < netdev->mc_count; i++) {
2250 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2252 mc_ptr = mc_ptr->next;
2255 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2256 mac->rar_entry_count);
2260 * if we're called from probe, we might not have
2261 * anything to do here, so clear out the list
2263 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2268 * e1000_configure - configure the hardware for Rx and Tx
2269 * @adapter: private board structure
2271 static void e1000_configure(struct e1000_adapter *adapter)
2273 e1000_set_multi(adapter->netdev);
2275 e1000_restore_vlan(adapter);
2276 e1000_init_manageability(adapter);
2278 e1000_configure_tx(adapter);
2279 e1000_setup_rctl(adapter);
2280 e1000_configure_rx(adapter);
2281 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2285 * e1000e_power_up_phy - restore link in case the phy was powered down
2286 * @adapter: address of board private structure
2288 * The phy may be powered down to save power and turn off link when the
2289 * driver is unloaded and wake on lan is not enabled (among others)
2290 * *** this routine MUST be followed by a call to e1000e_reset ***
2292 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2296 /* Just clear the power down bit to wake the phy back up */
2297 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2299 * According to the manual, the phy will retain its
2300 * settings across a power-down/up cycle
2302 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2303 mii_reg &= ~MII_CR_POWER_DOWN;
2304 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2307 adapter->hw.mac.ops.setup_link(&adapter->hw);
2311 * e1000_power_down_phy - Power down the PHY
2313 * Power down the PHY so no link is implied when interface is down
2314 * The PHY cannot be powered down is management or WoL is active
2316 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2318 struct e1000_hw *hw = &adapter->hw;
2321 /* WoL is enabled */
2325 /* non-copper PHY? */
2326 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2329 /* reset is blocked because of a SoL/IDER session */
2330 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2333 /* manageability (AMT) is enabled */
2334 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2337 /* power down the PHY */
2338 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2339 mii_reg |= MII_CR_POWER_DOWN;
2340 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2345 * e1000e_reset - bring the hardware into a known good state
2347 * This function boots the hardware and enables some settings that
2348 * require a configuration cycle of the hardware - those cannot be
2349 * set/changed during runtime. After reset the device needs to be
2350 * properly configured for Rx, Tx etc.
2352 void e1000e_reset(struct e1000_adapter *adapter)
2354 struct e1000_mac_info *mac = &adapter->hw.mac;
2355 struct e1000_fc_info *fc = &adapter->hw.fc;
2356 struct e1000_hw *hw = &adapter->hw;
2357 u32 tx_space, min_tx_space, min_rx_space;
2358 u32 pba = adapter->pba;
2361 /* reset Packet Buffer Allocation to default */
2364 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2366 * To maintain wire speed transmits, the Tx FIFO should be
2367 * large enough to accommodate two full transmit packets,
2368 * rounded up to the next 1KB and expressed in KB. Likewise,
2369 * the Rx FIFO should be large enough to accommodate at least
2370 * one full receive packet and is similarly rounded up and
2374 /* upper 16 bits has Tx packet buffer allocation size in KB */
2375 tx_space = pba >> 16;
2376 /* lower 16 bits has Rx packet buffer allocation size in KB */
2379 * the Tx fifo also stores 16 bytes of information about the tx
2380 * but don't include ethernet FCS because hardware appends it
2382 min_tx_space = (adapter->max_frame_size +
2383 sizeof(struct e1000_tx_desc) -
2385 min_tx_space = ALIGN(min_tx_space, 1024);
2386 min_tx_space >>= 10;
2387 /* software strips receive CRC, so leave room for it */
2388 min_rx_space = adapter->max_frame_size;
2389 min_rx_space = ALIGN(min_rx_space, 1024);
2390 min_rx_space >>= 10;
2393 * If current Tx allocation is less than the min Tx FIFO size,
2394 * and the min Tx FIFO size is less than the current Rx FIFO
2395 * allocation, take space away from current Rx allocation
2397 if ((tx_space < min_tx_space) &&
2398 ((min_tx_space - tx_space) < pba)) {
2399 pba -= min_tx_space - tx_space;
2402 * if short on Rx space, Rx wins and must trump tx
2403 * adjustment or use Early Receive if available
2405 if ((pba < min_rx_space) &&
2406 (!(adapter->flags & FLAG_HAS_ERT)))
2407 /* ERT enabled in e1000_configure_rx */
2416 * flow control settings
2418 * The high water mark must be low enough to fit one full frame
2419 * (or the size used for early receive) above it in the Rx FIFO.
2420 * Set it to the lower of:
2421 * - 90% of the Rx FIFO size, and
2422 * - the full Rx FIFO size minus the early receive size (for parts
2423 * with ERT support assuming ERT set to E1000_ERT_2048), or
2424 * - the full Rx FIFO size minus one full frame
2426 if (adapter->flags & FLAG_HAS_ERT)
2427 hwm = min(((pba << 10) * 9 / 10),
2428 ((pba << 10) - (E1000_ERT_2048 << 3)));
2430 hwm = min(((pba << 10) * 9 / 10),
2431 ((pba << 10) - adapter->max_frame_size));
2433 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2434 fc->low_water = fc->high_water - 8;
2436 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2437 fc->pause_time = 0xFFFF;
2439 fc->pause_time = E1000_FC_PAUSE_TIME;
2441 fc->type = fc->original_type;
2443 /* Allow time for pending master requests to run */
2444 mac->ops.reset_hw(hw);
2447 * For parts with AMT enabled, let the firmware know
2448 * that the network interface is in control
2450 if (adapter->flags & FLAG_HAS_AMT)
2451 e1000_get_hw_control(adapter);
2455 if (mac->ops.init_hw(hw))
2456 e_err("Hardware Error\n");
2458 e1000_update_mng_vlan(adapter);
2460 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2461 ew32(VET, ETH_P_8021Q);
2463 e1000e_reset_adaptive(hw);
2464 e1000_get_phy_info(hw);
2466 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2469 * speed up time to link by disabling smart power down, ignore
2470 * the return value of this function because there is nothing
2471 * different we would do if it failed
2473 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2474 phy_data &= ~IGP02E1000_PM_SPD;
2475 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2479 int e1000e_up(struct e1000_adapter *adapter)
2481 struct e1000_hw *hw = &adapter->hw;
2483 /* hardware has been reset, we need to reload some things */
2484 e1000_configure(adapter);
2486 clear_bit(__E1000_DOWN, &adapter->state);
2488 napi_enable(&adapter->napi);
2489 e1000_irq_enable(adapter);
2491 /* fire a link change interrupt to start the watchdog */
2492 ew32(ICS, E1000_ICS_LSC);
2496 void e1000e_down(struct e1000_adapter *adapter)
2498 struct net_device *netdev = adapter->netdev;
2499 struct e1000_hw *hw = &adapter->hw;
2503 * signal that we're down so the interrupt handler does not
2504 * reschedule our watchdog timer
2506 set_bit(__E1000_DOWN, &adapter->state);
2508 /* disable receives in the hardware */
2510 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2511 /* flush and sleep below */
2513 netif_tx_stop_all_queues(netdev);
2515 /* disable transmits in the hardware */
2517 tctl &= ~E1000_TCTL_EN;
2519 /* flush both disables and wait for them to finish */
2523 napi_disable(&adapter->napi);
2524 e1000_irq_disable(adapter);
2526 del_timer_sync(&adapter->watchdog_timer);
2527 del_timer_sync(&adapter->phy_info_timer);
2529 netdev->tx_queue_len = adapter->tx_queue_len;
2530 netif_carrier_off(netdev);
2531 adapter->link_speed = 0;
2532 adapter->link_duplex = 0;
2534 if (!pci_channel_offline(adapter->pdev))
2535 e1000e_reset(adapter);
2536 e1000_clean_tx_ring(adapter);
2537 e1000_clean_rx_ring(adapter);
2540 * TODO: for power management, we could drop the link and
2541 * pci_disable_device here.
