]> err.no Git - linux-2.6/blob - drivers/net/e1000/e1000_main.c
e1000: implement more efficient tx queue locking
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 7.0.33      3-Feb-2006
33  *   o Added another fix for the pass false carrier bit
34  * 7.0.32      24-Jan-2006
35  *   o Need to rebuild with noew version number for the pass false carrier 
36  *     fix in e1000_hw.c
37  * 7.0.30      18-Jan-2006
38  *   o fixup for tso workaround to disable it for pci-x
39  *   o fix mem leak on 82542
40  *   o fixes for 10 Mb/s connections and incorrect stats
41  * 7.0.28      01/06/2006
42  *   o hardware workaround to only set "speed mode" bit for 1G link.
43  * 7.0.26      12/23/2005
44  *   o wake on lan support modified for device ID 10B5
45  *   o fix dhcp + vlan issue not making it to the iAMT firmware
46  * 7.0.24      12/9/2005
47  *   o New hardware support for the Gigabit NIC embedded in the south bridge
48  *   o Fixes to the recycling logic (skb->tail) from IBM LTC
49  * 6.3.9        12/16/2005
50  *   o incorporate fix for recycled skbs from IBM LTC
51  * 6.3.7        11/18/2005
52  *   o Honor eeprom setting for enabling/disabling Wake On Lan
53  * 6.3.5        11/17/2005
54  *   o Fix memory leak in rx ring handling for PCI Express adapters
55  * 6.3.4        11/8/05
56  *   o Patch from Jesper Juhl to remove redundant NULL checks for kfree
57  * 6.3.2        9/20/05
58  *   o Render logic that sets/resets DRV_LOAD as inline functions to 
59  *     avoid code replication. If f/w is AMT then set DRV_LOAD only when
60  *     network interface is open.
61  *   o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
62  *   o Adjust PBA partioning for Jumbo frames using MTU size and not
63  *     rx_buffer_len
64  * 6.3.1        9/19/05
65  *   o Use adapter->tx_timeout_factor in Tx Hung Detect logic 
66  *      (e1000_clean_tx_irq)
67  *   o Support for 8086:10B5 device (Quad Port)
68  */
69
70 char e1000_driver_name[] = "e1000";
71 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
72 #ifndef CONFIG_E1000_NAPI
73 #define DRIVERNAPI
74 #else
75 #define DRIVERNAPI "-NAPI"
76 #endif
77 #define DRV_VERSION "7.0.33-k2"DRIVERNAPI
78 char e1000_driver_version[] = DRV_VERSION;
79 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
80
81 /* e1000_pci_tbl - PCI Device ID Table
82  *
83  * Last entry must be all 0s
84  *
85  * Macro expands to...
86  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
87  */
88 static struct pci_device_id e1000_pci_tbl[] = {
89         INTEL_E1000_ETHERNET_DEVICE(0x1000),
90         INTEL_E1000_ETHERNET_DEVICE(0x1001),
91         INTEL_E1000_ETHERNET_DEVICE(0x1004),
92         INTEL_E1000_ETHERNET_DEVICE(0x1008),
93         INTEL_E1000_ETHERNET_DEVICE(0x1009),
94         INTEL_E1000_ETHERNET_DEVICE(0x100C),
95         INTEL_E1000_ETHERNET_DEVICE(0x100D),
96         INTEL_E1000_ETHERNET_DEVICE(0x100E),
97         INTEL_E1000_ETHERNET_DEVICE(0x100F),
98         INTEL_E1000_ETHERNET_DEVICE(0x1010),
99         INTEL_E1000_ETHERNET_DEVICE(0x1011),
100         INTEL_E1000_ETHERNET_DEVICE(0x1012),
101         INTEL_E1000_ETHERNET_DEVICE(0x1013),
102         INTEL_E1000_ETHERNET_DEVICE(0x1014),
103         INTEL_E1000_ETHERNET_DEVICE(0x1015),
104         INTEL_E1000_ETHERNET_DEVICE(0x1016),
105         INTEL_E1000_ETHERNET_DEVICE(0x1017),
106         INTEL_E1000_ETHERNET_DEVICE(0x1018),
107         INTEL_E1000_ETHERNET_DEVICE(0x1019),
108         INTEL_E1000_ETHERNET_DEVICE(0x101A),
109         INTEL_E1000_ETHERNET_DEVICE(0x101D),
110         INTEL_E1000_ETHERNET_DEVICE(0x101E),
111         INTEL_E1000_ETHERNET_DEVICE(0x1026),
112         INTEL_E1000_ETHERNET_DEVICE(0x1027),
113         INTEL_E1000_ETHERNET_DEVICE(0x1028),
114         INTEL_E1000_ETHERNET_DEVICE(0x105E),
115         INTEL_E1000_ETHERNET_DEVICE(0x105F),
116         INTEL_E1000_ETHERNET_DEVICE(0x1060),
117         INTEL_E1000_ETHERNET_DEVICE(0x1075),
118         INTEL_E1000_ETHERNET_DEVICE(0x1076),
119         INTEL_E1000_ETHERNET_DEVICE(0x1077),
120         INTEL_E1000_ETHERNET_DEVICE(0x1078),
121         INTEL_E1000_ETHERNET_DEVICE(0x1079),
122         INTEL_E1000_ETHERNET_DEVICE(0x107A),
123         INTEL_E1000_ETHERNET_DEVICE(0x107B),
124         INTEL_E1000_ETHERNET_DEVICE(0x107C),
125         INTEL_E1000_ETHERNET_DEVICE(0x107D),
126         INTEL_E1000_ETHERNET_DEVICE(0x107E),
127         INTEL_E1000_ETHERNET_DEVICE(0x107F),
128         INTEL_E1000_ETHERNET_DEVICE(0x108A),
129         INTEL_E1000_ETHERNET_DEVICE(0x108B),
130         INTEL_E1000_ETHERNET_DEVICE(0x108C),
131         INTEL_E1000_ETHERNET_DEVICE(0x1096),
132         INTEL_E1000_ETHERNET_DEVICE(0x1098),
133         INTEL_E1000_ETHERNET_DEVICE(0x1099),
134         INTEL_E1000_ETHERNET_DEVICE(0x109A),
135         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
136         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
137         /* required last entry */
138         {0,}
139 };
140
141 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
142
143 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
144                                     struct e1000_tx_ring *txdr);
145 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
146                                     struct e1000_rx_ring *rxdr);
147 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
148                                     struct e1000_tx_ring *tx_ring);
149 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
150                                     struct e1000_rx_ring *rx_ring);
151
152 /* Local Function Prototypes */
153
154 static int e1000_init_module(void);
155 static void e1000_exit_module(void);
156 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
157 static void __devexit e1000_remove(struct pci_dev *pdev);
158 static int e1000_alloc_queues(struct e1000_adapter *adapter);
159 static int e1000_sw_init(struct e1000_adapter *adapter);
160 static int e1000_open(struct net_device *netdev);
161 static int e1000_close(struct net_device *netdev);
162 static void e1000_configure_tx(struct e1000_adapter *adapter);
163 static void e1000_configure_rx(struct e1000_adapter *adapter);
164 static void e1000_setup_rctl(struct e1000_adapter *adapter);
165 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
166 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
167 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
168                                 struct e1000_tx_ring *tx_ring);
169 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
170                                 struct e1000_rx_ring *rx_ring);
171 static void e1000_set_multi(struct net_device *netdev);
172 static void e1000_update_phy_info(unsigned long data);
173 static void e1000_watchdog(unsigned long data);
174 static void e1000_watchdog_task(struct e1000_adapter *adapter);
175 static void e1000_82547_tx_fifo_stall(unsigned long data);
176 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
177 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
178 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
179 static int e1000_set_mac(struct net_device *netdev, void *p);
180 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
181 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
182                                     struct e1000_tx_ring *tx_ring);
183 #ifdef CONFIG_E1000_NAPI
184 static int e1000_clean(struct net_device *poll_dev, int *budget);
185 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
186                                     struct e1000_rx_ring *rx_ring,
187                                     int *work_done, int work_to_do);
188 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
189                                        struct e1000_rx_ring *rx_ring,
190                                        int *work_done, int work_to_do);
191 #else
192 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
193                                     struct e1000_rx_ring *rx_ring);
194 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
195                                        struct e1000_rx_ring *rx_ring);
196 #endif
197 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
198                                    struct e1000_rx_ring *rx_ring,
199                                    int cleaned_count);
200 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
201                                       struct e1000_rx_ring *rx_ring,
202                                       int cleaned_count);
203 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
204 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
205                            int cmd);
206 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
207 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
208 static void e1000_tx_timeout(struct net_device *dev);
209 static void e1000_reset_task(struct net_device *dev);
210 static void e1000_smartspeed(struct e1000_adapter *adapter);
211 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
212                                        struct sk_buff *skb);
213
214 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
215 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
216 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
217 static void e1000_restore_vlan(struct e1000_adapter *adapter);
218
219 #ifdef CONFIG_PM
220 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
221 static int e1000_resume(struct pci_dev *pdev);
222 #endif
223
224 #ifdef CONFIG_NET_POLL_CONTROLLER
225 /* for netdump / net console */
226 static void e1000_netpoll (struct net_device *netdev);
227 #endif
228
229
230 static struct pci_driver e1000_driver = {
231         .name     = e1000_driver_name,
232         .id_table = e1000_pci_tbl,
233         .probe    = e1000_probe,
234         .remove   = __devexit_p(e1000_remove),
235         /* Power Managment Hooks */
236 #ifdef CONFIG_PM
237         .suspend  = e1000_suspend,
238         .resume   = e1000_resume
239 #endif
240 };
241
242 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
243 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
244 MODULE_LICENSE("GPL");
245 MODULE_VERSION(DRV_VERSION);
246
247 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
248 module_param(debug, int, 0);
249 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
250
251 /**
252  * e1000_init_module - Driver Registration Routine
253  *
254  * e1000_init_module is the first routine called when the driver is
255  * loaded. All it does is register with the PCI subsystem.
256  **/
257
258 static int __init
259 e1000_init_module(void)
260 {
261         int ret;
262         printk(KERN_INFO "%s - version %s\n",
263                e1000_driver_string, e1000_driver_version);
264
265         printk(KERN_INFO "%s\n", e1000_copyright);
266
267         ret = pci_module_init(&e1000_driver);
268
269         return ret;
270 }
271
272 module_init(e1000_init_module);
273
274 /**
275  * e1000_exit_module - Driver Exit Cleanup Routine
276  *
277  * e1000_exit_module is called just before the driver is removed
278  * from memory.
279  **/
280
281 static void __exit
282 e1000_exit_module(void)
283 {
284         pci_unregister_driver(&e1000_driver);
285 }
286
287 module_exit(e1000_exit_module);
288
289 /**
290  * e1000_irq_disable - Mask off interrupt generation on the NIC
291  * @adapter: board private structure
292  **/
293
294 static void
295 e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         atomic_inc(&adapter->irq_sem);
298         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
299         E1000_WRITE_FLUSH(&adapter->hw);
300         synchronize_irq(adapter->pdev->irq);
301 }
302
303 /**
304  * e1000_irq_enable - Enable default interrupt generation settings
305  * @adapter: board private structure
306  **/
307
308 static void
309 e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
312                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
313                 E1000_WRITE_FLUSH(&adapter->hw);
314         }
315 }
316
317 static void
318 e1000_update_mng_vlan(struct e1000_adapter *adapter)
319 {
320         struct net_device *netdev = adapter->netdev;
321         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
322         uint16_t old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!adapter->vlgrp->vlan_devices[vid]) {
325                         if (adapter->hw.mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                                         !adapter->vlgrp->vlan_devices[old_vid])
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the netowrk i/f is closed.
349  * 
350  **/
351
352 static void
353 e1000_release_hw_control(struct e1000_adapter *adapter)
354 {
355         uint32_t ctrl_ext;
356         uint32_t swsm;
357
358         /* Let firmware taken over control of h/w */
359         switch (adapter->hw.mac_type) {
360         case e1000_82571:
361         case e1000_82572:
362         case e1000_80003es2lan:
363                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
364                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
365                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
366                 break;
367         case e1000_82573:
368                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
369                 E1000_WRITE_REG(&adapter->hw, SWSM,
370                                 swsm & ~E1000_SWSM_DRV_LOAD);
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that 
382  * the driver is loaded. For AMT version (only with 82573) 
383  * of the f/w this means that the netowrk i/f is open.
384  * 
385  **/
386
387 static void
388 e1000_get_hw_control(struct e1000_adapter *adapter)
389 {
390         uint32_t ctrl_ext;
391         uint32_t swsm;
392         /* Let firmware know the driver has taken over */
393         switch (adapter->hw.mac_type) {
394         case e1000_82571:
395         case e1000_82572:
396         case e1000_80003es2lan:
397                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
398                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
399                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
400                 break;
401         case e1000_82573:
402                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
403                 E1000_WRITE_REG(&adapter->hw, SWSM,
404                                 swsm | E1000_SWSM_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 int
412 e1000_up(struct e1000_adapter *adapter)
413 {
414         struct net_device *netdev = adapter->netdev;
415         int i, err;
416
417         /* hardware has been reset, we need to reload some things */
418
419         /* Reset the PHY if it was previously powered down */
420         if (adapter->hw.media_type == e1000_media_type_copper) {
421                 uint16_t mii_reg;
422                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
423                 if (mii_reg & MII_CR_POWER_DOWN)
424                         e1000_phy_hw_reset(&adapter->hw);
425         }
426
427         e1000_set_multi(netdev);
428
429         e1000_restore_vlan(adapter);
430
431         e1000_configure_tx(adapter);
432         e1000_setup_rctl(adapter);
433         e1000_configure_rx(adapter);
434         /* call E1000_DESC_UNUSED which always leaves
435          * at least 1 descriptor unused to make sure
436          * next_to_use != next_to_clean */
437         for (i = 0; i < adapter->num_rx_queues; i++) {
438                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
439                 adapter->alloc_rx_buf(adapter, ring,
440                                       E1000_DESC_UNUSED(ring));
441         }
442
443 #ifdef CONFIG_PCI_MSI
444         if (adapter->hw.mac_type > e1000_82547_rev_2) {
445                 adapter->have_msi = TRUE;
446                 if ((err = pci_enable_msi(adapter->pdev))) {
447                         DPRINTK(PROBE, ERR,
448                          "Unable to allocate MSI interrupt Error: %d\n", err);
449                         adapter->have_msi = FALSE;
450                 }
451         }
452 #endif
453         if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
454                               SA_SHIRQ | SA_SAMPLE_RANDOM,
455                               netdev->name, netdev))) {
456                 DPRINTK(PROBE, ERR,
457                     "Unable to allocate interrupt Error: %d\n", err);
458                 return err;
459         }
460
461         adapter->tx_queue_len = netdev->tx_queue_len;
462
463         mod_timer(&adapter->watchdog_timer, jiffies);
464
465 #ifdef CONFIG_E1000_NAPI
466         netif_poll_enable(netdev);
467 #endif
468         e1000_irq_enable(adapter);
469
470         return 0;
471 }
472
473 void
474 e1000_down(struct e1000_adapter *adapter)
475 {
476         struct net_device *netdev = adapter->netdev;
477         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
478                                      e1000_check_mng_mode(&adapter->hw);
479
480         e1000_irq_disable(adapter);
481
482         free_irq(adapter->pdev->irq, netdev);
483 #ifdef CONFIG_PCI_MSI
484         if (adapter->hw.mac_type > e1000_82547_rev_2 &&
485            adapter->have_msi == TRUE)
486                 pci_disable_msi(adapter->pdev);
487 #endif
488         del_timer_sync(&adapter->tx_fifo_stall_timer);
489         del_timer_sync(&adapter->watchdog_timer);
490         del_timer_sync(&adapter->phy_info_timer);
491
492 #ifdef CONFIG_E1000_NAPI
493         netif_poll_disable(netdev);
494 #endif
495         netdev->tx_queue_len = adapter->tx_queue_len;
496         adapter->link_speed = 0;
497         adapter->link_duplex = 0;
498         netif_carrier_off(netdev);
499         netif_stop_queue(netdev);
500
501         e1000_reset(adapter);
502         e1000_clean_all_tx_rings(adapter);
503         e1000_clean_all_rx_rings(adapter);
504
505         /* Power down the PHY so no link is implied when interface is down *
506          * The PHY cannot be powered down if any of the following is TRUE *
507          * (a) WoL is enabled
508          * (b) AMT is active
509          * (c) SoL/IDER session is active */
510         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511            adapter->hw.media_type == e1000_media_type_copper &&
512            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
513            !mng_mode_enabled &&
514            !e1000_check_phy_reset_block(&adapter->hw)) {
515                 uint16_t mii_reg;
516                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
517                 mii_reg |= MII_CR_POWER_DOWN;
518                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
519                 mdelay(1);
520         }
521 }
522
523 void
524 e1000_reset(struct e1000_adapter *adapter)
525 {
526         uint32_t pba, manc;
527         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
528
529         /* Repartition Pba for greater than 9k mtu
530          * To take effect CTRL.RST is required.
531          */
532
533         switch (adapter->hw.mac_type) {
534         case e1000_82547:
535         case e1000_82547_rev_2:
536                 pba = E1000_PBA_30K;
537                 break;
538         case e1000_82571:
539         case e1000_82572:
540         case e1000_80003es2lan:
541                 pba = E1000_PBA_38K;
542                 break;
543         case e1000_82573:
544                 pba = E1000_PBA_12K;
545                 break;
546         default:
547                 pba = E1000_PBA_48K;
548                 break;
549         }
550
551         if ((adapter->hw.mac_type != e1000_82573) &&
552            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
553                 pba -= 8; /* allocate more FIFO for Tx */
554
555
556         if (adapter->hw.mac_type == e1000_82547) {
557                 adapter->tx_fifo_head = 0;
558                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
559                 adapter->tx_fifo_size =
560                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
561                 atomic_set(&adapter->tx_fifo_stall, 0);
562         }
563
564         E1000_WRITE_REG(&adapter->hw, PBA, pba);
565
566         /* flow control settings */
567         /* Set the FC high water mark to 90% of the FIFO size.
