]> err.no Git - linux-2.6/blob - drivers/net/e1000e/82571.c
e1000e: Disable L1 ASPM power savings for 82573 mobile variants
[linux-2.6] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Fiber)
32  * 82572EI Gigabit Ethernet Controller (Copper)
33  * 82572EI Gigabit Ethernet Controller (Fiber)
34  * 82572EI Gigabit Ethernet Controller
35  * 82573V Gigabit Ethernet Controller (Copper)
36  * 82573E Gigabit Ethernet Controller (Copper)
37  * 82573L Gigabit Ethernet Controller
38  */
39
40 #include <linux/netdevice.h>
41 #include <linux/delay.h>
42 #include <linux/pci.h>
43
44 #include "e1000.h"
45
46 #define ID_LED_RESERVED_F746 0xF746
47 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
48                               (ID_LED_OFF1_ON2  <<  8) | \
49                               (ID_LED_DEF1_DEF2 <<  4) | \
50                               (ID_LED_DEF1_DEF2))
51
52 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
53
54 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
55 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
56 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
57 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
58                                       u16 words, u16 *data);
59 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
60 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
61 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
62 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
63
64 /**
65  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
66  *  @hw: pointer to the HW structure
67  *
68  *  This is a function pointer entry point called by the api module.
69  **/
70 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
71 {
72         struct e1000_phy_info *phy = &hw->phy;
73         s32 ret_val;
74
75         if (hw->media_type != e1000_media_type_copper) {
76                 phy->type = e1000_phy_none;
77                 return 0;
78         }
79
80         phy->addr                        = 1;
81         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82         phy->reset_delay_us              = 100;
83
84         switch (hw->mac.type) {
85         case e1000_82571:
86         case e1000_82572:
87                 phy->type                = e1000_phy_igp_2;
88                 break;
89         case e1000_82573:
90                 phy->type                = e1000_phy_m88;
91                 break;
92         default:
93                 return -E1000_ERR_PHY;
94                 break;
95         }
96
97         /* This can only be done after all function pointers are setup. */
98         ret_val = e1000_get_phy_id_82571(hw);
99
100         /* Verify phy id */
101         switch (hw->mac.type) {
102         case e1000_82571:
103         case e1000_82572:
104                 if (phy->id != IGP01E1000_I_PHY_ID)
105                         return -E1000_ERR_PHY;
106                 break;
107         case e1000_82573:
108                 if (phy->id != M88E1111_I_PHY_ID)
109                         return -E1000_ERR_PHY;
110                 break;
111         default:
112                 return -E1000_ERR_PHY;
113                 break;
114         }
115
116         return 0;
117 }
118
119 /**
120  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
121  *  @hw: pointer to the HW structure
122  *
123  *  This is a function pointer entry point called by the api module.
124  **/
125 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
126 {
127         struct e1000_nvm_info *nvm = &hw->nvm;
128         u32 eecd = er32(EECD);
129         u16 size;
130
131         nvm->opcode_bits = 8;
132         nvm->delay_usec = 1;
133         switch (nvm->override) {
134         case e1000_nvm_override_spi_large:
135                 nvm->page_size = 32;
136                 nvm->address_bits = 16;
137                 break;
138         case e1000_nvm_override_spi_small:
139                 nvm->page_size = 8;
140                 nvm->address_bits = 8;
141                 break;
142         default:
143                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
144                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
145                 break;
146         }
147
148         switch (hw->mac.type) {
149         case e1000_82573:
150                 if (((eecd >> 15) & 0x3) == 0x3) {
151                         nvm->type = e1000_nvm_flash_hw;
152                         nvm->word_size = 2048;
153                         /* Autonomous Flash update bit must be cleared due
154                          * to Flash update issue.
155                          */
156                         eecd &= ~E1000_EECD_AUPDEN;
157                         ew32(EECD, eecd);
158                         break;
159                 }
160                 /* Fall Through */
161         default:
162                 nvm->type       = e1000_nvm_eeprom_spi;
163                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
164                                   E1000_EECD_SIZE_EX_SHIFT);
165                 /* Added to a constant, "size" becomes the left-shift value
166                  * for setting word_size.
167                  */
168                 size += NVM_WORD_SIZE_BASE_SHIFT;
169                 nvm->word_size  = 1 << size;
170                 break;
171         }
172
173         return 0;
174 }
175
176 /**
177  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
178  *  @hw: pointer to the HW structure
179  *
180  *  This is a function pointer entry point called by the api module.