2545 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2548 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2550 e1000e_down(adapter);
2552 clear_bit(__E1000_RESETTING, &adapter->state);
2556 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2557 * @adapter: board private structure to initialize
2559 * e1000_sw_init initializes the Adapter private data structure.
2560 * Fields are initialized based on PCI device information and
2561 * OS network device settings (MTU size).
2563 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2565 struct net_device *netdev = adapter->netdev;
2567 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2568 adapter->rx_ps_bsize0 = 128;
2569 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2570 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2572 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2573 if (!adapter->tx_ring)
2576 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2577 if (!adapter->rx_ring)
2580 spin_lock_init(&adapter->tx_queue_lock);
2582 /* Explicitly disable IRQ since the NIC can be in any state. */
2583 e1000_irq_disable(adapter);
2585 spin_lock_init(&adapter->stats_lock);
2587 set_bit(__E1000_DOWN, &adapter->state);
2591 e_err("Unable to allocate memory for queues\n");
2592 kfree(adapter->rx_ring);
2593 kfree(adapter->tx_ring);
2598 * e1000_open - Called when a network interface is made active
2599 * @netdev: network interface device structure
2601 * Returns 0 on success, negative value on failure
2603 * The open entry point is called when a network interface is made
2604 * active by the system (IFF_UP). At this point all resources needed
2605 * for transmit and receive operations are allocated, the interrupt
2606 * handler is registered with the OS, the watchdog timer is started,
2607 * and the stack is notified that the interface is ready.
2609 static int e1000_open(struct net_device *netdev)
2611 struct e1000_adapter *adapter = netdev_priv(netdev);
2612 struct e1000_hw *hw = &adapter->hw;
2615 /* disallow open during test */
2616 if (test_bit(__E1000_TESTING, &adapter->state))
2619 /* allocate transmit descriptors */
2620 err = e1000e_setup_tx_resources(adapter);
2624 /* allocate receive descriptors */
2625 err = e1000e_setup_rx_resources(adapter);
2629 e1000e_power_up_phy(adapter);
2631 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2632 if ((adapter->hw.mng_cookie.status &
2633 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2634 e1000_update_mng_vlan(adapter);
2637 * If AMT is enabled, let the firmware know that the network
2638 * interface is now open
2640 if (adapter->flags & FLAG_HAS_AMT)
2641 e1000_get_hw_control(adapter);
2644 * before we allocate an interrupt, we must be ready to handle it.
2645 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2646 * as soon as we call pci_request_irq, so we have to setup our
2647 * clean_rx handler before we do so.
2649 e1000_configure(adapter);
2651 err = e1000_request_irq(adapter);
2655 /* From here on the code is the same as e1000e_up() */
2656 clear_bit(__E1000_DOWN, &adapter->state);
2658 napi_enable(&adapter->napi);
2660 e1000_irq_enable(adapter);
2662 netif_tx_start_all_queues(netdev);
2664 /* fire a link status change interrupt to start the watchdog */
2665 ew32(ICS, E1000_ICS_LSC);
2670 e1000_release_hw_control(adapter);
2671 e1000_power_down_phy(adapter);
2672 e1000e_free_rx_resources(adapter);
2674 e1000e_free_tx_resources(adapter);
2676 e1000e_reset(adapter);
2682 * e1000_close - Disables a network interface
2683 * @netdev: network interface device structure
2685 * Returns 0, this is not allowed to fail
2687 * The close entry point is called when an interface is de-activated
2688 * by the OS. The hardware is still under the drivers control, but
2689 * needs to be disabled. A global MAC reset is issued to stop the
2690 * hardware, and all transmit and receive resources are freed.
2692 static int e1000_close(struct net_device *netdev)
2694 struct e1000_adapter *adapter = netdev_priv(netdev);
2696 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2697 e1000e_down(adapter);
2698 e1000_power_down_phy(adapter);
2699 e1000_free_irq(adapter);
2701 e1000e_free_tx_resources(adapter);
2702 e1000e_free_rx_resources(adapter);
2705 * kill manageability vlan ID if supported, but not if a vlan with
2706 * the same ID is registered on the host OS (let 8021q kill it)
2708 if ((adapter->hw.mng_cookie.status &
2709 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2711 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2712 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2715 * If AMT is enabled, let the firmware know that the network
2716 * interface is now closed
2718 if (adapter->flags & FLAG_HAS_AMT)
2719 e1000_release_hw_control(adapter);
2724 * e1000_set_mac - Change the Ethernet Address of the NIC
2725 * @netdev: network interface device structure
2726 * @p: pointer to an address structure
2728 * Returns 0 on success, negative on failure
2730 static int e1000_set_mac(struct net_device *netdev, void *p)
2732 struct e1000_adapter *adapter = netdev_priv(netdev);
2733 struct sockaddr *addr = p;
2735 if (!is_valid_ether_addr(addr->sa_data))
2736 return -EADDRNOTAVAIL;
2738 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2739 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2741 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2743 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2744 /* activate the work around */
2745 e1000e_set_laa_state_82571(&adapter->hw, 1);
2748 * Hold a copy of the LAA in RAR[14] This is done so that
2749 * between the time RAR[0] gets clobbered and the time it
2750 * gets fixed (in e1000_watchdog), the actual LAA is in one
2751 * of the RARs and no incoming packets directed to this port
2752 * are dropped. Eventually the LAA will be in RAR[0] and
2755 e1000e_rar_set(&adapter->hw,
2756 adapter->hw.mac.addr,
2757 adapter->hw.mac.rar_entry_count - 1);
2764 * Need to wait a few seconds after link up to get diagnostic information from
2767 static void e1000_update_phy_info(unsigned long data)
2769 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2770 e1000_get_phy_info(&adapter->hw);
2774 * e1000e_update_stats - Update the board statistics counters
2775 * @adapter: board private structure
2777 void e1000e_update_stats(struct e1000_adapter *adapter)
2779 struct e1000_hw *hw = &adapter->hw;
2780 struct pci_dev *pdev = adapter->pdev;
2781 unsigned long irq_flags;
2784 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2787 * Prevent stats update while adapter is being reset, or if the pci
2788 * connection is down.