568          * Required to clear last 3 LSB */
569         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
570
571         adapter->hw.fc_high_water = fc_high_water_mark;
572         adapter->hw.fc_low_water = fc_high_water_mark - 8;
573         if (adapter->hw.mac_type == e1000_80003es2lan)
574                 adapter->hw.fc_pause_time = 0xFFFF;
575         else
576                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
577         adapter->hw.fc_send_xon = 1;
578         adapter->hw.fc = adapter->hw.original_fc;
579
580         /* Allow time for pending master requests to run */
581         e1000_reset_hw(&adapter->hw);
582         if (adapter->hw.mac_type >= e1000_82544)
583                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
584         if (e1000_init_hw(&adapter->hw))
585                 DPRINTK(PROBE, ERR, "Hardware Error\n");
586         e1000_update_mng_vlan(adapter);
587         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
588         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
589
590         e1000_reset_adaptive(&adapter->hw);
591         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
592         if (adapter->en_mng_pt) {
593                 manc = E1000_READ_REG(&adapter->hw, MANC);
594                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
595                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
596         }
597 }
598
599 /**
600  * e1000_probe - Device Initialization Routine
601  * @pdev: PCI device information struct
602  * @ent: entry in e1000_pci_tbl
603  *
604  * Returns 0 on success, negative on failure
605  *
606  * e1000_probe initializes an adapter identified by a pci_dev structure.
607  * The OS initialization, configuring of the adapter private structure,
608  * and a hardware reset occur.
609  **/
610
611 static int __devinit
612 e1000_probe(struct pci_dev *pdev,
613             const struct pci_device_id *ent)
614 {
615         struct net_device *netdev;
616         struct e1000_adapter *adapter;
617         unsigned long mmio_start, mmio_len;
618
619         static int cards_found = 0;
620         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
621         int i, err, pci_using_dac;
622         uint16_t eeprom_data;
623         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
624         if ((err = pci_enable_device(pdev)))
625                 return err;
626
627         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
628                 pci_using_dac = 1;
629         } else {
630                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
631                         E1000_ERR("No usable DMA configuration, aborting\n");
632                         return err;
633                 }
634                 pci_using_dac = 0;
635         }
636
637         if ((err = pci_request_regions(pdev, e1000_driver_name)))
638                 return err;
639
640         pci_set_master(pdev);
641
642         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
643         if (!netdev) {
644                 err = -ENOMEM;
645                 goto err_alloc_etherdev;
646         }
647
648         SET_MODULE_OWNER(netdev);
649         SET_NETDEV_DEV(netdev, &pdev->dev);
650
651         pci_set_drvdata(pdev, netdev);
652         adapter = netdev_priv(netdev);
653         adapter->netdev = netdev;
654         adapter->pdev = pdev;
655         adapter->hw.back = adapter;
656         adapter->msg_enable = (1 << debug) - 1;
657
658         mmio_start = pci_resource_start(pdev, BAR_0);
659         mmio_len = pci_resource_len(pdev, BAR_0);
660
661         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
662         if (!adapter->hw.hw_addr) {
663                 err = -EIO;
664                 goto err_ioremap;
665         }
666
667         for (i = BAR_1; i <= BAR_5; i++) {
668                 if (pci_resource_len(pdev, i) == 0)
669                         continue;
670                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
671                         adapter->hw.io_base = pci_resource_start(pdev, i);
672                         break;
673                 }
674         }
675
676         netdev->open = &e1000_open;
677         netdev->stop = &e1000_close;
678         netdev->hard_start_xmit = &e1000_xmit_frame;
679         netdev->get_stats = &e1000_get_stats;
680         netdev->set_multicast_list = &e1000_set_multi;
681         netdev->set_mac_address = &e1000_set_mac;
682         netdev->change_mtu = &e1000_change_mtu;
683         netdev->do_ioctl = &e1000_ioctl;
684         e1000_set_ethtool_ops(netdev);
685         netdev->tx_timeout = &e1000_tx_timeout;
686         netdev->watchdog_timeo = 5 * HZ;
687 #ifdef CONFIG_E1000_NAPI
688         netdev->poll = &e1000_clean;
689         netdev->weight = 64;
690 #endif
691         netdev->vlan_rx_register = e1000_vlan_rx_register;
692         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
693         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
694 #ifdef CONFIG_NET_POLL_CONTROLLER
695         netdev->poll_controller = e1000_netpoll;
696 #endif
697         strcpy(netdev->name, pci_name(pdev));
698
699         netdev->mem_start = mmio_start;
700         netdev->mem_end = mmio_start + mmio_len;
701         netdev->base_addr = adapter->hw.io_base;
702
703         adapter->bd_number = cards_found;
704
705         /* setup the private structure */
706
707         if ((err = e1000_sw_init(adapter)))
708                 goto err_sw_init;
709
710         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
711                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
712
713         /* if ksp3, indicate if it's port a being setup */
714         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 && 
715                         e1000_ksp3_port_a == 0) 
716                 adapter->ksp3_port_a = 1;
717         e1000_ksp3_port_a++;
718         /* Reset for multiple KP3 adapters */
719         if (e1000_ksp3_port_a == 4)
720                 e1000_ksp3_port_a = 0;
721
722         if (adapter->hw.mac_type >= e1000_82543) {
723                 netdev->features = NETIF_F_SG |
724                                    NETIF_F_HW_CSUM |
725                                    NETIF_F_HW_VLAN_TX |
726                                    NETIF_F_HW_VLAN_RX |
727                                    NETIF_F_HW_VLAN_FILTER;
728         }
729
730 #ifdef NETIF_F_TSO
731         if ((adapter->hw.mac_type >= e1000_82544) &&
732            (adapter->hw.mac_type != e1000_82547))
733                 netdev->features |= NETIF_F_TSO;
734
735 #ifdef NETIF_F_TSO_IPV6
736         if (adapter->hw.mac_type > e1000_82547_rev_2)
737                 netdev->features |= NETIF_F_TSO_IPV6;
738 #endif
739 #endif
740         if (pci_using_dac)
741                 netdev->features |= NETIF_F_HIGHDMA;
742
743         /* hard_start_xmit is safe against parallel locking */
744         netdev->features |= NETIF_F_LLTX; 
745  
746         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
747
748         /* before reading the EEPROM, reset the controller to
749          * put the device in a known good starting state */
750
751         e1000_reset_hw(&adapter->hw);
752
753         /* make sure the EEPROM is good */
754
755         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
756                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
757                 err = -EIO;
758                 goto err_eeprom;
759         }
760
761         /* copy the MAC address out of the EEPROM */
762
763         if (e1000_read_mac_addr(&adapter->hw))
764                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
765         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
766         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
767
768         if (!is_valid_ether_addr(netdev->perm_addr)) {
769                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
770                 err = -EIO;
771                 goto err_eeprom;
772         }
773
774         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
775
776         e1000_get_bus_info(&adapter->hw);
777
778         init_timer(&adapter->tx_fifo_stall_timer);
779         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
780         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
781
782         init_timer(&adapter->watchdog_timer);
783         adapter->watchdog_timer.function = &e1000_watchdog;
784         adapter->watchdog_timer.data = (unsigned long) adapter;
785
786         INIT_WORK(&adapter->watchdog_task,
787                 (void (*)(void *))e1000_watchdog_task, adapter);
788
789         init_timer(&adapter->phy_info_timer);
790         adapter->phy_info_timer.function = &e1000_update_phy_info;
791         adapter->phy_info_timer.data = (unsigned long) adapter;
792
793         INIT_WORK(&adapter->reset_task,
794                 (void (*)(void *))e1000_reset_task, netdev);
795
796         /* we're going to reset, so assume we have no link for now */
797
798         netif_carrier_off(netdev);
799         netif_stop_queue(netdev);
800
801         e1000_check_options(adapter);
802
803         /* Initial Wake on LAN setting
804          * If APM wake is enabled in the EEPROM,
805          * enable the ACPI Magic Packet filter
806          */
807
808         switch (adapter->hw.mac_type) {
809         case e1000_82542_rev2_0:
810         case e1000_82542_rev2_1:
811         case e1000_82543:
812                 break;
813         case e1000_82544:
814                 e1000_read_eeprom(&adapter->hw,
815                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
816                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
817                 break;
818         case e1000_82546:
819         case e1000_82546_rev_3:
820         case e1000_82571:
821         case e1000_80003es2lan:
822                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
823                         e1000_read_eeprom(&adapter->hw,
824                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
825                         break;
826                 }
827                 /* Fall Through */
828         default:
829                 e1000_read_eeprom(&adapter->hw,
830                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
831                 break;
832         }
833         if (eeprom_data & eeprom_apme_mask)
834                 adapter->wol |= E1000_WUFC_MAG;
835
836         /* print bus type/speed/width info */
837         {
838         struct e1000_hw *hw = &adapter->hw;
839         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
840                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
841                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
842                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
843                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
844                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
845                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
846                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
847                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
848                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
849                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
850                  "32-bit"));
851         }
852
853         for (i = 0; i < 6; i++)
854                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
855
856         /* reset the hardware with the new settings */
857         e1000_reset(adapter);
858
859         /* If the controller is 82573 and f/w is AMT, do not set
860          * DRV_LOAD until the interface is up.  For all other cases,
861          * let the f/w know that the h/w is now under the control
862          * of the driver. */
863         if (adapter->hw.mac_type != e1000_82573 ||
864             !e1000_check_mng_mode(&adapter->hw))
865                 e1000_get_hw_control(adapter);
866
867         strcpy(netdev->name, "eth%d");
868         if ((err = register_netdev(netdev)))
869                 goto err_register;
870
871         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
872
873         cards_found++;
874         return 0;
875
876 err_register:
877 err_sw_init:
878 err_eeprom:
879         iounmap(adapter->hw.hw_addr);
880 err_ioremap:
881         free_netdev(netdev);
882 err_alloc_etherdev:
883         pci_release_regions(pdev);
884         return err;
885 }
886
887 /**
888  * e1000_remove - Device Removal Routine
889  * @pdev: PCI device information struct
890  *
891  * e1000_remove is called by the PCI subsystem to alert the driver
892  * that it should release a PCI device.  The could be caused by a
893  * Hot-Plug event, or because the driver is going to be removed from
894  * memory.
895  **/
896
897 static void __devexit
898 e1000_remove(struct pci_dev *pdev)
899 {
900         struct net_device *netdev = pci_get_drvdata(pdev);
901         struct e1000_adapter *adapter = netdev_priv(netdev);
902         uint32_t manc;
903 #ifdef CONFIG_E1000_NAPI
904         int i;
905 #endif
906
907         flush_scheduled_work();
908
909         if (adapter->hw.mac_type >= e1000_82540 &&
910            adapter->hw.media_type == e1000_media_type_copper) {
911                 manc = E1000_READ_REG(&adapter->hw, MANC);
912                 if (manc & E1000_MANC_SMBUS_EN) {
913                         manc |= E1000_MANC_ARP_EN;
914                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
915                 }
916         }
917
918         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
919          * would have already happened in close and is redundant. */
920         e1000_release_hw_control(adapter);
921
922         unregister_netdev(netdev);
923 #ifdef CONFIG_E1000_NAPI
924         for (i = 0; i < adapter->num_rx_queues; i++)
925                 dev_put(&adapter->polling_netdev[i]);
926 #endif
927
928         if (!e1000_check_phy_reset_block(&adapter->hw))
929                 e1000_phy_hw_reset(&adapter->hw);
930
931         kfree(adapter->tx_ring);
932         kfree(adapter->rx_ring);
933 #ifdef CONFIG_E1000_NAPI
934         kfree(adapter->polling_netdev);
935 #endif
936
937         iounmap(adapter->hw.hw_addr);
938         pci_release_regions(pdev);
939
940         free_netdev(netdev);
941
942         pci_disable_device(pdev);
943 }
944
945 /**
946  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
947  * @adapter: board private structure to initialize
948  *
949  * e1000_sw_init initializes the Adapter private data structure.
950  * Fields are initialized based on PCI device information and
951  * OS network device settings (MTU size).
952  **/
953
954 static int __devinit
955 e1000_sw_init(struct e1000_adapter *adapter)
956 {
957         struct e1000_hw *hw = &adapter->hw;
958         struct net_device *netdev = adapter->netdev;
959         struct pci_dev *pdev = adapter->pdev;
960 #ifdef CONFIG_E1000_NAPI
961         int i;
962 #endif
963
964         /* PCI config space info */
965
966         hw->vendor_id = pdev->vendor;
967         hw->device_id = pdev->device;
968         hw->subsystem_vendor_id = pdev->subsystem_vendor;
969         hw->subsystem_id = pdev->subsystem_device;
970
971         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
972
973         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
974
975         adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
976         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
977         hw->max_frame_size = netdev->mtu +
978                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
979         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
980
981         /* identify the MAC */
982
983         if (e1000_set_mac_type(hw)) {
984                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
985                 return -EIO;
986         }
987
988         /* initialize eeprom parameters */
989
990         if (e1000_init_eeprom_params(hw)) {
991                 E1000_ERR("EEPROM initialization failed\n");
992                 return -EIO;
993         }
994
995         switch (hw->mac_type) {
996         default:
997                 break;
998         case e1000_82541:
999         case e1000_82547:
1000         case e1000_82541_rev_2:
1001         case e1000_82547_rev_2:
1002                 hw->phy_init_script = 1;
1003                 break;
1004         }
1005
1006         e1000_set_media_type(hw);
1007
1008         hw->wait_autoneg_complete = FALSE;
1009         hw->tbi_compatibility_en = TRUE;
1010         hw->adaptive_ifs = TRUE;
1011
1012         /* Copper options */
1013
1014         if (hw->media_type == e1000_media_type_copper) {
1015                 hw->mdix = AUTO_ALL_MODES;
1016                 hw->disable_polarity_correction = FALSE;
1017                 hw->master_slave = E1000_MASTER_SLAVE;
1018         }
1019
1020         adapter->num_tx_queues = 1;
1021         adapter->num_rx_queues = 1;
1022
1023         if (e1000_alloc_queues(adapter)) {
1024                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1025                 return -ENOMEM;
1026         }
1027
1028 #ifdef CONFIG_E1000_NAPI
1029         for (i = 0; i < adapter->num_rx_queues; i++) {
1030                 adapter->polling_netdev[i].priv = adapter;
1031                 adapter->polling_netdev[i].poll = &e1000_clean;
1032                 adapter->polling_netdev[i].weight = 64;
1033                 dev_hold(&adapter->polling_netdev[i]);
1034                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1035         }
1036         spin_lock_init(&adapter->tx_queue_lock);
1037 #endif
1038
1039         atomic_set(&adapter->irq_sem, 1);
1040         spin_lock_init(&adapter->stats_lock);
1041
1042         return 0;
1043 }
1044
1045 /**
1046  * e1000_alloc_queues - Allocate memory for all rings
1047  * @adapter: board private structure to initialize
1048  *
1049  * We allocate one ring per queue at run-time since we don't know the
1050  * number of queues at compile-time.  The polling_netdev array is
1051  * intended for Multiqueue, but should work fine with a single queue.
1052  **/
1053
1054 static int __devinit
1055 e1000_alloc_queues(struct e1000_adapter *adapter)
1056 {
1057         int size;
1058
1059         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1060         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1061         if (!adapter->tx_ring)
1062                 return -ENOMEM;
1063         memset(adapter->tx_ring, 0, size);
1064
1065         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1066         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1067         if (!adapter->rx_ring) {
1068                 kfree(adapter->tx_ring);
1069                 return -ENOMEM;
1070         }
1071         memset(adapter->rx_ring, 0, size);
1072
1073 #ifdef CONFIG_E1000_NAPI
1074         size = sizeof(struct net_device) * adapter->num_rx_queues;
1075         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1076         if (!adapter->polling_netdev) {
1077                 kfree(adapter->tx_ring);
1078                 kfree(adapter->rx_ring);
1079                 return -ENOMEM;
1080         }
1081         memset(adapter->polling_netdev, 0, size);
1082 #endif
1083
1084         return E1000_SUCCESS;
1085 }
1086
1087 /**
1088  * e1000_open - Called when a network interface is made active
1089  * @netdev: network interface device structure
1090  *
1091  * Returns 0 on success, negative value on failure
1092  *
1093  * The open entry point is called when a network interface is made
1094  * active by the system (IFF_UP).  At this point all resources needed
1095  * for transmit and receive operations are allocated, the interrupt
1096  * handler is registered with the OS, the watchdog timer is started,
1097  * and the stack is notified that the interface is ready.
1098  **/
1099
1100 static int
1101 e1000_open(struct net_device *netdev)
1102 {
1103         struct e1000_adapter *adapter = netdev_priv(netdev);
1104         int err;
1105
1106         /* allocate transmit descriptors */
1107
1108         if ((err = e1000_setup_all_tx_resources(adapter)))
1109                 goto err_setup_tx;
1110
1111         /* allocate receive descriptors */
1112
1113         if ((err = e1000_setup_all_rx_resources(adapter)))
1114                 goto err_setup_rx;
1115
1116         if ((err = e1000_up(adapter)))
1117                 goto err_up;
1118         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1119         if ((adapter->hw.mng_cookie.status &
1120                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1121                 e1000_update_mng_vlan(adapter);
1122         }
1123
1124         /* If AMT is enabled, let the firmware know that the network
1125          * interface is now open */
1126         if (adapter->hw.mac_type == e1000_82573 &&
1127             e1000_check_mng_mode(&adapter->hw))
1128                 e1000_get_hw_control(adapter);
1129
1130         return E1000_SUCCESS;
1131
1132 err_up:
1133         e1000_free_all_rx_resources(adapter);
1134 err_setup_rx:
1135         e1000_free_all_tx_resources(adapter);
1136 err_setup_tx:
1137         e1000_reset(adapter);
1138
1139         return err;
1140 }
1141
1142 /**
1143  * e1000_close - Disables a network interface
1144  * @netdev: network interface device structure
1145  *
1146  * Returns 0, this is not allowed to fail
1147  *
1148  * The close entry point is called when an interface is de-activated
1149  * by the OS.  The hardware is still under the drivers control, but
1150  * needs to be disabled.  A global MAC reset is issued to stop the
1151  * hardware, and all transmit and receive resources are freed.
