]> err.no Git - linux-2.6/blob - drivers/net/e1000/e1000_main.c
e1000: ring buffers resources cleanup
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k6"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
103         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
105         /* required last entry */
106         {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
110
111 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_tx_ring *txdr);
113 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
114                                     struct e1000_rx_ring *rxdr);
115 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *tx_ring);
117 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rx_ring);
119
120 /* Local Function Prototypes */
121
122 static int e1000_init_module(void);
123 static void e1000_exit_module(void);
124 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
125 static void __devexit e1000_remove(struct pci_dev *pdev);
126 static int e1000_alloc_queues(struct e1000_adapter *adapter);
127 static int e1000_sw_init(struct e1000_adapter *adapter);
128 static int e1000_open(struct net_device *netdev);
129 static int e1000_close(struct net_device *netdev);
130 static void e1000_configure_tx(struct e1000_adapter *adapter);
131 static void e1000_configure_rx(struct e1000_adapter *adapter);
132 static void e1000_setup_rctl(struct e1000_adapter *adapter);
133 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
136                                 struct e1000_tx_ring *tx_ring);
137 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
138                                 struct e1000_rx_ring *rx_ring);
139 static void e1000_set_multi(struct net_device *netdev);
140 static void e1000_update_phy_info(unsigned long data);
141 static void e1000_watchdog(unsigned long data);
142 static void e1000_82547_tx_fifo_stall(unsigned long data);
143 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
144 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
145 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
146 static int e1000_set_mac(struct net_device *netdev, void *p);
147 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
148 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
149                                     struct e1000_tx_ring *tx_ring);
150 #ifdef CONFIG_E1000_NAPI
151 static int e1000_clean(struct net_device *poll_dev, int *budget);
152 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
153                                     struct e1000_rx_ring *rx_ring,
154                                     int *work_done, int work_to_do);
155 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
156                                        struct e1000_rx_ring *rx_ring,
157                                        int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
160                                     struct e1000_rx_ring *rx_ring);
161 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
162                                        struct e1000_rx_ring *rx_ring);
163 #endif
164 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
165                                    struct e1000_rx_ring *rx_ring,
166                                    int cleaned_count);
167 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
168                                       struct e1000_rx_ring *rx_ring,
169                                       int cleaned_count);
170 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
171 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
172                            int cmd);
173 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
174 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_tx_timeout(struct net_device *dev);
176 static void e1000_reset_task(struct net_device *dev);
177 static void e1000_smartspeed(struct e1000_adapter *adapter);
178 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
179                                        struct sk_buff *skb);
180
181 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
182 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
183 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_restore_vlan(struct e1000_adapter *adapter);
185
186 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
187 #ifdef CONFIG_PM
188 static int e1000_resume(struct pci_dev *pdev);
189 #endif
190 static void e1000_shutdown(struct pci_dev *pdev);
191
192 #ifdef CONFIG_NET_POLL_CONTROLLER
193 /* for netdump / net console */
194 static void e1000_netpoll (struct net_device *netdev);
195 #endif
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                      pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static struct pci_error_handlers e1000_err_handler = {
203         .error_detected = e1000_io_error_detected,
204         .slot_reset = e1000_io_slot_reset,
205         .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209         .name     = e1000_driver_name,
210         .id_table = e1000_pci_tbl,
211         .probe    = e1000_probe,
212         .remove   = __devexit_p(e1000_remove),
213         /* Power Managment Hooks */
214         .suspend  = e1000_suspend,
215 #ifdef CONFIG_PM
216         .resume   = e1000_resume,
217 #endif
218         .shutdown = e1000_shutdown,
219         .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230
231 /**
232  * e1000_init_module - Driver Registration Routine
233  *
234  * e1000_init_module is the first routine called when the driver is
235  * loaded. All it does is register with the PCI subsystem.
236  **/
237
238 static int __init
239 e1000_init_module(void)
240 {
241         int ret;
242         printk(KERN_INFO "%s - version %s\n",
243                e1000_driver_string, e1000_driver_version);
244
245         printk(KERN_INFO "%s\n", e1000_copyright);
246
247         ret = pci_register_driver(&e1000_driver);
248
249         return ret;
250 }
251
252 module_init(e1000_init_module);
253
254 /**
255  * e1000_exit_module - Driver Exit Cleanup Routine
256  *
257  * e1000_exit_module is called just before the driver is removed
258  * from memory.
259  **/
260
261 static void __exit
262 e1000_exit_module(void)
263 {
264         pci_unregister_driver(&e1000_driver);
265 }
266
267 module_exit(e1000_exit_module);
268
269 static int e1000_request_irq(struct e1000_adapter *adapter)
270 {
271         struct net_device *netdev = adapter->netdev;
272         int flags, err = 0;
273
274         flags = IRQF_SHARED;
275 #ifdef CONFIG_PCI_MSI
276         if (adapter->hw.mac_type > e1000_82547_rev_2) {
277                 adapter->have_msi = TRUE;
278                 if ((err = pci_enable_msi(adapter->pdev))) {
279                         DPRINTK(PROBE, ERR,
280                          "Unable to allocate MSI interrupt Error: %d\n", err);
281                         adapter->have_msi = FALSE;
282                 }
283         }
284         if (adapter->have_msi)
285                 flags &= ~IRQF_SHARED;
286 #endif
287         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
288                                netdev->name, netdev)))
289                 DPRINTK(PROBE, ERR,
290                         "Unable to allocate interrupt Error: %d\n", err);
291
292         return err;
293 }
294
295 static void e1000_free_irq(struct e1000_adapter *adapter)
296 {
297         struct net_device *netdev = adapter->netdev;
298
299         free_irq(adapter->pdev->irq, netdev);
300
301 #ifdef CONFIG_PCI_MSI
302         if (adapter->have_msi)
303                 pci_disable_msi(adapter->pdev);
304 #endif
305 }
306
307 /**
308  * e1000_irq_disable - Mask off interrupt generation on the NIC
309  * @adapter: board private structure
310  **/
311
312 static void
313 e1000_irq_disable(struct e1000_adapter *adapter)
314 {
315         atomic_inc(&adapter->irq_sem);
316         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
317         E1000_WRITE_FLUSH(&adapter->hw);
318         synchronize_irq(adapter->pdev->irq);
319 }
320
321 /**
322  * e1000_irq_enable - Enable default interrupt generation settings
323  * @adapter: board private structure
324  **/
325
326 static void
327 e1000_irq_enable(struct e1000_adapter *adapter)
328 {
329         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
330                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331                 E1000_WRITE_FLUSH(&adapter->hw);
332         }
333 }
334
335 static void
336 e1000_update_mng_vlan(struct e1000_adapter *adapter)
337 {
338         struct net_device *netdev = adapter->netdev;
339         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
340         uint16_t old_vid = adapter->mng_vlan_id;
341         if (adapter->vlgrp) {
342                 if (!adapter->vlgrp->vlan_devices[vid]) {
343                         if (adapter->hw.mng_cookie.status &
344                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
345                                 e1000_vlan_rx_add_vid(netdev, vid);
346                                 adapter->mng_vlan_id = vid;
347                         } else
348                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
349
350                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
351                                         (vid != old_vid) &&
352                                         !adapter->vlgrp->vlan_devices[old_vid])
353                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
354                 } else
355                         adapter->mng_vlan_id = vid;
356         }
357 }
358
359 /**
360  * e1000_release_hw_control - release control of the h/w to f/w
361  * @adapter: address of board private structure
362  *
363  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
364  * For ASF and Pass Through versions of f/w this means that the
365  * driver is no longer loaded. For AMT version (only with 82573) i
366  * of the f/w this means that the netowrk i/f is closed.
367  *
368  **/
369
370 static void
371 e1000_release_hw_control(struct e1000_adapter *adapter)
372 {
373         uint32_t ctrl_ext;
374         uint32_t swsm;
375         uint32_t extcnf;
376
377         /* Let firmware taken over control of h/w */
378         switch (adapter->hw.mac_type) {
379         case e1000_82571:
380         case e1000_82572:
381         case e1000_80003es2lan:
382                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
383                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
384                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
385                 break;
386         case e1000_82573:
387                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
388                 E1000_WRITE_REG(&adapter->hw, SWSM,
389                                 swsm & ~E1000_SWSM_DRV_LOAD);
390         case e1000_ich8lan:
391                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
392                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
393                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
394                 break;
395         default:
396                 break;
397         }
398 }
399
400 /**
401  * e1000_get_hw_control - get control of the h/w from f/w
402  * @adapter: address of board private structure
403  *
404  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
405  * For ASF and Pass Through versions of f/w this means that
406  * the driver is loaded. For AMT version (only with 82573)
407  * of the f/w this means that the netowrk i/f is open.
408  *
409  **/
410
411 static void
412 e1000_get_hw_control(struct e1000_adapter *adapter)
413 {
414         uint32_t ctrl_ext;
415         uint32_t swsm;
416         uint32_t extcnf;
417         /* Let firmware know the driver has taken over */
418         switch (adapter->hw.mac_type) {
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
423                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
424                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
425                 break;
426         case e1000_82573:
427                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
428                 E1000_WRITE_REG(&adapter->hw, SWSM,
429                                 swsm | E1000_SWSM_DRV_LOAD);
430                 break;
431         case e1000_ich8lan:
432                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
433                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
434                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
435                 break;
436         default:
437                 break;
438         }
439 }
440
441 int
442 e1000_up(struct e1000_adapter *adapter)
443 {
444         struct net_device *netdev = adapter->netdev;
445         int i;
446
447         /* hardware has been reset, we need to reload some things */
448
449         e1000_set_multi(netdev);
450
451         e1000_restore_vlan(adapter);
452
453         e1000_configure_tx(adapter);
454         e1000_setup_rctl(adapter);
455         e1000_configure_rx(adapter);
456         /* call E1000_DESC_UNUSED which always leaves
457          * at least 1 descriptor unused to make sure
458          * next_to_use != next_to_clean */
459         for (i = 0; i < adapter->num_rx_queues; i++) {
460                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
461                 adapter->alloc_rx_buf(adapter, ring,
462                                       E1000_DESC_UNUSED(ring));
463         }
464
465         adapter->tx_queue_len = netdev->tx_queue_len;
466
467         mod_timer(&adapter->watchdog_timer, jiffies);
468
469 #ifdef CONFIG_E1000_NAPI
470         netif_poll_enable(netdev);
471 #endif
472         e1000_irq_enable(adapter);
473
474         return 0;
475 }
476
477 /**
478  * e1000_power_up_phy - restore link in case the phy was powered down
479  * @adapter: address of board private structure
480  *
481  * The phy may be powered down to save power and turn off link when the
482  * driver is unloaded and wake on lan is not enabled (among others)
483  * *** this routine MUST be followed by a call to e1000_reset ***
484  *
485  **/
486
487 void e1000_power_up_phy(struct e1000_adapter *adapter)
488 {
489         uint16_t mii_reg = 0;
490
491         /* Just clear the power down bit to wake the phy back up */
492         if (adapter->hw.media_type == e1000_media_type_copper) {
493                 /* according to the manual, the phy will retain its
494                  * settings across a power-down/up cycle */
495                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
496                 mii_reg &= ~MII_CR_POWER_DOWN;
497                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
498         }
499 }
500
501 static void e1000_power_down_phy(struct e1000_adapter *adapter)
502 {
503         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
504                                       e1000_check_mng_mode(&adapter->hw);
505         /* Power down the PHY so no link is implied when interface is down
506          * The PHY cannot be powered down if any of the following is TRUE
507          * (a) WoL is enabled
508          * (b) AMT is active
509          * (c) SoL/IDER session is active */
510         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511             adapter->hw.mac_type != e1000_ich8lan &&
512             adapter->hw.media_type == e1000_media_type_copper &&
513             !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
514             !mng_mode_enabled &&
515             !e1000_check_phy_reset_block(&adapter->hw)) {
516                 uint16_t mii_reg = 0;
517                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
518                 mii_reg |= MII_CR_POWER_DOWN;
519                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
520                 mdelay(1);
521         }
522 }
523
524 void
525 e1000_down(struct e1000_adapter *adapter)
526 {
527         struct net_device *netdev = adapter->netdev;
528
529         e1000_irq_disable(adapter);
530
531         del_timer_sync(&adapter->tx_fifo_stall_timer);
532         del_timer_sync(&adapter->watchdog_timer);
533         del_timer_sync(&adapter->phy_info_timer);
534
535 #ifdef CONFIG_E1000_NAPI
536         netif_poll_disable(netdev);
537 #endif
538         netdev->tx_queue_len = adapter->tx_queue_len;
539         adapter->link_speed = 0;
540         adapter->link_duplex = 0;
541         netif_carrier_off(netdev);
542         netif_stop_queue(netdev);
543
544         e1000_reset(adapter);
545         e1000_clean_all_tx_rings(adapter);
546         e1000_clean_all_rx_rings(adapter);
547 }
548
549 void
550 e1000_reinit_locked(struct e1000_adapter *adapter)
551 {
552         WARN_ON(in_interrupt());
553         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
554                 msleep(1);
555         e1000_down(adapter);
556         e1000_up(adapter);
557         clear_bit(__E1000_RESETTING, &adapter->flags);
558 }
559
560 void
561 e1000_reset(struct e1000_adapter *adapter)
562 {
563         uint32_t pba, manc;
564         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
565
566         /* Repartition Pba for greater than 9k mtu
567          * To take effect CTRL.RST is required.
568          */
569
570         switch (adapter->hw.mac_type) {
571         case e1000_82547:
572         case e1000_82547_rev_2:
573                 pba = E1000_PBA_30K;
574                 break;
575         case e1000_82571:
576         case e1000_82572:
577         case e1000_80003es2lan:
578                 pba = E1000_PBA_38K;
579                 break;
580         case e1000_82573:
581                 pba = E1000_PBA_12K;
582                 break;
583         case e1000_ich8lan:
584                 pba = E1000_PBA_8K;
585                 break;
586         default:
587                 pba = E1000_PBA_48K;
588                 break;
589         }
590
591         if ((adapter->hw.mac_type != e1000_82573) &&
592            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
593                 pba -= 8; /* allocate more FIFO for Tx */
594
595
596         if (adapter->hw.mac_type == e1000_82547) {
597                 adapter->tx_fifo_head = 0;
598                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
599                 adapter->tx_fifo_size =
600                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
601                 atomic_set(&adapter->tx_fifo_stall, 0);
602         }
603
604         E1000_WRITE_REG(&adapter->hw, PBA, pba);
605
606         /* flow control settings */
607         /* Set the FC high water mark to 90% of the FIFO size.
608          * Required to clear last 3 LSB */
609         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
610         /* We can't use 90% on small FIFOs because the remainder
611          * would be less than 1 full frame.  In this case, we size
612          * it to allow at least a full frame above the high water
613          *  mark. */
614         if (pba < E1000_PBA_16K)
615                 fc_high_water_mark = (pba * 1024) - 1600;
616
617         adapter->hw.fc_high_water = fc_high_water_mark;
618         adapter->hw.fc_low_water = fc_high_water_mark - 8;
619         if (adapter->hw.mac_type == e1000_80003es2lan)
620                 adapter->hw.fc_pause_time = 0xFFFF;
621         else
622                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
623         adapter->hw.fc_send_xon = 1;
624         adapter->hw.fc = adapter->hw.original_fc;
625
626         /* Allow time for pending master requests to run */
627         e1000_reset_hw(&adapter->hw);
628         if (adapter->hw.mac_type >= e1000_82544)
629                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
630         if (e1000_init_hw(&adapter->hw))
631                 DPRINTK(PROBE, ERR, "Hardware Error\n");
632         e1000_update_mng_vlan(adapter);
633         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
634         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
635
636         e1000_reset_adaptive(&adapter->hw);
637         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
638
639         if (!adapter->smart_power_down &&
640             (adapter->hw.mac_type == e1000_82571 ||
641              adapter->hw.mac_type == e1000_82572)) {
642                 uint16_t phy_data = 0;
643                 /* speed up time to link by disabling smart power down, ignore
644                  * the return value of this function because there is nothing
645                  * different we would do if it failed */
646                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
647                                    &phy_data);
648                 phy_data &= ~IGP02E1000_PM_SPD;
649                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
650                                     phy_data);
651         }
652
653         if (adapter->hw.mac_type < e1000_ich8lan)
654         /* FIXME: this code is duplicate and wrong for PCI Express */
655         if (adapter->en_mng_pt) {
656                 manc = E1000_READ_REG(&adapter->hw, MANC);
657                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
658                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
659         }
660 }
661
662 /**
663  * e1000_probe - Device Initialization Routine
664  * @pdev: PCI device information struct
665  * @ent: entry in e1000_pci_tbl
666  *
667  * Returns 0 on success, negative on failure
668  *
669  * e1000_probe initializes an adapter identified by a pci_dev structure.
670  * The OS initialization, configuring of the adapter private structure,
671  * and a hardware reset occur.
