]> err.no Git - linux-2.6/blob - drivers/net/e1000/e1000_main.c
e1000: e1000_probe resources cleanup
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k6"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
103         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
105         /* required last entry */
106         {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
110
111 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_tx_ring *txdr);
113 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
114                                     struct e1000_rx_ring *rxdr);
115 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *tx_ring);
117 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rx_ring);
119
120 /* Local Function Prototypes */
121
122 static int e1000_init_module(void);
123 static void e1000_exit_module(void);
124 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
125 static void __devexit e1000_remove(struct pci_dev *pdev);
126 static int e1000_alloc_queues(struct e1000_adapter *adapter);
127 static int e1000_sw_init(struct e1000_adapter *adapter);
128 static int e1000_open(struct net_device *netdev);
129 static int e1000_close(struct net_device *netdev);
130 static void e1000_configure_tx(struct e1000_adapter *adapter);
131 static void e1000_configure_rx(struct e1000_adapter *adapter);
132 static void e1000_setup_rctl(struct e1000_adapter *adapter);
133 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
136                                 struct e1000_tx_ring *tx_ring);
137 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
138                                 struct e1000_rx_ring *rx_ring);
139 static void e1000_set_multi(struct net_device *netdev);
140 static void e1000_update_phy_info(unsigned long data);
141 static void e1000_watchdog(unsigned long data);
142 static void e1000_82547_tx_fifo_stall(unsigned long data);
143 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
144 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
145 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
146 static int e1000_set_mac(struct net_device *netdev, void *p);
147 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
148 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
149                                     struct e1000_tx_ring *tx_ring);
150 #ifdef CONFIG_E1000_NAPI
151 static int e1000_clean(struct net_device *poll_dev, int *budget);
152 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
153                                     struct e1000_rx_ring *rx_ring,
154                                     int *work_done, int work_to_do);
155 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
156                                        struct e1000_rx_ring *rx_ring,
157                                        int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
160                                     struct e1000_rx_ring *rx_ring);
161 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
162                                        struct e1000_rx_ring *rx_ring);
163 #endif
164 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
165                                    struct e1000_rx_ring *rx_ring,
166                                    int cleaned_count);
167 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
168                                       struct e1000_rx_ring *rx_ring,
169                                       int cleaned_count);
170 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
171 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
172                            int cmd);
173 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
174 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_tx_timeout(struct net_device *dev);
176 static void e1000_reset_task(struct net_device *dev);
177 static void e1000_smartspeed(struct e1000_adapter *adapter);
178 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
179                                        struct sk_buff *skb);
180
181 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
182 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
183 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_restore_vlan(struct e1000_adapter *adapter);
185
186 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
187 #ifdef CONFIG_PM
188 static int e1000_resume(struct pci_dev *pdev);
189 #endif
190 static void e1000_shutdown(struct pci_dev *pdev);
191
192 #ifdef CONFIG_NET_POLL_CONTROLLER
193 /* for netdump / net console */
194 static void e1000_netpoll (struct net_device *netdev);
195 #endif
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                      pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static struct pci_error_handlers e1000_err_handler = {
203         .error_detected = e1000_io_error_detected,
204         .slot_reset = e1000_io_slot_reset,
205         .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209         .name     = e1000_driver_name,
210         .id_table = e1000_pci_tbl,
211         .probe    = e1000_probe,
212         .remove   = __devexit_p(e1000_remove),
213         /* Power Managment Hooks */
214         .suspend  = e1000_suspend,
215 #ifdef CONFIG_PM
216         .resume   = e1000_resume,
217 #endif
218         .shutdown = e1000_shutdown,
219         .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230
231 /**
232  * e1000_init_module - Driver Registration Routine
233  *
234  * e1000_init_module is the first routine called when the driver is
235  * loaded. All it does is register with the PCI subsystem.
236  **/
237
238 static int __init
239 e1000_init_module(void)
240 {
241         int ret;
242         printk(KERN_INFO "%s - version %s\n",
243                e1000_driver_string, e1000_driver_version);
244
245         printk(KERN_INFO "%s\n", e1000_copyright);
246
247         ret = pci_register_driver(&e1000_driver);
248
249         return ret;
250 }
251
252 module_init(e1000_init_module);
253
254 /**
255  * e1000_exit_module - Driver Exit Cleanup Routine
256  *
257  * e1000_exit_module is called just before the driver is removed
258  * from memory.
259  **/
260
261 static void __exit
262 e1000_exit_module(void)
263 {
264         pci_unregister_driver(&e1000_driver);
265 }
266
267 module_exit(e1000_exit_module);
268
269 static int e1000_request_irq(struct e1000_adapter *adapter)
270 {
271         struct net_device *netdev = adapter->netdev;
272         int flags, err = 0;
273
274         flags = IRQF_SHARED;
275 #ifdef CONFIG_PCI_MSI
276         if (adapter->hw.mac_type > e1000_82547_rev_2) {
277                 adapter->have_msi = TRUE;
278                 if ((err = pci_enable_msi(adapter->pdev))) {
279                         DPRINTK(PROBE, ERR,
280                          "Unable to allocate MSI interrupt Error: %d\n", err);
281                         adapter->have_msi = FALSE;
282                 }
283         }
284         if (adapter->have_msi)
285                 flags &= ~IRQF_SHARED;
286 #endif
287         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
288                                netdev->name, netdev)))
289                 DPRINTK(PROBE, ERR,
290                         "Unable to allocate interrupt Error: %d\n", err);
291
292         return err;
293 }
294
295 static void e1000_free_irq(struct e1000_adapter *adapter)
296 {
297         struct net_device *netdev = adapter->netdev;
298
299         free_irq(adapter->pdev->irq, netdev);
300
301 #ifdef CONFIG_PCI_MSI
302         if (adapter->have_msi)
303                 pci_disable_msi(adapter->pdev);
304 #endif
305 }
306
307 /**
308  * e1000_irq_disable - Mask off interrupt generation on the NIC
309  * @adapter: board private structure
310  **/
311
312 static void
313 e1000_irq_disable(struct e1000_adapter *adapter)
314 {
315         atomic_inc(&adapter->irq_sem);
316         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
317         E1000_WRITE_FLUSH(&adapter->hw);
318         synchronize_irq(adapter->pdev->irq);
319 }
320
321 /**
322  * e1000_irq_enable - Enable default interrupt generation settings
323  * @adapter: board private structure
324  **/
325
326 static void
327 e1000_irq_enable(struct e1000_adapter *adapter)
328 {
329         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
330                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331                 E1000_WRITE_FLUSH(&adapter->hw);
332         }
333 }
334
335 static void
336 e1000_update_mng_vlan(struct e1000_adapter *adapter)
337 {
338         struct net_device *netdev = adapter->netdev;
339         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
340         uint16_t old_vid = adapter->mng_vlan_id;
341         if (adapter->vlgrp) {
342                 if (!adapter->vlgrp->vlan_devices[vid]) {
343                         if (adapter->hw.mng_cookie.status &
344                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
345                                 e1000_vlan_rx_add_vid(netdev, vid);
346                                 adapter->mng_vlan_id = vid;
347                         } else
348                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
349
350                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
351                                         (vid != old_vid) &&
352                                         !adapter->vlgrp->vlan_devices[old_vid])
353                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
354                 } else
355                         adapter->mng_vlan_id = vid;
356         }
357 }
358
359 /**
360  * e1000_release_hw_control - release control of the h/w to f/w
361  * @adapter: address of board private structure
362  *
363  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
364  * For ASF and Pass Through versions of f/w this means that the
365  * driver is no longer loaded. For AMT version (only with 82573) i
366  * of the f/w this means that the netowrk i/f is closed.
367  *
368  **/
369
370 static void
371 e1000_release_hw_control(struct e1000_adapter *adapter)
372 {
373         uint32_t ctrl_ext;
374         uint32_t swsm;
375         uint32_t extcnf;
376
377         /* Let firmware taken over control of h/w */
378         switch (adapter->hw.mac_type) {
379         case e1000_82571:
380         case e1000_82572:
381         case e1000_80003es2lan:
382                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
383                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
384                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
385                 break;
386         case e1000_82573:
387                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
388                 E1000_WRITE_REG(&adapter->hw, SWSM,
389                                 swsm & ~E1000_SWSM_DRV_LOAD);
390         case e1000_ich8lan:
391                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
392                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
393                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
394                 break;
395         default:
396                 break;
397         }
398 }
399
400 /**
401  * e1000_get_hw_control - get control of the h/w from f/w
402  * @adapter: address of board private structure
403  *
404  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
405  * For ASF and Pass Through versions of f/w this means that
406  * the driver is loaded. For AMT version (only with 82573)
407  * of the f/w this means that the netowrk i/f is open.
408  *
409  **/
410
411 static void
412 e1000_get_hw_control(struct e1000_adapter *adapter)
413 {
414         uint32_t ctrl_ext;
415         uint32_t swsm;
416         uint32_t extcnf;
417         /* Let firmware know the driver has taken over */
418         switch (adapter->hw.mac_type) {
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
423                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
424                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
425                 break;
426         case e1000_82573:
427                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
428                 E1000_WRITE_REG(&adapter->hw, SWSM,
429                                 swsm | E1000_SWSM_DRV_LOAD);
430                 break;
431         case e1000_ich8lan:
432                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
433                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
434                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
435                 break;
436         default:
437                 break;
438         }
439 }
440
441 int
442 e1000_up(struct e1000_adapter *adapter)
443 {
444         struct net_device *netdev = adapter->netdev;
445         int i;
446
447         /* hardware has been reset, we need to reload some things */
448
449         e1000_set_multi(netdev);
450
451         e1000_restore_vlan(adapter);
452
453         e1000_configure_tx(adapter);
454         e1000_setup_rctl(adapter);
455         e1000_configure_rx(adapter);
456         /* call E1000_DESC_UNUSED which always leaves
457          * at least 1 descriptor unused to make sure
458          * next_to_use != next_to_clean */
459         for (i = 0; i < adapter->num_rx_queues; i++) {
460                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
461                 adapter->alloc_rx_buf(adapter, ring,
462                                       E1000_DESC_UNUSED(ring));
463         }
464
465         adapter->tx_queue_len = netdev->tx_queue_len;
466
467         mod_timer(&adapter->watchdog_timer, jiffies);
468
469 #ifdef CONFIG_E1000_NAPI
470         netif_poll_enable(netdev);
471 #endif
472         e1000_irq_enable(adapter);
473
474         return 0;
475 }
476
477 /**
478  * e1000_power_up_phy - restore link in case the phy was powered down
479  * @adapter: address of board private structure
480  *
481  * The phy may be powered down to save power and turn off link when the
482  * driver is unloaded and wake on lan is not enabled (among others)
483  * *** this routine MUST be followed by a call to e1000_reset ***
484  *
485  **/
486
487 void e1000_power_up_phy(struct e1000_adapter *adapter)
488 {
489         uint16_t mii_reg = 0;
490
491         /* Just clear the power down bit to wake the phy back up */
492         if (adapter->hw.media_type == e1000_media_type_copper) {
493                 /* according to the manual, the phy will retain its
494                  * settings across a power-down/up cycle */
495                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
496                 mii_reg &= ~MII_CR_POWER_DOWN;
497                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
498         }
499 }
500
501 static void e1000_power_down_phy(struct e1000_adapter *adapter)
502 {
503         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
504                                       e1000_check_mng_mode(&adapter->hw);
505         /* Power down the PHY so no link is implied when interface is down
506          * The PHY cannot be powered down if any of the following is TRUE
507          * (a) WoL is enabled
508          * (b) AMT is active
509          * (c) SoL/IDER session is active */
510         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511             adapter->hw.mac_type != e1000_ich8lan &&
512             adapter->hw.media_type == e1000_media_type_copper &&
513             !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
514             !mng_mode_enabled &&
515             !e1000_check_phy_reset_block(&adapter->hw)) {
516                 uint16_t mii_reg = 0;
517                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
518                 mii_reg |= MII_CR_POWER_DOWN;
519                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
520                 mdelay(1);
521         }
522 }
523
524 void
525 e1000_down(struct e1000_adapter *adapter)
526 {
527         struct net_device *netdev = adapter->netdev;
528
529         e1000_irq_disable(adapter);
530
531         del_timer_sync(&adapter->tx_fifo_stall_timer);
532         del_timer_sync(&adapter->watchdog_timer);
533         del_timer_sync(&adapter->phy_info_timer);
534
535 #ifdef CONFIG_E1000_NAPI
536         netif_poll_disable(netdev);
537 #endif
538         netdev->tx_queue_len = adapter->tx_queue_len;
539         adapter->link_speed = 0;
540         adapter->link_duplex = 0;
541         netif_carrier_off(netdev);
542         netif_stop_queue(netdev);
543
544         e1000_reset(adapter);
545         e1000_clean_all_tx_rings(adapter);
546         e1000_clean_all_rx_rings(adapter);
547 }
548
549 void
550 e1000_reinit_locked(struct e1000_adapter *adapter)
551 {
552         WARN_ON(in_interrupt());
553         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
554                 msleep(1);
555         e1000_down(adapter);
556         e1000_up(adapter);
557         clear_bit(__E1000_RESETTING, &adapter->flags);
558 }
559
560 void
561 e1000_reset(struct e1000_adapter *adapter)
562 {
563         uint32_t pba, manc;
564         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
565
566         /* Repartition Pba for greater than 9k mtu
567          * To take effect CTRL.RST is required.
568          */
569
570         switch (adapter->hw.mac_type) {
571         case e1000_82547:
572         case e1000_82547_rev_2:
573                 pba = E1000_PBA_30K;
574                 break;
575         case e1000_82571:
576         case e1000_82572:
577         case e1000_80003es2lan:
578                 pba = E1000_PBA_38K;
579                 break;
580         case e1000_82573:
581                 pba = E1000_PBA_12K;
582                 break;
583         case e1000_ich8lan:
584                 pba = E1000_PBA_8K;
585                 break;
586         default:
587                 pba = E1000_PBA_48K;
588                 break;
589         }
590
591         if ((adapter->hw.mac_type != e1000_82573) &&
592            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
593                 pba -= 8; /* allocate more FIFO for Tx */
594
595
596         if (adapter->hw.mac_type == e1000_82547) {
597                 adapter->tx_fifo_head = 0;
598                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
599                 adapter->tx_fifo_size =
600                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
601                 atomic_set(&adapter->tx_fifo_stall, 0);
602         }
603
604         E1000_WRITE_REG(&adapter->hw, PBA, pba);
605
606         /* flow control settings */
607         /* Set the FC high water mark to 90% of the FIFO size.
608          * Required to clear last 3 LSB */
609         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
610         /* We can't use 90% on small FIFOs because the remainder
611          * would be less than 1 full frame.  In this case, we size
612          * it to allow at least a full frame above the high water
613          *  mark. */
614         if (pba < E1000_PBA_16K)
615                 fc_high_water_mark = (pba * 1024) - 1600;
616
617         adapter->hw.fc_high_water = fc_high_water_mark;
618         adapter->hw.fc_low_water = fc_high_water_mark - 8;
619         if (adapter->hw.mac_type == e1000_80003es2lan)
620                 adapter->hw.fc_pause_time = 0xFFFF;
621         else
622                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
623         adapter->hw.fc_send_xon = 1;
624         adapter->hw.fc = adapter->hw.original_fc;
625
626         /* Allow time for pending master requests to run */
627         e1000_reset_hw(&adapter->hw);
628         if (adapter->hw.mac_type >= e1000_82544)
629                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
630         if (e1000_init_hw(&adapter->hw))
631                 DPRINTK(PROBE, ERR, "Hardware Error\n");
632         e1000_update_mng_vlan(adapter);
633         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
634         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
635
636         e1000_reset_adaptive(&adapter->hw);
637         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
638
639         if (!adapter->smart_power_down &&
640             (adapter->hw.mac_type == e1000_82571 ||
641              adapter->hw.mac_type == e1000_82572)) {
642                 uint16_t phy_data = 0;
643                 /* speed up time to link by disabling smart power down, ignore
644                  * the return value of this function because there is nothing
645                  * different we would do if it failed */
646                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
647                                    &phy_data);
648                 phy_data &= ~IGP02E1000_PM_SPD;
649                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
650                                     phy_data);
651         }
652
653         if (adapter->hw.mac_type < e1000_ich8lan)
654         /* FIXME: this code is duplicate and wrong for PCI Express */
655         if (adapter->en_mng_pt) {
656                 manc = E1000_READ_REG(&adapter->hw, MANC);
657                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
658                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
659         }
660 }
661
662 /**
663  * e1000_probe - Device Initialization Routine
664  * @pdev: PCI device information struct
665  * @ent: entry in e1000_pci_tbl
666  *
667  * Returns 0 on success, negative on failure
668  *
669  * e1000_probe initializes an adapter identified by a pci_dev structure.
670  * The OS initialization, configuring of the adapter private structure,
671  * and a hardware reset occur.