1152  **/
1153
1154 static int
1155 e1000_close(struct net_device *netdev)
1156 {
1157         struct e1000_adapter *adapter = netdev_priv(netdev);
1158
1159         e1000_down(adapter);
1160
1161         e1000_free_all_tx_resources(adapter);
1162         e1000_free_all_rx_resources(adapter);
1163
1164         if ((adapter->hw.mng_cookie.status &
1165                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1166                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1167         }
1168
1169         /* If AMT is enabled, let the firmware know that the network
1170          * interface is now closed */
1171         if (adapter->hw.mac_type == e1000_82573 &&
1172             e1000_check_mng_mode(&adapter->hw))
1173                 e1000_release_hw_control(adapter);
1174
1175         return 0;
1176 }
1177
1178 /**
1179  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1180  * @adapter: address of board private structure
1181  * @start: address of beginning of memory
1182  * @len: length of memory
1183  **/
1184 static boolean_t
1185 e1000_check_64k_bound(struct e1000_adapter *adapter,
1186                       void *start, unsigned long len)
1187 {
1188         unsigned long begin = (unsigned long) start;
1189         unsigned long end = begin + len;
1190
1191         /* First rev 82545 and 82546 need to not allow any memory
1192          * write location to cross 64k boundary due to errata 23 */
1193         if (adapter->hw.mac_type == e1000_82545 ||
1194             adapter->hw.mac_type == e1000_82546) {
1195                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1196         }
1197
1198         return TRUE;
1199 }
1200
1201 /**
1202  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1203  * @adapter: board private structure
1204  * @txdr:    tx descriptor ring (for a specific queue) to setup
1205  *
1206  * Return 0 on success, negative on failure
1207  **/
1208
1209 static int
1210 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1211                          struct e1000_tx_ring *txdr)
1212 {
1213         struct pci_dev *pdev = adapter->pdev;
1214         int size;
1215
1216         size = sizeof(struct e1000_buffer) * txdr->count;
1217
1218         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1219         if (!txdr->buffer_info) {
1220                 DPRINTK(PROBE, ERR,
1221                 "Unable to allocate memory for the transmit descriptor ring\n");
1222                 return -ENOMEM;
1223         }
1224         memset(txdr->buffer_info, 0, size);
1225
1226         /* round up to nearest 4K */
1227
1228         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1229         E1000_ROUNDUP(txdr->size, 4096);
1230
1231         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1232         if (!txdr->desc) {
1233 setup_tx_desc_die:
1234                 vfree(txdr->buffer_info);
1235                 DPRINTK(PROBE, ERR,
1236                 "Unable to allocate memory for the transmit descriptor ring\n");
1237                 return -ENOMEM;
1238         }
1239
1240         /* Fix for errata 23, can't cross 64kB boundary */
1241         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1242                 void *olddesc = txdr->desc;
1243                 dma_addr_t olddma = txdr->dma;
1244                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1245                                      "at %p\n", txdr->size, txdr->desc);
1246                 /* Try again, without freeing the previous */
1247                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1248                 /* Failed allocation, critical failure */
1249                 if (!txdr->desc) {
1250                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1251                         goto setup_tx_desc_die;
1252                 }
1253
1254                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1255                         /* give up */
1256                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1257                                             txdr->dma);
1258                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1259                         DPRINTK(PROBE, ERR,
1260                                 "Unable to allocate aligned memory "
1261                                 "for the transmit descriptor ring\n");
1262                         vfree(txdr->buffer_info);
1263                         return -ENOMEM;
1264                 } else {
1265                         /* Free old allocation, new allocation was successful */
1266                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1267                 }
1268         }
1269         memset(txdr->desc, 0, txdr->size);
1270
1271         txdr->next_to_use = 0;
1272         txdr->next_to_clean = 0;
1273         spin_lock_init(&txdr->tx_lock);
1274
1275         return 0;
1276 }
1277
1278 /**
1279  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1280  *                                (Descriptors) for all queues
1281  * @adapter: board private structure
1282  *
1283  * If this function returns with an error, then it's possible one or
1284  * more of the rings is populated (while the rest are not).  It is the
1285  * callers duty to clean those orphaned rings.
1286  *
1287  * Return 0 on success, negative on failure
1288  **/
1289
1290 int
1291 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1292 {
1293         int i, err = 0;
1294
1295         for (i = 0; i < adapter->num_tx_queues; i++) {
1296                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1297                 if (err) {
1298                         DPRINTK(PROBE, ERR,
1299                                 "Allocation for Tx Queue %u failed\n", i);
1300                         break;
1301                 }
1302         }
1303
1304         return err;
1305 }
1306
1307 /**
1308  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1309  * @adapter: board private structure
1310  *
1311  * Configure the Tx unit of the MAC after a reset.
1312  **/
1313
1314 static void
1315 e1000_configure_tx(struct e1000_adapter *adapter)
1316 {
1317         uint64_t tdba;
1318         struct e1000_hw *hw = &adapter->hw;
1319         uint32_t tdlen, tctl, tipg, tarc;
1320         uint32_t ipgr1, ipgr2;
1321
1322         /* Setup the HW Tx Head and Tail descriptor pointers */
1323
1324         switch (adapter->num_tx_queues) {
1325         case 1:
1326         default:
1327                 tdba = adapter->tx_ring[0].dma;
1328                 tdlen = adapter->tx_ring[0].count *
1329                         sizeof(struct e1000_tx_desc);
1330                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1331                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1332                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1333                 E1000_WRITE_REG(hw, TDH, 0);
1334                 E1000_WRITE_REG(hw, TDT, 0);
1335                 adapter->tx_ring[0].tdh = E1000_TDH;
1336                 adapter->tx_ring[0].tdt = E1000_TDT;
1337                 break;
1338         }
1339
1340         /* Set the default values for the Tx Inter Packet Gap timer */
1341
1342         if (hw->media_type == e1000_media_type_fiber ||
1343             hw->media_type == e1000_media_type_internal_serdes)
1344                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1345         else
1346                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1347
1348         switch (hw->mac_type) {
1349         case e1000_82542_rev2_0:
1350         case e1000_82542_rev2_1:
1351                 tipg = DEFAULT_82542_TIPG_IPGT;
1352                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1353                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1354                 break;
1355         case e1000_80003es2lan:
1356                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1357                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1358                 break;
1359         default:
1360                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1361                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1362                 break;
1363         }
1364         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1365         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1366         E1000_WRITE_REG(hw, TIPG, tipg);
1367
1368         /* Set the Tx Interrupt Delay register */
1369
1370         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1371         if (hw->mac_type >= e1000_82540)
1372                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1373
1374         /* Program the Transmit Control Register */
1375
1376         tctl = E1000_READ_REG(hw, TCTL);
1377
1378         tctl &= ~E1000_TCTL_CT;
1379         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1380                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1381
1382 #ifdef DISABLE_MULR
1383         /* disable Multiple Reads for debugging */
1384         tctl &= ~E1000_TCTL_MULR;
1385 #endif
1386
1387         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1388                 tarc = E1000_READ_REG(hw, TARC0);
1389                 tarc |= ((1 << 25) | (1 << 21));
1390                 E1000_WRITE_REG(hw, TARC0, tarc);
1391                 tarc = E1000_READ_REG(hw, TARC1);
1392                 tarc |= (1 << 25);
1393                 if (tctl & E1000_TCTL_MULR)
1394                         tarc &= ~(1 << 28);
1395                 else
1396                         tarc |= (1 << 28);
1397                 E1000_WRITE_REG(hw, TARC1, tarc);
1398         } else if (hw->mac_type == e1000_80003es2lan) {
1399                 tarc = E1000_READ_REG(hw, TARC0);
1400                 tarc |= 1;
1401                 if (hw->media_type == e1000_media_type_internal_serdes)
1402                         tarc |= (1 << 20);
1403                 E1000_WRITE_REG(hw, TARC0, tarc);
1404                 tarc = E1000_READ_REG(hw, TARC1);
1405                 tarc |= 1;
1406                 E1000_WRITE_REG(hw, TARC1, tarc);
1407         }
1408
1409         e1000_config_collision_dist(hw);
1410
1411         /* Setup Transmit Descriptor Settings for eop descriptor */
1412         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1413                 E1000_TXD_CMD_IFCS;
1414
1415         if (hw->mac_type < e1000_82543)
1416                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1417         else
1418                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1419
1420         /* Cache if we're 82544 running in PCI-X because we'll
1421          * need this to apply a workaround later in the send path. */
1422         if (hw->mac_type == e1000_82544 &&
1423             hw->bus_type == e1000_bus_type_pcix)
1424                 adapter->pcix_82544 = 1;
1425
1426         E1000_WRITE_REG(hw, TCTL, tctl);
1427
1428 }
1429
1430 /**
1431  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1432  * @adapter: board private structure
1433  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1434  *
1435  * Returns 0 on success, negative on failure
1436  **/
1437
1438 static int
1439 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1440                          struct e1000_rx_ring *rxdr)
1441 {
1442         struct pci_dev *pdev = adapter->pdev;
1443         int size, desc_len;
1444
1445         size = sizeof(struct e1000_buffer) * rxdr->count;
1446         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1447         if (!rxdr->buffer_info) {
1448                 DPRINTK(PROBE, ERR,
1449                 "Unable to allocate memory for the receive descriptor ring\n");
1450                 return -ENOMEM;
1451         }
1452         memset(rxdr->buffer_info, 0, size);
1453
1454         size = sizeof(struct e1000_ps_page) * rxdr->count;
1455         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1456         if (!rxdr->ps_page) {
1457                 vfree(rxdr->buffer_info);
1458                 DPRINTK(PROBE, ERR,
1459                 "Unable to allocate memory for the receive descriptor ring\n");
1460                 return -ENOMEM;
1461         }
1462         memset(rxdr->ps_page, 0, size);
1463
1464         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1465         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1466         if (!rxdr->ps_page_dma) {
1467                 vfree(rxdr->buffer_info);
1468                 kfree(rxdr->ps_page);
1469                 DPRINTK(PROBE, ERR,
1470                 "Unable to allocate memory for the receive descriptor ring\n");
1471                 return -ENOMEM;
1472         }
1473         memset(rxdr->ps_page_dma, 0, size);
1474
1475         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1476                 desc_len = sizeof(struct e1000_rx_desc);
1477         else
1478                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1479
1480         /* Round up to nearest 4K */
1481
1482         rxdr->size = rxdr->count * desc_len;
1483         E1000_ROUNDUP(rxdr->size, 4096);
1484
1485         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1486
1487         if (!rxdr->desc) {
1488                 DPRINTK(PROBE, ERR,
1489                 "Unable to allocate memory for the receive descriptor ring\n");
1490 setup_rx_desc_die:
1491                 vfree(rxdr->buffer_info);
1492                 kfree(rxdr->ps_page);
1493                 kfree(rxdr->ps_page_dma);
1494                 return -ENOMEM;
1495         }
1496
1497         /* Fix for errata 23, can't cross 64kB boundary */
1498         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1499                 void *olddesc = rxdr->desc;
1500                 dma_addr_t olddma = rxdr->dma;
1501                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1502                                      "at %p\n", rxdr->size, rxdr->desc);
1503                 /* Try again, without freeing the previous */
1504                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1505                 /* Failed allocation, critical failure */
1506                 if (!rxdr->desc) {
1507                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1508                         DPRINTK(PROBE, ERR,
1509                                 "Unable to allocate memory "
1510                                 "for the receive descriptor ring\n");
1511                         goto setup_rx_desc_die;
1512                 }
1513
1514                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1515                         /* give up */
1516                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1517                                             rxdr->dma);
1518                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1519                         DPRINTK(PROBE, ERR,
1520                                 "Unable to allocate aligned memory "
1521                                 "for the receive descriptor ring\n");
1522                         goto setup_rx_desc_die;
1523                 } else {
1524                         /* Free old allocation, new allocation was successful */
1525                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1526                 }
1527         }
1528         memset(rxdr->desc, 0, rxdr->size);
1529
1530         rxdr->next_to_clean = 0;
1531         rxdr->next_to_use = 0;
1532
1533         return 0;
1534 }
1535
1536 /**
1537  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1538  *                                (Descriptors) for all queues
1539  * @adapter: board private structure
1540  *
1541  * If this function returns with an error, then it's possible one or
1542  * more of the rings is populated (while the rest are not).  It is the
1543  * callers duty to clean those orphaned rings.
1544  *
1545  * Return 0 on success, negative on failure
1546  **/
1547
1548 int
1549 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1550 {
1551         int i, err = 0;
1552
1553         for (i = 0; i < adapter->num_rx_queues; i++) {
1554                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1555                 if (err) {
1556                         DPRINTK(PROBE, ERR,
1557                                 "Allocation for Rx Queue %u failed\n", i);
1558                         break;
1559                 }
1560         }
1561
1562         return err;
1563 }
1564
1565 /**
1566  * e1000_setup_rctl - configure the receive control registers
1567  * @adapter: Board private structure
1568  **/
1569 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1570                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1571 static void
1572 e1000_setup_rctl(struct e1000_adapter *adapter)
1573 {
1574         uint32_t rctl, rfctl;
1575         uint32_t psrctl = 0;
1576 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1577         uint32_t pages = 0;
1578 #endif
1579
1580         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1581
1582         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1583
1584         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1585                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1586                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1587
1588         if (adapter->hw.mac_type > e1000_82543)
1589                 rctl |= E1000_RCTL_SECRC;
1590
1591         if (adapter->hw.tbi_compatibility_on == 1)
1592                 rctl |= E1000_RCTL_SBP;
1593         else
1594                 rctl &= ~E1000_RCTL_SBP;
1595
1596         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1597                 rctl &= ~E1000_RCTL_LPE;
1598         else
1599                 rctl |= E1000_RCTL_LPE;
1600
1601         /* Setup buffer sizes */
1602         rctl &= ~E1000_RCTL_SZ_4096;
1603         rctl |= E1000_RCTL_BSEX;
1604         switch (adapter->rx_buffer_len) {
1605                 case E1000_RXBUFFER_256:
1606                         rctl |= E1000_RCTL_SZ_256;
1607                         rctl &= ~E1000_RCTL_BSEX;
1608                         break;
1609                 case E1000_RXBUFFER_512:
1610                         rctl |= E1000_RCTL_SZ_512;
1611                         rctl &= ~E1000_RCTL_BSEX;
1612                         break;
1613                 case E1000_RXBUFFER_1024:
1614                         rctl |= E1000_RCTL_SZ_1024;
1615                         rctl &= ~E1000_RCTL_BSEX;
1616                         break;
1617                 case E1000_RXBUFFER_2048:
1618                 default:
1619                         rctl |= E1000_RCTL_SZ_2048;
1620                         rctl &= ~E1000_RCTL_BSEX;
1621                         break;
1622                 case E1000_RXBUFFER_4096:
1623                         rctl |= E1000_RCTL_SZ_4096;
1624                         break;
1625                 case E1000_RXBUFFER_8192:
1626                         rctl |= E1000_RCTL_SZ_8192;
1627                         break;
1628                 case E1000_RXBUFFER_16384:
1629                         rctl |= E1000_RCTL_SZ_16384;
1630                         break;
1631         }
1632
1633 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1634         /* 82571 and greater support packet-split where the protocol
1635          * header is placed in skb->data and the packet data is
1636          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1637          * In the case of a non-split, skb->data is linearly filled,
1638          * followed by the page buffers.  Therefore, skb->data is
1639          * sized to hold the largest protocol header.
1640          */
1641         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1642         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1643             PAGE_SIZE <= 16384)
1644                 adapter->rx_ps_pages = pages;
1645         else
1646                 adapter->rx_ps_pages = 0;
1647 #endif
1648         if (adapter->rx_ps_pages) {
1649                 /* Configure extra packet-split registers */
1650                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1651                 rfctl |= E1000_RFCTL_EXTEN;
1652                 /* disable IPv6 packet split support */
1653                 rfctl |= E1000_RFCTL_IPV6_DIS;
1654                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1655
1656                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1657
1658                 psrctl |= adapter->rx_ps_bsize0 >>
1659                         E1000_PSRCTL_BSIZE0_SHIFT;
1660
1661                 switch (adapter->rx_ps_pages) {
1662                 case 3:
1663                         psrctl |= PAGE_SIZE <<
1664                                 E1000_PSRCTL_BSIZE3_SHIFT;
1665                 case 2:
1666                         psrctl |= PAGE_SIZE <<
1667                                 E1000_PSRCTL_BSIZE2_SHIFT;
1668                 case 1:
1669                         psrctl |= PAGE_SIZE >>
1670                                 E1000_PSRCTL_BSIZE1_SHIFT;
1671                         break;
1672                 }
1673
1674                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1675         }
1676
1677         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1678 }
1679
1680 /**
1681  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1682  * @adapter: board private structure
1683  *
1684  * Configure the Rx unit of the MAC after a reset.
