]> err.no Git - linux-2.6/blob - drivers/net/e1000/e1000_main.c
e1000: unify WoL capability detection code
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k6"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
103         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
105         /* required last entry */
106         {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
110
111 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_tx_ring *txdr);
113 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
114                                     struct e1000_rx_ring *rxdr);
115 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *tx_ring);
117 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rx_ring);
119
120 /* Local Function Prototypes */
121
122 static int e1000_init_module(void);
123 static void e1000_exit_module(void);
124 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
125 static void __devexit e1000_remove(struct pci_dev *pdev);
126 static int e1000_alloc_queues(struct e1000_adapter *adapter);
127 static int e1000_sw_init(struct e1000_adapter *adapter);
128 static int e1000_open(struct net_device *netdev);
129 static int e1000_close(struct net_device *netdev);
130 static void e1000_configure_tx(struct e1000_adapter *adapter);
131 static void e1000_configure_rx(struct e1000_adapter *adapter);
132 static void e1000_setup_rctl(struct e1000_adapter *adapter);
133 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
136                                 struct e1000_tx_ring *tx_ring);
137 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
138                                 struct e1000_rx_ring *rx_ring);
139 static void e1000_set_multi(struct net_device *netdev);
140 static void e1000_update_phy_info(unsigned long data);
141 static void e1000_watchdog(unsigned long data);
142 static void e1000_82547_tx_fifo_stall(unsigned long data);
143 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
144 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
145 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
146 static int e1000_set_mac(struct net_device *netdev, void *p);
147 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
148 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
149                                     struct e1000_tx_ring *tx_ring);
150 #ifdef CONFIG_E1000_NAPI
151 static int e1000_clean(struct net_device *poll_dev, int *budget);
152 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
153                                     struct e1000_rx_ring *rx_ring,
154                                     int *work_done, int work_to_do);
155 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
156                                        struct e1000_rx_ring *rx_ring,
157                                        int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
160                                     struct e1000_rx_ring *rx_ring);
161 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
162                                        struct e1000_rx_ring *rx_ring);
163 #endif
164 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
165                                    struct e1000_rx_ring *rx_ring,
166                                    int cleaned_count);
167 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
168                                       struct e1000_rx_ring *rx_ring,
169                                       int cleaned_count);
170 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
171 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
172                            int cmd);
173 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
174 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_tx_timeout(struct net_device *dev);
176 static void e1000_reset_task(struct net_device *dev);
177 static void e1000_smartspeed(struct e1000_adapter *adapter);
178 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
179                                        struct sk_buff *skb);
180
181 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
182 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
183 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_restore_vlan(struct e1000_adapter *adapter);
185
186 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
187 #ifdef CONFIG_PM
188 static int e1000_resume(struct pci_dev *pdev);
189 #endif
190 static void e1000_shutdown(struct pci_dev *pdev);
191
192 #ifdef CONFIG_NET_POLL_CONTROLLER
193 /* for netdump / net console */
194 static void e1000_netpoll (struct net_device *netdev);
195 #endif
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                      pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static struct pci_error_handlers e1000_err_handler = {
203         .error_detected = e1000_io_error_detected,
204         .slot_reset = e1000_io_slot_reset,
205         .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209         .name     = e1000_driver_name,
210         .id_table = e1000_pci_tbl,
211         .probe    = e1000_probe,
212         .remove   = __devexit_p(e1000_remove),
213         /* Power Managment Hooks */
214         .suspend  = e1000_suspend,
215 #ifdef CONFIG_PM
216         .resume   = e1000_resume,
217 #endif
218         .shutdown = e1000_shutdown,
219         .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230
231 /**
232  * e1000_init_module - Driver Registration Routine
233  *
234  * e1000_init_module is the first routine called when the driver is
235  * loaded. All it does is register with the PCI subsystem.
236  **/
237
238 static int __init
239 e1000_init_module(void)
240 {
241         int ret;
242         printk(KERN_INFO "%s - version %s\n",
243                e1000_driver_string, e1000_driver_version);
244
245         printk(KERN_INFO "%s\n", e1000_copyright);
246
247         ret = pci_register_driver(&e1000_driver);
248
249         return ret;
250 }
251
252 module_init(e1000_init_module);
253
254 /**
255  * e1000_exit_module - Driver Exit Cleanup Routine
256  *
257  * e1000_exit_module is called just before the driver is removed
258  * from memory.
259  **/
260
261 static void __exit
262 e1000_exit_module(void)
263 {
264         pci_unregister_driver(&e1000_driver);
265 }
266
267 module_exit(e1000_exit_module);
268
269 static int e1000_request_irq(struct e1000_adapter *adapter)
270 {
271         struct net_device *netdev = adapter->netdev;
272         int flags, err = 0;
273
274         flags = IRQF_SHARED;
275 #ifdef CONFIG_PCI_MSI
276         if (adapter->hw.mac_type > e1000_82547_rev_2) {
277                 adapter->have_msi = TRUE;
278                 if ((err = pci_enable_msi(adapter->pdev))) {
279                         DPRINTK(PROBE, ERR,
280                          "Unable to allocate MSI interrupt Error: %d\n", err);
281                         adapter->have_msi = FALSE;
282                 }
283         }
284         if (adapter->have_msi)
285                 flags &= ~IRQF_SHARED;
286 #endif
287         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
288                                netdev->name, netdev)))
289                 DPRINTK(PROBE, ERR,
290                         "Unable to allocate interrupt Error: %d\n", err);
291
292         return err;
293 }
294
295 static void e1000_free_irq(struct e1000_adapter *adapter)
296 {
297         struct net_device *netdev = adapter->netdev;
298
299         free_irq(adapter->pdev->irq, netdev);
300
301 #ifdef CONFIG_PCI_MSI
302         if (adapter->have_msi)
303                 pci_disable_msi(adapter->pdev);
304 #endif
305 }
306
307 /**
308  * e1000_irq_disable - Mask off interrupt generation on the NIC
309  * @adapter: board private structure
310  **/
311
312 static void
313 e1000_irq_disable(struct e1000_adapter *adapter)
314 {
315         atomic_inc(&adapter->irq_sem);
316         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
317         E1000_WRITE_FLUSH(&adapter->hw);
318         synchronize_irq(adapter->pdev->irq);
319 }
320
321 /**
322  * e1000_irq_enable - Enable default interrupt generation settings
323  * @adapter: board private structure
324  **/
325
326 static void
327 e1000_irq_enable(struct e1000_adapter *adapter)
328 {
329         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
330                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331                 E1000_WRITE_FLUSH(&adapter->hw);
332         }
333 }
334
335 static void
336 e1000_update_mng_vlan(struct e1000_adapter *adapter)
337 {
338         struct net_device *netdev = adapter->netdev;
339         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
340         uint16_t old_vid = adapter->mng_vlan_id;
341         if (adapter->vlgrp) {
342                 if (!adapter->vlgrp->vlan_devices[vid]) {
343                         if (adapter->hw.mng_cookie.status &
344                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
345                                 e1000_vlan_rx_add_vid(netdev, vid);
346                                 adapter->mng_vlan_id = vid;
347                         } else
348                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
349
350                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
351                                         (vid != old_vid) &&
352                                         !adapter->vlgrp->vlan_devices[old_vid])
353                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
354                 } else
355                         adapter->mng_vlan_id = vid;
356         }
357 }
358
359 /**
360  * e1000_release_hw_control - release control of the h/w to f/w
361  * @adapter: address of board private structure
362  *
363  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
364  * For ASF and Pass Through versions of f/w this means that the
365  * driver is no longer loaded. For AMT version (only with 82573) i
366  * of the f/w this means that the netowrk i/f is closed.
367  *
368  **/
369
370 static void
371 e1000_release_hw_control(struct e1000_adapter *adapter)
372 {
373         uint32_t ctrl_ext;
374         uint32_t swsm;
375         uint32_t extcnf;
376
377         /* Let firmware taken over control of h/w */
378         switch (adapter->hw.mac_type) {
379         case e1000_82571:
380         case e1000_82572:
381         case e1000_80003es2lan:
382                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
383                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
384                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
385                 break;
386         case e1000_82573:
387                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
388                 E1000_WRITE_REG(&adapter->hw, SWSM,
389                                 swsm & ~E1000_SWSM_DRV_LOAD);
390         case e1000_ich8lan:
391                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
392                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
393                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
394                 break;
395         default:
396                 break;
397         }
398 }
399
400 /**
401  * e1000_get_hw_control - get control of the h/w from f/w
402  * @adapter: address of board private structure
403  *
404  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
405  * For ASF and Pass Through versions of f/w this means that
406  * the driver is loaded. For AMT version (only with 82573)
407  * of the f/w this means that the netowrk i/f is open.
408  *
409  **/
410
411 static void
412 e1000_get_hw_control(struct e1000_adapter *adapter)
413 {
414         uint32_t ctrl_ext;
415         uint32_t swsm;
416         uint32_t extcnf;
417         /* Let firmware know the driver has taken over */
418         switch (adapter->hw.mac_type) {
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
423                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
424                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
425                 break;
426         case e1000_82573:
427                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
428                 E1000_WRITE_REG(&adapter->hw, SWSM,
429                                 swsm | E1000_SWSM_DRV_LOAD);
430                 break;
431         case e1000_ich8lan:
432                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
433                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
434                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
435                 break;
436         default:
437                 break;
438         }
439 }
440
441 int
442 e1000_up(struct e1000_adapter *adapter)
443 {
444         struct net_device *netdev = adapter->netdev;
445         int i;
446
447         /* hardware has been reset, we need to reload some things */
448
449         e1000_set_multi(netdev);
450
451         e1000_restore_vlan(adapter);
452
453         e1000_configure_tx(adapter);
454         e1000_setup_rctl(adapter);
455         e1000_configure_rx(adapter);
456         /* call E1000_DESC_UNUSED which always leaves
457          * at least 1 descriptor unused to make sure
458          * next_to_use != next_to_clean */
459         for (i = 0; i < adapter->num_rx_queues; i++) {
460                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
461                 adapter->alloc_rx_buf(adapter, ring,
462                                       E1000_DESC_UNUSED(ring));
463         }
464
465         adapter->tx_queue_len = netdev->tx_queue_len;
466
467         mod_timer(&adapter->watchdog_timer, jiffies);
468
469 #ifdef CONFIG_E1000_NAPI
470         netif_poll_enable(netdev);
471 #endif
472         e1000_irq_enable(adapter);
473
474         return 0;
475 }
476
477 /**
478  * e1000_power_up_phy - restore link in case the phy was powered down
479  * @adapter: address of board private structure
480  *
481  * The phy may be powered down to save power and turn off link when the
482  * driver is unloaded and wake on lan is not enabled (among others)
483  * *** this routine MUST be followed by a call to e1000_reset ***
484  *
485  **/
486
487 void e1000_power_up_phy(struct e1000_adapter *adapter)
488 {
489         uint16_t mii_reg = 0;
490
491         /* Just clear the power down bit to wake the phy back up */
492         if (adapter->hw.media_type == e1000_media_type_copper) {
493                 /* according to the manual, the phy will retain its
494                  * settings across a power-down/up cycle */
495                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
496                 mii_reg &= ~MII_CR_POWER_DOWN;
497                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
498         }
499 }
500
501 static void e1000_power_down_phy(struct e1000_adapter *adapter)
502 {
503         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
504                                       e1000_check_mng_mode(&adapter->hw);
505         /* Power down the PHY so no link is implied when interface is down
506          * The PHY cannot be powered down if any of the following is TRUE
507          * (a) WoL is enabled
508          * (b) AMT is active
509          * (c) SoL/IDER session is active */
510         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511             adapter->hw.mac_type != e1000_ich8lan &&
512             adapter->hw.media_type == e1000_media_type_copper &&
513             !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
514             !mng_mode_enabled &&
515             !e1000_check_phy_reset_block(&adapter->hw)) {
516                 uint16_t mii_reg = 0;
517                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
518                 mii_reg |= MII_CR_POWER_DOWN;
519                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
520                 mdelay(1);
521         }
522 }
523
524 void
525 e1000_down(struct e1000_adapter *adapter)
526 {
527         struct net_device *netdev = adapter->netdev;
528
529         e1000_irq_disable(adapter);
530
531         del_timer_sync(&adapter->tx_fifo_stall_timer);
532         del_timer_sync(&adapter->watchdog_timer);
533         del_timer_sync(&adapter->phy_info_timer);
534
535 #ifdef CONFIG_E1000_NAPI
536         netif_poll_disable(netdev);
537 #endif
538         netdev->tx_queue_len = adapter->tx_queue_len;
539         adapter->link_speed = 0;
540         adapter->link_duplex = 0;
541         netif_carrier_off(netdev);
542         netif_stop_queue(netdev);
543
544         e1000_reset(adapter);
545         e1000_clean_all_tx_rings(adapter);
546         e1000_clean_all_rx_rings(adapter);
547 }
548
549 void
550 e1000_reinit_locked(struct e1000_adapter *adapter)
551 {
552         WARN_ON(in_interrupt());
553         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
554                 msleep(1);
555         e1000_down(adapter);
556         e1000_up(adapter);
557         clear_bit(__E1000_RESETTING, &adapter->flags);
558 }
559
560 void
561 e1000_reset(struct e1000_adapter *adapter)
562 {
563         uint32_t pba, manc;
564         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
565
566         /* Repartition Pba for greater than 9k mtu
567          * To take effect CTRL.RST is required.
568          */
569
570         switch (adapter->hw.mac_type) {
571         case e1000_82547:
572         case e1000_82547_rev_2:
573                 pba = E1000_PBA_30K;
574                 break;
575         case e1000_82571:
576         case e1000_82572:
577         case e1000_80003es2lan:
578                 pba = E1000_PBA_38K;
579                 break;
580         case e1000_82573:
581                 pba = E1000_PBA_12K;
582                 break;
583         case e1000_ich8lan:
584                 pba = E1000_PBA_8K;
585                 break;
586         default:
587                 pba = E1000_PBA_48K;
588                 break;
589         }
590
591         if ((adapter->hw.mac_type != e1000_82573) &&
592            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
593                 pba -= 8; /* allocate more FIFO for Tx */
594
595
596         if (adapter->hw.mac_type == e1000_82547) {
597                 adapter->tx_fifo_head = 0;
598                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
599                 adapter->tx_fifo_size =
600                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
601                 atomic_set(&adapter->tx_fifo_stall, 0);
602         }
603
604         E1000_WRITE_REG(&adapter->hw, PBA, pba);
605
606         /* flow control settings */
607         /* Set the FC high water mark to 90% of the FIFO size.
608          * Required to clear last 3 LSB */
609         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
610         /* We can't use 90% on small FIFOs because the remainder
611          * would be less than 1 full frame.  In this case, we size
612          * it to allow at least a full frame above the high water
613          *  mark. */
614         if (pba < E1000_PBA_16K)
615                 fc_high_water_mark = (pba * 1024) - 1600;
616
617         adapter->hw.fc_high_water = fc_high_water_mark;
618         adapter->hw.fc_low_water = fc_high_water_mark - 8;
619         if (adapter->hw.mac_type == e1000_80003es2lan)
620                 adapter->hw.fc_pause_time = 0xFFFF;
621         else
622                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
623         adapter->hw.fc_send_xon = 1;
624         adapter->hw.fc = adapter->hw.original_fc;
625
626         /* Allow time for pending master requests to run */
627         e1000_reset_hw(&adapter->hw);
628         if (adapter->hw.mac_type >= e1000_82544)
629                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
630         if (e1000_init_hw(&adapter->hw))
631                 DPRINTK(PROBE, ERR, "Hardware Error\n");
632         e1000_update_mng_vlan(adapter);
633         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
634         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
635
636         e1000_reset_adaptive(&adapter->hw);
637         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
638
639         if (!adapter->smart_power_down &&
640             (adapter->hw.mac_type == e1000_82571 ||
641              adapter->hw.mac_type == e1000_82572)) {
642                 uint16_t phy_data = 0;
643                 /* speed up time to link by disabling smart power down, ignore
644                  * the return value of this function because there is nothing
645                  * different we would do if it failed */
646                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
647                                    &phy_data);
648                 phy_data &= ~IGP02E1000_PM_SPD;
649                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
650                                     phy_data);
651         }
652
653         if (adapter->hw.mac_type < e1000_ich8lan)
654         /* FIXME: this code is duplicate and wrong for PCI Express */
655         if (adapter->en_mng_pt) {
656                 manc = E1000_READ_REG(&adapter->hw, MANC);
657                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
658                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
659         }
660 }
661
662 /**
663  * e1000_probe - Device Initialization Routine
664  * @pdev: PCI device information struct
665  * @ent: entry in e1000_pci_tbl
666  *
667  * Returns 0 on success, negative on failure
668  *
669  * e1000_probe initializes an adapter identified by a pci_dev structure.
670  * The OS initialization, configuring of the adapter private structure,
671  * and a hardware reset occur.
