]> err.no Git - linux-2.6/blob - drivers/net/e1000/e1000_main.c
e1000: Remove DISABLE_MULR debug code
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         /* required last entry */
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122                              struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124                              struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145                                 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147                                 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring,
175                                    int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177                                       struct e1000_rx_ring *rx_ring,
178                                       int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181                            int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189                                        struct sk_buff *skb);
190
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
195
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
201
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
206
207 extern void e1000_check_options(struct e1000_adapter *adapter);
208
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210                      pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
213
214 static struct pci_error_handlers e1000_err_handler = {
215         .error_detected = e1000_io_error_detected,
216         .slot_reset = e1000_io_slot_reset,
217         .resume = e1000_io_resume,
218 };
219
220 static struct pci_driver e1000_driver = {
221         .name     = e1000_driver_name,
222         .id_table = e1000_pci_tbl,
223         .probe    = e1000_probe,
224         .remove   = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226         /* Power Managment Hooks */
227         .suspend  = e1000_suspend,
228         .resume   = e1000_resume,
229 #endif
230         .shutdown = e1000_shutdown,
231         .err_handler = &e1000_err_handler
232 };
233
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
238
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
242
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249
250 static int __init
251 e1000_init_module(void)
252 {
253         int ret;
254         printk(KERN_INFO "%s - version %s\n",
255                e1000_driver_string, e1000_driver_version);
256
257         printk(KERN_INFO "%s\n", e1000_copyright);
258
259         ret = pci_register_driver(&e1000_driver);
260
261         return ret;
262 }
263
264 module_init(e1000_init_module);
265
266 /**
267  * e1000_exit_module - Driver Exit Cleanup Routine
268  *
269  * e1000_exit_module is called just before the driver is removed
270  * from memory.
271  **/
272
273 static void __exit
274 e1000_exit_module(void)
275 {
276         pci_unregister_driver(&e1000_driver);
277 }
278
279 module_exit(e1000_exit_module);
280
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283         struct net_device *netdev = adapter->netdev;
284         int flags, err = 0;
285
286         flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288         if (adapter->hw.mac_type > e1000_82547_rev_2) {
289                 adapter->have_msi = TRUE;
290                 if ((err = pci_enable_msi(adapter->pdev))) {
291                         DPRINTK(PROBE, ERR,
292                          "Unable to allocate MSI interrupt Error: %d\n", err);
293                         adapter->have_msi = FALSE;
294                 }
295         }
296         if (adapter->have_msi)
297                 flags &= ~IRQF_SHARED;
298 #endif
299         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300                                netdev->name, netdev)))
301                 DPRINTK(PROBE, ERR,
302                         "Unable to allocate interrupt Error: %d\n", err);
303
304         return err;
305 }
306
307 static void e1000_free_irq(struct e1000_adapter *adapter)
308 {
309         struct net_device *netdev = adapter->netdev;
310
311         free_irq(adapter->pdev->irq, netdev);
312
313 #ifdef CONFIG_PCI_MSI
314         if (adapter->have_msi)
315                 pci_disable_msi(adapter->pdev);
316 #endif
317 }
318
319 /**
320  * e1000_irq_disable - Mask off interrupt generation on the NIC
321  * @adapter: board private structure
322  **/
323
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
326 {
327         atomic_inc(&adapter->irq_sem);
328         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329         E1000_WRITE_FLUSH(&adapter->hw);
330         synchronize_irq(adapter->pdev->irq);
331 }
332
333 /**
334  * e1000_irq_enable - Enable default interrupt generation settings
335  * @adapter: board private structure
336  **/
337
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
340 {
341         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343                 E1000_WRITE_FLUSH(&adapter->hw);
344         }
345 }
346
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
349 {
350         struct net_device *netdev = adapter->netdev;
351         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352         uint16_t old_vid = adapter->mng_vlan_id;
353         if (adapter->vlgrp) {
354                 if (!adapter->vlgrp->vlan_devices[vid]) {
355                         if (adapter->hw.mng_cookie.status &
356                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357                                 e1000_vlan_rx_add_vid(netdev, vid);
358                                 adapter->mng_vlan_id = vid;
359                         } else
360                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
361
362                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363                                         (vid != old_vid) &&
364                                         !adapter->vlgrp->vlan_devices[old_vid])
365                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
366                 } else
367                         adapter->mng_vlan_id = vid;
368         }
369 }
370
371 /**
372  * e1000_release_hw_control - release control of the h/w to f/w
373  * @adapter: address of board private structure
374  *
375  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376  * For ASF and Pass Through versions of f/w this means that the
377  * driver is no longer loaded. For AMT version (only with 82573) i
378  * of the f/w this means that the network i/f is closed.
379  *
380  **/
381
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
384 {
385         uint32_t ctrl_ext;
386         uint32_t swsm;
387         uint32_t extcnf;
388
389         /* Let firmware taken over control of h/w */
390         switch (adapter->hw.mac_type) {
391         case e1000_82571:
392         case e1000_82572:
393         case e1000_80003es2lan:
394                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397                 break;
398         case e1000_82573:
399                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400                 E1000_WRITE_REG(&adapter->hw, SWSM,
401                                 swsm & ~E1000_SWSM_DRV_LOAD);
402         case e1000_ich8lan:
403                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406                 break;
407         default:
408                 break;
409         }
410 }
411
412 /**
413  * e1000_get_hw_control - get control of the h/w from f/w
414  * @adapter: address of board private structure
415  *
416  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417  * For ASF and Pass Through versions of f/w this means that
418  * the driver is loaded. For AMT version (only with 82573)
419  * of the f/w this means that the network i/f is open.