672  **/
673
674 static int __devinit
675 e1000_probe(struct pci_dev *pdev,
676             const struct pci_device_id *ent)
677 {
678         struct net_device *netdev;
679         struct e1000_adapter *adapter;
680         unsigned long mmio_start, mmio_len;
681         unsigned long flash_start, flash_len;
682
683         static int cards_found = 0;
684         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
685         int i, err, pci_using_dac;
686         uint16_t eeprom_data;
687         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
688         if ((err = pci_enable_device(pdev)))
689                 return err;
690
691         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
692             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
693                 pci_using_dac = 1;
694         } else {
695                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
696                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
697                         E1000_ERR("No usable DMA configuration, aborting\n");
698                         goto err_dma;
699                 }
700                 pci_using_dac = 0;
701         }
702
703         if ((err = pci_request_regions(pdev, e1000_driver_name)))
704                 goto err_pci_reg;
705
706         pci_set_master(pdev);
707
708         err = -ENOMEM;
709         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
710         if (!netdev)
711                 goto err_alloc_etherdev;
712
713         SET_MODULE_OWNER(netdev);
714         SET_NETDEV_DEV(netdev, &pdev->dev);
715
716         pci_set_drvdata(pdev, netdev);
717         adapter = netdev_priv(netdev);
718         adapter->netdev = netdev;
719         adapter->pdev = pdev;
720         adapter->hw.back = adapter;
721         adapter->msg_enable = (1 << debug) - 1;
722
723         mmio_start = pci_resource_start(pdev, BAR_0);
724         mmio_len = pci_resource_len(pdev, BAR_0);
725
726         err = -EIO;
727         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
728         if (!adapter->hw.hw_addr)
729                 goto err_ioremap;
730
731         for (i = BAR_1; i <= BAR_5; i++) {
732                 if (pci_resource_len(pdev, i) == 0)
733                         continue;
734                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
735                         adapter->hw.io_base = pci_resource_start(pdev, i);
736                         break;
737                 }
738         }
739
740         netdev->open = &e1000_open;
741         netdev->stop = &e1000_close;
742         netdev->hard_start_xmit = &e1000_xmit_frame;
743         netdev->get_stats = &e1000_get_stats;
744         netdev->set_multicast_list = &e1000_set_multi;
745         netdev->set_mac_address = &e1000_set_mac;
746         netdev->change_mtu = &e1000_change_mtu;
747         netdev->do_ioctl = &e1000_ioctl;
748         e1000_set_ethtool_ops(netdev);
749         netdev->tx_timeout = &e1000_tx_timeout;
750         netdev->watchdog_timeo = 5 * HZ;
751 #ifdef CONFIG_E1000_NAPI
752         netdev->poll = &e1000_clean;
753         netdev->weight = 64;
754 #endif
755         netdev->vlan_rx_register = e1000_vlan_rx_register;
756         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
757         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
758 #ifdef CONFIG_NET_POLL_CONTROLLER
759         netdev->poll_controller = e1000_netpoll;
760 #endif
761         strcpy(netdev->name, pci_name(pdev));
762
763         netdev->mem_start = mmio_start;
764         netdev->mem_end = mmio_start + mmio_len;
765         netdev->base_addr = adapter->hw.io_base;
766
767         adapter->bd_number = cards_found;
768
769         /* setup the private structure */
770
771         if ((err = e1000_sw_init(adapter)))
772                 goto err_sw_init;
773
774         err = -EIO;
775         /* Flash BAR mapping must happen after e1000_sw_init
776          * because it depends on mac_type */
777         if ((adapter->hw.mac_type == e1000_ich8lan) &&
778            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
779                 flash_start = pci_resource_start(pdev, 1);
780                 flash_len = pci_resource_len(pdev, 1);
781                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
782                 if (!adapter->hw.flash_address)
783                         goto err_flashmap;
784         }
785
786         if (e1000_check_phy_reset_block(&adapter->hw))
787                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
788
789         /* if ksp3, indicate if it's port a being setup */
790         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
791                         e1000_ksp3_port_a == 0)
792                 adapter->ksp3_port_a = 1;
793         e1000_ksp3_port_a++;
794         /* Reset for multiple KP3 adapters */
795         if (e1000_ksp3_port_a == 4)
796                 e1000_ksp3_port_a = 0;
797
798         if (adapter->hw.mac_type >= e1000_82543) {
799                 netdev->features = NETIF_F_SG |
800                                    NETIF_F_HW_CSUM |
801                                    NETIF_F_HW_VLAN_TX |
802                                    NETIF_F_HW_VLAN_RX |
803                                    NETIF_F_HW_VLAN_FILTER;
804                 if (adapter->hw.mac_type == e1000_ich8lan)
805                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
806         }
807
808 #ifdef NETIF_F_TSO
809         if ((adapter->hw.mac_type >= e1000_82544) &&
810            (adapter->hw.mac_type != e1000_82547))
811                 netdev->features |= NETIF_F_TSO;
812
813 #ifdef NETIF_F_TSO_IPV6
814         if (adapter->hw.mac_type > e1000_82547_rev_2)
815                 netdev->features |= NETIF_F_TSO_IPV6;
816 #endif
817 #endif
818         if (pci_using_dac)
819                 netdev->features |= NETIF_F_HIGHDMA;
820
821         netdev->features |= NETIF_F_LLTX;
822
823         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
824
825         /* initialize eeprom parameters */
826
827         if (e1000_init_eeprom_params(&adapter->hw)) {
828                 E1000_ERR("EEPROM initialization failed\n");
829                 goto err_eeprom;
830         }
831
832         /* before reading the EEPROM, reset the controller to
833          * put the device in a known good starting state */
834
835         e1000_reset_hw(&adapter->hw);
836
837         /* make sure the EEPROM is good */
838
839         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
840                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
841                 goto err_eeprom;
842         }
843
844         /* copy the MAC address out of the EEPROM */
845
846         if (e1000_read_mac_addr(&adapter->hw))
847                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
848         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
849         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
850
851         if (!is_valid_ether_addr(netdev->perm_addr)) {
852                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
853                 goto err_eeprom;
854         }
855
856         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
857
858         e1000_get_bus_info(&adapter->hw);
859
860         init_timer(&adapter->tx_fifo_stall_timer);
861         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
862         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
863
864         init_timer(&adapter->watchdog_timer);
865         adapter->watchdog_timer.function = &e1000_watchdog;
866         adapter->watchdog_timer.data = (unsigned long) adapter;
867
868         init_timer(&adapter->phy_info_timer);
869         adapter->phy_info_timer.function = &e1000_update_phy_info;
870         adapter->phy_info_timer.data = (unsigned long) adapter;
871
872         INIT_WORK(&adapter->reset_task,
873                 (void (*)(void *))e1000_reset_task, netdev);
874
875         /* we're going to reset, so assume we have no link for now */
876
877         netif_carrier_off(netdev);
878         netif_stop_queue(netdev);
879
880         e1000_check_options(adapter);
881
882         /* Initial Wake on LAN setting
883          * If APM wake is enabled in the EEPROM,
884          * enable the ACPI Magic Packet filter
885          */
886
887         switch (adapter->hw.mac_type) {
888         case e1000_82542_rev2_0:
889         case e1000_82542_rev2_1:
890         case e1000_82543:
891                 break;
892         case e1000_82544:
893                 e1000_read_eeprom(&adapter->hw,
894                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
895                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
896                 break;
897         case e1000_ich8lan:
898                 e1000_read_eeprom(&adapter->hw,
899                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
900                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
901                 break;
902         case e1000_82546:
903         case e1000_82546_rev_3:
904         case e1000_82571:
905         case e1000_80003es2lan:
906                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
907                         e1000_read_eeprom(&adapter->hw,
908                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
909                         break;
910                 }
911                 /* Fall Through */
912         default:
913                 e1000_read_eeprom(&adapter->hw,
914                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
915                 break;
916         }
917         if (eeprom_data & eeprom_apme_mask)
918                 adapter->wol |= E1000_WUFC_MAG;
919
920         /* print bus type/speed/width info */
921         {
922         struct e1000_hw *hw = &adapter->hw;
923         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
924                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
925                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
926                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
927                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
928                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
929                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
930                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
931                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
932                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
933                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
934                  "32-bit"));
935         }
936
937         for (i = 0; i < 6; i++)
938                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
939
940         /* reset the hardware with the new settings */
941         e1000_reset(adapter);
942
943         /* If the controller is 82573 and f/w is AMT, do not set
944          * DRV_LOAD until the interface is up.  For all other cases,
945          * let the f/w know that the h/w is now under the control
946          * of the driver. */
947         if (adapter->hw.mac_type != e1000_82573 ||
948             !e1000_check_mng_mode(&adapter->hw))
949                 e1000_get_hw_control(adapter);
950
951         strcpy(netdev->name, "eth%d");
952         if ((err = register_netdev(netdev)))
953                 goto err_register;
954
955         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
956
957         cards_found++;
958         return 0;
959
960 err_register:
961         e1000_release_hw_control(adapter);
962 err_eeprom:
963         if (!e1000_check_phy_reset_block(&adapter->hw))
964                 e1000_phy_hw_reset(&adapter->hw);
965
966         if (adapter->hw.flash_address)
967                 iounmap(adapter->hw.flash_address);
968 err_flashmap:
969 #ifdef CONFIG_E1000_NAPI
970         for (i = 0; i < adapter->num_rx_queues; i++)
971                 dev_put(&adapter->polling_netdev[i]);
972 #endif
973
974         kfree(adapter->tx_ring);
975         kfree(adapter->rx_ring);
976 #ifdef CONFIG_E1000_NAPI
977         kfree(adapter->polling_netdev);
978 #endif
979 err_sw_init:
980         iounmap(adapter->hw.hw_addr);
981 err_ioremap:
982         free_netdev(netdev);
983 err_alloc_etherdev:
984         pci_release_regions(pdev);
985 err_pci_reg:
986 err_dma:
987         pci_disable_device(pdev);
988         return err;
989 }
990
991 /**
992  * e1000_remove - Device Removal Routine
993  * @pdev: PCI device information struct
994  *
995  * e1000_remove is called by the PCI subsystem to alert the driver
996  * that it should release a PCI device.  The could be caused by a
997  * Hot-Plug event, or because the driver is going to be removed from
998  * memory.
999  **/
1000
1001 static void __devexit
1002 e1000_remove(struct pci_dev *pdev)
1003 {
1004         struct net_device *netdev = pci_get_drvdata(pdev);
1005         struct e1000_adapter *adapter = netdev_priv(netdev);
1006         uint32_t manc;
1007 #ifdef CONFIG_E1000_NAPI
1008         int i;
1009 #endif
1010
1011         flush_scheduled_work();
1012
1013         if (adapter->hw.mac_type >= e1000_82540 &&
1014            adapter->hw.mac_type != e1000_ich8lan &&
1015            adapter->hw.media_type == e1000_media_type_copper) {
1016                 manc = E1000_READ_REG(&adapter->hw, MANC);
1017                 if (manc & E1000_MANC_SMBUS_EN) {
1018                         manc |= E1000_MANC_ARP_EN;
1019                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1020                 }
1021         }
1022
1023         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1024          * would have already happened in close and is redundant. */
1025         e1000_release_hw_control(adapter);
1026
1027         unregister_netdev(netdev);
1028 #ifdef CONFIG_E1000_NAPI
1029         for (i = 0; i < adapter->num_rx_queues; i++)
1030                 dev_put(&adapter->polling_netdev[i]);
1031 #endif
1032
1033         if (!e1000_check_phy_reset_block(&adapter->hw))
1034                 e1000_phy_hw_reset(&adapter->hw);
1035
1036         kfree(adapter->tx_ring);
1037         kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039         kfree(adapter->polling_netdev);
1040 #endif
1041
1042         iounmap(adapter->hw.hw_addr);
1043         if (adapter->hw.flash_address)
1044                 iounmap(adapter->hw.flash_address);
1045         pci_release_regions(pdev);
1046
1047         free_netdev(netdev);
1048
1049         pci_disable_device(pdev);
1050 }
1051
1052 /**
1053  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1054  * @adapter: board private structure to initialize
1055  *
1056  * e1000_sw_init initializes the Adapter private data structure.
1057  * Fields are initialized based on PCI device information and
1058  * OS network device settings (MTU size).
1059  **/
1060
1061 static int __devinit
1062 e1000_sw_init(struct e1000_adapter *adapter)
1063 {
1064         struct e1000_hw *hw = &adapter->hw;
1065         struct net_device *netdev = adapter->netdev;
1066         struct pci_dev *pdev = adapter->pdev;
1067 #ifdef CONFIG_E1000_NAPI
1068         int i;
1069 #endif
1070
1071         /* PCI config space info */
1072
1073         hw->vendor_id = pdev->vendor;
1074         hw->device_id = pdev->device;
1075         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1076         hw->subsystem_id = pdev->subsystem_device;
1077
1078         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1079
1080         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1081
1082         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1083         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1084         hw->max_frame_size = netdev->mtu +
1085                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1086         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1087
1088         /* identify the MAC */
1089
1090         if (e1000_set_mac_type(hw)) {
1091                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1092                 return -EIO;
1093         }
1094
1095         switch (hw->mac_type) {
1096         default:
1097                 break;
1098         case e1000_82541:
1099         case e1000_82547:
1100         case e1000_82541_rev_2:
1101         case e1000_82547_rev_2:
1102                 hw->phy_init_script = 1;
1103                 break;
1104         }
1105
1106         e1000_set_media_type(hw);
1107
1108         hw->wait_autoneg_complete = FALSE;
1109         hw->tbi_compatibility_en = TRUE;
1110         hw->adaptive_ifs = TRUE;
1111
1112         /* Copper options */
1113
1114         if (hw->media_type == e1000_media_type_copper) {
1115                 hw->mdix = AUTO_ALL_MODES;
1116                 hw->disable_polarity_correction = FALSE;
1117                 hw->master_slave = E1000_MASTER_SLAVE;
1118         }
1119
1120         adapter->num_tx_queues = 1;
1121         adapter->num_rx_queues = 1;
1122
1123         if (e1000_alloc_queues(adapter)) {
1124                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1125                 return -ENOMEM;
1126         }
1127
1128 #ifdef CONFIG_E1000_NAPI
1129         for (i = 0; i < adapter->num_rx_queues; i++) {
1130                 adapter->polling_netdev[i].priv = adapter;
1131                 adapter->polling_netdev[i].poll = &e1000_clean;
1132                 adapter->polling_netdev[i].weight = 64;
1133                 dev_hold(&adapter->polling_netdev[i]);
1134                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1135         }
1136         spin_lock_init(&adapter->tx_queue_lock);
1137 #endif
1138
1139         atomic_set(&adapter->irq_sem, 1);
1140         spin_lock_init(&adapter->stats_lock);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  * e1000_alloc_queues - Allocate memory for all rings
1147  * @adapter: board private structure to initialize
1148  *
1149  * We allocate one ring per queue at run-time since we don't know the
1150  * number of queues at compile-time.  The polling_netdev array is
1151  * intended for Multiqueue, but should work fine with a single queue.
1152  **/
1153
1154 static int __devinit
1155 e1000_alloc_queues(struct e1000_adapter *adapter)
1156 {
1157         int size;
1158
1159         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1160         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1161         if (!adapter->tx_ring)
1162                 return -ENOMEM;
1163         memset(adapter->tx_ring, 0, size);
1164
1165         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1166         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1167         if (!adapter->rx_ring) {
1168                 kfree(adapter->tx_ring);
1169                 return -ENOMEM;
1170         }
1171         memset(adapter->rx_ring, 0, size);
1172
1173 #ifdef CONFIG_E1000_NAPI
1174         size = sizeof(struct net_device) * adapter->num_rx_queues;
1175         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1176         if (!adapter->polling_netdev) {
1177                 kfree(adapter->tx_ring);
1178                 kfree(adapter->rx_ring);
1179                 return -ENOMEM;
1180         }
1181         memset(adapter->polling_netdev, 0, size);
1182 #endif
1183
1184         return E1000_SUCCESS;
1185 }
1186
1187 /**
1188  * e1000_open - Called when a network interface is made active
1189  * @netdev: network interface device structure
1190  *
1191  * Returns 0 on success, negative value on failure
1192  *
1193  * The open entry point is called when a network interface is made
1194  * active by the system (IFF_UP).  At this point all resources needed
1195  * for transmit and receive operations are allocated, the interrupt
1196  * handler is registered with the OS, the watchdog timer is started,
1197  * and the stack is notified that the interface is ready.
1198  **/
1199
1200 static int
1201 e1000_open(struct net_device *netdev)
1202 {
1203         struct e1000_adapter *adapter = netdev_priv(netdev);
1204         int err;
1205
1206         /* disallow open during test */
1207         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1208                 return -EBUSY;
1209
1210         /* allocate transmit descriptors */
1211
1212         if ((err = e1000_setup_all_tx_resources(adapter)))
1213                 goto err_setup_tx;
1214
1215         /* allocate receive descriptors */
1216
1217         if ((err = e1000_setup_all_rx_resources(adapter)))
1218                 goto err_setup_rx;
1219
1220         err = e1000_request_irq(adapter);
1221         if (err)
1222                 goto err_req_irq;
1223
1224         e1000_power_up_phy(adapter);
1225
1226         if ((err = e1000_up(adapter)))
1227                 goto err_up;
1228         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1229         if ((adapter->hw.mng_cookie.status &
1230                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1231                 e1000_update_mng_vlan(adapter);
1232         }
1233
1234         /* If AMT is enabled, let the firmware know that the network
1235          * interface is now open */
1236         if (adapter->hw.mac_type == e1000_82573 &&
1237             e1000_check_mng_mode(&adapter->hw))
1238                 e1000_get_hw_control(adapter);
1239
1240         return E1000_SUCCESS;
1241
1242 err_up:
1243         e1000_power_down_phy(adapter);
1244         e1000_free_irq(adapter);
1245 err_req_irq:
1246         e1000_free_all_rx_resources(adapter);
1247 err_setup_rx:
1248         e1000_free_all_tx_resources(adapter);
1249 err_setup_tx:
1250         e1000_reset(adapter);
1251
1252         return err;
1253 }
1254
1255 /**
1256  * e1000_close - Disables a network interface
1257  * @netdev: network interface device structure
1258  *
1259  * Returns 0, this is not allowed to fail
1260  *
1261  * The close entry point is called when an interface is de-activated
1262  * by the OS.  The hardware is still under the drivers control, but
1263  * needs to be disabled.  A global MAC reset is issued to stop the
1264  * hardware, and all transmit and receive resources are freed.