672  **/
673
674 static int __devinit
675 e1000_probe(struct pci_dev *pdev,
676             const struct pci_device_id *ent)
677 {
678         struct net_device *netdev;
679         struct e1000_adapter *adapter;
680         unsigned long mmio_start, mmio_len;
681         unsigned long flash_start, flash_len;
682
683         static int cards_found = 0;
684         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
685         int i, err, pci_using_dac;
686         uint16_t eeprom_data;
687         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
688         if ((err = pci_enable_device(pdev)))
689                 return err;
690
691         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
692             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
693                 pci_using_dac = 1;
694         } else {
695                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
696                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
697                         E1000_ERR("No usable DMA configuration, aborting\n");
698                         goto err_dma;
699                 }
700                 pci_using_dac = 0;
701         }
702
703         if ((err = pci_request_regions(pdev, e1000_driver_name)))
704                 goto err_pci_reg;
705
706         pci_set_master(pdev);
707
708         err = -ENOMEM;
709         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
710         if (!netdev)
711                 goto err_alloc_etherdev;
712
713         SET_MODULE_OWNER(netdev);
714         SET_NETDEV_DEV(netdev, &pdev->dev);
715
716         pci_set_drvdata(pdev, netdev);
717         adapter = netdev_priv(netdev);
718         adapter->netdev = netdev;
719         adapter->pdev = pdev;
720         adapter->hw.back = adapter;
721         adapter->msg_enable = (1 << debug) - 1;
722
723         mmio_start = pci_resource_start(pdev, BAR_0);
724         mmio_len = pci_resource_len(pdev, BAR_0);
725
726         err = -EIO;
727         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
728         if (!adapter->hw.hw_addr)
729                 goto err_ioremap;
730
731         for (i = BAR_1; i <= BAR_5; i++) {
732                 if (pci_resource_len(pdev, i) == 0)
733                         continue;
734                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
735                         adapter->hw.io_base = pci_resource_start(pdev, i);
736                         break;
737                 }
738         }
739
740         netdev->open = &e1000_open;
741         netdev->stop = &e1000_close;
742         netdev->hard_start_xmit = &e1000_xmit_frame;
743         netdev->get_stats = &e1000_get_stats;
744         netdev->set_multicast_list = &e1000_set_multi;
745         netdev->set_mac_address = &e1000_set_mac;
746         netdev->change_mtu = &e1000_change_mtu;
747         netdev->do_ioctl = &e1000_ioctl;
748         e1000_set_ethtool_ops(netdev);
749         netdev->tx_timeout = &e1000_tx_timeout;
750         netdev->watchdog_timeo = 5 * HZ;
751 #ifdef CONFIG_E1000_NAPI
752         netdev->poll = &e1000_clean;
753         netdev->weight = 64;
754 #endif
755         netdev->vlan_rx_register = e1000_vlan_rx_register;
756         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
757         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
758 #ifdef CONFIG_NET_POLL_CONTROLLER
759         netdev->poll_controller = e1000_netpoll;
760 #endif
761         strcpy(netdev->name, pci_name(pdev));
762
763         netdev->mem_start = mmio_start;
764         netdev->mem_end = mmio_start + mmio_len;
765         netdev->base_addr = adapter->hw.io_base;
766
767         adapter->bd_number = cards_found;
768
769         /* setup the private structure */
770
771         if ((err = e1000_sw_init(adapter)))
772                 goto err_sw_init;
773
774         err = -EIO;
775         /* Flash BAR mapping must happen after e1000_sw_init
776          * because it depends on mac_type */
777         if ((adapter->hw.mac_type == e1000_ich8lan) &&
778            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
779                 flash_start = pci_resource_start(pdev, 1);
780                 flash_len = pci_resource_len(pdev, 1);
781                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
782                 if (!adapter->hw.flash_address)
783                         goto err_flashmap;
784         }
785
786         if (e1000_check_phy_reset_block(&adapter->hw))
787                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
788
789         /* if ksp3, indicate if it's port a being setup */
790         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
791                         e1000_ksp3_port_a == 0)
792                 adapter->ksp3_port_a = 1;
793         e1000_ksp3_port_a++;
794         /* Reset for multiple KP3 adapters */
795         if (e1000_ksp3_port_a == 4)
796                 e1000_ksp3_port_a = 0;
797
798         if (adapter->hw.mac_type >= e1000_82543) {
799                 netdev->features = NETIF_F_SG |
800                                    NETIF_F_HW_CSUM |
801                                    NETIF_F_HW_VLAN_TX |
802                                    NETIF_F_HW_VLAN_RX |
803                                    NETIF_F_HW_VLAN_FILTER;
804                 if (adapter->hw.mac_type == e1000_ich8lan)
805                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
806         }
807
808 #ifdef NETIF_F_TSO
809         if ((adapter->hw.mac_type >= e1000_82544) &&
810            (adapter->hw.mac_type != e1000_82547))
811                 netdev->features |= NETIF_F_TSO;
812
813 #ifdef NETIF_F_TSO_IPV6
814         if (adapter->hw.mac_type > e1000_82547_rev_2)
815                 netdev->features |= NETIF_F_TSO_IPV6;
816 #endif
817 #endif
818         if (pci_using_dac)
819                 netdev->features |= NETIF_F_HIGHDMA;
820
821         netdev->features |= NETIF_F_LLTX;
822
823         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
824
825         /* initialize eeprom parameters */
826
827         if (e1000_init_eeprom_params(&adapter->hw)) {
828                 E1000_ERR("EEPROM initialization failed\n");
829                 goto err_eeprom;
830         }
831
832         /* before reading the EEPROM, reset the controller to
833          * put the device in a known good starting state */
834
835         e1000_reset_hw(&adapter->hw);
836
837         /* make sure the EEPROM is good */
838
839         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
840                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
841                 goto err_eeprom;
842         }
843
844         /* copy the MAC address out of the EEPROM */
845
846         if (e1000_read_mac_addr(&adapter->hw))
847                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
848         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
849         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
850
851         if (!is_valid_ether_addr(netdev->perm_addr)) {
852                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
853                 goto err_eeprom;
854         }
855
856         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
857
858         e1000_get_bus_info(&adapter->hw);
859
860         init_timer(&adapter->tx_fifo_stall_timer);
861         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
862         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
863
864         init_timer(&adapter->watchdog_timer);
865         adapter->watchdog_timer.function = &e1000_watchdog;
866         adapter->watchdog_timer.data = (unsigned long) adapter;
867
868         init_timer(&adapter->phy_info_timer);
869         adapter->phy_info_timer.function = &e1000_update_phy_info;
870         adapter->phy_info_timer.data = (unsigned long) adapter;
871
872         INIT_WORK(&adapter->reset_task,
873                 (void (*)(void *))e1000_reset_task, netdev);
874
875         /* we're going to reset, so assume we have no link for now */
876
877         netif_carrier_off(netdev);
878         netif_stop_queue(netdev);
879
880         e1000_check_options(adapter);
881
882         /* Initial Wake on LAN setting
883          * If APM wake is enabled in the EEPROM,
884          * enable the ACPI Magic Packet filter
885          */
886
887         switch (adapter->hw.mac_type) {
888         case e1000_82542_rev2_0:
889         case e1000_82542_rev2_1:
890         case e1000_82543:
891                 break;
892         case e1000_82544:
893                 e1000_read_eeprom(&adapter->hw,
894                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
895                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
896                 break;
897         case e1000_ich8lan:
898                 e1000_read_eeprom(&adapter->hw,
899                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
900                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
901                 break;
902         case e1000_82546:
903         case e1000_82546_rev_3:
904         case e1000_82571:
905         case e1000_80003es2lan:
906                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
907                         e1000_read_eeprom(&adapter->hw,
908                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
909                         break;
910                 }
911                 /* Fall Through */
912         default:
913                 e1000_read_eeprom(&adapter->hw,
914                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
915                 break;
916         }
917         if (eeprom_data & eeprom_apme_mask)
918                 adapter->wol |= E1000_WUFC_MAG;
919
920         /* print bus type/speed/width info */
921         {
922         struct e1000_hw *hw = &adapter->hw;
923         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
924                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
925                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
926                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
927                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
928                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
929                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
930                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
931                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
932                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
933                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
934                  "32-bit"));
935         }
936
937         for (i = 0; i < 6; i++)
938                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
939
940         /* reset the hardware with the new settings */
941         e1000_reset(adapter);
942
943         /* If the controller is 82573 and f/w is AMT, do not set
944          * DRV_LOAD until the interface is up.  For all other cases,
945          * let the f/w know that the h/w is now under the control
946          * of the driver. */
947         if (adapter->hw.mac_type != e1000_82573 ||
948             !e1000_check_mng_mode(&adapter->hw))
949                 e1000_get_hw_control(adapter);
950
951         strcpy(netdev->name, "eth%d");
952         if ((err = register_netdev(netdev)))
953                 goto err_register;
954
955         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
956
957         cards_found++;
958         return 0;
959
960 err_register:
961         e1000_release_hw_control(adapter);
962 err_eeprom:
963         if (!e1000_check_phy_reset_block(&adapter->hw))
964                 e1000_phy_hw_reset(&adapter->hw);
965
966         if (adapter->hw.flash_address)
967                 iounmap(adapter->hw.flash_address);
968 err_flashmap:
969 #ifdef CONFIG_E1000_NAPI
970         for (i = 0; i < adapter->num_rx_queues; i++)
971                 dev_put(&adapter->polling_netdev[i]);
972 #endif
973
974         kfree(adapter->tx_ring);
975         kfree(adapter->rx_ring);
976 #ifdef CONFIG_E1000_NAPI
977         kfree(adapter->polling_netdev);
978 #endif
979 err_sw_init:
980         iounmap(adapter->hw.hw_addr);
981 err_ioremap:
982         free_netdev(netdev);
983 err_alloc_etherdev:
984         pci_release_regions(pdev);
985 err_pci_reg:
986 err_dma:
987         pci_disable_device(pdev);
988         return err;
989 }
990
991 /**
992  * e1000_remove - Device Removal Routine
993  * @pdev: PCI device information struct
994  *
995  * e1000_remove is called by the PCI subsystem to alert the driver
996  * that it should release a PCI device.  The could be caused by a
997  * Hot-Plug event, or because the driver is going to be removed from
998  * memory.
999  **/
1000
1001 static void __devexit
1002 e1000_remove(struct pci_dev *pdev)
1003 {
1004         struct net_device *netdev = pci_get_drvdata(pdev);
1005         struct e1000_adapter *adapter = netdev_priv(netdev);
1006         uint32_t manc;
1007 #ifdef CONFIG_E1000_NAPI
1008         int i;
1009 #endif
1010
1011         flush_scheduled_work();
1012
1013         if (adapter->hw.mac_type >= e1000_82540 &&
1014            adapter->hw.mac_type != e1000_ich8lan &&
1015            adapter->hw.media_type == e1000_media_type_copper) {
1016                 manc = E1000_READ_REG(&adapter->hw, MANC);
1017                 if (manc & E1000_MANC_SMBUS_EN) {
1018                         manc |= E1000_MANC_ARP_EN;
1019                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1020                 }
1021         }
1022
1023         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1024          * would have already happened in close and is redundant. */
1025         e1000_release_hw_control(adapter);
1026
1027         unregister_netdev(netdev);
1028 #ifdef CONFIG_E1000_NAPI
1029         for (i = 0; i < adapter->num_rx_queues; i++)
1030                 dev_put(&adapter->polling_netdev[i]);
1031 #endif
1032
1033         if (!e1000_check_phy_reset_block(&adapter->hw))
1034                 e1000_phy_hw_reset(&adapter->hw);
1035
1036         kfree(adapter->tx_ring);
1037         kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039         kfree(adapter->polling_netdev);
1040 #endif
1041
1042         iounmap(adapter->hw.hw_addr);
1043         if (adapter->hw.flash_address)
1044                 iounmap(adapter->hw.flash_address);
1045         pci_release_regions(pdev);
1046
1047         free_netdev(netdev);
1048
1049         pci_disable_device(pdev);
1050 }
1051
1052 /**
1053  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1054  * @adapter: board private structure to initialize
1055  *
1056  * e1000_sw_init initializes the Adapter private data structure.
1057  * Fields are initialized based on PCI device information and
1058  * OS network device settings (MTU size).
1059  **/
1060
1061 static int __devinit
1062 e1000_sw_init(struct e1000_adapter *adapter)
1063 {
1064         struct e1000_hw *hw = &adapter->hw;
1065         struct net_device *netdev = adapter->netdev;
1066         struct pci_dev *pdev = adapter->pdev;
1067 #ifdef CONFIG_E1000_NAPI
1068         int i;
1069 #endif
1070
1071         /* PCI config space info */
1072
1073         hw->vendor_id = pdev->vendor;
1074         hw->device_id = pdev->device;
1075         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1076         hw->subsystem_id = pdev->subsystem_device;
1077
1078         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1079
1080         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1081
1082         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1083         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1084         hw->max_frame_size = netdev->mtu +
1085                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1086         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1087
1088         /* identify the MAC */
1089
1090         if (e1000_set_mac_type(hw)) {
1091                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1092                 return -EIO;
1093         }
1094
1095         switch (hw->mac_type) {
1096         default:
1097                 break;
1098         case e1000_82541:
1099         case e1000_82547:
1100         case e1000_82541_rev_2:
1101         case e1000_82547_rev_2:
1102                 hw->phy_init_script = 1;
1103                 break;
1104         }
1105
1106         e1000_set_media_type(hw);
1107
1108         hw->wait_autoneg_complete = FALSE;
1109         hw->tbi_compatibility_en = TRUE;
1110         hw->adaptive_ifs = TRUE;
1111
1112         /* Copper options */
1113
1114         if (hw->media_type == e1000_media_type_copper) {
1115                 hw->mdix = AUTO_ALL_MODES;
1116                 hw->disable_polarity_correction = FALSE;
1117                 hw->master_slave = E1000_MASTER_SLAVE;
1118         }
1119
1120         adapter->num_tx_queues = 1;
1121         adapter->num_rx_queues = 1;
1122
1123         if (e1000_alloc_queues(adapter)) {
1124                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1125                 return -ENOMEM;
1126         }
1127
1128 #ifdef CONFIG_E1000_NAPI
1129         for (i = 0; i < adapter->num_rx_queues; i++) {
1130                 adapter->polling_netdev[i].priv = adapter;
1131                 adapter->polling_netdev[i].poll = &e1000_clean;
1132                 adapter->polling_netdev[i].weight = 64;
1133                 dev_hold(&adapter->polling_netdev[i]);
1134                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1135         }
1136         spin_lock_init(&adapter->tx_queue_lock);
1137 #endif
1138
1139         atomic_set(&adapter->irq_sem, 1);
1140         spin_lock_init(&adapter->stats_lock);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  * e1000_alloc_queues - Allocate memory for all rings
1147  * @adapter: board private structure to initialize
1148  *
1149  * We allocate one ring per queue at run-time since we don't know the
1150  * number of queues at compile-time.  The polling_netdev array is
1151  * intended for Multiqueue, but should work fine with a single queue.
1152  **/
1153
1154 static int __devinit
1155 e1000_alloc_queues(struct e1000_adapter *adapter)
1156 {
1157         int size;
1158
1159         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1160         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1161         if (!adapter->tx_ring)
1162                 return -ENOMEM;
1163         memset(adapter->tx_ring, 0, size);
1164
1165         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1166         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1167         if (!adapter->rx_ring) {
1168                 kfree(adapter->tx_ring);
1169                 return -ENOMEM;
1170         }
1171         memset(adapter->rx_ring, 0, size);
1172
1173 #ifdef CONFIG_E1000_NAPI
1174         size = sizeof(struct net_device) * adapter->num_rx_queues;
1175         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1176         if (!adapter->polling_netdev) {
1177                 kfree(adapter->tx_ring);
1178                 kfree(adapter->rx_ring);
1179                 return -ENOMEM;
1180         }
1181         memset(adapter->polling_netdev, 0, size);
1182 #endif
1183
1184         return E1000_SUCCESS;
1185 }
1186
1187 /**
1188  * e1000_open - Called when a network interface is made active
1189  * @netdev: network interface device structure
1190  *
1191  * Returns 0 on success, negative value on failure
1192  *
1193  * The open entry point is called when a network interface is made
1194  * active by the system (IFF_UP).  At this point all resources needed
1195  * for transmit and receive operations are allocated, the interrupt
1196  * handler is registered with the OS, the watchdog timer is started,
1197  * and the stack is notified that the interface is ready.
1198  **/
1199
1200 static int
1201 e1000_open(struct net_device *netdev)
1202 {
1203         struct e1000_adapter *adapter = netdev_priv(netdev);
1204         int err;
1205
1206         /* disallow open during test */
1207         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1208                 return -EBUSY;
1209
1210         /* allocate transmit descriptors */
1211
1212         if ((err = e1000_setup_all_tx_resources(adapter)))
1213                 goto err_setup_tx;
1214
1215         /* allocate receive descriptors */
1216
1217         if ((err = e1000_setup_all_rx_resources(adapter)))
1218                 goto err_setup_rx;
1219
1220         err = e1000_request_irq(adapter);
1221         if (err)
1222                 goto err_req_irq;
1223
1224         e1000_power_up_phy(adapter);
1225
1226         if ((err = e1000_up(adapter)))
1227                 goto err_up;
1228         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1229         if ((adapter->hw.mng_cookie.status &
1230                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1231                 e1000_update_mng_vlan(adapter);
1232         }
1233
1234         /* If AMT is enabled, let the firmware know that the network
1235          * interface is now open */
1236         if (adapter->hw.mac_type == e1000_82573 &&
1237             e1000_check_mng_mode(&adapter->hw))
1238                 e1000_get_hw_control(adapter);
1239
1240         return E1000_SUCCESS;
1241
1242 err_up:
1243         e1000_power_down_phy(adapter);
1244         e1000_free_irq(adapter);
1245 err_req_irq:
1246         e1000_free_all_rx_resources(adapter);
1247 err_setup_rx:
1248         e1000_free_all_tx_resources(adapter);
1249 err_setup_tx:
1250         e1000_reset(adapter);
1251
1252         return err;
1253 }
1254
1255 /**
1256  * e1000_close - Disables a network interface
1257  * @netdev: network interface device structure
1258  *
1259  * Returns 0, this is not allowed to fail
1260  *
1261  * The close entry point is called when an interface is de-activated
1262  * by the OS.  The hardware is still under the drivers control, but
1263  * needs to be disabled.  A global MAC reset is issued to stop the
1264  * hardware, and all transmit and receive resources are freed.