420  *
421  **/
422
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
425 {
426         uint32_t ctrl_ext;
427         uint32_t swsm;
428         uint32_t extcnf;
429
430         /* Let firmware know the driver has taken over */
431         switch (adapter->hw.mac_type) {
432         case e1000_82571:
433         case e1000_82572:
434         case e1000_80003es2lan:
435                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
436                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
437                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
438                 break;
439         case e1000_82573:
440                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
441                 E1000_WRITE_REG(&adapter->hw, SWSM,
442                                 swsm | E1000_SWSM_DRV_LOAD);
443                 break;
444         case e1000_ich8lan:
445                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
446                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
447                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
448                 break;
449         default:
450                 break;
451         }
452 }
453
454 int
455 e1000_up(struct e1000_adapter *adapter)
456 {
457         struct net_device *netdev = adapter->netdev;
458         int i;
459
460         /* hardware has been reset, we need to reload some things */
461
462         e1000_set_multi(netdev);
463
464         e1000_restore_vlan(adapter);
465
466         e1000_configure_tx(adapter);
467         e1000_setup_rctl(adapter);
468         e1000_configure_rx(adapter);
469         /* call E1000_DESC_UNUSED which always leaves
470          * at least 1 descriptor unused to make sure
471          * next_to_use != next_to_clean */
472         for (i = 0; i < adapter->num_rx_queues; i++) {
473                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
474                 adapter->alloc_rx_buf(adapter, ring,
475                                       E1000_DESC_UNUSED(ring));
476         }
477
478         adapter->tx_queue_len = netdev->tx_queue_len;
479
480 #ifdef CONFIG_E1000_NAPI
481         netif_poll_enable(netdev);
482 #endif
483         e1000_irq_enable(adapter);
484
485         clear_bit(__E1000_DOWN, &adapter->flags);
486
487         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
488         return 0;
489 }
490
491 /**
492  * e1000_power_up_phy - restore link in case the phy was powered down
493  * @adapter: address of board private structure
494  *
495  * The phy may be powered down to save power and turn off link when the
496  * driver is unloaded and wake on lan is not enabled (among others)
497  * *** this routine MUST be followed by a call to e1000_reset ***
498  *
499  **/
500
501 void e1000_power_up_phy(struct e1000_adapter *adapter)
502 {
503         uint16_t mii_reg = 0;
504
505         /* Just clear the power down bit to wake the phy back up */
506         if (adapter->hw.media_type == e1000_media_type_copper) {
507                 /* according to the manual, the phy will retain its
508                  * settings across a power-down/up cycle */
509                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
510                 mii_reg &= ~MII_CR_POWER_DOWN;
511                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
512         }
513 }
514
515 static void e1000_power_down_phy(struct e1000_adapter *adapter)
516 {
517         /* Power down the PHY so no link is implied when interface is down *
518          * The PHY cannot be powered down if any of the following is TRUE *
519          * (a) WoL is enabled
520          * (b) AMT is active
521          * (c) SoL/IDER session is active */
522         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
523            adapter->hw.media_type == e1000_media_type_copper) {
524                 uint16_t mii_reg = 0;
525
526                 switch (adapter->hw.mac_type) {
527                 case e1000_82540:
528                 case e1000_82545:
529                 case e1000_82545_rev_3:
530                 case e1000_82546:
531                 case e1000_82546_rev_3:
532                 case e1000_82541:
533                 case e1000_82541_rev_2:
534                 case e1000_82547:
535                 case e1000_82547_rev_2:
536                         if (E1000_READ_REG(&adapter->hw, MANC) &
537                             E1000_MANC_SMBUS_EN)
538                                 goto out;
539                         break;
540                 case e1000_82571:
541                 case e1000_82572:
542                 case e1000_82573:
543                 case e1000_80003es2lan:
544                 case e1000_ich8lan:
545                         if (e1000_check_mng_mode(&adapter->hw) ||
546                             e1000_check_phy_reset_block(&adapter->hw))
547                                 goto out;
548                         break;
549                 default:
550                         goto out;
551                 }
552                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
553                 mii_reg |= MII_CR_POWER_DOWN;
554                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
555                 mdelay(1);
556         }
557 out:
558         return;
559 }
560
561 void
562 e1000_down(struct e1000_adapter *adapter)
563 {
564         struct net_device *netdev = adapter->netdev;
565
566         /* signal that we're down so the interrupt handler does not
567          * reschedule our watchdog timer */
568         set_bit(__E1000_DOWN, &adapter->flags);
569
570         e1000_irq_disable(adapter);
571
572         del_timer_sync(&adapter->tx_fifo_stall_timer);
573         del_timer_sync(&adapter->watchdog_timer);
574         del_timer_sync(&adapter->phy_info_timer);
575
576 #ifdef CONFIG_E1000_NAPI
577         netif_poll_disable(netdev);
578 #endif
579         netdev->tx_queue_len = adapter->tx_queue_len;
580         adapter->link_speed = 0;
581         adapter->link_duplex = 0;
582         netif_carrier_off(netdev);
583         netif_stop_queue(netdev);
584
585         e1000_reset(adapter);
586         e1000_clean_all_tx_rings(adapter);
587         e1000_clean_all_rx_rings(adapter);
588 }
589
590 void
591 e1000_reinit_locked(struct e1000_adapter *adapter)
592 {
593         WARN_ON(in_interrupt());
594         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595                 msleep(1);
596         e1000_down(adapter);
597         e1000_up(adapter);
598         clear_bit(__E1000_RESETTING, &adapter->flags);
599 }
600
601 void
602 e1000_reset(struct e1000_adapter *adapter)
603 {
604         uint32_t pba, manc;
605         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
606
607         /* Repartition Pba for greater than 9k mtu
608          * To take effect CTRL.RST is required.