672  **/
673
674 static int __devinit
675 e1000_probe(struct pci_dev *pdev,
676             const struct pci_device_id *ent)
677 {
678         struct net_device *netdev;
679         struct e1000_adapter *adapter;
680         unsigned long mmio_start, mmio_len;
681         unsigned long flash_start, flash_len;
682
683         static int cards_found = 0;
684         static int global_quad_port_a = 0; /* global ksp3 port a indication */
685         int i, err, pci_using_dac;
686         uint16_t eeprom_data = 0;
687         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
688         if ((err = pci_enable_device(pdev)))
689                 return err;
690
691         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
692             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
693                 pci_using_dac = 1;
694         } else {
695                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
696                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
697                         E1000_ERR("No usable DMA configuration, aborting\n");
698                         goto err_dma;
699                 }
700                 pci_using_dac = 0;
701         }
702
703         if ((err = pci_request_regions(pdev, e1000_driver_name)))
704                 goto err_pci_reg;
705
706         pci_set_master(pdev);
707
708         err = -ENOMEM;
709         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
710         if (!netdev)
711                 goto err_alloc_etherdev;
712
713         SET_MODULE_OWNER(netdev);
714         SET_NETDEV_DEV(netdev, &pdev->dev);
715
716         pci_set_drvdata(pdev, netdev);
717         adapter = netdev_priv(netdev);
718         adapter->netdev = netdev;
719         adapter->pdev = pdev;
720         adapter->hw.back = adapter;
721         adapter->msg_enable = (1 << debug) - 1;
722
723         mmio_start = pci_resource_start(pdev, BAR_0);
724         mmio_len = pci_resource_len(pdev, BAR_0);
725
726         err = -EIO;
727         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
728         if (!adapter->hw.hw_addr)
729                 goto err_ioremap;
730
731         for (i = BAR_1; i <= BAR_5; i++) {
732                 if (pci_resource_len(pdev, i) == 0)
733                         continue;
734                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
735                         adapter->hw.io_base = pci_resource_start(pdev, i);
736                         break;
737                 }
738         }
739
740         netdev->open = &e1000_open;
741         netdev->stop = &e1000_close;
742         netdev->hard_start_xmit = &e1000_xmit_frame;
743         netdev->get_stats = &e1000_get_stats;
744         netdev->set_multicast_list = &e1000_set_multi;
745         netdev->set_mac_address = &e1000_set_mac;
746         netdev->change_mtu = &e1000_change_mtu;
747         netdev->do_ioctl = &e1000_ioctl;
748         e1000_set_ethtool_ops(netdev);
749         netdev->tx_timeout = &e1000_tx_timeout;
750         netdev->watchdog_timeo = 5 * HZ;
751 #ifdef CONFIG_E1000_NAPI
752         netdev->poll = &e1000_clean;
753         netdev->weight = 64;
754 #endif
755         netdev->vlan_rx_register = e1000_vlan_rx_register;
756         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
757         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
758 #ifdef CONFIG_NET_POLL_CONTROLLER
759         netdev->poll_controller = e1000_netpoll;
760 #endif
761         strcpy(netdev->name, pci_name(pdev));
762
763         netdev->mem_start = mmio_start;
764         netdev->mem_end = mmio_start + mmio_len;
765         netdev->base_addr = adapter->hw.io_base;
766
767         adapter->bd_number = cards_found;
768
769         /* setup the private structure */
770
771         if ((err = e1000_sw_init(adapter)))
772                 goto err_sw_init;
773
774         err = -EIO;
775         /* Flash BAR mapping must happen after e1000_sw_init
776          * because it depends on mac_type */
777         if ((adapter->hw.mac_type == e1000_ich8lan) &&
778            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
779                 flash_start = pci_resource_start(pdev, 1);
780                 flash_len = pci_resource_len(pdev, 1);
781                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
782                 if (!adapter->hw.flash_address)
783                         goto err_flashmap;
784         }
785
786         if (e1000_check_phy_reset_block(&adapter->hw))
787                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
788
789         if (adapter->hw.mac_type >= e1000_82543) {
790                 netdev->features = NETIF_F_SG |
791                                    NETIF_F_HW_CSUM |
792                                    NETIF_F_HW_VLAN_TX |
793                                    NETIF_F_HW_VLAN_RX |
794                                    NETIF_F_HW_VLAN_FILTER;
795                 if (adapter->hw.mac_type == e1000_ich8lan)
796                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
797         }
798
799 #ifdef NETIF_F_TSO
800         if ((adapter->hw.mac_type >= e1000_82544) &&
801            (adapter->hw.mac_type != e1000_82547))
802                 netdev->features |= NETIF_F_TSO;
803
804 #ifdef NETIF_F_TSO_IPV6
805         if (adapter->hw.mac_type > e1000_82547_rev_2)
806                 netdev->features |= NETIF_F_TSO_IPV6;
807 #endif
808 #endif
809         if (pci_using_dac)
810                 netdev->features |= NETIF_F_HIGHDMA;
811
812         netdev->features |= NETIF_F_LLTX;
813
814         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
815
816         /* initialize eeprom parameters */
817
818         if (e1000_init_eeprom_params(&adapter->hw)) {
819                 E1000_ERR("EEPROM initialization failed\n");
820                 goto err_eeprom;
821         }
822
823         /* before reading the EEPROM, reset the controller to
824          * put the device in a known good starting state */
825
826         e1000_reset_hw(&adapter->hw);
827
828         /* make sure the EEPROM is good */
829
830         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
831                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
832                 goto err_eeprom;
833         }
834
835         /* copy the MAC address out of the EEPROM */
836
837         if (e1000_read_mac_addr(&adapter->hw))
838                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
839         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
840         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
841
842         if (!is_valid_ether_addr(netdev->perm_addr)) {
843                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
844                 goto err_eeprom;
845         }
846
847         e1000_get_bus_info(&adapter->hw);
848
849         init_timer(&adapter->tx_fifo_stall_timer);
850         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
851         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
852
853         init_timer(&adapter->watchdog_timer);
854         adapter->watchdog_timer.function = &e1000_watchdog;
855         adapter->watchdog_timer.data = (unsigned long) adapter;
856
857         init_timer(&adapter->phy_info_timer);
858         adapter->phy_info_timer.function = &e1000_update_phy_info;
859         adapter->phy_info_timer.data = (unsigned long) adapter;
860
861         INIT_WORK(&adapter->reset_task,
862                 (void (*)(void *))e1000_reset_task, netdev);
863
864         /* we're going to reset, so assume we have no link for now */
865
866         netif_carrier_off(netdev);
867         netif_stop_queue(netdev);
868
869         e1000_check_options(adapter);
870
871         /* Initial Wake on LAN setting
872          * If APM wake is enabled in the EEPROM,
873          * enable the ACPI Magic Packet filter
874          */
875
876         switch (adapter->hw.mac_type) {
877         case e1000_82542_rev2_0:
878         case e1000_82542_rev2_1:
879         case e1000_82543:
880                 break;
881         case e1000_82544:
882                 e1000_read_eeprom(&adapter->hw,
883                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
884                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
885                 break;
886         case e1000_ich8lan:
887                 e1000_read_eeprom(&adapter->hw,
888                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
889                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
890                 break;
891         case e1000_82546:
892         case e1000_82546_rev_3:
893         case e1000_82571:
894         case e1000_80003es2lan:
895                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
896                         e1000_read_eeprom(&adapter->hw,
897                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
898                         break;
899                 }
900                 /* Fall Through */
901         default:
902                 e1000_read_eeprom(&adapter->hw,
903                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
904                 break;
905         }
906         if (eeprom_data & eeprom_apme_mask)
907                 adapter->eeprom_wol |= E1000_WUFC_MAG;
908
909         /* now that we have the eeprom settings, apply the special cases
910          * where the eeprom may be wrong or the board simply won't support
911          * wake on lan on a particular port */
912         switch (pdev->device) {
913         case E1000_DEV_ID_82546GB_PCIE:
914                 adapter->eeprom_wol = 0;
915                 break;
916         case E1000_DEV_ID_82546EB_FIBER:
917         case E1000_DEV_ID_82546GB_FIBER:
918         case E1000_DEV_ID_82571EB_FIBER:
919                 /* Wake events only supported on port A for dual fiber
920                  * regardless of eeprom setting */
921                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
922                         adapter->eeprom_wol = 0;
923                 break;
924         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
925                 /* if quad port adapter, disable WoL on all but port A */
926                 if (global_quad_port_a != 0)
927                         adapter->eeprom_wol = 0;
928                 else
929                         adapter->quad_port_a = 1;
930                 /* Reset for multiple quad port adapters */
931                 if (++global_quad_port_a == 4)
932                         global_quad_port_a = 0;
933                 break;
934         }
935
936         /* initialize the wol settings based on the eeprom settings */
937         adapter->wol = adapter->eeprom_wol;
938
939         /* print bus type/speed/width info */
940         {
941         struct e1000_hw *hw = &adapter->hw;
942         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
943                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
944                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
945                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
946                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
947                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
948                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
949                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
950                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
951                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
952                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
953                  "32-bit"));
954         }
955
956         for (i = 0; i < 6; i++)
957                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
958
959         /* reset the hardware with the new settings */
960         e1000_reset(adapter);
961
962         /* If the controller is 82573 and f/w is AMT, do not set
963          * DRV_LOAD until the interface is up.  For all other cases,
964          * let the f/w know that the h/w is now under the control
965          * of the driver. */
966         if (adapter->hw.mac_type != e1000_82573 ||
967             !e1000_check_mng_mode(&adapter->hw))
968                 e1000_get_hw_control(adapter);
969
970         strcpy(netdev->name, "eth%d");
971         if ((err = register_netdev(netdev)))
972                 goto err_register;
973
974         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
975
976         cards_found++;
977         return 0;
978
979 err_register:
980         e1000_release_hw_control(adapter);
981 err_eeprom:
982         if (!e1000_check_phy_reset_block(&adapter->hw))
983                 e1000_phy_hw_reset(&adapter->hw);
984
985         if (adapter->hw.flash_address)
986                 iounmap(adapter->hw.flash_address);
987 err_flashmap:
988 #ifdef CONFIG_E1000_NAPI
989         for (i = 0; i < adapter->num_rx_queues; i++)
990                 dev_put(&adapter->polling_netdev[i]);
991 #endif
992
993         kfree(adapter->tx_ring);
994         kfree(adapter->rx_ring);
995 #ifdef CONFIG_E1000_NAPI
996         kfree(adapter->polling_netdev);
997 #endif
998 err_sw_init:
999         iounmap(adapter->hw.hw_addr);
1000 err_ioremap:
1001         free_netdev(netdev);
1002 err_alloc_etherdev:
1003         pci_release_regions(pdev);
1004 err_pci_reg:
1005 err_dma:
1006         pci_disable_device(pdev);
1007         return err;
1008 }
1009
1010 /**
1011  * e1000_remove - Device Removal Routine
1012  * @pdev: PCI device information struct
1013  *
1014  * e1000_remove is called by the PCI subsystem to alert the driver
1015  * that it should release a PCI device.  The could be caused by a
1016  * Hot-Plug event, or because the driver is going to be removed from
1017  * memory.
1018  **/
1019
1020 static void __devexit
1021 e1000_remove(struct pci_dev *pdev)
1022 {
1023         struct net_device *netdev = pci_get_drvdata(pdev);
1024         struct e1000_adapter *adapter = netdev_priv(netdev);
1025         uint32_t manc;
1026 #ifdef CONFIG_E1000_NAPI
1027         int i;
1028 #endif
1029
1030         flush_scheduled_work();
1031
1032         if (adapter->hw.mac_type >= e1000_82540 &&
1033            adapter->hw.mac_type != e1000_ich8lan &&
1034            adapter->hw.media_type == e1000_media_type_copper) {
1035                 manc = E1000_READ_REG(&adapter->hw, MANC);
1036                 if (manc & E1000_MANC_SMBUS_EN) {
1037                         manc |= E1000_MANC_ARP_EN;
1038                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1039                 }
1040         }
1041
1042         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1043          * would have already happened in close and is redundant. */
1044         e1000_release_hw_control(adapter);
1045
1046         unregister_netdev(netdev);
1047 #ifdef CONFIG_E1000_NAPI
1048         for (i = 0; i < adapter->num_rx_queues; i++)
1049                 dev_put(&adapter->polling_netdev[i]);
1050 #endif
1051
1052         if (!e1000_check_phy_reset_block(&adapter->hw))
1053                 e1000_phy_hw_reset(&adapter->hw);
1054
1055         kfree(adapter->tx_ring);
1056         kfree(adapter->rx_ring);
1057 #ifdef CONFIG_E1000_NAPI
1058         kfree(adapter->polling_netdev);
1059 #endif
1060
1061         iounmap(adapter->hw.hw_addr);
1062         if (adapter->hw.flash_address)
1063                 iounmap(adapter->hw.flash_address);
1064         pci_release_regions(pdev);
1065
1066         free_netdev(netdev);
1067
1068         pci_disable_device(pdev);
1069 }
1070
1071 /**
1072  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1073  * @adapter: board private structure to initialize
1074  *
1075  * e1000_sw_init initializes the Adapter private data structure.
1076  * Fields are initialized based on PCI device information and
1077  * OS network device settings (MTU size).
1078  **/
1079
1080 static int __devinit
1081 e1000_sw_init(struct e1000_adapter *adapter)
1082 {
1083         struct e1000_hw *hw = &adapter->hw;
1084         struct net_device *netdev = adapter->netdev;
1085         struct pci_dev *pdev = adapter->pdev;
1086 #ifdef CONFIG_E1000_NAPI
1087         int i;
1088 #endif
1089
1090         /* PCI config space info */
1091
1092         hw->vendor_id = pdev->vendor;
1093         hw->device_id = pdev->device;
1094         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1095         hw->subsystem_id = pdev->subsystem_device;
1096
1097         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1098
1099         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1100
1101         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1102         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1103         hw->max_frame_size = netdev->mtu +
1104                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1105         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1106
1107         /* identify the MAC */
1108
1109         if (e1000_set_mac_type(hw)) {
1110                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1111                 return -EIO;
1112         }
1113
1114         switch (hw->mac_type) {
1115         default:
1116                 break;
1117         case e1000_82541:
1118         case e1000_82547:
1119         case e1000_82541_rev_2:
1120         case e1000_82547_rev_2:
1121                 hw->phy_init_script = 1;
1122                 break;
1123         }
1124
1125         e1000_set_media_type(hw);
1126
1127         hw->wait_autoneg_complete = FALSE;
1128         hw->tbi_compatibility_en = TRUE;
1129         hw->adaptive_ifs = TRUE;
1130
1131         /* Copper options */
1132
1133         if (hw->media_type == e1000_media_type_copper) {
1134                 hw->mdix = AUTO_ALL_MODES;
1135                 hw->disable_polarity_correction = FALSE;
1136                 hw->master_slave = E1000_MASTER_SLAVE;
1137         }
1138
1139         adapter->num_tx_queues = 1;
1140         adapter->num_rx_queues = 1;
1141
1142         if (e1000_alloc_queues(adapter)) {
1143                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1144                 return -ENOMEM;
1145         }
1146
1147 #ifdef CONFIG_E1000_NAPI
1148         for (i = 0; i < adapter->num_rx_queues; i++) {
1149                 adapter->polling_netdev[i].priv = adapter;
1150                 adapter->polling_netdev[i].poll = &e1000_clean;
1151                 adapter->polling_netdev[i].weight = 64;
1152                 dev_hold(&adapter->polling_netdev[i]);
1153                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1154         }
1155         spin_lock_init(&adapter->tx_queue_lock);
1156 #endif
1157
1158         atomic_set(&adapter->irq_sem, 1);
1159         spin_lock_init(&adapter->stats_lock);
1160
1161         return 0;
1162 }
1163
1164 /**
1165  * e1000_alloc_queues - Allocate memory for all rings
1166  * @adapter: board private structure to initialize
1167  *
1168  * We allocate one ring per queue at run-time since we don't know the
1169  * number of queues at compile-time.  The polling_netdev array is
1170  * intended for Multiqueue, but should work fine with a single queue.
1171  **/
1172
1173 static int __devinit
1174 e1000_alloc_queues(struct e1000_adapter *adapter)
1175 {
1176         int size;
1177
1178         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1179         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1180         if (!adapter->tx_ring)
1181                 return -ENOMEM;
1182         memset(adapter->tx_ring, 0, size);
1183
1184         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1185         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1186         if (!adapter->rx_ring) {
1187                 kfree(adapter->tx_ring);
1188                 return -ENOMEM;
1189         }
1190         memset(adapter->rx_ring, 0, size);
1191
1192 #ifdef CONFIG_E1000_NAPI
1193         size = sizeof(struct net_device) * adapter->num_rx_queues;
1194         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1195         if (!adapter->polling_netdev) {
1196                 kfree(adapter->tx_ring);
1197                 kfree(adapter->rx_ring);
1198                 return -ENOMEM;
1199         }
1200         memset(adapter->polling_netdev, 0, size);
1201 #endif
1202
1203         return E1000_SUCCESS;
1204 }
1205
1206 /**
1207  * e1000_open - Called when a network interface is made active
1208  * @netdev: network interface device structure
1209  *
1210  * Returns 0 on success, negative value on failure
1211  *
1212  * The open entry point is called when a network interface is made
1213  * active by the system (IFF_UP).  At this point all resources needed
1214  * for transmit and receive operations are allocated, the interrupt
1215  * handler is registered with the OS, the watchdog timer is started,
1216  * and the stack is notified that the interface is ready.
1217  **/
1218
1219 static int
1220 e1000_open(struct net_device *netdev)
1221 {
1222         struct e1000_adapter *adapter = netdev_priv(netdev);
1223         int err;
1224
1225         /* disallow open during test */
1226         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1227                 return -EBUSY;
1228
1229         /* allocate transmit descriptors */
1230
1231         if ((err = e1000_setup_all_tx_resources(adapter)))
1232                 goto err_setup_tx;
1233
1234         /* allocate receive descriptors */
1235
1236         if ((err = e1000_setup_all_rx_resources(adapter)))
1237                 goto err_setup_rx;
1238
1239         err = e1000_request_irq(adapter);
1240         if (err)
1241                 goto err_req_irq;
1242
1243         e1000_power_up_phy(adapter);
1244
1245         if ((err = e1000_up(adapter)))
1246                 goto err_up;
1247         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1248         if ((adapter->hw.mng_cookie.status &
1249                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1250                 e1000_update_mng_vlan(adapter);
1251         }
1252
1253         /* If AMT is enabled, let the firmware know that the network
1254          * interface is now open */
1255         if (adapter->hw.mac_type == e1000_82573 &&
1256             e1000_check_mng_mode(&adapter->hw))
1257                 e1000_get_hw_control(adapter);
1258
1259         return E1000_SUCCESS;
1260
1261 err_up:
1262         e1000_power_down_phy(adapter);
1263         e1000_free_irq(adapter);
1264 err_req_irq:
1265         e1000_free_all_rx_resources(adapter);
1266 err_setup_rx:
1267         e1000_free_all_tx_resources(adapter);
1268 err_setup_tx:
1269         e1000_reset(adapter);
1270
1271         return err;
1272 }
1273
1274 /**
1275  * e1000_close - Disables a network interface
1276  * @netdev: network interface device structure
1277  *
1278  * Returns 0, this is not allowed to fail
1279  *
1280  * The close entry point is called when an interface is de-activated
1281  * by the OS.  The hardware is still under the drivers control, but
1282  * needs to be disabled.  A global MAC reset is issued to stop the
1283  * hardware, and all transmit and receive resources are freed.