181  **/
182 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
183 {
184         struct e1000_hw *hw = &adapter->hw;
185         struct e1000_mac_info *mac = &hw->mac;
186         struct e1000_mac_operations *func = &mac->ops;
187
188         /* Set media type */
189         switch (adapter->pdev->device) {
190         case E1000_DEV_ID_82571EB_FIBER:
191         case E1000_DEV_ID_82572EI_FIBER:
192         case E1000_DEV_ID_82571EB_QUAD_FIBER:
193                 hw->media_type = e1000_media_type_fiber;
194                 break;
195         case E1000_DEV_ID_82571EB_SERDES:
196         case E1000_DEV_ID_82572EI_SERDES:
197                 hw->media_type = e1000_media_type_internal_serdes;
198                 break;
199         default:
200                 hw->media_type = e1000_media_type_copper;
201                 break;
202         }
203
204         /* Set mta register count */
205         mac->mta_reg_count = 128;
206         /* Set rar entry count */
207         mac->rar_entry_count = E1000_RAR_ENTRIES;
208         /* Set if manageability features are enabled. */
209         mac->arc_subsystem_valid =
210                 (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
211
212         /* check for link */
213         switch (hw->media_type) {
214         case e1000_media_type_copper:
215                 func->setup_physical_interface = e1000_setup_copper_link_82571;
216                 func->check_for_link = e1000e_check_for_copper_link;
217                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
218                 break;
219         case e1000_media_type_fiber:
220                 func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
221                 func->check_for_link = e1000e_check_for_fiber_link;
222                 func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
223                 break;
224         case e1000_media_type_internal_serdes:
225                 func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
226                 func->check_for_link = e1000e_check_for_serdes_link;
227                 func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
228                 break;
229         default:
230                 return -E1000_ERR_CONFIG;
231                 break;
232         }
233
234         return 0;
235 }
236
237 static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
238 {
239         struct e1000_hw *hw = &adapter->hw;
240         static int global_quad_port_a; /* global port a indication */
241         struct pci_dev *pdev = adapter->pdev;
242         u16 eeprom_data = 0;
243         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
244         s32 rc;
245
246         rc = e1000_init_mac_params_82571(adapter);
247         if (rc)
248                 return rc;
249
250         rc = e1000_init_nvm_params_82571(hw);
251         if (rc)
252                 return rc;
253
254         rc = e1000_init_phy_params_82571(hw);
255         if (rc)
256                 return rc;
257
258         /* tag quad port adapters first, it's used below */
259         switch (pdev->device) {
260         case E1000_DEV_ID_82571EB_QUAD_COPPER:
261         case E1000_DEV_ID_82571EB_QUAD_FIBER:
262         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
263                 adapter->flags |= FLAG_IS_QUAD_PORT;
264                 /* mark the first port */
265                 if (global_quad_port_a == 0)
266                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
267                 /* Reset for multiple quad port adapters */
268                 global_quad_port_a++;
269                 if (global_quad_port_a == 4)
270                         global_quad_port_a = 0;
271                 break;
272         default:
273                 break;
274         }
275
276         switch (adapter->hw.mac.type) {
277         case e1000_82571:
278                 /* these dual ports don't have WoL on port B at all */
279                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
280                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
281                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
282                     (is_port_b))
283                         adapter->flags &= ~FLAG_HAS_WOL;
284                 /* quad ports only support WoL on port A */
285                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
286                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
287                         adapter->flags &= ~FLAG_HAS_WOL;
288                 break;
289
290         case e1000_82573:
291                 if (pdev->device == E1000_DEV_ID_82573L) {
292                         e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
293                                        &eeprom_data);
294                         if (eeprom_data & NVM_WORD1A_ASPM_MASK)
295                                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
296                 }
297                 break;
298         default:
299                 break;
300         }
301
302         return 0;
303 }
304
305 /**
306  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
307  *  @hw: pointer to the HW structure
308  *
309  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
310  *  revision in the hardware structure.
311  **/
312 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
313 {
314         struct e1000_phy_info *phy = &hw->phy;
315
316         switch (hw->mac.type) {
317         case e1000_82571:
318         case e1000_82572:
319                 /* The 82571 firmware may still be configuring the PHY.
320                  * In this case, we cannot access the PHY until the
321                  * configuration is done.  So we explicitly set the
322                  * PHY ID. */
323                 phy->id = IGP01E1000_I_PHY_ID;
324                 break;
325         case e1000_82573:
326                 return e1000e_get_phy_id(hw);
327                 break;
328         default:
329                 return -E1000_ERR_PHY;
330                 break;
331         }
332
333         return 0;
334 }
335
336 /**
337  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
338  *  @hw: pointer to the HW structure
339  *
340  *  Acquire the HW semaphore to access the PHY or NVM
341  **/
342 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
343 {
344         u32 swsm;
345         s32 timeout = hw->nvm.word_size + 1;
346         s32 i = 0;
347
348         /* Get the FW semaphore. */
349         for (i = 0; i < timeout; i++) {
350                 swsm = er32(SWSM);
351                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
352
353                 /* Semaphore acquired if bit latched */
354                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
355                         break;
356
357                 udelay(50);
358         }
359
360         if (i == timeout) {
361                 /* Release semaphores */
362                 e1000e_put_hw_semaphore(hw);
363                 hw_dbg(hw, "Driver can't access the NVM\n");
364                 return -E1000_ERR_NVM;
365         }
366
367         return 0;
368 }
369
370 /**
371  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
372  *  @hw: pointer to the HW structure
373  *
374  *  Release hardware semaphore used to access the PHY or NVM
375  **/
376 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
377 {
378         u32 swsm;
379
380         swsm = er32(SWSM);
381
382         swsm &= ~E1000_SWSM_SWESMBI;
383
384         ew32(SWSM, swsm);
385 }
386
387 /**
388  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
389  *  @hw: pointer to the HW structure
390  *
391  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
392  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
393  *  for EEPROM access grant bit.  If the access grant bit is not set, release
394  *  hardware semaphore.