2790 if (adapter->link_speed == 0)
2792 if (pci_channel_offline(pdev))
2795 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2798 * these counters are modified from e1000_adjust_tbi_stats,
2799 * called from the interrupt context, so they must only
2800 * be written while holding adapter->stats_lock
2803 adapter->stats.crcerrs += er32(CRCERRS);
2804 adapter->stats.gprc += er32(GPRC);
2805 adapter->stats.gorc += er32(GORCL);
2806 er32(GORCH); /* Clear gorc */
2807 adapter->stats.bprc += er32(BPRC);
2808 adapter->stats.mprc += er32(MPRC);
2809 adapter->stats.roc += er32(ROC);
2811 adapter->stats.mpc += er32(MPC);
2812 adapter->stats.scc += er32(SCC);
2813 adapter->stats.ecol += er32(ECOL);
2814 adapter->stats.mcc += er32(MCC);
2815 adapter->stats.latecol += er32(LATECOL);
2816 adapter->stats.dc += er32(DC);
2817 adapter->stats.xonrxc += er32(XONRXC);
2818 adapter->stats.xontxc += er32(XONTXC);
2819 adapter->stats.xoffrxc += er32(XOFFRXC);
2820 adapter->stats.xofftxc += er32(XOFFTXC);
2821 adapter->stats.gptc += er32(GPTC);
2822 adapter->stats.gotc += er32(GOTCL);
2823 er32(GOTCH); /* Clear gotc */
2824 adapter->stats.rnbc += er32(RNBC);
2825 adapter->stats.ruc += er32(RUC);
2827 adapter->stats.mptc += er32(MPTC);
2828 adapter->stats.bptc += er32(BPTC);
2830 /* used for adaptive IFS */
2832 hw->mac.tx_packet_delta = er32(TPT);
2833 adapter->stats.tpt += hw->mac.tx_packet_delta;
2834 hw->mac.collision_delta = er32(COLC);
2835 adapter->stats.colc += hw->mac.collision_delta;
2837 adapter->stats.algnerrc += er32(ALGNERRC);
2838 adapter->stats.rxerrc += er32(RXERRC);
2839 adapter->stats.tncrs += er32(TNCRS);
2840 adapter->stats.cexterr += er32(CEXTERR);
2841 adapter->stats.tsctc += er32(TSCTC);
2842 adapter->stats.tsctfc += er32(TSCTFC);
2844 /* Fill out the OS statistics structure */
2845 adapter->net_stats.multicast = adapter->stats.mprc;
2846 adapter->net_stats.collisions = adapter->stats.colc;
2851 * RLEC on some newer hardware can be incorrect so build
2852 * our own version based on RUC and ROC
2854 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2855 adapter->stats.crcerrs + adapter->stats.algnerrc +
2856 adapter->stats.ruc + adapter->stats.roc +
2857 adapter->stats.cexterr;
2858 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2860 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2861 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2862 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2865 adapter->net_stats.tx_errors = adapter->stats.ecol +
2866 adapter->stats.latecol;
2867 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2868 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2869 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2871 /* Tx Dropped needs to be maintained elsewhere */
2874 if (hw->phy.media_type == e1000_media_type_copper) {
2875 if ((adapter->link_speed == SPEED_1000) &&
2876 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2877 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2878 adapter->phy_stats.idle_errors += phy_tmp;
2882 /* Management Stats */
2883 adapter->stats.mgptc += er32(MGTPTC);
2884 adapter->stats.mgprc += er32(MGTPRC);
2885 adapter->stats.mgpdc += er32(MGTPDC);
2887 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2891 * e1000_phy_read_status - Update the PHY register status snapshot
2892 * @adapter: board private structure
2894 static void e1000_phy_read_status(struct e1000_adapter *adapter)
2896 struct e1000_hw *hw = &adapter->hw;
2897 struct e1000_phy_regs *phy = &adapter->phy_regs;
2899 unsigned long irq_flags;
2902 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2904 if ((er32(STATUS) & E1000_STATUS_LU) &&
2905 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
2906 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
2907 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
2908 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
2909 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
2910 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
2911 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
2912 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
2913 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
2915 e_warn("Error reading PHY register\n");
2918 * Do not read PHY registers if link is not up
2919 * Set values to typical power-on defaults
2921 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
2922 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
2923 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
2925 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
2926 ADVERTISE_ALL | ADVERTISE_CSMA);
2928 phy->expansion = EXPANSION_ENABLENPAGE;
2929 phy->ctrl1000 = ADVERTISE_1000FULL;
2931 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
2934 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2937 static void e1000_print_link_info(struct e1000_adapter *adapter)
2939 struct e1000_hw *hw = &adapter->hw;
2940 u32 ctrl = er32(CTRL);
2942 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
2943 adapter->link_speed,
2944 (adapter->link_duplex == FULL_DUPLEX) ?
2945 "Full Duplex" : "Half Duplex",
2946 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2948 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2949 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2952 static bool e1000_has_link(struct e1000_adapter *adapter)
2954 struct e1000_hw *hw = &adapter->hw;
2955 bool link_active = 0;
2959 * get_link_status is set on LSC (link status) interrupt or
2960 * Rx sequence error interrupt. get_link_status will stay
2961 * false until the check_for_link establishes link
2962 * for copper adapters ONLY
2964 switch (hw->phy.media_type) {
2965 case e1000_media_type_copper:
2966 if (hw->mac.get_link_status) {
2967 ret_val = hw->mac.ops.check_for_link(hw);
2968 link_active = !hw->mac.get_link_status;
2973 case e1000_media_type_fiber:
2974 ret_val = hw->mac.ops.check_for_link(hw);
2975 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2977 case e1000_media_type_internal_serdes:
2978 ret_val = hw->mac.ops.check_for_link(hw);
2979 link_active = adapter->hw.mac.serdes_has_link;
2982 case e1000_media_type_unknown:
2986 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
2987 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2988 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2989 e_info("Gigabit has been disabled, downgrading speed\n");
2995 static void e1000e_enable_receives(struct e1000_adapter *adapter)
2997 /* make sure the receive unit is started */
2998 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
2999 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3000 struct e1000_hw *hw = &adapter->hw;
3001 u32 rctl = er32(RCTL);
3002 ew32(RCTL, rctl | E1000_RCTL_EN);
3003 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3008 * e1000_watchdog - Timer Call-back
3009 * @data: pointer to adapter cast into an unsigned long
3011 static void e1000_watchdog(unsigned long data)
3013 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3015 /* Do the rest outside of interrupt context */
3016 schedule_work(&adapter->watchdog_task);
3018 /* TODO: make this use queue_delayed_work() */
3021 static void e1000_watchdog_task(struct work_struct *work)
3023 struct e1000_adapter *adapter = container_of(work,
3024 struct e1000_adapter, watchdog_task);
3025 struct net_device *netdev = adapter->netdev;
3026 struct e1000_mac_info *mac = &adapter->hw.mac;
3027 struct e1000_ring *tx_ring = adapter->tx_ring;
3028 struct e1000_hw *hw = &adapter->hw;
3032 link = e1000_has_link(adapter);
3033 if ((netif_carrier_ok(netdev)) && link) {
3034 e1000e_enable_receives(adapter);
3038 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3039 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3040 e1000_update_mng_vlan(adapter);
3043 if (!netif_carrier_ok(netdev)) {
3045 /* update snapshot of PHY registers on LSC */
3046 e1000_phy_read_status(adapter);
3047 mac->ops.get_link_up_info(&adapter->hw,
3048 &adapter->link_speed,
3049 &adapter->link_duplex);
3050 e1000_print_link_info(adapter);
3052 * tweak tx_queue_len according to speed/duplex
3053 * and adjust the timeout factor
3055 netdev->tx_queue_len = adapter->tx_queue_len;
3056 adapter->tx_timeout_factor = 1;
3057 switch (adapter->link_speed) {
3060 netdev->tx_queue_len = 10;
3061 adapter->tx_timeout_factor = 16;
3065 netdev->tx_queue_len = 100;
3066 /* maybe add some timeout factor ? */
3071 * workaround: re-program speed mode bit after
3074 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3077 tarc0 = er32(TARC(0));
3078 tarc0 &= ~SPEED_MODE_BIT;
3079 ew32(TARC(0), tarc0);
3083 * disable TSO for pcie and 10/100 speeds, to avoid
3084 * some hardware issues
3086 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3087 switch (adapter->link_speed) {
3090 e_info("10/100 speed: disabling TSO\n");
3091 netdev->features &= ~NETIF_F_TSO;
3092 netdev->features &= ~NETIF_F_TSO6;
3095 netdev->features |= NETIF_F_TSO;
3096 netdev->features |= NETIF_F_TSO6;
3105 * enable transmits in the hardware, need to do this
3106 * after setting TARC(0)
3109 tctl |= E1000_TCTL_EN;
3112 netif_carrier_on(netdev);
3113 netif_tx_wake_all_queues(netdev);
3115 if (!test_bit(__E1000_DOWN, &adapter->state))
3116 mod_timer(&adapter->phy_info_timer,
3117 round_jiffies(jiffies + 2 * HZ));
3120 if (netif_carrier_ok(netdev)) {
3121 adapter->link_speed = 0;
3122 adapter->link_duplex = 0;
3123 e_info("Link is Down\n");
3124 netif_carrier_off(netdev);
3125 netif_tx_stop_all_queues(netdev);
3126 if (!test_bit(__E1000_DOWN, &adapter->state))
3127 mod_timer(&adapter->phy_info_timer,
3128 round_jiffies(jiffies + 2 * HZ));
3130 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3131 schedule_work(&adapter->reset_task);
3136 e1000e_update_stats(adapter);
3138 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3139 adapter->tpt_old = adapter->stats.tpt;
3140 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3141 adapter->colc_old = adapter->stats.colc;
3143 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3144 adapter->gorc_old = adapter->stats.gorc;
3145 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3146 adapter->gotc_old = adapter->stats.gotc;
3148 e1000e_update_adaptive(&adapter->hw);
3150 if (!netif_carrier_ok(netdev)) {
3151 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3155 * We've lost link, so the controller stops DMA,
3156 * but we've got queued Tx work that's never going
3157 * to get done, so reset controller to flush Tx.