1284  **/
1285
1286 static int
1287 e1000_close(struct net_device *netdev)
1288 {
1289         struct e1000_adapter *adapter = netdev_priv(netdev);
1290
1291         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1292         e1000_down(adapter);
1293         e1000_power_down_phy(adapter);
1294         e1000_free_irq(adapter);
1295
1296         e1000_free_all_tx_resources(adapter);
1297         e1000_free_all_rx_resources(adapter);
1298
1299         if ((adapter->hw.mng_cookie.status &
1300                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1301                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1302         }
1303
1304         /* If AMT is enabled, let the firmware know that the network
1305          * interface is now closed */
1306         if (adapter->hw.mac_type == e1000_82573 &&
1307             e1000_check_mng_mode(&adapter->hw))
1308                 e1000_release_hw_control(adapter);
1309
1310         return 0;
1311 }
1312
1313 /**
1314  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1315  * @adapter: address of board private structure
1316  * @start: address of beginning of memory
1317  * @len: length of memory
1318  **/
1319 static boolean_t
1320 e1000_check_64k_bound(struct e1000_adapter *adapter,
1321                       void *start, unsigned long len)
1322 {
1323         unsigned long begin = (unsigned long) start;
1324         unsigned long end = begin + len;
1325
1326         /* First rev 82545 and 82546 need to not allow any memory
1327          * write location to cross 64k boundary due to errata 23 */
1328         if (adapter->hw.mac_type == e1000_82545 ||
1329             adapter->hw.mac_type == e1000_82546) {
1330                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1331         }
1332
1333         return TRUE;
1334 }
1335
1336 /**
1337  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1338  * @adapter: board private structure
1339  * @txdr:    tx descriptor ring (for a specific queue) to setup
1340  *
1341  * Return 0 on success, negative on failure
1342  **/
1343
1344 static int
1345 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1346                          struct e1000_tx_ring *txdr)
1347 {
1348         struct pci_dev *pdev = adapter->pdev;
1349         int size;
1350
1351         size = sizeof(struct e1000_buffer) * txdr->count;
1352         txdr->buffer_info = vmalloc(size);
1353         if (!txdr->buffer_info) {
1354                 DPRINTK(PROBE, ERR,
1355                 "Unable to allocate memory for the transmit descriptor ring\n");
1356                 return -ENOMEM;
1357         }
1358         memset(txdr->buffer_info, 0, size);
1359
1360         /* round up to nearest 4K */
1361
1362         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1363         E1000_ROUNDUP(txdr->size, 4096);
1364
1365         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1366         if (!txdr->desc) {
1367 setup_tx_desc_die:
1368                 vfree(txdr->buffer_info);
1369                 DPRINTK(PROBE, ERR,
1370                 "Unable to allocate memory for the transmit descriptor ring\n");
1371                 return -ENOMEM;
1372         }
1373
1374         /* Fix for errata 23, can't cross 64kB boundary */
1375         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1376                 void *olddesc = txdr->desc;
1377                 dma_addr_t olddma = txdr->dma;
1378                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1379                                      "at %p\n", txdr->size, txdr->desc);
1380                 /* Try again, without freeing the previous */
1381                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1382                 /* Failed allocation, critical failure */
1383                 if (!txdr->desc) {
1384                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1385                         goto setup_tx_desc_die;
1386                 }
1387
1388                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1389                         /* give up */
1390                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1391                                             txdr->dma);
1392                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1393                         DPRINTK(PROBE, ERR,
1394                                 "Unable to allocate aligned memory "
1395                                 "for the transmit descriptor ring\n");
1396                         vfree(txdr->buffer_info);
1397                         return -ENOMEM;
1398                 } else {
1399                         /* Free old allocation, new allocation was successful */
1400                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1401                 }
1402         }
1403         memset(txdr->desc, 0, txdr->size);
1404
1405         txdr->next_to_use = 0;
1406         txdr->next_to_clean = 0;
1407         spin_lock_init(&txdr->tx_lock);
1408
1409         return 0;
1410 }
1411
1412 /**
1413  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1414  *                                (Descriptors) for all queues
1415  * @adapter: board private structure
1416  *
1417  * Return 0 on success, negative on failure
1418  **/
1419
1420 int
1421 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1422 {
1423         int i, err = 0;
1424
1425         for (i = 0; i < adapter->num_tx_queues; i++) {
1426                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1427                 if (err) {
1428                         DPRINTK(PROBE, ERR,
1429                                 "Allocation for Tx Queue %u failed\n", i);
1430                         for (i-- ; i >= 0; i--)
1431                                 e1000_free_tx_resources(adapter,
1432                                                         &adapter->tx_ring[i]);
1433                         break;
1434                 }
1435         }
1436
1437         return err;
1438 }
1439
1440 /**
1441  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1442  * @adapter: board private structure
1443  *
1444  * Configure the Tx unit of the MAC after a reset.
1445  **/
1446
1447 static void
1448 e1000_configure_tx(struct e1000_adapter *adapter)
1449 {
1450         uint64_t tdba;
1451         struct e1000_hw *hw = &adapter->hw;
1452         uint32_t tdlen, tctl, tipg, tarc;
1453         uint32_t ipgr1, ipgr2;
1454
1455         /* Setup the HW Tx Head and Tail descriptor pointers */
1456
1457         switch (adapter->num_tx_queues) {
1458         case 1:
1459         default:
1460                 tdba = adapter->tx_ring[0].dma;
1461                 tdlen = adapter->tx_ring[0].count *
1462                         sizeof(struct e1000_tx_desc);
1463                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1464                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1465                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1466                 E1000_WRITE_REG(hw, TDT, 0);
1467                 E1000_WRITE_REG(hw, TDH, 0);
1468                 adapter->tx_ring[0].tdh = E1000_TDH;
1469                 adapter->tx_ring[0].tdt = E1000_TDT;
1470                 break;
1471         }
1472
1473         /* Set the default values for the Tx Inter Packet Gap timer */
1474
1475         if (hw->media_type == e1000_media_type_fiber ||
1476             hw->media_type == e1000_media_type_internal_serdes)
1477                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1478         else
1479                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1480
1481         switch (hw->mac_type) {
1482         case e1000_82542_rev2_0:
1483         case e1000_82542_rev2_1:
1484                 tipg = DEFAULT_82542_TIPG_IPGT;
1485                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1486                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1487                 break;
1488         case e1000_80003es2lan:
1489                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1490                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1491                 break;
1492         default:
1493                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1494                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1495                 break;
1496         }
1497         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1498         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1499         E1000_WRITE_REG(hw, TIPG, tipg);
1500
1501         /* Set the Tx Interrupt Delay register */
1502
1503         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1504         if (hw->mac_type >= e1000_82540)
1505                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1506
1507         /* Program the Transmit Control Register */
1508
1509         tctl = E1000_READ_REG(hw, TCTL);
1510
1511         tctl &= ~E1000_TCTL_CT;
1512         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1513                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1514
1515 #ifdef DISABLE_MULR
1516         /* disable Multiple Reads for debugging */
1517         tctl &= ~E1000_TCTL_MULR;
1518 #endif
1519
1520         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1521                 tarc = E1000_READ_REG(hw, TARC0);
1522                 tarc |= ((1 << 25) | (1 << 21));
1523                 E1000_WRITE_REG(hw, TARC0, tarc);
1524                 tarc = E1000_READ_REG(hw, TARC1);
1525                 tarc |= (1 << 25);
1526                 if (tctl & E1000_TCTL_MULR)
1527                         tarc &= ~(1 << 28);
1528                 else
1529                         tarc |= (1 << 28);
1530                 E1000_WRITE_REG(hw, TARC1, tarc);
1531         } else if (hw->mac_type == e1000_80003es2lan) {
1532                 tarc = E1000_READ_REG(hw, TARC0);
1533                 tarc |= 1;
1534                 E1000_WRITE_REG(hw, TARC0, tarc);
1535                 tarc = E1000_READ_REG(hw, TARC1);
1536                 tarc |= 1;
1537                 E1000_WRITE_REG(hw, TARC1, tarc);
1538         }
1539
1540         e1000_config_collision_dist(hw);
1541
1542         /* Setup Transmit Descriptor Settings for eop descriptor */
1543         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1544                 E1000_TXD_CMD_IFCS;
1545
1546         if (hw->mac_type < e1000_82543)
1547                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1548         else
1549                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1550
1551         /* Cache if we're 82544 running in PCI-X because we'll
1552          * need this to apply a workaround later in the send path. */
1553         if (hw->mac_type == e1000_82544 &&
1554             hw->bus_type == e1000_bus_type_pcix)
1555                 adapter->pcix_82544 = 1;
1556
1557         E1000_WRITE_REG(hw, TCTL, tctl);
1558
1559 }
1560
1561 /**
1562  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1563  * @adapter: board private structure
1564  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1565  *
1566  * Returns 0 on success, negative on failure
1567  **/
1568
1569 static int
1570 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1571                          struct e1000_rx_ring *rxdr)
1572 {
1573         struct pci_dev *pdev = adapter->pdev;
1574         int size, desc_len;
1575
1576         size = sizeof(struct e1000_buffer) * rxdr->count;
1577         rxdr->buffer_info = vmalloc(size);
1578         if (!rxdr->buffer_info) {
1579                 DPRINTK(PROBE, ERR,
1580                 "Unable to allocate memory for the receive descriptor ring\n");
1581                 return -ENOMEM;
1582         }
1583         memset(rxdr->buffer_info, 0, size);
1584
1585         size = sizeof(struct e1000_ps_page) * rxdr->count;
1586         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1587         if (!rxdr->ps_page) {
1588                 vfree(rxdr->buffer_info);
1589                 DPRINTK(PROBE, ERR,
1590                 "Unable to allocate memory for the receive descriptor ring\n");
1591                 return -ENOMEM;
1592         }
1593         memset(rxdr->ps_page, 0, size);
1594
1595         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1596         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1597         if (!rxdr->ps_page_dma) {
1598                 vfree(rxdr->buffer_info);
1599                 kfree(rxdr->ps_page);
1600                 DPRINTK(PROBE, ERR,
1601                 "Unable to allocate memory for the receive descriptor ring\n");
1602                 return -ENOMEM;
1603         }
1604         memset(rxdr->ps_page_dma, 0, size);
1605
1606         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1607                 desc_len = sizeof(struct e1000_rx_desc);
1608         else
1609                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1610
1611         /* Round up to nearest 4K */
1612
1613         rxdr->size = rxdr->count * desc_len;
1614         E1000_ROUNDUP(rxdr->size, 4096);
1615
1616         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1617
1618         if (!rxdr->desc) {
1619                 DPRINTK(PROBE, ERR,
1620                 "Unable to allocate memory for the receive descriptor ring\n");
1621 setup_rx_desc_die:
1622                 vfree(rxdr->buffer_info);
1623                 kfree(rxdr->ps_page);
1624                 kfree(rxdr->ps_page_dma);
1625                 return -ENOMEM;
1626         }
1627
1628         /* Fix for errata 23, can't cross 64kB boundary */
1629         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1630                 void *olddesc = rxdr->desc;
1631                 dma_addr_t olddma = rxdr->dma;
1632                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1633                                      "at %p\n", rxdr->size, rxdr->desc);
1634                 /* Try again, without freeing the previous */
1635                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1636                 /* Failed allocation, critical failure */
1637                 if (!rxdr->desc) {
1638                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1639                         DPRINTK(PROBE, ERR,
1640                                 "Unable to allocate memory "
1641                                 "for the receive descriptor ring\n");
1642                         goto setup_rx_desc_die;
1643                 }
1644
1645                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1646                         /* give up */
1647                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1648                                             rxdr->dma);
1649                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1650                         DPRINTK(PROBE, ERR,
1651                                 "Unable to allocate aligned memory "
1652                                 "for the receive descriptor ring\n");
1653                         goto setup_rx_desc_die;
1654                 } else {
1655                         /* Free old allocation, new allocation was successful */
1656                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1657                 }
1658         }
1659         memset(rxdr->desc, 0, rxdr->size);
1660
1661         rxdr->next_to_clean = 0;
1662         rxdr->next_to_use = 0;
1663
1664         return 0;
1665 }
1666
1667 /**
1668  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1669  *                                (Descriptors) for all queues
1670  * @adapter: board private structure
1671  *
1672  * Return 0 on success, negative on failure
1673  **/
1674
1675 int
1676 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1677 {
1678         int i, err = 0;
1679
1680         for (i = 0; i < adapter->num_rx_queues; i++) {
1681                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1682                 if (err) {
1683                         DPRINTK(PROBE, ERR,
1684                                 "Allocation for Rx Queue %u failed\n", i);
1685                         for (i-- ; i >= 0; i--)
1686                                 e1000_free_rx_resources(adapter,
1687                                                         &adapter->rx_ring[i]);
1688                         break;
1689                 }
1690         }
1691
1692         return err;
1693 }
1694
1695 /**
1696  * e1000_setup_rctl - configure the receive control registers
1697  * @adapter: Board private structure
1698  **/
1699 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1700                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1701 static void
1702 e1000_setup_rctl(struct e1000_adapter *adapter)
1703 {
1704         uint32_t rctl, rfctl;
1705         uint32_t psrctl = 0;
1706 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1707         uint32_t pages = 0;
1708 #endif
1709
1710         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1711
1712         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1713
1714         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1715                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1716                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1717
1718         if (adapter->hw.tbi_compatibility_on == 1)
1719                 rctl |= E1000_RCTL_SBP;
1720         else
1721                 rctl &= ~E1000_RCTL_SBP;
1722
1723         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1724                 rctl &= ~E1000_RCTL_LPE;
1725         else
1726                 rctl |= E1000_RCTL_LPE;
1727
1728         /* Setup buffer sizes */
1729         rctl &= ~E1000_RCTL_SZ_4096;
1730         rctl |= E1000_RCTL_BSEX;
1731         switch (adapter->rx_buffer_len) {
1732                 case E1000_RXBUFFER_256:
1733                         rctl |= E1000_RCTL_SZ_256;
1734                         rctl &= ~E1000_RCTL_BSEX;
1735                         break;
1736                 case E1000_RXBUFFER_512:
1737                         rctl |= E1000_RCTL_SZ_512;
1738                         rctl &= ~E1000_RCTL_BSEX;
1739                         break;
1740                 case E1000_RXBUFFER_1024:
1741                         rctl |= E1000_RCTL_SZ_1024;
1742                         rctl &= ~E1000_RCTL_BSEX;
1743                         break;
1744                 case E1000_RXBUFFER_2048:
1745                 default:
1746                         rctl |= E1000_RCTL_SZ_2048;
1747                         rctl &= ~E1000_RCTL_BSEX;
1748                         break;
1749                 case E1000_RXBUFFER_4096:
1750                         rctl |= E1000_RCTL_SZ_4096;
1751                         break;
1752                 case E1000_RXBUFFER_8192:
1753                         rctl |= E1000_RCTL_SZ_8192;
1754                         break;
1755                 case E1000_RXBUFFER_16384:
1756                         rctl |= E1000_RCTL_SZ_16384;
1757                         break;
1758         }
1759
1760 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1761         /* 82571 and greater support packet-split where the protocol
1762          * header is placed in skb->data and the packet data is
1763          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1764          * In the case of a non-split, skb->data is linearly filled,
1765          * followed by the page buffers.  Therefore, skb->data is
1766          * sized to hold the largest protocol header.
1767          */
1768         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1769         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1770             PAGE_SIZE <= 16384)
1771                 adapter->rx_ps_pages = pages;
1772         else
1773                 adapter->rx_ps_pages = 0;
1774 #endif
1775         if (adapter->rx_ps_pages) {
1776                 /* Configure extra packet-split registers */
1777                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1778                 rfctl |= E1000_RFCTL_EXTEN;
1779                 /* disable IPv6 packet split support */
1780                 rfctl |= E1000_RFCTL_IPV6_DIS;
1781                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1782
1783                 rctl |= E1000_RCTL_DTYP_PS;
1784
1785                 psrctl |= adapter->rx_ps_bsize0 >>
1786                         E1000_PSRCTL_BSIZE0_SHIFT;
1787
1788                 switch (adapter->rx_ps_pages) {
1789                 case 3:
1790                         psrctl |= PAGE_SIZE <<
1791                                 E1000_PSRCTL_BSIZE3_SHIFT;
1792                 case 2:
1793                         psrctl |= PAGE_SIZE <<
1794                                 E1000_PSRCTL_BSIZE2_SHIFT;
1795                 case 1:
1796                         psrctl |= PAGE_SIZE >>
1797                                 E1000_PSRCTL_BSIZE1_SHIFT;
1798                         break;
1799                 }
1800
1801                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1802         }
1803
1804         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1805 }
1806
1807 /**
1808  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1809  * @adapter: board private structure
1810  *
1811  * Configure the Rx unit of the MAC after a reset.