395  **/
396 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
397 {
398         s32 ret_val;
399
400         ret_val = e1000_get_hw_semaphore_82571(hw);
401         if (ret_val)
402                 return ret_val;
403
404         if (hw->mac.type != e1000_82573)
405                 ret_val = e1000e_acquire_nvm(hw);
406
407         if (ret_val)
408                 e1000_put_hw_semaphore_82571(hw);
409
410         return ret_val;
411 }
412
413 /**
414  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
415  *  @hw: pointer to the HW structure
416  *
417  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
418  **/
419 static void e1000_release_nvm_82571(struct e1000_hw *hw)
420 {
421         e1000e_release_nvm(hw);
422         e1000_put_hw_semaphore_82571(hw);
423 }
424
425 /**
426  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
427  *  @hw: pointer to the HW structure
428  *  @offset: offset within the EEPROM to be written to
429  *  @words: number of words to write
430  *  @data: 16 bit word(s) to be written to the EEPROM
431  *
432  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
433  *
434  *  If e1000e_update_nvm_checksum is not called after this function, the
435  *  EEPROM will most likley contain an invalid checksum.
436  **/
437 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
438                                  u16 *data)
439 {
440         s32 ret_val;
441
442         switch (hw->mac.type) {
443         case e1000_82573:
444                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
445                 break;
446         case e1000_82571:
447         case e1000_82572:
448                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
449                 break;
450         default:
451                 ret_val = -E1000_ERR_NVM;
452                 break;
453         }
454
455         return ret_val;
456 }
457
458 /**
459  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
460  *  @hw: pointer to the HW structure
461  *
462  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
463  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
464  *  value to the EEPROM.
465  **/
466 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
467 {
468         u32 eecd;
469         s32 ret_val;
470         u16 i;
471
472         ret_val = e1000e_update_nvm_checksum_generic(hw);
473         if (ret_val)
474                 return ret_val;
475
476         /* If our nvm is an EEPROM, then we're done
477          * otherwise, commit the checksum to the flash NVM. */
478         if (hw->nvm.type != e1000_nvm_flash_hw)
479                 return ret_val;
480
481         /* Check for pending operations. */
482         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
483                 msleep(1);
484                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
485                         break;
486         }
487
488         if (i == E1000_FLASH_UPDATES)
489                 return -E1000_ERR_NVM;
490
491         /* Reset the firmware if using STM opcode. */
492         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
493                 /* The enabling of and the actual reset must be done
494                  * in two write cycles.
495                  */
496                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
497                 e1e_flush();
498                 ew32(HICR, E1000_HICR_FW_RESET);
499         }
500
501         /* Commit the write to flash */
502         eecd = er32(EECD) | E1000_EECD_FLUPD;
503         ew32(EECD, eecd);
504
505         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
506                 msleep(1);
507                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
508                         break;
509         }
510
511         if (i == E1000_FLASH_UPDATES)
512                 return -E1000_ERR_NVM;
513
514         return 0;
515 }
516
517 /**
518  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
519  *  @hw: pointer to the HW structure
520  *
521  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
522  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
523  **/
524 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
525 {
526         if (hw->nvm.type == e1000_nvm_flash_hw)
527                 e1000_fix_nvm_checksum_82571(hw);
528
529         return e1000e_validate_nvm_checksum_generic(hw);
530 }
531
532 /**
533  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
534  *  @hw: pointer to the HW structure
535  *  @offset: offset within the EEPROM to be written to
536  *  @words: number of words to write
537  *  @data: 16 bit word(s) to be written to the EEPROM
538  *
539  *  After checking for invalid values, poll the EEPROM to ensure the previous
540  *  command has completed before trying to write the next word.  After write
541  *  poll for completion.
542  *
543  *  If e1000e_update_nvm_checksum is not called after this function, the
544  *  EEPROM will most likley contain an invalid checksum.
545  **/
546 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
547                                       u16 words, u16 *data)
548 {
549         struct e1000_nvm_info *nvm = &hw->nvm;
550         u32 i;
551         u32 eewr = 0;
552         s32 ret_val = 0;
553
554         /* A check for invalid values:  offset too large, too many words,
555          * and not enough words. */
556         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
557             (words == 0)) {
558                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
559                 return -E1000_ERR_NVM;
560         }
561
562         for (i = 0; i < words; i++) {
563                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
564                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
565                        E1000_NVM_RW_REG_START;
566
567                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
568                 if (ret_val)
569                         break;
570
571                 ew32(EEWR, eewr);
572
573                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
574                 if (ret_val)
575                         break;
576         }
577
578         return ret_val;
579 }
580
581 /**
582  *  e1000_get_cfg_done_82571 - Poll for configuration done
583  *  @hw: pointer to the HW structure
584  *
585  *  Reads the management control register for the config done bit to be set.