1265  **/
1266
1267 static int
1268 e1000_close(struct net_device *netdev)
1269 {
1270         struct e1000_adapter *adapter = netdev_priv(netdev);
1271
1272         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1273         e1000_down(adapter);
1274         e1000_power_down_phy(adapter);
1275         e1000_free_irq(adapter);
1276
1277         e1000_free_all_tx_resources(adapter);
1278         e1000_free_all_rx_resources(adapter);
1279
1280         if ((adapter->hw.mng_cookie.status &
1281                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1282                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1283         }
1284
1285         /* If AMT is enabled, let the firmware know that the network
1286          * interface is now closed */
1287         if (adapter->hw.mac_type == e1000_82573 &&
1288             e1000_check_mng_mode(&adapter->hw))
1289                 e1000_release_hw_control(adapter);
1290
1291         return 0;
1292 }
1293
1294 /**
1295  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1296  * @adapter: address of board private structure
1297  * @start: address of beginning of memory
1298  * @len: length of memory
1299  **/
1300 static boolean_t
1301 e1000_check_64k_bound(struct e1000_adapter *adapter,
1302                       void *start, unsigned long len)
1303 {
1304         unsigned long begin = (unsigned long) start;
1305         unsigned long end = begin + len;
1306
1307         /* First rev 82545 and 82546 need to not allow any memory
1308          * write location to cross 64k boundary due to errata 23 */
1309         if (adapter->hw.mac_type == e1000_82545 ||
1310             adapter->hw.mac_type == e1000_82546) {
1311                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1312         }
1313
1314         return TRUE;
1315 }
1316
1317 /**
1318  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1319  * @adapter: board private structure
1320  * @txdr:    tx descriptor ring (for a specific queue) to setup
1321  *
1322  * Return 0 on success, negative on failure
1323  **/
1324
1325 static int
1326 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1327                          struct e1000_tx_ring *txdr)
1328 {
1329         struct pci_dev *pdev = adapter->pdev;
1330         int size;
1331
1332         size = sizeof(struct e1000_buffer) * txdr->count;
1333         txdr->buffer_info = vmalloc(size);
1334         if (!txdr->buffer_info) {
1335                 DPRINTK(PROBE, ERR,
1336                 "Unable to allocate memory for the transmit descriptor ring\n");
1337                 return -ENOMEM;
1338         }
1339         memset(txdr->buffer_info, 0, size);
1340
1341         /* round up to nearest 4K */
1342
1343         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1344         E1000_ROUNDUP(txdr->size, 4096);
1345
1346         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1347         if (!txdr->desc) {
1348 setup_tx_desc_die:
1349                 vfree(txdr->buffer_info);
1350                 DPRINTK(PROBE, ERR,
1351                 "Unable to allocate memory for the transmit descriptor ring\n");
1352                 return -ENOMEM;
1353         }
1354
1355         /* Fix for errata 23, can't cross 64kB boundary */
1356         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1357                 void *olddesc = txdr->desc;
1358                 dma_addr_t olddma = txdr->dma;
1359                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1360                                      "at %p\n", txdr->size, txdr->desc);
1361                 /* Try again, without freeing the previous */
1362                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1363                 /* Failed allocation, critical failure */
1364                 if (!txdr->desc) {
1365                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1366                         goto setup_tx_desc_die;
1367                 }
1368
1369                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1370                         /* give up */
1371                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1372                                             txdr->dma);
1373                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1374                         DPRINTK(PROBE, ERR,
1375                                 "Unable to allocate aligned memory "
1376                                 "for the transmit descriptor ring\n");
1377                         vfree(txdr->buffer_info);
1378                         return -ENOMEM;
1379                 } else {
1380                         /* Free old allocation, new allocation was successful */
1381                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1382                 }
1383         }
1384         memset(txdr->desc, 0, txdr->size);
1385
1386         txdr->next_to_use = 0;
1387         txdr->next_to_clean = 0;
1388         spin_lock_init(&txdr->tx_lock);
1389
1390         return 0;
1391 }
1392
1393 /**
1394  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1395  *                                (Descriptors) for all queues
1396  * @adapter: board private structure
1397  *
1398  * Return 0 on success, negative on failure
1399  **/
1400
1401 int
1402 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1403 {
1404         int i, err = 0;
1405
1406         for (i = 0; i < adapter->num_tx_queues; i++) {
1407                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1408                 if (err) {
1409                         DPRINTK(PROBE, ERR,
1410                                 "Allocation for Tx Queue %u failed\n", i);
1411                         for (i-- ; i >= 0; i--)
1412                                 e1000_free_tx_resources(adapter,
1413                                                         &adapter->tx_ring[i]);
1414                         break;
1415                 }
1416         }
1417
1418         return err;
1419 }
1420
1421 /**
1422  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1423  * @adapter: board private structure
1424  *
1425  * Configure the Tx unit of the MAC after a reset.
1426  **/
1427
1428 static void
1429 e1000_configure_tx(struct e1000_adapter *adapter)
1430 {
1431         uint64_t tdba;
1432         struct e1000_hw *hw = &adapter->hw;
1433         uint32_t tdlen, tctl, tipg, tarc;
1434         uint32_t ipgr1, ipgr2;
1435
1436         /* Setup the HW Tx Head and Tail descriptor pointers */
1437
1438         switch (adapter->num_tx_queues) {
1439         case 1:
1440         default:
1441                 tdba = adapter->tx_ring[0].dma;
1442                 tdlen = adapter->tx_ring[0].count *
1443                         sizeof(struct e1000_tx_desc);
1444                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1445                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1446                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1447                 E1000_WRITE_REG(hw, TDT, 0);
1448                 E1000_WRITE_REG(hw, TDH, 0);
1449                 adapter->tx_ring[0].tdh = E1000_TDH;
1450                 adapter->tx_ring[0].tdt = E1000_TDT;
1451                 break;
1452         }
1453
1454         /* Set the default values for the Tx Inter Packet Gap timer */
1455
1456         if (hw->media_type == e1000_media_type_fiber ||
1457             hw->media_type == e1000_media_type_internal_serdes)
1458                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1459         else
1460                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1461
1462         switch (hw->mac_type) {
1463         case e1000_82542_rev2_0:
1464         case e1000_82542_rev2_1:
1465                 tipg = DEFAULT_82542_TIPG_IPGT;
1466                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1467                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1468                 break;
1469         case e1000_80003es2lan:
1470                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1471                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1472                 break;
1473         default:
1474                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1475                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1476                 break;
1477         }
1478         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1479         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1480         E1000_WRITE_REG(hw, TIPG, tipg);
1481
1482         /* Set the Tx Interrupt Delay register */
1483
1484         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1485         if (hw->mac_type >= e1000_82540)
1486                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1487
1488         /* Program the Transmit Control Register */
1489
1490         tctl = E1000_READ_REG(hw, TCTL);
1491
1492         tctl &= ~E1000_TCTL_CT;
1493         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1494                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1495
1496 #ifdef DISABLE_MULR
1497         /* disable Multiple Reads for debugging */
1498         tctl &= ~E1000_TCTL_MULR;
1499 #endif
1500
1501         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1502                 tarc = E1000_READ_REG(hw, TARC0);
1503                 tarc |= ((1 << 25) | (1 << 21));
1504                 E1000_WRITE_REG(hw, TARC0, tarc);
1505                 tarc = E1000_READ_REG(hw, TARC1);
1506                 tarc |= (1 << 25);
1507                 if (tctl & E1000_TCTL_MULR)
1508                         tarc &= ~(1 << 28);
1509                 else
1510                         tarc |= (1 << 28);
1511                 E1000_WRITE_REG(hw, TARC1, tarc);
1512         } else if (hw->mac_type == e1000_80003es2lan) {
1513                 tarc = E1000_READ_REG(hw, TARC0);
1514                 tarc |= 1;
1515                 E1000_WRITE_REG(hw, TARC0, tarc);
1516                 tarc = E1000_READ_REG(hw, TARC1);
1517                 tarc |= 1;
1518                 E1000_WRITE_REG(hw, TARC1, tarc);
1519         }
1520
1521         e1000_config_collision_dist(hw);
1522
1523         /* Setup Transmit Descriptor Settings for eop descriptor */
1524         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1525                 E1000_TXD_CMD_IFCS;
1526
1527         if (hw->mac_type < e1000_82543)
1528                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1529         else
1530                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1531
1532         /* Cache if we're 82544 running in PCI-X because we'll
1533          * need this to apply a workaround later in the send path. */
1534         if (hw->mac_type == e1000_82544 &&
1535             hw->bus_type == e1000_bus_type_pcix)
1536                 adapter->pcix_82544 = 1;
1537
1538         E1000_WRITE_REG(hw, TCTL, tctl);
1539
1540 }
1541
1542 /**
1543  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1544  * @adapter: board private structure
1545  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1546  *
1547  * Returns 0 on success, negative on failure
1548  **/
1549
1550 static int
1551 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1552                          struct e1000_rx_ring *rxdr)
1553 {
1554         struct pci_dev *pdev = adapter->pdev;
1555         int size, desc_len;
1556
1557         size = sizeof(struct e1000_buffer) * rxdr->count;
1558         rxdr->buffer_info = vmalloc(size);
1559         if (!rxdr->buffer_info) {
1560                 DPRINTK(PROBE, ERR,
1561                 "Unable to allocate memory for the receive descriptor ring\n");
1562                 return -ENOMEM;
1563         }
1564         memset(rxdr->buffer_info, 0, size);
1565
1566         size = sizeof(struct e1000_ps_page) * rxdr->count;
1567         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1568         if (!rxdr->ps_page) {
1569                 vfree(rxdr->buffer_info);
1570                 DPRINTK(PROBE, ERR,
1571                 "Unable to allocate memory for the receive descriptor ring\n");
1572                 return -ENOMEM;
1573         }
1574         memset(rxdr->ps_page, 0, size);
1575
1576         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1577         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1578         if (!rxdr->ps_page_dma) {
1579                 vfree(rxdr->buffer_info);
1580                 kfree(rxdr->ps_page);
1581                 DPRINTK(PROBE, ERR,
1582                 "Unable to allocate memory for the receive descriptor ring\n");
1583                 return -ENOMEM;
1584         }
1585         memset(rxdr->ps_page_dma, 0, size);
1586
1587         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1588                 desc_len = sizeof(struct e1000_rx_desc);
1589         else
1590                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1591
1592         /* Round up to nearest 4K */
1593
1594         rxdr->size = rxdr->count * desc_len;
1595         E1000_ROUNDUP(rxdr->size, 4096);
1596
1597         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1598
1599         if (!rxdr->desc) {
1600                 DPRINTK(PROBE, ERR,
1601                 "Unable to allocate memory for the receive descriptor ring\n");
1602 setup_rx_desc_die:
1603                 vfree(rxdr->buffer_info);
1604                 kfree(rxdr->ps_page);
1605                 kfree(rxdr->ps_page_dma);
1606                 return -ENOMEM;
1607         }
1608
1609         /* Fix for errata 23, can't cross 64kB boundary */
1610         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1611                 void *olddesc = rxdr->desc;
1612                 dma_addr_t olddma = rxdr->dma;
1613                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1614                                      "at %p\n", rxdr->size, rxdr->desc);
1615                 /* Try again, without freeing the previous */
1616                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1617                 /* Failed allocation, critical failure */
1618                 if (!rxdr->desc) {
1619                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1620                         DPRINTK(PROBE, ERR,
1621                                 "Unable to allocate memory "
1622                                 "for the receive descriptor ring\n");
1623                         goto setup_rx_desc_die;
1624                 }
1625
1626                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1627                         /* give up */
1628                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1629                                             rxdr->dma);
1630                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1631                         DPRINTK(PROBE, ERR,
1632                                 "Unable to allocate aligned memory "
1633                                 "for the receive descriptor ring\n");
1634                         goto setup_rx_desc_die;
1635                 } else {
1636                         /* Free old allocation, new allocation was successful */
1637                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1638                 }
1639         }
1640         memset(rxdr->desc, 0, rxdr->size);
1641
1642         rxdr->next_to_clean = 0;
1643         rxdr->next_to_use = 0;
1644
1645         return 0;
1646 }
1647
1648 /**
1649  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1650  *                                (Descriptors) for all queues
1651  * @adapter: board private structure
1652  *
1653  * Return 0 on success, negative on failure
1654  **/
1655
1656 int
1657 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1658 {
1659         int i, err = 0;
1660
1661         for (i = 0; i < adapter->num_rx_queues; i++) {
1662                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1663                 if (err) {
1664                         DPRINTK(PROBE, ERR,
1665                                 "Allocation for Rx Queue %u failed\n", i);
1666                         for (i-- ; i >= 0; i--)
1667                                 e1000_free_rx_resources(adapter,
1668                                                         &adapter->rx_ring[i]);
1669                         break;
1670                 }
1671         }
1672
1673         return err;
1674 }
1675
1676 /**
1677  * e1000_setup_rctl - configure the receive control registers
1678  * @adapter: Board private structure
1679  **/
1680 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1681                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1682 static void
1683 e1000_setup_rctl(struct e1000_adapter *adapter)
1684 {
1685         uint32_t rctl, rfctl;
1686         uint32_t psrctl = 0;
1687 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1688         uint32_t pages = 0;
1689 #endif
1690
1691         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1692
1693         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1694
1695         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1696                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1697                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1698
1699         if (adapter->hw.tbi_compatibility_on == 1)
1700                 rctl |= E1000_RCTL_SBP;
1701         else
1702                 rctl &= ~E1000_RCTL_SBP;
1703
1704         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1705                 rctl &= ~E1000_RCTL_LPE;
1706         else
1707                 rctl |= E1000_RCTL_LPE;
1708
1709         /* Setup buffer sizes */
1710         rctl &= ~E1000_RCTL_SZ_4096;
1711         rctl |= E1000_RCTL_BSEX;
1712         switch (adapter->rx_buffer_len) {
1713                 case E1000_RXBUFFER_256:
1714                         rctl |= E1000_RCTL_SZ_256;
1715                         rctl &= ~E1000_RCTL_BSEX;
1716                         break;
1717                 case E1000_RXBUFFER_512:
1718                         rctl |= E1000_RCTL_SZ_512;
1719                         rctl &= ~E1000_RCTL_BSEX;
1720                         break;
1721                 case E1000_RXBUFFER_1024:
1722                         rctl |= E1000_RCTL_SZ_1024;
1723                         rctl &= ~E1000_RCTL_BSEX;
1724                         break;
1725                 case E1000_RXBUFFER_2048:
1726                 default:
1727                         rctl |= E1000_RCTL_SZ_2048;
1728                         rctl &= ~E1000_RCTL_BSEX;
1729                         break;
1730                 case E1000_RXBUFFER_4096:
1731                         rctl |= E1000_RCTL_SZ_4096;
1732                         break;
1733                 case E1000_RXBUFFER_8192:
1734                         rctl |= E1000_RCTL_SZ_8192;
1735                         break;
1736                 case E1000_RXBUFFER_16384:
1737                         rctl |= E1000_RCTL_SZ_16384;
1738                         break;
1739         }
1740
1741 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1742         /* 82571 and greater support packet-split where the protocol
1743          * header is placed in skb->data and the packet data is
1744          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1745          * In the case of a non-split, skb->data is linearly filled,
1746          * followed by the page buffers.  Therefore, skb->data is
1747          * sized to hold the largest protocol header.
1748          */
1749         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1750         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1751             PAGE_SIZE <= 16384)
1752                 adapter->rx_ps_pages = pages;
1753         else
1754                 adapter->rx_ps_pages = 0;
1755 #endif
1756         if (adapter->rx_ps_pages) {
1757                 /* Configure extra packet-split registers */
1758                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1759                 rfctl |= E1000_RFCTL_EXTEN;
1760                 /* disable IPv6 packet split support */
1761                 rfctl |= E1000_RFCTL_IPV6_DIS;
1762                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1763
1764                 rctl |= E1000_RCTL_DTYP_PS;
1765
1766                 psrctl |= adapter->rx_ps_bsize0 >>
1767                         E1000_PSRCTL_BSIZE0_SHIFT;
1768
1769                 switch (adapter->rx_ps_pages) {
1770                 case 3:
1771                         psrctl |= PAGE_SIZE <<
1772                                 E1000_PSRCTL_BSIZE3_SHIFT;
1773                 case 2:
1774                         psrctl |= PAGE_SIZE <<
1775                                 E1000_PSRCTL_BSIZE2_SHIFT;
1776                 case 1:
1777                         psrctl |= PAGE_SIZE >>
1778                                 E1000_PSRCTL_BSIZE1_SHIFT;
1779                         break;
1780                 }
1781
1782                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1783         }
1784
1785         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1786 }
1787
1788 /**
1789  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1790  * @adapter: board private structure
1791  *
1792  * Configure the Rx unit of the MAC after a reset.