609          */
610
611         switch (adapter->hw.mac_type) {
612         case e1000_82547:
613         case e1000_82547_rev_2:
614                 pba = E1000_PBA_30K;
615                 break;
616         case e1000_82571:
617         case e1000_82572:
618         case e1000_80003es2lan:
619                 pba = E1000_PBA_38K;
620                 break;
621         case e1000_82573:
622                 pba = E1000_PBA_12K;
623                 break;
624         case e1000_ich8lan:
625                 pba = E1000_PBA_8K;
626                 break;
627         default:
628                 pba = E1000_PBA_48K;
629                 break;
630         }
631
632         if ((adapter->hw.mac_type != e1000_82573) &&
633            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
634                 pba -= 8; /* allocate more FIFO for Tx */
635
636
637         if (adapter->hw.mac_type == e1000_82547) {
638                 adapter->tx_fifo_head = 0;
639                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
640                 adapter->tx_fifo_size =
641                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
642                 atomic_set(&adapter->tx_fifo_stall, 0);
643         }
644
645         E1000_WRITE_REG(&adapter->hw, PBA, pba);
646
647         /* flow control settings */
648         /* Set the FC high water mark to 90% of the FIFO size.
649          * Required to clear last 3 LSB */
650         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
651         /* We can't use 90% on small FIFOs because the remainder
652          * would be less than 1 full frame.  In this case, we size
653          * it to allow at least a full frame above the high water
654          *  mark. */
655         if (pba < E1000_PBA_16K)
656                 fc_high_water_mark = (pba * 1024) - 1600;
657
658         adapter->hw.fc_high_water = fc_high_water_mark;
659         adapter->hw.fc_low_water = fc_high_water_mark - 8;
660         if (adapter->hw.mac_type == e1000_80003es2lan)
661                 adapter->hw.fc_pause_time = 0xFFFF;
662         else
663                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
664         adapter->hw.fc_send_xon = 1;
665         adapter->hw.fc = adapter->hw.original_fc;
666
667         /* Allow time for pending master requests to run */
668         e1000_reset_hw(&adapter->hw);
669         if (adapter->hw.mac_type >= e1000_82544)
670                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
671
672         if (e1000_init_hw(&adapter->hw))
673                 DPRINTK(PROBE, ERR, "Hardware Error\n");
674         e1000_update_mng_vlan(adapter);
675         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
676         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
677
678         e1000_reset_adaptive(&adapter->hw);
679         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
680
681         if (!adapter->smart_power_down &&
682             (adapter->hw.mac_type == e1000_82571 ||
683              adapter->hw.mac_type == e1000_82572)) {
684                 uint16_t phy_data = 0;
685                 /* speed up time to link by disabling smart power down, ignore
686                  * the return value of this function because there is nothing
687                  * different we would do if it failed */
688                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
689                                    &phy_data);
690                 phy_data &= ~IGP02E1000_PM_SPD;
691                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
692                                     phy_data);
693         }
694
695         if ((adapter->en_mng_pt) &&
696             (adapter->hw.mac_type >= e1000_82540) &&
697             (adapter->hw.mac_type < e1000_82571) &&
698             (adapter->hw.media_type == e1000_media_type_copper)) {
699                 manc = E1000_READ_REG(&adapter->hw, MANC);
700                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
701                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
702         }
703 }
704
705 /**
706  * e1000_probe - Device Initialization Routine
707  * @pdev: PCI device information struct
708  * @ent: entry in e1000_pci_tbl
709  *
710  * Returns 0 on success, negative on failure
711  *
712  * e1000_probe initializes an adapter identified by a pci_dev structure.
713  * The OS initialization, configuring of the adapter private structure,
714  * and a hardware reset occur.
715  **/
716
717 static int __devinit
718 e1000_probe(struct pci_dev *pdev,
719             const struct pci_device_id *ent)
720 {
721         struct net_device *netdev;
722         struct e1000_adapter *adapter;
723         unsigned long mmio_start, mmio_len;
724         unsigned long flash_start, flash_len;
725
726         static int cards_found = 0;
727         static int global_quad_port_a = 0; /* global ksp3 port a indication */
728         int i, err, pci_using_dac;
729         uint16_t eeprom_data = 0;
730         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
731         if ((err = pci_enable_device(pdev)))
732                 return err;
733
734         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
735             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
736                 pci_using_dac = 1;
737         } else {
738                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
739                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
740                         E1000_ERR("No usable DMA configuration, aborting\n");
741                         goto err_dma;
742                 }
743                 pci_using_dac = 0;
744         }
745
746         if ((err = pci_request_regions(pdev, e1000_driver_name)))
747                 goto err_pci_reg;
748
749         pci_set_master(pdev);
750
751         err = -ENOMEM;
752         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
753         if (!netdev)
754                 goto err_alloc_etherdev;
755
756         SET_MODULE_OWNER(netdev);
757         SET_NETDEV_DEV(netdev, &pdev->dev);
758
759         pci_set_drvdata(pdev, netdev);
760         adapter = netdev_priv(netdev);
761         adapter->netdev = netdev;
762         adapter->pdev = pdev;
763         adapter->hw.back = adapter;
764         adapter->msg_enable = (1 << debug) - 1;
765
766         mmio_start = pci_resource_start(pdev, BAR_0);
767         mmio_len = pci_resource_len(pdev, BAR_0);
768
769         err = -EIO;
770         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
771         if (!adapter->hw.hw_addr)
772                 goto err_ioremap;
773
774         for (i = BAR_1; i <= BAR_5; i++) {
775                 if (pci_resource_len(pdev, i) == 0)
776                         continue;
777                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