3158 * (Do the reset outside of interrupt context).
3160 adapter->tx_timeout_count++;
3161 schedule_work(&adapter->reset_task);
3165 /* Cause software interrupt to ensure Rx ring is cleaned */
3166 ew32(ICS, E1000_ICS_RXDMT0);
3168 /* Force detection of hung controller every watchdog period */
3169 adapter->detect_tx_hung = 1;
3172 * With 82571 controllers, LAA may be overwritten due to controller
3173 * reset from the other port. Set the appropriate LAA in RAR[0]
3175 if (e1000e_get_laa_state_82571(hw))
3176 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3178 /* Reset the timer */
3179 if (!test_bit(__E1000_DOWN, &adapter->state))
3180 mod_timer(&adapter->watchdog_timer,
3181 round_jiffies(jiffies + 2 * HZ));
3184 #define E1000_TX_FLAGS_CSUM 0x00000001
3185 #define E1000_TX_FLAGS_VLAN 0x00000002
3186 #define E1000_TX_FLAGS_TSO 0x00000004
3187 #define E1000_TX_FLAGS_IPV4 0x00000008
3188 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3189 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3191 static int e1000_tso(struct e1000_adapter *adapter,
3192 struct sk_buff *skb)
3194 struct e1000_ring *tx_ring = adapter->tx_ring;
3195 struct e1000_context_desc *context_desc;
3196 struct e1000_buffer *buffer_info;
3199 u16 ipcse = 0, tucse, mss;
3200 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3203 if (skb_is_gso(skb)) {
3204 if (skb_header_cloned(skb)) {
3205 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3210 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3211 mss = skb_shinfo(skb)->gso_size;
3212 if (skb->protocol == htons(ETH_P_IP)) {
3213 struct iphdr *iph = ip_hdr(skb);
3216 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3220 cmd_length = E1000_TXD_CMD_IP;
3221 ipcse = skb_transport_offset(skb) - 1;
3222 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3223 ipv6_hdr(skb)->payload_len = 0;
3224 tcp_hdr(skb)->check =
3225 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3226 &ipv6_hdr(skb)->daddr,
3230 ipcss = skb_network_offset(skb);
3231 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3232 tucss = skb_transport_offset(skb);
3233 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3236 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3237 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3239 i = tx_ring->next_to_use;
3240 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3241 buffer_info = &tx_ring->buffer_info[i];
3243 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3244 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3245 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3246 context_desc->upper_setup.tcp_fields.tucss = tucss;
3247 context_desc->upper_setup.tcp_fields.tucso = tucso;
3248 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3249 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3250 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3251 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3253 buffer_info->time_stamp = jiffies;
3254 buffer_info->next_to_watch = i;
3257 if (i == tx_ring->count)
3259 tx_ring->next_to_use = i;
3267 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3269 struct e1000_ring *tx_ring = adapter->tx_ring;
3270 struct e1000_context_desc *context_desc;
3271 struct e1000_buffer *buffer_info;
3275 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3276 css = skb_transport_offset(skb);
3278 i = tx_ring->next_to_use;
3279 buffer_info = &tx_ring->buffer_info[i];
3280 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3282 context_desc->lower_setup.ip_config = 0;
3283 context_desc->upper_setup.tcp_fields.tucss = css;
3284 context_desc->upper_setup.tcp_fields.tucso =
3285 css + skb->csum_offset;
3286 context_desc->upper_setup.tcp_fields.tucse = 0;
3287 context_desc->tcp_seg_setup.data = 0;
3288 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3290 buffer_info->time_stamp = jiffies;
3291 buffer_info->next_to_watch = i;
3294 if (i == tx_ring->count)
3296 tx_ring->next_to_use = i;
3304 #define E1000_MAX_PER_TXD 8192
3305 #define E1000_MAX_TXD_PWR 12
3307 static int e1000_tx_map(struct e1000_adapter *adapter,
3308 struct sk_buff *skb, unsigned int first,
3309 unsigned int max_per_txd, unsigned int nr_frags,
3312 struct e1000_ring *tx_ring = adapter->tx_ring;
3313 struct e1000_buffer *buffer_info;
3314 unsigned int len = skb->len - skb->data_len;
3315 unsigned int offset = 0, size, count = 0, i;
3318 i = tx_ring->next_to_use;
3321 buffer_info = &tx_ring->buffer_info[i];
3322 size = min(len, max_per_txd);
3324 /* Workaround for premature desc write-backs
3325 * in TSO mode. Append 4-byte sentinel desc */
3326 if (mss && !nr_frags && size == len && size > 8)
3329 buffer_info->length = size;
3330 /* set time_stamp *before* dma to help avoid a possible race */
3331 buffer_info->time_stamp = jiffies;
3333 pci_map_single(adapter->pdev,
3337 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3338 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3339 adapter->tx_dma_failed++;
3342 buffer_info->next_to_watch = i;
3348 if (i == tx_ring->count)
3352 for (f = 0; f < nr_frags; f++) {
3353 struct skb_frag_struct *frag;
3355 frag = &skb_shinfo(skb)->frags[f];
3357 offset = frag->page_offset;
3360 buffer_info = &tx_ring->buffer_info[i];
3361 size = min(len, max_per_txd);
3362 /* Workaround for premature desc write-backs
3363 * in TSO mode. Append 4-byte sentinel desc */
3364 if (mss && f == (nr_frags-1) && size == len && size > 8)
3367 buffer_info->length = size;
3368 buffer_info->time_stamp = jiffies;
3370 pci_map_page(adapter->pdev,
3375 if (pci_dma_mapping_error(adapter->pdev,
3376 buffer_info->dma)) {
3377 dev_err(&adapter->pdev->dev,
3378 "TX DMA page map failed\n");
3379 adapter->tx_dma_failed++;
3383 buffer_info->next_to_watch = i;
3390 if (i == tx_ring->count)
3396 i = tx_ring->count - 1;
3400 tx_ring->buffer_info[i].skb = skb;
3401 tx_ring->buffer_info[first].next_to_watch = i;
3406 static void e1000_tx_queue(struct e1000_adapter *adapter,
3407 int tx_flags, int count)
3409 struct e1000_ring *tx_ring = adapter->tx_ring;
3410 struct e1000_tx_desc *tx_desc = NULL;
3411 struct e1000_buffer *buffer_info;
3412 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3415 if (tx_flags & E1000_TX_FLAGS_TSO) {
3416 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3418 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3420 if (tx_flags & E1000_TX_FLAGS_IPV4)
3421 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3424 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3425 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3426 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3429 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3430 txd_lower |= E1000_TXD_CMD_VLE;
3431 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3434 i = tx_ring->next_to_use;
3437 buffer_info = &tx_ring->buffer_info[i];
3438 tx_desc = E1000_TX_DESC(*tx_ring, i);
3439 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3440 tx_desc->lower.data =
3441 cpu_to_le32(txd_lower | buffer_info->length);
3442 tx_desc->upper.data = cpu_to_le32(txd_upper);
3445 if (i == tx_ring->count)
3449 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3452 * Force memory writes to complete before letting h/w
3453 * know there are new descriptors to fetch. (Only
3454 * applicable for weak-ordered memory model archs,
3459 tx_ring->next_to_use = i;
3460 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3462 * we need this if more than one processor can write to our tail
3463 * at a time, it synchronizes IO on IA64/Altix systems
3468 #define MINIMUM_DHCP_PACKET_SIZE 282
3469 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3470 struct sk_buff *skb)
3472 struct e1000_hw *hw = &adapter->hw;
3475 if (vlan_tx_tag_present(skb)) {
3476 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3477 && (adapter->hw.mng_cookie.status &
3478 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3482 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3485 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3489 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3492 if (ip->protocol != IPPROTO_UDP)
3495 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3496 if (ntohs(udp->dest) != 67)
3499 offset = (u8 *)udp + 8 - skb->data;
3500 length = skb->len - offset;
3501 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3507 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3509 struct e1000_adapter *adapter = netdev_priv(netdev);
3511 netif_stop_queue(netdev);
3513 * Herbert's original patch had:
3514 * smp_mb__after_netif_stop_queue();
3515 * but since that doesn't exist yet, just open code it.