1793  **/
1794
1795 static void
1796 e1000_configure_rx(struct e1000_adapter *adapter)
1797 {
1798         uint64_t rdba;
1799         struct e1000_hw *hw = &adapter->hw;
1800         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1801
1802         if (adapter->rx_ps_pages) {
1803                 /* this is a 32 byte descriptor */
1804                 rdlen = adapter->rx_ring[0].count *
1805                         sizeof(union e1000_rx_desc_packet_split);
1806                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1807                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1808         } else {
1809                 rdlen = adapter->rx_ring[0].count *
1810                         sizeof(struct e1000_rx_desc);
1811                 adapter->clean_rx = e1000_clean_rx_irq;
1812                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1813         }
1814
1815         /* disable receives while setting up the descriptors */
1816         rctl = E1000_READ_REG(hw, RCTL);
1817         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1818
1819         /* set the Receive Delay Timer Register */
1820         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1821
1822         if (hw->mac_type >= e1000_82540) {
1823                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1824                 if (adapter->itr > 1)
1825                         E1000_WRITE_REG(hw, ITR,
1826                                 1000000000 / (adapter->itr * 256));
1827         }
1828
1829         if (hw->mac_type >= e1000_82571) {
1830                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1831                 /* Reset delay timers after every interrupt */
1832                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1833 #ifdef CONFIG_E1000_NAPI
1834                 /* Auto-Mask interrupts upon ICR read. */
1835                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1836 #endif
1837                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1838                 E1000_WRITE_REG(hw, IAM, ~0);
1839                 E1000_WRITE_FLUSH(hw);
1840         }
1841
1842         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1843          * the Base and Length of the Rx Descriptor Ring */
1844         switch (adapter->num_rx_queues) {
1845         case 1:
1846         default:
1847                 rdba = adapter->rx_ring[0].dma;
1848                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1849                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1850                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1851                 E1000_WRITE_REG(hw, RDT, 0);
1852                 E1000_WRITE_REG(hw, RDH, 0);
1853                 adapter->rx_ring[0].rdh = E1000_RDH;
1854                 adapter->rx_ring[0].rdt = E1000_RDT;
1855                 break;
1856         }
1857
1858         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1859         if (hw->mac_type >= e1000_82543) {
1860                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1861                 if (adapter->rx_csum == TRUE) {
1862                         rxcsum |= E1000_RXCSUM_TUOFL;
1863
1864                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1865                          * Must be used in conjunction with packet-split. */
1866                         if ((hw->mac_type >= e1000_82571) &&
1867                             (adapter->rx_ps_pages)) {
1868                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1869                         }
1870                 } else {
1871                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1872                         /* don't need to clear IPPCSE as it defaults to 0 */
1873                 }
1874                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1875         }
1876
1877         /* Enable Receives */
1878         E1000_WRITE_REG(hw, RCTL, rctl);
1879 }
1880
1881 /**
1882  * e1000_free_tx_resources - Free Tx Resources per Queue
1883  * @adapter: board private structure
1884  * @tx_ring: Tx descriptor ring for a specific queue
1885  *
1886  * Free all transmit software resources
1887  **/
1888
1889 static void
1890 e1000_free_tx_resources(struct e1000_adapter *adapter,
1891                         struct e1000_tx_ring *tx_ring)
1892 {
1893         struct pci_dev *pdev = adapter->pdev;
1894
1895         e1000_clean_tx_ring(adapter, tx_ring);
1896
1897         vfree(tx_ring->buffer_info);
1898         tx_ring->buffer_info = NULL;
1899
1900         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1901
1902         tx_ring->desc = NULL;
1903 }
1904
1905 /**
1906  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1907  * @adapter: board private structure
1908  *
1909  * Free all transmit software resources
1910  **/
1911
1912 void
1913 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1914 {
1915         int i;
1916
1917         for (i = 0; i < adapter->num_tx_queues; i++)
1918                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1919 }
1920
1921 static void
1922 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1923                         struct e1000_buffer *buffer_info)
1924 {
1925         if (buffer_info->dma) {
1926                 pci_unmap_page(adapter->pdev,
1927                                 buffer_info->dma,
1928                                 buffer_info->length,
1929                                 PCI_DMA_TODEVICE);
1930         }
1931         if (buffer_info->skb)
1932                 dev_kfree_skb_any(buffer_info->skb);
1933         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1934 }
1935
1936 /**
1937  * e1000_clean_tx_ring - Free Tx Buffers
1938  * @adapter: board private structure
1939  * @tx_ring: ring to be cleaned
1940  **/
1941
1942 static void
1943 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1944                     struct e1000_tx_ring *tx_ring)
1945 {
1946         struct e1000_buffer *buffer_info;
1947         unsigned long size;
1948         unsigned int i;
1949
1950         /* Free all the Tx ring sk_buffs */
1951
1952         for (i = 0; i < tx_ring->count; i++) {
1953                 buffer_info = &tx_ring->buffer_info[i];
1954                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1955         }
1956
1957         size = sizeof(struct e1000_buffer) * tx_ring->count;
1958         memset(tx_ring->buffer_info, 0, size);
1959
1960         /* Zero out the descriptor ring */
1961
1962         memset(tx_ring->desc, 0, tx_ring->size);
1963
1964         tx_ring->next_to_use = 0;
1965         tx_ring->next_to_clean = 0;
1966         tx_ring->last_tx_tso = 0;
1967
1968         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1969         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1970 }
1971
1972 /**
1973  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1974  * @adapter: board private structure
1975  **/
1976
1977 static void
1978 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1979 {
1980         int i;
1981
1982         for (i = 0; i < adapter->num_tx_queues; i++)
1983                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1984 }
1985
1986 /**
1987  * e1000_free_rx_resources - Free Rx Resources
1988  * @adapter: board private structure
1989  * @rx_ring: ring to clean the resources from
1990  *
1991  * Free all receive software resources
1992  **/
1993
1994 static void
1995 e1000_free_rx_resources(struct e1000_adapter *adapter,
1996                         struct e1000_rx_ring *rx_ring)
1997 {
1998         struct pci_dev *pdev = adapter->pdev;
1999
2000         e1000_clean_rx_ring(adapter, rx_ring);
2001
2002         vfree(rx_ring->buffer_info);
2003         rx_ring->buffer_info = NULL;
2004         kfree(rx_ring->ps_page);
2005         rx_ring->ps_page = NULL;
2006         kfree(rx_ring->ps_page_dma);
2007         rx_ring->ps_page_dma = NULL;
2008
2009         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2010
2011         rx_ring->desc = NULL;
2012 }
2013
2014 /**
2015  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2016  * @adapter: board private structure
2017  *
2018  * Free all receive software resources
2019  **/
2020
2021 void
2022 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2023 {
2024         int i;
2025
2026         for (i = 0; i < adapter->num_rx_queues; i++)
2027                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2028 }
2029
2030 /**
2031  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2032  * @adapter: board private structure
2033  * @rx_ring: ring to free buffers from
2034  **/
2035
2036 static void
2037 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2038                     struct e1000_rx_ring *rx_ring)
2039 {
2040         struct e1000_buffer *buffer_info;
2041         struct e1000_ps_page *ps_page;
2042         struct e1000_ps_page_dma *ps_page_dma;
2043         struct pci_dev *pdev = adapter->pdev;
2044         unsigned long size;
2045         unsigned int i, j;
2046
2047         /* Free all the Rx ring sk_buffs */
2048         for (i = 0; i < rx_ring->count; i++) {
2049                 buffer_info = &rx_ring->buffer_info[i];
2050                 if (buffer_info->skb) {
2051                         pci_unmap_single(pdev,
2052                                          buffer_info->dma,
2053                                          buffer_info->length,
2054                                          PCI_DMA_FROMDEVICE);
2055
2056                         dev_kfree_skb(buffer_info->skb);
2057                         buffer_info->skb = NULL;
2058                 }
2059                 ps_page = &rx_ring->ps_page[i];
2060                 ps_page_dma = &rx_ring->ps_page_dma[i];
2061                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2062                         if (!ps_page->ps_page[j]) break;
2063                         pci_unmap_page(pdev,
2064                                        ps_page_dma->ps_page_dma[j],
2065                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2066                         ps_page_dma->ps_page_dma[j] = 0;
2067                         put_page(ps_page->ps_page[j]);
2068                         ps_page->ps_page[j] = NULL;
2069                 }
2070         }
2071
2072         size = sizeof(struct e1000_buffer) * rx_ring->count;
2073         memset(rx_ring->buffer_info, 0, size);
2074         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2075         memset(rx_ring->ps_page, 0, size);
2076         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2077         memset(rx_ring->ps_page_dma, 0, size);
2078
2079         /* Zero out the descriptor ring */
2080
2081         memset(rx_ring->desc, 0, rx_ring->size);
2082
2083         rx_ring->next_to_clean = 0;
2084         rx_ring->next_to_use = 0;
2085
2086         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2087         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2088 }
2089
2090 /**
2091  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2092  * @adapter: board private structure
2093  **/
2094
2095 static void
2096 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2097 {
2098         int i;
2099
2100         for (i = 0; i < adapter->num_rx_queues; i++)
2101                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2102 }
2103
2104 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2105  * and memory write and invalidate disabled for certain operations
2106  */
2107 static void
2108 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2109 {
2110         struct net_device *netdev = adapter->netdev;
2111         uint32_t rctl;
2112
2113         e1000_pci_clear_mwi(&adapter->hw);
2114
2115         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2116         rctl |= E1000_RCTL_RST;
2117         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2118         E1000_WRITE_FLUSH(&adapter->hw);
2119         mdelay(5);
2120
2121         if (netif_running(netdev))
2122                 e1000_clean_all_rx_rings(adapter);
2123 }
2124
2125 static void
2126 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2127 {
2128         struct net_device *netdev = adapter->netdev;
2129         uint32_t rctl;
2130
2131         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2132         rctl &= ~E1000_RCTL_RST;
2133         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2134         E1000_WRITE_FLUSH(&adapter->hw);
2135         mdelay(5);
2136
2137         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2138                 e1000_pci_set_mwi(&adapter->hw);
2139
2140         if (netif_running(netdev)) {
2141                 /* No need to loop, because 82542 supports only 1 queue */
2142                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2143                 e1000_configure_rx(adapter);
2144                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2145         }
2146 }
2147
2148 /**
2149  * e1000_set_mac - Change the Ethernet Address of the NIC
2150  * @netdev: network interface device structure
2151  * @p: pointer to an address structure
2152  *
2153  * Returns 0 on success, negative on failure
2154  **/
2155
2156 static int
2157 e1000_set_mac(struct net_device *netdev, void *p)
2158 {
2159         struct e1000_adapter *adapter = netdev_priv(netdev);
2160         struct sockaddr *addr = p;
2161
2162         if (!is_valid_ether_addr(addr->sa_data))
2163                 return -EADDRNOTAVAIL;
2164
2165         /* 82542 2.0 needs to be in reset to write receive address registers */
2166
2167         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2168                 e1000_enter_82542_rst(adapter);
2169
2170         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2171         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2172
2173         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2174
2175         /* With 82571 controllers, LAA may be overwritten (with the default)
2176          * due to controller reset from the other port. */
2177         if (adapter->hw.mac_type == e1000_82571) {
2178                 /* activate the work around */
2179                 adapter->hw.laa_is_present = 1;
2180
2181                 /* Hold a copy of the LAA in RAR[14] This is done so that
2182                  * between the time RAR[0] gets clobbered  and the time it
2183                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2184                  * of the RARs and no incoming packets directed to this port
2185                  * are dropped. Eventaully the LAA will be in RAR[0] and
2186                  * RAR[14] */
2187                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2188                                         E1000_RAR_ENTRIES - 1);
2189         }
2190
2191         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2192                 e1000_leave_82542_rst(adapter);
2193
2194         return 0;
2195 }
2196
2197 /**
2198  * e1000_set_multi - Multicast and Promiscuous mode set
2199  * @netdev: network interface device structure
2200  *
2201  * The set_multi entry point is called whenever the multicast address
2202  * list or the network interface flags are updated.  This routine is
2203  * responsible for configuring the hardware for proper multicast,
2204  * promiscuous mode, and all-multi behavior.
2205  **/
2206
2207 static void
2208 e1000_set_multi(struct net_device *netdev)
2209 {
2210         struct e1000_adapter *adapter = netdev_priv(netdev);
2211         struct e1000_hw *hw = &adapter->hw;
2212         struct dev_mc_list *mc_ptr;
2213         uint32_t rctl;
2214         uint32_t hash_value;
2215         int i, rar_entries = E1000_RAR_ENTRIES;
2216         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2217                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2218                                 E1000_NUM_MTA_REGISTERS;
2219
2220         if (adapter->hw.mac_type == e1000_ich8lan)
2221                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2222
2223         /* reserve RAR[14] for LAA over-write work-around */
2224         if (adapter->hw.mac_type == e1000_82571)
2225                 rar_entries--;
2226
2227         /* Check for Promiscuous and All Multicast modes */
2228
2229         rctl = E1000_READ_REG(hw, RCTL);
2230
2231         if (netdev->flags & IFF_PROMISC) {
2232                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233         } else if (netdev->flags & IFF_ALLMULTI) {
2234                 rctl |= E1000_RCTL_MPE;
2235                 rctl &= ~E1000_RCTL_UPE;
2236         } else {
2237                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2238         }
2239
2240         E1000_WRITE_REG(hw, RCTL, rctl);
2241
2242         /* 82542 2.0 needs to be in reset to write receive address registers */
2243
2244         if (hw->mac_type == e1000_82542_rev2_0)
2245                 e1000_enter_82542_rst(adapter);
2246
2247         /* load the first 14 multicast address into the exact filters 1-14
2248          * RAR 0 is used for the station MAC adddress
2249          * if there are not 14 addresses, go ahead and clear the filters
2250          * -- with 82571 controllers only 0-13 entries are filled here
2251          */
2252         mc_ptr = netdev->mc_list;
2253
2254         for (i = 1; i < rar_entries; i++) {
2255                 if (mc_ptr) {
2256                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2257                         mc_ptr = mc_ptr->next;
2258                 } else {
2259                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2260                         E1000_WRITE_FLUSH(hw);
2261                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2262                         E1000_WRITE_FLUSH(hw);
2263                 }
2264         }
2265
2266         /* clear the old settings from the multicast hash table */
2267
2268         for (i = 0; i < mta_reg_count; i++) {
2269                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2270                 E1000_WRITE_FLUSH(hw);
2271         }
2272
2273         /* load any remaining addresses into the hash table */
2274
2275         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2276                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2277                 e1000_mta_set(hw, hash_value);
2278         }
2279
2280         if (hw->mac_type == e1000_82542_rev2_0)
2281                 e1000_leave_82542_rst(adapter);
2282 }
2283
2284 /* Need to wait a few seconds after link up to get diagnostic information from
2285  * the phy */
2286
2287 static void
2288 e1000_update_phy_info(unsigned long data)
2289 {
2290         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2291         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2292 }
2293
2294 /**
2295  * e1000_82547_tx_fifo_stall - Timer Call-back
2296  * @data: pointer to adapter cast into an unsigned long
2297  **/
2298
2299 static void
2300 e1000_82547_tx_fifo_stall(unsigned long data)
2301 {
2302         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2303         struct net_device *netdev = adapter->netdev;
2304         uint32_t tctl;
2305
2306         if (atomic_read(&adapter->tx_fifo_stall)) {
2307                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2308                     E1000_READ_REG(&adapter->hw, TDH)) &&
2309                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2310                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2311                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2312                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2313                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2314                         E1000_WRITE_REG(&adapter->hw, TCTL,
2315                                         tctl & ~E1000_TCTL_EN);
2316                         E1000_WRITE_REG(&adapter->hw, TDFT,
2317                                         adapter->tx_head_addr);
2318                         E1000_WRITE_REG(&adapter->hw, TDFH,
2319                                         adapter->tx_head_addr);
2320                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2321                                         adapter->tx_head_addr);
2322                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2323                                         adapter->tx_head_addr);
2324                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2325                         E1000_WRITE_FLUSH(&adapter->hw);
2326
2327                         adapter->tx_fifo_head = 0;
2328                         atomic_set(&adapter->tx_fifo_stall, 0);
2329                         netif_wake_queue(netdev);
2330                 } else {
2331                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2332                 }
2333         }
2334 }
2335
2336 /**
2337  * e1000_watchdog - Timer Call-back
2338  * @data: pointer to adapter cast into an unsigned long
2339  **/
2340 static void
2341 e1000_watchdog(unsigned long data)
2342 {
2343         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2344         struct net_device *netdev = adapter->netdev;
2345         struct e1000_tx_ring *txdr = adapter->tx_ring;
2346         uint32_t link, tctl;
2347         int32_t ret_val;
2348
2349         ret_val = e1000_check_for_link(&adapter->hw);
2350         if ((ret_val == E1000_ERR_PHY) &&
2351             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2352             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2353                 /* See e1000_kumeran_lock_loss_workaround() */
2354                 DPRINTK(LINK, INFO,
2355                         "Gigabit has been disabled, downgrading speed\n");
2356         }
2357         if (adapter->hw.mac_type == e1000_82573) {
2358                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2359                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2360                         e1000_update_mng_vlan(adapter);
2361         }
2362
2363         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2364            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2365                 link = !adapter->hw.serdes_link_down;
2366         else
2367                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2368
2369         if (link) {
2370                 if (!netif_carrier_ok(netdev)) {
2371                         boolean_t txb2b = 1;
2372                         e1000_get_speed_and_duplex(&adapter->hw,
2373                                                    &adapter->link_speed,
2374                                                    &adapter->link_duplex);
2375
2376                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2377                                adapter->link_speed,
2378                                adapter->link_duplex == FULL_DUPLEX ?
2379                                "Full Duplex" : "Half Duplex");
2380
2381                         /* tweak tx_queue_len according to speed/duplex
2382                          * and adjust the timeout factor */
2383                         netdev->tx_queue_len = adapter->tx_queue_len;
2384                         adapter->tx_timeout_factor = 1;
2385                         switch (adapter->link_speed) {
2386                         case SPEED_10:
2387                                 txb2b = 0;
2388                                 netdev->tx_queue_len = 10;
2389                                 adapter->tx_timeout_factor = 8;
2390                                 break;
2391                         case SPEED_100:
2392                                 txb2b = 0;
2393                                 netdev->tx_queue_len = 100;
2394                                 /* maybe add some timeout factor ? */
2395                                 break;
2396                         }
2397
2398                         if ((adapter->hw.mac_type == e1000_82571 ||
2399                              adapter->hw.mac_type == e1000_82572) &&
2400                             txb2b == 0) {
2401 #define SPEED_MODE_BIT (1 << 21)
2402                                 uint32_t tarc0;
2403                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2404                                 tarc0 &= ~SPEED_MODE_BIT;
2405                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2406                         }
2407                                 
2408 #ifdef NETIF_F_TSO
2409                         /* disable TSO for pcie and 10/100 speeds, to avoid
2410                          * some hardware issues */
2411                         if (!adapter->tso_force &&
2412                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2413                                 switch (adapter->link_speed) {
2414                                 case SPEED_10:
2415                                 case SPEED_100:
2416                                         DPRINTK(PROBE,INFO,
2417                                         "10/100 speed: disabling TSO\n");
2418                                         netdev->features &= ~NETIF_F_TSO;
2419                                         break;
2420                                 case SPEED_1000:
2421                                         netdev->features |= NETIF_F_TSO;
2422                                         break;
2423                                 default:
2424                                         /* oops */
2425                                         break;
2426                                 }
2427                         }
2428 #endif
2429
2430                         /* enable transmits in the hardware, need to do this
2431                          * after setting TARC0 */
2432                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2433                         tctl |= E1000_TCTL_EN;
2434                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2435
2436                         netif_carrier_on(netdev);
2437                         netif_wake_queue(netdev);
2438                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2439                         adapter->smartspeed = 0;
2440                 }
2441         } else {
2442                 if (netif_carrier_ok(netdev)) {
2443                         adapter->link_speed = 0;
2444                         adapter->link_duplex = 0;
2445                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2446                         netif_carrier_off(netdev);
2447                         netif_stop_queue(netdev);
2448                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2449
2450                         /* 80003ES2LAN workaround--
2451                          * For packet buffer work-around on link down event;
2452                          * disable receives in the ISR and
2453                          * reset device here in the watchdog
2454                          */
2455                         if (adapter->hw.mac_type == e1000_80003es2lan)
2456                                 /* reset device */
2457                                 schedule_work(&adapter->reset_task);
2458                 }
2459
2460                 e1000_smartspeed(adapter);
2461         }
2462
2463         e1000_update_stats(adapter);
2464
2465         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2466         adapter->tpt_old = adapter->stats.tpt;
2467         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2468         adapter->colc_old = adapter->stats.colc;
2469
2470         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2471         adapter->gorcl_old = adapter->stats.gorcl;
2472         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2473         adapter->gotcl_old = adapter->stats.gotcl;
2474
2475         e1000_update_adaptive(&adapter->hw);
2476
2477         if (!netif_carrier_ok(netdev)) {
2478                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2479                         /* We've lost link, so the controller stops DMA,
2480                          * but we've got queued Tx work that's never going
2481                          * to get done, so reset controller to flush Tx.