1685  **/
1686
1687 static void
1688 e1000_configure_rx(struct e1000_adapter *adapter)
1689 {
1690         uint64_t rdba;
1691         struct e1000_hw *hw = &adapter->hw;
1692         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1693
1694         if (adapter->rx_ps_pages) {
1695                 /* this is a 32 byte descriptor */
1696                 rdlen = adapter->rx_ring[0].count *
1697                         sizeof(union e1000_rx_desc_packet_split);
1698                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1699                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1700         } else {
1701                 rdlen = adapter->rx_ring[0].count *
1702                         sizeof(struct e1000_rx_desc);
1703                 adapter->clean_rx = e1000_clean_rx_irq;
1704                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1705         }
1706
1707         /* disable receives while setting up the descriptors */
1708         rctl = E1000_READ_REG(hw, RCTL);
1709         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1710
1711         /* set the Receive Delay Timer Register */
1712         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1713
1714         if (hw->mac_type >= e1000_82540) {
1715                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1716                 if (adapter->itr > 1)
1717                         E1000_WRITE_REG(hw, ITR,
1718                                 1000000000 / (adapter->itr * 256));
1719         }
1720
1721         if (hw->mac_type >= e1000_82571) {
1722                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1723                 /* Reset delay timers after every interrupt */
1724                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1725 #ifdef CONFIG_E1000_NAPI
1726                 /* Auto-Mask interrupts upon ICR read. */
1727                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1728 #endif
1729                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1730                 E1000_WRITE_REG(hw, IAM, ~0);
1731                 E1000_WRITE_FLUSH(hw);
1732         }
1733
1734         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1735          * the Base and Length of the Rx Descriptor Ring */
1736         switch (adapter->num_rx_queues) {
1737         case 1:
1738         default:
1739                 rdba = adapter->rx_ring[0].dma;
1740                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1741                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1742                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1743                 E1000_WRITE_REG(hw, RDH, 0);
1744                 E1000_WRITE_REG(hw, RDT, 0);
1745                 adapter->rx_ring[0].rdh = E1000_RDH;
1746                 adapter->rx_ring[0].rdt = E1000_RDT;
1747                 break;
1748         }
1749
1750         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1751         if (hw->mac_type >= e1000_82543) {
1752                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1753                 if (adapter->rx_csum == TRUE) {
1754                         rxcsum |= E1000_RXCSUM_TUOFL;
1755
1756                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1757                          * Must be used in conjunction with packet-split. */
1758                         if ((hw->mac_type >= e1000_82571) &&
1759                             (adapter->rx_ps_pages)) {
1760                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1761                         }
1762                 } else {
1763                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1764                         /* don't need to clear IPPCSE as it defaults to 0 */
1765                 }
1766                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1767         }
1768
1769         if (hw->mac_type == e1000_82573)
1770                 E1000_WRITE_REG(hw, ERT, 0x0100);
1771
1772         /* Enable Receives */
1773         E1000_WRITE_REG(hw, RCTL, rctl);
1774 }
1775
1776 /**
1777  * e1000_free_tx_resources - Free Tx Resources per Queue
1778  * @adapter: board private structure
1779  * @tx_ring: Tx descriptor ring for a specific queue
1780  *
1781  * Free all transmit software resources
1782  **/
1783
1784 static void
1785 e1000_free_tx_resources(struct e1000_adapter *adapter,
1786                         struct e1000_tx_ring *tx_ring)
1787 {
1788         struct pci_dev *pdev = adapter->pdev;
1789
1790         e1000_clean_tx_ring(adapter, tx_ring);
1791
1792         vfree(tx_ring->buffer_info);
1793         tx_ring->buffer_info = NULL;
1794
1795         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1796
1797         tx_ring->desc = NULL;
1798 }
1799
1800 /**
1801  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1802  * @adapter: board private structure
1803  *
1804  * Free all transmit software resources
1805  **/
1806
1807 void
1808 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1809 {
1810         int i;
1811
1812         for (i = 0; i < adapter->num_tx_queues; i++)
1813                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1814 }
1815
1816 static void
1817 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1818                         struct e1000_buffer *buffer_info)
1819 {
1820         if (buffer_info->dma) {
1821                 pci_unmap_page(adapter->pdev,
1822                                 buffer_info->dma,
1823                                 buffer_info->length,
1824                                 PCI_DMA_TODEVICE);
1825         }
1826         if (buffer_info->skb)
1827                 dev_kfree_skb_any(buffer_info->skb);
1828         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1829 }
1830
1831 /**
1832  * e1000_clean_tx_ring - Free Tx Buffers
1833  * @adapter: board private structure
1834  * @tx_ring: ring to be cleaned
1835  **/
1836
1837 static void
1838 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1839                     struct e1000_tx_ring *tx_ring)
1840 {
1841         struct e1000_buffer *buffer_info;
1842         unsigned long size;
1843         unsigned int i;
1844
1845         /* Free all the Tx ring sk_buffs */
1846
1847         for (i = 0; i < tx_ring->count; i++) {
1848                 buffer_info = &tx_ring->buffer_info[i];
1849                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1850         }
1851
1852         size = sizeof(struct e1000_buffer) * tx_ring->count;
1853         memset(tx_ring->buffer_info, 0, size);
1854
1855         /* Zero out the descriptor ring */
1856
1857         memset(tx_ring->desc, 0, tx_ring->size);
1858
1859         tx_ring->next_to_use = 0;
1860         tx_ring->next_to_clean = 0;
1861         tx_ring->last_tx_tso = 0;
1862
1863         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1864         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1865 }
1866
1867 /**
1868  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1869  * @adapter: board private structure
1870  **/
1871
1872 static void
1873 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1874 {
1875         int i;
1876
1877         for (i = 0; i < adapter->num_tx_queues; i++)
1878                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1879 }
1880
1881 /**
1882  * e1000_free_rx_resources - Free Rx Resources
1883  * @adapter: board private structure
1884  * @rx_ring: ring to clean the resources from
1885  *
1886  * Free all receive software resources
1887  **/
1888
1889 static void
1890 e1000_free_rx_resources(struct e1000_adapter *adapter,
1891                         struct e1000_rx_ring *rx_ring)
1892 {
1893         struct pci_dev *pdev = adapter->pdev;
1894
1895         e1000_clean_rx_ring(adapter, rx_ring);
1896
1897         vfree(rx_ring->buffer_info);
1898         rx_ring->buffer_info = NULL;
1899         kfree(rx_ring->ps_page);
1900         rx_ring->ps_page = NULL;
1901         kfree(rx_ring->ps_page_dma);
1902         rx_ring->ps_page_dma = NULL;
1903
1904         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1905
1906         rx_ring->desc = NULL;
1907 }
1908
1909 /**
1910  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1911  * @adapter: board private structure
1912  *
1913  * Free all receive software resources
1914  **/
1915
1916 void
1917 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1918 {
1919         int i;
1920
1921         for (i = 0; i < adapter->num_rx_queues; i++)
1922                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1923 }
1924
1925 /**
1926  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1927  * @adapter: board private structure
1928  * @rx_ring: ring to free buffers from
1929  **/
1930
1931 static void
1932 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1933                     struct e1000_rx_ring *rx_ring)
1934 {
1935         struct e1000_buffer *buffer_info;
1936         struct e1000_ps_page *ps_page;
1937         struct e1000_ps_page_dma *ps_page_dma;
1938         struct pci_dev *pdev = adapter->pdev;
1939         unsigned long size;
1940         unsigned int i, j;
1941
1942         /* Free all the Rx ring sk_buffs */
1943         for (i = 0; i < rx_ring->count; i++) {
1944                 buffer_info = &rx_ring->buffer_info[i];
1945                 if (buffer_info->skb) {
1946                         pci_unmap_single(pdev,
1947                                          buffer_info->dma,
1948                                          buffer_info->length,
1949                                          PCI_DMA_FROMDEVICE);
1950
1951                         dev_kfree_skb(buffer_info->skb);
1952                         buffer_info->skb = NULL;
1953                 }
1954                 ps_page = &rx_ring->ps_page[i];
1955                 ps_page_dma = &rx_ring->ps_page_dma[i];
1956                 for (j = 0; j < adapter->rx_ps_pages; j++) {
1957                         if (!ps_page->ps_page[j]) break;
1958                         pci_unmap_page(pdev,
1959                                        ps_page_dma->ps_page_dma[j],
1960                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1961                         ps_page_dma->ps_page_dma[j] = 0;
1962                         put_page(ps_page->ps_page[j]);
1963                         ps_page->ps_page[j] = NULL;
1964                 }
1965         }
1966
1967         size = sizeof(struct e1000_buffer) * rx_ring->count;
1968         memset(rx_ring->buffer_info, 0, size);
1969         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1970         memset(rx_ring->ps_page, 0, size);
1971         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1972         memset(rx_ring->ps_page_dma, 0, size);
1973
1974         /* Zero out the descriptor ring */
1975
1976         memset(rx_ring->desc, 0, rx_ring->size);
1977
1978         rx_ring->next_to_clean = 0;
1979         rx_ring->next_to_use = 0;
1980
1981         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1982         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1983 }
1984
1985 /**
1986  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1987  * @adapter: board private structure
1988  **/
1989
1990 static void
1991 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1992 {
1993         int i;
1994
1995         for (i = 0; i < adapter->num_rx_queues; i++)
1996                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1997 }
1998
1999 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2000  * and memory write and invalidate disabled for certain operations
2001  */
2002 static void
2003 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2004 {
2005         struct net_device *netdev = adapter->netdev;
2006         uint32_t rctl;
2007
2008         e1000_pci_clear_mwi(&adapter->hw);
2009
2010         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2011         rctl |= E1000_RCTL_RST;
2012         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2013         E1000_WRITE_FLUSH(&adapter->hw);
2014         mdelay(5);
2015
2016         if (netif_running(netdev))
2017                 e1000_clean_all_rx_rings(adapter);
2018 }
2019
2020 static void
2021 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2022 {
2023         struct net_device *netdev = adapter->netdev;
2024         uint32_t rctl;
2025
2026         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2027         rctl &= ~E1000_RCTL_RST;
2028         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2029         E1000_WRITE_FLUSH(&adapter->hw);
2030         mdelay(5);
2031
2032         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2033                 e1000_pci_set_mwi(&adapter->hw);
2034
2035         if (netif_running(netdev)) {
2036                 /* No need to loop, because 82542 supports only 1 queue */
2037                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2038                 e1000_configure_rx(adapter);
2039                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2040         }
2041 }
2042
2043 /**
2044  * e1000_set_mac - Change the Ethernet Address of the NIC
2045  * @netdev: network interface device structure
2046  * @p: pointer to an address structure
2047  *
2048  * Returns 0 on success, negative on failure
2049  **/
2050
2051 static int
2052 e1000_set_mac(struct net_device *netdev, void *p)
2053 {
2054         struct e1000_adapter *adapter = netdev_priv(netdev);
2055         struct sockaddr *addr = p;
2056
2057         if (!is_valid_ether_addr(addr->sa_data))
2058                 return -EADDRNOTAVAIL;
2059
2060         /* 82542 2.0 needs to be in reset to write receive address registers */
2061
2062         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2063                 e1000_enter_82542_rst(adapter);
2064
2065         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2066         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2067
2068         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2069
2070         /* With 82571 controllers, LAA may be overwritten (with the default)
2071          * due to controller reset from the other port. */
2072         if (adapter->hw.mac_type == e1000_82571) {
2073                 /* activate the work around */
2074                 adapter->hw.laa_is_present = 1;
2075
2076                 /* Hold a copy of the LAA in RAR[14] This is done so that
2077                  * between the time RAR[0] gets clobbered  and the time it
2078                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2079                  * of the RARs and no incoming packets directed to this port
2080                  * are dropped. Eventaully the LAA will be in RAR[0] and
2081                  * RAR[14] */
2082                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2083                                         E1000_RAR_ENTRIES - 1);
2084         }
2085
2086         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2087                 e1000_leave_82542_rst(adapter);
2088
2089         return 0;
2090 }
2091
2092 /**
2093  * e1000_set_multi - Multicast and Promiscuous mode set
2094  * @netdev: network interface device structure
2095  *
2096  * The set_multi entry point is called whenever the multicast address
2097  * list or the network interface flags are updated.  This routine is
2098  * responsible for configuring the hardware for proper multicast,
2099  * promiscuous mode, and all-multi behavior.
2100  **/
2101
2102 static void
2103 e1000_set_multi(struct net_device *netdev)
2104 {
2105         struct e1000_adapter *adapter = netdev_priv(netdev);
2106         struct e1000_hw *hw = &adapter->hw;
2107         struct dev_mc_list *mc_ptr;
2108         uint32_t rctl;
2109         uint32_t hash_value;
2110         int i, rar_entries = E1000_RAR_ENTRIES;
2111
2112         /* reserve RAR[14] for LAA over-write work-around */
2113         if (adapter->hw.mac_type == e1000_82571)
2114                 rar_entries--;
2115
2116         /* Check for Promiscuous and All Multicast modes */
2117
2118         rctl = E1000_READ_REG(hw, RCTL);
2119
2120         if (netdev->flags & IFF_PROMISC) {
2121                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2122         } else if (netdev->flags & IFF_ALLMULTI) {
2123                 rctl |= E1000_RCTL_MPE;
2124                 rctl &= ~E1000_RCTL_UPE;
2125         } else {
2126                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2127         }
2128
2129         E1000_WRITE_REG(hw, RCTL, rctl);
2130
2131         /* 82542 2.0 needs to be in reset to write receive address registers */
2132
2133         if (hw->mac_type == e1000_82542_rev2_0)
2134                 e1000_enter_82542_rst(adapter);
2135
2136         /* load the first 14 multicast address into the exact filters 1-14
2137          * RAR 0 is used for the station MAC adddress
2138          * if there are not 14 addresses, go ahead and clear the filters
2139          * -- with 82571 controllers only 0-13 entries are filled here
2140          */
2141         mc_ptr = netdev->mc_list;
2142
2143         for (i = 1; i < rar_entries; i++) {
2144                 if (mc_ptr) {
2145                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2146                         mc_ptr = mc_ptr->next;
2147                 } else {
2148                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2149                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2150                 }
2151         }
2152
2153         /* clear the old settings from the multicast hash table */
2154
2155         for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2156                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2157
2158         /* load any remaining addresses into the hash table */
2159
2160         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2161                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2162                 e1000_mta_set(hw, hash_value);
2163         }
2164
2165         if (hw->mac_type == e1000_82542_rev2_0)
2166                 e1000_leave_82542_rst(adapter);
2167 }
2168
2169 /* Need to wait a few seconds after link up to get diagnostic information from
2170  * the phy */
2171
2172 static void
2173 e1000_update_phy_info(unsigned long data)
2174 {
2175         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2176         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2177 }
2178
2179 /**
2180  * e1000_82547_tx_fifo_stall - Timer Call-back
2181  * @data: pointer to adapter cast into an unsigned long
2182  **/
2183
2184 static void
2185 e1000_82547_tx_fifo_stall(unsigned long data)
2186 {
2187         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2188         struct net_device *netdev = adapter->netdev;
2189         uint32_t tctl;
2190
2191         if (atomic_read(&adapter->tx_fifo_stall)) {
2192                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2193                     E1000_READ_REG(&adapter->hw, TDH)) &&
2194                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2195                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2196                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2197                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2198                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2199                         E1000_WRITE_REG(&adapter->hw, TCTL,
2200                                         tctl & ~E1000_TCTL_EN);
2201                         E1000_WRITE_REG(&adapter->hw, TDFT,
2202                                         adapter->tx_head_addr);
2203                         E1000_WRITE_REG(&adapter->hw, TDFH,
2204                                         adapter->tx_head_addr);
2205                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2206                                         adapter->tx_head_addr);
2207                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2208                                         adapter->tx_head_addr);
2209                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2210                         E1000_WRITE_FLUSH(&adapter->hw);
2211
2212                         adapter->tx_fifo_head = 0;
2213                         atomic_set(&adapter->tx_fifo_stall, 0);
2214                         netif_wake_queue(netdev);
2215                 } else {
2216                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2217                 }
2218         }
2219 }
2220
2221 /**
2222  * e1000_watchdog - Timer Call-back
2223  * @data: pointer to adapter cast into an unsigned long
2224  **/
2225 static void
2226 e1000_watchdog(unsigned long data)
2227 {
2228         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2229
2230         /* Do the rest outside of interrupt context */
2231         schedule_work(&adapter->watchdog_task);
2232 }
2233
2234 static void
2235 e1000_watchdog_task(struct e1000_adapter *adapter)
2236 {
2237         struct net_device *netdev = adapter->netdev;
2238         struct e1000_tx_ring *txdr = adapter->tx_ring;
2239         uint32_t link, tctl;
2240
2241         e1000_check_for_link(&adapter->hw);
2242         if (adapter->hw.mac_type == e1000_82573) {
2243                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2244                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2245                         e1000_update_mng_vlan(adapter);
2246         }
2247
2248         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2249            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2250                 link = !adapter->hw.serdes_link_down;
2251         else
2252                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2253
2254         if (link) {
2255                 if (!netif_carrier_ok(netdev)) {
2256                         boolean_t txb2b = 1;
2257                         e1000_get_speed_and_duplex(&adapter->hw,
2258                                                    &adapter->link_speed,
2259                                                    &adapter->link_duplex);
2260
2261                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2262                                adapter->link_speed,
2263                                adapter->link_duplex == FULL_DUPLEX ?