586  **/
587 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
588 {
589         s32 timeout = PHY_CFG_TIMEOUT;
590
591         while (timeout) {
592                 if (er32(EEMNGCTL) &
593                     E1000_NVM_CFG_DONE_PORT_0)
594                         break;
595                 msleep(1);
596                 timeout--;
597         }
598         if (!timeout) {
599                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
600                 return -E1000_ERR_RESET;
601         }
602
603         return 0;
604 }
605
606 /**
607  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
608  *  @hw: pointer to the HW structure
609  *  @active: TRUE to enable LPLU, FALSE to disable
610  *
611  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
612  *  this function also disables smart speed and vice versa.  LPLU will not be
613  *  activated unless the device autonegotiation advertisement meets standards
614  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
615  *  pointer entry point only called by PHY setup routines.
616  **/
617 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
618 {
619         struct e1000_phy_info *phy = &hw->phy;
620         s32 ret_val;
621         u16 data;
622
623         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
624         if (ret_val)
625                 return ret_val;
626
627         if (active) {
628                 data |= IGP02E1000_PM_D0_LPLU;
629                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
630                 if (ret_val)
631                         return ret_val;
632
633                 /* When LPLU is enabled, we should disable SmartSpeed */
634                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
635                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
636                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
637                 if (ret_val)
638                         return ret_val;
639         } else {
640                 data &= ~IGP02E1000_PM_D0_LPLU;
641                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
642                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
643                  * during Dx states where the power conservation is most
644                  * important.  During driver activity we should enable
645                  * SmartSpeed, so performance is maintained. */
646                 if (phy->smart_speed == e1000_smart_speed_on) {
647                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
648                                                      &data);
649                         if (ret_val)
650                                 return ret_val;
651
652                         data |= IGP01E1000_PSCFR_SMART_SPEED;
653                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
654                                                      data);
655                         if (ret_val)
656                                 return ret_val;
657                 } else if (phy->smart_speed == e1000_smart_speed_off) {
658                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
659                                                      &data);
660                         if (ret_val)
661                                 return ret_val;
662
663                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
664                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
665                                                      data);
666                         if (ret_val)
667                                 return ret_val;
668                 }
669         }
670
671         return 0;
672 }
673
674 /**
675  *  e1000_reset_hw_82571 - Reset hardware
676  *  @hw: pointer to the HW structure
677  *
678  *  This resets the hardware into a known state.  This is a
679  *  function pointer entry point called by the api module.
680  **/
681 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
682 {
683         u32 ctrl;
684         u32 extcnf_ctrl;
685         u32 ctrl_ext;
686         u32 icr;
687         s32 ret_val;
688         u16 i = 0;
689
690         /* Prevent the PCI-E bus from sticking if there is no TLP connection
691          * on the last TLP read/write transaction when MAC is reset.
692          */
693         ret_val = e1000e_disable_pcie_master(hw);
694         if (ret_val)
695                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
696
697         hw_dbg(hw, "Masking off all interrupts\n");
698         ew32(IMC, 0xffffffff);
699
700         ew32(RCTL, 0);
701         ew32(TCTL, E1000_TCTL_PSP);
702         e1e_flush();
703
704         msleep(10);
705
706         /* Must acquire the MDIO ownership before MAC reset.
707          * Ownership defaults to firmware after a reset. */
708         if (hw->mac.type == e1000_82573) {
709                 extcnf_ctrl = er32(EXTCNF_CTRL);
710                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
711
712                 do {
713                         ew32(EXTCNF_CTRL, extcnf_ctrl);
714                         extcnf_ctrl = er32(EXTCNF_CTRL);
715
716                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
717                                 break;
718
719                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
720
721                         msleep(2);
722                         i++;
723                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
724         }
725
726         ctrl = er32(CTRL);
727
728         hw_dbg(hw, "Issuing a global reset to MAC\n");
729         ew32(CTRL, ctrl | E1000_CTRL_RST);
730
731         if (hw->nvm.type == e1000_nvm_flash_hw) {
732                 udelay(10);
733                 ctrl_ext = er32(CTRL_EXT);
734                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
735                 ew32(CTRL_EXT, ctrl_ext);
736                 e1e_flush();
737         }
738
739         ret_val = e1000e_get_auto_rd_done(hw);
740         if (ret_val)
741                 /* We don't want to continue accessing MAC registers. */
742                 return ret_val;
743
744         /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
745          * Need to wait for Phy configuration completion before accessing
746          * NVM and Phy.
747          */
748         if (hw->mac.type == e1000_82573)
749                 msleep(25);
750
751         /* Clear any pending interrupt events. */
752         ew32(IMC, 0xffffffff);
753         icr = er32(ICR);
754
755         if (hw->mac.type == e1000_82571 &&
756                 hw->dev_spec.e82571.alt_mac_addr_is_present)
757                         e1000e_set_laa_state_82571(hw, true);
758
759         return 0;
760 }
761
762 /**
763  *  e1000_init_hw_82571 - Initialize hardware
764  *  @hw: pointer to the HW structure
765  *
766  *  This inits the hardware readying it for operation.