2482                          * (Do the reset outside of interrupt context). */
2483                         adapter->tx_timeout_count++;
2484                         schedule_work(&adapter->reset_task);
2485                 }
2486         }
2487
2488         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2489         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2490                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2491                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2492                  * else is between 2000-8000. */
2493                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2494                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2495                         adapter->gotcl - adapter->gorcl :
2496                         adapter->gorcl - adapter->gotcl) / 10000;
2497                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2498                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2499         }
2500
2501         /* Cause software interrupt to ensure rx ring is cleaned */
2502         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2503
2504         /* Force detection of hung controller every watchdog period */
2505         adapter->detect_tx_hung = TRUE;
2506
2507         /* With 82571 controllers, LAA may be overwritten due to controller
2508          * reset from the other port. Set the appropriate LAA in RAR[0] */
2509         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2510                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2511
2512         /* Reset the timer */
2513         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2514 }
2515
2516 #define E1000_TX_FLAGS_CSUM             0x00000001
2517 #define E1000_TX_FLAGS_VLAN             0x00000002
2518 #define E1000_TX_FLAGS_TSO              0x00000004
2519 #define E1000_TX_FLAGS_IPV4             0x00000008
2520 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2521 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2522
2523 static int
2524 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2525           struct sk_buff *skb)
2526 {
2527 #ifdef NETIF_F_TSO
2528         struct e1000_context_desc *context_desc;
2529         struct e1000_buffer *buffer_info;
2530         unsigned int i;
2531         uint32_t cmd_length = 0;
2532         uint16_t ipcse = 0, tucse, mss;
2533         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2534         int err;
2535
2536         if (skb_is_gso(skb)) {
2537                 if (skb_header_cloned(skb)) {
2538                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2539                         if (err)
2540                                 return err;
2541                 }
2542
2543                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2544                 mss = skb_shinfo(skb)->gso_size;
2545                 if (skb->protocol == htons(ETH_P_IP)) {
2546                         skb->nh.iph->tot_len = 0;
2547                         skb->nh.iph->check = 0;
2548                         skb->h.th->check =
2549                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2550                                                    skb->nh.iph->daddr,
2551                                                    0,
2552                                                    IPPROTO_TCP,
2553                                                    0);
2554                         cmd_length = E1000_TXD_CMD_IP;
2555                         ipcse = skb->h.raw - skb->data - 1;
2556 #ifdef NETIF_F_TSO_IPV6
2557                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2558                         skb->nh.ipv6h->payload_len = 0;
2559                         skb->h.th->check =
2560                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2561                                                  &skb->nh.ipv6h->daddr,
2562                                                  0,
2563                                                  IPPROTO_TCP,
2564                                                  0);
2565                         ipcse = 0;
2566 #endif
2567                 }
2568                 ipcss = skb->nh.raw - skb->data;
2569                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2570                 tucss = skb->h.raw - skb->data;
2571                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2572                 tucse = 0;
2573
2574                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2575                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2576
2577                 i = tx_ring->next_to_use;
2578                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2579                 buffer_info = &tx_ring->buffer_info[i];
2580
2581                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2582                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2583                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2584                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2585                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2586                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2587                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2588                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2589                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2590
2591                 buffer_info->time_stamp = jiffies;
2592
2593                 if (++i == tx_ring->count) i = 0;
2594                 tx_ring->next_to_use = i;
2595
2596                 return TRUE;
2597         }
2598 #endif
2599
2600         return FALSE;
2601 }
2602
2603 static boolean_t
2604 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2605               struct sk_buff *skb)
2606 {
2607         struct e1000_context_desc *context_desc;
2608         struct e1000_buffer *buffer_info;
2609         unsigned int i;
2610         uint8_t css;
2611
2612         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2613                 css = skb->h.raw - skb->data;
2614
2615                 i = tx_ring->next_to_use;
2616                 buffer_info = &tx_ring->buffer_info[i];
2617                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2618
2619                 context_desc->upper_setup.tcp_fields.tucss = css;
2620                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2621                 context_desc->upper_setup.tcp_fields.tucse = 0;
2622                 context_desc->tcp_seg_setup.data = 0;
2623                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2624
2625                 buffer_info->time_stamp = jiffies;
2626
2627                 if (unlikely(++i == tx_ring->count)) i = 0;
2628                 tx_ring->next_to_use = i;
2629
2630                 return TRUE;
2631         }
2632
2633         return FALSE;
2634 }
2635
2636 #define E1000_MAX_TXD_PWR       12
2637 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2638
2639 static int
2640 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2641              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2642              unsigned int nr_frags, unsigned int mss)
2643 {
2644         struct e1000_buffer *buffer_info;
2645         unsigned int len = skb->len;
2646         unsigned int offset = 0, size, count = 0, i;
2647         unsigned int f;
2648         len -= skb->data_len;
2649
2650         i = tx_ring->next_to_use;
2651
2652         while (len) {
2653                 buffer_info = &tx_ring->buffer_info[i];
2654                 size = min(len, max_per_txd);
2655 #ifdef NETIF_F_TSO
2656                 /* Workaround for Controller erratum --
2657                  * descriptor for non-tso packet in a linear SKB that follows a
2658                  * tso gets written back prematurely before the data is fully
2659                  * DMA'd to the controller */
2660                 if (!skb->data_len && tx_ring->last_tx_tso &&
2661                     !skb_is_gso(skb)) {
2662                         tx_ring->last_tx_tso = 0;
2663                         size -= 4;
2664                 }
2665
2666                 /* Workaround for premature desc write-backs
2667                  * in TSO mode.  Append 4-byte sentinel desc */
2668                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2669                         size -= 4;
2670 #endif
2671                 /* work-around for errata 10 and it applies
2672                  * to all controllers in PCI-X mode
2673                  * The fix is to make sure that the first descriptor of a
2674                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2675                  */
2676                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2677                                 (size > 2015) && count == 0))
2678                         size = 2015;
2679
2680                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2681                  * terminating buffers within evenly-aligned dwords. */
2682                 if (unlikely(adapter->pcix_82544 &&
2683                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2684                    size > 4))
2685                         size -= 4;
2686
2687                 buffer_info->length = size;
2688                 buffer_info->dma =
2689                         pci_map_single(adapter->pdev,
2690                                 skb->data + offset,
2691                                 size,
2692                                 PCI_DMA_TODEVICE);
2693                 buffer_info->time_stamp = jiffies;
2694
2695                 len -= size;
2696                 offset += size;
2697                 count++;
2698                 if (unlikely(++i == tx_ring->count)) i = 0;
2699         }
2700
2701         for (f = 0; f < nr_frags; f++) {
2702                 struct skb_frag_struct *frag;
2703
2704                 frag = &skb_shinfo(skb)->frags[f];
2705                 len = frag->size;
2706                 offset = frag->page_offset;
2707
2708                 while (len) {
2709                         buffer_info = &tx_ring->buffer_info[i];
2710                         size = min(len, max_per_txd);
2711 #ifdef NETIF_F_TSO
2712                         /* Workaround for premature desc write-backs
2713                          * in TSO mode.  Append 4-byte sentinel desc */
2714                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2715                                 size -= 4;
2716 #endif
2717                         /* Workaround for potential 82544 hang in PCI-X.
2718                          * Avoid terminating buffers within evenly-aligned
2719                          * dwords. */
2720                         if (unlikely(adapter->pcix_82544 &&
2721                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2722                            size > 4))
2723                                 size -= 4;
2724
2725                         buffer_info->length = size;
2726                         buffer_info->dma =
2727                                 pci_map_page(adapter->pdev,
2728                                         frag->page,
2729                                         offset,
2730                                         size,
2731                                         PCI_DMA_TODEVICE);
2732                         buffer_info->time_stamp = jiffies;
2733
2734                         len -= size;
2735                         offset += size;
2736                         count++;
2737                         if (unlikely(++i == tx_ring->count)) i = 0;
2738                 }
2739         }
2740
2741         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2742         tx_ring->buffer_info[i].skb = skb;
2743         tx_ring->buffer_info[first].next_to_watch = i;
2744
2745         return count;
2746 }
2747
2748 static void
2749 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2750                int tx_flags, int count)
2751 {
2752         struct e1000_tx_desc *tx_desc = NULL;
2753         struct e1000_buffer *buffer_info;
2754         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2755         unsigned int i;
2756
2757         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2758                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2759                              E1000_TXD_CMD_TSE;
2760                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2761
2762                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2763                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2764         }
2765
2766         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2767                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2768                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2769         }
2770
2771         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2772                 txd_lower |= E1000_TXD_CMD_VLE;
2773                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2774         }
2775
2776         i = tx_ring->next_to_use;
2777
2778         while (count--) {
2779                 buffer_info = &tx_ring->buffer_info[i];
2780                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2781                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2782                 tx_desc->lower.data =
2783                         cpu_to_le32(txd_lower | buffer_info->length);
2784                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2785                 if (unlikely(++i == tx_ring->count)) i = 0;
2786         }
2787
2788         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2789
2790         /* Force memory writes to complete before letting h/w
2791          * know there are new descriptors to fetch.  (Only
2792          * applicable for weak-ordered memory model archs,
2793          * such as IA-64). */
2794         wmb();
2795
2796         tx_ring->next_to_use = i;
2797         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2798 }
2799
2800 /**
2801  * 82547 workaround to avoid controller hang in half-duplex environment.
2802  * The workaround is to avoid queuing a large packet that would span
2803  * the internal Tx FIFO ring boundary by notifying the stack to resend
2804  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2805  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2806  * to the beginning of the Tx FIFO.
2807  **/
2808
2809 #define E1000_FIFO_HDR                  0x10
2810 #define E1000_82547_PAD_LEN             0x3E0
2811
2812 static int
2813 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2814 {
2815         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2816         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2817
2818         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2819
2820         if (adapter->link_duplex != HALF_DUPLEX)
2821                 goto no_fifo_stall_required;
2822
2823         if (atomic_read(&adapter->tx_fifo_stall))
2824                 return 1;
2825
2826         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2827                 atomic_set(&adapter->tx_fifo_stall, 1);
2828                 return 1;
2829         }
2830
2831 no_fifo_stall_required:
2832         adapter->tx_fifo_head += skb_fifo_len;
2833         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2834                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2835         return 0;
2836 }
2837
2838 #define MINIMUM_DHCP_PACKET_SIZE 282
2839 static int
2840 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2841 {
2842         struct e1000_hw *hw =  &adapter->hw;
2843         uint16_t length, offset;
2844         if (vlan_tx_tag_present(skb)) {
2845                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2846                         ( adapter->hw.mng_cookie.status &
2847                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2848                         return 0;
2849         }
2850         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2851                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2852                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2853                         const struct iphdr *ip =
2854                                 (struct iphdr *)((uint8_t *)skb->data+14);
2855                         if (IPPROTO_UDP == ip->protocol) {
2856                                 struct udphdr *udp =
2857                                         (struct udphdr *)((uint8_t *)ip +
2858                                                 (ip->ihl << 2));
2859                                 if (ntohs(udp->dest) == 67) {
2860                                         offset = (uint8_t *)udp + 8 - skb->data;
2861                                         length = skb->len - offset;
2862
2863                                         return e1000_mng_write_dhcp_info(hw,
2864                                                         (uint8_t *)udp + 8,
2865                                                         length);
2866                                 }
2867                         }
2868                 }
2869         }
2870         return 0;
2871 }
2872
2873 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2874 static int
2875 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2876 {
2877         struct e1000_adapter *adapter = netdev_priv(netdev);
2878         struct e1000_tx_ring *tx_ring;
2879         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2880         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2881         unsigned int tx_flags = 0;
2882         unsigned int len = skb->len;
2883         unsigned long flags;
2884         unsigned int nr_frags = 0;
2885         unsigned int mss = 0;
2886         int count = 0;
2887         int tso;
2888         unsigned int f;
2889         len -= skb->data_len;
2890
2891         tx_ring = adapter->tx_ring;
2892
2893         if (unlikely(skb->len <= 0)) {
2894                 dev_kfree_skb_any(skb);
2895                 return NETDEV_TX_OK;
2896         }
2897
2898 #ifdef NETIF_F_TSO
2899         mss = skb_shinfo(skb)->gso_size;
2900         /* The controller does a simple calculation to
2901          * make sure there is enough room in the FIFO before
2902          * initiating the DMA for each buffer.  The calc is:
2903          * 4 = ceil(buffer len/mss).  To make sure we don't
2904          * overrun the FIFO, adjust the max buffer len if mss
2905          * drops. */
2906         if (mss) {
2907                 uint8_t hdr_len;
2908                 max_per_txd = min(mss << 2, max_per_txd);
2909                 max_txd_pwr = fls(max_per_txd) - 1;
2910
2911         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2912          * points to just header, pull a few bytes of payload from
2913          * frags into skb->data */
2914                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2915                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2916                         switch (adapter->hw.mac_type) {
2917                                 unsigned int pull_size;
2918                         case e1000_82571:
2919                         case e1000_82572:
2920                         case e1000_82573:
2921                         case e1000_ich8lan:
2922                                 pull_size = min((unsigned int)4, skb->data_len);
2923                                 if (!__pskb_pull_tail(skb, pull_size)) {
2924                                         DPRINTK(DRV, ERR,
2925                                                 "__pskb_pull_tail failed.\n");
2926                                         dev_kfree_skb_any(skb);
2927                                         return NETDEV_TX_OK;
2928                                 }
2929                                 len = skb->len - skb->data_len;
2930                                 break;
2931                         default:
2932                                 /* do nothing */
2933                                 break;
2934                         }
2935                 }
2936         }
2937
2938         /* reserve a descriptor for the offload context */
2939         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2940                 count++;
2941         count++;
2942 #else
2943         if (skb->ip_summed == CHECKSUM_HW)
2944                 count++;
2945 #endif
2946
2947 #ifdef NETIF_F_TSO
2948         /* Controller Erratum workaround */
2949         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2950                 count++;
2951 #endif
2952
2953         count += TXD_USE_COUNT(len, max_txd_pwr);
2954
2955         if (adapter->pcix_82544)
2956                 count++;
2957
2958         /* work-around for errata 10 and it applies to all controllers
2959          * in PCI-X mode, so add one more descriptor to the count
2960          */
2961         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2962                         (len > 2015)))
2963                 count++;
2964
2965         nr_frags = skb_shinfo(skb)->nr_frags;
2966         for (f = 0; f < nr_frags; f++)
2967                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2968                                        max_txd_pwr);
2969         if (adapter->pcix_82544)
2970                 count += nr_frags;
2971
2972
2973         if (adapter->hw.tx_pkt_filtering &&
2974             (adapter->hw.mac_type == e1000_82573))
2975                 e1000_transfer_dhcp_info(adapter, skb);
2976
2977         local_irq_save(flags);
2978         if (!spin_trylock(&tx_ring->tx_lock)) {
2979                 /* Collision - tell upper layer to requeue */
2980                 local_irq_restore(flags);
2981                 return NETDEV_TX_LOCKED;
2982         }
2983
2984         /* need: count + 2 desc gap to keep tail from touching
2985          * head, otherwise try next time */
2986         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2987                 netif_stop_queue(netdev);
2988                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2989                 return NETDEV_TX_BUSY;
2990         }
2991
2992         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2993                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2994                         netif_stop_queue(netdev);
2995                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2996                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2997                         return NETDEV_TX_BUSY;
2998                 }
2999         }
3000
3001         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3002                 tx_flags |= E1000_TX_FLAGS_VLAN;
3003                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3004         }
3005
3006         first = tx_ring->next_to_use;
3007
3008         tso = e1000_tso(adapter, tx_ring, skb);
3009         if (tso < 0) {
3010                 dev_kfree_skb_any(skb);
3011                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3012                 return NETDEV_TX_OK;
3013         }
3014
3015         if (likely(tso)) {
3016                 tx_ring->last_tx_tso = 1;
3017                 tx_flags |= E1000_TX_FLAGS_TSO;
3018         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3019                 tx_flags |= E1000_TX_FLAGS_CSUM;
3020
3021         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3022          * 82571 hardware supports TSO capabilities for IPv6 as well...
3023          * no longer assume, we must. */
3024         if (likely(skb->protocol == htons(ETH_P_IP)))
3025                 tx_flags |= E1000_TX_FLAGS_IPV4;
3026
3027         e1000_tx_queue(adapter, tx_ring, tx_flags,
3028                        e1000_tx_map(adapter, tx_ring, skb, first,
3029                                     max_per_txd, nr_frags, mss));
3030
3031         netdev->trans_start = jiffies;
3032
3033         /* Make sure there is space in the ring for the next send. */
3034         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3035                 netif_stop_queue(netdev);
3036
3037         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3038         return NETDEV_TX_OK;
3039 }
3040
3041 /**
3042  * e1000_tx_timeout - Respond to a Tx Hang
3043  * @netdev: network interface device structure
3044  **/
3045
3046 static void
3047 e1000_tx_timeout(struct net_device *netdev)
3048 {
3049         struct e1000_adapter *adapter = netdev_priv(netdev);
3050
3051         /* Do the reset outside of interrupt context */
3052         adapter->tx_timeout_count++;
3053         schedule_work(&adapter->reset_task);
3054 }
3055
3056 static void
3057 e1000_reset_task(struct net_device *netdev)
3058 {
3059         struct e1000_adapter *adapter = netdev_priv(netdev);
3060
3061         e1000_reinit_locked(adapter);
3062 }
3063
3064 /**
3065  * e1000_get_stats - Get System Network Statistics
3066  * @netdev: network interface device structure
3067  *
3068  * Returns the address of the device statistics structure.
3069  * The statistics are actually updated from the timer callback.