2264                                "Full Duplex" : "Half Duplex");
2265
2266                         /* tweak tx_queue_len according to speed/duplex
2267                          * and adjust the timeout factor */
2268                         netdev->tx_queue_len = adapter->tx_queue_len;
2269                         adapter->tx_timeout_factor = 1;
2270                         switch (adapter->link_speed) {
2271                         case SPEED_10:
2272                                 txb2b = 0;
2273                                 netdev->tx_queue_len = 10;
2274                                 adapter->tx_timeout_factor = 8;
2275                                 break;
2276                         case SPEED_100:
2277                                 txb2b = 0;
2278                                 netdev->tx_queue_len = 100;
2279                                 /* maybe add some timeout factor ? */
2280                                 break;
2281                         }
2282
2283                         if ((adapter->hw.mac_type == e1000_82571 ||
2284                              adapter->hw.mac_type == e1000_82572) &&
2285                             txb2b == 0) {
2286 #define SPEED_MODE_BIT (1 << 21)
2287                                 uint32_t tarc0;
2288                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2289                                 tarc0 &= ~SPEED_MODE_BIT;
2290                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2291                         }
2292                                 
2293 #ifdef NETIF_F_TSO
2294                         /* disable TSO for pcie and 10/100 speeds, to avoid
2295                          * some hardware issues */
2296                         if (!adapter->tso_force &&
2297                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2298                                 switch (adapter->link_speed) {
2299                                 case SPEED_10:
2300                                 case SPEED_100:
2301                                         DPRINTK(PROBE,INFO,
2302                                         "10/100 speed: disabling TSO\n");
2303                                         netdev->features &= ~NETIF_F_TSO;
2304                                         break;
2305                                 case SPEED_1000:
2306                                         netdev->features |= NETIF_F_TSO;
2307                                         break;
2308                                 default:
2309                                         /* oops */
2310                                         break;
2311                                 }
2312                         }
2313 #endif
2314
2315                         /* enable transmits in the hardware, need to do this
2316                          * after setting TARC0 */
2317                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2318                         tctl |= E1000_TCTL_EN;
2319                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2320
2321                         netif_carrier_on(netdev);
2322                         netif_wake_queue(netdev);
2323                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2324                         adapter->smartspeed = 0;
2325                 }
2326         } else {
2327                 if (netif_carrier_ok(netdev)) {
2328                         adapter->link_speed = 0;
2329                         adapter->link_duplex = 0;
2330                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2331                         netif_carrier_off(netdev);
2332                         netif_stop_queue(netdev);
2333                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2334
2335                         /* 80003ES2LAN workaround--
2336                          * For packet buffer work-around on link down event;
2337                          * disable receives in the ISR and
2338                          * reset device here in the watchdog
2339                          */
2340                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2341                                 /* reset device */
2342                                 schedule_work(&adapter->reset_task);
2343                         }
2344                 }
2345
2346                 e1000_smartspeed(adapter);
2347         }
2348
2349         e1000_update_stats(adapter);
2350
2351         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2352         adapter->tpt_old = adapter->stats.tpt;
2353         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2354         adapter->colc_old = adapter->stats.colc;
2355
2356         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2357         adapter->gorcl_old = adapter->stats.gorcl;
2358         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2359         adapter->gotcl_old = adapter->stats.gotcl;
2360
2361         e1000_update_adaptive(&adapter->hw);
2362
2363         if (!netif_carrier_ok(netdev)) {
2364                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2365                         /* We've lost link, so the controller stops DMA,
2366                          * but we've got queued Tx work that's never going
2367                          * to get done, so reset controller to flush Tx.
2368                          * (Do the reset outside of interrupt context). */
2369                         adapter->tx_timeout_count++;
2370                         schedule_work(&adapter->reset_task);
2371                 }
2372         }
2373
2374         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2375         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2376                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2377                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2378                  * else is between 2000-8000. */
2379                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2380                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2381                         adapter->gotcl - adapter->gorcl :
2382                         adapter->gorcl - adapter->gotcl) / 10000;
2383                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2384                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2385         }
2386
2387         /* Cause software interrupt to ensure rx ring is cleaned */
2388         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2389
2390         /* Force detection of hung controller every watchdog period */
2391         adapter->detect_tx_hung = TRUE;
2392
2393         /* With 82571 controllers, LAA may be overwritten due to controller
2394          * reset from the other port. Set the appropriate LAA in RAR[0] */
2395         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2396                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2397
2398         /* Reset the timer */
2399         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2400 }
2401
2402 #define E1000_TX_FLAGS_CSUM             0x00000001
2403 #define E1000_TX_FLAGS_VLAN             0x00000002
2404 #define E1000_TX_FLAGS_TSO              0x00000004
2405 #define E1000_TX_FLAGS_IPV4             0x00000008
2406 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2407 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2408
2409 static int
2410 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2411           struct sk_buff *skb)
2412 {
2413 #ifdef NETIF_F_TSO
2414         struct e1000_context_desc *context_desc;
2415         struct e1000_buffer *buffer_info;
2416         unsigned int i;
2417         uint32_t cmd_length = 0;
2418         uint16_t ipcse = 0, tucse, mss;
2419         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2420         int err;
2421
2422         if (skb_shinfo(skb)->tso_size) {
2423                 if (skb_header_cloned(skb)) {
2424                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2425                         if (err)
2426                                 return err;
2427                 }
2428
2429                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2430                 mss = skb_shinfo(skb)->tso_size;
2431                 if (skb->protocol == ntohs(ETH_P_IP)) {
2432                         skb->nh.iph->tot_len = 0;
2433                         skb->nh.iph->check = 0;
2434                         skb->h.th->check =
2435                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2436                                                    skb->nh.iph->daddr,
2437                                                    0,
2438                                                    IPPROTO_TCP,
2439                                                    0);
2440                         cmd_length = E1000_TXD_CMD_IP;
2441                         ipcse = skb->h.raw - skb->data - 1;
2442 #ifdef NETIF_F_TSO_IPV6
2443                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2444                         skb->nh.ipv6h->payload_len = 0;
2445                         skb->h.th->check =
2446                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2447                                                  &skb->nh.ipv6h->daddr,
2448                                                  0,
2449                                                  IPPROTO_TCP,
2450                                                  0);
2451                         ipcse = 0;
2452 #endif
2453                 }
2454                 ipcss = skb->nh.raw - skb->data;
2455                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2456                 tucss = skb->h.raw - skb->data;
2457                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2458                 tucse = 0;
2459
2460                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2461                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2462
2463                 i = tx_ring->next_to_use;
2464                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2465                 buffer_info = &tx_ring->buffer_info[i];
2466
2467                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2468                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2469                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2470                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2471                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2472                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2473                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2474                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2475                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2476
2477                 buffer_info->time_stamp = jiffies;
2478
2479                 if (++i == tx_ring->count) i = 0;
2480                 tx_ring->next_to_use = i;
2481
2482                 return TRUE;
2483         }
2484 #endif
2485
2486         return FALSE;
2487 }
2488
2489 static boolean_t
2490 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2491               struct sk_buff *skb)
2492 {
2493         struct e1000_context_desc *context_desc;
2494         struct e1000_buffer *buffer_info;
2495         unsigned int i;
2496         uint8_t css;
2497
2498         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2499                 css = skb->h.raw - skb->data;
2500
2501                 i = tx_ring->next_to_use;
2502                 buffer_info = &tx_ring->buffer_info[i];
2503                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2504
2505                 context_desc->upper_setup.tcp_fields.tucss = css;
2506                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2507                 context_desc->upper_setup.tcp_fields.tucse = 0;
2508                 context_desc->tcp_seg_setup.data = 0;
2509                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2510
2511                 buffer_info->time_stamp = jiffies;
2512
2513                 if (unlikely(++i == tx_ring->count)) i = 0;
2514                 tx_ring->next_to_use = i;
2515
2516                 return TRUE;
2517         }
2518
2519         return FALSE;
2520 }
2521
2522 #define E1000_MAX_TXD_PWR       12
2523 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2524
2525 static int
2526 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2527              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2528              unsigned int nr_frags, unsigned int mss)
2529 {
2530         struct e1000_buffer *buffer_info;
2531         unsigned int len = skb->len;
2532         unsigned int offset = 0, size, count = 0, i;
2533         unsigned int f;
2534         len -= skb->data_len;
2535
2536         i = tx_ring->next_to_use;
2537
2538         while (len) {
2539                 buffer_info = &tx_ring->buffer_info[i];
2540                 size = min(len, max_per_txd);
2541 #ifdef NETIF_F_TSO
2542                 /* Workaround for Controller erratum --
2543                  * descriptor for non-tso packet in a linear SKB that follows a
2544                  * tso gets written back prematurely before the data is fully
2545                  * DMA'd to the controller */
2546                 if (!skb->data_len && tx_ring->last_tx_tso &&
2547                     !skb_shinfo(skb)->tso_size) {
2548                         tx_ring->last_tx_tso = 0;
2549                         size -= 4;
2550                 }
2551
2552                 /* Workaround for premature desc write-backs
2553                  * in TSO mode.  Append 4-byte sentinel desc */
2554                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2555                         size -= 4;
2556 #endif
2557                 /* work-around for errata 10 and it applies
2558                  * to all controllers in PCI-X mode
2559                  * The fix is to make sure that the first descriptor of a
2560                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2561                  */
2562                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2563                                 (size > 2015) && count == 0))
2564                         size = 2015;
2565
2566                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2567                  * terminating buffers within evenly-aligned dwords. */
2568                 if (unlikely(adapter->pcix_82544 &&
2569                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2570                    size > 4))
2571                         size -= 4;
2572
2573                 buffer_info->length = size;
2574                 buffer_info->dma =
2575                         pci_map_single(adapter->pdev,
2576                                 skb->data + offset,
2577                                 size,
2578                                 PCI_DMA_TODEVICE);
2579                 buffer_info->time_stamp = jiffies;
2580
2581                 len -= size;
2582                 offset += size;
2583                 count++;
2584                 if (unlikely(++i == tx_ring->count)) i = 0;
2585         }
2586
2587         for (f = 0; f < nr_frags; f++) {
2588                 struct skb_frag_struct *frag;
2589
2590                 frag = &skb_shinfo(skb)->frags[f];
2591                 len = frag->size;
2592                 offset = frag->page_offset;
2593
2594                 while (len) {
2595                         buffer_info = &tx_ring->buffer_info[i];
2596                         size = min(len, max_per_txd);
2597 #ifdef NETIF_F_TSO
2598                         /* Workaround for premature desc write-backs
2599                          * in TSO mode.  Append 4-byte sentinel desc */
2600                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2601                                 size -= 4;
2602 #endif
2603                         /* Workaround for potential 82544 hang in PCI-X.
2604                          * Avoid terminating buffers within evenly-aligned
2605                          * dwords. */
2606                         if (unlikely(adapter->pcix_82544 &&
2607                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2608                            size > 4))
2609                                 size -= 4;
2610
2611                         buffer_info->length = size;
2612                         buffer_info->dma =
2613                                 pci_map_page(adapter->pdev,
2614                                         frag->page,
2615                                         offset,
2616                                         size,
2617                                         PCI_DMA_TODEVICE);
2618                         buffer_info->time_stamp = jiffies;
2619
2620                         len -= size;
2621                         offset += size;
2622                         count++;
2623                         if (unlikely(++i == tx_ring->count)) i = 0;
2624                 }
2625         }
2626
2627         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2628         tx_ring->buffer_info[i].skb = skb;
2629         tx_ring->buffer_info[first].next_to_watch = i;
2630
2631         return count;
2632 }
2633
2634 static void
2635 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2636                int tx_flags, int count)
2637 {
2638         struct e1000_tx_desc *tx_desc = NULL;
2639         struct e1000_buffer *buffer_info;
2640         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2641         unsigned int i;
2642
2643         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2644                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2645                              E1000_TXD_CMD_TSE;
2646                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2647
2648                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2649                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2650         }
2651
2652         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2653                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2654                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2655         }
2656
2657         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2658                 txd_lower |= E1000_TXD_CMD_VLE;
2659                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2660         }
2661
2662         i = tx_ring->next_to_use;
2663
2664         while (count--) {
2665                 buffer_info = &tx_ring->buffer_info[i];
2666                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2667                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2668                 tx_desc->lower.data =
2669                         cpu_to_le32(txd_lower | buffer_info->length);
2670                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2671                 if (unlikely(++i == tx_ring->count)) i = 0;
2672         }
2673
2674         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2675
2676         /* Force memory writes to complete before letting h/w
2677          * know there are new descriptors to fetch.  (Only
2678          * applicable for weak-ordered memory model archs,
2679          * such as IA-64). */
2680         wmb();
2681
2682         tx_ring->next_to_use = i;
2683         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2684 }
2685
2686 /**
2687  * 82547 workaround to avoid controller hang in half-duplex environment.
2688  * The workaround is to avoid queuing a large packet that would span
2689  * the internal Tx FIFO ring boundary by notifying the stack to resend
2690  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2691  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2692  * to the beginning of the Tx FIFO.
2693  **/
2694
2695 #define E1000_FIFO_HDR                  0x10
2696 #define E1000_82547_PAD_LEN             0x3E0
2697
2698 static int
2699 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2700 {
2701         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2702         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2703
2704         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2705
2706         if (adapter->link_duplex != HALF_DUPLEX)
2707                 goto no_fifo_stall_required;
2708
2709         if (atomic_read(&adapter->tx_fifo_stall))
2710                 return 1;
2711
2712         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2713                 atomic_set(&adapter->tx_fifo_stall, 1);
2714                 return 1;
2715         }
2716
2717 no_fifo_stall_required:
2718         adapter->tx_fifo_head += skb_fifo_len;
2719         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2720                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2721         return 0;
2722 }
2723
2724 #define MINIMUM_DHCP_PACKET_SIZE 282
2725 static int
2726 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2727 {
2728         struct e1000_hw *hw =  &adapter->hw;
2729         uint16_t length, offset;
2730         if (vlan_tx_tag_present(skb)) {
2731                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2732                         ( adapter->hw.mng_cookie.status &
2733                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2734                         return 0;
2735         }
2736         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2737                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2738                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2739                         const struct iphdr *ip =
2740                                 (struct iphdr *)((uint8_t *)skb->data+14);
2741                         if (IPPROTO_UDP == ip->protocol) {
2742                                 struct udphdr *udp =
2743                                         (struct udphdr *)((uint8_t *)ip +
2744                                                 (ip->ihl << 2));
2745                                 if (ntohs(udp->dest) == 67) {
2746                                         offset = (uint8_t *)udp + 8 - skb->data;
2747                                         length = skb->len - offset;
2748
2749                                         return e1000_mng_write_dhcp_info(hw,
2750                                                         (uint8_t *)udp + 8,
2751                                                         length);
2752                                 }
2753                         }
2754                 }
2755         }
2756         return 0;
2757 }
2758
2759 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2760 static int
2761 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2762 {
2763         struct e1000_adapter *adapter = netdev_priv(netdev);
2764         struct e1000_tx_ring *tx_ring;
2765         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2766         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2767         unsigned int tx_flags = 0;
2768         unsigned int len = skb->len;
2769         unsigned long flags;
2770         unsigned int nr_frags = 0;
2771         unsigned int mss = 0;
2772         int count = 0;
2773         int tso;
2774         unsigned int f;
2775         len -= skb->data_len;
2776
2777         tx_ring = adapter->tx_ring;
2778
2779         if (unlikely(skb->len <= 0)) {
2780                 dev_kfree_skb_any(skb);
2781                 return NETDEV_TX_OK;
2782         }
2783
2784 #ifdef NETIF_F_TSO
2785         mss = skb_shinfo(skb)->tso_size;
2786         /* The controller does a simple calculation to 
2787          * make sure there is enough room in the FIFO before
2788          * initiating the DMA for each buffer.  The calc is:
2789          * 4 = ceil(buffer len/mss).  To make sure we don't
2790          * overrun the FIFO, adjust the max buffer len if mss
2791          * drops. */
2792         if (mss) {
2793                 uint8_t hdr_len;
2794                 max_per_txd = min(mss << 2, max_per_txd);
2795                 max_txd_pwr = fls(max_per_txd) - 1;
2796
2797         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2798          * points to just header, pull a few bytes of payload from
2799          * frags into skb->data */
2800                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2801                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2802                         switch (adapter->hw.mac_type) {
2803                                 unsigned int pull_size;
2804                         case e1000_82571:
2805                         case e1000_82572:
2806                         case e1000_82573:
2807                                 pull_size = min((unsigned int)4, skb->data_len);
2808                                 if (!__pskb_pull_tail(skb, pull_size)) {
2809                                         printk(KERN_ERR 
2810                                                 "__pskb_pull_tail failed.\n");
2811                                         dev_kfree_skb_any(skb);
2812                                         return NETDEV_TX_OK;
2813                                 }
2814                                 len = skb->len - skb->data_len;
2815                                 break;
2816                         default:
2817                                 /* do nothing */
2818                                 break;
2819                         }
2820                 }
2821         }
2822
2823         /* reserve a descriptor for the offload context */
2824         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2825                 count++;
2826         count++;
2827 #else
2828         if (skb->ip_summed == CHECKSUM_HW)
2829                 count++;
2830 #endif
2831
2832 #ifdef NETIF_F_TSO
2833         /* Controller Erratum workaround */
2834         if (!skb->data_len && tx_ring->last_tx_tso &&
2835             !skb_shinfo(skb)->tso_size)
2836                 count++;
2837 #endif
2838
2839         count += TXD_USE_COUNT(len, max_txd_pwr);
2840
2841         if (adapter->pcix_82544)
2842                 count++;
2843
2844         /* work-around for errata 10 and it applies to all controllers
2845          * in PCI-X mode, so add one more descriptor to the count
2846          */
2847         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2848                         (len > 2015)))
2849                 count++;
2850
2851         nr_frags = skb_shinfo(skb)->nr_frags;
2852         for (f = 0; f < nr_frags; f++)
2853                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2854                                        max_txd_pwr);
2855         if (adapter->pcix_82544)
2856                 count += nr_frags;
2857
2858
2859         if (adapter->hw.tx_pkt_filtering &&
2860             (adapter->hw.mac_type == e1000_82573))
2861                 e1000_transfer_dhcp_info(adapter, skb);
2862
2863         local_irq_save(flags);
2864         if (!spin_trylock(&tx_ring->tx_lock)) {
2865                 /* Collision - tell upper layer to requeue */
2866                 local_irq_restore(flags);
2867                 return NETDEV_TX_LOCKED;
2868         }
2869
2870         /* need: count + 2 desc gap to keep tail from touching
2871          * head, otherwise try next time */
2872         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2873                 netif_stop_queue(netdev);
2874                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2875                 return NETDEV_TX_BUSY;
2876         }
2877
2878         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2879                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2880                         netif_stop_queue(netdev);
2881                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2882                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2883                         return NETDEV_TX_BUSY;
2884                 }
2885         }
2886
2887         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2888                 tx_flags |= E1000_TX_FLAGS_VLAN;
2889                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2890         }
2891
2892         first = tx_ring->next_to_use;
2893
2894         tso = e1000_tso(adapter, tx_ring, skb);
2895         if (tso < 0) {
2896                 dev_kfree_skb_any(skb);
2897                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2898                 return NETDEV_TX_OK;
2899         }
2900
2901         if (likely(tso)) {
2902                 tx_ring->last_tx_tso = 1;
2903                 tx_flags |= E1000_TX_FLAGS_TSO;
2904         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2905                 tx_flags |= E1000_TX_FLAGS_CSUM;
2906
2907         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2908          * 82571 hardware supports TSO capabilities for IPv6 as well...