1812  **/
1813
1814 static void
1815 e1000_configure_rx(struct e1000_adapter *adapter)
1816 {
1817         uint64_t rdba;
1818         struct e1000_hw *hw = &adapter->hw;
1819         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1820
1821         if (adapter->rx_ps_pages) {
1822                 /* this is a 32 byte descriptor */
1823                 rdlen = adapter->rx_ring[0].count *
1824                         sizeof(union e1000_rx_desc_packet_split);
1825                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1826                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1827         } else {
1828                 rdlen = adapter->rx_ring[0].count *
1829                         sizeof(struct e1000_rx_desc);
1830                 adapter->clean_rx = e1000_clean_rx_irq;
1831                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1832         }
1833
1834         /* disable receives while setting up the descriptors */
1835         rctl = E1000_READ_REG(hw, RCTL);
1836         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1837
1838         /* set the Receive Delay Timer Register */
1839         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1840
1841         if (hw->mac_type >= e1000_82540) {
1842                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1843                 if (adapter->itr > 1)
1844                         E1000_WRITE_REG(hw, ITR,
1845                                 1000000000 / (adapter->itr * 256));
1846         }
1847
1848         if (hw->mac_type >= e1000_82571) {
1849                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1850                 /* Reset delay timers after every interrupt */
1851                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1852 #ifdef CONFIG_E1000_NAPI
1853                 /* Auto-Mask interrupts upon ICR read. */
1854                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1855 #endif
1856                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1857                 E1000_WRITE_REG(hw, IAM, ~0);
1858                 E1000_WRITE_FLUSH(hw);
1859         }
1860
1861         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1862          * the Base and Length of the Rx Descriptor Ring */
1863         switch (adapter->num_rx_queues) {
1864         case 1:
1865         default:
1866                 rdba = adapter->rx_ring[0].dma;
1867                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1868                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1869                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1870                 E1000_WRITE_REG(hw, RDT, 0);
1871                 E1000_WRITE_REG(hw, RDH, 0);
1872                 adapter->rx_ring[0].rdh = E1000_RDH;
1873                 adapter->rx_ring[0].rdt = E1000_RDT;
1874                 break;
1875         }
1876
1877         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1878         if (hw->mac_type >= e1000_82543) {
1879                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1880                 if (adapter->rx_csum == TRUE) {
1881                         rxcsum |= E1000_RXCSUM_TUOFL;
1882
1883                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1884                          * Must be used in conjunction with packet-split. */
1885                         if ((hw->mac_type >= e1000_82571) &&
1886                             (adapter->rx_ps_pages)) {
1887                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1888                         }
1889                 } else {
1890                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1891                         /* don't need to clear IPPCSE as it defaults to 0 */
1892                 }
1893                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1894         }
1895
1896         /* Enable Receives */
1897         E1000_WRITE_REG(hw, RCTL, rctl);
1898 }
1899
1900 /**
1901  * e1000_free_tx_resources - Free Tx Resources per Queue
1902  * @adapter: board private structure
1903  * @tx_ring: Tx descriptor ring for a specific queue
1904  *
1905  * Free all transmit software resources
1906  **/
1907
1908 static void
1909 e1000_free_tx_resources(struct e1000_adapter *adapter,
1910                         struct e1000_tx_ring *tx_ring)
1911 {
1912         struct pci_dev *pdev = adapter->pdev;
1913
1914         e1000_clean_tx_ring(adapter, tx_ring);
1915
1916         vfree(tx_ring->buffer_info);
1917         tx_ring->buffer_info = NULL;
1918
1919         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1920
1921         tx_ring->desc = NULL;
1922 }
1923
1924 /**
1925  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1926  * @adapter: board private structure
1927  *
1928  * Free all transmit software resources
1929  **/
1930
1931 void
1932 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1933 {
1934         int i;
1935
1936         for (i = 0; i < adapter->num_tx_queues; i++)
1937                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1938 }
1939
1940 static void
1941 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1942                         struct e1000_buffer *buffer_info)
1943 {
1944         if (buffer_info->dma) {
1945                 pci_unmap_page(adapter->pdev,
1946                                 buffer_info->dma,
1947                                 buffer_info->length,
1948                                 PCI_DMA_TODEVICE);
1949         }
1950         if (buffer_info->skb)
1951                 dev_kfree_skb_any(buffer_info->skb);
1952         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1953 }
1954
1955 /**
1956  * e1000_clean_tx_ring - Free Tx Buffers
1957  * @adapter: board private structure
1958  * @tx_ring: ring to be cleaned
1959  **/
1960
1961 static void
1962 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1963                     struct e1000_tx_ring *tx_ring)
1964 {
1965         struct e1000_buffer *buffer_info;
1966         unsigned long size;
1967         unsigned int i;
1968
1969         /* Free all the Tx ring sk_buffs */
1970
1971         for (i = 0; i < tx_ring->count; i++) {
1972                 buffer_info = &tx_ring->buffer_info[i];
1973                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1974         }
1975
1976         size = sizeof(struct e1000_buffer) * tx_ring->count;
1977         memset(tx_ring->buffer_info, 0, size);
1978
1979         /* Zero out the descriptor ring */
1980
1981         memset(tx_ring->desc, 0, tx_ring->size);
1982
1983         tx_ring->next_to_use = 0;
1984         tx_ring->next_to_clean = 0;
1985         tx_ring->last_tx_tso = 0;
1986
1987         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1988         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1989 }
1990
1991 /**
1992  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1993  * @adapter: board private structure
1994  **/
1995
1996 static void
1997 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1998 {
1999         int i;
2000
2001         for (i = 0; i < adapter->num_tx_queues; i++)
2002                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2003 }
2004
2005 /**
2006  * e1000_free_rx_resources - Free Rx Resources
2007  * @adapter: board private structure
2008  * @rx_ring: ring to clean the resources from
2009  *
2010  * Free all receive software resources
2011  **/
2012
2013 static void
2014 e1000_free_rx_resources(struct e1000_adapter *adapter,
2015                         struct e1000_rx_ring *rx_ring)
2016 {
2017         struct pci_dev *pdev = adapter->pdev;
2018
2019         e1000_clean_rx_ring(adapter, rx_ring);
2020
2021         vfree(rx_ring->buffer_info);
2022         rx_ring->buffer_info = NULL;
2023         kfree(rx_ring->ps_page);
2024         rx_ring->ps_page = NULL;
2025         kfree(rx_ring->ps_page_dma);
2026         rx_ring->ps_page_dma = NULL;
2027
2028         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2029
2030         rx_ring->desc = NULL;
2031 }
2032
2033 /**
2034  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2035  * @adapter: board private structure
2036  *
2037  * Free all receive software resources
2038  **/
2039
2040 void
2041 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2042 {
2043         int i;
2044
2045         for (i = 0; i < adapter->num_rx_queues; i++)
2046                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2047 }
2048
2049 /**
2050  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2051  * @adapter: board private structure
2052  * @rx_ring: ring to free buffers from
2053  **/
2054
2055 static void
2056 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2057                     struct e1000_rx_ring *rx_ring)
2058 {
2059         struct e1000_buffer *buffer_info;
2060         struct e1000_ps_page *ps_page;
2061         struct e1000_ps_page_dma *ps_page_dma;
2062         struct pci_dev *pdev = adapter->pdev;
2063         unsigned long size;
2064         unsigned int i, j;
2065
2066         /* Free all the Rx ring sk_buffs */
2067         for (i = 0; i < rx_ring->count; i++) {
2068                 buffer_info = &rx_ring->buffer_info[i];
2069                 if (buffer_info->skb) {
2070                         pci_unmap_single(pdev,
2071                                          buffer_info->dma,
2072                                          buffer_info->length,
2073                                          PCI_DMA_FROMDEVICE);
2074
2075                         dev_kfree_skb(buffer_info->skb);
2076                         buffer_info->skb = NULL;
2077                 }
2078                 ps_page = &rx_ring->ps_page[i];
2079                 ps_page_dma = &rx_ring->ps_page_dma[i];
2080                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2081                         if (!ps_page->ps_page[j]) break;
2082                         pci_unmap_page(pdev,
2083                                        ps_page_dma->ps_page_dma[j],
2084                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2085                         ps_page_dma->ps_page_dma[j] = 0;
2086                         put_page(ps_page->ps_page[j]);
2087                         ps_page->ps_page[j] = NULL;
2088                 }
2089         }
2090
2091         size = sizeof(struct e1000_buffer) * rx_ring->count;
2092         memset(rx_ring->buffer_info, 0, size);
2093         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2094         memset(rx_ring->ps_page, 0, size);
2095         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2096         memset(rx_ring->ps_page_dma, 0, size);
2097
2098         /* Zero out the descriptor ring */
2099
2100         memset(rx_ring->desc, 0, rx_ring->size);
2101
2102         rx_ring->next_to_clean = 0;
2103         rx_ring->next_to_use = 0;
2104
2105         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2106         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2107 }
2108
2109 /**
2110  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2111  * @adapter: board private structure
2112  **/
2113
2114 static void
2115 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2116 {
2117         int i;
2118
2119         for (i = 0; i < adapter->num_rx_queues; i++)
2120                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2121 }
2122
2123 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2124  * and memory write and invalidate disabled for certain operations
2125  */
2126 static void
2127 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2128 {
2129         struct net_device *netdev = adapter->netdev;
2130         uint32_t rctl;
2131
2132         e1000_pci_clear_mwi(&adapter->hw);
2133
2134         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2135         rctl |= E1000_RCTL_RST;
2136         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2137         E1000_WRITE_FLUSH(&adapter->hw);
2138         mdelay(5);
2139
2140         if (netif_running(netdev))
2141                 e1000_clean_all_rx_rings(adapter);
2142 }
2143
2144 static void
2145 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2146 {
2147         struct net_device *netdev = adapter->netdev;
2148         uint32_t rctl;
2149
2150         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2151         rctl &= ~E1000_RCTL_RST;
2152         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2153         E1000_WRITE_FLUSH(&adapter->hw);
2154         mdelay(5);
2155
2156         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2157                 e1000_pci_set_mwi(&adapter->hw);
2158
2159         if (netif_running(netdev)) {
2160                 /* No need to loop, because 82542 supports only 1 queue */
2161                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2162                 e1000_configure_rx(adapter);
2163                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2164         }
2165 }
2166
2167 /**
2168  * e1000_set_mac - Change the Ethernet Address of the NIC
2169  * @netdev: network interface device structure
2170  * @p: pointer to an address structure
2171  *
2172  * Returns 0 on success, negative on failure
2173  **/
2174
2175 static int
2176 e1000_set_mac(struct net_device *netdev, void *p)
2177 {
2178         struct e1000_adapter *adapter = netdev_priv(netdev);
2179         struct sockaddr *addr = p;
2180
2181         if (!is_valid_ether_addr(addr->sa_data))
2182                 return -EADDRNOTAVAIL;
2183
2184         /* 82542 2.0 needs to be in reset to write receive address registers */
2185
2186         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2187                 e1000_enter_82542_rst(adapter);
2188
2189         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2190         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2191
2192         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2193
2194         /* With 82571 controllers, LAA may be overwritten (with the default)
2195          * due to controller reset from the other port. */
2196         if (adapter->hw.mac_type == e1000_82571) {
2197                 /* activate the work around */
2198                 adapter->hw.laa_is_present = 1;
2199
2200                 /* Hold a copy of the LAA in RAR[14] This is done so that
2201                  * between the time RAR[0] gets clobbered  and the time it
2202                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2203                  * of the RARs and no incoming packets directed to this port
2204                  * are dropped. Eventaully the LAA will be in RAR[0] and
2205                  * RAR[14] */
2206                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2207                                         E1000_RAR_ENTRIES - 1);
2208         }
2209
2210         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2211                 e1000_leave_82542_rst(adapter);
2212
2213         return 0;
2214 }
2215
2216 /**
2217  * e1000_set_multi - Multicast and Promiscuous mode set
2218  * @netdev: network interface device structure
2219  *
2220  * The set_multi entry point is called whenever the multicast address
2221  * list or the network interface flags are updated.  This routine is
2222  * responsible for configuring the hardware for proper multicast,
2223  * promiscuous mode, and all-multi behavior.
2224  **/
2225
2226 static void
2227 e1000_set_multi(struct net_device *netdev)
2228 {
2229         struct e1000_adapter *adapter = netdev_priv(netdev);
2230         struct e1000_hw *hw = &adapter->hw;
2231         struct dev_mc_list *mc_ptr;
2232         uint32_t rctl;
2233         uint32_t hash_value;
2234         int i, rar_entries = E1000_RAR_ENTRIES;
2235         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2236                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2237                                 E1000_NUM_MTA_REGISTERS;
2238
2239         if (adapter->hw.mac_type == e1000_ich8lan)
2240                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2241
2242         /* reserve RAR[14] for LAA over-write work-around */
2243         if (adapter->hw.mac_type == e1000_82571)
2244                 rar_entries--;
2245
2246         /* Check for Promiscuous and All Multicast modes */
2247
2248         rctl = E1000_READ_REG(hw, RCTL);
2249
2250         if (netdev->flags & IFF_PROMISC) {
2251                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2252         } else if (netdev->flags & IFF_ALLMULTI) {
2253                 rctl |= E1000_RCTL_MPE;
2254                 rctl &= ~E1000_RCTL_UPE;
2255         } else {
2256                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2257         }
2258
2259         E1000_WRITE_REG(hw, RCTL, rctl);
2260
2261         /* 82542 2.0 needs to be in reset to write receive address registers */
2262
2263         if (hw->mac_type == e1000_82542_rev2_0)
2264                 e1000_enter_82542_rst(adapter);
2265
2266         /* load the first 14 multicast address into the exact filters 1-14
2267          * RAR 0 is used for the station MAC adddress
2268          * if there are not 14 addresses, go ahead and clear the filters
2269          * -- with 82571 controllers only 0-13 entries are filled here
2270          */
2271         mc_ptr = netdev->mc_list;
2272
2273         for (i = 1; i < rar_entries; i++) {
2274                 if (mc_ptr) {
2275                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2276                         mc_ptr = mc_ptr->next;
2277                 } else {
2278                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2279                         E1000_WRITE_FLUSH(hw);
2280                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2281                         E1000_WRITE_FLUSH(hw);
2282                 }
2283         }
2284
2285         /* clear the old settings from the multicast hash table */
2286
2287         for (i = 0; i < mta_reg_count; i++) {
2288                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2289                 E1000_WRITE_FLUSH(hw);
2290         }
2291
2292         /* load any remaining addresses into the hash table */
2293
2294         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2295                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2296                 e1000_mta_set(hw, hash_value);
2297         }
2298
2299         if (hw->mac_type == e1000_82542_rev2_0)
2300                 e1000_leave_82542_rst(adapter);
2301 }
2302
2303 /* Need to wait a few seconds after link up to get diagnostic information from
2304  * the phy */
2305
2306 static void
2307 e1000_update_phy_info(unsigned long data)
2308 {
2309         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2310         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2311 }
2312
2313 /**
2314  * e1000_82547_tx_fifo_stall - Timer Call-back
2315  * @data: pointer to adapter cast into an unsigned long
2316  **/
2317
2318 static void
2319 e1000_82547_tx_fifo_stall(unsigned long data)
2320 {
2321         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2322         struct net_device *netdev = adapter->netdev;
2323         uint32_t tctl;
2324
2325         if (atomic_read(&adapter->tx_fifo_stall)) {
2326                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2327                     E1000_READ_REG(&adapter->hw, TDH)) &&
2328                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2329                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2330                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2331                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2332                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2333                         E1000_WRITE_REG(&adapter->hw, TCTL,
2334                                         tctl & ~E1000_TCTL_EN);
2335                         E1000_WRITE_REG(&adapter->hw, TDFT,
2336                                         adapter->tx_head_addr);
2337                         E1000_WRITE_REG(&adapter->hw, TDFH,
2338                                         adapter->tx_head_addr);
2339                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2340                                         adapter->tx_head_addr);
2341                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2342                                         adapter->tx_head_addr);
2343                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2344                         E1000_WRITE_FLUSH(&adapter->hw);
2345
2346                         adapter->tx_fifo_head = 0;
2347                         atomic_set(&adapter->tx_fifo_stall, 0);
2348                         netif_wake_queue(netdev);
2349                 } else {
2350                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2351                 }
2352         }
2353 }
2354
2355 /**
2356  * e1000_watchdog - Timer Call-back
2357  * @data: pointer to adapter cast into an unsigned long
2358  **/
2359 static void
2360 e1000_watchdog(unsigned long data)
2361 {
2362         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2363         struct net_device *netdev = adapter->netdev;
2364         struct e1000_tx_ring *txdr = adapter->tx_ring;
2365         uint32_t link, tctl;
2366         int32_t ret_val;
2367
2368         ret_val = e1000_check_for_link(&adapter->hw);
2369         if ((ret_val == E1000_ERR_PHY) &&
2370             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2371             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2372                 /* See e1000_kumeran_lock_loss_workaround() */
2373                 DPRINTK(LINK, INFO,
2374                         "Gigabit has been disabled, downgrading speed\n");
2375         }
2376         if (adapter->hw.mac_type == e1000_82573) {
2377                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2378                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2379                         e1000_update_mng_vlan(adapter);
2380         }
2381
2382         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2383            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2384                 link = !adapter->hw.serdes_link_down;
2385         else
2386                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2387
2388         if (link) {
2389                 if (!netif_carrier_ok(netdev)) {
2390                         boolean_t txb2b = 1;
2391                         e1000_get_speed_and_duplex(&adapter->hw,
2392                                                    &adapter->link_speed,
2393                                                    &adapter->link_duplex);
2394
2395                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2396                                adapter->link_speed,
2397                                adapter->link_duplex == FULL_DUPLEX ?
2398                                "Full Duplex" : "Half Duplex");
2399
2400                         /* tweak tx_queue_len according to speed/duplex
2401                          * and adjust the timeout factor */
2402                         netdev->tx_queue_len = adapter->tx_queue_len;
2403                         adapter->tx_timeout_factor = 1;
2404                         switch (adapter->link_speed) {
2405                         case SPEED_10:
2406                                 txb2b = 0;
2407                                 netdev->tx_queue_len = 10;
2408                                 adapter->tx_timeout_factor = 8;
2409                                 break;
2410                         case SPEED_100:
2411                                 txb2b = 0;
2412                                 netdev->tx_queue_len = 100;
2413                                 /* maybe add some timeout factor ? */
2414                                 break;
2415                         }
2416
2417                         if ((adapter->hw.mac_type == e1000_82571 ||
2418                              adapter->hw.mac_type == e1000_82572) &&
2419                             txb2b == 0) {
2420 #define SPEED_MODE_BIT (1 << 21)
2421                                 uint32_t tarc0;
2422                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2423                                 tarc0 &= ~SPEED_MODE_BIT;
2424                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2425                         }
2426                                 
2427 #ifdef NETIF_F_TSO
2428                         /* disable TSO for pcie and 10/100 speeds, to avoid
2429                          * some hardware issues */
2430                         if (!adapter->tso_force &&
2431                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2432                                 switch (adapter->link_speed) {
2433                                 case SPEED_10:
2434                                 case SPEED_100:
2435                                         DPRINTK(PROBE,INFO,
2436                                         "10/100 speed: disabling TSO\n");
2437                                         netdev->features &= ~NETIF_F_TSO;
2438                                         break;
2439                                 case SPEED_1000:
2440                                         netdev->features |= NETIF_F_TSO;
2441                                         break;
2442                                 default:
2443                                         /* oops */
2444                                         break;
2445                                 }
2446                         }
2447 #endif
2448
2449                         /* enable transmits in the hardware, need to do this
2450                          * after setting TARC0 */
2451                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2452                         tctl |= E1000_TCTL_EN;
2453                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2454
2455                         netif_carrier_on(netdev);
2456                         netif_wake_queue(netdev);
2457                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2458                         adapter->smartspeed = 0;
2459                 }
2460         } else {
2461                 if (netif_carrier_ok(netdev)) {
2462                         adapter->link_speed = 0;
2463                         adapter->link_duplex = 0;
2464                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2465                         netif_carrier_off(netdev);
2466                         netif_stop_queue(netdev);
2467                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2468
2469                         /* 80003ES2LAN workaround--
2470                          * For packet buffer work-around on link down event;
2471                          * disable receives in the ISR and
2472                          * reset device here in the watchdog
2473                          */
2474                         if (adapter->hw.mac_type == e1000_80003es2lan)
2475                                 /* reset device */
2476                                 schedule_work(&adapter->reset_task);
2477                 }
2478
2479                 e1000_smartspeed(adapter);
2480         }
2481
2482         e1000_update_stats(adapter);
2483
2484         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2485         adapter->tpt_old = adapter->stats.tpt;
2486         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2487         adapter->colc_old = adapter->stats.colc;
2488
2489         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2490         adapter->gorcl_old = adapter->stats.gorcl;
2491         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2492         adapter->gotcl_old = adapter->stats.gotcl;
2493
2494         e1000_update_adaptive(&adapter->hw);
2495
2496         if (!netif_carrier_ok(netdev)) {
2497                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2498                         /* We've lost link, so the controller stops DMA,
2499                          * but we've got queued Tx work that's never going
2500                          * to get done, so reset controller to flush Tx.