3520 * We need to check again in a case another CPU has just
3521 * made room available.
3523 if (e1000_desc_unused(adapter->tx_ring) < size)
3527 netif_start_queue(netdev);
3528 ++adapter->restart_queue;
3532 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3534 struct e1000_adapter *adapter = netdev_priv(netdev);
3536 if (e1000_desc_unused(adapter->tx_ring) >= size)
3538 return __e1000_maybe_stop_tx(netdev, size);
3541 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3542 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3544 struct e1000_adapter *adapter = netdev_priv(netdev);
3545 struct e1000_ring *tx_ring = adapter->tx_ring;
3547 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3548 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3549 unsigned int tx_flags = 0;
3550 unsigned int len = skb->len - skb->data_len;
3551 unsigned long irq_flags;
3552 unsigned int nr_frags;
3558 if (test_bit(__E1000_DOWN, &adapter->state)) {
3559 dev_kfree_skb_any(skb);
3560 return NETDEV_TX_OK;
3563 if (skb->len <= 0) {
3564 dev_kfree_skb_any(skb);
3565 return NETDEV_TX_OK;
3568 mss = skb_shinfo(skb)->gso_size;
3570 * The controller does a simple calculation to
3571 * make sure there is enough room in the FIFO before
3572 * initiating the DMA for each buffer. The calc is:
3573 * 4 = ceil(buffer len/mss). To make sure we don't
3574 * overrun the FIFO, adjust the max buffer len if mss
3579 max_per_txd = min(mss << 2, max_per_txd);
3580 max_txd_pwr = fls(max_per_txd) - 1;
3583 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3584 * points to just header, pull a few bytes of payload from
3585 * frags into skb->data
3587 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3589 * we do this workaround for ES2LAN, but it is un-necessary,
3590 * avoiding it could save a lot of cycles
3592 if (skb->data_len && (hdr_len == len)) {
3593 unsigned int pull_size;
3595 pull_size = min((unsigned int)4, skb->data_len);
3596 if (!__pskb_pull_tail(skb, pull_size)) {
3597 e_err("__pskb_pull_tail failed.\n");
3598 dev_kfree_skb_any(skb);
3599 return NETDEV_TX_OK;
3601 len = skb->len - skb->data_len;
3605 /* reserve a descriptor for the offload context */
3606 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3610 count += TXD_USE_COUNT(len, max_txd_pwr);
3612 nr_frags = skb_shinfo(skb)->nr_frags;
3613 for (f = 0; f < nr_frags; f++)
3614 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3617 if (adapter->hw.mac.tx_pkt_filtering)
3618 e1000_transfer_dhcp_info(adapter, skb);
3620 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3621 /* Collision - tell upper layer to requeue */
3622 return NETDEV_TX_LOCKED;
3625 * need: count + 2 desc gap to keep tail from touching
3626 * head, otherwise try next time
3628 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3629 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3630 return NETDEV_TX_BUSY;
3633 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3634 tx_flags |= E1000_TX_FLAGS_VLAN;
3635 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3638 first = tx_ring->next_to_use;
3640 tso = e1000_tso(adapter, skb);
3642 dev_kfree_skb_any(skb);
3643 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3644 return NETDEV_TX_OK;
3648 tx_flags |= E1000_TX_FLAGS_TSO;
3649 else if (e1000_tx_csum(adapter, skb))
3650 tx_flags |= E1000_TX_FLAGS_CSUM;
3653 * Old method was to assume IPv4 packet by default if TSO was enabled.
3654 * 82571 hardware supports TSO capabilities for IPv6 as well...
3655 * no longer assume, we must.
3657 if (skb->protocol == htons(ETH_P_IP))
3658 tx_flags |= E1000_TX_FLAGS_IPV4;
3660 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3662 /* handle pci_map_single() error in e1000_tx_map */
3663 dev_kfree_skb_any(skb);
3664 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3665 return NETDEV_TX_OK;
3668 e1000_tx_queue(adapter, tx_flags, count);
3670 netdev->trans_start = jiffies;
3672 /* Make sure there is space in the ring for the next send. */
3673 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3675 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3676 return NETDEV_TX_OK;
3680 * e1000_tx_timeout - Respond to a Tx Hang
3681 * @netdev: network interface device structure
3683 static void e1000_tx_timeout(struct net_device *netdev)
3685 struct e1000_adapter *adapter = netdev_priv(netdev);
3687 /* Do the reset outside of interrupt context */
3688 adapter->tx_timeout_count++;
3689 schedule_work(&adapter->reset_task);
3692 static void e1000_reset_task(struct work_struct *work)
3694 struct e1000_adapter *adapter;
3695 adapter = container_of(work, struct e1000_adapter, reset_task);
3697 e1000e_reinit_locked(adapter);
3701 * e1000_get_stats - Get System Network Statistics
3702 * @netdev: network interface device structure
3704 * Returns the address of the device statistics structure.
3705 * The statistics are actually updated from the timer callback.