2909          * no longer assume, we must. */
2910         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2911                 tx_flags |= E1000_TX_FLAGS_IPV4;
2912
2913         e1000_tx_queue(adapter, tx_ring, tx_flags,
2914                        e1000_tx_map(adapter, tx_ring, skb, first,
2915                                     max_per_txd, nr_frags, mss));
2916
2917         netdev->trans_start = jiffies;
2918
2919         /* Make sure there is space in the ring for the next send. */
2920         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2921                 netif_stop_queue(netdev);
2922
2923         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2924         return NETDEV_TX_OK;
2925 }
2926
2927 /**
2928  * e1000_tx_timeout - Respond to a Tx Hang
2929  * @netdev: network interface device structure
2930  **/
2931
2932 static void
2933 e1000_tx_timeout(struct net_device *netdev)
2934 {
2935         struct e1000_adapter *adapter = netdev_priv(netdev);
2936
2937         /* Do the reset outside of interrupt context */
2938         adapter->tx_timeout_count++;
2939         schedule_work(&adapter->reset_task);
2940 }
2941
2942 static void
2943 e1000_reset_task(struct net_device *netdev)
2944 {
2945         struct e1000_adapter *adapter = netdev_priv(netdev);
2946
2947         e1000_down(adapter);
2948         e1000_up(adapter);
2949 }
2950
2951 /**
2952  * e1000_get_stats - Get System Network Statistics
2953  * @netdev: network interface device structure
2954  *
2955  * Returns the address of the device statistics structure.
2956  * The statistics are actually updated from the timer callback.
2957  **/
2958
2959 static struct net_device_stats *
2960 e1000_get_stats(struct net_device *netdev)
2961 {
2962         struct e1000_adapter *adapter = netdev_priv(netdev);
2963
2964         /* only return the current stats */
2965         return &adapter->net_stats;
2966 }
2967
2968 /**
2969  * e1000_change_mtu - Change the Maximum Transfer Unit
2970  * @netdev: network interface device structure
2971  * @new_mtu: new value for maximum frame size
2972  *
2973  * Returns 0 on success, negative on failure
2974  **/
2975
2976 static int
2977 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2978 {
2979         struct e1000_adapter *adapter = netdev_priv(netdev);
2980         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2981         uint16_t eeprom_data = 0;
2982
2983         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2984             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2985                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2986                 return -EINVAL;
2987         }
2988
2989         /* Adapter-specific max frame size limits. */
2990         switch (adapter->hw.mac_type) {
2991         case e1000_undefined ... e1000_82542_rev2_1:
2992                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2993                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2994                         return -EINVAL;
2995                 }
2996                 break;
2997         case e1000_82573:
2998                 /* only enable jumbo frames if ASPM is disabled completely
2999                  * this means both bits must be zero in 0x1A bits 3:2 */
3000                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3001                                   &eeprom_data);
3002                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3003                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3004                                 DPRINTK(PROBE, ERR,
3005                                         "Jumbo Frames not supported.\n");
3006                                 return -EINVAL;
3007                         }
3008                         break;
3009                 }
3010                 /* fall through to get support */
3011         case e1000_82571:
3012         case e1000_82572:
3013         case e1000_80003es2lan:
3014 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3015                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3016                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3017                         return -EINVAL;
3018                 }
3019                 break;
3020         default:
3021                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3022                 break;
3023         }
3024
3025         /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3026          * means we reserve 2 more, this pushes us to allocate from the next
3027          * larger slab size
3028          * i.e. RXBUFFER_2048 --> size-4096 slab */
3029
3030         if (max_frame <= E1000_RXBUFFER_256)
3031                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3032         else if (max_frame <= E1000_RXBUFFER_512)
3033                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3034         else if (max_frame <= E1000_RXBUFFER_1024)
3035                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3036         else if (max_frame <= E1000_RXBUFFER_2048)
3037                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3038         else if (max_frame <= E1000_RXBUFFER_4096)
3039                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3040         else if (max_frame <= E1000_RXBUFFER_8192)
3041                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3042         else if (max_frame <= E1000_RXBUFFER_16384)
3043                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3044
3045         /* adjust allocation if LPE protects us, and we aren't using SBP */
3046 #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3047         if (!adapter->hw.tbi_compatibility_on &&
3048             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3049              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3050                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3051
3052         netdev->mtu = new_mtu;
3053
3054         if (netif_running(netdev)) {
3055                 e1000_down(adapter);
3056                 e1000_up(adapter);
3057         }
3058
3059         adapter->hw.max_frame_size = max_frame;
3060
3061         return 0;
3062 }
3063
3064 /**
3065  * e1000_update_stats - Update the board statistics counters
3066  * @adapter: board private structure
3067  **/
3068
3069 void
3070 e1000_update_stats(struct e1000_adapter *adapter)
3071 {
3072         struct e1000_hw *hw = &adapter->hw;
3073         unsigned long flags;
3074         uint16_t phy_tmp;
3075
3076 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3077
3078         spin_lock_irqsave(&adapter->stats_lock, flags);
3079
3080         /* these counters are modified from e1000_adjust_tbi_stats,
3081          * called from the interrupt context, so they must only
3082          * be written while holding adapter->stats_lock
3083          */
3084
3085         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3086         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3087         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3088         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3089         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3090         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3091         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3092         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3093         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3094         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3095         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3096         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3097         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3098
3099         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3100         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3101         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3102         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3103         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3104         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3105         adapter->stats.dc += E1000_READ_REG(hw, DC);
3106         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3107         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3108         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3109         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3110         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3111         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3112         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3113         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3114         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3115         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3116         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3117         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3118         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3119         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3120         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3121         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3122         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3123         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3124         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3125         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3126         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3127         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3128         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3129         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3130         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3131         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3132         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3133
3134         /* used for adaptive IFS */
3135
3136         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3137         adapter->stats.tpt += hw->tx_packet_delta;
3138         hw->collision_delta = E1000_READ_REG(hw, COLC);
3139         adapter->stats.colc += hw->collision_delta;
3140
3141         if (hw->mac_type >= e1000_82543) {
3142                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3143                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3144                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3145                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3146                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3147                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3148         }
3149         if (hw->mac_type > e1000_82547_rev_2) {
3150                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3151                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3152                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3153                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3154                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3155                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3156                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3157                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3158                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3159         }
3160
3161         /* Fill out the OS statistics structure */
3162
3163         adapter->net_stats.rx_packets = adapter->stats.gprc;
3164         adapter->net_stats.tx_packets = adapter->stats.gptc;
3165         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3166         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3167         adapter->net_stats.multicast = adapter->stats.mprc;
3168         adapter->net_stats.collisions = adapter->stats.colc;
3169
3170         /* Rx Errors */
3171
3172         /* RLEC on some newer hardware can be incorrect so build
3173         * our own version based on RUC and ROC */
3174         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3175                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3176                 adapter->stats.ruc + adapter->stats.roc +
3177                 adapter->stats.cexterr;
3178         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3179                                               adapter->stats.roc;
3180         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3181         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3182         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3183
3184         /* Tx Errors */
3185
3186         adapter->net_stats.tx_errors = adapter->stats.ecol +
3187                                        adapter->stats.latecol;
3188         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3189         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3190         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3191
3192         /* Tx Dropped needs to be maintained elsewhere */
3193
3194         /* Phy Stats */
3195
3196         if (hw->media_type == e1000_media_type_copper) {
3197                 if ((adapter->link_speed == SPEED_1000) &&
3198                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3199                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3200                         adapter->phy_stats.idle_errors += phy_tmp;
3201                 }
3202
3203                 if ((hw->mac_type <= e1000_82546) &&
3204                    (hw->phy_type == e1000_phy_m88) &&
3205                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3206                         adapter->phy_stats.receive_errors += phy_tmp;
3207         }
3208
3209         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3210 }
3211
3212 /**
3213  * e1000_intr - Interrupt Handler
3214  * @irq: interrupt number
3215  * @data: pointer to a network interface device structure
3216  * @pt_regs: CPU registers structure
3217  **/
3218
3219 static irqreturn_t
3220 e1000_intr(int irq, void *data, struct pt_regs *regs)
3221 {
3222         struct net_device *netdev = data;
3223         struct e1000_adapter *adapter = netdev_priv(netdev);
3224         struct e1000_hw *hw = &adapter->hw;
3225         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3226 #ifndef CONFIG_E1000_NAPI
3227         int i;
3228 #else
3229         /* Interrupt Auto-Mask...upon reading ICR,
3230          * interrupts are masked.  No need for the
3231          * IMC write, but it does mean we should
3232          * account for it ASAP. */
3233         if (likely(hw->mac_type >= e1000_82571))
3234                 atomic_inc(&adapter->irq_sem);
3235 #endif
3236
3237         if (unlikely(!icr)) {
3238 #ifdef CONFIG_E1000_NAPI
3239                 if (hw->mac_type >= e1000_82571)
3240                         e1000_irq_enable(adapter);
3241 #endif
3242                 return IRQ_NONE;  /* Not our interrupt */
3243         }
3244
3245         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3246                 hw->get_link_status = 1;
3247                 /* 80003ES2LAN workaround--
3248                  * For packet buffer work-around on link down event;
3249                  * disable receives here in the ISR and
3250                  * reset adapter in watchdog
3251                  */
3252                 if (netif_carrier_ok(netdev) &&
3253                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3254                         /* disable receives */
3255                         rctl = E1000_READ_REG(hw, RCTL);
3256                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3257                 }
3258                 mod_timer(&adapter->watchdog_timer, jiffies);
3259         }
3260
3261 #ifdef CONFIG_E1000_NAPI
3262         if (unlikely(hw->mac_type < e1000_82571)) {
3263                 atomic_inc(&adapter->irq_sem);
3264                 E1000_WRITE_REG(hw, IMC, ~0);
3265                 E1000_WRITE_FLUSH(hw);
3266         }
3267         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3268                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3269         else
3270                 e1000_irq_enable(adapter);
3271 #else
3272         /* Writing IMC and IMS is needed for 82547.
3273          * Due to Hub Link bus being occupied, an interrupt
3274          * de-assertion message is not able to be sent.
3275          * When an interrupt assertion message is generated later,
3276          * two messages are re-ordered and sent out.
3277          * That causes APIC to think 82547 is in de-assertion
3278          * state, while 82547 is in assertion state, resulting
3279          * in dead lock. Writing IMC forces 82547 into
3280          * de-assertion state.
3281          */
3282         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3283                 atomic_inc(&adapter->irq_sem);
3284                 E1000_WRITE_REG(hw, IMC, ~0);
3285         }
3286
3287         for (i = 0; i < E1000_MAX_INTR; i++)
3288                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3289                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3290                         break;
3291
3292         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3293                 e1000_irq_enable(adapter);
3294
3295 #endif
3296
3297         return IRQ_HANDLED;
3298 }
3299
3300 #ifdef CONFIG_E1000_NAPI
3301 /**
3302  * e1000_clean - NAPI Rx polling callback
3303  * @adapter: board private structure
3304  **/
3305
3306 static int
3307 e1000_clean(struct net_device *poll_dev, int *budget)
3308 {
3309         struct e1000_adapter *adapter;
3310         int work_to_do = min(*budget, poll_dev->quota);
3311         int tx_cleaned = 0, i = 0, work_done = 0;
3312
3313         /* Must NOT use netdev_priv macro here. */
3314         adapter = poll_dev->priv;
3315
3316         /* Keep link state information with original netdev */
3317         if (!netif_carrier_ok(adapter->netdev))
3318                 goto quit_polling;
3319
3320         while (poll_dev != &adapter->polling_netdev[i]) {
3321                 i++;
3322                 BUG_ON(i == adapter->num_rx_queues);
3323         }
3324
3325         if (likely(adapter->num_tx_queues == 1)) {
3326                 /* e1000_clean is called per-cpu.  This lock protects
3327                  * tx_ring[0] from being cleaned by multiple cpus
3328                  * simultaneously.  A failure obtaining the lock means
3329                  * tx_ring[0] is currently being cleaned anyway. */
3330                 if (spin_trylock(&adapter->tx_queue_lock)) {
3331                         tx_cleaned = e1000_clean_tx_irq(adapter,
3332                                                         &adapter->tx_ring[0]);
3333                         spin_unlock(&adapter->tx_queue_lock);
3334                 }
3335         } else
3336                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3337
3338         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3339                           &work_done, work_to_do);
3340
3341         *budget -= work_done;
3342         poll_dev->quota -= work_done;
3343
3344         /* If no Tx and not enough Rx work done, exit the polling mode */
3345         if ((!tx_cleaned && (work_done == 0)) ||
3346            !netif_running(adapter->netdev)) {
3347 quit_polling:
3348                 netif_rx_complete(poll_dev);
3349                 e1000_irq_enable(adapter);
3350                 return 0;
3351         }
3352
3353         return 1;
3354 }
3355
3356 #endif
3357 /**
3358  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3359  * @adapter: board private structure
3360  **/
3361
3362 static boolean_t
3363 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3364                    struct e1000_tx_ring *tx_ring)
3365 {
3366         struct net_device *netdev = adapter->netdev;
3367         struct e1000_tx_desc *tx_desc, *eop_desc;
3368         struct e1000_buffer *buffer_info;
3369         unsigned int i, eop;
3370 #ifdef CONFIG_E1000_NAPI
3371         unsigned int count = 0;
3372 #endif
3373         boolean_t cleaned = FALSE;
3374
3375         i = tx_ring->next_to_clean;
3376         eop = tx_ring->buffer_info[i].next_to_watch;
3377         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3378
3379         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3380                 for (cleaned = FALSE; !cleaned; ) {
3381                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3382                         buffer_info = &tx_ring->buffer_info[i];
3383                         cleaned = (i == eop);
3384
3385                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3386                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3387
3388                         if (unlikely(++i == tx_ring->count)) i = 0;
3389                 }
3390
3391
3392                 eop = tx_ring->buffer_info[i].next_to_watch;
3393                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3394 #ifdef CONFIG_E1000_NAPI
3395 #define E1000_TX_WEIGHT 64
3396                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3397                 if (count++ == E1000_TX_WEIGHT) break;
3398 #endif
3399         }
3400
3401         tx_ring->next_to_clean = i;
3402
3403 #define TX_WAKE_THRESHOLD 32
3404         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3405                      netif_carrier_ok(netdev))) {
3406                 spin_lock(&tx_ring->tx_lock);
3407                 if (netif_queue_stopped(netdev) &&
3408                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3409                         netif_wake_queue(netdev);
3410                 spin_unlock(&tx_ring->tx_lock);
3411         }
3412
3413         if (adapter->detect_tx_hung) {
3414                 /* Detect a transmit hang in hardware, this serializes the
3415                  * check with the clearing of time_stamp and movement of i */
3416                 adapter->detect_tx_hung = FALSE;
3417                 if (tx_ring->buffer_info[eop].dma &&
3418                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3419                                (adapter->tx_timeout_factor * HZ))
3420                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3421                          E1000_STATUS_TXOFF)) {
3422
3423                         /* detected Tx unit hang */
3424                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3425                                         "  Tx Queue             <%lu>\n"
3426                                         "  TDH                  <%x>\n"
3427                                         "  TDT                  <%x>\n"
3428                                         "  next_to_use          <%x>\n"
3429                                         "  next_to_clean        <%x>\n"
3430                                         "buffer_info[next_to_clean]\n"
3431                                         "  time_stamp           <%lx>\n"
3432                                         "  next_to_watch        <%x>\n"
3433                                         "  jiffies              <%lx>\n"
3434                                         "  next_to_watch.status <%x>\n",
3435                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3436                                         sizeof(struct e1000_tx_ring)),
3437                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3438                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3439                                 tx_ring->next_to_use,
3440                                 tx_ring->next_to_clean,
3441                                 tx_ring->buffer_info[eop].time_stamp,
3442                                 eop,
3443                                 jiffies,
3444                                 eop_desc->upper.fields.status);
3445                         netif_stop_queue(netdev);
3446                 }
3447         }
3448         return cleaned;
3449 }
3450
3451 /**
3452  * e1000_rx_checksum - Receive Checksum Offload for 82543
3453  * @adapter:     board private structure
3454  * @status_err:  receive descriptor status and error fields
3455  * @csum:        receive descriptor csum field
3456  * @sk_buff:     socket buffer with received data
3457  **/
3458
3459 static void
3460 e1000_rx_checksum(struct e1000_adapter *adapter,
3461                   uint32_t status_err, uint32_t csum,
3462                   struct sk_buff *skb)
3463 {
3464         uint16_t status = (uint16_t)status_err;
3465         uint8_t errors = (uint8_t)(status_err >> 24);
3466         skb->ip_summed = CHECKSUM_NONE;
3467
3468         /* 82543 or newer only */
3469         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3470         /* Ignore Checksum bit is set */
3471         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3472         /* TCP/UDP checksum error bit is set */
3473         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3474                 /* let the stack verify checksum errors */
3475                 adapter->hw_csum_err++;
3476                 return;
3477         }
3478         /* TCP/UDP Checksum has not been calculated */
3479         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3480                 if (!(status & E1000_RXD_STAT_TCPCS))
3481                         return;
3482         } else {
3483                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3484                         return;
3485         }
3486         /* It must be a TCP or UDP packet with a valid checksum */
3487         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3488                 /* TCP checksum is good */
3489                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3490         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3491                 /* IP fragment with UDP payload */
3492                 /* Hardware complements the payload checksum, so we undo it
3493                  * and then put the value in host order for further stack use.