778                         adapter->hw.io_base = pci_resource_start(pdev, i);
779                         break;
780                 }
781         }
782
783         netdev->open = &e1000_open;
784         netdev->stop = &e1000_close;
785         netdev->hard_start_xmit = &e1000_xmit_frame;
786         netdev->get_stats = &e1000_get_stats;
787         netdev->set_multicast_list = &e1000_set_multi;
788         netdev->set_mac_address = &e1000_set_mac;
789         netdev->change_mtu = &e1000_change_mtu;
790         netdev->do_ioctl = &e1000_ioctl;
791         e1000_set_ethtool_ops(netdev);
792         netdev->tx_timeout = &e1000_tx_timeout;
793         netdev->watchdog_timeo = 5 * HZ;
794 #ifdef CONFIG_E1000_NAPI
795         netdev->poll = &e1000_clean;
796         netdev->weight = 64;
797 #endif
798         netdev->vlan_rx_register = e1000_vlan_rx_register;
799         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
800         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
801 #ifdef CONFIG_NET_POLL_CONTROLLER
802         netdev->poll_controller = e1000_netpoll;
803 #endif
804         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
805
806         netdev->mem_start = mmio_start;
807         netdev->mem_end = mmio_start + mmio_len;
808         netdev->base_addr = adapter->hw.io_base;
809
810         adapter->bd_number = cards_found;
811
812         /* setup the private structure */
813
814         if ((err = e1000_sw_init(adapter)))
815                 goto err_sw_init;
816
817         err = -EIO;
818         /* Flash BAR mapping must happen after e1000_sw_init
819          * because it depends on mac_type */
820         if ((adapter->hw.mac_type == e1000_ich8lan) &&
821            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
822                 flash_start = pci_resource_start(pdev, 1);
823                 flash_len = pci_resource_len(pdev, 1);
824                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
825                 if (!adapter->hw.flash_address)
826                         goto err_flashmap;
827         }
828
829         if (e1000_check_phy_reset_block(&adapter->hw))
830                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
831
832         if (adapter->hw.mac_type >= e1000_82543) {
833                 netdev->features = NETIF_F_SG |
834                                    NETIF_F_HW_CSUM |
835                                    NETIF_F_HW_VLAN_TX |
836                                    NETIF_F_HW_VLAN_RX |
837                                    NETIF_F_HW_VLAN_FILTER;
838                 if (adapter->hw.mac_type == e1000_ich8lan)
839                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
840         }
841
842 #ifdef NETIF_F_TSO
843         if ((adapter->hw.mac_type >= e1000_82544) &&
844            (adapter->hw.mac_type != e1000_82547))
845                 netdev->features |= NETIF_F_TSO;
846
847 #ifdef NETIF_F_TSO_IPV6
848         if (adapter->hw.mac_type > e1000_82547_rev_2)
849                 netdev->features |= NETIF_F_TSO_IPV6;
850 #endif
851 #endif
852         if (pci_using_dac)
853                 netdev->features |= NETIF_F_HIGHDMA;
854
855         netdev->features |= NETIF_F_LLTX;
856
857         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
858
859         /* initialize eeprom parameters */
860
861         if (e1000_init_eeprom_params(&adapter->hw)) {
862                 E1000_ERR("EEPROM initialization failed\n");
863                 goto err_eeprom;
864         }
865
866         /* before reading the EEPROM, reset the controller to
867          * put the device in a known good starting state */
868
869         e1000_reset_hw(&adapter->hw);
870
871         /* make sure the EEPROM is good */
872
873         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
874                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
875                 goto err_eeprom;
876         }
877
878         /* copy the MAC address out of the EEPROM */
879
880         if (e1000_read_mac_addr(&adapter->hw))
881                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
882         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
883         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
884
885         if (!is_valid_ether_addr(netdev->perm_addr)) {
886                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
887                 goto err_eeprom;
888         }
889
890         e1000_get_bus_info(&adapter->hw);
891
892         init_timer(&adapter->tx_fifo_stall_timer);
893         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
894         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
895
896         init_timer(&adapter->watchdog_timer);
897         adapter->watchdog_timer.function = &e1000_watchdog;
898         adapter->watchdog_timer.data = (unsigned long) adapter;
899
900         init_timer(&adapter->phy_info_timer);
901         adapter->phy_info_timer.function = &e1000_update_phy_info;
902         adapter->phy_info_timer.data = (unsigned long) adapter;
903
904         INIT_WORK(&adapter->reset_task,
905                 (void (*)(void *))e1000_reset_task, netdev);
906
907         e1000_check_options(adapter);
908
909         /* Initial Wake on LAN setting
910          * If APM wake is enabled in the EEPROM,
911          * enable the ACPI Magic Packet filter
912          */
913
914         switch (adapter->hw.mac_type) {
915         case e1000_82542_rev2_0:
916         case e1000_82542_rev2_1:
917         case e1000_82543:
918                 break;
919         case e1000_82544:
920                 e1000_read_eeprom(&adapter->hw,
921                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
922                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
923                 break;
924         case e1000_ich8lan:
925                 e1000_read_eeprom(&adapter->hw,
926                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
927                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
928                 break;
929         case e1000_82546:
930         case e1000_82546_rev_3:
931         case e1000_82571:
932         case e1000_80003es2lan:
933                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
934                         e1000_read_eeprom(&adapter->hw,
935                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
936                         break;
937                 }
938                 /* Fall Through */
939         default:
940                 e1000_read_eeprom(&adapter->hw,
941                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
942                 break;
943         }
944         if (eeprom_data & eeprom_apme_mask)
945                 adapter->eeprom_wol |= E1000_WUFC_MAG;
946