1265  **/
1266
1267 static int
1268 e1000_close(struct net_device *netdev)
1269 {
1270         struct e1000_adapter *adapter = netdev_priv(netdev);
1271
1272         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1273         e1000_down(adapter);
1274         e1000_power_down_phy(adapter);
1275         e1000_free_irq(adapter);
1276
1277         e1000_free_all_tx_resources(adapter);
1278         e1000_free_all_rx_resources(adapter);
1279
1280         if ((adapter->hw.mng_cookie.status &
1281                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1282                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1283         }
1284
1285         /* If AMT is enabled, let the firmware know that the network
1286          * interface is now closed */
1287         if (adapter->hw.mac_type == e1000_82573 &&
1288             e1000_check_mng_mode(&adapter->hw))
1289                 e1000_release_hw_control(adapter);
1290
1291         return 0;
1292 }
1293
1294 /**
1295  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1296  * @adapter: address of board private structure
1297  * @start: address of beginning of memory
1298  * @len: length of memory
1299  **/
1300 static boolean_t
1301 e1000_check_64k_bound(struct e1000_adapter *adapter,
1302                       void *start, unsigned long len)
1303 {
1304         unsigned long begin = (unsigned long) start;
1305         unsigned long end = begin + len;
1306
1307         /* First rev 82545 and 82546 need to not allow any memory
1308          * write location to cross 64k boundary due to errata 23 */
1309         if (adapter->hw.mac_type == e1000_82545 ||
1310             adapter->hw.mac_type == e1000_82546) {
1311                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1312         }
1313
1314         return TRUE;
1315 }
1316
1317 /**
1318  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1319  * @adapter: board private structure
1320  * @txdr:    tx descriptor ring (for a specific queue) to setup
1321  *
1322  * Return 0 on success, negative on failure
1323  **/
1324
1325 static int
1326 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1327                          struct e1000_tx_ring *txdr)
1328 {
1329         struct pci_dev *pdev = adapter->pdev;
1330         int size;
1331
1332         size = sizeof(struct e1000_buffer) * txdr->count;
1333         txdr->buffer_info = vmalloc(size);
1334         if (!txdr->buffer_info) {
1335                 DPRINTK(PROBE, ERR,
1336                 "Unable to allocate memory for the transmit descriptor ring\n");
1337                 return -ENOMEM;
1338         }
1339         memset(txdr->buffer_info, 0, size);
1340
1341         /* round up to nearest 4K */
1342
1343         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1344         E1000_ROUNDUP(txdr->size, 4096);
1345
1346         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1347         if (!txdr->desc) {
1348 setup_tx_desc_die:
1349                 vfree(txdr->buffer_info);
1350                 DPRINTK(PROBE, ERR,
1351                 "Unable to allocate memory for the transmit descriptor ring\n");
1352                 return -ENOMEM;
1353         }
1354
1355         /* Fix for errata 23, can't cross 64kB boundary */
1356         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1357                 void *olddesc = txdr->desc;
1358                 dma_addr_t olddma = txdr->dma;
1359                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1360                                      "at %p\n", txdr->size, txdr->desc);
1361                 /* Try again, without freeing the previous */
1362                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1363                 /* Failed allocation, critical failure */
1364                 if (!txdr->desc) {
1365                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1366                         goto setup_tx_desc_die;
1367                 }
1368
1369                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1370                         /* give up */
1371                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1372                                             txdr->dma);
1373                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1374                         DPRINTK(PROBE, ERR,
1375                                 "Unable to allocate aligned memory "
1376                                 "for the transmit descriptor ring\n");
1377                         vfree(txdr->buffer_info);
1378                         return -ENOMEM;
1379                 } else {
1380                         /* Free old allocation, new allocation was successful */
1381                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1382                 }
1383         }
1384         memset(txdr->desc, 0, txdr->size);
1385
1386         txdr->next_to_use = 0;
1387         txdr->next_to_clean = 0;
1388         spin_lock_init(&txdr->tx_lock);
1389
1390         return 0;
1391 }
1392
1393 /**
1394  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1395  *                                (Descriptors) for all queues
1396  * @adapter: board private structure
1397  *
1398  * If this function returns with an error, then it's possible one or
1399  * more of the rings is populated (while the rest are not).  It is the
1400  * callers duty to clean those orphaned rings.
1401  *
1402  * Return 0 on success, negative on failure
1403  **/
1404
1405 int
1406 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1407 {
1408         int i, err = 0;
1409
1410         for (i = 0; i < adapter->num_tx_queues; i++) {
1411                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1412                 if (err) {
1413                         DPRINTK(PROBE, ERR,
1414                                 "Allocation for Tx Queue %u failed\n", i);
1415                         break;
1416                 }
1417         }
1418
1419         return err;
1420 }
1421
1422 /**
1423  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1424  * @adapter: board private structure
1425  *
1426  * Configure the Tx unit of the MAC after a reset.
1427  **/
1428
1429 static void
1430 e1000_configure_tx(struct e1000_adapter *adapter)
1431 {
1432         uint64_t tdba;
1433         struct e1000_hw *hw = &adapter->hw;
1434         uint32_t tdlen, tctl, tipg, tarc;
1435         uint32_t ipgr1, ipgr2;
1436
1437         /* Setup the HW Tx Head and Tail descriptor pointers */
1438
1439         switch (adapter->num_tx_queues) {
1440         case 1:
1441         default:
1442                 tdba = adapter->tx_ring[0].dma;
1443                 tdlen = adapter->tx_ring[0].count *
1444                         sizeof(struct e1000_tx_desc);
1445                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1446                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1447                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1448                 E1000_WRITE_REG(hw, TDT, 0);
1449                 E1000_WRITE_REG(hw, TDH, 0);
1450                 adapter->tx_ring[0].tdh = E1000_TDH;
1451                 adapter->tx_ring[0].tdt = E1000_TDT;
1452                 break;
1453         }
1454
1455         /* Set the default values for the Tx Inter Packet Gap timer */
1456
1457         if (hw->media_type == e1000_media_type_fiber ||
1458             hw->media_type == e1000_media_type_internal_serdes)
1459                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1460         else
1461                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1462
1463         switch (hw->mac_type) {
1464         case e1000_82542_rev2_0:
1465         case e1000_82542_rev2_1:
1466                 tipg = DEFAULT_82542_TIPG_IPGT;
1467                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1468                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1469                 break;
1470         case e1000_80003es2lan:
1471                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1472                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1473                 break;
1474         default:
1475                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1476                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1477                 break;
1478         }
1479         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1480         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1481         E1000_WRITE_REG(hw, TIPG, tipg);
1482
1483         /* Set the Tx Interrupt Delay register */
1484
1485         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1486         if (hw->mac_type >= e1000_82540)
1487                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1488
1489         /* Program the Transmit Control Register */
1490
1491         tctl = E1000_READ_REG(hw, TCTL);
1492
1493         tctl &= ~E1000_TCTL_CT;
1494         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1495                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1496
1497 #ifdef DISABLE_MULR
1498         /* disable Multiple Reads for debugging */
1499         tctl &= ~E1000_TCTL_MULR;
1500 #endif
1501
1502         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1503                 tarc = E1000_READ_REG(hw, TARC0);
1504                 tarc |= ((1 << 25) | (1 << 21));
1505                 E1000_WRITE_REG(hw, TARC0, tarc);
1506                 tarc = E1000_READ_REG(hw, TARC1);
1507                 tarc |= (1 << 25);
1508                 if (tctl & E1000_TCTL_MULR)
1509                         tarc &= ~(1 << 28);
1510                 else
1511                         tarc |= (1 << 28);
1512                 E1000_WRITE_REG(hw, TARC1, tarc);
1513         } else if (hw->mac_type == e1000_80003es2lan) {
1514                 tarc = E1000_READ_REG(hw, TARC0);
1515                 tarc |= 1;
1516                 E1000_WRITE_REG(hw, TARC0, tarc);
1517                 tarc = E1000_READ_REG(hw, TARC1);
1518                 tarc |= 1;
1519                 E1000_WRITE_REG(hw, TARC1, tarc);
1520         }
1521
1522         e1000_config_collision_dist(hw);
1523
1524         /* Setup Transmit Descriptor Settings for eop descriptor */
1525         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1526                 E1000_TXD_CMD_IFCS;
1527
1528         if (hw->mac_type < e1000_82543)
1529                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1530         else
1531                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1532
1533         /* Cache if we're 82544 running in PCI-X because we'll
1534          * need this to apply a workaround later in the send path. */
1535         if (hw->mac_type == e1000_82544 &&
1536             hw->bus_type == e1000_bus_type_pcix)
1537                 adapter->pcix_82544 = 1;
1538
1539         E1000_WRITE_REG(hw, TCTL, tctl);
1540
1541 }
1542
1543 /**
1544  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1545  * @adapter: board private structure
1546  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1547  *
1548  * Returns 0 on success, negative on failure
1549  **/
1550
1551 static int
1552 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1553                          struct e1000_rx_ring *rxdr)
1554 {
1555         struct pci_dev *pdev = adapter->pdev;
1556         int size, desc_len;
1557
1558         size = sizeof(struct e1000_buffer) * rxdr->count;
1559         rxdr->buffer_info = vmalloc(size);
1560         if (!rxdr->buffer_info) {
1561                 DPRINTK(PROBE, ERR,
1562                 "Unable to allocate memory for the receive descriptor ring\n");
1563                 return -ENOMEM;
1564         }
1565         memset(rxdr->buffer_info, 0, size);
1566
1567         size = sizeof(struct e1000_ps_page) * rxdr->count;
1568         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1569         if (!rxdr->ps_page) {
1570                 vfree(rxdr->buffer_info);
1571                 DPRINTK(PROBE, ERR,
1572                 "Unable to allocate memory for the receive descriptor ring\n");
1573                 return -ENOMEM;
1574         }
1575         memset(rxdr->ps_page, 0, size);
1576
1577         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1578         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1579         if (!rxdr->ps_page_dma) {
1580                 vfree(rxdr->buffer_info);
1581                 kfree(rxdr->ps_page);
1582                 DPRINTK(PROBE, ERR,
1583                 "Unable to allocate memory for the receive descriptor ring\n");
1584                 return -ENOMEM;
1585         }
1586         memset(rxdr->ps_page_dma, 0, size);
1587
1588         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1589                 desc_len = sizeof(struct e1000_rx_desc);
1590         else
1591                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1592
1593         /* Round up to nearest 4K */
1594
1595         rxdr->size = rxdr->count * desc_len;
1596         E1000_ROUNDUP(rxdr->size, 4096);
1597
1598         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1599
1600         if (!rxdr->desc) {
1601                 DPRINTK(PROBE, ERR,
1602                 "Unable to allocate memory for the receive descriptor ring\n");
1603 setup_rx_desc_die:
1604                 vfree(rxdr->buffer_info);
1605                 kfree(rxdr->ps_page);
1606                 kfree(rxdr->ps_page_dma);
1607                 return -ENOMEM;
1608         }
1609
1610         /* Fix for errata 23, can't cross 64kB boundary */
1611         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1612                 void *olddesc = rxdr->desc;
1613                 dma_addr_t olddma = rxdr->dma;
1614                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1615                                      "at %p\n", rxdr->size, rxdr->desc);
1616                 /* Try again, without freeing the previous */
1617                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1618                 /* Failed allocation, critical failure */
1619                 if (!rxdr->desc) {
1620                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1621                         DPRINTK(PROBE, ERR,
1622                                 "Unable to allocate memory "
1623                                 "for the receive descriptor ring\n");
1624                         goto setup_rx_desc_die;
1625                 }
1626
1627                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1628                         /* give up */
1629                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1630                                             rxdr->dma);
1631                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1632                         DPRINTK(PROBE, ERR,
1633                                 "Unable to allocate aligned memory "
1634                                 "for the receive descriptor ring\n");
1635                         goto setup_rx_desc_die;
1636                 } else {
1637                         /* Free old allocation, new allocation was successful */
1638                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1639                 }
1640         }
1641         memset(rxdr->desc, 0, rxdr->size);
1642
1643         rxdr->next_to_clean = 0;
1644         rxdr->next_to_use = 0;
1645
1646         return 0;
1647 }
1648
1649 /**
1650  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1651  *                                (Descriptors) for all queues
1652  * @adapter: board private structure
1653  *
1654  * If this function returns with an error, then it's possible one or
1655  * more of the rings is populated (while the rest are not).  It is the
1656  * callers duty to clean those orphaned rings.
1657  *
1658  * Return 0 on success, negative on failure
1659  **/
1660
1661 int
1662 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1663 {
1664         int i, err = 0;
1665
1666         for (i = 0; i < adapter->num_rx_queues; i++) {
1667                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1668                 if (err) {
1669                         DPRINTK(PROBE, ERR,
1670                                 "Allocation for Rx Queue %u failed\n", i);
1671                         break;
1672                 }
1673         }
1674
1675         return err;
1676 }
1677
1678 /**
1679  * e1000_setup_rctl - configure the receive control registers
1680  * @adapter: Board private structure
1681  **/
1682 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1683                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1684 static void
1685 e1000_setup_rctl(struct e1000_adapter *adapter)
1686 {
1687         uint32_t rctl, rfctl;
1688         uint32_t psrctl = 0;
1689 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1690         uint32_t pages = 0;
1691 #endif
1692
1693         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1694
1695         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1696
1697         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1698                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1699                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1700
1701         if (adapter->hw.tbi_compatibility_on == 1)
1702                 rctl |= E1000_RCTL_SBP;
1703         else
1704                 rctl &= ~E1000_RCTL_SBP;
1705
1706         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1707                 rctl &= ~E1000_RCTL_LPE;
1708         else
1709                 rctl |= E1000_RCTL_LPE;
1710
1711         /* Setup buffer sizes */
1712         rctl &= ~E1000_RCTL_SZ_4096;
1713         rctl |= E1000_RCTL_BSEX;
1714         switch (adapter->rx_buffer_len) {
1715                 case E1000_RXBUFFER_256:
1716                         rctl |= E1000_RCTL_SZ_256;
1717                         rctl &= ~E1000_RCTL_BSEX;
1718                         break;
1719                 case E1000_RXBUFFER_512:
1720                         rctl |= E1000_RCTL_SZ_512;
1721                         rctl &= ~E1000_RCTL_BSEX;
1722                         break;
1723                 case E1000_RXBUFFER_1024:
1724                         rctl |= E1000_RCTL_SZ_1024;
1725                         rctl &= ~E1000_RCTL_BSEX;
1726                         break;
1727                 case E1000_RXBUFFER_2048:
1728                 default:
1729                         rctl |= E1000_RCTL_SZ_2048;
1730                         rctl &= ~E1000_RCTL_BSEX;
1731                         break;
1732                 case E1000_RXBUFFER_4096:
1733                         rctl |= E1000_RCTL_SZ_4096;
1734                         break;
1735                 case E1000_RXBUFFER_8192:
1736                         rctl |= E1000_RCTL_SZ_8192;
1737                         break;
1738                 case E1000_RXBUFFER_16384:
1739                         rctl |= E1000_RCTL_SZ_16384;
1740                         break;
1741         }
1742
1743 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1744         /* 82571 and greater support packet-split where the protocol
1745          * header is placed in skb->data and the packet data is
1746          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1747          * In the case of a non-split, skb->data is linearly filled,
1748          * followed by the page buffers.  Therefore, skb->data is
1749          * sized to hold the largest protocol header.
1750          */
1751         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1752         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1753             PAGE_SIZE <= 16384)
1754                 adapter->rx_ps_pages = pages;
1755         else
1756                 adapter->rx_ps_pages = 0;
1757 #endif
1758         if (adapter->rx_ps_pages) {
1759                 /* Configure extra packet-split registers */
1760                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1761                 rfctl |= E1000_RFCTL_EXTEN;
1762                 /* disable IPv6 packet split support */
1763                 rfctl |= E1000_RFCTL_IPV6_DIS;
1764                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1765
1766                 rctl |= E1000_RCTL_DTYP_PS;
1767
1768                 psrctl |= adapter->rx_ps_bsize0 >>
1769                         E1000_PSRCTL_BSIZE0_SHIFT;
1770
1771                 switch (adapter->rx_ps_pages) {
1772                 case 3:
1773                         psrctl |= PAGE_SIZE <<
1774                                 E1000_PSRCTL_BSIZE3_SHIFT;
1775                 case 2:
1776                         psrctl |= PAGE_SIZE <<
1777                                 E1000_PSRCTL_BSIZE2_SHIFT;
1778                 case 1:
1779                         psrctl |= PAGE_SIZE >>
1780                                 E1000_PSRCTL_BSIZE1_SHIFT;
1781                         break;
1782                 }
1783
1784                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1785         }
1786
1787         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1788 }
1789
1790 /**
1791  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1792  * @adapter: board private structure
1793  *
1794  * Configure the Rx unit of the MAC after a reset.