2501                          * (Do the reset outside of interrupt context). */
2502                         adapter->tx_timeout_count++;
2503                         schedule_work(&adapter->reset_task);
2504                 }
2505         }
2506
2507         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2508         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2509                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2510                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2511                  * else is between 2000-8000. */
2512                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2513                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2514                         adapter->gotcl - adapter->gorcl :
2515                         adapter->gorcl - adapter->gotcl) / 10000;
2516                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2517                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2518         }
2519
2520         /* Cause software interrupt to ensure rx ring is cleaned */
2521         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2522
2523         /* Force detection of hung controller every watchdog period */
2524         adapter->detect_tx_hung = TRUE;
2525
2526         /* With 82571 controllers, LAA may be overwritten due to controller
2527          * reset from the other port. Set the appropriate LAA in RAR[0] */
2528         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2529                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2530
2531         /* Reset the timer */
2532         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2533 }
2534
2535 #define E1000_TX_FLAGS_CSUM             0x00000001
2536 #define E1000_TX_FLAGS_VLAN             0x00000002
2537 #define E1000_TX_FLAGS_TSO              0x00000004
2538 #define E1000_TX_FLAGS_IPV4             0x00000008
2539 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2540 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2541
2542 static int
2543 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2544           struct sk_buff *skb)
2545 {
2546 #ifdef NETIF_F_TSO
2547         struct e1000_context_desc *context_desc;
2548         struct e1000_buffer *buffer_info;
2549         unsigned int i;
2550         uint32_t cmd_length = 0;
2551         uint16_t ipcse = 0, tucse, mss;
2552         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2553         int err;
2554
2555         if (skb_is_gso(skb)) {
2556                 if (skb_header_cloned(skb)) {
2557                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2558                         if (err)
2559                                 return err;
2560                 }
2561
2562                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2563                 mss = skb_shinfo(skb)->gso_size;
2564                 if (skb->protocol == htons(ETH_P_IP)) {
2565                         skb->nh.iph->tot_len = 0;
2566                         skb->nh.iph->check = 0;
2567                         skb->h.th->check =
2568                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2569                                                    skb->nh.iph->daddr,
2570                                                    0,
2571                                                    IPPROTO_TCP,
2572                                                    0);
2573                         cmd_length = E1000_TXD_CMD_IP;
2574                         ipcse = skb->h.raw - skb->data - 1;
2575 #ifdef NETIF_F_TSO_IPV6
2576                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2577                         skb->nh.ipv6h->payload_len = 0;
2578                         skb->h.th->check =
2579                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2580                                                  &skb->nh.ipv6h->daddr,
2581                                                  0,
2582                                                  IPPROTO_TCP,
2583                                                  0);
2584                         ipcse = 0;
2585 #endif
2586                 }
2587                 ipcss = skb->nh.raw - skb->data;
2588                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2589                 tucss = skb->h.raw - skb->data;
2590                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2591                 tucse = 0;
2592
2593                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2594                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2595
2596                 i = tx_ring->next_to_use;
2597                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2598                 buffer_info = &tx_ring->buffer_info[i];
2599
2600                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2601                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2602                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2603                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2604                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2605                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2606                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2607                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2608                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2609
2610                 buffer_info->time_stamp = jiffies;
2611
2612                 if (++i == tx_ring->count) i = 0;
2613                 tx_ring->next_to_use = i;
2614
2615                 return TRUE;
2616         }
2617 #endif
2618
2619         return FALSE;
2620 }
2621
2622 static boolean_t
2623 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2624               struct sk_buff *skb)
2625 {
2626         struct e1000_context_desc *context_desc;
2627         struct e1000_buffer *buffer_info;
2628         unsigned int i;
2629         uint8_t css;
2630
2631         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2632                 css = skb->h.raw - skb->data;
2633
2634                 i = tx_ring->next_to_use;
2635                 buffer_info = &tx_ring->buffer_info[i];
2636                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2637
2638                 context_desc->upper_setup.tcp_fields.tucss = css;
2639                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2640                 context_desc->upper_setup.tcp_fields.tucse = 0;
2641                 context_desc->tcp_seg_setup.data = 0;
2642                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2643
2644                 buffer_info->time_stamp = jiffies;
2645
2646                 if (unlikely(++i == tx_ring->count)) i = 0;
2647                 tx_ring->next_to_use = i;
2648
2649                 return TRUE;
2650         }
2651
2652         return FALSE;
2653 }
2654
2655 #define E1000_MAX_TXD_PWR       12
2656 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2657
2658 static int
2659 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2660              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2661              unsigned int nr_frags, unsigned int mss)
2662 {
2663         struct e1000_buffer *buffer_info;
2664         unsigned int len = skb->len;
2665         unsigned int offset = 0, size, count = 0, i;
2666         unsigned int f;
2667         len -= skb->data_len;
2668
2669         i = tx_ring->next_to_use;
2670
2671         while (len) {
2672                 buffer_info = &tx_ring->buffer_info[i];
2673                 size = min(len, max_per_txd);
2674 #ifdef NETIF_F_TSO
2675                 /* Workaround for Controller erratum --
2676                  * descriptor for non-tso packet in a linear SKB that follows a
2677                  * tso gets written back prematurely before the data is fully
2678                  * DMA'd to the controller */
2679                 if (!skb->data_len && tx_ring->last_tx_tso &&
2680                     !skb_is_gso(skb)) {
2681                         tx_ring->last_tx_tso = 0;
2682                         size -= 4;
2683                 }
2684
2685                 /* Workaround for premature desc write-backs
2686                  * in TSO mode.  Append 4-byte sentinel desc */
2687                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2688                         size -= 4;
2689 #endif
2690                 /* work-around for errata 10 and it applies
2691                  * to all controllers in PCI-X mode
2692                  * The fix is to make sure that the first descriptor of a
2693                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2694                  */
2695                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2696                                 (size > 2015) && count == 0))
2697                         size = 2015;
2698
2699                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2700                  * terminating buffers within evenly-aligned dwords. */
2701                 if (unlikely(adapter->pcix_82544 &&
2702                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2703                    size > 4))
2704                         size -= 4;
2705
2706                 buffer_info->length = size;
2707                 buffer_info->dma =
2708                         pci_map_single(adapter->pdev,
2709                                 skb->data + offset,
2710                                 size,
2711                                 PCI_DMA_TODEVICE);
2712                 buffer_info->time_stamp = jiffies;
2713
2714                 len -= size;
2715                 offset += size;
2716                 count++;
2717                 if (unlikely(++i == tx_ring->count)) i = 0;
2718         }
2719
2720         for (f = 0; f < nr_frags; f++) {
2721                 struct skb_frag_struct *frag;
2722
2723                 frag = &skb_shinfo(skb)->frags[f];
2724                 len = frag->size;
2725                 offset = frag->page_offset;
2726
2727                 while (len) {
2728                         buffer_info = &tx_ring->buffer_info[i];
2729                         size = min(len, max_per_txd);
2730 #ifdef NETIF_F_TSO
2731                         /* Workaround for premature desc write-backs
2732                          * in TSO mode.  Append 4-byte sentinel desc */
2733                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2734                                 size -= 4;
2735 #endif
2736                         /* Workaround for potential 82544 hang in PCI-X.
2737                          * Avoid terminating buffers within evenly-aligned
2738                          * dwords. */
2739                         if (unlikely(adapter->pcix_82544 &&
2740                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2741                            size > 4))
2742                                 size -= 4;
2743
2744                         buffer_info->length = size;
2745                         buffer_info->dma =
2746                                 pci_map_page(adapter->pdev,
2747                                         frag->page,
2748                                         offset,
2749                                         size,
2750                                         PCI_DMA_TODEVICE);
2751                         buffer_info->time_stamp = jiffies;
2752
2753                         len -= size;
2754                         offset += size;
2755                         count++;
2756                         if (unlikely(++i == tx_ring->count)) i = 0;
2757                 }
2758         }
2759
2760         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2761         tx_ring->buffer_info[i].skb = skb;
2762         tx_ring->buffer_info[first].next_to_watch = i;
2763
2764         return count;
2765 }
2766
2767 static void
2768 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2769                int tx_flags, int count)
2770 {
2771         struct e1000_tx_desc *tx_desc = NULL;
2772         struct e1000_buffer *buffer_info;
2773         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2774         unsigned int i;
2775
2776         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2777                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2778                              E1000_TXD_CMD_TSE;
2779                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2780
2781                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2782                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2783         }
2784
2785         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2786                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2787                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2788         }
2789
2790         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2791                 txd_lower |= E1000_TXD_CMD_VLE;
2792                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2793         }
2794
2795         i = tx_ring->next_to_use;
2796
2797         while (count--) {
2798                 buffer_info = &tx_ring->buffer_info[i];
2799                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2800                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2801                 tx_desc->lower.data =
2802                         cpu_to_le32(txd_lower | buffer_info->length);
2803                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2804                 if (unlikely(++i == tx_ring->count)) i = 0;
2805         }
2806
2807         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2808
2809         /* Force memory writes to complete before letting h/w
2810          * know there are new descriptors to fetch.  (Only
2811          * applicable for weak-ordered memory model archs,
2812          * such as IA-64). */
2813         wmb();
2814
2815         tx_ring->next_to_use = i;
2816         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2817 }
2818
2819 /**
2820  * 82547 workaround to avoid controller hang in half-duplex environment.
2821  * The workaround is to avoid queuing a large packet that would span
2822  * the internal Tx FIFO ring boundary by notifying the stack to resend
2823  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2824  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2825  * to the beginning of the Tx FIFO.
2826  **/
2827
2828 #define E1000_FIFO_HDR                  0x10
2829 #define E1000_82547_PAD_LEN             0x3E0
2830
2831 static int
2832 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2833 {
2834         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2835         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2836
2837         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2838
2839         if (adapter->link_duplex != HALF_DUPLEX)
2840                 goto no_fifo_stall_required;
2841
2842         if (atomic_read(&adapter->tx_fifo_stall))
2843                 return 1;
2844
2845         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2846                 atomic_set(&adapter->tx_fifo_stall, 1);
2847                 return 1;
2848         }
2849
2850 no_fifo_stall_required:
2851         adapter->tx_fifo_head += skb_fifo_len;
2852         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2853                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2854         return 0;
2855 }
2856
2857 #define MINIMUM_DHCP_PACKET_SIZE 282
2858 static int
2859 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2860 {
2861         struct e1000_hw *hw =  &adapter->hw;
2862         uint16_t length, offset;
2863         if (vlan_tx_tag_present(skb)) {
2864                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2865                         ( adapter->hw.mng_cookie.status &
2866                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2867                         return 0;
2868         }
2869         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2870                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2871                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2872                         const struct iphdr *ip =
2873                                 (struct iphdr *)((uint8_t *)skb->data+14);
2874                         if (IPPROTO_UDP == ip->protocol) {
2875                                 struct udphdr *udp =
2876                                         (struct udphdr *)((uint8_t *)ip +
2877                                                 (ip->ihl << 2));
2878                                 if (ntohs(udp->dest) == 67) {
2879                                         offset = (uint8_t *)udp + 8 - skb->data;
2880                                         length = skb->len - offset;
2881
2882                                         return e1000_mng_write_dhcp_info(hw,
2883                                                         (uint8_t *)udp + 8,
2884                                                         length);
2885                                 }
2886                         }
2887                 }
2888         }
2889         return 0;
2890 }
2891
2892 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2893 static int
2894 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2895 {
2896         struct e1000_adapter *adapter = netdev_priv(netdev);
2897         struct e1000_tx_ring *tx_ring;
2898         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2899         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2900         unsigned int tx_flags = 0;
2901         unsigned int len = skb->len;
2902         unsigned long flags;
2903         unsigned int nr_frags = 0;
2904         unsigned int mss = 0;
2905         int count = 0;
2906         int tso;
2907         unsigned int f;
2908         len -= skb->data_len;
2909
2910         tx_ring = adapter->tx_ring;
2911
2912         if (unlikely(skb->len <= 0)) {
2913                 dev_kfree_skb_any(skb);
2914                 return NETDEV_TX_OK;
2915         }
2916
2917 #ifdef NETIF_F_TSO
2918         mss = skb_shinfo(skb)->gso_size;
2919         /* The controller does a simple calculation to
2920          * make sure there is enough room in the FIFO before
2921          * initiating the DMA for each buffer.  The calc is:
2922          * 4 = ceil(buffer len/mss).  To make sure we don't
2923          * overrun the FIFO, adjust the max buffer len if mss
2924          * drops. */
2925         if (mss) {
2926                 uint8_t hdr_len;
2927                 max_per_txd = min(mss << 2, max_per_txd);
2928                 max_txd_pwr = fls(max_per_txd) - 1;
2929
2930         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2931          * points to just header, pull a few bytes of payload from
2932          * frags into skb->data */
2933                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2934                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2935                         switch (adapter->hw.mac_type) {
2936                                 unsigned int pull_size;
2937                         case e1000_82571:
2938                         case e1000_82572:
2939                         case e1000_82573:
2940                         case e1000_ich8lan:
2941                                 pull_size = min((unsigned int)4, skb->data_len);
2942                                 if (!__pskb_pull_tail(skb, pull_size)) {
2943                                         DPRINTK(DRV, ERR,
2944                                                 "__pskb_pull_tail failed.\n");
2945                                         dev_kfree_skb_any(skb);
2946                                         return NETDEV_TX_OK;
2947                                 }
2948                                 len = skb->len - skb->data_len;
2949                                 break;
2950                         default:
2951                                 /* do nothing */
2952                                 break;
2953                         }
2954                 }
2955         }
2956
2957         /* reserve a descriptor for the offload context */
2958         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2959                 count++;
2960         count++;
2961 #else
2962         if (skb->ip_summed == CHECKSUM_HW)
2963                 count++;
2964 #endif
2965
2966 #ifdef NETIF_F_TSO
2967         /* Controller Erratum workaround */
2968         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2969                 count++;
2970 #endif
2971
2972         count += TXD_USE_COUNT(len, max_txd_pwr);
2973
2974         if (adapter->pcix_82544)
2975                 count++;
2976
2977         /* work-around for errata 10 and it applies to all controllers
2978          * in PCI-X mode, so add one more descriptor to the count
2979          */
2980         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2981                         (len > 2015)))
2982                 count++;
2983
2984         nr_frags = skb_shinfo(skb)->nr_frags;
2985         for (f = 0; f < nr_frags; f++)
2986                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2987                                        max_txd_pwr);
2988         if (adapter->pcix_82544)
2989                 count += nr_frags;
2990
2991
2992         if (adapter->hw.tx_pkt_filtering &&
2993             (adapter->hw.mac_type == e1000_82573))
2994                 e1000_transfer_dhcp_info(adapter, skb);
2995
2996         local_irq_save(flags);
2997         if (!spin_trylock(&tx_ring->tx_lock)) {
2998                 /* Collision - tell upper layer to requeue */
2999                 local_irq_restore(flags);
3000                 return NETDEV_TX_LOCKED;
3001         }
3002
3003         /* need: count + 2 desc gap to keep tail from touching
3004          * head, otherwise try next time */
3005         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
3006                 netif_stop_queue(netdev);
3007                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3008                 return NETDEV_TX_BUSY;
3009         }
3010
3011         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3012                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3013                         netif_stop_queue(netdev);
3014                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
3015                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3016                         return NETDEV_TX_BUSY;
3017                 }
3018         }
3019
3020         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3021                 tx_flags |= E1000_TX_FLAGS_VLAN;
3022                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3023         }
3024
3025         first = tx_ring->next_to_use;
3026
3027         tso = e1000_tso(adapter, tx_ring, skb);
3028         if (tso < 0) {
3029                 dev_kfree_skb_any(skb);
3030                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3031                 return NETDEV_TX_OK;
3032         }
3033
3034         if (likely(tso)) {
3035                 tx_ring->last_tx_tso = 1;
3036                 tx_flags |= E1000_TX_FLAGS_TSO;
3037         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3038                 tx_flags |= E1000_TX_FLAGS_CSUM;
3039
3040         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3041          * 82571 hardware supports TSO capabilities for IPv6 as well...
3042          * no longer assume, we must. */
3043         if (likely(skb->protocol == htons(ETH_P_IP)))
3044                 tx_flags |= E1000_TX_FLAGS_IPV4;
3045
3046         e1000_tx_queue(adapter, tx_ring, tx_flags,
3047                        e1000_tx_map(adapter, tx_ring, skb, first,
3048                                     max_per_txd, nr_frags, mss));
3049
3050         netdev->trans_start = jiffies;
3051
3052         /* Make sure there is space in the ring for the next send. */
3053         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3054                 netif_stop_queue(netdev);
3055
3056         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3057         return NETDEV_TX_OK;
3058 }
3059
3060 /**
3061  * e1000_tx_timeout - Respond to a Tx Hang
3062  * @netdev: network interface device structure
3063  **/
3064
3065 static void
3066 e1000_tx_timeout(struct net_device *netdev)
3067 {
3068         struct e1000_adapter *adapter = netdev_priv(netdev);
3069
3070         /* Do the reset outside of interrupt context */
3071         adapter->tx_timeout_count++;
3072         schedule_work(&adapter->reset_task);
3073 }
3074
3075 static void
3076 e1000_reset_task(struct net_device *netdev)
3077 {
3078         struct e1000_adapter *adapter = netdev_priv(netdev);
3079
3080         e1000_reinit_locked(adapter);
3081 }
3082
3083 /**
3084  * e1000_get_stats - Get System Network Statistics
3085  * @netdev: network interface device structure
3086  *
3087  * Returns the address of the device statistics structure.
3088  * The statistics are actually updated from the timer callback.