947         /* now that we have the eeprom settings, apply the special cases
948          * where the eeprom may be wrong or the board simply won't support
949          * wake on lan on a particular port */
950         switch (pdev->device) {
951         case E1000_DEV_ID_82546GB_PCIE:
952                 adapter->eeprom_wol = 0;
953                 break;
954         case E1000_DEV_ID_82546EB_FIBER:
955         case E1000_DEV_ID_82546GB_FIBER:
956         case E1000_DEV_ID_82571EB_FIBER:
957                 /* Wake events only supported on port A for dual fiber
958                  * regardless of eeprom setting */
959                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
960                         adapter->eeprom_wol = 0;
961                 break;
962         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
963         case E1000_DEV_ID_82571EB_QUAD_COPPER:
964                 /* if quad port adapter, disable WoL on all but port A */
965                 if (global_quad_port_a != 0)
966                         adapter->eeprom_wol = 0;
967                 else
968                         adapter->quad_port_a = 1;
969                 /* Reset for multiple quad port adapters */
970                 if (++global_quad_port_a == 4)
971                         global_quad_port_a = 0;
972                 break;
973         }
974
975         /* initialize the wol settings based on the eeprom settings */
976         adapter->wol = adapter->eeprom_wol;
977
978         /* print bus type/speed/width info */
979         {
980         struct e1000_hw *hw = &adapter->hw;
981         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
982                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
983                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
984                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
985                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
986                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
987                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
988                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
989                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
990                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
991                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
992                  "32-bit"));
993         }
994
995         for (i = 0; i < 6; i++)
996                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
997
998         /* reset the hardware with the new settings */
999         e1000_reset(adapter);
1000
1001         /* If the controller is 82573 and f/w is AMT, do not set
1002          * DRV_LOAD until the interface is up.  For all other cases,
1003          * let the f/w know that the h/w is now under the control
1004          * of the driver. */
1005         if (adapter->hw.mac_type != e1000_82573 ||
1006             !e1000_check_mng_mode(&adapter->hw))
1007                 e1000_get_hw_control(adapter);
1008
1009         strcpy(netdev->name, "eth%d");
1010         if ((err = register_netdev(netdev)))
1011                 goto err_register;
1012
1013         /* tell the stack to leave us alone until e1000_open() is called */
1014         netif_carrier_off(netdev);
1015         netif_stop_queue(netdev);
1016
1017         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1018
1019         cards_found++;
1020         return 0;
1021
1022 err_register:
1023         e1000_release_hw_control(adapter);
1024 err_eeprom:
1025         if (!e1000_check_phy_reset_block(&adapter->hw))
1026                 e1000_phy_hw_reset(&adapter->hw);
1027
1028         if (adapter->hw.flash_address)
1029                 iounmap(adapter->hw.flash_address);
1030 err_flashmap:
1031 #ifdef CONFIG_E1000_NAPI
1032         for (i = 0; i < adapter->num_rx_queues; i++)
1033                 dev_put(&adapter->polling_netdev[i]);
1034 #endif
1035
1036         kfree(adapter->tx_ring);
1037         kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039         kfree(adapter->polling_netdev);
1040 #endif
1041 err_sw_init:
1042         iounmap(adapter->hw.hw_addr);
1043 err_ioremap:
1044         free_netdev(netdev);
1045 err_alloc_etherdev:
1046         pci_release_regions(pdev);
1047 err_pci_reg:
1048 err_dma:
1049         pci_disable_device(pdev);
1050         return err;
1051 }
1052
1053 /**
1054  * e1000_remove - Device Removal Routine
1055  * @pdev: PCI device information struct
1056  *
1057  * e1000_remove is called by the PCI subsystem to alert the driver
1058  * that it should release a PCI device.  The could be caused by a
1059  * Hot-Plug event, or because the driver is going to be removed from
1060  * memory.
1061  **/
1062
1063 static void __devexit
1064 e1000_remove(struct pci_dev *pdev)
1065 {
1066         struct net_device *netdev = pci_get_drvdata(pdev);
1067         struct e1000_adapter *adapter = netdev_priv(netdev);
1068         uint32_t manc;
1069 #ifdef CONFIG_E1000_NAPI
1070         int i;
1071 #endif
1072
1073         flush_scheduled_work();
1074
1075         if (adapter->hw.mac_type >= e1000_82540 &&
1076             adapter->hw.mac_type < e1000_82571 &&
1077             adapter->hw.media_type == e1000_media_type_copper) {
1078                 manc = E1000_READ_REG(&adapter->hw, MANC);
1079                 if (manc & E1000_MANC_SMBUS_EN) {
1080                         manc |= E1000_MANC_ARP_EN;
1081                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1082                 }
1083         }
1084
1085         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1086          * would have already happened in close and is redundant. */
1087         e1000_release_hw_control(adapter);
1088
1089         unregister_netdev(netdev);
1090 #ifdef CONFIG_E1000_NAPI
1091         for (i = 0; i < adapter->num_rx_queues; i++)
1092                 dev_put(&adapter->polling_netdev[i]);
1093 #endif
1094
1095         if (!e1000_check_phy_reset_block(&adapter->hw))
1096                 e1000_phy_hw_reset(&adapter->hw);
1097
1098         kfree(adapter->tx_ring);
1099         kfree(adapter->rx_ring);
1100 #ifdef CONFIG_E1000_NAPI
1101         kfree(adapter->polling_netdev);
1102 #endif
1103
1104         iounmap(adapter->hw.hw_addr);
1105         if (adapter->hw.flash_address)
1106                 iounmap(adapter->hw.flash_address);
1107         pci_release_regions(pdev);
1108
1109         free_netdev(netdev);
1110
1111         pci_disable_device(pdev);
1112 }
1113
1114 /**
1115  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1116  * @adapter: board private structure to initialize
1117  *
1118  * e1000_sw_init initializes the Adapter private data structure.
1119  * Fields are initialized based on PCI device information and
1120  * OS network device settings (MTU size).