1795  **/
1796
1797 static void
1798 e1000_configure_rx(struct e1000_adapter *adapter)
1799 {
1800         uint64_t rdba;
1801         struct e1000_hw *hw = &adapter->hw;
1802         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1803
1804         if (adapter->rx_ps_pages) {
1805                 /* this is a 32 byte descriptor */
1806                 rdlen = adapter->rx_ring[0].count *
1807                         sizeof(union e1000_rx_desc_packet_split);
1808                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1809                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1810         } else {
1811                 rdlen = adapter->rx_ring[0].count *
1812                         sizeof(struct e1000_rx_desc);
1813                 adapter->clean_rx = e1000_clean_rx_irq;
1814                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1815         }
1816
1817         /* disable receives while setting up the descriptors */
1818         rctl = E1000_READ_REG(hw, RCTL);
1819         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1820
1821         /* set the Receive Delay Timer Register */
1822         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1823
1824         if (hw->mac_type >= e1000_82540) {
1825                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1826                 if (adapter->itr > 1)
1827                         E1000_WRITE_REG(hw, ITR,
1828                                 1000000000 / (adapter->itr * 256));
1829         }
1830
1831         if (hw->mac_type >= e1000_82571) {
1832                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1833                 /* Reset delay timers after every interrupt */
1834                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1835 #ifdef CONFIG_E1000_NAPI
1836                 /* Auto-Mask interrupts upon ICR read. */
1837                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1838 #endif
1839                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1840                 E1000_WRITE_REG(hw, IAM, ~0);
1841                 E1000_WRITE_FLUSH(hw);
1842         }
1843
1844         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1845          * the Base and Length of the Rx Descriptor Ring */
1846         switch (adapter->num_rx_queues) {
1847         case 1:
1848         default:
1849                 rdba = adapter->rx_ring[0].dma;
1850                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1851                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1852                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1853                 E1000_WRITE_REG(hw, RDT, 0);
1854                 E1000_WRITE_REG(hw, RDH, 0);
1855                 adapter->rx_ring[0].rdh = E1000_RDH;
1856                 adapter->rx_ring[0].rdt = E1000_RDT;
1857                 break;
1858         }
1859
1860         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1861         if (hw->mac_type >= e1000_82543) {
1862                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1863                 if (adapter->rx_csum == TRUE) {
1864                         rxcsum |= E1000_RXCSUM_TUOFL;
1865
1866                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1867                          * Must be used in conjunction with packet-split. */
1868                         if ((hw->mac_type >= e1000_82571) &&
1869                             (adapter->rx_ps_pages)) {
1870                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1871                         }
1872                 } else {
1873                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1874                         /* don't need to clear IPPCSE as it defaults to 0 */
1875                 }
1876                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1877         }
1878
1879         /* Enable Receives */
1880         E1000_WRITE_REG(hw, RCTL, rctl);
1881 }
1882
1883 /**
1884  * e1000_free_tx_resources - Free Tx Resources per Queue
1885  * @adapter: board private structure
1886  * @tx_ring: Tx descriptor ring for a specific queue
1887  *
1888  * Free all transmit software resources
1889  **/
1890
1891 static void
1892 e1000_free_tx_resources(struct e1000_adapter *adapter,
1893                         struct e1000_tx_ring *tx_ring)
1894 {
1895         struct pci_dev *pdev = adapter->pdev;
1896
1897         e1000_clean_tx_ring(adapter, tx_ring);
1898
1899         vfree(tx_ring->buffer_info);
1900         tx_ring->buffer_info = NULL;
1901
1902         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1903
1904         tx_ring->desc = NULL;
1905 }
1906
1907 /**
1908  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1909  * @adapter: board private structure
1910  *
1911  * Free all transmit software resources
1912  **/
1913
1914 void
1915 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1916 {
1917         int i;
1918
1919         for (i = 0; i < adapter->num_tx_queues; i++)
1920                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1921 }
1922
1923 static void
1924 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1925                         struct e1000_buffer *buffer_info)
1926 {
1927         if (buffer_info->dma) {
1928                 pci_unmap_page(adapter->pdev,
1929                                 buffer_info->dma,
1930                                 buffer_info->length,
1931                                 PCI_DMA_TODEVICE);
1932         }
1933         if (buffer_info->skb)
1934                 dev_kfree_skb_any(buffer_info->skb);
1935         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1936 }
1937
1938 /**
1939  * e1000_clean_tx_ring - Free Tx Buffers
1940  * @adapter: board private structure
1941  * @tx_ring: ring to be cleaned
1942  **/
1943
1944 static void
1945 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1946                     struct e1000_tx_ring *tx_ring)
1947 {
1948         struct e1000_buffer *buffer_info;
1949         unsigned long size;
1950         unsigned int i;
1951
1952         /* Free all the Tx ring sk_buffs */
1953
1954         for (i = 0; i < tx_ring->count; i++) {
1955                 buffer_info = &tx_ring->buffer_info[i];
1956                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1957         }
1958
1959         size = sizeof(struct e1000_buffer) * tx_ring->count;
1960         memset(tx_ring->buffer_info, 0, size);
1961
1962         /* Zero out the descriptor ring */
1963
1964         memset(tx_ring->desc, 0, tx_ring->size);
1965
1966         tx_ring->next_to_use = 0;
1967         tx_ring->next_to_clean = 0;
1968         tx_ring->last_tx_tso = 0;
1969
1970         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1971         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1972 }
1973
1974 /**
1975  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1976  * @adapter: board private structure
1977  **/
1978
1979 static void
1980 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1981 {
1982         int i;
1983
1984         for (i = 0; i < adapter->num_tx_queues; i++)
1985                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1986 }
1987
1988 /**
1989  * e1000_free_rx_resources - Free Rx Resources
1990  * @adapter: board private structure
1991  * @rx_ring: ring to clean the resources from
1992  *
1993  * Free all receive software resources
1994  **/
1995
1996 static void
1997 e1000_free_rx_resources(struct e1000_adapter *adapter,
1998                         struct e1000_rx_ring *rx_ring)
1999 {
2000         struct pci_dev *pdev = adapter->pdev;
2001
2002         e1000_clean_rx_ring(adapter, rx_ring);
2003
2004         vfree(rx_ring->buffer_info);
2005         rx_ring->buffer_info = NULL;
2006         kfree(rx_ring->ps_page);
2007         rx_ring->ps_page = NULL;
2008         kfree(rx_ring->ps_page_dma);
2009         rx_ring->ps_page_dma = NULL;
2010
2011         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2012
2013         rx_ring->desc = NULL;
2014 }
2015
2016 /**
2017  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2018  * @adapter: board private structure
2019  *
2020  * Free all receive software resources
2021  **/
2022
2023 void
2024 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2025 {
2026         int i;
2027
2028         for (i = 0; i < adapter->num_rx_queues; i++)
2029                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2030 }
2031
2032 /**
2033  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2034  * @adapter: board private structure
2035  * @rx_ring: ring to free buffers from
2036  **/
2037
2038 static void
2039 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2040                     struct e1000_rx_ring *rx_ring)
2041 {
2042         struct e1000_buffer *buffer_info;
2043         struct e1000_ps_page *ps_page;
2044         struct e1000_ps_page_dma *ps_page_dma;
2045         struct pci_dev *pdev = adapter->pdev;
2046         unsigned long size;
2047         unsigned int i, j;
2048
2049         /* Free all the Rx ring sk_buffs */
2050         for (i = 0; i < rx_ring->count; i++) {
2051                 buffer_info = &rx_ring->buffer_info[i];
2052                 if (buffer_info->skb) {
2053                         pci_unmap_single(pdev,
2054                                          buffer_info->dma,
2055                                          buffer_info->length,
2056                                          PCI_DMA_FROMDEVICE);
2057
2058                         dev_kfree_skb(buffer_info->skb);
2059                         buffer_info->skb = NULL;
2060                 }
2061                 ps_page = &rx_ring->ps_page[i];
2062                 ps_page_dma = &rx_ring->ps_page_dma[i];
2063                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2064                         if (!ps_page->ps_page[j]) break;
2065                         pci_unmap_page(pdev,
2066                                        ps_page_dma->ps_page_dma[j],
2067                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2068                         ps_page_dma->ps_page_dma[j] = 0;
2069                         put_page(ps_page->ps_page[j]);
2070                         ps_page->ps_page[j] = NULL;
2071                 }
2072         }
2073
2074         size = sizeof(struct e1000_buffer) * rx_ring->count;
2075         memset(rx_ring->buffer_info, 0, size);
2076         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2077         memset(rx_ring->ps_page, 0, size);
2078         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2079         memset(rx_ring->ps_page_dma, 0, size);
2080
2081         /* Zero out the descriptor ring */
2082
2083         memset(rx_ring->desc, 0, rx_ring->size);
2084
2085         rx_ring->next_to_clean = 0;
2086         rx_ring->next_to_use = 0;
2087
2088         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2089         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2090 }
2091
2092 /**
2093  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2094  * @adapter: board private structure
2095  **/
2096
2097 static void
2098 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2099 {
2100         int i;
2101
2102         for (i = 0; i < adapter->num_rx_queues; i++)
2103                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2104 }
2105
2106 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2107  * and memory write and invalidate disabled for certain operations
2108  */
2109 static void
2110 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2111 {
2112         struct net_device *netdev = adapter->netdev;
2113         uint32_t rctl;
2114
2115         e1000_pci_clear_mwi(&adapter->hw);
2116
2117         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2118         rctl |= E1000_RCTL_RST;
2119         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2120         E1000_WRITE_FLUSH(&adapter->hw);
2121         mdelay(5);
2122
2123         if (netif_running(netdev))
2124                 e1000_clean_all_rx_rings(adapter);
2125 }
2126
2127 static void
2128 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2129 {
2130         struct net_device *netdev = adapter->netdev;
2131         uint32_t rctl;
2132
2133         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2134         rctl &= ~E1000_RCTL_RST;
2135         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2136         E1000_WRITE_FLUSH(&adapter->hw);
2137         mdelay(5);
2138
2139         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2140                 e1000_pci_set_mwi(&adapter->hw);
2141
2142         if (netif_running(netdev)) {
2143                 /* No need to loop, because 82542 supports only 1 queue */
2144                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2145                 e1000_configure_rx(adapter);
2146                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2147         }
2148 }
2149
2150 /**
2151  * e1000_set_mac - Change the Ethernet Address of the NIC
2152  * @netdev: network interface device structure
2153  * @p: pointer to an address structure
2154  *
2155  * Returns 0 on success, negative on failure
2156  **/
2157
2158 static int
2159 e1000_set_mac(struct net_device *netdev, void *p)
2160 {
2161         struct e1000_adapter *adapter = netdev_priv(netdev);
2162         struct sockaddr *addr = p;
2163
2164         if (!is_valid_ether_addr(addr->sa_data))
2165                 return -EADDRNOTAVAIL;
2166
2167         /* 82542 2.0 needs to be in reset to write receive address registers */
2168
2169         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2170                 e1000_enter_82542_rst(adapter);
2171
2172         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2173         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2174
2175         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2176
2177         /* With 82571 controllers, LAA may be overwritten (with the default)
2178          * due to controller reset from the other port. */
2179         if (adapter->hw.mac_type == e1000_82571) {
2180                 /* activate the work around */
2181                 adapter->hw.laa_is_present = 1;
2182
2183                 /* Hold a copy of the LAA in RAR[14] This is done so that
2184                  * between the time RAR[0] gets clobbered  and the time it
2185                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2186                  * of the RARs and no incoming packets directed to this port
2187                  * are dropped. Eventaully the LAA will be in RAR[0] and
2188                  * RAR[14] */
2189                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2190                                         E1000_RAR_ENTRIES - 1);
2191         }
2192
2193         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2194                 e1000_leave_82542_rst(adapter);
2195
2196         return 0;
2197 }
2198
2199 /**
2200  * e1000_set_multi - Multicast and Promiscuous mode set
2201  * @netdev: network interface device structure
2202  *
2203  * The set_multi entry point is called whenever the multicast address
2204  * list or the network interface flags are updated.  This routine is
2205  * responsible for configuring the hardware for proper multicast,
2206  * promiscuous mode, and all-multi behavior.
2207  **/
2208
2209 static void
2210 e1000_set_multi(struct net_device *netdev)
2211 {
2212         struct e1000_adapter *adapter = netdev_priv(netdev);
2213         struct e1000_hw *hw = &adapter->hw;
2214         struct dev_mc_list *mc_ptr;
2215         uint32_t rctl;
2216         uint32_t hash_value;
2217         int i, rar_entries = E1000_RAR_ENTRIES;
2218         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2219                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2220                                 E1000_NUM_MTA_REGISTERS;
2221
2222         if (adapter->hw.mac_type == e1000_ich8lan)
2223                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2224
2225         /* reserve RAR[14] for LAA over-write work-around */
2226         if (adapter->hw.mac_type == e1000_82571)
2227                 rar_entries--;
2228
2229         /* Check for Promiscuous and All Multicast modes */
2230
2231         rctl = E1000_READ_REG(hw, RCTL);
2232
2233         if (netdev->flags & IFF_PROMISC) {
2234                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2235         } else if (netdev->flags & IFF_ALLMULTI) {
2236                 rctl |= E1000_RCTL_MPE;
2237                 rctl &= ~E1000_RCTL_UPE;
2238         } else {
2239                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2240         }
2241
2242         E1000_WRITE_REG(hw, RCTL, rctl);
2243
2244         /* 82542 2.0 needs to be in reset to write receive address registers */
2245
2246         if (hw->mac_type == e1000_82542_rev2_0)
2247                 e1000_enter_82542_rst(adapter);
2248
2249         /* load the first 14 multicast address into the exact filters 1-14
2250          * RAR 0 is used for the station MAC adddress
2251          * if there are not 14 addresses, go ahead and clear the filters
2252          * -- with 82571 controllers only 0-13 entries are filled here
2253          */
2254         mc_ptr = netdev->mc_list;
2255
2256         for (i = 1; i < rar_entries; i++) {
2257                 if (mc_ptr) {
2258                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2259                         mc_ptr = mc_ptr->next;
2260                 } else {
2261                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2262                         E1000_WRITE_FLUSH(hw);
2263                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2264                         E1000_WRITE_FLUSH(hw);
2265                 }
2266         }
2267
2268         /* clear the old settings from the multicast hash table */
2269
2270         for (i = 0; i < mta_reg_count; i++) {
2271                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2272                 E1000_WRITE_FLUSH(hw);
2273         }
2274
2275         /* load any remaining addresses into the hash table */
2276
2277         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2278                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2279                 e1000_mta_set(hw, hash_value);
2280         }
2281
2282         if (hw->mac_type == e1000_82542_rev2_0)
2283                 e1000_leave_82542_rst(adapter);
2284 }
2285
2286 /* Need to wait a few seconds after link up to get diagnostic information from
2287  * the phy */
2288
2289 static void
2290 e1000_update_phy_info(unsigned long data)
2291 {
2292         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2293         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2294 }
2295
2296 /**
2297  * e1000_82547_tx_fifo_stall - Timer Call-back
2298  * @data: pointer to adapter cast into an unsigned long
2299  **/
2300
2301 static void
2302 e1000_82547_tx_fifo_stall(unsigned long data)
2303 {
2304         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2305         struct net_device *netdev = adapter->netdev;
2306         uint32_t tctl;
2307
2308         if (atomic_read(&adapter->tx_fifo_stall)) {
2309                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2310                     E1000_READ_REG(&adapter->hw, TDH)) &&
2311                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2312                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2313                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2314                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2315                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2316                         E1000_WRITE_REG(&adapter->hw, TCTL,
2317                                         tctl & ~E1000_TCTL_EN);
2318                         E1000_WRITE_REG(&adapter->hw, TDFT,
2319                                         adapter->tx_head_addr);
2320                         E1000_WRITE_REG(&adapter->hw, TDFH,
2321                                         adapter->tx_head_addr);
2322                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2323                                         adapter->tx_head_addr);
2324                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2325                                         adapter->tx_head_addr);
2326                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2327                         E1000_WRITE_FLUSH(&adapter->hw);
2328
2329                         adapter->tx_fifo_head = 0;
2330                         atomic_set(&adapter->tx_fifo_stall, 0);
2331                         netif_wake_queue(netdev);
2332                 } else {
2333                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2334                 }
2335         }
2336 }
2337
2338 /**
2339  * e1000_watchdog - Timer Call-back
2340  * @data: pointer to adapter cast into an unsigned long
2341  **/
2342 static void
2343 e1000_watchdog(unsigned long data)
2344 {
2345         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2346         struct net_device *netdev = adapter->netdev;
2347         struct e1000_tx_ring *txdr = adapter->tx_ring;
2348         uint32_t link, tctl;
2349         int32_t ret_val;
2350
2351         ret_val = e1000_check_for_link(&adapter->hw);
2352         if ((ret_val == E1000_ERR_PHY) &&
2353             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2354             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2355                 /* See e1000_kumeran_lock_loss_workaround() */
2356                 DPRINTK(LINK, INFO,
2357                         "Gigabit has been disabled, downgrading speed\n");
2358         }
2359         if (adapter->hw.mac_type == e1000_82573) {
2360                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2361                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2362                         e1000_update_mng_vlan(adapter);
2363         }
2364
2365         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2366            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2367                 link = !adapter->hw.serdes_link_down;
2368         else
2369                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2370
2371         if (link) {
2372                 if (!netif_carrier_ok(netdev)) {
2373                         boolean_t txb2b = 1;
2374                         e1000_get_speed_and_duplex(&adapter->hw,
2375                                                    &adapter->link_speed,
2376                                                    &adapter->link_duplex);
2377
2378                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2379                                adapter->link_speed,
2380                                adapter->link_duplex == FULL_DUPLEX ?
2381                                "Full Duplex" : "Half Duplex");
2382
2383                         /* tweak tx_queue_len according to speed/duplex
2384                          * and adjust the timeout factor */
2385                         netdev->tx_queue_len = adapter->tx_queue_len;
2386                         adapter->tx_timeout_factor = 1;
2387                         switch (adapter->link_speed) {
2388                         case SPEED_10:
2389                                 txb2b = 0;
2390                                 netdev->tx_queue_len = 10;
2391                                 adapter->tx_timeout_factor = 8;
2392                                 break;
2393                         case SPEED_100:
2394                                 txb2b = 0;
2395                                 netdev->tx_queue_len = 100;
2396                                 /* maybe add some timeout factor ? */
2397                                 break;
2398                         }
2399
2400                         if ((adapter->hw.mac_type == e1000_82571 ||
2401                              adapter->hw.mac_type == e1000_82572) &&
2402                             txb2b == 0) {
2403 #define SPEED_MODE_BIT (1 << 21)
2404                                 uint32_t tarc0;
2405                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2406                                 tarc0 &= ~SPEED_MODE_BIT;
2407                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2408                         }
2409                                 
2410 #ifdef NETIF_F_TSO
2411                         /* disable TSO for pcie and 10/100 speeds, to avoid
2412                          * some hardware issues */
2413                         if (!adapter->tso_force &&
2414                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2415                                 switch (adapter->link_speed) {
2416                                 case SPEED_10:
2417                                 case SPEED_100:
2418                                         DPRINTK(PROBE,INFO,
2419                                         "10/100 speed: disabling TSO\n");
2420                                         netdev->features &= ~NETIF_F_TSO;
2421                                         break;
2422                                 case SPEED_1000:
2423                                         netdev->features |= NETIF_F_TSO;
2424                                         break;
2425                                 default:
2426                                         /* oops */
2427                                         break;
2428                                 }
2429                         }
2430 #endif
2431
2432                         /* enable transmits in the hardware, need to do this
2433                          * after setting TARC0 */
2434                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2435                         tctl |= E1000_TCTL_EN;
2436                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2437
2438                         netif_carrier_on(netdev);
2439                         netif_wake_queue(netdev);
2440                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2441                         adapter->smartspeed = 0;
2442                 }
2443         } else {
2444                 if (netif_carrier_ok(netdev)) {
2445                         adapter->link_speed = 0;
2446                         adapter->link_duplex = 0;
2447                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2448                         netif_carrier_off(netdev);
2449                         netif_stop_queue(netdev);
2450                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2451
2452                         /* 80003ES2LAN workaround--
2453                          * For packet buffer work-around on link down event;
2454                          * disable receives in the ISR and
2455                          * reset device here in the watchdog
2456                          */
2457                         if (adapter->hw.mac_type == e1000_80003es2lan)
2458                                 /* reset device */
2459                                 schedule_work(&adapter->reset_task);
2460                 }
2461
2462                 e1000_smartspeed(adapter);
2463         }
2464
2465         e1000_update_stats(adapter);
2466
2467         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2468         adapter->tpt_old = adapter->stats.tpt;
2469         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2470         adapter->colc_old = adapter->stats.colc;
2471
2472         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2473         adapter->gorcl_old = adapter->stats.gorcl;
2474         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2475         adapter->gotcl_old = adapter->stats.gotcl;
2476
2477         e1000_update_adaptive(&adapter->hw);
2478
2479         if (!netif_carrier_ok(netdev)) {
2480                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2481                         /* We've lost link, so the controller stops DMA,
2482                          * but we've got queued Tx work that's never going
2483                          * to get done, so reset controller to flush Tx.