767  **/
768 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
769 {
770         struct e1000_mac_info *mac = &hw->mac;
771         u32 reg_data;
772         s32 ret_val;
773         u16 i;
774         u16 rar_count = mac->rar_entry_count;
775
776         e1000_initialize_hw_bits_82571(hw);
777
778         /* Initialize identification LED */
779         ret_val = e1000e_id_led_init(hw);
780         if (ret_val) {
781                 hw_dbg(hw, "Error initializing identification LED\n");
782                 return ret_val;
783         }
784
785         /* Disabling VLAN filtering */
786         hw_dbg(hw, "Initializing the IEEE VLAN\n");
787         e1000e_clear_vfta(hw);
788
789         /* Setup the receive address. */
790         /* If, however, a locally administered address was assigned to the
791          * 82571, we must reserve a RAR for it to work around an issue where
792          * resetting one port will reload the MAC on the other port.
793          */
794         if (e1000e_get_laa_state_82571(hw))
795                 rar_count--;
796         e1000e_init_rx_addrs(hw, rar_count);
797
798         /* Zero out the Multicast HASH table */
799         hw_dbg(hw, "Zeroing the MTA\n");
800         for (i = 0; i < mac->mta_reg_count; i++)
801                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
802
803         /* Setup link and flow control */
804         ret_val = e1000_setup_link_82571(hw);
805
806         /* Set the transmit descriptor write-back policy */
807         reg_data = er32(TXDCTL);
808         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
809                    E1000_TXDCTL_FULL_TX_DESC_WB |
810                    E1000_TXDCTL_COUNT_DESC;
811         ew32(TXDCTL, reg_data);
812
813         /* ...for both queues. */
814         if (mac->type != e1000_82573) {
815                 reg_data = er32(TXDCTL1);
816                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
817                            E1000_TXDCTL_FULL_TX_DESC_WB |
818                            E1000_TXDCTL_COUNT_DESC;
819                 ew32(TXDCTL1, reg_data);
820         } else {
821                 e1000e_enable_tx_pkt_filtering(hw);
822                 reg_data = er32(GCR);
823                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
824                 ew32(GCR, reg_data);
825         }
826
827         /* Clear all of the statistics registers (clear on read).  It is
828          * important that we do this after we have tried to establish link
829          * because the symbol error count will increment wildly if there
830          * is no link.
831          */
832         e1000_clear_hw_cntrs_82571(hw);
833
834         return ret_val;
835 }
836
837 /**
838  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
839  *  @hw: pointer to the HW structure
840  *
841  *  Initializes required hardware-dependent bits needed for normal operation.
842  **/
843 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
844 {
845         u32 reg;
846
847         /* Transmit Descriptor Control 0 */
848         reg = er32(TXDCTL);
849         reg |= (1 << 22);
850         ew32(TXDCTL, reg);
851
852         /* Transmit Descriptor Control 1 */
853         reg = er32(TXDCTL1);
854         reg |= (1 << 22);
855         ew32(TXDCTL1, reg);
856
857         /* Transmit Arbitration Control 0 */
858         reg = er32(TARC0);
859         reg &= ~(0xF << 27); /* 30:27 */
860         switch (hw->mac.type) {
861         case e1000_82571:
862         case e1000_82572:
863                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
864                 break;
865         default:
866                 break;
867         }
868         ew32(TARC0, reg);
869
870         /* Transmit Arbitration Control 1 */
871         reg = er32(TARC1);
872         switch (hw->mac.type) {
873         case e1000_82571:
874         case e1000_82572:
875                 reg &= ~((1 << 29) | (1 << 30));
876                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
877                 if (er32(TCTL) & E1000_TCTL_MULR)
878                         reg &= ~(1 << 28);
879                 else
880                         reg |= (1 << 28);
881                 ew32(TARC1, reg);
882                 break;
883         default:
884                 break;
885         }
886
887         /* Device Control */
888         if (hw->mac.type == e1000_82573) {
889                 reg = er32(CTRL);
890                 reg &= ~(1 << 29);
891                 ew32(CTRL, reg);
892         }
893
894         /* Extended Device Control */
895         if (hw->mac.type == e1000_82573) {
896                 reg = er32(CTRL_EXT);
897                 reg &= ~(1 << 23);
898                 reg |= (1 << 22);
899                 ew32(CTRL_EXT, reg);
900         }
901 }
902
903 /**
904  *  e1000e_clear_vfta - Clear VLAN filter table
905  *  @hw: pointer to the HW structure
906  *
907  *  Clears the register array which contains the VLAN filter table by
908  *  setting all the values to 0.
909  **/
910 void e1000e_clear_vfta(struct e1000_hw *hw)
911 {
912         u32 offset;
913         u32 vfta_value = 0;
914         u32 vfta_offset = 0;
915         u32 vfta_bit_in_reg = 0;
916
917         if (hw->mac.type == e1000_82573) {
918                 if (hw->mng_cookie.vlan_id != 0) {
919                         /* The VFTA is a 4096b bit-field, each identifying
920                          * a single VLAN ID.  The following operations
921                          * determine which 32b entry (i.e. offset) into the
922                          * array we want to set the VLAN ID (i.e. bit) of
923                          * the manageability unit.
924                          */
925                         vfta_offset = (hw->mng_cookie.vlan_id >>
926                                        E1000_VFTA_ENTRY_SHIFT) &
927                                       E1000_VFTA_ENTRY_MASK;
928                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
929                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
930                 }
931         }
932         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
933                 /* If the offset we want to clear is the same offset of the
934                  * manageability VLAN ID, then clear all bits except that of
935                  * the manageability unit.