3089  **/
3090
3091 static struct net_device_stats *
3092 e1000_get_stats(struct net_device *netdev)
3093 {
3094         struct e1000_adapter *adapter = netdev_priv(netdev);
3095
3096         /* only return the current stats */
3097         return &adapter->net_stats;
3098 }
3099
3100 /**
3101  * e1000_change_mtu - Change the Maximum Transfer Unit
3102  * @netdev: network interface device structure
3103  * @new_mtu: new value for maximum frame size
3104  *
3105  * Returns 0 on success, negative on failure
3106  **/
3107
3108 static int
3109 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3110 {
3111         struct e1000_adapter *adapter = netdev_priv(netdev);
3112         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3113         uint16_t eeprom_data = 0;
3114
3115         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3116             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3117                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3118                 return -EINVAL;
3119         }
3120
3121         /* Adapter-specific max frame size limits. */
3122         switch (adapter->hw.mac_type) {
3123         case e1000_undefined ... e1000_82542_rev2_1:
3124         case e1000_ich8lan:
3125                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3126                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3127                         return -EINVAL;
3128                 }
3129                 break;
3130         case e1000_82573:
3131                 /* only enable jumbo frames if ASPM is disabled completely
3132                  * this means both bits must be zero in 0x1A bits 3:2 */
3133                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3134                                   &eeprom_data);
3135                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3136                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3137                                 DPRINTK(PROBE, ERR,
3138                                         "Jumbo Frames not supported.\n");
3139                                 return -EINVAL;
3140                         }
3141                         break;
3142                 }
3143                 /* fall through to get support */
3144         case e1000_82571:
3145         case e1000_82572:
3146         case e1000_80003es2lan:
3147 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3148                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3149                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3150                         return -EINVAL;
3151                 }
3152                 break;
3153         default:
3154                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3155                 break;
3156         }
3157
3158         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3159          * means we reserve 2 more, this pushes us to allocate from the next
3160          * larger slab size
3161          * i.e. RXBUFFER_2048 --> size-4096 slab */
3162
3163         if (max_frame <= E1000_RXBUFFER_256)
3164                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3165         else if (max_frame <= E1000_RXBUFFER_512)
3166                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3167         else if (max_frame <= E1000_RXBUFFER_1024)
3168                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3169         else if (max_frame <= E1000_RXBUFFER_2048)
3170                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3171         else if (max_frame <= E1000_RXBUFFER_4096)
3172                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3173         else if (max_frame <= E1000_RXBUFFER_8192)
3174                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3175         else if (max_frame <= E1000_RXBUFFER_16384)
3176                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3177
3178         /* adjust allocation if LPE protects us, and we aren't using SBP */
3179         if (!adapter->hw.tbi_compatibility_on &&
3180             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3181              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3182                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3183
3184         netdev->mtu = new_mtu;
3185
3186         if (netif_running(netdev))
3187                 e1000_reinit_locked(adapter);
3188
3189         adapter->hw.max_frame_size = max_frame;
3190
3191         return 0;
3192 }
3193
3194 /**
3195  * e1000_update_stats - Update the board statistics counters
3196  * @adapter: board private structure
3197  **/
3198
3199 void
3200 e1000_update_stats(struct e1000_adapter *adapter)
3201 {
3202         struct e1000_hw *hw = &adapter->hw;
3203         struct pci_dev *pdev = adapter->pdev;
3204         unsigned long flags;
3205         uint16_t phy_tmp;
3206
3207 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3208
3209         /*
3210          * Prevent stats update while adapter is being reset, or if the pci
3211          * connection is down.
3212          */
3213         if (adapter->link_speed == 0)
3214                 return;
3215         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3216                 return;
3217
3218         spin_lock_irqsave(&adapter->stats_lock, flags);
3219
3220         /* these counters are modified from e1000_adjust_tbi_stats,
3221          * called from the interrupt context, so they must only
3222          * be written while holding adapter->stats_lock
3223          */
3224
3225         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3226         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3227         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3228         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3229         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3230         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3231         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3232
3233         if (adapter->hw.mac_type != e1000_ich8lan) {
3234         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3235         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3236         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3237         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3238         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3239         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3240         }
3241
3242         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3243         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3244         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3245         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3246         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3247         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3248         adapter->stats.dc += E1000_READ_REG(hw, DC);
3249         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3250         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3251         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3252         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3253         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3254         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3255         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3256         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3257         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3258         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3259         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3260         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3261         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3262         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3263         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3264         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3265         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3266         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3267         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3268
3269         if (adapter->hw.mac_type != e1000_ich8lan) {
3270         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3271         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3272         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3273         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3274         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3275         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3276         }
3277
3278         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3279         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3280
3281         /* used for adaptive IFS */
3282
3283         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3284         adapter->stats.tpt += hw->tx_packet_delta;
3285         hw->collision_delta = E1000_READ_REG(hw, COLC);
3286         adapter->stats.colc += hw->collision_delta;
3287
3288         if (hw->mac_type >= e1000_82543) {
3289                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3290                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3291                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3292                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3293                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3294                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3295         }
3296         if (hw->mac_type > e1000_82547_rev_2) {
3297                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3298                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3299
3300                 if (adapter->hw.mac_type != e1000_ich8lan) {
3301                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3302                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3303                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3304                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3305                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3306                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3307                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3308                 }
3309         }
3310
3311         /* Fill out the OS statistics structure */
3312
3313         adapter->net_stats.rx_packets = adapter->stats.gprc;
3314         adapter->net_stats.tx_packets = adapter->stats.gptc;
3315         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3316         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3317         adapter->net_stats.multicast = adapter->stats.mprc;
3318         adapter->net_stats.collisions = adapter->stats.colc;
3319
3320         /* Rx Errors */
3321
3322         /* RLEC on some newer hardware can be incorrect so build
3323         * our own version based on RUC and ROC */
3324         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3325                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3326                 adapter->stats.ruc + adapter->stats.roc +
3327                 adapter->stats.cexterr;
3328         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3329                                               adapter->stats.roc;
3330         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3331         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3332         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3333
3334         /* Tx Errors */
3335
3336         adapter->net_stats.tx_errors = adapter->stats.ecol +
3337                                        adapter->stats.latecol;
3338         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3339         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3340         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3341
3342         /* Tx Dropped needs to be maintained elsewhere */
3343
3344         /* Phy Stats */
3345
3346         if (hw->media_type == e1000_media_type_copper) {
3347                 if ((adapter->link_speed == SPEED_1000) &&
3348                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3349                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3350                         adapter->phy_stats.idle_errors += phy_tmp;
3351                 }
3352
3353                 if ((hw->mac_type <= e1000_82546) &&
3354                    (hw->phy_type == e1000_phy_m88) &&
3355                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3356                         adapter->phy_stats.receive_errors += phy_tmp;
3357         }
3358
3359         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3360 }
3361
3362 /**
3363  * e1000_intr - Interrupt Handler
3364  * @irq: interrupt number
3365  * @data: pointer to a network interface device structure
3366  * @pt_regs: CPU registers structure
3367  **/
3368
3369 static irqreturn_t
3370 e1000_intr(int irq, void *data, struct pt_regs *regs)
3371 {
3372         struct net_device *netdev = data;
3373         struct e1000_adapter *adapter = netdev_priv(netdev);
3374         struct e1000_hw *hw = &adapter->hw;
3375         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3376 #ifndef CONFIG_E1000_NAPI
3377         int i;
3378 #else
3379         /* Interrupt Auto-Mask...upon reading ICR,
3380          * interrupts are masked.  No need for the
3381          * IMC write, but it does mean we should
3382          * account for it ASAP. */
3383         if (likely(hw->mac_type >= e1000_82571))
3384                 atomic_inc(&adapter->irq_sem);
3385 #endif
3386
3387         if (unlikely(!icr)) {
3388 #ifdef CONFIG_E1000_NAPI
3389                 if (hw->mac_type >= e1000_82571)
3390                         e1000_irq_enable(adapter);
3391 #endif
3392                 return IRQ_NONE;  /* Not our interrupt */
3393         }
3394
3395         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3396                 hw->get_link_status = 1;
3397                 /* 80003ES2LAN workaround--
3398                  * For packet buffer work-around on link down event;
3399                  * disable receives here in the ISR and
3400                  * reset adapter in watchdog
3401                  */
3402                 if (netif_carrier_ok(netdev) &&
3403                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3404                         /* disable receives */
3405                         rctl = E1000_READ_REG(hw, RCTL);
3406                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3407                 }
3408                 mod_timer(&adapter->watchdog_timer, jiffies);
3409         }
3410
3411 #ifdef CONFIG_E1000_NAPI
3412         if (unlikely(hw->mac_type < e1000_82571)) {
3413                 atomic_inc(&adapter->irq_sem);
3414                 E1000_WRITE_REG(hw, IMC, ~0);
3415                 E1000_WRITE_FLUSH(hw);
3416         }
3417         if (likely(netif_rx_schedule_prep(netdev)))
3418                 __netif_rx_schedule(netdev);
3419         else
3420                 e1000_irq_enable(adapter);
3421 #else
3422         /* Writing IMC and IMS is needed for 82547.
3423          * Due to Hub Link bus being occupied, an interrupt
3424          * de-assertion message is not able to be sent.
3425          * When an interrupt assertion message is generated later,
3426          * two messages are re-ordered and sent out.
3427          * That causes APIC to think 82547 is in de-assertion
3428          * state, while 82547 is in assertion state, resulting
3429          * in dead lock. Writing IMC forces 82547 into
3430          * de-assertion state.
3431          */
3432         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3433                 atomic_inc(&adapter->irq_sem);
3434                 E1000_WRITE_REG(hw, IMC, ~0);
3435         }
3436
3437         for (i = 0; i < E1000_MAX_INTR; i++)
3438                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3439                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3440                         break;
3441
3442         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3443                 e1000_irq_enable(adapter);
3444
3445 #endif
3446
3447         return IRQ_HANDLED;
3448 }
3449
3450 #ifdef CONFIG_E1000_NAPI
3451 /**
3452  * e1000_clean - NAPI Rx polling callback
3453  * @adapter: board private structure
3454  **/
3455
3456 static int
3457 e1000_clean(struct net_device *poll_dev, int *budget)
3458 {
3459         struct e1000_adapter *adapter;
3460         int work_to_do = min(*budget, poll_dev->quota);
3461         int tx_cleaned = 0, work_done = 0;
3462
3463         /* Must NOT use netdev_priv macro here. */
3464         adapter = poll_dev->priv;
3465
3466         /* Keep link state information with original netdev */
3467         if (!netif_carrier_ok(poll_dev))
3468                 goto quit_polling;
3469
3470         /* e1000_clean is called per-cpu.  This lock protects
3471          * tx_ring[0] from being cleaned by multiple cpus
3472          * simultaneously.  A failure obtaining the lock means
3473          * tx_ring[0] is currently being cleaned anyway. */
3474         if (spin_trylock(&adapter->tx_queue_lock)) {
3475                 tx_cleaned = e1000_clean_tx_irq(adapter,
3476                                                 &adapter->tx_ring[0]);
3477                 spin_unlock(&adapter->tx_queue_lock);
3478         }
3479
3480         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3481                           &work_done, work_to_do);
3482
3483         *budget -= work_done;
3484         poll_dev->quota -= work_done;
3485
3486         /* If no Tx and not enough Rx work done, exit the polling mode */
3487         if ((!tx_cleaned && (work_done == 0)) ||
3488            !netif_running(poll_dev)) {
3489 quit_polling:
3490                 netif_rx_complete(poll_dev);
3491                 e1000_irq_enable(adapter);
3492                 return 0;
3493         }
3494
3495         return 1;
3496 }
3497
3498 #endif
3499 /**
3500  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3501  * @adapter: board private structure
3502  **/
3503
3504 static boolean_t
3505 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3506                    struct e1000_tx_ring *tx_ring)
3507 {
3508         struct net_device *netdev = adapter->netdev;
3509         struct e1000_tx_desc *tx_desc, *eop_desc;
3510         struct e1000_buffer *buffer_info;
3511         unsigned int i, eop;
3512 #ifdef CONFIG_E1000_NAPI
3513         unsigned int count = 0;
3514 #endif
3515         boolean_t cleaned = FALSE;
3516
3517         i = tx_ring->next_to_clean;
3518         eop = tx_ring->buffer_info[i].next_to_watch;
3519         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3520
3521         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3522                 for (cleaned = FALSE; !cleaned; ) {
3523                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3524                         buffer_info = &tx_ring->buffer_info[i];
3525                         cleaned = (i == eop);
3526
3527                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3528                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3529
3530                         if (unlikely(++i == tx_ring->count)) i = 0;
3531                 }
3532
3533
3534                 eop = tx_ring->buffer_info[i].next_to_watch;
3535                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3536 #ifdef CONFIG_E1000_NAPI
3537 #define E1000_TX_WEIGHT 64
3538                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3539                 if (count++ == E1000_TX_WEIGHT) break;
3540 #endif
3541         }
3542
3543         tx_ring->next_to_clean = i;
3544
3545 #define TX_WAKE_THRESHOLD 32
3546         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3547                      netif_carrier_ok(netdev))) {
3548                 spin_lock(&tx_ring->tx_lock);
3549                 if (netif_queue_stopped(netdev) &&
3550                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3551                         netif_wake_queue(netdev);
3552                 spin_unlock(&tx_ring->tx_lock);
3553         }
3554
3555         if (adapter->detect_tx_hung) {
3556                 /* Detect a transmit hang in hardware, this serializes the
3557                  * check with the clearing of time_stamp and movement of i */
3558                 adapter->detect_tx_hung = FALSE;
3559                 if (tx_ring->buffer_info[eop].dma &&
3560                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3561                                (adapter->tx_timeout_factor * HZ))
3562                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3563                          E1000_STATUS_TXOFF)) {
3564
3565                         /* detected Tx unit hang */
3566                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3567                                         "  Tx Queue             <%lu>\n"
3568                                         "  TDH                  <%x>\n"
3569                                         "  TDT                  <%x>\n"
3570                                         "  next_to_use          <%x>\n"
3571                                         "  next_to_clean        <%x>\n"
3572                                         "buffer_info[next_to_clean]\n"
3573                                         "  time_stamp           <%lx>\n"
3574                                         "  next_to_watch        <%x>\n"
3575                                         "  jiffies              <%lx>\n"
3576                                         "  next_to_watch.status <%x>\n",
3577                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3578                                         sizeof(struct e1000_tx_ring)),
3579                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3580                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3581                                 tx_ring->next_to_use,
3582                                 tx_ring->next_to_clean,
3583                                 tx_ring->buffer_info[eop].time_stamp,
3584                                 eop,
3585                                 jiffies,
3586                                 eop_desc->upper.fields.status);
3587                         netif_stop_queue(netdev);
3588                 }
3589         }
3590         return cleaned;
3591 }
3592
3593 /**
3594  * e1000_rx_checksum - Receive Checksum Offload for 82543
3595  * @adapter:     board private structure
3596  * @status_err:  receive descriptor status and error fields
3597  * @csum:        receive descriptor csum field
3598  * @sk_buff:     socket buffer with received data
3599  **/
3600
3601 static void
3602 e1000_rx_checksum(struct e1000_adapter *adapter,
3603                   uint32_t status_err, uint32_t csum,
3604                   struct sk_buff *skb)
3605 {
3606         uint16_t status = (uint16_t)status_err;
3607         uint8_t errors = (uint8_t)(status_err >> 24);
3608         skb->ip_summed = CHECKSUM_NONE;
3609
3610         /* 82543 or newer only */
3611         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3612         /* Ignore Checksum bit is set */
3613         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3614         /* TCP/UDP checksum error bit is set */
3615         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3616                 /* let the stack verify checksum errors */
3617                 adapter->hw_csum_err++;
3618                 return;
3619         }
3620         /* TCP/UDP Checksum has not been calculated */
3621         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3622                 if (!(status & E1000_RXD_STAT_TCPCS))
3623                         return;
3624         } else {
3625                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3626                         return;
3627         }
3628         /* It must be a TCP or UDP packet with a valid checksum */
3629         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3630                 /* TCP checksum is good */
3631                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3632         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3633                 /* IP fragment with UDP payload */
3634                 /* Hardware complements the payload checksum, so we undo it
3635                  * and then put the value in host order for further stack use.