2484                          * (Do the reset outside of interrupt context). */
2485                         adapter->tx_timeout_count++;
2486                         schedule_work(&adapter->reset_task);
2487                 }
2488         }
2489
2490         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2491         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2492                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2493                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2494                  * else is between 2000-8000. */
2495                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2496                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2497                         adapter->gotcl - adapter->gorcl :
2498                         adapter->gorcl - adapter->gotcl) / 10000;
2499                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2500                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2501         }
2502
2503         /* Cause software interrupt to ensure rx ring is cleaned */
2504         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2505
2506         /* Force detection of hung controller every watchdog period */
2507         adapter->detect_tx_hung = TRUE;
2508
2509         /* With 82571 controllers, LAA may be overwritten due to controller
2510          * reset from the other port. Set the appropriate LAA in RAR[0] */
2511         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2512                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2513
2514         /* Reset the timer */
2515         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2516 }
2517
2518 #define E1000_TX_FLAGS_CSUM             0x00000001
2519 #define E1000_TX_FLAGS_VLAN             0x00000002
2520 #define E1000_TX_FLAGS_TSO              0x00000004
2521 #define E1000_TX_FLAGS_IPV4             0x00000008
2522 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2523 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2524
2525 static int
2526 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2527           struct sk_buff *skb)
2528 {
2529 #ifdef NETIF_F_TSO
2530         struct e1000_context_desc *context_desc;
2531         struct e1000_buffer *buffer_info;
2532         unsigned int i;
2533         uint32_t cmd_length = 0;
2534         uint16_t ipcse = 0, tucse, mss;
2535         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2536         int err;
2537
2538         if (skb_is_gso(skb)) {
2539                 if (skb_header_cloned(skb)) {
2540                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2541                         if (err)
2542                                 return err;
2543                 }
2544
2545                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2546                 mss = skb_shinfo(skb)->gso_size;
2547                 if (skb->protocol == htons(ETH_P_IP)) {
2548                         skb->nh.iph->tot_len = 0;
2549                         skb->nh.iph->check = 0;
2550                         skb->h.th->check =
2551                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2552                                                    skb->nh.iph->daddr,
2553                                                    0,
2554                                                    IPPROTO_TCP,
2555                                                    0);
2556                         cmd_length = E1000_TXD_CMD_IP;
2557                         ipcse = skb->h.raw - skb->data - 1;
2558 #ifdef NETIF_F_TSO_IPV6
2559                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2560                         skb->nh.ipv6h->payload_len = 0;
2561                         skb->h.th->check =
2562                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2563                                                  &skb->nh.ipv6h->daddr,
2564                                                  0,
2565                                                  IPPROTO_TCP,
2566                                                  0);
2567                         ipcse = 0;
2568 #endif
2569                 }
2570                 ipcss = skb->nh.raw - skb->data;
2571                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2572                 tucss = skb->h.raw - skb->data;
2573                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2574                 tucse = 0;
2575
2576                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2577                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2578
2579                 i = tx_ring->next_to_use;
2580                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2581                 buffer_info = &tx_ring->buffer_info[i];
2582
2583                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2584                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2585                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2586                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2587                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2588                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2589                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2590                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2591                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2592
2593                 buffer_info->time_stamp = jiffies;
2594
2595                 if (++i == tx_ring->count) i = 0;
2596                 tx_ring->next_to_use = i;
2597
2598                 return TRUE;
2599         }
2600 #endif
2601
2602         return FALSE;
2603 }
2604
2605 static boolean_t
2606 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2607               struct sk_buff *skb)
2608 {
2609         struct e1000_context_desc *context_desc;
2610         struct e1000_buffer *buffer_info;
2611         unsigned int i;
2612         uint8_t css;
2613
2614         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2615                 css = skb->h.raw - skb->data;
2616
2617                 i = tx_ring->next_to_use;
2618                 buffer_info = &tx_ring->buffer_info[i];
2619                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2620
2621                 context_desc->upper_setup.tcp_fields.tucss = css;
2622                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2623                 context_desc->upper_setup.tcp_fields.tucse = 0;
2624                 context_desc->tcp_seg_setup.data = 0;
2625                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2626
2627                 buffer_info->time_stamp = jiffies;
2628
2629                 if (unlikely(++i == tx_ring->count)) i = 0;
2630                 tx_ring->next_to_use = i;
2631
2632                 return TRUE;
2633         }
2634
2635         return FALSE;
2636 }
2637
2638 #define E1000_MAX_TXD_PWR       12
2639 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2640
2641 static int
2642 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2643              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2644              unsigned int nr_frags, unsigned int mss)
2645 {
2646         struct e1000_buffer *buffer_info;
2647         unsigned int len = skb->len;
2648         unsigned int offset = 0, size, count = 0, i;
2649         unsigned int f;
2650         len -= skb->data_len;
2651
2652         i = tx_ring->next_to_use;
2653
2654         while (len) {
2655                 buffer_info = &tx_ring->buffer_info[i];
2656                 size = min(len, max_per_txd);
2657 #ifdef NETIF_F_TSO
2658                 /* Workaround for Controller erratum --
2659                  * descriptor for non-tso packet in a linear SKB that follows a
2660                  * tso gets written back prematurely before the data is fully
2661                  * DMA'd to the controller */
2662                 if (!skb->data_len && tx_ring->last_tx_tso &&
2663                     !skb_is_gso(skb)) {
2664                         tx_ring->last_tx_tso = 0;
2665                         size -= 4;
2666                 }
2667
2668                 /* Workaround for premature desc write-backs
2669                  * in TSO mode.  Append 4-byte sentinel desc */
2670                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2671                         size -= 4;
2672 #endif
2673                 /* work-around for errata 10 and it applies
2674                  * to all controllers in PCI-X mode
2675                  * The fix is to make sure that the first descriptor of a
2676                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2677                  */
2678                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2679                                 (size > 2015) && count == 0))
2680                         size = 2015;
2681
2682                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2683                  * terminating buffers within evenly-aligned dwords. */
2684                 if (unlikely(adapter->pcix_82544 &&
2685                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2686                    size > 4))
2687                         size -= 4;
2688
2689                 buffer_info->length = size;
2690                 buffer_info->dma =
2691                         pci_map_single(adapter->pdev,
2692                                 skb->data + offset,
2693                                 size,
2694                                 PCI_DMA_TODEVICE);
2695                 buffer_info->time_stamp = jiffies;
2696
2697                 len -= size;
2698                 offset += size;
2699                 count++;
2700                 if (unlikely(++i == tx_ring->count)) i = 0;
2701         }
2702
2703         for (f = 0; f < nr_frags; f++) {
2704                 struct skb_frag_struct *frag;
2705
2706                 frag = &skb_shinfo(skb)->frags[f];
2707                 len = frag->size;
2708                 offset = frag->page_offset;
2709
2710                 while (len) {
2711                         buffer_info = &tx_ring->buffer_info[i];
2712                         size = min(len, max_per_txd);
2713 #ifdef NETIF_F_TSO
2714                         /* Workaround for premature desc write-backs
2715                          * in TSO mode.  Append 4-byte sentinel desc */
2716                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2717                                 size -= 4;
2718 #endif
2719                         /* Workaround for potential 82544 hang in PCI-X.
2720                          * Avoid terminating buffers within evenly-aligned
2721                          * dwords. */
2722                         if (unlikely(adapter->pcix_82544 &&
2723                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2724                            size > 4))
2725                                 size -= 4;
2726
2727                         buffer_info->length = size;
2728                         buffer_info->dma =
2729                                 pci_map_page(adapter->pdev,
2730                                         frag->page,
2731                                         offset,
2732                                         size,
2733                                         PCI_DMA_TODEVICE);
2734                         buffer_info->time_stamp = jiffies;
2735
2736                         len -= size;
2737                         offset += size;
2738                         count++;
2739                         if (unlikely(++i == tx_ring->count)) i = 0;
2740                 }
2741         }
2742
2743         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2744         tx_ring->buffer_info[i].skb = skb;
2745         tx_ring->buffer_info[first].next_to_watch = i;
2746
2747         return count;
2748 }
2749
2750 static void
2751 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2752                int tx_flags, int count)
2753 {
2754         struct e1000_tx_desc *tx_desc = NULL;
2755         struct e1000_buffer *buffer_info;
2756         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2757         unsigned int i;
2758
2759         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2760                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2761                              E1000_TXD_CMD_TSE;
2762                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2763
2764                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2765                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2766         }
2767
2768         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2769                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2770                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2771         }
2772
2773         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2774                 txd_lower |= E1000_TXD_CMD_VLE;
2775                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2776         }
2777
2778         i = tx_ring->next_to_use;
2779
2780         while (count--) {
2781                 buffer_info = &tx_ring->buffer_info[i];
2782                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2783                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2784                 tx_desc->lower.data =
2785                         cpu_to_le32(txd_lower | buffer_info->length);
2786                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2787                 if (unlikely(++i == tx_ring->count)) i = 0;
2788         }
2789
2790         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2791
2792         /* Force memory writes to complete before letting h/w
2793          * know there are new descriptors to fetch.  (Only
2794          * applicable for weak-ordered memory model archs,
2795          * such as IA-64). */
2796         wmb();
2797
2798         tx_ring->next_to_use = i;
2799         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2800 }
2801
2802 /**
2803  * 82547 workaround to avoid controller hang in half-duplex environment.
2804  * The workaround is to avoid queuing a large packet that would span
2805  * the internal Tx FIFO ring boundary by notifying the stack to resend
2806  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2807  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2808  * to the beginning of the Tx FIFO.
2809  **/
2810
2811 #define E1000_FIFO_HDR                  0x10
2812 #define E1000_82547_PAD_LEN             0x3E0
2813
2814 static int
2815 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2816 {
2817         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2818         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2819
2820         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2821
2822         if (adapter->link_duplex != HALF_DUPLEX)
2823                 goto no_fifo_stall_required;
2824
2825         if (atomic_read(&adapter->tx_fifo_stall))
2826                 return 1;
2827
2828         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2829                 atomic_set(&adapter->tx_fifo_stall, 1);
2830                 return 1;
2831         }
2832
2833 no_fifo_stall_required:
2834         adapter->tx_fifo_head += skb_fifo_len;
2835         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2836                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2837         return 0;
2838 }
2839
2840 #define MINIMUM_DHCP_PACKET_SIZE 282
2841 static int
2842 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2843 {
2844         struct e1000_hw *hw =  &adapter->hw;
2845         uint16_t length, offset;
2846         if (vlan_tx_tag_present(skb)) {
2847                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2848                         ( adapter->hw.mng_cookie.status &
2849                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2850                         return 0;
2851         }
2852         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2853                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2854                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2855                         const struct iphdr *ip =
2856                                 (struct iphdr *)((uint8_t *)skb->data+14);
2857                         if (IPPROTO_UDP == ip->protocol) {
2858                                 struct udphdr *udp =
2859                                         (struct udphdr *)((uint8_t *)ip +
2860                                                 (ip->ihl << 2));
2861                                 if (ntohs(udp->dest) == 67) {
2862                                         offset = (uint8_t *)udp + 8 - skb->data;
2863                                         length = skb->len - offset;
2864
2865                                         return e1000_mng_write_dhcp_info(hw,
2866                                                         (uint8_t *)udp + 8,
2867                                                         length);
2868                                 }
2869                         }
2870                 }
2871         }
2872         return 0;
2873 }
2874
2875 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2876 static int
2877 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2878 {
2879         struct e1000_adapter *adapter = netdev_priv(netdev);
2880         struct e1000_tx_ring *tx_ring;
2881         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2882         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2883         unsigned int tx_flags = 0;
2884         unsigned int len = skb->len;
2885         unsigned long flags;
2886         unsigned int nr_frags = 0;
2887         unsigned int mss = 0;
2888         int count = 0;
2889         int tso;
2890         unsigned int f;
2891         len -= skb->data_len;
2892
2893         tx_ring = adapter->tx_ring;
2894
2895         if (unlikely(skb->len <= 0)) {
2896                 dev_kfree_skb_any(skb);
2897                 return NETDEV_TX_OK;
2898         }
2899
2900 #ifdef NETIF_F_TSO
2901         mss = skb_shinfo(skb)->gso_size;
2902         /* The controller does a simple calculation to
2903          * make sure there is enough room in the FIFO before
2904          * initiating the DMA for each buffer.  The calc is:
2905          * 4 = ceil(buffer len/mss).  To make sure we don't
2906          * overrun the FIFO, adjust the max buffer len if mss
2907          * drops. */
2908         if (mss) {
2909                 uint8_t hdr_len;
2910                 max_per_txd = min(mss << 2, max_per_txd);
2911                 max_txd_pwr = fls(max_per_txd) - 1;
2912
2913         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2914          * points to just header, pull a few bytes of payload from
2915          * frags into skb->data */
2916                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2917                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2918                         switch (adapter->hw.mac_type) {
2919                                 unsigned int pull_size;
2920                         case e1000_82571:
2921                         case e1000_82572:
2922                         case e1000_82573:
2923                         case e1000_ich8lan:
2924                                 pull_size = min((unsigned int)4, skb->data_len);
2925                                 if (!__pskb_pull_tail(skb, pull_size)) {
2926                                         DPRINTK(DRV, ERR,
2927                                                 "__pskb_pull_tail failed.\n");
2928                                         dev_kfree_skb_any(skb);
2929                                         return NETDEV_TX_OK;
2930                                 }
2931                                 len = skb->len - skb->data_len;
2932                                 break;
2933                         default:
2934                                 /* do nothing */
2935                                 break;
2936                         }
2937                 }
2938         }
2939
2940         /* reserve a descriptor for the offload context */
2941         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2942                 count++;
2943         count++;
2944 #else
2945         if (skb->ip_summed == CHECKSUM_HW)
2946                 count++;
2947 #endif
2948
2949 #ifdef NETIF_F_TSO
2950         /* Controller Erratum workaround */
2951         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2952                 count++;
2953 #endif
2954
2955         count += TXD_USE_COUNT(len, max_txd_pwr);
2956
2957         if (adapter->pcix_82544)
2958                 count++;
2959
2960         /* work-around for errata 10 and it applies to all controllers
2961          * in PCI-X mode, so add one more descriptor to the count
2962          */
2963         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2964                         (len > 2015)))
2965                 count++;
2966
2967         nr_frags = skb_shinfo(skb)->nr_frags;
2968         for (f = 0; f < nr_frags; f++)
2969                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2970                                        max_txd_pwr);
2971         if (adapter->pcix_82544)
2972                 count += nr_frags;
2973
2974
2975         if (adapter->hw.tx_pkt_filtering &&
2976             (adapter->hw.mac_type == e1000_82573))
2977                 e1000_transfer_dhcp_info(adapter, skb);
2978
2979         local_irq_save(flags);
2980         if (!spin_trylock(&tx_ring->tx_lock)) {
2981                 /* Collision - tell upper layer to requeue */
2982                 local_irq_restore(flags);
2983                 return NETDEV_TX_LOCKED;
2984         }
2985
2986         /* need: count + 2 desc gap to keep tail from touching
2987          * head, otherwise try next time */
2988         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2989                 netif_stop_queue(netdev);
2990                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2991                 return NETDEV_TX_BUSY;
2992         }
2993
2994         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2995                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2996                         netif_stop_queue(netdev);
2997                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2998                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2999                         return NETDEV_TX_BUSY;
3000                 }
3001         }
3002
3003         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3004                 tx_flags |= E1000_TX_FLAGS_VLAN;
3005                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3006         }
3007
3008         first = tx_ring->next_to_use;
3009
3010         tso = e1000_tso(adapter, tx_ring, skb);
3011         if (tso < 0) {
3012                 dev_kfree_skb_any(skb);
3013                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3014                 return NETDEV_TX_OK;
3015         }
3016
3017         if (likely(tso)) {
3018                 tx_ring->last_tx_tso = 1;
3019                 tx_flags |= E1000_TX_FLAGS_TSO;
3020         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3021                 tx_flags |= E1000_TX_FLAGS_CSUM;
3022
3023         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3024          * 82571 hardware supports TSO capabilities for IPv6 as well...
3025          * no longer assume, we must. */
3026         if (likely(skb->protocol == htons(ETH_P_IP)))
3027                 tx_flags |= E1000_TX_FLAGS_IPV4;
3028
3029         e1000_tx_queue(adapter, tx_ring, tx_flags,
3030                        e1000_tx_map(adapter, tx_ring, skb, first,
3031                                     max_per_txd, nr_frags, mss));
3032
3033         netdev->trans_start = jiffies;
3034
3035         /* Make sure there is space in the ring for the next send. */
3036         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3037                 netif_stop_queue(netdev);
3038
3039         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3040         return NETDEV_TX_OK;
3041 }
3042
3043 /**
3044  * e1000_tx_timeout - Respond to a Tx Hang
3045  * @netdev: network interface device structure
3046  **/
3047
3048 static void
3049 e1000_tx_timeout(struct net_device *netdev)
3050 {
3051         struct e1000_adapter *adapter = netdev_priv(netdev);
3052
3053         /* Do the reset outside of interrupt context */
3054         adapter->tx_timeout_count++;
3055         schedule_work(&adapter->reset_task);
3056 }
3057
3058 static void
3059 e1000_reset_task(struct net_device *netdev)
3060 {
3061         struct e1000_adapter *adapter = netdev_priv(netdev);
3062
3063         e1000_reinit_locked(adapter);
3064 }
3065
3066 /**
3067  * e1000_get_stats - Get System Network Statistics
3068  * @netdev: network interface device structure
3069  *
3070  * Returns the address of the device statistics structure.
3071  * The statistics are actually updated from the timer callback.