3494                  */
3495                 csum = ntohl(csum ^ 0xFFFF);
3496                 skb->csum = csum;
3497                 skb->ip_summed = CHECKSUM_HW;
3498         }
3499         adapter->hw_csum_good++;
3500 }
3501
3502 /**
3503  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3504  * @adapter: board private structure
3505  **/
3506
3507 static boolean_t
3508 #ifdef CONFIG_E1000_NAPI
3509 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3510                    struct e1000_rx_ring *rx_ring,
3511                    int *work_done, int work_to_do)
3512 #else
3513 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3514                    struct e1000_rx_ring *rx_ring)
3515 #endif
3516 {
3517         struct net_device *netdev = adapter->netdev;
3518         struct pci_dev *pdev = adapter->pdev;
3519         struct e1000_rx_desc *rx_desc, *next_rxd;
3520         struct e1000_buffer *buffer_info, *next_buffer;
3521         unsigned long flags;
3522         uint32_t length;
3523         uint8_t last_byte;
3524         unsigned int i;
3525         int cleaned_count = 0;
3526         boolean_t cleaned = FALSE;
3527
3528         i = rx_ring->next_to_clean;
3529         rx_desc = E1000_RX_DESC(*rx_ring, i);
3530         buffer_info = &rx_ring->buffer_info[i];
3531
3532         while (rx_desc->status & E1000_RXD_STAT_DD) {
3533                 struct sk_buff *skb, *next_skb;
3534                 u8 status;
3535 #ifdef CONFIG_E1000_NAPI
3536                 if (*work_done >= work_to_do)
3537                         break;
3538                 (*work_done)++;
3539 #endif
3540                 status = rx_desc->status;
3541                 skb = buffer_info->skb;
3542                 buffer_info->skb = NULL;
3543
3544                 prefetch(skb->data - NET_IP_ALIGN);
3545
3546                 if (++i == rx_ring->count) i = 0;
3547                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3548                 prefetch(next_rxd);
3549
3550                 next_buffer = &rx_ring->buffer_info[i];
3551                 next_skb = next_buffer->skb;
3552                 prefetch(next_skb->data - NET_IP_ALIGN);
3553
3554                 cleaned = TRUE;
3555                 cleaned_count++;
3556                 pci_unmap_single(pdev,
3557                                  buffer_info->dma,
3558                                  buffer_info->length,
3559                                  PCI_DMA_FROMDEVICE);
3560
3561                 length = le16_to_cpu(rx_desc->length);
3562
3563                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3564                         /* All receives must fit into a single buffer */
3565                         E1000_DBG("%s: Receive packet consumed multiple"
3566                                   " buffers\n", netdev->name);
3567                         dev_kfree_skb_irq(skb);
3568                         goto next_desc;
3569                 }
3570
3571                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3572                         last_byte = *(skb->data + length - 1);
3573                         if (TBI_ACCEPT(&adapter->hw, status,
3574                                       rx_desc->errors, length, last_byte)) {
3575                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3576                                 e1000_tbi_adjust_stats(&adapter->hw,
3577                                                        &adapter->stats,
3578                                                        length, skb->data);
3579                                 spin_unlock_irqrestore(&adapter->stats_lock,
3580                                                        flags);
3581                                 length--;
3582                         } else {
3583                                 /* recycle */
3584                                 buffer_info->skb = skb;
3585                                 goto next_desc;
3586                         }
3587                 } else
3588                         skb_put(skb, length);
3589
3590                 /* code added for copybreak, this should improve
3591                  * performance for small packets with large amounts
3592                  * of reassembly being done in the stack */
3593 #define E1000_CB_LENGTH 256
3594                 if (length < E1000_CB_LENGTH) {
3595                         struct sk_buff *new_skb =
3596                             dev_alloc_skb(length + NET_IP_ALIGN);
3597                         if (new_skb) {
3598                                 skb_reserve(new_skb, NET_IP_ALIGN);
3599                                 new_skb->dev = netdev;
3600                                 memcpy(new_skb->data - NET_IP_ALIGN,
3601                                        skb->data - NET_IP_ALIGN,
3602                                        length + NET_IP_ALIGN);
3603                                 /* save the skb in buffer_info as good */
3604                                 buffer_info->skb = skb;
3605                                 skb = new_skb;
3606                                 skb_put(skb, length);
3607                         }
3608                 } else
3609                         skb_put(skb, length);
3610
3611                 /* end copybreak code */
3612
3613                 /* Receive Checksum Offload */
3614                 e1000_rx_checksum(adapter,
3615                                   (uint32_t)(status) |
3616                                   ((uint32_t)(rx_desc->errors) << 24),
3617                                   le16_to_cpu(rx_desc->csum), skb);
3618
3619                 skb->protocol = eth_type_trans(skb, netdev);
3620 #ifdef CONFIG_E1000_NAPI
3621                 if (unlikely(adapter->vlgrp &&
3622                             (status & E1000_RXD_STAT_VP))) {
3623                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3624                                                  le16_to_cpu(rx_desc->special) &
3625                                                  E1000_RXD_SPC_VLAN_MASK);
3626                 } else {
3627                         netif_receive_skb(skb);
3628                 }
3629 #else /* CONFIG_E1000_NAPI */
3630                 if (unlikely(adapter->vlgrp &&
3631                             (status & E1000_RXD_STAT_VP))) {
3632                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3633                                         le16_to_cpu(rx_desc->special) &
3634                                         E1000_RXD_SPC_VLAN_MASK);
3635                 } else {
3636                         netif_rx(skb);
3637                 }
3638 #endif /* CONFIG_E1000_NAPI */
3639                 netdev->last_rx = jiffies;
3640
3641 next_desc:
3642                 rx_desc->status = 0;
3643
3644                 /* return some buffers to hardware, one at a time is too slow */
3645                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3646                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3647                         cleaned_count = 0;
3648                 }
3649
3650                 /* use prefetched values */
3651                 rx_desc = next_rxd;
3652                 buffer_info = next_buffer;
3653         }
3654         rx_ring->next_to_clean = i;
3655
3656         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3657         if (cleaned_count)
3658                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3659
3660         return cleaned;
3661 }
3662
3663 /**
3664  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3665  * @adapter: board private structure
3666  **/
3667
3668 static boolean_t
3669 #ifdef CONFIG_E1000_NAPI
3670 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3671                       struct e1000_rx_ring *rx_ring,
3672                       int *work_done, int work_to_do)
3673 #else
3674 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3675                       struct e1000_rx_ring *rx_ring)
3676 #endif
3677 {
3678         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3679         struct net_device *netdev = adapter->netdev;
3680         struct pci_dev *pdev = adapter->pdev;
3681         struct e1000_buffer *buffer_info, *next_buffer;
3682         struct e1000_ps_page *ps_page;
3683         struct e1000_ps_page_dma *ps_page_dma;
3684         struct sk_buff *skb, *next_skb;
3685         unsigned int i, j;
3686         uint32_t length, staterr;
3687         int cleaned_count = 0;
3688         boolean_t cleaned = FALSE;
3689
3690         i = rx_ring->next_to_clean;
3691         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3692         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3693         buffer_info = &rx_ring->buffer_info[i];
3694
3695         while (staterr & E1000_RXD_STAT_DD) {
3696                 buffer_info = &rx_ring->buffer_info[i];
3697                 ps_page = &rx_ring->ps_page[i];
3698                 ps_page_dma = &rx_ring->ps_page_dma[i];
3699 #ifdef CONFIG_E1000_NAPI
3700                 if (unlikely(*work_done >= work_to_do))
3701                         break;
3702                 (*work_done)++;
3703 #endif
3704                 skb = buffer_info->skb;
3705
3706                 /* in the packet split case this is header only */
3707                 prefetch(skb->data - NET_IP_ALIGN);
3708
3709                 if (++i == rx_ring->count) i = 0;
3710                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3711                 prefetch(next_rxd);
3712
3713                 next_buffer = &rx_ring->buffer_info[i];
3714                 next_skb = next_buffer->skb;
3715                 prefetch(next_skb->data - NET_IP_ALIGN);
3716
3717                 cleaned = TRUE;
3718                 cleaned_count++;
3719                 pci_unmap_single(pdev, buffer_info->dma,
3720                                  buffer_info->length,
3721                                  PCI_DMA_FROMDEVICE);
3722
3723                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3724                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3725                                   " the full packet\n", netdev->name);
3726                         dev_kfree_skb_irq(skb);
3727                         goto next_desc;
3728                 }
3729
3730                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3731                         dev_kfree_skb_irq(skb);
3732                         goto next_desc;
3733                 }
3734
3735                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3736
3737                 if (unlikely(!length)) {
3738                         E1000_DBG("%s: Last part of the packet spanning"
3739                                   " multiple descriptors\n", netdev->name);
3740                         dev_kfree_skb_irq(skb);
3741                         goto next_desc;
3742                 }
3743
3744                 /* Good Receive */
3745                 skb_put(skb, length);
3746
3747                 {
3748                 /* this looks ugly, but it seems compiler issues make it
3749                    more efficient than reusing j */
3750                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3751
3752                 /* page alloc/put takes too long and effects small packet
3753                  * throughput, so unsplit small packets and save the alloc/put*/
3754                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3755                         u8 *vaddr;
3756                         /* there is no documentation about how to call 
3757                          * kmap_atomic, so we can't hold the mapping
3758                          * very long */
3759                         pci_dma_sync_single_for_cpu(pdev,
3760                                 ps_page_dma->ps_page_dma[0],
3761                                 PAGE_SIZE,
3762                                 PCI_DMA_FROMDEVICE);
3763                         vaddr = kmap_atomic(ps_page->ps_page[0],
3764                                             KM_SKB_DATA_SOFTIRQ);
3765                         memcpy(skb->tail, vaddr, l1);
3766                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3767                         pci_dma_sync_single_for_device(pdev,
3768                                 ps_page_dma->ps_page_dma[0],
3769                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3770                         skb_put(skb, l1);
3771                         length += l1;
3772                         goto copydone;
3773                 } /* if */
3774                 }
3775                 
3776                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3777                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3778                                 break;
3779                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3780                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3781                         ps_page_dma->ps_page_dma[j] = 0;
3782                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3783                                            length);
3784                         ps_page->ps_page[j] = NULL;
3785                         skb->len += length;
3786                         skb->data_len += length;
3787                         skb->truesize += length;
3788                 }
3789
3790 copydone:
3791                 e1000_rx_checksum(adapter, staterr,
3792                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3793                 skb->protocol = eth_type_trans(skb, netdev);
3794
3795                 if (likely(rx_desc->wb.upper.header_status &
3796                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3797                         adapter->rx_hdr_split++;
3798 #ifdef CONFIG_E1000_NAPI
3799                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3800                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3801                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3802                                 E1000_RXD_SPC_VLAN_MASK);
3803                 } else {
3804                         netif_receive_skb(skb);
3805                 }
3806 #else /* CONFIG_E1000_NAPI */
3807                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3808                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3809                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3810                                 E1000_RXD_SPC_VLAN_MASK);
3811                 } else {
3812                         netif_rx(skb);
3813                 }
3814 #endif /* CONFIG_E1000_NAPI */
3815                 netdev->last_rx = jiffies;
3816
3817 next_desc:
3818                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3819                 buffer_info->skb = NULL;
3820
3821                 /* return some buffers to hardware, one at a time is too slow */
3822                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3823                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3824                         cleaned_count = 0;
3825                 }
3826
3827                 /* use prefetched values */
3828                 rx_desc = next_rxd;
3829                 buffer_info = next_buffer;
3830
3831                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3832         }
3833         rx_ring->next_to_clean = i;
3834
3835         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3836         if (cleaned_count)
3837                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3838
3839         return cleaned;
3840 }
3841
3842 /**
3843  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3844  * @adapter: address of board private structure
3845  **/
3846
3847 static void
3848 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3849                        struct e1000_rx_ring *rx_ring,
3850                        int cleaned_count)
3851 {
3852         struct net_device *netdev = adapter->netdev;
3853         struct pci_dev *pdev = adapter->pdev;
3854         struct e1000_rx_desc *rx_desc;
3855         struct e1000_buffer *buffer_info;
3856         struct sk_buff *skb;
3857         unsigned int i;
3858         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3859
3860         i = rx_ring->next_to_use;
3861         buffer_info = &rx_ring->buffer_info[i];
3862
3863         while (cleaned_count--) {
3864                 if (!(skb = buffer_info->skb))
3865                         skb = dev_alloc_skb(bufsz);
3866                 else {
3867                         skb_trim(skb, 0);
3868                         goto map_skb;
3869                 }
3870
3871                 if (unlikely(!skb)) {
3872                         /* Better luck next round */
3873                         adapter->alloc_rx_buff_failed++;
3874                         break;
3875                 }
3876
3877                 /* Fix for errata 23, can't cross 64kB boundary */
3878                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3879                         struct sk_buff *oldskb = skb;
3880                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3881                                              "at %p\n", bufsz, skb->data);
3882                         /* Try again, without freeing the previous */
3883                         skb = dev_alloc_skb(bufsz);
3884                         /* Failed allocation, critical failure */
3885                         if (!skb) {
3886                                 dev_kfree_skb(oldskb);
3887                                 break;
3888                         }
3889
3890                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3891                                 /* give up */
3892                                 dev_kfree_skb(skb);
3893                                 dev_kfree_skb(oldskb);
3894                                 break; /* while !buffer_info->skb */
3895                         } else {
3896                                 /* Use new allocation */
3897                                 dev_kfree_skb(oldskb);
3898                         }
3899                 }
3900                 /* Make buffer alignment 2 beyond a 16 byte boundary
3901                  * this will result in a 16 byte aligned IP header after
3902                  * the 14 byte MAC header is removed
3903                  */
3904                 skb_reserve(skb, NET_IP_ALIGN);
3905
3906                 skb->dev = netdev;
3907
3908                 buffer_info->skb = skb;
3909                 buffer_info->length = adapter->rx_buffer_len;
3910 map_skb:
3911                 buffer_info->dma = pci_map_single(pdev,
3912                                                   skb->data,
3913                                                   adapter->rx_buffer_len,
3914                                                   PCI_DMA_FROMDEVICE);
3915
3916                 /* Fix for errata 23, can't cross 64kB boundary */
3917                 if (!e1000_check_64k_bound(adapter,
3918                                         (void *)(unsigned long)buffer_info->dma,
3919                                         adapter->rx_buffer_len)) {
3920                         DPRINTK(RX_ERR, ERR,
3921                                 "dma align check failed: %u bytes at %p\n",
3922                                 adapter->rx_buffer_len,
3923                                 (void *)(unsigned long)buffer_info->dma);
3924                         dev_kfree_skb(skb);
3925                         buffer_info->skb = NULL;
3926
3927                         pci_unmap_single(pdev, buffer_info->dma,
3928                                          adapter->rx_buffer_len,
3929                                          PCI_DMA_FROMDEVICE);
3930
3931                         break; /* while !buffer_info->skb */
3932                 }
3933                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3934                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3935
3936                 if (unlikely(++i == rx_ring->count))
3937                         i = 0;
3938                 buffer_info = &rx_ring->buffer_info[i];
3939         }
3940
3941         if (likely(rx_ring->next_to_use != i)) {
3942                 rx_ring->next_to_use = i;
3943                 if (unlikely(i-- == 0))
3944                         i = (rx_ring->count - 1);
3945
3946                 /* Force memory writes to complete before letting h/w
3947                  * know there are new descriptors to fetch.  (Only
3948                  * applicable for weak-ordered memory model archs,
3949                  * such as IA-64). */
3950                 wmb();
3951                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3952         }
3953 }
3954
3955 /**
3956  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3957  * @adapter: address of board private structure
3958  **/
3959
3960 static void
3961 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3962                           struct e1000_rx_ring *rx_ring,
3963                           int cleaned_count)
3964 {
3965         struct net_device *netdev = adapter->netdev;
3966         struct pci_dev *pdev = adapter->pdev;
3967         union e1000_rx_desc_packet_split *rx_desc;
3968         struct e1000_buffer *buffer_info;
3969         struct e1000_ps_page *ps_page;
3970         struct e1000_ps_page_dma *ps_page_dma;
3971         struct sk_buff *skb;
3972         unsigned int i, j;
3973
3974         i = rx_ring->next_to_use;
3975         buffer_info = &rx_ring->buffer_info[i];
3976         ps_page = &rx_ring->ps_page[i];
3977         ps_page_dma = &rx_ring->ps_page_dma[i];
3978
3979         while (cleaned_count--) {
3980                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3981
3982                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3983                         if (j < adapter->rx_ps_pages) {
3984                                 if (likely(!ps_page->ps_page[j])) {
3985                                         ps_page->ps_page[j] =
3986                                                 alloc_page(GFP_ATOMIC);
3987                                         if (unlikely(!ps_page->ps_page[j])) {
3988                                                 adapter->alloc_rx_buff_failed++;
3989                                                 goto no_buffers;
3990                                         }
3991                                         ps_page_dma->ps_page_dma[j] =
3992                                                 pci_map_page(pdev,
3993                                                             ps_page->ps_page[j],
3994                                                             0, PAGE_SIZE,
3995                                                             PCI_DMA_FROMDEVICE);
3996                                 }
3997                                 /* Refresh the desc even if buffer_addrs didn't
3998                                  * change because each write-back erases
3999                                  * this info.
4000                                  */
4001                                 rx_desc->read.buffer_addr[j+1] =
4002                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4003                         } else
4004                                 rx_desc->read.buffer_addr[j+1] = ~0;
4005                 }
4006
4007                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4008
4009                 if (unlikely(!skb)) {
4010                         adapter->alloc_rx_buff_failed++;
4011                         break;
4012                 }
4013
4014                 /* Make buffer alignment 2 beyond a 16 byte boundary
4015                  * this will result in a 16 byte aligned IP header after
4016                  * the 14 byte MAC header is removed
4017                  */
4018                 skb_reserve(skb, NET_IP_ALIGN);
4019
4020                 skb->dev = netdev;
4021
4022                 buffer_info->skb = skb;
4023                 buffer_info->length = adapter->rx_ps_bsize0;
4024                 buffer_info->dma = pci_map_single(pdev, skb->data,
4025                                                   adapter->rx_ps_bsize0,
4026                                                   PCI_DMA_FROMDEVICE);
4027
4028                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4029
4030                 if (unlikely(++i == rx_ring->count)) i = 0;
4031                 buffer_info = &rx_ring->buffer_info[i];
4032                 ps_page = &rx_ring->ps_page[i];
4033                 ps_page_dma = &rx_ring->ps_page_dma[i];
4034         }
4035
4036 no_buffers:
4037         if (likely(rx_ring->next_to_use != i)) {
4038                 rx_ring->next_to_use = i;
4039                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4040
4041                 /* Force memory writes to complete before letting h/w
4042                  * know there are new descriptors to fetch.  (Only
4043                  * applicable for weak-ordered memory model archs,
4044                  * such as IA-64). */
4045                 wmb();
4046                 /* Hardware increments by 16 bytes, but packet split
4047                  * descriptors are 32 bytes...so we increment tail
4048                  * twice as much.