1121  **/
1122
1123 static int __devinit
1124 e1000_sw_init(struct e1000_adapter *adapter)
1125 {
1126         struct e1000_hw *hw = &adapter->hw;
1127         struct net_device *netdev = adapter->netdev;
1128         struct pci_dev *pdev = adapter->pdev;
1129 #ifdef CONFIG_E1000_NAPI
1130         int i;
1131 #endif
1132
1133         /* PCI config space info */
1134
1135         hw->vendor_id = pdev->vendor;
1136         hw->device_id = pdev->device;
1137         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1138         hw->subsystem_id = pdev->subsystem_device;
1139
1140         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1141
1142         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1143
1144         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1145         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1146         hw->max_frame_size = netdev->mtu +
1147                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1148         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1149
1150         /* identify the MAC */
1151
1152         if (e1000_set_mac_type(hw)) {
1153                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1154                 return -EIO;
1155         }
1156
1157         switch (hw->mac_type) {
1158         default:
1159                 break;
1160         case e1000_82541:
1161         case e1000_82547:
1162         case e1000_82541_rev_2:
1163         case e1000_82547_rev_2:
1164                 hw->phy_init_script = 1;
1165                 break;
1166         }
1167
1168         e1000_set_media_type(hw);
1169
1170         hw->wait_autoneg_complete = FALSE;
1171         hw->tbi_compatibility_en = TRUE;
1172         hw->adaptive_ifs = TRUE;
1173
1174         /* Copper options */
1175
1176         if (hw->media_type == e1000_media_type_copper) {
1177                 hw->mdix = AUTO_ALL_MODES;
1178                 hw->disable_polarity_correction = FALSE;
1179                 hw->master_slave = E1000_MASTER_SLAVE;
1180         }
1181
1182         adapter->num_tx_queues = 1;
1183         adapter->num_rx_queues = 1;
1184
1185         if (e1000_alloc_queues(adapter)) {
1186                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1187                 return -ENOMEM;
1188         }
1189
1190 #ifdef CONFIG_E1000_NAPI
1191         for (i = 0; i < adapter->num_rx_queues; i++) {
1192                 adapter->polling_netdev[i].priv = adapter;
1193                 adapter->polling_netdev[i].poll = &e1000_clean;
1194                 adapter->polling_netdev[i].weight = 64;
1195                 dev_hold(&adapter->polling_netdev[i]);
1196                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1197         }
1198         spin_lock_init(&adapter->tx_queue_lock);
1199 #endif
1200
1201         atomic_set(&adapter->irq_sem, 1);
1202         spin_lock_init(&adapter->stats_lock);
1203
1204         set_bit(__E1000_DOWN, &adapter->flags);
1205
1206         return 0;
1207 }
1208
1209 /**
1210  * e1000_alloc_queues - Allocate memory for all rings
1211  * @adapter: board private structure to initialize
1212  *
1213  * We allocate one ring per queue at run-time since we don't know the
1214  * number of queues at compile-time.  The polling_netdev array is
1215  * intended for Multiqueue, but should work fine with a single queue.
1216  **/
1217
1218 static int __devinit
1219 e1000_alloc_queues(struct e1000_adapter *adapter)
1220 {
1221         int size;
1222
1223         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1224         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1225         if (!adapter->tx_ring)
1226                 return -ENOMEM;
1227         memset(adapter->tx_ring, 0, size);
1228
1229         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1230         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1231         if (!adapter->rx_ring) {
1232                 kfree(adapter->tx_ring);
1233                 return -ENOMEM;
1234         }
1235         memset(adapter->rx_ring, 0, size);
1236
1237 #ifdef CONFIG_E1000_NAPI
1238         size = sizeof(struct net_device) * adapter->num_rx_queues;
1239         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1240         if (!adapter->polling_netdev) {
1241                 kfree(adapter->tx_ring);
1242                 kfree(adapter->rx_ring);
1243                 return -ENOMEM;
1244         }
1245         memset(adapter->polling_netdev, 0, size);
1246 #endif
1247
1248         return E1000_SUCCESS;
1249 }
1250
1251 /**
1252  * e1000_open - Called when a network interface is made active
1253  * @netdev: network interface device structure
1254  *
1255  * Returns 0 on success, negative value on failure
1256  *
1257  * The open entry point is called when a network interface is made
1258  * active by the system (IFF_UP).  At this point all resources needed
1259  * for transmit and receive operations are allocated, the interrupt
1260  * handler is registered with the OS, the watchdog timer is started,
1261  * and the stack is notified that the interface is ready.
1262  **/
1263
1264 static int
1265 e1000_open(struct net_device *netdev)
1266 {
1267         struct e1000_adapter *adapter = netdev_priv(netdev);
1268         int err;
1269
1270         /* disallow open during test */
1271         if (test_bit(__E1000_TESTING, &adapter->flags))
1272                 return -EBUSY;
1273
1274         /* allocate transmit descriptors */
1275         if ((err = e1000_setup_all_tx_resources(adapter)))
1276                 goto err_setup_tx;
1277
1278         /* allocate receive descriptors */
1279         if ((err = e1000_setup_all_rx_resources(adapter)))
1280                 goto err_setup_rx;
1281
1282         err = e1000_request_irq(adapter);
1283         if (err)
1284                 goto err_req_irq;
1285
1286         e1000_power_up_phy(adapter);
1287
1288         if ((err = e1000_up(adapter)))
1289                 goto err_up;
1290         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1291         if ((adapter->hw.mng_cookie.status &
1292                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1293                 e1000_update_mng_vlan(adapter);
1294         }
1295
1296         /* If AMT is enabled, let the firmware know that the network
1297          * interface is now open */
1298         if (adapter->hw.mac_type == e1000_82573 &&
1299             e1000_check_mng_mode(&adapter->hw))
1300                 e1000_get_hw_control(adapter);
1301
1302         return E1000_SUCCESS;
1303
1304 err_up:
1305         e1000_power_down_phy(adapter);
1306         e1000_free_irq(adapter);
1307 err_req_irq:
1308         e1000_free_all_rx_resources(adapter);
1309 err_setup_rx:
1310         e1000_free_all_tx_resources(adapter);
1311 err_setup_tx:
1312         e1000_reset(adapter);
1313
1314         return err;
1315 }
1316
1317 /**
1318  * e1000_close - Disables a network interface
1319  * @netdev: network interface device structure
1320  *
1321  * Returns 0, this is not allowed to fail
1322  *
1323  * The close entry point is called when an interface is de-activated
1324  * by the OS.  The hardware is still under the drivers control, but
1325  * needs to be disabled.  A global MAC reset is issued to stop the
1326  * hardware, and all transmit and receive resources are freed.