3072  **/
3073
3074 static struct net_device_stats *
3075 e1000_get_stats(struct net_device *netdev)
3076 {
3077         struct e1000_adapter *adapter = netdev_priv(netdev);
3078
3079         /* only return the current stats */
3080         return &adapter->net_stats;
3081 }
3082
3083 /**
3084  * e1000_change_mtu - Change the Maximum Transfer Unit
3085  * @netdev: network interface device structure
3086  * @new_mtu: new value for maximum frame size
3087  *
3088  * Returns 0 on success, negative on failure
3089  **/
3090
3091 static int
3092 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3093 {
3094         struct e1000_adapter *adapter = netdev_priv(netdev);
3095         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3096         uint16_t eeprom_data = 0;
3097
3098         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3099             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3100                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3101                 return -EINVAL;
3102         }
3103
3104         /* Adapter-specific max frame size limits. */
3105         switch (adapter->hw.mac_type) {
3106         case e1000_undefined ... e1000_82542_rev2_1:
3107         case e1000_ich8lan:
3108                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3109                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3110                         return -EINVAL;
3111                 }
3112                 break;
3113         case e1000_82573:
3114                 /* only enable jumbo frames if ASPM is disabled completely
3115                  * this means both bits must be zero in 0x1A bits 3:2 */
3116                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3117                                   &eeprom_data);
3118                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3119                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3120                                 DPRINTK(PROBE, ERR,
3121                                         "Jumbo Frames not supported.\n");
3122                                 return -EINVAL;
3123                         }
3124                         break;
3125                 }
3126                 /* fall through to get support */
3127         case e1000_82571:
3128         case e1000_82572:
3129         case e1000_80003es2lan:
3130 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3131                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3132                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3133                         return -EINVAL;
3134                 }
3135                 break;
3136         default:
3137                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3138                 break;
3139         }
3140
3141         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3142          * means we reserve 2 more, this pushes us to allocate from the next
3143          * larger slab size
3144          * i.e. RXBUFFER_2048 --> size-4096 slab */
3145
3146         if (max_frame <= E1000_RXBUFFER_256)
3147                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3148         else if (max_frame <= E1000_RXBUFFER_512)
3149                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3150         else if (max_frame <= E1000_RXBUFFER_1024)
3151                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3152         else if (max_frame <= E1000_RXBUFFER_2048)
3153                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3154         else if (max_frame <= E1000_RXBUFFER_4096)
3155                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3156         else if (max_frame <= E1000_RXBUFFER_8192)
3157                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3158         else if (max_frame <= E1000_RXBUFFER_16384)
3159                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3160
3161         /* adjust allocation if LPE protects us, and we aren't using SBP */
3162         if (!adapter->hw.tbi_compatibility_on &&
3163             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3164              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3165                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3166
3167         netdev->mtu = new_mtu;
3168
3169         if (netif_running(netdev))
3170                 e1000_reinit_locked(adapter);
3171
3172         adapter->hw.max_frame_size = max_frame;
3173
3174         return 0;
3175 }
3176
3177 /**
3178  * e1000_update_stats - Update the board statistics counters
3179  * @adapter: board private structure
3180  **/
3181
3182 void
3183 e1000_update_stats(struct e1000_adapter *adapter)
3184 {
3185         struct e1000_hw *hw = &adapter->hw;
3186         struct pci_dev *pdev = adapter->pdev;
3187         unsigned long flags;
3188         uint16_t phy_tmp;
3189
3190 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3191
3192         /*
3193          * Prevent stats update while adapter is being reset, or if the pci
3194          * connection is down.
3195          */
3196         if (adapter->link_speed == 0)
3197                 return;
3198         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3199                 return;
3200
3201         spin_lock_irqsave(&adapter->stats_lock, flags);
3202
3203         /* these counters are modified from e1000_adjust_tbi_stats,
3204          * called from the interrupt context, so they must only
3205          * be written while holding adapter->stats_lock
3206          */
3207
3208         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3209         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3210         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3211         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3212         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3213         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3214         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3215
3216         if (adapter->hw.mac_type != e1000_ich8lan) {
3217         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3218         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3219         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3220         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3221         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3222         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3223         }
3224
3225         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3226         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3227         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3228         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3229         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3230         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3231         adapter->stats.dc += E1000_READ_REG(hw, DC);
3232         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3233         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3234         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3235         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3236         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3237         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3238         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3239         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3240         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3241         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3242         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3243         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3244         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3245         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3246         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3247         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3248         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3249         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3250         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3251
3252         if (adapter->hw.mac_type != e1000_ich8lan) {
3253         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3254         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3255         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3256         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3257         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3258         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3259         }
3260
3261         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3262         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3263
3264         /* used for adaptive IFS */
3265
3266         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3267         adapter->stats.tpt += hw->tx_packet_delta;
3268         hw->collision_delta = E1000_READ_REG(hw, COLC);
3269         adapter->stats.colc += hw->collision_delta;
3270
3271         if (hw->mac_type >= e1000_82543) {
3272                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3273                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3274                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3275                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3276                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3277                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3278         }
3279         if (hw->mac_type > e1000_82547_rev_2) {
3280                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3281                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3282
3283                 if (adapter->hw.mac_type != e1000_ich8lan) {
3284                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3285                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3286                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3287                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3288                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3289                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3290                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3291                 }
3292         }
3293
3294         /* Fill out the OS statistics structure */
3295
3296         adapter->net_stats.rx_packets = adapter->stats.gprc;
3297         adapter->net_stats.tx_packets = adapter->stats.gptc;
3298         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3299         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3300         adapter->net_stats.multicast = adapter->stats.mprc;
3301         adapter->net_stats.collisions = adapter->stats.colc;
3302
3303         /* Rx Errors */
3304
3305         /* RLEC on some newer hardware can be incorrect so build
3306         * our own version based on RUC and ROC */
3307         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3308                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3309                 adapter->stats.ruc + adapter->stats.roc +
3310                 adapter->stats.cexterr;
3311         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3312                                               adapter->stats.roc;
3313         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3314         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3315         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3316
3317         /* Tx Errors */
3318
3319         adapter->net_stats.tx_errors = adapter->stats.ecol +
3320                                        adapter->stats.latecol;
3321         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3322         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3323         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3324
3325         /* Tx Dropped needs to be maintained elsewhere */
3326
3327         /* Phy Stats */
3328
3329         if (hw->media_type == e1000_media_type_copper) {
3330                 if ((adapter->link_speed == SPEED_1000) &&
3331                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3332                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3333                         adapter->phy_stats.idle_errors += phy_tmp;
3334                 }
3335
3336                 if ((hw->mac_type <= e1000_82546) &&
3337                    (hw->phy_type == e1000_phy_m88) &&
3338                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3339                         adapter->phy_stats.receive_errors += phy_tmp;
3340         }
3341
3342         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3343 }
3344
3345 /**
3346  * e1000_intr - Interrupt Handler
3347  * @irq: interrupt number
3348  * @data: pointer to a network interface device structure
3349  * @pt_regs: CPU registers structure
3350  **/
3351
3352 static irqreturn_t
3353 e1000_intr(int irq, void *data, struct pt_regs *regs)
3354 {
3355         struct net_device *netdev = data;
3356         struct e1000_adapter *adapter = netdev_priv(netdev);
3357         struct e1000_hw *hw = &adapter->hw;
3358         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3359 #ifndef CONFIG_E1000_NAPI
3360         int i;
3361 #else
3362         /* Interrupt Auto-Mask...upon reading ICR,
3363          * interrupts are masked.  No need for the
3364          * IMC write, but it does mean we should
3365          * account for it ASAP. */
3366         if (likely(hw->mac_type >= e1000_82571))
3367                 atomic_inc(&adapter->irq_sem);
3368 #endif
3369
3370         if (unlikely(!icr)) {
3371 #ifdef CONFIG_E1000_NAPI
3372                 if (hw->mac_type >= e1000_82571)
3373                         e1000_irq_enable(adapter);
3374 #endif
3375                 return IRQ_NONE;  /* Not our interrupt */
3376         }
3377
3378         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3379                 hw->get_link_status = 1;
3380                 /* 80003ES2LAN workaround--
3381                  * For packet buffer work-around on link down event;
3382                  * disable receives here in the ISR and
3383                  * reset adapter in watchdog
3384                  */
3385                 if (netif_carrier_ok(netdev) &&
3386                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3387                         /* disable receives */
3388                         rctl = E1000_READ_REG(hw, RCTL);
3389                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3390                 }
3391                 mod_timer(&adapter->watchdog_timer, jiffies);
3392         }
3393
3394 #ifdef CONFIG_E1000_NAPI
3395         if (unlikely(hw->mac_type < e1000_82571)) {
3396                 atomic_inc(&adapter->irq_sem);
3397                 E1000_WRITE_REG(hw, IMC, ~0);
3398                 E1000_WRITE_FLUSH(hw);
3399         }
3400         if (likely(netif_rx_schedule_prep(netdev)))
3401                 __netif_rx_schedule(netdev);
3402         else
3403                 e1000_irq_enable(adapter);
3404 #else
3405         /* Writing IMC and IMS is needed for 82547.
3406          * Due to Hub Link bus being occupied, an interrupt
3407          * de-assertion message is not able to be sent.
3408          * When an interrupt assertion message is generated later,
3409          * two messages are re-ordered and sent out.
3410          * That causes APIC to think 82547 is in de-assertion
3411          * state, while 82547 is in assertion state, resulting
3412          * in dead lock. Writing IMC forces 82547 into
3413          * de-assertion state.
3414          */
3415         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3416                 atomic_inc(&adapter->irq_sem);
3417                 E1000_WRITE_REG(hw, IMC, ~0);
3418         }
3419
3420         for (i = 0; i < E1000_MAX_INTR; i++)
3421                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3422                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3423                         break;
3424
3425         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3426                 e1000_irq_enable(adapter);
3427
3428 #endif
3429
3430         return IRQ_HANDLED;
3431 }
3432
3433 #ifdef CONFIG_E1000_NAPI
3434 /**
3435  * e1000_clean - NAPI Rx polling callback
3436  * @adapter: board private structure
3437  **/
3438
3439 static int
3440 e1000_clean(struct net_device *poll_dev, int *budget)
3441 {
3442         struct e1000_adapter *adapter;
3443         int work_to_do = min(*budget, poll_dev->quota);
3444         int tx_cleaned = 0, work_done = 0;
3445
3446         /* Must NOT use netdev_priv macro here. */
3447         adapter = poll_dev->priv;
3448
3449         /* Keep link state information with original netdev */
3450         if (!netif_carrier_ok(poll_dev))
3451                 goto quit_polling;
3452
3453         /* e1000_clean is called per-cpu.  This lock protects
3454          * tx_ring[0] from being cleaned by multiple cpus
3455          * simultaneously.  A failure obtaining the lock means
3456          * tx_ring[0] is currently being cleaned anyway. */
3457         if (spin_trylock(&adapter->tx_queue_lock)) {
3458                 tx_cleaned = e1000_clean_tx_irq(adapter,
3459                                                 &adapter->tx_ring[0]);
3460                 spin_unlock(&adapter->tx_queue_lock);
3461         }
3462
3463         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3464                           &work_done, work_to_do);
3465
3466         *budget -= work_done;
3467         poll_dev->quota -= work_done;
3468
3469         /* If no Tx and not enough Rx work done, exit the polling mode */
3470         if ((!tx_cleaned && (work_done == 0)) ||
3471            !netif_running(poll_dev)) {
3472 quit_polling:
3473                 netif_rx_complete(poll_dev);
3474                 e1000_irq_enable(adapter);
3475                 return 0;
3476         }
3477
3478         return 1;
3479 }
3480
3481 #endif
3482 /**
3483  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3484  * @adapter: board private structure
3485  **/
3486
3487 static boolean_t
3488 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3489                    struct e1000_tx_ring *tx_ring)
3490 {
3491         struct net_device *netdev = adapter->netdev;
3492         struct e1000_tx_desc *tx_desc, *eop_desc;
3493         struct e1000_buffer *buffer_info;
3494         unsigned int i, eop;
3495 #ifdef CONFIG_E1000_NAPI
3496         unsigned int count = 0;
3497 #endif
3498         boolean_t cleaned = FALSE;
3499
3500         i = tx_ring->next_to_clean;
3501         eop = tx_ring->buffer_info[i].next_to_watch;
3502         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3503
3504         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3505                 for (cleaned = FALSE; !cleaned; ) {
3506                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3507                         buffer_info = &tx_ring->buffer_info[i];
3508                         cleaned = (i == eop);
3509
3510                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3511                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3512
3513                         if (unlikely(++i == tx_ring->count)) i = 0;
3514                 }
3515
3516
3517                 eop = tx_ring->buffer_info[i].next_to_watch;
3518                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3519 #ifdef CONFIG_E1000_NAPI
3520 #define E1000_TX_WEIGHT 64
3521                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3522                 if (count++ == E1000_TX_WEIGHT) break;
3523 #endif
3524         }
3525
3526         tx_ring->next_to_clean = i;
3527
3528 #define TX_WAKE_THRESHOLD 32
3529         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3530                      netif_carrier_ok(netdev))) {
3531                 spin_lock(&tx_ring->tx_lock);
3532                 if (netif_queue_stopped(netdev) &&
3533                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3534                         netif_wake_queue(netdev);
3535                 spin_unlock(&tx_ring->tx_lock);
3536         }
3537
3538         if (adapter->detect_tx_hung) {
3539                 /* Detect a transmit hang in hardware, this serializes the
3540                  * check with the clearing of time_stamp and movement of i */
3541                 adapter->detect_tx_hung = FALSE;
3542                 if (tx_ring->buffer_info[eop].dma &&
3543                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3544                                (adapter->tx_timeout_factor * HZ))
3545                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3546                          E1000_STATUS_TXOFF)) {
3547
3548                         /* detected Tx unit hang */
3549                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3550                                         "  Tx Queue             <%lu>\n"
3551                                         "  TDH                  <%x>\n"
3552                                         "  TDT                  <%x>\n"
3553                                         "  next_to_use          <%x>\n"
3554                                         "  next_to_clean        <%x>\n"
3555                                         "buffer_info[next_to_clean]\n"
3556                                         "  time_stamp           <%lx>\n"
3557                                         "  next_to_watch        <%x>\n"
3558                                         "  jiffies              <%lx>\n"
3559                                         "  next_to_watch.status <%x>\n",
3560                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3561                                         sizeof(struct e1000_tx_ring)),
3562                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3563                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3564                                 tx_ring->next_to_use,
3565                                 tx_ring->next_to_clean,
3566                                 tx_ring->buffer_info[eop].time_stamp,
3567                                 eop,
3568                                 jiffies,
3569                                 eop_desc->upper.fields.status);
3570                         netif_stop_queue(netdev);
3571                 }
3572         }
3573         return cleaned;
3574 }
3575
3576 /**
3577  * e1000_rx_checksum - Receive Checksum Offload for 82543
3578  * @adapter:     board private structure
3579  * @status_err:  receive descriptor status and error fields
3580  * @csum:        receive descriptor csum field
3581  * @sk_buff:     socket buffer with received data
3582  **/
3583
3584 static void
3585 e1000_rx_checksum(struct e1000_adapter *adapter,
3586                   uint32_t status_err, uint32_t csum,
3587                   struct sk_buff *skb)
3588 {
3589         uint16_t status = (uint16_t)status_err;
3590         uint8_t errors = (uint8_t)(status_err >> 24);
3591         skb->ip_summed = CHECKSUM_NONE;
3592
3593         /* 82543 or newer only */
3594         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3595         /* Ignore Checksum bit is set */
3596         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3597         /* TCP/UDP checksum error bit is set */
3598         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3599                 /* let the stack verify checksum errors */
3600                 adapter->hw_csum_err++;
3601                 return;
3602         }
3603         /* TCP/UDP Checksum has not been calculated */
3604         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3605                 if (!(status & E1000_RXD_STAT_TCPCS))
3606                         return;
3607         } else {
3608                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3609                         return;
3610         }
3611         /* It must be a TCP or UDP packet with a valid checksum */
3612         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3613                 /* TCP checksum is good */
3614                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3615         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3616                 /* IP fragment with UDP payload */
3617                 /* Hardware complements the payload checksum, so we undo it
3618                  * and then put the value in host order for further stack use.