936                  */
937                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
938                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
939                 e1e_flush();
940         }
941 }
942
943 /**
944  *  e1000_mc_addr_list_update_82571 - Update Multicast addresses
945  *  @hw: pointer to the HW structure
946  *  @mc_addr_list: array of multicast addresses to program
947  *  @mc_addr_count: number of multicast addresses to program
948  *  @rar_used_count: the first RAR register free to program
949  *  @rar_count: total number of supported Receive Address Registers
950  *
951  *  Updates the Receive Address Registers and Multicast Table Array.
952  *  The caller must have a packed mc_addr_list of multicast addresses.
953  *  The parameter rar_count will usually be hw->mac.rar_entry_count
954  *  unless there are workarounds that change this.
955  **/
956 static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
957                                             u8 *mc_addr_list,
958                                             u32 mc_addr_count,
959                                             u32 rar_used_count,
960                                             u32 rar_count)
961 {
962         if (e1000e_get_laa_state_82571(hw))
963                 rar_count--;
964
965         e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
966                                           rar_used_count, rar_count);
967 }
968
969 /**
970  *  e1000_setup_link_82571 - Setup flow control and link settings
971  *  @hw: pointer to the HW structure
972  *
973  *  Determines which flow control settings to use, then configures flow
974  *  control.  Calls the appropriate media-specific link configuration
975  *  function.  Assuming the adapter has a valid link partner, a valid link
976  *  should be established.  Assumes the hardware has previously been reset
977  *  and the transmitter and receiver are not enabled.
978  **/
979 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
980 {
981         /* 82573 does not have a word in the NVM to determine
982          * the default flow control setting, so we explicitly
983          * set it to full.
984          */
985         if (hw->mac.type == e1000_82573)
986                 hw->mac.fc = e1000_fc_full;
987
988         return e1000e_setup_link(hw);
989 }
990
991 /**
992  *  e1000_setup_copper_link_82571 - Configure copper link settings
993  *  @hw: pointer to the HW structure
994  *
995  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
996  *  for link, once link is established calls to configure collision distance
997  *  and flow control are called.
998  **/
999 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1000 {
1001         u32 ctrl;
1002         u32 led_ctrl;
1003         s32 ret_val;
1004
1005         ctrl = er32(CTRL);
1006         ctrl |= E1000_CTRL_SLU;
1007         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1008         ew32(CTRL, ctrl);
1009
1010         switch (hw->phy.type) {
1011         case e1000_phy_m88:
1012                 ret_val = e1000e_copper_link_setup_m88(hw);
1013                 break;
1014         case e1000_phy_igp_2:
1015                 ret_val = e1000e_copper_link_setup_igp(hw);
1016                 /* Setup activity LED */
1017                 led_ctrl = er32(LEDCTL);
1018                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1019                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1020                 ew32(LEDCTL, led_ctrl);
1021                 break;
1022         default:
1023                 return -E1000_ERR_PHY;
1024                 break;
1025         }
1026
1027         if (ret_val)
1028                 return ret_val;
1029
1030         ret_val = e1000e_setup_copper_link(hw);
1031
1032         return ret_val;
1033 }
1034
1035 /**
1036  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1037  *  @hw: pointer to the HW structure
1038  *
1039  *  Configures collision distance and flow control for fiber and serdes links.
1040  *  Upon successful setup, poll for link.
1041  **/
1042 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1043 {
1044         switch (hw->mac.type) {
1045         case e1000_82571:
1046         case e1000_82572:
1047                 /* If SerDes loopback mode is entered, there is no form
1048                  * of reset to take the adapter out of that mode.  So we
1049                  * have to explicitly take the adapter out of loopback
1050                  * mode.  This prevents drivers from twidling their thumbs
1051                  * if another tool failed to take it out of loopback mode.
1052                  */
1053                 ew32(SCTL,
1054                                 E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1055                 break;
1056         default:
1057                 break;
1058         }
1059
1060         return e1000e_setup_fiber_serdes_link(hw);
1061 }
1062
1063 /**
1064  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1065  *  @hw: pointer to the HW structure
1066  *  @data: pointer to the NVM (EEPROM)
1067  *
1068  *  Read the EEPROM for the current default LED configuration.  If the
1069  *  LED configuration is not valid, set to a valid LED configuration.
1070  **/
1071 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1072 {
1073         s32 ret_val;
1074
1075         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1076         if (ret_val) {
1077                 hw_dbg(hw, "NVM Read Error\n");
1078                 return ret_val;
1079         }
1080
1081         if (hw->mac.type == e1000_82573 &&
1082             *data == ID_LED_RESERVED_F746)
1083                 *data = ID_LED_DEFAULT_82573;
1084         else if (*data == ID_LED_RESERVED_0000 ||
1085                  *data == ID_LED_RESERVED_FFFF)
1086                 *data = ID_LED_DEFAULT;
1087
1088         return 0;
1089 }
1090
1091 /**
1092  *  e1000e_get_laa_state_82571 - Get locally administered address state
1093  *  @hw: pointer to the HW structure
1094  *
1095  *  Retrieve and return the current locally administed address state.