3636                  */
3637                 csum = ntohl(csum ^ 0xFFFF);
3638                 skb->csum = csum;
3639                 skb->ip_summed = CHECKSUM_HW;
3640         }
3641         adapter->hw_csum_good++;
3642 }
3643
3644 /**
3645  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3646  * @adapter: board private structure
3647  **/
3648
3649 static boolean_t
3650 #ifdef CONFIG_E1000_NAPI
3651 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3652                    struct e1000_rx_ring *rx_ring,
3653                    int *work_done, int work_to_do)
3654 #else
3655 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3656                    struct e1000_rx_ring *rx_ring)
3657 #endif
3658 {
3659         struct net_device *netdev = adapter->netdev;
3660         struct pci_dev *pdev = adapter->pdev;
3661         struct e1000_rx_desc *rx_desc, *next_rxd;
3662         struct e1000_buffer *buffer_info, *next_buffer;
3663         unsigned long flags;
3664         uint32_t length;
3665         uint8_t last_byte;
3666         unsigned int i;
3667         int cleaned_count = 0;
3668         boolean_t cleaned = FALSE;
3669
3670         i = rx_ring->next_to_clean;
3671         rx_desc = E1000_RX_DESC(*rx_ring, i);
3672         buffer_info = &rx_ring->buffer_info[i];
3673
3674         while (rx_desc->status & E1000_RXD_STAT_DD) {
3675                 struct sk_buff *skb;
3676                 u8 status;
3677 #ifdef CONFIG_E1000_NAPI
3678                 if (*work_done >= work_to_do)
3679                         break;
3680                 (*work_done)++;
3681 #endif
3682                 status = rx_desc->status;
3683                 skb = buffer_info->skb;
3684                 buffer_info->skb = NULL;
3685
3686                 prefetch(skb->data - NET_IP_ALIGN);
3687
3688                 if (++i == rx_ring->count) i = 0;
3689                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3690                 prefetch(next_rxd);
3691
3692                 next_buffer = &rx_ring->buffer_info[i];
3693
3694                 cleaned = TRUE;
3695                 cleaned_count++;
3696                 pci_unmap_single(pdev,
3697                                  buffer_info->dma,
3698                                  buffer_info->length,
3699                                  PCI_DMA_FROMDEVICE);
3700
3701                 length = le16_to_cpu(rx_desc->length);
3702
3703                 /* adjust length to remove Ethernet CRC */
3704                 length -= 4;
3705
3706                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3707                         /* All receives must fit into a single buffer */
3708                         E1000_DBG("%s: Receive packet consumed multiple"
3709                                   " buffers\n", netdev->name);
3710                         /* recycle */
3711                         buffer_info->skb = skb;
3712                         goto next_desc;
3713                 }
3714
3715                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3716                         last_byte = *(skb->data + length - 1);
3717                         if (TBI_ACCEPT(&adapter->hw, status,
3718                                       rx_desc->errors, length, last_byte)) {
3719                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3720                                 e1000_tbi_adjust_stats(&adapter->hw,
3721                                                        &adapter->stats,
3722                                                        length, skb->data);
3723                                 spin_unlock_irqrestore(&adapter->stats_lock,
3724                                                        flags);
3725                                 length--;
3726                         } else {
3727                                 /* recycle */
3728                                 buffer_info->skb = skb;
3729                                 goto next_desc;
3730                         }
3731                 }
3732
3733                 /* code added for copybreak, this should improve
3734                  * performance for small packets with large amounts
3735                  * of reassembly being done in the stack */
3736 #define E1000_CB_LENGTH 256
3737                 if (length < E1000_CB_LENGTH) {
3738                         struct sk_buff *new_skb =
3739                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3740                         if (new_skb) {
3741                                 skb_reserve(new_skb, NET_IP_ALIGN);
3742                                 new_skb->dev = netdev;
3743                                 memcpy(new_skb->data - NET_IP_ALIGN,
3744                                        skb->data - NET_IP_ALIGN,
3745                                        length + NET_IP_ALIGN);
3746                                 /* save the skb in buffer_info as good */
3747                                 buffer_info->skb = skb;
3748                                 skb = new_skb;
3749                                 skb_put(skb, length);
3750                         }
3751                 } else
3752                         skb_put(skb, length);
3753
3754                 /* end copybreak code */
3755
3756                 /* Receive Checksum Offload */
3757                 e1000_rx_checksum(adapter,
3758                                   (uint32_t)(status) |
3759                                   ((uint32_t)(rx_desc->errors) << 24),
3760                                   le16_to_cpu(rx_desc->csum), skb);
3761
3762                 skb->protocol = eth_type_trans(skb, netdev);
3763 #ifdef CONFIG_E1000_NAPI
3764                 if (unlikely(adapter->vlgrp &&
3765                             (status & E1000_RXD_STAT_VP))) {
3766                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3767                                                  le16_to_cpu(rx_desc->special) &
3768                                                  E1000_RXD_SPC_VLAN_MASK);
3769                 } else {
3770                         netif_receive_skb(skb);
3771                 }
3772 #else /* CONFIG_E1000_NAPI */
3773                 if (unlikely(adapter->vlgrp &&
3774                             (status & E1000_RXD_STAT_VP))) {
3775                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3776                                         le16_to_cpu(rx_desc->special) &
3777                                         E1000_RXD_SPC_VLAN_MASK);
3778                 } else {
3779                         netif_rx(skb);
3780                 }
3781 #endif /* CONFIG_E1000_NAPI */
3782                 netdev->last_rx = jiffies;
3783
3784 next_desc:
3785                 rx_desc->status = 0;
3786
3787                 /* return some buffers to hardware, one at a time is too slow */
3788                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3789                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3790                         cleaned_count = 0;
3791                 }
3792
3793                 /* use prefetched values */
3794                 rx_desc = next_rxd;
3795                 buffer_info = next_buffer;
3796         }
3797         rx_ring->next_to_clean = i;
3798
3799         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3800         if (cleaned_count)
3801                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3802
3803         return cleaned;
3804 }
3805
3806 /**
3807  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3808  * @adapter: board private structure
3809  **/
3810
3811 static boolean_t
3812 #ifdef CONFIG_E1000_NAPI
3813 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3814                       struct e1000_rx_ring *rx_ring,
3815                       int *work_done, int work_to_do)
3816 #else
3817 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3818                       struct e1000_rx_ring *rx_ring)
3819 #endif
3820 {
3821         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3822         struct net_device *netdev = adapter->netdev;
3823         struct pci_dev *pdev = adapter->pdev;
3824         struct e1000_buffer *buffer_info, *next_buffer;
3825         struct e1000_ps_page *ps_page;
3826         struct e1000_ps_page_dma *ps_page_dma;
3827         struct sk_buff *skb;
3828         unsigned int i, j;
3829         uint32_t length, staterr;
3830         int cleaned_count = 0;
3831         boolean_t cleaned = FALSE;
3832
3833         i = rx_ring->next_to_clean;
3834         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3835         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3836         buffer_info = &rx_ring->buffer_info[i];
3837
3838         while (staterr & E1000_RXD_STAT_DD) {
3839                 ps_page = &rx_ring->ps_page[i];
3840                 ps_page_dma = &rx_ring->ps_page_dma[i];
3841 #ifdef CONFIG_E1000_NAPI
3842                 if (unlikely(*work_done >= work_to_do))
3843                         break;
3844                 (*work_done)++;
3845 #endif
3846                 skb = buffer_info->skb;
3847
3848                 /* in the packet split case this is header only */
3849                 prefetch(skb->data - NET_IP_ALIGN);
3850
3851                 if (++i == rx_ring->count) i = 0;
3852                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3853                 prefetch(next_rxd);
3854
3855                 next_buffer = &rx_ring->buffer_info[i];
3856
3857                 cleaned = TRUE;
3858                 cleaned_count++;
3859                 pci_unmap_single(pdev, buffer_info->dma,
3860                                  buffer_info->length,
3861                                  PCI_DMA_FROMDEVICE);
3862
3863                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3864                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3865                                   " the full packet\n", netdev->name);
3866                         dev_kfree_skb_irq(skb);
3867                         goto next_desc;
3868                 }
3869
3870                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3871                         dev_kfree_skb_irq(skb);
3872                         goto next_desc;
3873                 }
3874
3875                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3876
3877                 if (unlikely(!length)) {
3878                         E1000_DBG("%s: Last part of the packet spanning"
3879                                   " multiple descriptors\n", netdev->name);
3880                         dev_kfree_skb_irq(skb);
3881                         goto next_desc;
3882                 }
3883
3884                 /* Good Receive */
3885                 skb_put(skb, length);
3886
3887                 {
3888                 /* this looks ugly, but it seems compiler issues make it
3889                    more efficient than reusing j */
3890                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3891
3892                 /* page alloc/put takes too long and effects small packet
3893                  * throughput, so unsplit small packets and save the alloc/put*/
3894                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3895                         u8 *vaddr;
3896                         /* there is no documentation about how to call
3897                          * kmap_atomic, so we can't hold the mapping
3898                          * very long */
3899                         pci_dma_sync_single_for_cpu(pdev,
3900                                 ps_page_dma->ps_page_dma[0],
3901                                 PAGE_SIZE,
3902                                 PCI_DMA_FROMDEVICE);
3903                         vaddr = kmap_atomic(ps_page->ps_page[0],
3904                                             KM_SKB_DATA_SOFTIRQ);
3905                         memcpy(skb->tail, vaddr, l1);
3906                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3907                         pci_dma_sync_single_for_device(pdev,
3908                                 ps_page_dma->ps_page_dma[0],
3909                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3910                         /* remove the CRC */
3911                         l1 -= 4;
3912                         skb_put(skb, l1);
3913                         goto copydone;
3914                 } /* if */
3915                 }
3916                 
3917                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3918                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3919                                 break;
3920                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3921                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3922                         ps_page_dma->ps_page_dma[j] = 0;
3923                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3924                                            length);
3925                         ps_page->ps_page[j] = NULL;
3926                         skb->len += length;
3927                         skb->data_len += length;
3928                         skb->truesize += length;
3929                 }
3930
3931                 /* strip the ethernet crc, problem is we're using pages now so
3932                  * this whole operation can get a little cpu intensive */
3933                 pskb_trim(skb, skb->len - 4);
3934
3935 copydone:
3936                 e1000_rx_checksum(adapter, staterr,
3937                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3938                 skb->protocol = eth_type_trans(skb, netdev);
3939
3940                 if (likely(rx_desc->wb.upper.header_status &
3941                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3942                         adapter->rx_hdr_split++;
3943 #ifdef CONFIG_E1000_NAPI
3944                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3945                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3946                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3947                                 E1000_RXD_SPC_VLAN_MASK);
3948                 } else {
3949                         netif_receive_skb(skb);
3950                 }
3951 #else /* CONFIG_E1000_NAPI */
3952                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3953                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3954                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3955                                 E1000_RXD_SPC_VLAN_MASK);
3956                 } else {
3957                         netif_rx(skb);
3958                 }
3959 #endif /* CONFIG_E1000_NAPI */
3960                 netdev->last_rx = jiffies;
3961
3962 next_desc:
3963                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3964                 buffer_info->skb = NULL;
3965
3966                 /* return some buffers to hardware, one at a time is too slow */
3967                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3968                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3969                         cleaned_count = 0;
3970                 }
3971
3972                 /* use prefetched values */
3973                 rx_desc = next_rxd;
3974                 buffer_info = next_buffer;
3975
3976                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3977         }
3978         rx_ring->next_to_clean = i;
3979
3980         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3981         if (cleaned_count)
3982                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3983
3984         return cleaned;
3985 }
3986
3987 /**
3988  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3989  * @adapter: address of board private structure
3990  **/
3991
3992 static void
3993 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3994                        struct e1000_rx_ring *rx_ring,
3995                        int cleaned_count)
3996 {
3997         struct net_device *netdev = adapter->netdev;
3998         struct pci_dev *pdev = adapter->pdev;
3999         struct e1000_rx_desc *rx_desc;
4000         struct e1000_buffer *buffer_info;
4001         struct sk_buff *skb;
4002         unsigned int i;
4003         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4004
4005         i = rx_ring->next_to_use;
4006         buffer_info = &rx_ring->buffer_info[i];
4007
4008         while (cleaned_count--) {
4009                 if (!(skb = buffer_info->skb))
4010                         skb = netdev_alloc_skb(netdev, bufsz);
4011                 else {
4012                         skb_trim(skb, 0);
4013                         goto map_skb;
4014                 }
4015
4016                 if (unlikely(!skb)) {
4017                         /* Better luck next round */
4018                         adapter->alloc_rx_buff_failed++;
4019                         break;
4020                 }
4021
4022                 /* Fix for errata 23, can't cross 64kB boundary */
4023                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4024                         struct sk_buff *oldskb = skb;
4025                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4026                                              "at %p\n", bufsz, skb->data);
4027                         /* Try again, without freeing the previous */
4028                         skb = netdev_alloc_skb(netdev, bufsz);
4029                         /* Failed allocation, critical failure */
4030                         if (!skb) {
4031                                 dev_kfree_skb(oldskb);
4032                                 break;
4033                         }
4034
4035                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4036                                 /* give up */
4037                                 dev_kfree_skb(skb);
4038                                 dev_kfree_skb(oldskb);
4039                                 break; /* while !buffer_info->skb */
4040                         } else {
4041                                 /* Use new allocation */
4042                                 dev_kfree_skb(oldskb);
4043                         }
4044                 }
4045                 /* Make buffer alignment 2 beyond a 16 byte boundary
4046                  * this will result in a 16 byte aligned IP header after
4047                  * the 14 byte MAC header is removed
4048                  */
4049                 skb_reserve(skb, NET_IP_ALIGN);
4050
4051                 skb->dev = netdev;
4052
4053                 buffer_info->skb = skb;
4054                 buffer_info->length = adapter->rx_buffer_len;
4055 map_skb:
4056                 buffer_info->dma = pci_map_single(pdev,
4057                                                   skb->data,
4058                                                   adapter->rx_buffer_len,
4059                                                   PCI_DMA_FROMDEVICE);
4060
4061                 /* Fix for errata 23, can't cross 64kB boundary */
4062                 if (!e1000_check_64k_bound(adapter,
4063                                         (void *)(unsigned long)buffer_info->dma,
4064                                         adapter->rx_buffer_len)) {
4065                         DPRINTK(RX_ERR, ERR,
4066                                 "dma align check failed: %u bytes at %p\n",
4067                                 adapter->rx_buffer_len,
4068                                 (void *)(unsigned long)buffer_info->dma);
4069                         dev_kfree_skb(skb);
4070                         buffer_info->skb = NULL;
4071
4072                         pci_unmap_single(pdev, buffer_info->dma,
4073                                          adapter->rx_buffer_len,
4074                                          PCI_DMA_FROMDEVICE);
4075
4076                         break; /* while !buffer_info->skb */
4077                 }
4078                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4079                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4080
4081                 if (unlikely(++i == rx_ring->count))
4082                         i = 0;
4083                 buffer_info = &rx_ring->buffer_info[i];
4084         }
4085
4086         if (likely(rx_ring->next_to_use != i)) {
4087                 rx_ring->next_to_use = i;
4088                 if (unlikely(i-- == 0))
4089                         i = (rx_ring->count - 1);
4090
4091                 /* Force memory writes to complete before letting h/w
4092                  * know there are new descriptors to fetch.  (Only
4093                  * applicable for weak-ordered memory model archs,
4094                  * such as IA-64). */
4095                 wmb();
4096                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4097         }
4098 }
4099
4100 /**
4101  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4102  * @adapter: address of board private structure
4103  **/
4104
4105 static void
4106 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4107                           struct e1000_rx_ring *rx_ring,
4108                           int cleaned_count)
4109 {
4110         struct net_device *netdev = adapter->netdev;
4111         struct pci_dev *pdev = adapter->pdev;
4112         union e1000_rx_desc_packet_split *rx_desc;
4113         struct e1000_buffer *buffer_info;
4114         struct e1000_ps_page *ps_page;
4115         struct e1000_ps_page_dma *ps_page_dma;
4116         struct sk_buff *skb;
4117         unsigned int i, j;
4118
4119         i = rx_ring->next_to_use;
4120         buffer_info = &rx_ring->buffer_info[i];
4121         ps_page = &rx_ring->ps_page[i];
4122         ps_page_dma = &rx_ring->ps_page_dma[i];
4123
4124         while (cleaned_count--) {
4125                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4126
4127                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4128                         if (j < adapter->rx_ps_pages) {
4129                                 if (likely(!ps_page->ps_page[j])) {
4130                                         ps_page->ps_page[j] =
4131                                                 alloc_page(GFP_ATOMIC);
4132                                         if (unlikely(!ps_page->ps_page[j])) {
4133                                                 adapter->alloc_rx_buff_failed++;
4134                                                 goto no_buffers;
4135                                         }
4136                                         ps_page_dma->ps_page_dma[j] =
4137                                                 pci_map_page(pdev,
4138                                                             ps_page->ps_page[j],
4139                                                             0, PAGE_SIZE,
4140                                                             PCI_DMA_FROMDEVICE);
4141                                 }
4142                                 /* Refresh the desc even if buffer_addrs didn't
4143                                  * change because each write-back erases
4144                                  * this info.
4145                                  */
4146                                 rx_desc->read.buffer_addr[j+1] =
4147                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4148                         } else
4149                                 rx_desc->read.buffer_addr[j+1] = ~0;
4150                 }
4151
4152                 skb = netdev_alloc_skb(netdev,
4153                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4154
4155                 if (unlikely(!skb)) {
4156                         adapter->alloc_rx_buff_failed++;
4157                         break;
4158                 }
4159
4160                 /* Make buffer alignment 2 beyond a 16 byte boundary
4161                  * this will result in a 16 byte aligned IP header after
4162                  * the 14 byte MAC header is removed
4163                  */
4164                 skb_reserve(skb, NET_IP_ALIGN);
4165
4166                 skb->dev = netdev;
4167
4168                 buffer_info->skb = skb;
4169                 buffer_info->length = adapter->rx_ps_bsize0;
4170                 buffer_info->dma = pci_map_single(pdev, skb->data,
4171                                                   adapter->rx_ps_bsize0,
4172                                                   PCI_DMA_FROMDEVICE);
4173
4174                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4175
4176                 if (unlikely(++i == rx_ring->count)) i = 0;
4177                 buffer_info = &rx_ring->buffer_info[i];
4178                 ps_page = &rx_ring->ps_page[i];
4179                 ps_page_dma = &rx_ring->ps_page_dma[i];
4180         }
4181
4182 no_buffers:
4183         if (likely(rx_ring->next_to_use != i)) {
4184                 rx_ring->next_to_use = i;
4185                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4186
4187                 /* Force memory writes to complete before letting h/w
4188                  * know there are new descriptors to fetch.  (Only
4189                  * applicable for weak-ordered memory model archs,
4190                  * such as IA-64). */
4191                 wmb();
4192                 /* Hardware increments by 16 bytes, but packet split
4193                  * descriptors are 32 bytes...so we increment tail
4194                  * twice as much.