4049                  */
4050                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4051         }
4052 }
4053
4054 /**
4055  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4056  * @adapter:
4057  **/
4058
4059 static void
4060 e1000_smartspeed(struct e1000_adapter *adapter)
4061 {
4062         uint16_t phy_status;
4063         uint16_t phy_ctrl;
4064
4065         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4066            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4067                 return;
4068
4069         if (adapter->smartspeed == 0) {
4070                 /* If Master/Slave config fault is asserted twice,
4071                  * we assume back-to-back */
4072                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4073                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4074                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4075                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4076                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4077                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4078                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4079                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4080                                             phy_ctrl);
4081                         adapter->smartspeed++;
4082                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4083                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4084                                                &phy_ctrl)) {
4085                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4086                                              MII_CR_RESTART_AUTO_NEG);
4087                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4088                                                     phy_ctrl);
4089                         }
4090                 }
4091                 return;
4092         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4093                 /* If still no link, perhaps using 2/3 pair cable */
4094                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4095                 phy_ctrl |= CR_1000T_MS_ENABLE;
4096                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4097                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4098                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4099                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4100                                      MII_CR_RESTART_AUTO_NEG);
4101                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4102                 }
4103         }
4104         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4105         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4106                 adapter->smartspeed = 0;
4107 }
4108
4109 /**
4110  * e1000_ioctl -
4111  * @netdev:
4112  * @ifreq:
4113  * @cmd:
4114  **/
4115
4116 static int
4117 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4118 {
4119         switch (cmd) {
4120         case SIOCGMIIPHY:
4121         case SIOCGMIIREG:
4122         case SIOCSMIIREG:
4123                 return e1000_mii_ioctl(netdev, ifr, cmd);
4124         default:
4125                 return -EOPNOTSUPP;
4126         }
4127 }
4128
4129 /**
4130  * e1000_mii_ioctl -
4131  * @netdev:
4132  * @ifreq:
4133  * @cmd:
4134  **/
4135
4136 static int
4137 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4138 {
4139         struct e1000_adapter *adapter = netdev_priv(netdev);
4140         struct mii_ioctl_data *data = if_mii(ifr);
4141         int retval;
4142         uint16_t mii_reg;
4143         uint16_t spddplx;
4144         unsigned long flags;
4145
4146         if (adapter->hw.media_type != e1000_media_type_copper)
4147                 return -EOPNOTSUPP;
4148
4149         switch (cmd) {
4150         case SIOCGMIIPHY:
4151                 data->phy_id = adapter->hw.phy_addr;
4152                 break;
4153         case SIOCGMIIREG:
4154                 if (!capable(CAP_NET_ADMIN))
4155                         return -EPERM;
4156                 spin_lock_irqsave(&adapter->stats_lock, flags);
4157                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4158                                    &data->val_out)) {
4159                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4160                         return -EIO;
4161                 }
4162                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4163                 break;
4164         case SIOCSMIIREG:
4165                 if (!capable(CAP_NET_ADMIN))
4166                         return -EPERM;
4167                 if (data->reg_num & ~(0x1F))
4168                         return -EFAULT;
4169                 mii_reg = data->val_in;
4170                 spin_lock_irqsave(&adapter->stats_lock, flags);
4171                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4172                                         mii_reg)) {
4173                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4174                         return -EIO;
4175                 }
4176                 if (adapter->hw.phy_type == e1000_media_type_copper) {
4177                         switch (data->reg_num) {
4178                         case PHY_CTRL:
4179                                 if (mii_reg & MII_CR_POWER_DOWN)
4180                                         break;
4181                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4182                                         adapter->hw.autoneg = 1;
4183                                         adapter->hw.autoneg_advertised = 0x2F;
4184                                 } else {
4185                                         if (mii_reg & 0x40)
4186                                                 spddplx = SPEED_1000;
4187                                         else if (mii_reg & 0x2000)
4188                                                 spddplx = SPEED_100;
4189                                         else
4190                                                 spddplx = SPEED_10;
4191                                         spddplx += (mii_reg & 0x100)
4192                                                    ? DUPLEX_FULL :
4193                                                    DUPLEX_HALF;
4194                                         retval = e1000_set_spd_dplx(adapter,
4195                                                                     spddplx);
4196                                         if (retval) {
4197                                                 spin_unlock_irqrestore(
4198                                                         &adapter->stats_lock,
4199                                                         flags);
4200                                                 return retval;
4201                                         }
4202                                 }
4203                                 if (netif_running(adapter->netdev)) {
4204                                         e1000_down(adapter);
4205                                         e1000_up(adapter);
4206                                 } else
4207                                         e1000_reset(adapter);
4208                                 break;
4209                         case M88E1000_PHY_SPEC_CTRL:
4210                         case M88E1000_EXT_PHY_SPEC_CTRL:
4211                                 if (e1000_phy_reset(&adapter->hw)) {
4212                                         spin_unlock_irqrestore(
4213                                                 &adapter->stats_lock, flags);
4214                                         return -EIO;
4215                                 }
4216                                 break;
4217                         }
4218                 } else {
4219                         switch (data->reg_num) {
4220                         case PHY_CTRL:
4221                                 if (mii_reg & MII_CR_POWER_DOWN)
4222                                         break;
4223                                 if (netif_running(adapter->netdev)) {
4224                                         e1000_down(adapter);
4225                                         e1000_up(adapter);
4226                                 } else
4227                                         e1000_reset(adapter);
4228                                 break;
4229                         }
4230                 }
4231                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4232                 break;
4233         default:
4234                 return -EOPNOTSUPP;
4235         }
4236         return E1000_SUCCESS;
4237 }
4238
4239 void
4240 e1000_pci_set_mwi(struct e1000_hw *hw)
4241 {
4242         struct e1000_adapter *adapter = hw->back;
4243         int ret_val = pci_set_mwi(adapter->pdev);
4244
4245         if (ret_val)
4246                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4247 }
4248
4249 void
4250 e1000_pci_clear_mwi(struct e1000_hw *hw)
4251 {
4252         struct e1000_adapter *adapter = hw->back;
4253
4254         pci_clear_mwi(adapter->pdev);
4255 }
4256
4257 void
4258 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4259 {
4260         struct e1000_adapter *adapter = hw->back;
4261
4262         pci_read_config_word(adapter->pdev, reg, value);
4263 }
4264
4265 void
4266 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4267 {
4268         struct e1000_adapter *adapter = hw->back;
4269
4270         pci_write_config_word(adapter->pdev, reg, *value);
4271 }
4272
4273 uint32_t
4274 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4275 {
4276         return inl(port);
4277 }
4278
4279 void
4280 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4281 {
4282         outl(value, port);
4283 }
4284
4285 static void
4286 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4287 {
4288         struct e1000_adapter *adapter = netdev_priv(netdev);
4289         uint32_t ctrl, rctl;
4290
4291         e1000_irq_disable(adapter);
4292         adapter->vlgrp = grp;
4293
4294         if (grp) {
4295                 /* enable VLAN tag insert/strip */
4296                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4297                 ctrl |= E1000_CTRL_VME;
4298                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4299
4300                 /* enable VLAN receive filtering */
4301                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4302                 rctl |= E1000_RCTL_VFE;
4303                 rctl &= ~E1000_RCTL_CFIEN;
4304                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4305                 e1000_update_mng_vlan(adapter);
4306         } else {
4307                 /* disable VLAN tag insert/strip */
4308                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4309                 ctrl &= ~E1000_CTRL_VME;
4310                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4311
4312                 /* disable VLAN filtering */
4313                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4314                 rctl &= ~E1000_RCTL_VFE;
4315                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4316                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4317                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4318                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4319                 }
4320         }
4321
4322         e1000_irq_enable(adapter);
4323 }
4324
4325 static void
4326 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4327 {
4328         struct e1000_adapter *adapter = netdev_priv(netdev);
4329         uint32_t vfta, index;
4330
4331         if ((adapter->hw.mng_cookie.status &
4332              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4333             (vid == adapter->mng_vlan_id))
4334                 return;
4335         /* add VID to filter table */
4336         index = (vid >> 5) & 0x7F;
4337         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4338         vfta |= (1 << (vid & 0x1F));
4339         e1000_write_vfta(&adapter->hw, index, vfta);
4340 }
4341
4342 static void
4343 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4344 {
4345         struct e1000_adapter *adapter = netdev_priv(netdev);
4346         uint32_t vfta, index;
4347
4348         e1000_irq_disable(adapter);
4349
4350         if (adapter->vlgrp)
4351                 adapter->vlgrp->vlan_devices[vid] = NULL;
4352
4353         e1000_irq_enable(adapter);
4354
4355         if ((adapter->hw.mng_cookie.status &
4356              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4357             (vid == adapter->mng_vlan_id)) {
4358                 /* release control to f/w */
4359                 e1000_release_hw_control(adapter);
4360                 return;
4361         }
4362
4363         /* remove VID from filter table */
4364         index = (vid >> 5) & 0x7F;
4365         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4366         vfta &= ~(1 << (vid & 0x1F));
4367         e1000_write_vfta(&adapter->hw, index, vfta);
4368 }
4369
4370 static void
4371 e1000_restore_vlan(struct e1000_adapter *adapter)
4372 {
4373         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4374
4375         if (adapter->vlgrp) {
4376                 uint16_t vid;
4377                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4378                         if (!adapter->vlgrp->vlan_devices[vid])
4379                                 continue;
4380                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4381                 }
4382         }
4383 }
4384
4385 int
4386 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4387 {
4388         adapter->hw.autoneg = 0;
4389
4390         /* Fiber NICs only allow 1000 gbps Full duplex */
4391         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4392                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4393                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4394                 return -EINVAL;
4395         }
4396
4397         switch (spddplx) {
4398         case SPEED_10 + DUPLEX_HALF:
4399                 adapter->hw.forced_speed_duplex = e1000_10_half;
4400                 break;
4401         case SPEED_10 + DUPLEX_FULL:
4402                 adapter->hw.forced_speed_duplex = e1000_10_full;
4403                 break;
4404         case SPEED_100 + DUPLEX_HALF:
4405                 adapter->hw.forced_speed_duplex = e1000_100_half;
4406                 break;
4407         case SPEED_100 + DUPLEX_FULL:
4408                 adapter->hw.forced_speed_duplex = e1000_100_full;
4409                 break;
4410         case SPEED_1000 + DUPLEX_FULL:
4411                 adapter->hw.autoneg = 1;
4412                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4413                 break;
4414         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4415         default:
4416                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4417                 return -EINVAL;
4418         }
4419         return 0;
4420 }
4421
4422 #ifdef CONFIG_PM
4423 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4424  * bus we're on (PCI(X) vs. PCI-E)
4425  */
4426 #define PCIE_CONFIG_SPACE_LEN 256
4427 #define PCI_CONFIG_SPACE_LEN 64
4428 static int
4429 e1000_pci_save_state(struct e1000_adapter *adapter)
4430 {
4431         struct pci_dev *dev = adapter->pdev;
4432         int size;
4433         int i;
4434
4435         if (adapter->hw.mac_type >= e1000_82571)
4436                 size = PCIE_CONFIG_SPACE_LEN;
4437         else
4438                 size = PCI_CONFIG_SPACE_LEN;
4439
4440         WARN_ON(adapter->config_space != NULL);
4441
4442         adapter->config_space = kmalloc(size, GFP_KERNEL);
4443         if (!adapter->config_space) {
4444                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4445                 return -ENOMEM;
4446         }
4447         for (i = 0; i < (size / 4); i++)
4448                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4449         return 0;
4450 }
4451
4452 static void
4453 e1000_pci_restore_state(struct e1000_adapter *adapter)
4454 {
4455         struct pci_dev *dev = adapter->pdev;
4456         int size;
4457         int i;
4458
4459         if (adapter->config_space == NULL)
4460                 return;
4461
4462         if (adapter->hw.mac_type >= e1000_82571)
4463                 size = PCIE_CONFIG_SPACE_LEN;
4464         else
4465                 size = PCI_CONFIG_SPACE_LEN;
4466         for (i = 0; i < (size / 4); i++)
4467                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4468         kfree(adapter->config_space);
4469         adapter->config_space = NULL;
4470         return;
4471 }
4472 #endif /* CONFIG_PM */
4473
4474 static int
4475 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4476 {
4477         struct net_device *netdev = pci_get_drvdata(pdev);
4478         struct e1000_adapter *adapter = netdev_priv(netdev);
4479         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4480         uint32_t wufc = adapter->wol;
4481         int retval = 0;
4482
4483         netif_device_detach(netdev);
4484
4485         if (netif_running(netdev))
4486                 e1000_down(adapter);
4487
4488 #ifdef CONFIG_PM
4489         /* Implement our own version of pci_save_state(pdev) because pci-
4490          * express adapters have 256-byte config spaces. */
4491         retval = e1000_pci_save_state(adapter);
4492         if (retval)
4493                 return retval;
4494 #endif
4495
4496         status = E1000_READ_REG(&adapter->hw, STATUS);
4497         if (status & E1000_STATUS_LU)
4498                 wufc &= ~E1000_WUFC_LNKC;
4499
4500         if (wufc) {
4501                 e1000_setup_rctl(adapter);
4502                 e1000_set_multi(netdev);
4503
4504                 /* turn on all-multi mode if wake on multicast is enabled */
4505                 if (adapter->wol & E1000_WUFC_MC) {
4506                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4507                         rctl |= E1000_RCTL_MPE;
4508                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4509                 }
4510
4511                 if (adapter->hw.mac_type >= e1000_82540) {
4512                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4513                         /* advertise wake from D3Cold */
4514                         #define E1000_CTRL_ADVD3WUC 0x00100000
4515                         /* phy power management enable */
4516                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4517                         ctrl |= E1000_CTRL_ADVD3WUC |
4518                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4519                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4520                 }
4521
4522                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4523                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4524                         /* keep the laser running in D3 */
4525                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4526                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4527                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4528                 }
4529
4530                 /* Allow time for pending master requests to run */
4531                 e1000_disable_pciex_master(&adapter->hw);
4532
4533                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4534                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4535                 pci_enable_wake(pdev, PCI_D3hot, 1);
4536                 pci_enable_wake(pdev, PCI_D3cold, 1);
4537         } else {
4538                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4539                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4540                 pci_enable_wake(pdev, PCI_D3hot, 0);
4541                 pci_enable_wake(pdev, PCI_D3cold, 0);
4542         }
4543
4544         if (adapter->hw.mac_type >= e1000_82540 &&
4545            adapter->hw.media_type == e1000_media_type_copper) {
4546                 manc = E1000_READ_REG(&adapter->hw, MANC);
4547                 if (manc & E1000_MANC_SMBUS_EN) {
4548                         manc |= E1000_MANC_ARP_EN;
4549                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4550                         pci_enable_wake(pdev, PCI_D3hot, 1);
4551                         pci_enable_wake(pdev, PCI_D3cold, 1);
4552                 }
4553         }
4554
4555         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4556          * would have already happened in close and is redundant. */
4557         e1000_release_hw_control(adapter);
4558
4559         pci_disable_device(pdev);
4560
4561         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4562
4563         return 0;
4564 }
4565
4566 #ifdef CONFIG_PM
4567 static int
4568 e1000_resume(struct pci_dev *pdev)
4569 {
4570         struct net_device *netdev = pci_get_drvdata(pdev);
4571         struct e1000_adapter *adapter = netdev_priv(netdev);
4572         uint32_t manc, ret_val;
4573
4574         pci_set_power_state(pdev, PCI_D0);
4575         e1000_pci_restore_state(adapter);
4576         ret_val = pci_enable_device(pdev);
4577         pci_set_master(pdev);
4578
4579         pci_enable_wake(pdev, PCI_D3hot, 0);
4580         pci_enable_wake(pdev, PCI_D3cold, 0);
4581
4582         e1000_reset(adapter);
4583         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4584
4585         if (netif_running(netdev))
4586                 e1000_up(adapter);
4587
4588         netif_device_attach(netdev);
4589
4590         if (adapter->hw.mac_type >= e1000_82540 &&
4591            adapter->hw.media_type == e1000_media_type_copper) {
4592                 manc = E1000_READ_REG(&adapter->hw, MANC);
4593                 manc &= ~(E1000_MANC_ARP_EN);
4594                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4595         }
4596
4597         /* If the controller is 82573 and f/w is AMT, do not set
4598          * DRV_LOAD until the interface is up.  For all other cases,
4599          * let the f/w know that the h/w is now under the control
4600          * of the driver. */
4601         if (adapter->hw.mac_type != e1000_82573 ||
4602             !e1000_check_mng_mode(&adapter->hw))
4603                 e1000_get_hw_control(adapter);
4604
4605         return 0;
4606 }
4607 #endif
4608 #ifdef CONFIG_NET_POLL_CONTROLLER
4609 /*
4610  * Polling 'interrupt' - used by things like netconsole to send skbs
4611  * without having to re-enable interrupts. It's not called while
4612  * the interrupt routine is executing.
4613  */
4614 static void
4615 e1000_netpoll(struct net_device *netdev)
4616 {
4617         struct e1000_adapter *adapter = netdev_priv(netdev);
4618         disable_irq(adapter->pdev->irq);
4619         e1000_intr(adapter->pdev->irq, netdev, NULL);
4620         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4621 #ifndef CONFIG_E1000_NAPI
4622         adapter->clean_rx(adapter, adapter->rx_ring);
4623 #endif
4624         enable_irq(adapter->pdev->irq);
4625 }
4626 #endif
4627
4628 /* e1000_main.c */