1327  **/
1328
1329 static int
1330 e1000_close(struct net_device *netdev)
1331 {
1332         struct e1000_adapter *adapter = netdev_priv(netdev);
1333
1334         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1335         e1000_down(adapter);
1336         e1000_power_down_phy(adapter);
1337         e1000_free_irq(adapter);
1338
1339         e1000_free_all_tx_resources(adapter);
1340         e1000_free_all_rx_resources(adapter);
1341
1342         /* kill manageability vlan ID if supported, but not if a vlan with
1343          * the same ID is registered on the host OS (let 8021q kill it) */
1344         if ((adapter->hw.mng_cookie.status &
1345                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1346              !(adapter->vlgrp &&
1347                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1348                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1349         }
1350
1351         /* If AMT is enabled, let the firmware know that the network
1352          * interface is now closed */
1353         if (adapter->hw.mac_type == e1000_82573 &&
1354             e1000_check_mng_mode(&adapter->hw))
1355                 e1000_release_hw_control(adapter);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1362  * @adapter: address of board private structure
1363  * @start: address of beginning of memory
1364  * @len: length of memory
1365  **/
1366 static boolean_t
1367 e1000_check_64k_bound(struct e1000_adapter *adapter,
1368                       void *start, unsigned long len)
1369 {
1370         unsigned long begin = (unsigned long) start;
1371         unsigned long end = begin + len;
1372
1373         /* First rev 82545 and 82546 need to not allow any memory
1374          * write location to cross 64k boundary due to errata 23 */
1375         if (adapter->hw.mac_type == e1000_82545 ||
1376             adapter->hw.mac_type == e1000_82546) {
1377                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1378         }
1379
1380         return TRUE;
1381 }
1382
1383 /**
1384  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1385  * @adapter: board private structure
1386  * @txdr:    tx descriptor ring (for a specific queue) to setup
1387  *
1388  * Return 0 on success, negative on failure
1389  **/
1390
1391 static int
1392 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1393                          struct e1000_tx_ring *txdr)
1394 {
1395         struct pci_dev *pdev = adapter->pdev;
1396         int size;
1397
1398         size = sizeof(struct e1000_buffer) * txdr->count;
1399         txdr->buffer_info = vmalloc(size);
1400         if (!txdr->buffer_info) {
1401                 DPRINTK(PROBE, ERR,
1402                 "Unable to allocate memory for the transmit descriptor ring\n");
1403                 return -ENOMEM;
1404         }
1405         memset(txdr->buffer_info, 0, size);
1406
1407         /* round up to nearest 4K */
1408
1409         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1410         E1000_ROUNDUP(txdr->size, 4096);
1411
1412         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1413         if (!txdr->desc) {
1414 setup_tx_desc_die:
1415                 vfree(txdr->buffer_info);
1416                 DPRINTK(PROBE, ERR,
1417                 "Unable to allocate memory for the transmit descriptor ring\n");
1418                 return -ENOMEM;
1419         }
1420
1421         /* Fix for errata 23, can't cross 64kB boundary */
1422         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1423                 void *olddesc = txdr->desc;
1424                 dma_addr_t olddma = txdr->dma;
1425                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1426                                      "at %p\n", txdr->size, txdr->desc);
1427                 /* Try again, without freeing the previous */
1428                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1429                 /* Failed allocation, critical failure */
1430                 if (!txdr->desc) {
1431                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1432                         goto setup_tx_desc_die;
1433                 }
1434
1435                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436                         /* give up */
1437                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1438                                             txdr->dma);
1439                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1440                         DPRINTK(PROBE, ERR,
1441                                 "Unable to allocate aligned memory "
1442                                 "for the transmit descriptor ring\n");
1443                         vfree(txdr->buffer_info);
1444                         return -ENOMEM;
1445                 } else {
1446                         /* Free old allocation, new allocation was successful */
1447                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1448                 }
1449         }
1450         memset(txdr->desc, 0, txdr->size);
1451
1452         txdr->next_to_use = 0;
1453         txdr->next_to_clean = 0;
1454         spin_lock_init(&txdr->tx_lock);
1455
1456         return 0;
1457 }
1458
1459 /**
1460  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1461  *                                (Descriptors) for all queues
1462  * @adapter: board private structure
1463  *
1464  * Return 0 on success, negative on failure
1465  **/
1466
1467 int
1468 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1469 {
1470         int i, err = 0;
1471
1472         for (i = 0; i < adapter->num_tx_queues; i++) {
1473                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1474                 if (err) {
1475                         DPRINTK(PROBE, ERR,
1476                                 "Allocation for Tx Queue %u failed\n", i);
1477                         for (i-- ; i >= 0; i--)
1478                                 e1000_free_tx_resources(adapter,
1479                                                         &adapter->tx_ring[i]);
1480                         break;
1481                 }
1482         }
1483
1484         return err;
1485 }
1486
1487 /**
1488  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1489  * @adapter: board private structure
1490  *
1491  * Configure the Tx unit of the MAC after a reset.