4195                  */
4196                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4197         }
4198 }
4199
4200 /**
4201  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4202  * @adapter:
4203  **/
4204
4205 static void
4206 e1000_smartspeed(struct e1000_adapter *adapter)
4207 {
4208         uint16_t phy_status;
4209         uint16_t phy_ctrl;
4210
4211         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4212            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4213                 return;
4214
4215         if (adapter->smartspeed == 0) {
4216                 /* If Master/Slave config fault is asserted twice,
4217                  * we assume back-to-back */
4218                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4219                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4220                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4221                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4222                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4223                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4224                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4225                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4226                                             phy_ctrl);
4227                         adapter->smartspeed++;
4228                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4229                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4230                                                &phy_ctrl)) {
4231                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4232                                              MII_CR_RESTART_AUTO_NEG);
4233                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4234                                                     phy_ctrl);
4235                         }
4236                 }
4237                 return;
4238         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4239                 /* If still no link, perhaps using 2/3 pair cable */
4240                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4241                 phy_ctrl |= CR_1000T_MS_ENABLE;
4242                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4243                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4244                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4245                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4246                                      MII_CR_RESTART_AUTO_NEG);
4247                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4248                 }
4249         }
4250         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4251         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4252                 adapter->smartspeed = 0;
4253 }
4254
4255 /**
4256  * e1000_ioctl -
4257  * @netdev:
4258  * @ifreq:
4259  * @cmd:
4260  **/
4261
4262 static int
4263 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4264 {
4265         switch (cmd) {
4266         case SIOCGMIIPHY:
4267         case SIOCGMIIREG:
4268         case SIOCSMIIREG:
4269                 return e1000_mii_ioctl(netdev, ifr, cmd);
4270         default:
4271                 return -EOPNOTSUPP;
4272         }
4273 }
4274
4275 /**
4276  * e1000_mii_ioctl -
4277  * @netdev:
4278  * @ifreq:
4279  * @cmd:
4280  **/
4281
4282 static int
4283 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4284 {
4285         struct e1000_adapter *adapter = netdev_priv(netdev);
4286         struct mii_ioctl_data *data = if_mii(ifr);
4287         int retval;
4288         uint16_t mii_reg;
4289         uint16_t spddplx;
4290         unsigned long flags;
4291
4292         if (adapter->hw.media_type != e1000_media_type_copper)
4293                 return -EOPNOTSUPP;
4294
4295         switch (cmd) {
4296         case SIOCGMIIPHY:
4297                 data->phy_id = adapter->hw.phy_addr;
4298                 break;
4299         case SIOCGMIIREG:
4300                 if (!capable(CAP_NET_ADMIN))
4301                         return -EPERM;
4302                 spin_lock_irqsave(&adapter->stats_lock, flags);
4303                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4304                                    &data->val_out)) {
4305                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4306                         return -EIO;
4307                 }
4308                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4309                 break;
4310         case SIOCSMIIREG:
4311                 if (!capable(CAP_NET_ADMIN))
4312                         return -EPERM;
4313                 if (data->reg_num & ~(0x1F))
4314                         return -EFAULT;
4315                 mii_reg = data->val_in;
4316                 spin_lock_irqsave(&adapter->stats_lock, flags);
4317                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4318                                         mii_reg)) {
4319                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4320                         return -EIO;
4321                 }
4322                 if (adapter->hw.media_type == e1000_media_type_copper) {
4323                         switch (data->reg_num) {
4324                         case PHY_CTRL:
4325                                 if (mii_reg & MII_CR_POWER_DOWN)
4326                                         break;
4327                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4328                                         adapter->hw.autoneg = 1;
4329                                         adapter->hw.autoneg_advertised = 0x2F;
4330                                 } else {
4331                                         if (mii_reg & 0x40)
4332                                                 spddplx = SPEED_1000;
4333                                         else if (mii_reg & 0x2000)
4334                                                 spddplx = SPEED_100;
4335                                         else
4336                                                 spddplx = SPEED_10;
4337                                         spddplx += (mii_reg & 0x100)
4338                                                    ? DUPLEX_FULL :
4339                                                    DUPLEX_HALF;
4340                                         retval = e1000_set_spd_dplx(adapter,
4341                                                                     spddplx);
4342                                         if (retval) {
4343                                                 spin_unlock_irqrestore(
4344                                                         &adapter->stats_lock,
4345                                                         flags);
4346                                                 return retval;
4347                                         }
4348                                 }
4349                                 if (netif_running(adapter->netdev))
4350                                         e1000_reinit_locked(adapter);
4351                                 else
4352                                         e1000_reset(adapter);
4353                                 break;
4354                         case M88E1000_PHY_SPEC_CTRL:
4355                         case M88E1000_EXT_PHY_SPEC_CTRL:
4356                                 if (e1000_phy_reset(&adapter->hw)) {
4357                                         spin_unlock_irqrestore(
4358                                                 &adapter->stats_lock, flags);
4359                                         return -EIO;
4360                                 }
4361                                 break;
4362                         }
4363                 } else {
4364                         switch (data->reg_num) {
4365                         case PHY_CTRL:
4366                                 if (mii_reg & MII_CR_POWER_DOWN)
4367                                         break;
4368                                 if (netif_running(adapter->netdev))
4369                                         e1000_reinit_locked(adapter);
4370                                 else
4371                                         e1000_reset(adapter);
4372                                 break;
4373                         }
4374                 }
4375                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4376                 break;
4377         default:
4378                 return -EOPNOTSUPP;
4379         }
4380         return E1000_SUCCESS;
4381 }
4382
4383 void
4384 e1000_pci_set_mwi(struct e1000_hw *hw)
4385 {
4386         struct e1000_adapter *adapter = hw->back;
4387         int ret_val = pci_set_mwi(adapter->pdev);
4388
4389         if (ret_val)
4390                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4391 }
4392
4393 void
4394 e1000_pci_clear_mwi(struct e1000_hw *hw)
4395 {
4396         struct e1000_adapter *adapter = hw->back;
4397
4398         pci_clear_mwi(adapter->pdev);
4399 }
4400
4401 void
4402 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4403 {
4404         struct e1000_adapter *adapter = hw->back;
4405
4406         pci_read_config_word(adapter->pdev, reg, value);
4407 }
4408
4409 void
4410 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4411 {
4412         struct e1000_adapter *adapter = hw->back;
4413
4414         pci_write_config_word(adapter->pdev, reg, *value);
4415 }
4416
4417 #if 0
4418 uint32_t
4419 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4420 {
4421         return inl(port);
4422 }
4423 #endif  /*  0  */
4424
4425 void
4426 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4427 {
4428         outl(value, port);
4429 }
4430
4431 static void
4432 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4433 {
4434         struct e1000_adapter *adapter = netdev_priv(netdev);
4435         uint32_t ctrl, rctl;
4436
4437         e1000_irq_disable(adapter);
4438         adapter->vlgrp = grp;
4439
4440         if (grp) {
4441                 /* enable VLAN tag insert/strip */
4442                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4443                 ctrl |= E1000_CTRL_VME;
4444                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4445
4446                 if (adapter->hw.mac_type != e1000_ich8lan) {
4447                 /* enable VLAN receive filtering */
4448                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4449                 rctl |= E1000_RCTL_VFE;
4450                 rctl &= ~E1000_RCTL_CFIEN;
4451                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4452                 e1000_update_mng_vlan(adapter);
4453                 }
4454         } else {
4455                 /* disable VLAN tag insert/strip */
4456                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4457                 ctrl &= ~E1000_CTRL_VME;
4458                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4459
4460                 if (adapter->hw.mac_type != e1000_ich8lan) {
4461                 /* disable VLAN filtering */
4462                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4463                 rctl &= ~E1000_RCTL_VFE;
4464                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4465                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4466                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4467                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4468                 }
4469                 }
4470         }
4471
4472         e1000_irq_enable(adapter);
4473 }
4474
4475 static void
4476 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4477 {
4478         struct e1000_adapter *adapter = netdev_priv(netdev);
4479         uint32_t vfta, index;
4480
4481         if ((adapter->hw.mng_cookie.status &
4482              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4483             (vid == adapter->mng_vlan_id))
4484                 return;
4485         /* add VID to filter table */
4486         index = (vid >> 5) & 0x7F;
4487         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4488         vfta |= (1 << (vid & 0x1F));
4489         e1000_write_vfta(&adapter->hw, index, vfta);
4490 }
4491
4492 static void
4493 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4494 {
4495         struct e1000_adapter *adapter = netdev_priv(netdev);
4496         uint32_t vfta, index;
4497
4498         e1000_irq_disable(adapter);
4499
4500         if (adapter->vlgrp)
4501                 adapter->vlgrp->vlan_devices[vid] = NULL;
4502
4503         e1000_irq_enable(adapter);
4504
4505         if ((adapter->hw.mng_cookie.status &
4506              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4507             (vid == adapter->mng_vlan_id)) {
4508                 /* release control to f/w */
4509                 e1000_release_hw_control(adapter);
4510                 return;
4511         }
4512
4513         /* remove VID from filter table */
4514         index = (vid >> 5) & 0x7F;
4515         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4516         vfta &= ~(1 << (vid & 0x1F));
4517         e1000_write_vfta(&adapter->hw, index, vfta);
4518 }
4519
4520 static void
4521 e1000_restore_vlan(struct e1000_adapter *adapter)
4522 {
4523         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4524
4525         if (adapter->vlgrp) {
4526                 uint16_t vid;
4527                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4528                         if (!adapter->vlgrp->vlan_devices[vid])
4529                                 continue;
4530                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4531                 }
4532         }
4533 }
4534
4535 int
4536 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4537 {
4538         adapter->hw.autoneg = 0;
4539
4540         /* Fiber NICs only allow 1000 gbps Full duplex */
4541         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4542                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4543                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4544                 return -EINVAL;
4545         }
4546
4547         switch (spddplx) {
4548         case SPEED_10 + DUPLEX_HALF:
4549                 adapter->hw.forced_speed_duplex = e1000_10_half;
4550                 break;
4551         case SPEED_10 + DUPLEX_FULL:
4552                 adapter->hw.forced_speed_duplex = e1000_10_full;
4553                 break;
4554         case SPEED_100 + DUPLEX_HALF:
4555                 adapter->hw.forced_speed_duplex = e1000_100_half;
4556                 break;
4557         case SPEED_100 + DUPLEX_FULL:
4558                 adapter->hw.forced_speed_duplex = e1000_100_full;
4559                 break;
4560         case SPEED_1000 + DUPLEX_FULL:
4561                 adapter->hw.autoneg = 1;
4562                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4563                 break;
4564         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4565         default:
4566                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4567                 return -EINVAL;
4568         }
4569         return 0;
4570 }
4571
4572 #ifdef CONFIG_PM
4573 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4574  * bus we're on (PCI(X) vs. PCI-E)
4575  */
4576 #define PCIE_CONFIG_SPACE_LEN 256
4577 #define PCI_CONFIG_SPACE_LEN 64
4578 static int
4579 e1000_pci_save_state(struct e1000_adapter *adapter)
4580 {
4581         struct pci_dev *dev = adapter->pdev;
4582         int size;
4583         int i;
4584
4585         if (adapter->hw.mac_type >= e1000_82571)
4586                 size = PCIE_CONFIG_SPACE_LEN;
4587         else
4588                 size = PCI_CONFIG_SPACE_LEN;
4589
4590         WARN_ON(adapter->config_space != NULL);
4591
4592         adapter->config_space = kmalloc(size, GFP_KERNEL);
4593         if (!adapter->config_space) {
4594                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4595                 return -ENOMEM;
4596         }
4597         for (i = 0; i < (size / 4); i++)
4598                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4599         return 0;
4600 }
4601
4602 static void
4603 e1000_pci_restore_state(struct e1000_adapter *adapter)
4604 {
4605         struct pci_dev *dev = adapter->pdev;
4606         int size;
4607         int i;
4608
4609         if (adapter->config_space == NULL)
4610                 return;
4611
4612         if (adapter->hw.mac_type >= e1000_82571)
4613                 size = PCIE_CONFIG_SPACE_LEN;
4614         else
4615                 size = PCI_CONFIG_SPACE_LEN;
4616         for (i = 0; i < (size / 4); i++)
4617                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4618         kfree(adapter->config_space);
4619         adapter->config_space = NULL;
4620         return;
4621 }
4622 #endif /* CONFIG_PM */
4623
4624 static int
4625 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4626 {
4627         struct net_device *netdev = pci_get_drvdata(pdev);
4628         struct e1000_adapter *adapter = netdev_priv(netdev);
4629         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4630         uint32_t wufc = adapter->wol;
4631 #ifdef CONFIG_PM
4632         int retval = 0;
4633 #endif
4634
4635         netif_device_detach(netdev);
4636
4637         if (netif_running(netdev)) {
4638                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4639                 e1000_down(adapter);
4640         }
4641
4642 #ifdef CONFIG_PM
4643         /* Implement our own version of pci_save_state(pdev) because pci-
4644          * express adapters have 256-byte config spaces. */
4645         retval = e1000_pci_save_state(adapter);
4646         if (retval)
4647                 return retval;
4648 #endif
4649
4650         status = E1000_READ_REG(&adapter->hw, STATUS);
4651         if (status & E1000_STATUS_LU)
4652                 wufc &= ~E1000_WUFC_LNKC;
4653
4654         if (wufc) {
4655                 e1000_setup_rctl(adapter);
4656                 e1000_set_multi(netdev);
4657
4658                 /* turn on all-multi mode if wake on multicast is enabled */
4659                 if (wufc & E1000_WUFC_MC) {
4660                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4661                         rctl |= E1000_RCTL_MPE;
4662                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4663                 }
4664
4665                 if (adapter->hw.mac_type >= e1000_82540) {
4666                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4667                         /* advertise wake from D3Cold */
4668                         #define E1000_CTRL_ADVD3WUC 0x00100000
4669                         /* phy power management enable */
4670                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4671                         ctrl |= E1000_CTRL_ADVD3WUC |
4672                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4673                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4674                 }
4675
4676                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4677                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4678                         /* keep the laser running in D3 */
4679                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4680                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4681                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4682                 }
4683
4684                 /* Allow time for pending master requests to run */
4685                 e1000_disable_pciex_master(&adapter->hw);
4686
4687                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4688                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4689                 pci_enable_wake(pdev, PCI_D3hot, 1);
4690                 pci_enable_wake(pdev, PCI_D3cold, 1);
4691         } else {
4692                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4693                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4694                 pci_enable_wake(pdev, PCI_D3hot, 0);
4695                 pci_enable_wake(pdev, PCI_D3cold, 0);
4696         }
4697
4698         /* FIXME: this code is incorrect for PCI Express */
4699         if (adapter->hw.mac_type >= e1000_82540 &&
4700            adapter->hw.mac_type != e1000_ich8lan &&
4701            adapter->hw.media_type == e1000_media_type_copper) {
4702                 manc = E1000_READ_REG(&adapter->hw, MANC);
4703                 if (manc & E1000_MANC_SMBUS_EN) {
4704                         manc |= E1000_MANC_ARP_EN;
4705                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4706                         pci_enable_wake(pdev, PCI_D3hot, 1);
4707                         pci_enable_wake(pdev, PCI_D3cold, 1);
4708                 }
4709         }
4710
4711         if (adapter->hw.phy_type == e1000_phy_igp_3)
4712                 e1000_phy_powerdown_workaround(&adapter->hw);
4713
4714         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4715          * would have already happened in close and is redundant. */
4716         e1000_release_hw_control(adapter);
4717
4718         pci_disable_device(pdev);
4719
4720         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4721
4722         return 0;
4723 }
4724
4725 #ifdef CONFIG_PM
4726 static int
4727 e1000_resume(struct pci_dev *pdev)
4728 {
4729         struct net_device *netdev = pci_get_drvdata(pdev);
4730         struct e1000_adapter *adapter = netdev_priv(netdev);
4731         uint32_t manc, err;
4732
4733         pci_set_power_state(pdev, PCI_D0);
4734         e1000_pci_restore_state(adapter);
4735         if ((err = pci_enable_device(pdev))) {
4736                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4737                 return err;
4738         }
4739         pci_set_master(pdev);
4740
4741         pci_enable_wake(pdev, PCI_D3hot, 0);
4742         pci_enable_wake(pdev, PCI_D3cold, 0);
4743
4744         e1000_reset(adapter);
4745         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4746
4747         if (netif_running(netdev))
4748                 e1000_up(adapter);
4749
4750         netif_device_attach(netdev);
4751
4752         /* FIXME: this code is incorrect for PCI Express */
4753         if (adapter->hw.mac_type >= e1000_82540 &&
4754            adapter->hw.mac_type != e1000_ich8lan &&
4755            adapter->hw.media_type == e1000_media_type_copper) {
4756                 manc = E1000_READ_REG(&adapter->hw, MANC);
4757                 manc &= ~(E1000_MANC_ARP_EN);
4758                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4759         }
4760
4761         /* If the controller is 82573 and f/w is AMT, do not set
4762          * DRV_LOAD until the interface is up.  For all other cases,
4763          * let the f/w know that the h/w is now under the control
4764          * of the driver. */
4765         if (adapter->hw.mac_type != e1000_82573 ||
4766             !e1000_check_mng_mode(&adapter->hw))
4767                 e1000_get_hw_control(adapter);
4768
4769         return 0;
4770 }
4771 #endif
4772
4773 static void e1000_shutdown(struct pci_dev *pdev)
4774 {
4775         e1000_suspend(pdev, PMSG_SUSPEND);
4776 }
4777
4778 #ifdef CONFIG_NET_POLL_CONTROLLER
4779 /*
4780  * Polling 'interrupt' - used by things like netconsole to send skbs
4781  * without having to re-enable interrupts. It's not called while
4782  * the interrupt routine is executing.
4783  */
4784 static void
4785 e1000_netpoll(struct net_device *netdev)
4786 {
4787         struct e1000_adapter *adapter = netdev_priv(netdev);
4788
4789         disable_irq(adapter->pdev->irq);
4790         e1000_intr(adapter->pdev->irq, netdev, NULL);
4791         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4792 #ifndef CONFIG_E1000_NAPI
4793         adapter->clean_rx(adapter, adapter->rx_ring);
4794 #endif
4795         enable_irq(adapter->pdev->irq);
4796 }
4797 #endif
4798
4799 /**
4800  * e1000_io_error_detected - called when PCI error is detected
4801  * @pdev: Pointer to PCI device
4802  * @state: The current pci conneection state
4803  *
4804  * This function is called after a PCI bus error affecting
4805  * this device has been detected.
4806  */
4807 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4808 {
4809         struct net_device *netdev = pci_get_drvdata(pdev);
4810         struct e1000_adapter *adapter = netdev->priv;
4811
4812         netif_device_detach(netdev);
4813
4814         if (netif_running(netdev))
4815                 e1000_down(adapter);
4816
4817         /* Request a slot slot reset. */
4818         return PCI_ERS_RESULT_NEED_RESET;
4819 }
4820
4821 /**
4822  * e1000_io_slot_reset - called after the pci bus has been reset.
4823  * @pdev: Pointer to PCI device
4824  *
4825  * Restart the card from scratch, as if from a cold-boot. Implementation
4826  * resembles the first-half of the e1000_resume routine.
4827  */
4828 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4829 {
4830         struct net_device *netdev = pci_get_drvdata(pdev);
4831         struct e1000_adapter *adapter = netdev->priv;
4832
4833         if (pci_enable_device(pdev)) {
4834                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4835                 return PCI_ERS_RESULT_DISCONNECT;
4836         }
4837         pci_set_master(pdev);
4838
4839         pci_enable_wake(pdev, 3, 0);
4840         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4841
4842         /* Perform card reset only on one instance of the card */
4843         if (PCI_FUNC (pdev->devfn) != 0)
4844                 return PCI_ERS_RESULT_RECOVERED;
4845
4846         e1000_reset(adapter);
4847         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4848
4849         return PCI_ERS_RESULT_RECOVERED;
4850 }
4851
4852 /**
4853  * e1000_io_resume - called when traffic can start flowing again.
4854  * @pdev: Pointer to PCI device
4855  *
4856  * This callback is called when the error recovery driver tells us that
4857  * its OK to resume normal operation. Implementation resembles the
4858  * second-half of the e1000_resume routine.
4859  */
4860 static void e1000_io_resume(struct pci_dev *pdev)
4861 {
4862         struct net_device *netdev = pci_get_drvdata(pdev);
4863         struct e1000_adapter *adapter = netdev->priv;
4864         uint32_t manc, swsm;
4865
4866         if (netif_running(netdev)) {
4867                 if (e1000_up(adapter)) {
4868                         printk("e1000: can't bring device back up after reset\n");
4869                         return;
4870                 }
4871         }
4872
4873         netif_device_attach(netdev);
4874
4875         if (adapter->hw.mac_type >= e1000_82540 &&
4876             adapter->hw.media_type == e1000_media_type_copper) {
4877                 manc = E1000_READ_REG(&adapter->hw, MANC);
4878                 manc &= ~(E1000_MANC_ARP_EN);
4879                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4880         }
4881
4882         switch (adapter->hw.mac_type) {
4883         case e1000_82573:
4884                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4885                 E1000_WRITE_REG(&adapter->hw, SWSM,
4886                                 swsm | E1000_SWSM_DRV_LOAD);
4887                 break;
4888         default:
4889                 break;
4890         }
4891
4892         if (netif_running(netdev))
4893                 mod_timer(&adapter->watchdog_timer, jiffies);
4894 }
4895
4896 /* e1000_main.c */