3070  **/
3071
3072 static struct net_device_stats *
3073 e1000_get_stats(struct net_device *netdev)
3074 {
3075         struct e1000_adapter *adapter = netdev_priv(netdev);
3076
3077         /* only return the current stats */
3078         return &adapter->net_stats;
3079 }
3080
3081 /**
3082  * e1000_change_mtu - Change the Maximum Transfer Unit
3083  * @netdev: network interface device structure
3084  * @new_mtu: new value for maximum frame size
3085  *
3086  * Returns 0 on success, negative on failure
3087  **/
3088
3089 static int
3090 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3091 {
3092         struct e1000_adapter *adapter = netdev_priv(netdev);
3093         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3094         uint16_t eeprom_data = 0;
3095
3096         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3097             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3098                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3099                 return -EINVAL;
3100         }
3101
3102         /* Adapter-specific max frame size limits. */
3103         switch (adapter->hw.mac_type) {
3104         case e1000_undefined ... e1000_82542_rev2_1:
3105         case e1000_ich8lan:
3106                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3107                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3108                         return -EINVAL;
3109                 }
3110                 break;
3111         case e1000_82573:
3112                 /* only enable jumbo frames if ASPM is disabled completely
3113                  * this means both bits must be zero in 0x1A bits 3:2 */
3114                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3115                                   &eeprom_data);
3116                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3117                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3118                                 DPRINTK(PROBE, ERR,
3119                                         "Jumbo Frames not supported.\n");
3120                                 return -EINVAL;
3121                         }
3122                         break;
3123                 }
3124                 /* fall through to get support */
3125         case e1000_82571:
3126         case e1000_82572:
3127         case e1000_80003es2lan:
3128 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3129                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3130                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3131                         return -EINVAL;
3132                 }
3133                 break;
3134         default:
3135                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3136                 break;
3137         }
3138
3139         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3140          * means we reserve 2 more, this pushes us to allocate from the next
3141          * larger slab size
3142          * i.e. RXBUFFER_2048 --> size-4096 slab */
3143
3144         if (max_frame <= E1000_RXBUFFER_256)
3145                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3146         else if (max_frame <= E1000_RXBUFFER_512)
3147                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3148         else if (max_frame <= E1000_RXBUFFER_1024)
3149                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3150         else if (max_frame <= E1000_RXBUFFER_2048)
3151                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3152         else if (max_frame <= E1000_RXBUFFER_4096)
3153                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3154         else if (max_frame <= E1000_RXBUFFER_8192)
3155                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3156         else if (max_frame <= E1000_RXBUFFER_16384)
3157                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3158
3159         /* adjust allocation if LPE protects us, and we aren't using SBP */
3160         if (!adapter->hw.tbi_compatibility_on &&
3161             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3162              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3163                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3164
3165         netdev->mtu = new_mtu;
3166
3167         if (netif_running(netdev))
3168                 e1000_reinit_locked(adapter);
3169
3170         adapter->hw.max_frame_size = max_frame;
3171
3172         return 0;
3173 }
3174
3175 /**
3176  * e1000_update_stats - Update the board statistics counters
3177  * @adapter: board private structure
3178  **/
3179
3180 void
3181 e1000_update_stats(struct e1000_adapter *adapter)
3182 {
3183         struct e1000_hw *hw = &adapter->hw;
3184         struct pci_dev *pdev = adapter->pdev;
3185         unsigned long flags;
3186         uint16_t phy_tmp;
3187
3188 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3189
3190         /*
3191          * Prevent stats update while adapter is being reset, or if the pci
3192          * connection is down.
3193          */
3194         if (adapter->link_speed == 0)
3195                 return;
3196         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3197                 return;
3198
3199         spin_lock_irqsave(&adapter->stats_lock, flags);
3200
3201         /* these counters are modified from e1000_adjust_tbi_stats,
3202          * called from the interrupt context, so they must only
3203          * be written while holding adapter->stats_lock
3204          */
3205
3206         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3207         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3208         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3209         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3210         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3211         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3212         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3213
3214         if (adapter->hw.mac_type != e1000_ich8lan) {
3215         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3216         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3217         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3218         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3219         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3220         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3221         }
3222
3223         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3224         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3225         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3226         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3227         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3228         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3229         adapter->stats.dc += E1000_READ_REG(hw, DC);
3230         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3231         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3232         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3233         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3234         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3235         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3236         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3237         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3238         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3239         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3240         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3241         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3242         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3243         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3244         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3245         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3246         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3247         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3248         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3249
3250         if (adapter->hw.mac_type != e1000_ich8lan) {
3251         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3252         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3253         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3254         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3255         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3256         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3257         }
3258
3259         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3260         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3261
3262         /* used for adaptive IFS */
3263
3264         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3265         adapter->stats.tpt += hw->tx_packet_delta;
3266         hw->collision_delta = E1000_READ_REG(hw, COLC);
3267         adapter->stats.colc += hw->collision_delta;
3268
3269         if (hw->mac_type >= e1000_82543) {
3270                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3271                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3272                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3273                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3274                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3275                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3276         }
3277         if (hw->mac_type > e1000_82547_rev_2) {
3278                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3279                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3280
3281                 if (adapter->hw.mac_type != e1000_ich8lan) {
3282                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3283                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3284                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3285                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3286                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3287                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3288                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3289                 }
3290         }
3291
3292         /* Fill out the OS statistics structure */
3293
3294         adapter->net_stats.rx_packets = adapter->stats.gprc;
3295         adapter->net_stats.tx_packets = adapter->stats.gptc;
3296         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3297         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3298         adapter->net_stats.multicast = adapter->stats.mprc;
3299         adapter->net_stats.collisions = adapter->stats.colc;
3300
3301         /* Rx Errors */
3302
3303         /* RLEC on some newer hardware can be incorrect so build
3304         * our own version based on RUC and ROC */
3305         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3306                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3307                 adapter->stats.ruc + adapter->stats.roc +
3308                 adapter->stats.cexterr;
3309         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3310                                               adapter->stats.roc;
3311         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3312         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3313         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3314
3315         /* Tx Errors */
3316
3317         adapter->net_stats.tx_errors = adapter->stats.ecol +
3318                                        adapter->stats.latecol;
3319         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3320         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3321         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3322
3323         /* Tx Dropped needs to be maintained elsewhere */
3324
3325         /* Phy Stats */
3326
3327         if (hw->media_type == e1000_media_type_copper) {
3328                 if ((adapter->link_speed == SPEED_1000) &&
3329                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3330                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3331                         adapter->phy_stats.idle_errors += phy_tmp;
3332                 }
3333
3334                 if ((hw->mac_type <= e1000_82546) &&
3335                    (hw->phy_type == e1000_phy_m88) &&
3336                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3337                         adapter->phy_stats.receive_errors += phy_tmp;
3338         }
3339
3340         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3341 }
3342
3343 /**
3344  * e1000_intr - Interrupt Handler
3345  * @irq: interrupt number
3346  * @data: pointer to a network interface device structure
3347  * @pt_regs: CPU registers structure
3348  **/
3349
3350 static irqreturn_t
3351 e1000_intr(int irq, void *data, struct pt_regs *regs)
3352 {
3353         struct net_device *netdev = data;
3354         struct e1000_adapter *adapter = netdev_priv(netdev);
3355         struct e1000_hw *hw = &adapter->hw;
3356         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3357 #ifndef CONFIG_E1000_NAPI
3358         int i;
3359 #else
3360         /* Interrupt Auto-Mask...upon reading ICR,
3361          * interrupts are masked.  No need for the
3362          * IMC write, but it does mean we should
3363          * account for it ASAP. */
3364         if (likely(hw->mac_type >= e1000_82571))
3365                 atomic_inc(&adapter->irq_sem);
3366 #endif
3367
3368         if (unlikely(!icr)) {
3369 #ifdef CONFIG_E1000_NAPI
3370                 if (hw->mac_type >= e1000_82571)
3371                         e1000_irq_enable(adapter);
3372 #endif
3373                 return IRQ_NONE;  /* Not our interrupt */
3374         }
3375
3376         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3377                 hw->get_link_status = 1;
3378                 /* 80003ES2LAN workaround--
3379                  * For packet buffer work-around on link down event;
3380                  * disable receives here in the ISR and
3381                  * reset adapter in watchdog
3382                  */
3383                 if (netif_carrier_ok(netdev) &&
3384                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3385                         /* disable receives */
3386                         rctl = E1000_READ_REG(hw, RCTL);
3387                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3388                 }
3389                 mod_timer(&adapter->watchdog_timer, jiffies);
3390         }
3391
3392 #ifdef CONFIG_E1000_NAPI
3393         if (unlikely(hw->mac_type < e1000_82571)) {
3394                 atomic_inc(&adapter->irq_sem);
3395                 E1000_WRITE_REG(hw, IMC, ~0);
3396                 E1000_WRITE_FLUSH(hw);
3397         }
3398         if (likely(netif_rx_schedule_prep(netdev)))
3399                 __netif_rx_schedule(netdev);
3400         else
3401                 e1000_irq_enable(adapter);
3402 #else
3403         /* Writing IMC and IMS is needed for 82547.
3404          * Due to Hub Link bus being occupied, an interrupt
3405          * de-assertion message is not able to be sent.
3406          * When an interrupt assertion message is generated later,
3407          * two messages are re-ordered and sent out.
3408          * That causes APIC to think 82547 is in de-assertion
3409          * state, while 82547 is in assertion state, resulting
3410          * in dead lock. Writing IMC forces 82547 into
3411          * de-assertion state.
3412          */
3413         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3414                 atomic_inc(&adapter->irq_sem);
3415                 E1000_WRITE_REG(hw, IMC, ~0);
3416         }
3417
3418         for (i = 0; i < E1000_MAX_INTR; i++)
3419                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3420                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3421                         break;
3422
3423         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3424                 e1000_irq_enable(adapter);
3425
3426 #endif
3427
3428         return IRQ_HANDLED;
3429 }
3430
3431 #ifdef CONFIG_E1000_NAPI
3432 /**
3433  * e1000_clean - NAPI Rx polling callback
3434  * @adapter: board private structure
3435  **/
3436
3437 static int
3438 e1000_clean(struct net_device *poll_dev, int *budget)
3439 {
3440         struct e1000_adapter *adapter;
3441         int work_to_do = min(*budget, poll_dev->quota);
3442         int tx_cleaned = 0, work_done = 0;
3443
3444         /* Must NOT use netdev_priv macro here. */
3445         adapter = poll_dev->priv;
3446
3447         /* Keep link state information with original netdev */
3448         if (!netif_carrier_ok(poll_dev))
3449                 goto quit_polling;
3450
3451         /* e1000_clean is called per-cpu.  This lock protects
3452          * tx_ring[0] from being cleaned by multiple cpus
3453          * simultaneously.  A failure obtaining the lock means
3454          * tx_ring[0] is currently being cleaned anyway. */
3455         if (spin_trylock(&adapter->tx_queue_lock)) {
3456                 tx_cleaned = e1000_clean_tx_irq(adapter,
3457                                                 &adapter->tx_ring[0]);
3458                 spin_unlock(&adapter->tx_queue_lock);
3459         }
3460
3461         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3462                           &work_done, work_to_do);
3463
3464         *budget -= work_done;
3465         poll_dev->quota -= work_done;
3466
3467         /* If no Tx and not enough Rx work done, exit the polling mode */
3468         if ((!tx_cleaned && (work_done == 0)) ||
3469            !netif_running(poll_dev)) {
3470 quit_polling:
3471                 netif_rx_complete(poll_dev);
3472                 e1000_irq_enable(adapter);
3473                 return 0;
3474         }
3475
3476         return 1;
3477 }
3478
3479 #endif
3480 /**
3481  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3482  * @adapter: board private structure
3483  **/
3484
3485 static boolean_t
3486 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3487                    struct e1000_tx_ring *tx_ring)
3488 {
3489         struct net_device *netdev = adapter->netdev;
3490         struct e1000_tx_desc *tx_desc, *eop_desc;
3491         struct e1000_buffer *buffer_info;
3492         unsigned int i, eop;
3493 #ifdef CONFIG_E1000_NAPI
3494         unsigned int count = 0;
3495 #endif
3496         boolean_t cleaned = FALSE;
3497
3498         i = tx_ring->next_to_clean;
3499         eop = tx_ring->buffer_info[i].next_to_watch;
3500         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3501
3502         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3503                 for (cleaned = FALSE; !cleaned; ) {
3504                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3505                         buffer_info = &tx_ring->buffer_info[i];
3506                         cleaned = (i == eop);
3507
3508                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3509                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3510
3511                         if (unlikely(++i == tx_ring->count)) i = 0;
3512                 }
3513
3514
3515                 eop = tx_ring->buffer_info[i].next_to_watch;
3516                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3517 #ifdef CONFIG_E1000_NAPI
3518 #define E1000_TX_WEIGHT 64
3519                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3520                 if (count++ == E1000_TX_WEIGHT) break;
3521 #endif
3522         }
3523
3524         tx_ring->next_to_clean = i;
3525
3526 #define TX_WAKE_THRESHOLD 32
3527         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3528                      netif_carrier_ok(netdev))) {
3529                 spin_lock(&tx_ring->tx_lock);
3530                 if (netif_queue_stopped(netdev) &&
3531                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3532                         netif_wake_queue(netdev);
3533                 spin_unlock(&tx_ring->tx_lock);
3534         }
3535
3536         if (adapter->detect_tx_hung) {
3537                 /* Detect a transmit hang in hardware, this serializes the
3538                  * check with the clearing of time_stamp and movement of i */
3539                 adapter->detect_tx_hung = FALSE;
3540                 if (tx_ring->buffer_info[eop].dma &&
3541                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3542                                (adapter->tx_timeout_factor * HZ))
3543                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3544                          E1000_STATUS_TXOFF)) {
3545
3546                         /* detected Tx unit hang */
3547                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3548                                         "  Tx Queue             <%lu>\n"
3549                                         "  TDH                  <%x>\n"
3550                                         "  TDT                  <%x>\n"
3551                                         "  next_to_use          <%x>\n"
3552                                         "  next_to_clean        <%x>\n"
3553                                         "buffer_info[next_to_clean]\n"
3554                                         "  time_stamp           <%lx>\n"
3555                                         "  next_to_watch        <%x>\n"
3556                                         "  jiffies              <%lx>\n"
3557                                         "  next_to_watch.status <%x>\n",
3558                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3559                                         sizeof(struct e1000_tx_ring)),
3560                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3561                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3562                                 tx_ring->next_to_use,
3563                                 tx_ring->next_to_clean,
3564                                 tx_ring->buffer_info[eop].time_stamp,
3565                                 eop,
3566                                 jiffies,
3567                                 eop_desc->upper.fields.status);
3568                         netif_stop_queue(netdev);
3569                 }
3570         }
3571         return cleaned;
3572 }
3573
3574 /**
3575  * e1000_rx_checksum - Receive Checksum Offload for 82543
3576  * @adapter:     board private structure
3577  * @status_err:  receive descriptor status and error fields
3578  * @csum:        receive descriptor csum field
3579  * @sk_buff:     socket buffer with received data
3580  **/
3581
3582 static void
3583 e1000_rx_checksum(struct e1000_adapter *adapter,
3584                   uint32_t status_err, uint32_t csum,
3585                   struct sk_buff *skb)
3586 {
3587         uint16_t status = (uint16_t)status_err;
3588         uint8_t errors = (uint8_t)(status_err >> 24);
3589         skb->ip_summed = CHECKSUM_NONE;
3590
3591         /* 82543 or newer only */
3592         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3593         /* Ignore Checksum bit is set */
3594         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3595         /* TCP/UDP checksum error bit is set */
3596         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3597                 /* let the stack verify checksum errors */
3598                 adapter->hw_csum_err++;
3599                 return;
3600         }
3601         /* TCP/UDP Checksum has not been calculated */
3602         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3603                 if (!(status & E1000_RXD_STAT_TCPCS))
3604                         return;
3605         } else {
3606                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3607                         return;
3608         }
3609         /* It must be a TCP or UDP packet with a valid checksum */
3610         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3611                 /* TCP checksum is good */
3612                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3613         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3614                 /* IP fragment with UDP payload */
3615                 /* Hardware complements the payload checksum, so we undo it
3616                  * and then put the value in host order for further stack use.