3707 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3709 struct e1000_adapter *adapter = netdev_priv(netdev);
3711 /* only return the current stats */
3712 return &adapter->net_stats;
3716 * e1000_change_mtu - Change the Maximum Transfer Unit
3717 * @netdev: network interface device structure
3718 * @new_mtu: new value for maximum frame size
3720 * Returns 0 on success, negative on failure
3722 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3724 struct e1000_adapter *adapter = netdev_priv(netdev);
3725 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3727 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3728 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3729 e_err("Invalid MTU setting\n");
3733 /* Jumbo frame size limits */
3734 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3735 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3736 e_err("Jumbo Frames not supported.\n");
3739 if (adapter->hw.phy.type == e1000_phy_ife) {
3740 e_err("Jumbo Frames not supported.\n");
3745 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3746 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3747 e_err("MTU > 9216 not supported.\n");
3751 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3753 /* e1000e_down has a dependency on max_frame_size */
3754 adapter->max_frame_size = max_frame;
3755 if (netif_running(netdev))
3756 e1000e_down(adapter);
3759 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3760 * means we reserve 2 more, this pushes us to allocate from the next
3762 * i.e. RXBUFFER_2048 --> size-4096 slab
3763 * However with the new *_jumbo_rx* routines, jumbo receives will use
3767 if (max_frame <= 256)
3768 adapter->rx_buffer_len = 256;
3769 else if (max_frame <= 512)
3770 adapter->rx_buffer_len = 512;
3771 else if (max_frame <= 1024)
3772 adapter->rx_buffer_len = 1024;
3773 else if (max_frame <= 2048)
3774 adapter->rx_buffer_len = 2048;
3776 adapter->rx_buffer_len = 4096;
3778 /* adjust allocation if LPE protects us, and we aren't using SBP */
3779 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3780 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3781 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3784 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3785 netdev->mtu = new_mtu;
3787 if (netif_running(netdev))
3790 e1000e_reset(adapter);
3792 clear_bit(__E1000_RESETTING, &adapter->state);
3797 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3800 struct e1000_adapter *adapter = netdev_priv(netdev);
3801 struct mii_ioctl_data *data = if_mii(ifr);
3803 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3808 data->phy_id = adapter->hw.phy.addr;
3811 if (!capable(CAP_NET_ADMIN))
3813 switch (data->reg_num & 0x1F) {
3815 data->val_out = adapter->phy_regs.bmcr;
3818 data->val_out = adapter->phy_regs.bmsr;
3821 data->val_out = (adapter->hw.phy.id >> 16);
3824 data->val_out = (adapter->hw.phy.id & 0xFFFF);
3827 data->val_out = adapter->phy_regs.advertise;
3830 data->val_out = adapter->phy_regs.lpa;
3833 data->val_out = adapter->phy_regs.expansion;
3836 data->val_out = adapter->phy_regs.ctrl1000;
3839 data->val_out = adapter->phy_regs.stat1000;
3842 data->val_out = adapter->phy_regs.estatus;
3855 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3861 return e1000_mii_ioctl(netdev, ifr, cmd);
3867 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3869 struct net_device *netdev = pci_get_drvdata(pdev);
3870 struct e1000_adapter *adapter = netdev_priv(netdev);
3871 struct e1000_hw *hw = &adapter->hw;
3872 u32 ctrl, ctrl_ext, rctl, status;
3873 u32 wufc = adapter->wol;
3876 netif_device_detach(netdev);
3878 if (netif_running(netdev)) {
3879 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3880 e1000e_down(adapter);
3881 e1000_free_irq(adapter);
3884 retval = pci_save_state(pdev);
3888 status = er32(STATUS);
3889 if (status & E1000_STATUS_LU)
3890 wufc &= ~E1000_WUFC_LNKC;
3893 e1000_setup_rctl(adapter);
3894 e1000_set_multi(netdev);
3896 /* turn on all-multi mode if wake on multicast is enabled */
3897 if (wufc & E1000_WUFC_MC) {
3899 rctl |= E1000_RCTL_MPE;
3904 /* advertise wake from D3Cold */
3905 #define E1000_CTRL_ADVD3WUC 0x00100000
3906 /* phy power management enable */
3907 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3908 ctrl |= E1000_CTRL_ADVD3WUC |
3909 E1000_CTRL_EN_PHY_PWR_MGMT;
3912 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3913 adapter->hw.phy.media_type ==
3914 e1000_media_type_internal_serdes) {
3915 /* keep the laser running in D3 */
3916 ctrl_ext = er32(CTRL_EXT);
3917 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3918 ew32(CTRL_EXT, ctrl_ext);
3921 if (adapter->flags & FLAG_IS_ICH)
3922 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
3924 /* Allow time for pending master requests to run */
3925 e1000e_disable_pcie_master(&adapter->hw);
3927 ew32(WUC, E1000_WUC_PME_EN);
3929 pci_enable_wake(pdev, PCI_D3hot, 1);
3930 pci_enable_wake(pdev, PCI_D3cold, 1);
3934 pci_enable_wake(pdev, PCI_D3hot, 0);
3935 pci_enable_wake(pdev, PCI_D3cold, 0);
3938 /* make sure adapter isn't asleep if manageability is enabled */
3939 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3940 pci_enable_wake(pdev, PCI_D3hot, 1);
3941 pci_enable_wake(pdev, PCI_D3cold, 1);
3944 if (adapter->hw.phy.type == e1000_phy_igp_3)
3945 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3948 * Release control of h/w to f/w. If f/w is AMT enabled, this
3949 * would have already happened in close and is redundant.
3951 e1000_release_hw_control(adapter);
3953 pci_disable_device(pdev);
3955 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3960 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3966 * 82573 workaround - disable L1 ASPM on mobile chipsets
3968 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3969 * resulting in lost data or garbage information on the pci-e link
3970 * level. This could result in (false) bad EEPROM checksum errors,
3971 * long ping times (up to 2s) or even a system freeze/hang.
3973 * Unfortunately this feature saves about 1W power consumption when
3976 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3977 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3979 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3981 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3986 static int e1000_resume(struct pci_dev *pdev)
3988 struct net_device *netdev = pci_get_drvdata(pdev);
3989 struct e1000_adapter *adapter = netdev_priv(netdev);
3990 struct e1000_hw *hw = &adapter->hw;
3993 pci_set_power_state(pdev, PCI_D0);
3994 pci_restore_state(pdev);
3995 e1000e_disable_l1aspm(pdev);
3997 err = pci_enable_device_mem(pdev);
4000 "Cannot enable PCI device from suspend\n");
4004 pci_set_master(pdev);
4006 pci_enable_wake(pdev, PCI_D3hot, 0);
4007 pci_enable_wake(pdev, PCI_D3cold, 0);
4009 if (netif_running(netdev)) {
4010 err = e1000_request_irq(adapter);
4015 e1000e_power_up_phy(adapter);
4016 e1000e_reset(adapter);
4019 e1000_init_manageability(adapter);
4021 if (netif_running(netdev))
4024 netif_device_attach(netdev);
4027 * If the controller has AMT, do not set DRV_LOAD until the interface
4028 * is up. For all other cases, let the f/w know that the h/w is now
4029 * under the control of the driver.
4031 if (!(adapter->flags & FLAG_HAS_AMT))
4032 e1000_get_hw_control(adapter);
4038 static void e1000_shutdown(struct pci_dev *pdev)
4040 e1000_suspend(pdev, PMSG_SUSPEND);
4043 #ifdef CONFIG_NET_POLL_CONTROLLER
4045 * Polling 'interrupt' - used by things like netconsole to send skbs
4046 * without having to re-enable interrupts. It's not called while
4047 * the interrupt routine is executing.
4049 static void e1000_netpoll(struct net_device *netdev)
4051 struct e1000_adapter *adapter = netdev_priv(netdev);
4053 disable_irq(adapter->pdev->irq);
4054 e1000_intr(adapter->pdev->irq, netdev);
4056 enable_irq(adapter->pdev->irq);
4061 * e1000_io_error_detected - called when PCI error is detected
4062 * @pdev: Pointer to PCI device
4063 * @state: The current pci connection state
4065 * This function is called after a PCI bus error affecting
4066 * this device has been detected.
4068 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4069 pci_channel_state_t state)
4071 struct net_device *netdev = pci_get_drvdata(pdev);
4072 struct e1000_adapter *adapter = netdev_priv(netdev);
4074 netif_device_detach(netdev);
4076 if (netif_running(netdev))
4077 e1000e_down(adapter);
4078 pci_disable_device(pdev);
4080 /* Request a slot slot reset. */
4081 return PCI_ERS_RESULT_NEED_RESET;
4085 * e1000_io_slot_reset - called after the pci bus has been reset.
4086 * @pdev: Pointer to PCI device
4088 * Restart the card from scratch, as if from a cold-boot. Implementation
4089 * resembles the first-half of the e1000_resume routine.