3619                  */
3620                 csum = ntohl(csum ^ 0xFFFF);
3621                 skb->csum = csum;
3622                 skb->ip_summed = CHECKSUM_HW;
3623         }
3624         adapter->hw_csum_good++;
3625 }
3626
3627 /**
3628  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3629  * @adapter: board private structure
3630  **/
3631
3632 static boolean_t
3633 #ifdef CONFIG_E1000_NAPI
3634 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3635                    struct e1000_rx_ring *rx_ring,
3636                    int *work_done, int work_to_do)
3637 #else
3638 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3639                    struct e1000_rx_ring *rx_ring)
3640 #endif
3641 {
3642         struct net_device *netdev = adapter->netdev;
3643         struct pci_dev *pdev = adapter->pdev;
3644         struct e1000_rx_desc *rx_desc, *next_rxd;
3645         struct e1000_buffer *buffer_info, *next_buffer;
3646         unsigned long flags;
3647         uint32_t length;
3648         uint8_t last_byte;
3649         unsigned int i;
3650         int cleaned_count = 0;
3651         boolean_t cleaned = FALSE;
3652
3653         i = rx_ring->next_to_clean;
3654         rx_desc = E1000_RX_DESC(*rx_ring, i);
3655         buffer_info = &rx_ring->buffer_info[i];
3656
3657         while (rx_desc->status & E1000_RXD_STAT_DD) {
3658                 struct sk_buff *skb;
3659                 u8 status;
3660 #ifdef CONFIG_E1000_NAPI
3661                 if (*work_done >= work_to_do)
3662                         break;
3663                 (*work_done)++;
3664 #endif
3665                 status = rx_desc->status;
3666                 skb = buffer_info->skb;
3667                 buffer_info->skb = NULL;
3668
3669                 prefetch(skb->data - NET_IP_ALIGN);
3670
3671                 if (++i == rx_ring->count) i = 0;
3672                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3673                 prefetch(next_rxd);
3674
3675                 next_buffer = &rx_ring->buffer_info[i];
3676
3677                 cleaned = TRUE;
3678                 cleaned_count++;
3679                 pci_unmap_single(pdev,
3680                                  buffer_info->dma,
3681                                  buffer_info->length,
3682                                  PCI_DMA_FROMDEVICE);
3683
3684                 length = le16_to_cpu(rx_desc->length);
3685
3686                 /* adjust length to remove Ethernet CRC */
3687                 length -= 4;
3688
3689                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3690                         /* All receives must fit into a single buffer */
3691                         E1000_DBG("%s: Receive packet consumed multiple"
3692                                   " buffers\n", netdev->name);
3693                         /* recycle */
3694                         buffer_info->skb = skb;
3695                         goto next_desc;
3696                 }
3697
3698                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3699                         last_byte = *(skb->data + length - 1);
3700                         if (TBI_ACCEPT(&adapter->hw, status,
3701                                       rx_desc->errors, length, last_byte)) {
3702                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3703                                 e1000_tbi_adjust_stats(&adapter->hw,
3704                                                        &adapter->stats,
3705                                                        length, skb->data);
3706                                 spin_unlock_irqrestore(&adapter->stats_lock,
3707                                                        flags);
3708                                 length--;
3709                         } else {
3710                                 /* recycle */
3711                                 buffer_info->skb = skb;
3712                                 goto next_desc;
3713                         }
3714                 }
3715
3716                 /* code added for copybreak, this should improve
3717                  * performance for small packets with large amounts
3718                  * of reassembly being done in the stack */
3719 #define E1000_CB_LENGTH 256
3720                 if (length < E1000_CB_LENGTH) {
3721                         struct sk_buff *new_skb =
3722                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3723                         if (new_skb) {
3724                                 skb_reserve(new_skb, NET_IP_ALIGN);
3725                                 new_skb->dev = netdev;
3726                                 memcpy(new_skb->data - NET_IP_ALIGN,
3727                                        skb->data - NET_IP_ALIGN,
3728                                        length + NET_IP_ALIGN);
3729                                 /* save the skb in buffer_info as good */
3730                                 buffer_info->skb = skb;
3731                                 skb = new_skb;
3732                                 skb_put(skb, length);
3733                         }
3734                 } else
3735                         skb_put(skb, length);
3736
3737                 /* end copybreak code */
3738
3739                 /* Receive Checksum Offload */
3740                 e1000_rx_checksum(adapter,
3741                                   (uint32_t)(status) |
3742                                   ((uint32_t)(rx_desc->errors) << 24),
3743                                   le16_to_cpu(rx_desc->csum), skb);
3744
3745                 skb->protocol = eth_type_trans(skb, netdev);
3746 #ifdef CONFIG_E1000_NAPI
3747                 if (unlikely(adapter->vlgrp &&
3748                             (status & E1000_RXD_STAT_VP))) {
3749                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3750                                                  le16_to_cpu(rx_desc->special) &
3751                                                  E1000_RXD_SPC_VLAN_MASK);
3752                 } else {
3753                         netif_receive_skb(skb);
3754                 }
3755 #else /* CONFIG_E1000_NAPI */
3756                 if (unlikely(adapter->vlgrp &&
3757                             (status & E1000_RXD_STAT_VP))) {
3758                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3759                                         le16_to_cpu(rx_desc->special) &
3760                                         E1000_RXD_SPC_VLAN_MASK);
3761                 } else {
3762                         netif_rx(skb);
3763                 }
3764 #endif /* CONFIG_E1000_NAPI */
3765                 netdev->last_rx = jiffies;
3766
3767 next_desc:
3768                 rx_desc->status = 0;
3769
3770                 /* return some buffers to hardware, one at a time is too slow */
3771                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3772                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3773                         cleaned_count = 0;
3774                 }
3775
3776                 /* use prefetched values */
3777                 rx_desc = next_rxd;
3778                 buffer_info = next_buffer;
3779         }
3780         rx_ring->next_to_clean = i;
3781
3782         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3783         if (cleaned_count)
3784                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3785
3786         return cleaned;
3787 }
3788
3789 /**
3790  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3791  * @adapter: board private structure
3792  **/
3793
3794 static boolean_t
3795 #ifdef CONFIG_E1000_NAPI
3796 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3797                       struct e1000_rx_ring *rx_ring,
3798                       int *work_done, int work_to_do)
3799 #else
3800 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3801                       struct e1000_rx_ring *rx_ring)
3802 #endif
3803 {
3804         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3805         struct net_device *netdev = adapter->netdev;
3806         struct pci_dev *pdev = adapter->pdev;
3807         struct e1000_buffer *buffer_info, *next_buffer;
3808         struct e1000_ps_page *ps_page;
3809         struct e1000_ps_page_dma *ps_page_dma;
3810         struct sk_buff *skb;
3811         unsigned int i, j;
3812         uint32_t length, staterr;
3813         int cleaned_count = 0;
3814         boolean_t cleaned = FALSE;
3815
3816         i = rx_ring->next_to_clean;
3817         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3818         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3819         buffer_info = &rx_ring->buffer_info[i];
3820
3821         while (staterr & E1000_RXD_STAT_DD) {
3822                 ps_page = &rx_ring->ps_page[i];
3823                 ps_page_dma = &rx_ring->ps_page_dma[i];
3824 #ifdef CONFIG_E1000_NAPI
3825                 if (unlikely(*work_done >= work_to_do))
3826                         break;
3827                 (*work_done)++;
3828 #endif
3829                 skb = buffer_info->skb;
3830
3831                 /* in the packet split case this is header only */
3832                 prefetch(skb->data - NET_IP_ALIGN);
3833
3834                 if (++i == rx_ring->count) i = 0;
3835                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3836                 prefetch(next_rxd);
3837
3838                 next_buffer = &rx_ring->buffer_info[i];
3839
3840                 cleaned = TRUE;
3841                 cleaned_count++;
3842                 pci_unmap_single(pdev, buffer_info->dma,
3843                                  buffer_info->length,
3844                                  PCI_DMA_FROMDEVICE);
3845
3846                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3847                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3848                                   " the full packet\n", netdev->name);
3849                         dev_kfree_skb_irq(skb);
3850                         goto next_desc;
3851                 }
3852
3853                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3854                         dev_kfree_skb_irq(skb);
3855                         goto next_desc;
3856                 }
3857
3858                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3859
3860                 if (unlikely(!length)) {
3861                         E1000_DBG("%s: Last part of the packet spanning"
3862                                   " multiple descriptors\n", netdev->name);
3863                         dev_kfree_skb_irq(skb);
3864                         goto next_desc;
3865                 }
3866
3867                 /* Good Receive */
3868                 skb_put(skb, length);
3869
3870                 {
3871                 /* this looks ugly, but it seems compiler issues make it
3872                    more efficient than reusing j */
3873                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3874
3875                 /* page alloc/put takes too long and effects small packet
3876                  * throughput, so unsplit small packets and save the alloc/put*/
3877                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3878                         u8 *vaddr;
3879                         /* there is no documentation about how to call
3880                          * kmap_atomic, so we can't hold the mapping
3881                          * very long */
3882                         pci_dma_sync_single_for_cpu(pdev,
3883                                 ps_page_dma->ps_page_dma[0],
3884                                 PAGE_SIZE,
3885                                 PCI_DMA_FROMDEVICE);
3886                         vaddr = kmap_atomic(ps_page->ps_page[0],
3887                                             KM_SKB_DATA_SOFTIRQ);
3888                         memcpy(skb->tail, vaddr, l1);
3889                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3890                         pci_dma_sync_single_for_device(pdev,
3891                                 ps_page_dma->ps_page_dma[0],
3892                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3893                         /* remove the CRC */
3894                         l1 -= 4;
3895                         skb_put(skb, l1);
3896                         goto copydone;
3897                 } /* if */
3898                 }
3899                 
3900                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3901                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3902                                 break;
3903                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3904                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3905                         ps_page_dma->ps_page_dma[j] = 0;
3906                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3907                                            length);
3908                         ps_page->ps_page[j] = NULL;
3909                         skb->len += length;
3910                         skb->data_len += length;
3911                         skb->truesize += length;
3912                 }
3913
3914                 /* strip the ethernet crc, problem is we're using pages now so
3915                  * this whole operation can get a little cpu intensive */
3916                 pskb_trim(skb, skb->len - 4);
3917
3918 copydone:
3919                 e1000_rx_checksum(adapter, staterr,
3920                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3921                 skb->protocol = eth_type_trans(skb, netdev);
3922
3923                 if (likely(rx_desc->wb.upper.header_status &
3924                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3925                         adapter->rx_hdr_split++;
3926 #ifdef CONFIG_E1000_NAPI
3927                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3928                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3929                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3930                                 E1000_RXD_SPC_VLAN_MASK);
3931                 } else {
3932                         netif_receive_skb(skb);
3933                 }
3934 #else /* CONFIG_E1000_NAPI */
3935                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3936                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3937                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3938                                 E1000_RXD_SPC_VLAN_MASK);
3939                 } else {
3940                         netif_rx(skb);
3941                 }
3942 #endif /* CONFIG_E1000_NAPI */
3943                 netdev->last_rx = jiffies;
3944
3945 next_desc:
3946                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3947                 buffer_info->skb = NULL;
3948
3949                 /* return some buffers to hardware, one at a time is too slow */
3950                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3951                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3952                         cleaned_count = 0;
3953                 }
3954
3955                 /* use prefetched values */
3956                 rx_desc = next_rxd;
3957                 buffer_info = next_buffer;
3958
3959                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3960         }
3961         rx_ring->next_to_clean = i;
3962
3963         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3964         if (cleaned_count)
3965                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3966
3967         return cleaned;
3968 }
3969
3970 /**
3971  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3972  * @adapter: address of board private structure
3973  **/
3974
3975 static void
3976 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3977                        struct e1000_rx_ring *rx_ring,
3978                        int cleaned_count)
3979 {
3980         struct net_device *netdev = adapter->netdev;
3981         struct pci_dev *pdev = adapter->pdev;
3982         struct e1000_rx_desc *rx_desc;
3983         struct e1000_buffer *buffer_info;
3984         struct sk_buff *skb;
3985         unsigned int i;
3986         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3987
3988         i = rx_ring->next_to_use;
3989         buffer_info = &rx_ring->buffer_info[i];
3990
3991         while (cleaned_count--) {
3992                 if (!(skb = buffer_info->skb))
3993                         skb = netdev_alloc_skb(netdev, bufsz);
3994                 else {
3995                         skb_trim(skb, 0);
3996                         goto map_skb;
3997                 }
3998
3999                 if (unlikely(!skb)) {
4000                         /* Better luck next round */
4001                         adapter->alloc_rx_buff_failed++;
4002                         break;
4003                 }
4004
4005                 /* Fix for errata 23, can't cross 64kB boundary */
4006                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4007                         struct sk_buff *oldskb = skb;
4008                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4009                                              "at %p\n", bufsz, skb->data);
4010                         /* Try again, without freeing the previous */
4011                         skb = netdev_alloc_skb(netdev, bufsz);
4012                         /* Failed allocation, critical failure */
4013                         if (!skb) {
4014                                 dev_kfree_skb(oldskb);
4015                                 break;
4016                         }
4017
4018                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4019                                 /* give up */
4020                                 dev_kfree_skb(skb);
4021                                 dev_kfree_skb(oldskb);
4022                                 break; /* while !buffer_info->skb */
4023                         } else {
4024                                 /* Use new allocation */
4025                                 dev_kfree_skb(oldskb);
4026                         }
4027                 }
4028                 /* Make buffer alignment 2 beyond a 16 byte boundary
4029                  * this will result in a 16 byte aligned IP header after
4030                  * the 14 byte MAC header is removed
4031                  */
4032                 skb_reserve(skb, NET_IP_ALIGN);
4033
4034                 skb->dev = netdev;
4035
4036                 buffer_info->skb = skb;
4037                 buffer_info->length = adapter->rx_buffer_len;
4038 map_skb:
4039                 buffer_info->dma = pci_map_single(pdev,
4040                                                   skb->data,
4041                                                   adapter->rx_buffer_len,
4042                                                   PCI_DMA_FROMDEVICE);
4043
4044                 /* Fix for errata 23, can't cross 64kB boundary */
4045                 if (!e1000_check_64k_bound(adapter,
4046                                         (void *)(unsigned long)buffer_info->dma,
4047                                         adapter->rx_buffer_len)) {
4048                         DPRINTK(RX_ERR, ERR,
4049                                 "dma align check failed: %u bytes at %p\n",
4050                                 adapter->rx_buffer_len,
4051                                 (void *)(unsigned long)buffer_info->dma);
4052                         dev_kfree_skb(skb);
4053                         buffer_info->skb = NULL;
4054
4055                         pci_unmap_single(pdev, buffer_info->dma,
4056                                          adapter->rx_buffer_len,
4057                                          PCI_DMA_FROMDEVICE);
4058
4059                         break; /* while !buffer_info->skb */
4060                 }
4061                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4062                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4063
4064                 if (unlikely(++i == rx_ring->count))
4065                         i = 0;
4066                 buffer_info = &rx_ring->buffer_info[i];
4067         }
4068
4069         if (likely(rx_ring->next_to_use != i)) {
4070                 rx_ring->next_to_use = i;
4071                 if (unlikely(i-- == 0))
4072                         i = (rx_ring->count - 1);
4073
4074                 /* Force memory writes to complete before letting h/w
4075                  * know there are new descriptors to fetch.  (Only
4076                  * applicable for weak-ordered memory model archs,
4077                  * such as IA-64). */
4078                 wmb();
4079                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4080         }
4081 }
4082
4083 /**
4084  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4085  * @adapter: address of board private structure
4086  **/
4087
4088 static void
4089 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4090                           struct e1000_rx_ring *rx_ring,
4091                           int cleaned_count)
4092 {
4093         struct net_device *netdev = adapter->netdev;
4094         struct pci_dev *pdev = adapter->pdev;
4095         union e1000_rx_desc_packet_split *rx_desc;
4096         struct e1000_buffer *buffer_info;
4097         struct e1000_ps_page *ps_page;
4098         struct e1000_ps_page_dma *ps_page_dma;
4099         struct sk_buff *skb;
4100         unsigned int i, j;
4101
4102         i = rx_ring->next_to_use;
4103         buffer_info = &rx_ring->buffer_info[i];
4104         ps_page = &rx_ring->ps_page[i];
4105         ps_page_dma = &rx_ring->ps_page_dma[i];
4106
4107         while (cleaned_count--) {
4108                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4109
4110                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4111                         if (j < adapter->rx_ps_pages) {
4112                                 if (likely(!ps_page->ps_page[j])) {
4113                                         ps_page->ps_page[j] =
4114                                                 alloc_page(GFP_ATOMIC);
4115                                         if (unlikely(!ps_page->ps_page[j])) {
4116                                                 adapter->alloc_rx_buff_failed++;
4117                                                 goto no_buffers;
4118                                         }
4119                                         ps_page_dma->ps_page_dma[j] =
4120                                                 pci_map_page(pdev,
4121                                                             ps_page->ps_page[j],
4122                                                             0, PAGE_SIZE,
4123                                                             PCI_DMA_FROMDEVICE);
4124                                 }
4125                                 /* Refresh the desc even if buffer_addrs didn't
4126                                  * change because each write-back erases
4127                                  * this info.
4128                                  */
4129                                 rx_desc->read.buffer_addr[j+1] =
4130                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4131                         } else
4132                                 rx_desc->read.buffer_addr[j+1] = ~0;
4133                 }
4134
4135                 skb = netdev_alloc_skb(netdev,
4136                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4137
4138                 if (unlikely(!skb)) {
4139                         adapter->alloc_rx_buff_failed++;
4140                         break;
4141                 }
4142
4143                 /* Make buffer alignment 2 beyond a 16 byte boundary
4144                  * this will result in a 16 byte aligned IP header after
4145                  * the 14 byte MAC header is removed
4146                  */
4147                 skb_reserve(skb, NET_IP_ALIGN);
4148
4149                 skb->dev = netdev;
4150
4151                 buffer_info->skb = skb;
4152                 buffer_info->length = adapter->rx_ps_bsize0;
4153                 buffer_info->dma = pci_map_single(pdev, skb->data,
4154                                                   adapter->rx_ps_bsize0,
4155                                                   PCI_DMA_FROMDEVICE);
4156
4157                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4158
4159                 if (unlikely(++i == rx_ring->count)) i = 0;
4160                 buffer_info = &rx_ring->buffer_info[i];
4161                 ps_page = &rx_ring->ps_page[i];
4162                 ps_page_dma = &rx_ring->ps_page_dma[i];
4163         }
4164
4165 no_buffers:
4166         if (likely(rx_ring->next_to_use != i)) {
4167                 rx_ring->next_to_use = i;
4168                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4169
4170                 /* Force memory writes to complete before letting h/w
4171                  * know there are new descriptors to fetch.  (Only
4172                  * applicable for weak-ordered memory model archs,
4173                  * such as IA-64). */
4174                 wmb();
4175                 /* Hardware increments by 16 bytes, but packet split
4176                  * descriptors are 32 bytes...so we increment tail
4177                  * twice as much.