3617                  */
3618                 csum = ntohl(csum ^ 0xFFFF);
3619                 skb->csum = csum;
3620                 skb->ip_summed = CHECKSUM_HW;
3621         }
3622         adapter->hw_csum_good++;
3623 }
3624
3625 /**
3626  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3627  * @adapter: board private structure
3628  **/
3629
3630 static boolean_t
3631 #ifdef CONFIG_E1000_NAPI
3632 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3633                    struct e1000_rx_ring *rx_ring,
3634                    int *work_done, int work_to_do)
3635 #else
3636 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3637                    struct e1000_rx_ring *rx_ring)
3638 #endif
3639 {
3640         struct net_device *netdev = adapter->netdev;
3641         struct pci_dev *pdev = adapter->pdev;
3642         struct e1000_rx_desc *rx_desc, *next_rxd;
3643         struct e1000_buffer *buffer_info, *next_buffer;
3644         unsigned long flags;
3645         uint32_t length;
3646         uint8_t last_byte;
3647         unsigned int i;
3648         int cleaned_count = 0;
3649         boolean_t cleaned = FALSE;
3650
3651         i = rx_ring->next_to_clean;
3652         rx_desc = E1000_RX_DESC(*rx_ring, i);
3653         buffer_info = &rx_ring->buffer_info[i];
3654
3655         while (rx_desc->status & E1000_RXD_STAT_DD) {
3656                 struct sk_buff *skb;
3657                 u8 status;
3658 #ifdef CONFIG_E1000_NAPI
3659                 if (*work_done >= work_to_do)
3660                         break;
3661                 (*work_done)++;
3662 #endif
3663                 status = rx_desc->status;
3664                 skb = buffer_info->skb;
3665                 buffer_info->skb = NULL;
3666
3667                 prefetch(skb->data - NET_IP_ALIGN);
3668
3669                 if (++i == rx_ring->count) i = 0;
3670                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3671                 prefetch(next_rxd);
3672
3673                 next_buffer = &rx_ring->buffer_info[i];
3674
3675                 cleaned = TRUE;
3676                 cleaned_count++;
3677                 pci_unmap_single(pdev,
3678                                  buffer_info->dma,
3679                                  buffer_info->length,
3680                                  PCI_DMA_FROMDEVICE);
3681
3682                 length = le16_to_cpu(rx_desc->length);
3683
3684                 /* adjust length to remove Ethernet CRC */
3685                 length -= 4;
3686
3687                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3688                         /* All receives must fit into a single buffer */
3689                         E1000_DBG("%s: Receive packet consumed multiple"
3690                                   " buffers\n", netdev->name);
3691                         /* recycle */
3692                         buffer_info->skb = skb;
3693                         goto next_desc;
3694                 }
3695
3696                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3697                         last_byte = *(skb->data + length - 1);
3698                         if (TBI_ACCEPT(&adapter->hw, status,
3699                                       rx_desc->errors, length, last_byte)) {
3700                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3701                                 e1000_tbi_adjust_stats(&adapter->hw,
3702                                                        &adapter->stats,
3703                                                        length, skb->data);
3704                                 spin_unlock_irqrestore(&adapter->stats_lock,
3705                                                        flags);
3706                                 length--;
3707                         } else {
3708                                 /* recycle */
3709                                 buffer_info->skb = skb;
3710                                 goto next_desc;
3711                         }
3712                 }
3713
3714                 /* code added for copybreak, this should improve
3715                  * performance for small packets with large amounts
3716                  * of reassembly being done in the stack */
3717 #define E1000_CB_LENGTH 256
3718                 if (length < E1000_CB_LENGTH) {
3719                         struct sk_buff *new_skb =
3720                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3721                         if (new_skb) {
3722                                 skb_reserve(new_skb, NET_IP_ALIGN);
3723                                 new_skb->dev = netdev;
3724                                 memcpy(new_skb->data - NET_IP_ALIGN,
3725                                        skb->data - NET_IP_ALIGN,
3726                                        length + NET_IP_ALIGN);
3727                                 /* save the skb in buffer_info as good */
3728                                 buffer_info->skb = skb;
3729                                 skb = new_skb;
3730                                 skb_put(skb, length);
3731                         }
3732                 } else
3733                         skb_put(skb, length);
3734
3735                 /* end copybreak code */
3736
3737                 /* Receive Checksum Offload */
3738                 e1000_rx_checksum(adapter,
3739                                   (uint32_t)(status) |
3740                                   ((uint32_t)(rx_desc->errors) << 24),
3741                                   le16_to_cpu(rx_desc->csum), skb);
3742
3743                 skb->protocol = eth_type_trans(skb, netdev);
3744 #ifdef CONFIG_E1000_NAPI
3745                 if (unlikely(adapter->vlgrp &&
3746                             (status & E1000_RXD_STAT_VP))) {
3747                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3748                                                  le16_to_cpu(rx_desc->special) &
3749                                                  E1000_RXD_SPC_VLAN_MASK);
3750                 } else {
3751                         netif_receive_skb(skb);
3752                 }
3753 #else /* CONFIG_E1000_NAPI */
3754                 if (unlikely(adapter->vlgrp &&
3755                             (status & E1000_RXD_STAT_VP))) {
3756                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3757                                         le16_to_cpu(rx_desc->special) &
3758                                         E1000_RXD_SPC_VLAN_MASK);
3759                 } else {
3760                         netif_rx(skb);
3761                 }
3762 #endif /* CONFIG_E1000_NAPI */
3763                 netdev->last_rx = jiffies;
3764
3765 next_desc:
3766                 rx_desc->status = 0;
3767
3768                 /* return some buffers to hardware, one at a time is too slow */
3769                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3770                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3771                         cleaned_count = 0;
3772                 }
3773
3774                 /* use prefetched values */
3775                 rx_desc = next_rxd;
3776                 buffer_info = next_buffer;
3777         }
3778         rx_ring->next_to_clean = i;
3779
3780         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3781         if (cleaned_count)
3782                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3783
3784         return cleaned;
3785 }
3786
3787 /**
3788  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3789  * @adapter: board private structure
3790  **/
3791
3792 static boolean_t
3793 #ifdef CONFIG_E1000_NAPI
3794 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3795                       struct e1000_rx_ring *rx_ring,
3796                       int *work_done, int work_to_do)
3797 #else
3798 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3799                       struct e1000_rx_ring *rx_ring)
3800 #endif
3801 {
3802         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3803         struct net_device *netdev = adapter->netdev;
3804         struct pci_dev *pdev = adapter->pdev;
3805         struct e1000_buffer *buffer_info, *next_buffer;
3806         struct e1000_ps_page *ps_page;
3807         struct e1000_ps_page_dma *ps_page_dma;
3808         struct sk_buff *skb;
3809         unsigned int i, j;
3810         uint32_t length, staterr;
3811         int cleaned_count = 0;
3812         boolean_t cleaned = FALSE;
3813
3814         i = rx_ring->next_to_clean;
3815         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3816         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3817         buffer_info = &rx_ring->buffer_info[i];
3818
3819         while (staterr & E1000_RXD_STAT_DD) {
3820                 ps_page = &rx_ring->ps_page[i];
3821                 ps_page_dma = &rx_ring->ps_page_dma[i];
3822 #ifdef CONFIG_E1000_NAPI
3823                 if (unlikely(*work_done >= work_to_do))
3824                         break;
3825                 (*work_done)++;
3826 #endif
3827                 skb = buffer_info->skb;
3828
3829                 /* in the packet split case this is header only */
3830                 prefetch(skb->data - NET_IP_ALIGN);
3831
3832                 if (++i == rx_ring->count) i = 0;
3833                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3834                 prefetch(next_rxd);
3835
3836                 next_buffer = &rx_ring->buffer_info[i];
3837
3838                 cleaned = TRUE;
3839                 cleaned_count++;
3840                 pci_unmap_single(pdev, buffer_info->dma,
3841                                  buffer_info->length,
3842                                  PCI_DMA_FROMDEVICE);
3843
3844                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3845                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3846                                   " the full packet\n", netdev->name);
3847                         dev_kfree_skb_irq(skb);
3848                         goto next_desc;
3849                 }
3850
3851                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3852                         dev_kfree_skb_irq(skb);
3853                         goto next_desc;
3854                 }
3855
3856                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3857
3858                 if (unlikely(!length)) {
3859                         E1000_DBG("%s: Last part of the packet spanning"
3860                                   " multiple descriptors\n", netdev->name);
3861                         dev_kfree_skb_irq(skb);
3862                         goto next_desc;
3863                 }
3864
3865                 /* Good Receive */
3866                 skb_put(skb, length);
3867
3868                 {
3869                 /* this looks ugly, but it seems compiler issues make it
3870                    more efficient than reusing j */
3871                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3872
3873                 /* page alloc/put takes too long and effects small packet
3874                  * throughput, so unsplit small packets and save the alloc/put*/
3875                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3876                         u8 *vaddr;
3877                         /* there is no documentation about how to call
3878                          * kmap_atomic, so we can't hold the mapping
3879                          * very long */
3880                         pci_dma_sync_single_for_cpu(pdev,
3881                                 ps_page_dma->ps_page_dma[0],
3882                                 PAGE_SIZE,
3883                                 PCI_DMA_FROMDEVICE);
3884                         vaddr = kmap_atomic(ps_page->ps_page[0],
3885                                             KM_SKB_DATA_SOFTIRQ);
3886                         memcpy(skb->tail, vaddr, l1);
3887                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3888                         pci_dma_sync_single_for_device(pdev,
3889                                 ps_page_dma->ps_page_dma[0],
3890                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3891                         /* remove the CRC */
3892                         l1 -= 4;
3893                         skb_put(skb, l1);
3894                         goto copydone;
3895                 } /* if */
3896                 }
3897                 
3898                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3899                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3900                                 break;
3901                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3902                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3903                         ps_page_dma->ps_page_dma[j] = 0;
3904                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3905                                            length);
3906                         ps_page->ps_page[j] = NULL;
3907                         skb->len += length;
3908                         skb->data_len += length;
3909                         skb->truesize += length;
3910                 }
3911
3912                 /* strip the ethernet crc, problem is we're using pages now so
3913                  * this whole operation can get a little cpu intensive */
3914                 pskb_trim(skb, skb->len - 4);
3915
3916 copydone:
3917                 e1000_rx_checksum(adapter, staterr,
3918                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3919                 skb->protocol = eth_type_trans(skb, netdev);
3920
3921                 if (likely(rx_desc->wb.upper.header_status &
3922                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3923                         adapter->rx_hdr_split++;
3924 #ifdef CONFIG_E1000_NAPI
3925                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3926                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3927                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3928                                 E1000_RXD_SPC_VLAN_MASK);
3929                 } else {
3930                         netif_receive_skb(skb);
3931                 }
3932 #else /* CONFIG_E1000_NAPI */
3933                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3934                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3935                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3936                                 E1000_RXD_SPC_VLAN_MASK);
3937                 } else {
3938                         netif_rx(skb);
3939                 }
3940 #endif /* CONFIG_E1000_NAPI */
3941                 netdev->last_rx = jiffies;
3942
3943 next_desc:
3944                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3945                 buffer_info->skb = NULL;
3946
3947                 /* return some buffers to hardware, one at a time is too slow */
3948                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3949                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3950                         cleaned_count = 0;
3951                 }
3952
3953                 /* use prefetched values */
3954                 rx_desc = next_rxd;
3955                 buffer_info = next_buffer;
3956
3957                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3958         }
3959         rx_ring->next_to_clean = i;
3960
3961         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3962         if (cleaned_count)
3963                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3964
3965         return cleaned;
3966 }
3967
3968 /**
3969  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3970  * @adapter: address of board private structure
3971  **/
3972
3973 static void
3974 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3975                        struct e1000_rx_ring *rx_ring,
3976                        int cleaned_count)
3977 {
3978         struct net_device *netdev = adapter->netdev;
3979         struct pci_dev *pdev = adapter->pdev;
3980         struct e1000_rx_desc *rx_desc;
3981         struct e1000_buffer *buffer_info;
3982         struct sk_buff *skb;
3983         unsigned int i;
3984         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3985
3986         i = rx_ring->next_to_use;
3987         buffer_info = &rx_ring->buffer_info[i];
3988
3989         while (cleaned_count--) {
3990                 if (!(skb = buffer_info->skb))
3991                         skb = netdev_alloc_skb(netdev, bufsz);
3992                 else {
3993                         skb_trim(skb, 0);
3994                         goto map_skb;
3995                 }
3996
3997                 if (unlikely(!skb)) {
3998                         /* Better luck next round */
3999                         adapter->alloc_rx_buff_failed++;
4000                         break;
4001                 }
4002
4003                 /* Fix for errata 23, can't cross 64kB boundary */
4004                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4005                         struct sk_buff *oldskb = skb;
4006                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4007                                              "at %p\n", bufsz, skb->data);
4008                         /* Try again, without freeing the previous */
4009                         skb = netdev_alloc_skb(netdev, bufsz);
4010                         /* Failed allocation, critical failure */
4011                         if (!skb) {
4012                                 dev_kfree_skb(oldskb);
4013                                 break;
4014                         }
4015
4016                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4017                                 /* give up */
4018                                 dev_kfree_skb(skb);
4019                                 dev_kfree_skb(oldskb);
4020                                 break; /* while !buffer_info->skb */
4021                         } else {
4022                                 /* Use new allocation */
4023                                 dev_kfree_skb(oldskb);
4024                         }
4025                 }
4026                 /* Make buffer alignment 2 beyond a 16 byte boundary
4027                  * this will result in a 16 byte aligned IP header after
4028                  * the 14 byte MAC header is removed
4029                  */
4030                 skb_reserve(skb, NET_IP_ALIGN);
4031
4032                 skb->dev = netdev;
4033
4034                 buffer_info->skb = skb;
4035                 buffer_info->length = adapter->rx_buffer_len;
4036 map_skb:
4037                 buffer_info->dma = pci_map_single(pdev,
4038                                                   skb->data,
4039                                                   adapter->rx_buffer_len,
4040                                                   PCI_DMA_FROMDEVICE);
4041
4042                 /* Fix for errata 23, can't cross 64kB boundary */
4043                 if (!e1000_check_64k_bound(adapter,
4044                                         (void *)(unsigned long)buffer_info->dma,
4045                                         adapter->rx_buffer_len)) {
4046                         DPRINTK(RX_ERR, ERR,
4047                                 "dma align check failed: %u bytes at %p\n",
4048                                 adapter->rx_buffer_len,
4049                                 (void *)(unsigned long)buffer_info->dma);
4050                         dev_kfree_skb(skb);
4051                         buffer_info->skb = NULL;
4052
4053                         pci_unmap_single(pdev, buffer_info->dma,
4054                                          adapter->rx_buffer_len,
4055                                          PCI_DMA_FROMDEVICE);
4056
4057                         break; /* while !buffer_info->skb */
4058                 }
4059                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4060                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4061
4062                 if (unlikely(++i == rx_ring->count))
4063                         i = 0;
4064                 buffer_info = &rx_ring->buffer_info[i];
4065         }
4066
4067         if (likely(rx_ring->next_to_use != i)) {
4068                 rx_ring->next_to_use = i;
4069                 if (unlikely(i-- == 0))
4070                         i = (rx_ring->count - 1);
4071
4072                 /* Force memory writes to complete before letting h/w
4073                  * know there are new descriptors to fetch.  (Only
4074                  * applicable for weak-ordered memory model archs,
4075                  * such as IA-64). */
4076                 wmb();
4077                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4078         }
4079 }
4080
4081 /**
4082  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4083  * @adapter: address of board private structure
4084  **/
4085
4086 static void
4087 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4088                           struct e1000_rx_ring *rx_ring,
4089                           int cleaned_count)
4090 {
4091         struct net_device *netdev = adapter->netdev;
4092         struct pci_dev *pdev = adapter->pdev;
4093         union e1000_rx_desc_packet_split *rx_desc;
4094         struct e1000_buffer *buffer_info;
4095         struct e1000_ps_page *ps_page;
4096         struct e1000_ps_page_dma *ps_page_dma;
4097         struct sk_buff *skb;
4098         unsigned int i, j;
4099
4100         i = rx_ring->next_to_use;
4101         buffer_info = &rx_ring->buffer_info[i];
4102         ps_page = &rx_ring->ps_page[i];
4103         ps_page_dma = &rx_ring->ps_page_dma[i];
4104
4105         while (cleaned_count--) {
4106                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4107
4108                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4109                         if (j < adapter->rx_ps_pages) {
4110                                 if (likely(!ps_page->ps_page[j])) {
4111                                         ps_page->ps_page[j] =
4112                                                 alloc_page(GFP_ATOMIC);
4113                                         if (unlikely(!ps_page->ps_page[j])) {
4114                                                 adapter->alloc_rx_buff_failed++;
4115                                                 goto no_buffers;
4116                                         }
4117                                         ps_page_dma->ps_page_dma[j] =
4118                                                 pci_map_page(pdev,
4119                                                             ps_page->ps_page[j],
4120                                                             0, PAGE_SIZE,
4121                                                             PCI_DMA_FROMDEVICE);
4122                                 }
4123                                 /* Refresh the desc even if buffer_addrs didn't
4124                                  * change because each write-back erases
4125                                  * this info.
4126                                  */
4127                                 rx_desc->read.buffer_addr[j+1] =
4128                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4129                         } else
4130                                 rx_desc->read.buffer_addr[j+1] = ~0;
4131                 }
4132
4133                 skb = netdev_alloc_skb(netdev,
4134                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4135
4136                 if (unlikely(!skb)) {
4137                         adapter->alloc_rx_buff_failed++;
4138                         break;
4139                 }
4140
4141                 /* Make buffer alignment 2 beyond a 16 byte boundary
4142                  * this will result in a 16 byte aligned IP header after
4143                  * the 14 byte MAC header is removed
4144                  */
4145                 skb_reserve(skb, NET_IP_ALIGN);
4146
4147                 skb->dev = netdev;
4148
4149                 buffer_info->skb = skb;
4150                 buffer_info->length = adapter->rx_ps_bsize0;
4151                 buffer_info->dma = pci_map_single(pdev, skb->data,
4152                                                   adapter->rx_ps_bsize0,
4153                                                   PCI_DMA_FROMDEVICE);
4154
4155                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4156
4157                 if (unlikely(++i == rx_ring->count)) i = 0;
4158                 buffer_info = &rx_ring->buffer_info[i];
4159                 ps_page = &rx_ring->ps_page[i];
4160                 ps_page_dma = &rx_ring->ps_page_dma[i];
4161         }
4162
4163 no_buffers:
4164         if (likely(rx_ring->next_to_use != i)) {
4165                 rx_ring->next_to_use = i;
4166                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4167
4168                 /* Force memory writes to complete before letting h/w
4169                  * know there are new descriptors to fetch.  (Only
4170                  * applicable for weak-ordered memory model archs,
4171                  * such as IA-64). */
4172                 wmb();
4173                 /* Hardware increments by 16 bytes, but packet split
4174                  * descriptors are 32 bytes...so we increment tail
4175                  * twice as much.