4091 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4093 struct net_device *netdev = pci_get_drvdata(pdev);
4094 struct e1000_adapter *adapter = netdev_priv(netdev);
4095 struct e1000_hw *hw = &adapter->hw;
4098 e1000e_disable_l1aspm(pdev);
4099 err = pci_enable_device_mem(pdev);
4102 "Cannot re-enable PCI device after reset.\n");
4103 return PCI_ERS_RESULT_DISCONNECT;
4105 pci_set_master(pdev);
4106 pci_restore_state(pdev);
4108 pci_enable_wake(pdev, PCI_D3hot, 0);
4109 pci_enable_wake(pdev, PCI_D3cold, 0);
4111 e1000e_reset(adapter);
4114 return PCI_ERS_RESULT_RECOVERED;
4118 * e1000_io_resume - called when traffic can start flowing again.
4119 * @pdev: Pointer to PCI device
4121 * This callback is called when the error recovery driver tells us that
4122 * its OK to resume normal operation. Implementation resembles the
4123 * second-half of the e1000_resume routine.
4125 static void e1000_io_resume(struct pci_dev *pdev)
4127 struct net_device *netdev = pci_get_drvdata(pdev);
4128 struct e1000_adapter *adapter = netdev_priv(netdev);
4130 e1000_init_manageability(adapter);
4132 if (netif_running(netdev)) {
4133 if (e1000e_up(adapter)) {
4135 "can't bring device back up after reset\n");
4140 netif_device_attach(netdev);
4143 * If the controller has AMT, do not set DRV_LOAD until the interface
4144 * is up. For all other cases, let the f/w know that the h/w is now
4145 * under the control of the driver.
4147 if (!(adapter->flags & FLAG_HAS_AMT))
4148 e1000_get_hw_control(adapter);
4152 static void e1000_print_device_info(struct e1000_adapter *adapter)
4154 struct e1000_hw *hw = &adapter->hw;
4155 struct net_device *netdev = adapter->netdev;
4158 /* print bus type/speed/width info */
4159 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4161 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4164 netdev->dev_addr[0], netdev->dev_addr[1],
4165 netdev->dev_addr[2], netdev->dev_addr[3],
4166 netdev->dev_addr[4], netdev->dev_addr[5]);
4167 e_info("Intel(R) PRO/%s Network Connection\n",
4168 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4169 e1000e_read_pba_num(hw, &pba_num);
4170 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4171 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4174 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4176 struct e1000_hw *hw = &adapter->hw;
4180 if (hw->mac.type != e1000_82573)
4183 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4184 if (!(le16_to_cpu(buf) & (1 << 0))) {
4185 /* Deep Smart Power Down (DSPD) */
4186 e_warn("Warning: detected DSPD enabled in EEPROM\n");
4189 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4190 if (le16_to_cpu(buf) & (3 << 2)) {
4192 e_warn("Warning: detected ASPM enabled in EEPROM\n");
4197 * e1000_probe - Device Initialization Routine
4198 * @pdev: PCI device information struct
4199 * @ent: entry in e1000_pci_tbl
4201 * Returns 0 on success, negative on failure
4203 * e1000_probe initializes an adapter identified by a pci_dev structure.
4204 * The OS initialization, configuring of the adapter private structure,
4205 * and a hardware reset occur.
4207 static int __devinit e1000_probe(struct pci_dev *pdev,
4208 const struct pci_device_id *ent)
4210 struct net_device *netdev;
4211 struct e1000_adapter *adapter;
4212 struct e1000_hw *hw;
4213 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4214 resource_size_t mmio_start, mmio_len;
4215 resource_size_t flash_start, flash_len;
4217 static int cards_found;
4218 int i, err, pci_using_dac;
4219 u16 eeprom_data = 0;
4220 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4222 e1000e_disable_l1aspm(pdev);
4224 err = pci_enable_device_mem(pdev);
4229 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4231 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4235 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4237 err = pci_set_consistent_dma_mask(pdev,
4240 dev_err(&pdev->dev, "No usable DMA "
4241 "configuration, aborting\n");
4247 err = pci_request_selected_regions(pdev,
4248 pci_select_bars(pdev, IORESOURCE_MEM),
4249 e1000e_driver_name);
4253 pci_set_master(pdev);
4254 pci_save_state(pdev);
4257 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4259 goto err_alloc_etherdev;
4261 SET_NETDEV_DEV(netdev, &pdev->dev);
4263 pci_set_drvdata(pdev, netdev);
4264 adapter = netdev_priv(netdev);
4266 adapter->netdev = netdev;
4267 adapter->pdev = pdev;
4269 adapter->pba = ei->pba;
4270 adapter->flags = ei->flags;
4271 adapter->hw.adapter = adapter;
4272 adapter->hw.mac.type = ei->mac;
4273 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4275 mmio_start = pci_resource_start(pdev, 0);
4276 mmio_len = pci_resource_len(pdev, 0);
4279 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4280 if (!adapter->hw.hw_addr)
4283 if ((adapter->flags & FLAG_HAS_FLASH) &&
4284 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4285 flash_start = pci_resource_start(pdev, 1);
4286 flash_len = pci_resource_len(pdev, 1);
4287 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4288 if (!adapter->hw.flash_address)
4292 /* construct the net_device struct */
4293 netdev->open = &e1000_open;
4294 netdev->stop = &e1000_close;
4295 netdev->hard_start_xmit = &e1000_xmit_frame;
4296 netdev->get_stats = &e1000_get_stats;
4297 netdev->set_multicast_list = &e1000_set_multi;
4298 netdev->set_mac_address = &e1000_set_mac;
4299 netdev->change_mtu = &e1000_change_mtu;
4300 netdev->do_ioctl = &e1000_ioctl;
4301 e1000e_set_ethtool_ops(netdev);
4302 netdev->tx_timeout = &e1000_tx_timeout;
4303 netdev->watchdog_timeo = 5 * HZ;
4304 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4305 netdev->vlan_rx_register = e1000_vlan_rx_register;
4306 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4307 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4308 #ifdef CONFIG_NET_POLL_CONTROLLER
4309 netdev->poll_controller = e1000_netpoll;
4311 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4313 netdev->mem_start = mmio_start;
4314 netdev->mem_end = mmio_start + mmio_len;
4316 adapter->bd_number = cards_found++;
4318 /* setup adapter struct */
4319 err = e1000_sw_init(adapter);
4325 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4326 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4327 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4329 err = ei->get_variants(adapter);
4333 hw->mac.ops.get_bus_info(&adapter->hw);
4335 adapter->hw.phy.autoneg_wait_to_complete = 0;
4337 /* Copper options */
4338 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4339 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4340 adapter->hw.phy.disable_polarity_correction = 0;
4341 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4344 if (e1000_check_reset_block(&adapter->hw))
4345 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4347 netdev->features = NETIF_F_SG |
4349 NETIF_F_HW_VLAN_TX |
4352 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4353 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4355 netdev->features |= NETIF_F_TSO;
4356 netdev->features |= NETIF_F_TSO6;
4358 netdev->vlan_features |= NETIF_F_TSO;
4359 netdev->vlan_features |= NETIF_F_TSO6;
4360 netdev->vlan_features |= NETIF_F_HW_CSUM;
4361 netdev->vlan_features |= NETIF_F_SG;
4364 netdev->features |= NETIF_F_HIGHDMA;
4367 * We should not be using LLTX anymore, but we are still Tx faster with
4370 netdev->features |= NETIF_F_LLTX;
4372 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4373 adapter->flags |= FLAG_MNG_PT_ENABLED;
4376 * before reading the NVM, reset the controller to
4377 * put the device in a known good starting state
4379 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4382 * systems with ASPM and others may see the checksum fail on the first
4383 * attempt. Let's give it a few tries
4386 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4389 e_err("The NVM Checksum Is Not Valid\n");
4395 e1000_eeprom_checks(adapter);
4397 /* copy the MAC address out of the NVM */
4398 if (e1000e_read_mac_addr(&adapter->hw))
4399 e_err("NVM Read Error while reading MAC address\n");
4401 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4402 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4404 if (!is_valid_ether_addr(netdev->perm_addr)) {
4405 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4406 netdev->perm_addr[0], netdev->perm_addr[1],
4407 netdev->perm_addr[2], netdev->perm_addr[3],
4408 netdev->perm_addr[4], netdev->perm_addr[5]);
4413 init_timer(&adapter->watchdog_timer);