1096  **/
1097 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1098 {
1099         if (hw->mac.type != e1000_82571)
1100                 return 0;
1101
1102         return hw->dev_spec.e82571.laa_is_present;
1103 }
1104
1105 /**
1106  *  e1000e_set_laa_state_82571 - Set locally administered address state
1107  *  @hw: pointer to the HW structure
1108  *  @state: enable/disable locally administered address
1109  *
1110  *  Enable/Disable the current locally administed address state.
1111  **/
1112 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1113 {
1114         if (hw->mac.type != e1000_82571)
1115                 return;
1116
1117         hw->dev_spec.e82571.laa_is_present = state;
1118
1119         /* If workaround is activated... */
1120         if (state)
1121                 /* Hold a copy of the LAA in RAR[14] This is done so that
1122                  * between the time RAR[0] gets clobbered and the time it
1123                  * gets fixed, the actual LAA is in one of the RARs and no
1124                  * incoming packets directed to this port are dropped.
1125                  * Eventually the LAA will be in RAR[0] and RAR[14].
1126                  */
1127                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1128 }
1129
1130 /**
1131  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1132  *  @hw: pointer to the HW structure
1133  *
1134  *  Verifies that the EEPROM has completed the update.  After updating the
1135  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1136  *  the checksum fix is not implemented, we need to set the bit and update
1137  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1138  *  we need to return bad checksum.
1139  **/
1140 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1141 {
1142         struct e1000_nvm_info *nvm = &hw->nvm;
1143         s32 ret_val;
1144         u16 data;
1145
1146         if (nvm->type != e1000_nvm_flash_hw)
1147                 return 0;
1148
1149         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1150          * 10h-12h.  Checksum may need to be fixed.
1151          */
1152         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1153         if (ret_val)
1154                 return ret_val;
1155
1156         if (!(data & 0x10)) {
1157                 /* Read 0x23 and check bit 15.  This bit is a 1
1158                  * when the checksum has already been fixed.  If
1159                  * the checksum is still wrong and this bit is a
1160                  * 1, we need to return bad checksum.  Otherwise,
1161                  * we need to set this bit to a 1 and update the
1162                  * checksum.
1163                  */
1164                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1165                 if (ret_val)
1166                         return ret_val;
1167
1168                 if (!(data & 0x8000)) {
1169                         data |= 0x8000;
1170                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1171                         if (ret_val)
1172                                 return ret_val;
1173                         ret_val = e1000e_update_nvm_checksum(hw);
1174                 }
1175         }
1176
1177         return 0;
1178 }
1179
1180 /**
1181  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1182  *  @hw: pointer to the HW structure
1183  *
1184  *  Clears the hardware counters by reading the counter registers.
1185  **/
1186 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1187 {
1188         u32 temp;
1189
1190         e1000e_clear_hw_cntrs_base(hw);
1191
1192         temp = er32(PRC64);
1193         temp = er32(PRC127);
1194         temp = er32(PRC255);
1195         temp = er32(PRC511);
1196         temp = er32(PRC1023);
1197         temp = er32(PRC1522);
1198         temp = er32(PTC64);
1199         temp = er32(PTC127);
1200         temp = er32(PTC255);
1201         temp = er32(PTC511);
1202         temp = er32(PTC1023);
1203         temp = er32(PTC1522);
1204
1205         temp = er32(ALGNERRC);
1206         temp = er32(RXERRC);
1207         temp = er32(TNCRS);
1208         temp = er32(CEXTERR);
1209         temp = er32(TSCTC);
1210         temp = er32(TSCTFC);
1211
1212         temp = er32(MGTPRC);
1213         temp = er32(MGTPDC);
1214         temp = er32(MGTPTC);
1215
1216         temp = er32(IAC);
1217         temp = er32(ICRXOC);
1218
1219         temp = er32(ICRXPTC);
1220         temp = er32(ICRXATC);
1221         temp = er32(ICTXPTC);
1222         temp = er32(ICTXATC);
1223         temp = er32(ICTXQEC);
1224         temp = er32(ICTXQMTC);
1225         temp = er32(ICRXDMTC);
1226 }
1227
1228 static struct e1000_mac_operations e82571_mac_ops = {
1229         .mng_mode_enab          = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1230         /* .check_for_link: media type dependent */
1231         .cleanup_led            = e1000e_cleanup_led_generic,
1232         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1233         .get_bus_info           = e1000e_get_bus_info_pcie,
1234         /* .get_link_up_info: media type dependent */
1235         .led_on                 = e1000e_led_on_generic,
1236         .led_off                = e1000e_led_off_generic,
1237         .mc_addr_list_update    = e1000_mc_addr_list_update_82571,
1238         .reset_hw               = e1000_reset_hw_82571,
1239         .init_hw                = e1000_init_hw_82571,
1240         .setup_link             = e1000_setup_link_82571,
1241         /* .setup_physical_interface: media type dependent */
1242 };
1243
1244 static struct e1000_phy_operations e82_phy_ops_igp = {
1245         .acquire_phy            = e1000_get_hw_semaphore_82571,
1246         .check_reset_block      = e1000e_check_reset_block_generic,
1247         .commit_phy             = NULL,