4178                  */
4179                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4180         }
4181 }
4182
4183 /**
4184  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4185  * @adapter:
4186  **/
4187
4188 static void
4189 e1000_smartspeed(struct e1000_adapter *adapter)
4190 {
4191         uint16_t phy_status;
4192         uint16_t phy_ctrl;
4193
4194         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4195            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4196                 return;
4197
4198         if (adapter->smartspeed == 0) {
4199                 /* If Master/Slave config fault is asserted twice,
4200                  * we assume back-to-back */
4201                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4202                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4203                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4204                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4205                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4206                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4207                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4208                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4209                                             phy_ctrl);
4210                         adapter->smartspeed++;
4211                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4212                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4213                                                &phy_ctrl)) {
4214                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4215                                              MII_CR_RESTART_AUTO_NEG);
4216                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4217                                                     phy_ctrl);
4218                         }
4219                 }
4220                 return;
4221         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4222                 /* If still no link, perhaps using 2/3 pair cable */
4223                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4224                 phy_ctrl |= CR_1000T_MS_ENABLE;
4225                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4226                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4227                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4228                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4229                                      MII_CR_RESTART_AUTO_NEG);
4230                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4231                 }
4232         }
4233         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4234         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4235                 adapter->smartspeed = 0;
4236 }
4237
4238 /**
4239  * e1000_ioctl -
4240  * @netdev:
4241  * @ifreq:
4242  * @cmd:
4243  **/
4244
4245 static int
4246 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4247 {
4248         switch (cmd) {
4249         case SIOCGMIIPHY:
4250         case SIOCGMIIREG:
4251         case SIOCSMIIREG:
4252                 return e1000_mii_ioctl(netdev, ifr, cmd);
4253         default:
4254                 return -EOPNOTSUPP;
4255         }
4256 }
4257
4258 /**
4259  * e1000_mii_ioctl -
4260  * @netdev:
4261  * @ifreq:
4262  * @cmd:
4263  **/
4264
4265 static int
4266 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4267 {
4268         struct e1000_adapter *adapter = netdev_priv(netdev);
4269         struct mii_ioctl_data *data = if_mii(ifr);
4270         int retval;
4271         uint16_t mii_reg;
4272         uint16_t spddplx;
4273         unsigned long flags;
4274
4275         if (adapter->hw.media_type != e1000_media_type_copper)
4276                 return -EOPNOTSUPP;
4277
4278         switch (cmd) {
4279         case SIOCGMIIPHY:
4280                 data->phy_id = adapter->hw.phy_addr;
4281                 break;
4282         case SIOCGMIIREG:
4283                 if (!capable(CAP_NET_ADMIN))
4284                         return -EPERM;
4285                 spin_lock_irqsave(&adapter->stats_lock, flags);
4286                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4287                                    &data->val_out)) {
4288                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4289                         return -EIO;
4290                 }
4291                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4292                 break;
4293         case SIOCSMIIREG:
4294                 if (!capable(CAP_NET_ADMIN))
4295                         return -EPERM;
4296                 if (data->reg_num & ~(0x1F))
4297                         return -EFAULT;
4298                 mii_reg = data->val_in;
4299                 spin_lock_irqsave(&adapter->stats_lock, flags);
4300                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4301                                         mii_reg)) {
4302                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4303                         return -EIO;
4304                 }
4305                 if (adapter->hw.media_type == e1000_media_type_copper) {
4306                         switch (data->reg_num) {
4307                         case PHY_CTRL:
4308                                 if (mii_reg & MII_CR_POWER_DOWN)
4309                                         break;
4310                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4311                                         adapter->hw.autoneg = 1;
4312                                         adapter->hw.autoneg_advertised = 0x2F;
4313                                 } else {
4314                                         if (mii_reg & 0x40)
4315                                                 spddplx = SPEED_1000;
4316                                         else if (mii_reg & 0x2000)
4317                                                 spddplx = SPEED_100;
4318                                         else
4319                                                 spddplx = SPEED_10;
4320                                         spddplx += (mii_reg & 0x100)
4321                                                    ? DUPLEX_FULL :
4322                                                    DUPLEX_HALF;
4323                                         retval = e1000_set_spd_dplx(adapter,
4324                                                                     spddplx);
4325                                         if (retval) {
4326                                                 spin_unlock_irqrestore(
4327                                                         &adapter->stats_lock,
4328                                                         flags);
4329                                                 return retval;
4330                                         }
4331                                 }
4332                                 if (netif_running(adapter->netdev))
4333                                         e1000_reinit_locked(adapter);
4334                                 else
4335                                         e1000_reset(adapter);
4336                                 break;
4337                         case M88E1000_PHY_SPEC_CTRL:
4338                         case M88E1000_EXT_PHY_SPEC_CTRL:
4339                                 if (e1000_phy_reset(&adapter->hw)) {
4340                                         spin_unlock_irqrestore(
4341                                                 &adapter->stats_lock, flags);
4342                                         return -EIO;
4343                                 }
4344                                 break;
4345                         }
4346                 } else {
4347                         switch (data->reg_num) {
4348                         case PHY_CTRL:
4349                                 if (mii_reg & MII_CR_POWER_DOWN)
4350                                         break;
4351                                 if (netif_running(adapter->netdev))
4352                                         e1000_reinit_locked(adapter);
4353                                 else
4354                                         e1000_reset(adapter);
4355                                 break;
4356                         }
4357                 }
4358                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4359                 break;
4360         default:
4361                 return -EOPNOTSUPP;
4362         }
4363         return E1000_SUCCESS;
4364 }
4365
4366 void
4367 e1000_pci_set_mwi(struct e1000_hw *hw)
4368 {
4369         struct e1000_adapter *adapter = hw->back;
4370         int ret_val = pci_set_mwi(adapter->pdev);
4371
4372         if (ret_val)
4373                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4374 }
4375
4376 void
4377 e1000_pci_clear_mwi(struct e1000_hw *hw)
4378 {
4379         struct e1000_adapter *adapter = hw->back;
4380
4381         pci_clear_mwi(adapter->pdev);
4382 }
4383
4384 void
4385 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4386 {
4387         struct e1000_adapter *adapter = hw->back;
4388
4389         pci_read_config_word(adapter->pdev, reg, value);
4390 }
4391
4392 void
4393 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4394 {
4395         struct e1000_adapter *adapter = hw->back;
4396
4397         pci_write_config_word(adapter->pdev, reg, *value);
4398 }
4399
4400 #if 0
4401 uint32_t
4402 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4403 {
4404         return inl(port);
4405 }
4406 #endif  /*  0  */
4407
4408 void
4409 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4410 {
4411         outl(value, port);
4412 }
4413
4414 static void
4415 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4416 {
4417         struct e1000_adapter *adapter = netdev_priv(netdev);
4418         uint32_t ctrl, rctl;
4419
4420         e1000_irq_disable(adapter);
4421         adapter->vlgrp = grp;
4422
4423         if (grp) {
4424                 /* enable VLAN tag insert/strip */
4425                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4426                 ctrl |= E1000_CTRL_VME;
4427                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4428
4429                 if (adapter->hw.mac_type != e1000_ich8lan) {
4430                 /* enable VLAN receive filtering */
4431                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4432                 rctl |= E1000_RCTL_VFE;
4433                 rctl &= ~E1000_RCTL_CFIEN;
4434                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4435                 e1000_update_mng_vlan(adapter);
4436                 }
4437         } else {
4438                 /* disable VLAN tag insert/strip */
4439                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4440                 ctrl &= ~E1000_CTRL_VME;
4441                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4442
4443                 if (adapter->hw.mac_type != e1000_ich8lan) {
4444                 /* disable VLAN filtering */
4445                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4446                 rctl &= ~E1000_RCTL_VFE;
4447                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4448                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4449                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4450                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4451                 }
4452                 }
4453         }
4454
4455         e1000_irq_enable(adapter);
4456 }
4457
4458 static void
4459 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4460 {
4461         struct e1000_adapter *adapter = netdev_priv(netdev);
4462         uint32_t vfta, index;
4463
4464         if ((adapter->hw.mng_cookie.status &
4465              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4466             (vid == adapter->mng_vlan_id))
4467                 return;
4468         /* add VID to filter table */
4469         index = (vid >> 5) & 0x7F;
4470         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4471         vfta |= (1 << (vid & 0x1F));
4472         e1000_write_vfta(&adapter->hw, index, vfta);
4473 }
4474
4475 static void
4476 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4477 {
4478         struct e1000_adapter *adapter = netdev_priv(netdev);
4479         uint32_t vfta, index;
4480
4481         e1000_irq_disable(adapter);
4482
4483         if (adapter->vlgrp)
4484                 adapter->vlgrp->vlan_devices[vid] = NULL;
4485
4486         e1000_irq_enable(adapter);
4487
4488         if ((adapter->hw.mng_cookie.status &
4489              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4490             (vid == adapter->mng_vlan_id)) {
4491                 /* release control to f/w */
4492                 e1000_release_hw_control(adapter);
4493                 return;
4494         }
4495
4496         /* remove VID from filter table */
4497         index = (vid >> 5) & 0x7F;
4498         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4499         vfta &= ~(1 << (vid & 0x1F));
4500         e1000_write_vfta(&adapter->hw, index, vfta);
4501 }
4502
4503 static void
4504 e1000_restore_vlan(struct e1000_adapter *adapter)
4505 {
4506         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4507
4508         if (adapter->vlgrp) {
4509                 uint16_t vid;
4510                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4511                         if (!adapter->vlgrp->vlan_devices[vid])
4512                                 continue;
4513                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4514                 }
4515         }
4516 }
4517
4518 int
4519 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4520 {
4521         adapter->hw.autoneg = 0;
4522
4523         /* Fiber NICs only allow 1000 gbps Full duplex */
4524         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4525                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4526                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4527                 return -EINVAL;
4528         }
4529
4530         switch (spddplx) {
4531         case SPEED_10 + DUPLEX_HALF:
4532                 adapter->hw.forced_speed_duplex = e1000_10_half;
4533                 break;
4534         case SPEED_10 + DUPLEX_FULL:
4535                 adapter->hw.forced_speed_duplex = e1000_10_full;
4536                 break;
4537         case SPEED_100 + DUPLEX_HALF:
4538                 adapter->hw.forced_speed_duplex = e1000_100_half;
4539                 break;
4540         case SPEED_100 + DUPLEX_FULL:
4541                 adapter->hw.forced_speed_duplex = e1000_100_full;
4542                 break;
4543         case SPEED_1000 + DUPLEX_FULL:
4544                 adapter->hw.autoneg = 1;
4545                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4546                 break;
4547         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4548         default:
4549                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4550                 return -EINVAL;
4551         }
4552         return 0;
4553 }
4554
4555 #ifdef CONFIG_PM
4556 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4557  * bus we're on (PCI(X) vs. PCI-E)
4558  */
4559 #define PCIE_CONFIG_SPACE_LEN 256
4560 #define PCI_CONFIG_SPACE_LEN 64
4561 static int
4562 e1000_pci_save_state(struct e1000_adapter *adapter)
4563 {
4564         struct pci_dev *dev = adapter->pdev;
4565         int size;
4566         int i;
4567
4568         if (adapter->hw.mac_type >= e1000_82571)
4569                 size = PCIE_CONFIG_SPACE_LEN;
4570         else
4571                 size = PCI_CONFIG_SPACE_LEN;
4572
4573         WARN_ON(adapter->config_space != NULL);
4574
4575         adapter->config_space = kmalloc(size, GFP_KERNEL);
4576         if (!adapter->config_space) {
4577                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4578                 return -ENOMEM;
4579         }
4580         for (i = 0; i < (size / 4); i++)
4581                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4582         return 0;
4583 }
4584
4585 static void
4586 e1000_pci_restore_state(struct e1000_adapter *adapter)
4587 {
4588         struct pci_dev *dev = adapter->pdev;
4589         int size;
4590         int i;
4591
4592         if (adapter->config_space == NULL)
4593                 return;
4594
4595         if (adapter->hw.mac_type >= e1000_82571)
4596                 size = PCIE_CONFIG_SPACE_LEN;
4597         else
4598                 size = PCI_CONFIG_SPACE_LEN;
4599         for (i = 0; i < (size / 4); i++)
4600                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4601         kfree(adapter->config_space);
4602         adapter->config_space = NULL;
4603         return;
4604 }
4605 #endif /* CONFIG_PM */
4606
4607 static int
4608 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4609 {
4610         struct net_device *netdev = pci_get_drvdata(pdev);
4611         struct e1000_adapter *adapter = netdev_priv(netdev);
4612         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4613         uint32_t wufc = adapter->wol;
4614 #ifdef CONFIG_PM
4615         int retval = 0;
4616 #endif
4617
4618         netif_device_detach(netdev);
4619
4620         if (netif_running(netdev)) {
4621                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4622                 e1000_down(adapter);
4623         }
4624
4625 #ifdef CONFIG_PM
4626         /* Implement our own version of pci_save_state(pdev) because pci-
4627          * express adapters have 256-byte config spaces. */
4628         retval = e1000_pci_save_state(adapter);
4629         if (retval)
4630                 return retval;
4631 #endif
4632
4633         status = E1000_READ_REG(&adapter->hw, STATUS);
4634         if (status & E1000_STATUS_LU)
4635                 wufc &= ~E1000_WUFC_LNKC;
4636
4637         if (wufc) {
4638                 e1000_setup_rctl(adapter);
4639                 e1000_set_multi(netdev);
4640
4641                 /* turn on all-multi mode if wake on multicast is enabled */
4642                 if (adapter->wol & E1000_WUFC_MC) {
4643                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4644                         rctl |= E1000_RCTL_MPE;
4645                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4646                 }
4647
4648                 if (adapter->hw.mac_type >= e1000_82540) {
4649                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4650                         /* advertise wake from D3Cold */
4651                         #define E1000_CTRL_ADVD3WUC 0x00100000
4652                         /* phy power management enable */
4653                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4654                         ctrl |= E1000_CTRL_ADVD3WUC |
4655                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4656                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4657                 }
4658
4659                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4660                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4661                         /* keep the laser running in D3 */
4662                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4663                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4664                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4665                 }
4666
4667                 /* Allow time for pending master requests to run */
4668                 e1000_disable_pciex_master(&adapter->hw);
4669
4670                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4671                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4672                 pci_enable_wake(pdev, PCI_D3hot, 1);
4673                 pci_enable_wake(pdev, PCI_D3cold, 1);
4674         } else {
4675                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4676                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4677                 pci_enable_wake(pdev, PCI_D3hot, 0);
4678                 pci_enable_wake(pdev, PCI_D3cold, 0);
4679         }
4680
4681         /* FIXME: this code is incorrect for PCI Express */
4682         if (adapter->hw.mac_type >= e1000_82540 &&
4683            adapter->hw.mac_type != e1000_ich8lan &&
4684            adapter->hw.media_type == e1000_media_type_copper) {
4685                 manc = E1000_READ_REG(&adapter->hw, MANC);
4686                 if (manc & E1000_MANC_SMBUS_EN) {
4687                         manc |= E1000_MANC_ARP_EN;
4688                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4689                         pci_enable_wake(pdev, PCI_D3hot, 1);
4690                         pci_enable_wake(pdev, PCI_D3cold, 1);
4691                 }
4692         }
4693
4694         if (adapter->hw.phy_type == e1000_phy_igp_3)
4695                 e1000_phy_powerdown_workaround(&adapter->hw);
4696
4697         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4698          * would have already happened in close and is redundant. */
4699         e1000_release_hw_control(adapter);
4700
4701         pci_disable_device(pdev);
4702
4703         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4704
4705         return 0;
4706 }
4707
4708 #ifdef CONFIG_PM
4709 static int
4710 e1000_resume(struct pci_dev *pdev)
4711 {
4712         struct net_device *netdev = pci_get_drvdata(pdev);
4713         struct e1000_adapter *adapter = netdev_priv(netdev);
4714         uint32_t manc, ret_val;
4715
4716         pci_set_power_state(pdev, PCI_D0);
4717         e1000_pci_restore_state(adapter);
4718         ret_val = pci_enable_device(pdev);
4719         pci_set_master(pdev);
4720
4721         pci_enable_wake(pdev, PCI_D3hot, 0);
4722         pci_enable_wake(pdev, PCI_D3cold, 0);
4723
4724         e1000_reset(adapter);
4725         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4726
4727         if (netif_running(netdev))
4728                 e1000_up(adapter);
4729
4730         netif_device_attach(netdev);
4731
4732         /* FIXME: this code is incorrect for PCI Express */
4733         if (adapter->hw.mac_type >= e1000_82540 &&
4734            adapter->hw.mac_type != e1000_ich8lan &&
4735            adapter->hw.media_type == e1000_media_type_copper) {
4736                 manc = E1000_READ_REG(&adapter->hw, MANC);
4737                 manc &= ~(E1000_MANC_ARP_EN);
4738                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4739         }
4740
4741         /* If the controller is 82573 and f/w is AMT, do not set
4742          * DRV_LOAD until the interface is up.  For all other cases,
4743          * let the f/w know that the h/w is now under the control
4744          * of the driver. */
4745         if (adapter->hw.mac_type != e1000_82573 ||
4746             !e1000_check_mng_mode(&adapter->hw))
4747                 e1000_get_hw_control(adapter);
4748
4749         return 0;
4750 }
4751 #endif
4752
4753 static void e1000_shutdown(struct pci_dev *pdev)
4754 {
4755         e1000_suspend(pdev, PMSG_SUSPEND);
4756 }
4757
4758 #ifdef CONFIG_NET_POLL_CONTROLLER
4759 /*
4760  * Polling 'interrupt' - used by things like netconsole to send skbs
4761  * without having to re-enable interrupts. It's not called while
4762  * the interrupt routine is executing.
4763  */
4764 static void
4765 e1000_netpoll(struct net_device *netdev)
4766 {
4767         struct e1000_adapter *adapter = netdev_priv(netdev);
4768
4769         disable_irq(adapter->pdev->irq);
4770         e1000_intr(adapter->pdev->irq, netdev, NULL);
4771         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4772 #ifndef CONFIG_E1000_NAPI
4773         adapter->clean_rx(adapter, adapter->rx_ring);
4774 #endif
4775         enable_irq(adapter->pdev->irq);
4776 }
4777 #endif
4778
4779 /**
4780  * e1000_io_error_detected - called when PCI error is detected
4781  * @pdev: Pointer to PCI device
4782  * @state: The current pci conneection state
4783  *
4784  * This function is called after a PCI bus error affecting
4785  * this device has been detected.
4786  */
4787 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4788 {
4789         struct net_device *netdev = pci_get_drvdata(pdev);
4790         struct e1000_adapter *adapter = netdev->priv;
4791
4792         netif_device_detach(netdev);
4793
4794         if (netif_running(netdev))
4795                 e1000_down(adapter);
4796
4797         /* Request a slot slot reset. */
4798         return PCI_ERS_RESULT_NEED_RESET;
4799 }
4800
4801 /**
4802  * e1000_io_slot_reset - called after the pci bus has been reset.
4803  * @pdev: Pointer to PCI device
4804  *
4805  * Restart the card from scratch, as if from a cold-boot. Implementation
4806  * resembles the first-half of the e1000_resume routine.
4807  */
4808 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4809 {
4810         struct net_device *netdev = pci_get_drvdata(pdev);
4811         struct e1000_adapter *adapter = netdev->priv;
4812
4813         if (pci_enable_device(pdev)) {
4814                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4815                 return PCI_ERS_RESULT_DISCONNECT;
4816         }
4817         pci_set_master(pdev);
4818
4819         pci_enable_wake(pdev, 3, 0);
4820         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4821
4822         /* Perform card reset only on one instance of the card */
4823         if (PCI_FUNC (pdev->devfn) != 0)
4824                 return PCI_ERS_RESULT_RECOVERED;
4825
4826         e1000_reset(adapter);
4827         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4828
4829         return PCI_ERS_RESULT_RECOVERED;
4830 }
4831
4832 /**
4833  * e1000_io_resume - called when traffic can start flowing again.
4834  * @pdev: Pointer to PCI device
4835  *
4836  * This callback is called when the error recovery driver tells us that
4837  * its OK to resume normal operation. Implementation resembles the
4838  * second-half of the e1000_resume routine.
4839  */
4840 static void e1000_io_resume(struct pci_dev *pdev)
4841 {
4842         struct net_device *netdev = pci_get_drvdata(pdev);
4843         struct e1000_adapter *adapter = netdev->priv;
4844         uint32_t manc, swsm;
4845
4846         if (netif_running(netdev)) {
4847                 if (e1000_up(adapter)) {
4848                         printk("e1000: can't bring device back up after reset\n");
4849                         return;
4850                 }
4851         }
4852
4853         netif_device_attach(netdev);
4854
4855         if (adapter->hw.mac_type >= e1000_82540 &&
4856             adapter->hw.media_type == e1000_media_type_copper) {
4857                 manc = E1000_READ_REG(&adapter->hw, MANC);
4858                 manc &= ~(E1000_MANC_ARP_EN);
4859                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4860         }
4861
4862         switch (adapter->hw.mac_type) {
4863         case e1000_82573:
4864                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4865                 E1000_WRITE_REG(&adapter->hw, SWSM,
4866                                 swsm | E1000_SWSM_DRV_LOAD);
4867                 break;
4868         default:
4869                 break;
4870         }
4871
4872         if (netif_running(netdev))
4873                 mod_timer(&adapter->watchdog_timer, jiffies);
4874 }
4875
4876 /* e1000_main.c */