4414 adapter->watchdog_timer.function = &e1000_watchdog;
4415 adapter->watchdog_timer.data = (unsigned long) adapter;
4417 init_timer(&adapter->phy_info_timer);
4418 adapter->phy_info_timer.function = &e1000_update_phy_info;
4419 adapter->phy_info_timer.data = (unsigned long) adapter;
4421 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4422 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4424 e1000e_check_options(adapter);
4426 /* Initialize link parameters. User can change them with ethtool */
4427 adapter->hw.mac.autoneg = 1;
4428 adapter->fc_autoneg = 1;
4429 adapter->hw.fc.original_type = e1000_fc_default;
4430 adapter->hw.fc.type = e1000_fc_default;
4431 adapter->hw.phy.autoneg_advertised = 0x2f;
4433 /* ring size defaults */
4434 adapter->rx_ring->count = 256;
4435 adapter->tx_ring->count = 256;
4438 * Initial Wake on LAN setting - If APM wake is enabled in
4439 * the EEPROM, enable the ACPI Magic Packet filter
4441 if (adapter->flags & FLAG_APME_IN_WUC) {
4442 /* APME bit in EEPROM is mapped to WUC.APME */
4443 eeprom_data = er32(WUC);
4444 eeprom_apme_mask = E1000_WUC_APME;
4445 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4446 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4447 (adapter->hw.bus.func == 1))
4448 e1000_read_nvm(&adapter->hw,
4449 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4451 e1000_read_nvm(&adapter->hw,
4452 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4455 /* fetch WoL from EEPROM */
4456 if (eeprom_data & eeprom_apme_mask)
4457 adapter->eeprom_wol |= E1000_WUFC_MAG;
4460 * now that we have the eeprom settings, apply the special cases
4461 * where the eeprom may be wrong or the board simply won't support
4462 * wake on lan on a particular port
4464 if (!(adapter->flags & FLAG_HAS_WOL))
4465 adapter->eeprom_wol = 0;
4467 /* initialize the wol settings based on the eeprom settings */
4468 adapter->wol = adapter->eeprom_wol;
4470 /* reset the hardware with the new settings */
4471 e1000e_reset(adapter);
4474 * If the controller has AMT, do not set DRV_LOAD until the interface
4475 * is up. For all other cases, let the f/w know that the h/w is now
4476 * under the control of the driver.
4478 if (!(adapter->flags & FLAG_HAS_AMT))
4479 e1000_get_hw_control(adapter);
4481 /* tell the stack to leave us alone until e1000_open() is called */
4482 netif_carrier_off(netdev);
4483 netif_tx_stop_all_queues(netdev);
4485 strcpy(netdev->name, "eth%d");
4486 err = register_netdev(netdev);
4490 e1000_print_device_info(adapter);
4495 if (!(adapter->flags & FLAG_HAS_AMT))
4496 e1000_release_hw_control(adapter);
4498 if (!e1000_check_reset_block(&adapter->hw))
4499 e1000_phy_hw_reset(&adapter->hw);
4502 kfree(adapter->tx_ring);
4503 kfree(adapter->rx_ring);
4505 if (adapter->hw.flash_address)
4506 iounmap(adapter->hw.flash_address);
4508 iounmap(adapter->hw.hw_addr);
4510 free_netdev(netdev);
4512 pci_release_selected_regions(pdev,
4513 pci_select_bars(pdev, IORESOURCE_MEM));
4516 pci_disable_device(pdev);
4521 * e1000_remove - Device Removal Routine
4522 * @pdev: PCI device information struct
4524 * e1000_remove is called by the PCI subsystem to alert the driver
4525 * that it should release a PCI device. The could be caused by a
4526 * Hot-Plug event, or because the driver is going to be removed from
4529 static void __devexit e1000_remove(struct pci_dev *pdev)
4531 struct net_device *netdev = pci_get_drvdata(pdev);
4532 struct e1000_adapter *adapter = netdev_priv(netdev);
4535 * flush_scheduled work may reschedule our watchdog task, so
4536 * explicitly disable watchdog tasks from being rescheduled
4538 set_bit(__E1000_DOWN, &adapter->state);
4539 del_timer_sync(&adapter->watchdog_timer);
4540 del_timer_sync(&adapter->phy_info_timer);
4542 flush_scheduled_work();
4545 * Release control of h/w to f/w. If f/w is AMT enabled, this
4546 * would have already happened in close and is redundant.
4548 e1000_release_hw_control(adapter);
4550 unregister_netdev(netdev);
4552 if (!e1000_check_reset_block(&adapter->hw))
4553 e1000_phy_hw_reset(&adapter->hw);
4555 kfree(adapter->tx_ring);
4556 kfree(adapter->rx_ring);
4558 iounmap(adapter->hw.hw_addr);
4559 if (adapter->hw.flash_address)
4560 iounmap(adapter->hw.flash_address);
4561 pci_release_selected_regions(pdev,
4562 pci_select_bars(pdev, IORESOURCE_MEM));
4564 free_netdev(netdev);
4566 pci_disable_device(pdev);
4569 /* PCI Error Recovery (ERS) */
4570 static struct pci_error_handlers e1000_err_handler = {
4571 .error_detected = e1000_io_error_detected,
4572 .slot_reset = e1000_io_slot_reset,
4573 .resume = e1000_io_resume,
4576 static struct pci_device_id e1000_pci_tbl[] = {
4577 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4578 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4579 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4580 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4581 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4582 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4583 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4584 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4585 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4587 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4588 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4589 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4590 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4592 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4593 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4594 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4596 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4597 board_80003es2lan },
4598 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4599 board_80003es2lan },
4600 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4601 board_80003es2lan },
4602 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4603 board_80003es2lan },
4605 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4606 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4607 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4608 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4609 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4610 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4611 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4613 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4614 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4615 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4616 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4617 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4618 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4619 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4620 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4622 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4623 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4624 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
4626 { } /* terminate list */
4628 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4630 /* PCI Device API Driver */
4631 static struct pci_driver e1000_driver = {
4632 .name = e1000e_driver_name,
4633 .id_table = e1000_pci_tbl,
4634 .probe = e1000_probe,
4635 .remove = __devexit_p(e1000_remove),
4637 /* Power Management Hooks */
4638 .suspend = e1000_suspend,
4639 .resume = e1000_resume,
4641 .shutdown = e1000_shutdown,
4642 .err_handler = &e1000_err_handler
4646 * e1000_init_module - Driver Registration Routine
4648 * e1000_init_module is the first routine called when the driver is
4649 * loaded. All it does is register with the PCI subsystem.
4651 static int __init e1000_init_module(void)
4654 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4655 e1000e_driver_name, e1000e_driver_version);
4656 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4657 e1000e_driver_name);
4658 ret = pci_register_driver(&e1000_driver);
4659 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4660 PM_QOS_DEFAULT_VALUE);
4664 module_init(e1000_init_module);
4667 * e1000_exit_module - Driver Exit Cleanup Routine
4669 * e1000_exit_module is called just before the driver is removed
4672 static void __exit e1000_exit_module(void)
4674 pci_unregister_driver(&e1000_driver);
4675 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
4677 module_exit(e1000_exit_module);
4680 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4681 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4682 MODULE_LICENSE("GPL");
4683 MODULE_VERSION(DRV_VERSION);