4176                  */
4177                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4178         }
4179 }
4180
4181 /**
4182  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4183  * @adapter:
4184  **/
4185
4186 static void
4187 e1000_smartspeed(struct e1000_adapter *adapter)
4188 {
4189         uint16_t phy_status;
4190         uint16_t phy_ctrl;
4191
4192         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4193            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4194                 return;
4195
4196         if (adapter->smartspeed == 0) {
4197                 /* If Master/Slave config fault is asserted twice,
4198                  * we assume back-to-back */
4199                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4200                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4201                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4202                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4203                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4204                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4205                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4206                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4207                                             phy_ctrl);
4208                         adapter->smartspeed++;
4209                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4210                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4211                                                &phy_ctrl)) {
4212                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4213                                              MII_CR_RESTART_AUTO_NEG);
4214                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4215                                                     phy_ctrl);
4216                         }
4217                 }
4218                 return;
4219         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4220                 /* If still no link, perhaps using 2/3 pair cable */
4221                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4222                 phy_ctrl |= CR_1000T_MS_ENABLE;
4223                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4224                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4225                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4226                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4227                                      MII_CR_RESTART_AUTO_NEG);
4228                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4229                 }
4230         }
4231         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4232         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4233                 adapter->smartspeed = 0;
4234 }
4235
4236 /**
4237  * e1000_ioctl -
4238  * @netdev:
4239  * @ifreq:
4240  * @cmd:
4241  **/
4242
4243 static int
4244 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4245 {
4246         switch (cmd) {
4247         case SIOCGMIIPHY:
4248         case SIOCGMIIREG:
4249         case SIOCSMIIREG:
4250                 return e1000_mii_ioctl(netdev, ifr, cmd);
4251         default:
4252                 return -EOPNOTSUPP;
4253         }
4254 }
4255
4256 /**
4257  * e1000_mii_ioctl -
4258  * @netdev:
4259  * @ifreq:
4260  * @cmd:
4261  **/
4262
4263 static int
4264 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4265 {
4266         struct e1000_adapter *adapter = netdev_priv(netdev);
4267         struct mii_ioctl_data *data = if_mii(ifr);
4268         int retval;
4269         uint16_t mii_reg;
4270         uint16_t spddplx;
4271         unsigned long flags;
4272
4273         if (adapter->hw.media_type != e1000_media_type_copper)
4274                 return -EOPNOTSUPP;
4275
4276         switch (cmd) {
4277         case SIOCGMIIPHY:
4278                 data->phy_id = adapter->hw.phy_addr;
4279                 break;
4280         case SIOCGMIIREG:
4281                 if (!capable(CAP_NET_ADMIN))
4282                         return -EPERM;
4283                 spin_lock_irqsave(&adapter->stats_lock, flags);
4284                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4285                                    &data->val_out)) {
4286                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4287                         return -EIO;
4288                 }
4289                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4290                 break;
4291         case SIOCSMIIREG:
4292                 if (!capable(CAP_NET_ADMIN))
4293                         return -EPERM;
4294                 if (data->reg_num & ~(0x1F))
4295                         return -EFAULT;
4296                 mii_reg = data->val_in;
4297                 spin_lock_irqsave(&adapter->stats_lock, flags);
4298                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4299                                         mii_reg)) {
4300                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4301                         return -EIO;
4302                 }
4303                 if (adapter->hw.media_type == e1000_media_type_copper) {
4304                         switch (data->reg_num) {
4305                         case PHY_CTRL:
4306                                 if (mii_reg & MII_CR_POWER_DOWN)
4307                                         break;
4308                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4309                                         adapter->hw.autoneg = 1;
4310                                         adapter->hw.autoneg_advertised = 0x2F;
4311                                 } else {
4312                                         if (mii_reg & 0x40)
4313                                                 spddplx = SPEED_1000;
4314                                         else if (mii_reg & 0x2000)
4315                                                 spddplx = SPEED_100;
4316                                         else
4317                                                 spddplx = SPEED_10;
4318                                         spddplx += (mii_reg & 0x100)
4319                                                    ? DUPLEX_FULL :
4320                                                    DUPLEX_HALF;
4321                                         retval = e1000_set_spd_dplx(adapter,
4322                                                                     spddplx);
4323                                         if (retval) {
4324                                                 spin_unlock_irqrestore(
4325                                                         &adapter->stats_lock,
4326                                                         flags);
4327                                                 return retval;
4328                                         }
4329                                 }
4330                                 if (netif_running(adapter->netdev))
4331                                         e1000_reinit_locked(adapter);
4332                                 else
4333                                         e1000_reset(adapter);
4334                                 break;
4335                         case M88E1000_PHY_SPEC_CTRL:
4336                         case M88E1000_EXT_PHY_SPEC_CTRL:
4337                                 if (e1000_phy_reset(&adapter->hw)) {
4338                                         spin_unlock_irqrestore(
4339                                                 &adapter->stats_lock, flags);
4340                                         return -EIO;
4341                                 }
4342                                 break;
4343                         }
4344                 } else {
4345                         switch (data->reg_num) {
4346                         case PHY_CTRL:
4347                                 if (mii_reg & MII_CR_POWER_DOWN)
4348                                         break;
4349                                 if (netif_running(adapter->netdev))
4350                                         e1000_reinit_locked(adapter);
4351                                 else
4352                                         e1000_reset(adapter);
4353                                 break;
4354                         }
4355                 }
4356                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4357                 break;
4358         default:
4359                 return -EOPNOTSUPP;
4360         }
4361         return E1000_SUCCESS;
4362 }
4363
4364 void
4365 e1000_pci_set_mwi(struct e1000_hw *hw)
4366 {
4367         struct e1000_adapter *adapter = hw->back;
4368         int ret_val = pci_set_mwi(adapter->pdev);
4369
4370         if (ret_val)
4371                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4372 }
4373
4374 void
4375 e1000_pci_clear_mwi(struct e1000_hw *hw)
4376 {
4377         struct e1000_adapter *adapter = hw->back;
4378
4379         pci_clear_mwi(adapter->pdev);
4380 }
4381
4382 void
4383 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4384 {
4385         struct e1000_adapter *adapter = hw->back;
4386
4387         pci_read_config_word(adapter->pdev, reg, value);
4388 }
4389
4390 void
4391 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4392 {
4393         struct e1000_adapter *adapter = hw->back;
4394
4395         pci_write_config_word(adapter->pdev, reg, *value);
4396 }
4397
4398 #if 0
4399 uint32_t
4400 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4401 {
4402         return inl(port);
4403 }
4404 #endif  /*  0  */
4405
4406 void
4407 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4408 {
4409         outl(value, port);
4410 }
4411
4412 static void
4413 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4414 {
4415         struct e1000_adapter *adapter = netdev_priv(netdev);
4416         uint32_t ctrl, rctl;
4417
4418         e1000_irq_disable(adapter);
4419         adapter->vlgrp = grp;
4420
4421         if (grp) {
4422                 /* enable VLAN tag insert/strip */
4423                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4424                 ctrl |= E1000_CTRL_VME;
4425                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4426
4427                 if (adapter->hw.mac_type != e1000_ich8lan) {
4428                 /* enable VLAN receive filtering */
4429                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4430                 rctl |= E1000_RCTL_VFE;
4431                 rctl &= ~E1000_RCTL_CFIEN;
4432                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4433                 e1000_update_mng_vlan(adapter);
4434                 }
4435         } else {
4436                 /* disable VLAN tag insert/strip */
4437                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4438                 ctrl &= ~E1000_CTRL_VME;
4439                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4440
4441                 if (adapter->hw.mac_type != e1000_ich8lan) {
4442                 /* disable VLAN filtering */
4443                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4444                 rctl &= ~E1000_RCTL_VFE;
4445                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4446                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4447                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4448                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4449                 }
4450                 }
4451         }
4452
4453         e1000_irq_enable(adapter);
4454 }
4455
4456 static void
4457 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4458 {
4459         struct e1000_adapter *adapter = netdev_priv(netdev);
4460         uint32_t vfta, index;
4461
4462         if ((adapter->hw.mng_cookie.status &
4463              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4464             (vid == adapter->mng_vlan_id))
4465                 return;
4466         /* add VID to filter table */
4467         index = (vid >> 5) & 0x7F;
4468         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4469         vfta |= (1 << (vid & 0x1F));
4470         e1000_write_vfta(&adapter->hw, index, vfta);
4471 }
4472
4473 static void
4474 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4475 {
4476         struct e1000_adapter *adapter = netdev_priv(netdev);
4477         uint32_t vfta, index;
4478
4479         e1000_irq_disable(adapter);
4480
4481         if (adapter->vlgrp)
4482                 adapter->vlgrp->vlan_devices[vid] = NULL;
4483
4484         e1000_irq_enable(adapter);
4485
4486         if ((adapter->hw.mng_cookie.status &
4487              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4488             (vid == adapter->mng_vlan_id)) {
4489                 /* release control to f/w */
4490                 e1000_release_hw_control(adapter);
4491                 return;
4492         }
4493
4494         /* remove VID from filter table */
4495         index = (vid >> 5) & 0x7F;
4496         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4497         vfta &= ~(1 << (vid & 0x1F));
4498         e1000_write_vfta(&adapter->hw, index, vfta);
4499 }
4500
4501 static void
4502 e1000_restore_vlan(struct e1000_adapter *adapter)
4503 {
4504         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4505
4506         if (adapter->vlgrp) {
4507                 uint16_t vid;
4508                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4509                         if (!adapter->vlgrp->vlan_devices[vid])
4510                                 continue;
4511                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4512                 }
4513         }
4514 }
4515
4516 int
4517 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4518 {
4519         adapter->hw.autoneg = 0;
4520
4521         /* Fiber NICs only allow 1000 gbps Full duplex */
4522         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4523                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4524                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4525                 return -EINVAL;
4526         }
4527
4528         switch (spddplx) {
4529         case SPEED_10 + DUPLEX_HALF:
4530                 adapter->hw.forced_speed_duplex = e1000_10_half;
4531                 break;
4532         case SPEED_10 + DUPLEX_FULL:
4533                 adapter->hw.forced_speed_duplex = e1000_10_full;
4534                 break;
4535         case SPEED_100 + DUPLEX_HALF:
4536                 adapter->hw.forced_speed_duplex = e1000_100_half;
4537                 break;
4538         case SPEED_100 + DUPLEX_FULL:
4539                 adapter->hw.forced_speed_duplex = e1000_100_full;
4540                 break;
4541         case SPEED_1000 + DUPLEX_FULL:
4542                 adapter->hw.autoneg = 1;
4543                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4544                 break;
4545         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4546         default:
4547                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4548                 return -EINVAL;
4549         }
4550         return 0;
4551 }
4552
4553 #ifdef CONFIG_PM
4554 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4555  * bus we're on (PCI(X) vs. PCI-E)
4556  */
4557 #define PCIE_CONFIG_SPACE_LEN 256
4558 #define PCI_CONFIG_SPACE_LEN 64
4559 static int
4560 e1000_pci_save_state(struct e1000_adapter *adapter)
4561 {
4562         struct pci_dev *dev = adapter->pdev;
4563         int size;
4564         int i;
4565
4566         if (adapter->hw.mac_type >= e1000_82571)
4567                 size = PCIE_CONFIG_SPACE_LEN;
4568         else
4569                 size = PCI_CONFIG_SPACE_LEN;
4570
4571         WARN_ON(adapter->config_space != NULL);
4572
4573         adapter->config_space = kmalloc(size, GFP_KERNEL);
4574         if (!adapter->config_space) {
4575                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4576                 return -ENOMEM;
4577         }
4578         for (i = 0; i < (size / 4); i++)
4579                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4580         return 0;
4581 }
4582
4583 static void
4584 e1000_pci_restore_state(struct e1000_adapter *adapter)
4585 {
4586         struct pci_dev *dev = adapter->pdev;
4587         int size;
4588         int i;
4589
4590         if (adapter->config_space == NULL)
4591                 return;
4592
4593         if (adapter->hw.mac_type >= e1000_82571)
4594                 size = PCIE_CONFIG_SPACE_LEN;
4595         else
4596                 size = PCI_CONFIG_SPACE_LEN;
4597         for (i = 0; i < (size / 4); i++)
4598                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4599         kfree(adapter->config_space);
4600         adapter->config_space = NULL;
4601         return;
4602 }
4603 #endif /* CONFIG_PM */
4604
4605 static int
4606 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4607 {
4608         struct net_device *netdev = pci_get_drvdata(pdev);
4609         struct e1000_adapter *adapter = netdev_priv(netdev);
4610         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4611         uint32_t wufc = adapter->wol;
4612 #ifdef CONFIG_PM
4613         int retval = 0;
4614 #endif
4615
4616         netif_device_detach(netdev);
4617
4618         if (netif_running(netdev)) {
4619                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4620                 e1000_down(adapter);
4621         }
4622
4623 #ifdef CONFIG_PM
4624         /* Implement our own version of pci_save_state(pdev) because pci-
4625          * express adapters have 256-byte config spaces. */
4626         retval = e1000_pci_save_state(adapter);
4627         if (retval)
4628                 return retval;
4629 #endif
4630
4631         status = E1000_READ_REG(&adapter->hw, STATUS);
4632         if (status & E1000_STATUS_LU)
4633                 wufc &= ~E1000_WUFC_LNKC;
4634
4635         if (wufc) {
4636                 e1000_setup_rctl(adapter);
4637                 e1000_set_multi(netdev);
4638
4639                 /* turn on all-multi mode if wake on multicast is enabled */
4640                 if (adapter->wol & E1000_WUFC_MC) {
4641                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4642                         rctl |= E1000_RCTL_MPE;
4643                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4644                 }
4645
4646                 if (adapter->hw.mac_type >= e1000_82540) {
4647                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4648                         /* advertise wake from D3Cold */
4649                         #define E1000_CTRL_ADVD3WUC 0x00100000
4650                         /* phy power management enable */
4651                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4652                         ctrl |= E1000_CTRL_ADVD3WUC |
4653                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4654                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4655                 }
4656
4657                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4658                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4659                         /* keep the laser running in D3 */
4660                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4661                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4662                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4663                 }
4664
4665                 /* Allow time for pending master requests to run */
4666                 e1000_disable_pciex_master(&adapter->hw);
4667
4668                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4669                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4670                 pci_enable_wake(pdev, PCI_D3hot, 1);
4671                 pci_enable_wake(pdev, PCI_D3cold, 1);
4672         } else {
4673                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4674                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4675                 pci_enable_wake(pdev, PCI_D3hot, 0);
4676                 pci_enable_wake(pdev, PCI_D3cold, 0);
4677         }
4678
4679         /* FIXME: this code is incorrect for PCI Express */
4680         if (adapter->hw.mac_type >= e1000_82540 &&
4681            adapter->hw.mac_type != e1000_ich8lan &&
4682            adapter->hw.media_type == e1000_media_type_copper) {
4683                 manc = E1000_READ_REG(&adapter->hw, MANC);
4684                 if (manc & E1000_MANC_SMBUS_EN) {
4685                         manc |= E1000_MANC_ARP_EN;
4686                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4687                         pci_enable_wake(pdev, PCI_D3hot, 1);
4688                         pci_enable_wake(pdev, PCI_D3cold, 1);
4689                 }
4690         }
4691
4692         if (adapter->hw.phy_type == e1000_phy_igp_3)
4693                 e1000_phy_powerdown_workaround(&adapter->hw);
4694
4695         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4696          * would have already happened in close and is redundant. */
4697         e1000_release_hw_control(adapter);
4698
4699         pci_disable_device(pdev);
4700
4701         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4702
4703         return 0;
4704 }
4705
4706 #ifdef CONFIG_PM
4707 static int
4708 e1000_resume(struct pci_dev *pdev)
4709 {
4710         struct net_device *netdev = pci_get_drvdata(pdev);
4711         struct e1000_adapter *adapter = netdev_priv(netdev);
4712         uint32_t manc, ret_val;
4713
4714         pci_set_power_state(pdev, PCI_D0);
4715         e1000_pci_restore_state(adapter);
4716         ret_val = pci_enable_device(pdev);
4717         pci_set_master(pdev);
4718
4719         pci_enable_wake(pdev, PCI_D3hot, 0);
4720         pci_enable_wake(pdev, PCI_D3cold, 0);
4721
4722         e1000_reset(adapter);
4723         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4724
4725         if (netif_running(netdev))
4726                 e1000_up(adapter);
4727
4728         netif_device_attach(netdev);
4729
4730         /* FIXME: this code is incorrect for PCI Express */
4731         if (adapter->hw.mac_type >= e1000_82540 &&
4732            adapter->hw.mac_type != e1000_ich8lan &&
4733            adapter->hw.media_type == e1000_media_type_copper) {
4734                 manc = E1000_READ_REG(&adapter->hw, MANC);
4735                 manc &= ~(E1000_MANC_ARP_EN);
4736                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4737         }
4738
4739         /* If the controller is 82573 and f/w is AMT, do not set
4740          * DRV_LOAD until the interface is up.  For all other cases,
4741          * let the f/w know that the h/w is now under the control
4742          * of the driver. */
4743         if (adapter->hw.mac_type != e1000_82573 ||
4744             !e1000_check_mng_mode(&adapter->hw))
4745                 e1000_get_hw_control(adapter);
4746
4747         return 0;
4748 }
4749 #endif
4750
4751 static void e1000_shutdown(struct pci_dev *pdev)
4752 {
4753         e1000_suspend(pdev, PMSG_SUSPEND);
4754 }
4755
4756 #ifdef CONFIG_NET_POLL_CONTROLLER
4757 /*
4758  * Polling 'interrupt' - used by things like netconsole to send skbs
4759  * without having to re-enable interrupts. It's not called while
4760  * the interrupt routine is executing.
4761  */
4762 static void
4763 e1000_netpoll(struct net_device *netdev)
4764 {
4765         struct e1000_adapter *adapter = netdev_priv(netdev);
4766
4767         disable_irq(adapter->pdev->irq);
4768         e1000_intr(adapter->pdev->irq, netdev, NULL);
4769         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4770 #ifndef CONFIG_E1000_NAPI
4771         adapter->clean_rx(adapter, adapter->rx_ring);
4772 #endif
4773         enable_irq(adapter->pdev->irq);
4774 }
4775 #endif
4776
4777 /**
4778  * e1000_io_error_detected - called when PCI error is detected
4779  * @pdev: Pointer to PCI device
4780  * @state: The current pci conneection state
4781  *
4782  * This function is called after a PCI bus error affecting
4783  * this device has been detected.
4784  */
4785 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4786 {
4787         struct net_device *netdev = pci_get_drvdata(pdev);
4788         struct e1000_adapter *adapter = netdev->priv;
4789
4790         netif_device_detach(netdev);
4791
4792         if (netif_running(netdev))
4793                 e1000_down(adapter);
4794
4795         /* Request a slot slot reset. */
4796         return PCI_ERS_RESULT_NEED_RESET;
4797 }
4798
4799 /**
4800  * e1000_io_slot_reset - called after the pci bus has been reset.
4801  * @pdev: Pointer to PCI device
4802  *
4803  * Restart the card from scratch, as if from a cold-boot. Implementation
4804  * resembles the first-half of the e1000_resume routine.
4805  */
4806 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4807 {
4808         struct net_device *netdev = pci_get_drvdata(pdev);
4809         struct e1000_adapter *adapter = netdev->priv;
4810
4811         if (pci_enable_device(pdev)) {
4812                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4813                 return PCI_ERS_RESULT_DISCONNECT;
4814         }
4815         pci_set_master(pdev);
4816
4817         pci_enable_wake(pdev, 3, 0);
4818         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4819
4820         /* Perform card reset only on one instance of the card */
4821         if (PCI_FUNC (pdev->devfn) != 0)
4822                 return PCI_ERS_RESULT_RECOVERED;
4823
4824         e1000_reset(adapter);
4825         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4826
4827         return PCI_ERS_RESULT_RECOVERED;
4828 }
4829
4830 /**
4831  * e1000_io_resume - called when traffic can start flowing again.
4832  * @pdev: Pointer to PCI device
4833  *
4834  * This callback is called when the error recovery driver tells us that
4835  * its OK to resume normal operation. Implementation resembles the
4836  * second-half of the e1000_resume routine.
4837  */
4838 static void e1000_io_resume(struct pci_dev *pdev)
4839 {
4840         struct net_device *netdev = pci_get_drvdata(pdev);
4841         struct e1000_adapter *adapter = netdev->priv;
4842         uint32_t manc, swsm;
4843
4844         if (netif_running(netdev)) {
4845                 if (e1000_up(adapter)) {
4846                         printk("e1000: can't bring device back up after reset\n");
4847                         return;
4848                 }
4849         }
4850
4851         netif_device_attach(netdev);
4852
4853         if (adapter->hw.mac_type >= e1000_82540 &&
4854             adapter->hw.media_type == e1000_media_type_copper) {
4855                 manc = E1000_READ_REG(&adapter->hw, MANC);
4856                 manc &= ~(E1000_MANC_ARP_EN);
4857                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4858         }
4859
4860         switch (adapter->hw.mac_type) {
4861         case e1000_82573:
4862                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4863                 E1000_WRITE_REG(&adapter->hw, SWSM,
4864                                 swsm | E1000_SWSM_DRV_LOAD);
4865                 break;
4866         default:
4867                 break;
4868         }
4869
4870         if (netif_running(netdev))
4871                 mod_timer(&adapter->watchdog_timer, jiffies);
4872 }
4873
4874 /* e1000_main.c */