1248         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1249         .get_cfg_done           = e1000_get_cfg_done_82571,
1250         .get_cable_length       = e1000e_get_cable_length_igp_2,
1251         .get_phy_info           = e1000e_get_phy_info_igp,
1252         .read_phy_reg           = e1000e_read_phy_reg_igp,
1253         .release_phy            = e1000_put_hw_semaphore_82571,
1254         .reset_phy              = e1000e_phy_hw_reset_generic,
1255         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1256         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1257         .write_phy_reg          = e1000e_write_phy_reg_igp,
1258 };
1259
1260 static struct e1000_phy_operations e82_phy_ops_m88 = {
1261         .acquire_phy            = e1000_get_hw_semaphore_82571,
1262         .check_reset_block      = e1000e_check_reset_block_generic,
1263         .commit_phy             = e1000e_phy_sw_reset,
1264         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1265         .get_cfg_done           = e1000e_get_cfg_done,
1266         .get_cable_length       = e1000e_get_cable_length_m88,
1267         .get_phy_info           = e1000e_get_phy_info_m88,
1268         .read_phy_reg           = e1000e_read_phy_reg_m88,
1269         .release_phy            = e1000_put_hw_semaphore_82571,
1270         .reset_phy              = e1000e_phy_hw_reset_generic,
1271         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1272         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1273         .write_phy_reg          = e1000e_write_phy_reg_m88,
1274 };
1275
1276 static struct e1000_nvm_operations e82571_nvm_ops = {
1277         .acquire_nvm            = e1000_acquire_nvm_82571,
1278         .read_nvm               = e1000e_read_nvm_spi,
1279         .release_nvm            = e1000_release_nvm_82571,
1280         .update_nvm             = e1000_update_nvm_checksum_82571,
1281         .valid_led_default      = e1000_valid_led_default_82571,
1282         .validate_nvm           = e1000_validate_nvm_checksum_82571,
1283         .write_nvm              = e1000_write_nvm_82571,
1284 };
1285
1286 static struct e1000_nvm_operations e82573_nvm_ops = {
1287         .acquire_nvm            = e1000_acquire_nvm_82571,
1288         .read_nvm               = e1000e_read_nvm_eerd,
1289         .release_nvm            = e1000_release_nvm_82571,
1290         .update_nvm             = e1000_update_nvm_checksum_82571,
1291         .valid_led_default      = e1000_valid_led_default_82571,
1292         .validate_nvm           = e1000_validate_nvm_checksum_82571,
1293         .write_nvm              = e1000_write_nvm_82571,
1294 };
1295
1296 struct e1000_info e1000_82571_info = {
1297         .mac                    = e1000_82571,
1298         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1299                                   | FLAG_HAS_JUMBO_FRAMES
1300                                   | FLAG_HAS_STATS_PTC_PRC
1301                                   | FLAG_HAS_WOL
1302                                   | FLAG_APME_IN_CTRL3
1303                                   | FLAG_RX_CSUM_ENABLED
1304                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1305                                   | FLAG_HAS_STATS_ICR_ICT
1306                                   | FLAG_HAS_SMART_POWER_DOWN
1307                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1308                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1309                                   | FLAG_APME_CHECK_PORT_B,
1310         .pba                    = 38,
1311         .get_invariants         = e1000_get_invariants_82571,
1312         .mac_ops                = &e82571_mac_ops,
1313         .phy_ops                = &e82_phy_ops_igp,
1314         .nvm_ops                = &e82571_nvm_ops,
1315 };
1316
1317 struct e1000_info e1000_82572_info = {
1318         .mac                    = e1000_82572,
1319         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1320                                   | FLAG_HAS_JUMBO_FRAMES
1321                                   | FLAG_HAS_STATS_PTC_PRC
1322                                   | FLAG_HAS_WOL
1323                                   | FLAG_APME_IN_CTRL3
1324                                   | FLAG_RX_CSUM_ENABLED
1325                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1326                                   | FLAG_HAS_STATS_ICR_ICT
1327                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1328         .pba                    = 38,
1329         .get_invariants         = e1000_get_invariants_82571,
1330         .mac_ops                = &e82571_mac_ops,
1331         .phy_ops                = &e82_phy_ops_igp,
1332         .nvm_ops                = &e82571_nvm_ops,
1333 };
1334
1335 struct e1000_info e1000_82573_info = {
1336         .mac                    = e1000_82573,
1337         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1338                                   | FLAG_HAS_JUMBO_FRAMES
1339                                   | FLAG_HAS_STATS_PTC_PRC
1340                                   | FLAG_HAS_WOL
1341                                   | FLAG_APME_IN_CTRL3
1342                                   | FLAG_RX_CSUM_ENABLED
1343                                   | FLAG_HAS_STATS_ICR_ICT
1344                                   | FLAG_HAS_SMART_POWER_DOWN
1345                                   | FLAG_HAS_AMT
1346                                   | FLAG_HAS_ERT
1347                                   | FLAG_HAS_SWSM_ON_LOAD,
1348         .pba                    = 20,
1349         .get_invariants         = e1000_get_invariants_82571,
1350         .mac_ops                = &e82571_mac_ops,
1351         .phy_ops                = &e82_phy_ops_m88,
1352         .nvm_ops                = &e82573_nvm_ops,
1353 };
1354