1492  **/
1493
1494 static void
1495 e1000_configure_tx(struct e1000_adapter *adapter)
1496 {
1497         uint64_t tdba;
1498         struct e1000_hw *hw = &adapter->hw;
1499         uint32_t tdlen, tctl, tipg, tarc;
1500         uint32_t ipgr1, ipgr2;
1501
1502         /* Setup the HW Tx Head and Tail descriptor pointers */
1503
1504         switch (adapter->num_tx_queues) {
1505         case 1:
1506         default:
1507                 tdba = adapter->tx_ring[0].dma;
1508                 tdlen = adapter->tx_ring[0].count *
1509                         sizeof(struct e1000_tx_desc);
1510                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1511                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1512                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1513                 E1000_WRITE_REG(hw, TDT, 0);
1514                 E1000_WRITE_REG(hw, TDH, 0);
1515                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1516                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1517                 break;
1518         }
1519
1520         /* Set the default values for the Tx Inter Packet Gap timer */
1521
1522         if (hw->media_type == e1000_media_type_fiber ||
1523             hw->media_type == e1000_media_type_internal_serdes)
1524                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1525         else
1526                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1527
1528         switch (hw->mac_type) {
1529         case e1000_82542_rev2_0:
1530         case e1000_82542_rev2_1:
1531                 tipg = DEFAULT_82542_TIPG_IPGT;
1532                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1533                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1534                 break;
1535         case e1000_80003es2lan:
1536                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1537                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1538                 break;
1539         default:
1540                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1541                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1542                 break;
1543         }
1544         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1545         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1546         E1000_WRITE_REG(hw, TIPG, tipg);
1547
1548         /* Set the Tx Interrupt Delay register */
1549
1550         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1551         if (hw->mac_type >= e1000_82540)
1552                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1553
1554         /* Program the Transmit Control Register */
1555
1556         tctl = E1000_READ_REG(hw, TCTL);
1557         tctl &= ~E1000_TCTL_CT;
1558         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1559                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1560
1561         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1562                 tarc = E1000_READ_REG(hw, TARC0);
1563                 /* set the speed mode bit, we'll clear it if we're not at
1564                  * gigabit link later */
1565                 tarc |= (1 << 21);
1566                 E1000_WRITE_REG(hw, TARC0, tarc);
1567         } else if (hw->mac_type == e1000_80003es2lan) {
1568                 tarc = E1000_READ_REG(hw, TARC0);
1569                 tarc |= 1;
1570                 E1000_WRITE_REG(hw, TARC0, tarc);
1571                 tarc = E1000_READ_REG(hw, TARC1);
1572                 tarc |= 1;
1573                 E1000_WRITE_REG(hw, TARC1, tarc);
1574         }
1575
1576         e1000_config_collision_dist(hw);
1577
1578         /* Setup Transmit Descriptor Settings for eop descriptor */
1579         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1580                 E1000_TXD_CMD_IFCS;
1581
1582         if (hw->mac_type < e1000_82543)
1583                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1584         else
1585                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1586
1587         /* Cache if we're 82544 running in PCI-X because we'll
1588          * need this to apply a workaround later in the send path. */
1589         if (hw->mac_type == e1000_82544 &&
1590             hw->bus_type == e1000_bus_type_pcix)
1591                 adapter->pcix_82544 = 1;
1592
1593         E1000_WRITE_REG(hw, TCTL, tctl);
1594
1595 }
1596
1597 /**
1598  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1599  * @adapter: board private structure
1600  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1601  *
1602  * Returns 0 on success, negative on failure
1603  **/
1604
1605 static int
1606 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1607                          struct e1000_rx_ring *rxdr)
1608 {
1609         struct pci_dev *pdev = adapter->pdev;
1610         int size, desc_len;
1611
1612         size = sizeof(struct e1000_buffer) * rxdr->count;
1613         rxdr->buffer_info = vmalloc(size);
1614         if (!rxdr->buffer_info) {
1615                 DPRINTK(PROBE, ERR,
1616                 "Unable to allocate memory for the receive descriptor ring\n");
1617                 return -ENOMEM;
1618         }
1619         memset(rxdr->buffer_info, 0, size);
1620
1621         size = sizeof(struct e1000_ps_page) * rxdr->count;
1622         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1623         if (!rxdr->ps_page) {
1624                 vfree(rxdr->buffer_info);
1625                 DPRINTK(PROBE, ERR,
1626                 "Unable to allocate memory for the receive descriptor ring\n");
1627                 return -ENOMEM;
1628         }
1629         memset(rxdr->ps_page, 0, size);
1630
1631         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1632         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1633         if (!rxdr->ps_page_dma) {
1634                 vfree(rxdr->buffer_info);
1635                 kfree(rxdr->ps_page);
1636                 DPRINTK(PROBE, ERR,
1637                 "Unable to allocate memory for the receive descriptor ring\n");
1638                 return -ENOMEM;
1639         }
1640         memset(rxdr->ps_page_dma, 0, size);
1641
1642         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1643                 desc_len = sizeof(struct e1000_rx_desc);
1644         else
1645                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1646
1647         /* Round up to nearest 4K */
1648
1649         rxdr->size = rxdr->count * desc_len;
1650         E1000_ROUNDUP(rxdr->size, 4096);
1651
1652         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1653
1654         if (!rxdr->desc) {
1655                 DPRINTK(PROBE, ERR,
1656                 "Unable to allocate memory for the receive descriptor ring\n");
1657 setup_rx_desc_die:
1658                 vfree(rxdr->buffer_info);
1659                 kfree(rxdr->ps_page);
1660                 kfree(rxdr->ps_page_dma);
1661                 return -ENOMEM;
1662         }
1663
1664         /* Fix for errata 23, can't cross 64kB boundary */
1665         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1666                 void *olddesc = rxdr->desc;
1667                 dma_addr_t olddma = rxdr->dma;
1668                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1669                                      "at %p\n", rxdr->size, rxdr->desc);
1670                 /* Try again, without freeing the previous */
1671                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1672                 /* Failed allocation, critical failure */
1673                 if (!rxdr->desc) {
1674                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1675                         DPRINTK(PROBE, ERR,
1676                                 "Unable to allocate memory "
1677                                 "for the receive descriptor ring\n");
1678                         goto setup_rx_desc_die;
1679                 }
1680
1681                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682                         /* give up */
1683                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1684                                             rxdr->dma);
1685                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1686                         DPRINTK(PROBE, ERR,
1687                                 "Unable to allocate aligned memory "
1688                                 "for the receive descriptor ring\n");
1689                         goto setup_rx_desc_die;
1690                 } else {
1691                         /* Free old allocation, new allocation was successful */
1692                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1693                 }
1694         }
1695         memset(rxdr->desc, 0, rxdr->size);
1696
1697         rxdr->next_to_clean = 0;
1698         rxdr->next_to_use = 0;
1699
1700         return 0;
1701 }
1702
1703 /**
1704  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1705  *                                (Descriptors) for all queues
1706  * @adapter: board private structure
1707  *
1708  * Return 0 on success, negative on failure
1709  **/
1710
1711 int
1712 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1713 {
1714         int i, err = 0;
1715
1716         for (i = 0; i < adapter->num_rx_queues; i++) {
1717                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1718                 if (err) {
1719                         DPRINTK(PROBE, ERR,
1720                                 "Allocation for Rx Queue %u failed\n", i);
1721                         for (i-- ; i >= 0; i--)
1722                                 e1000_free_rx_resources(adapter,
1723                                                         &adapter->rx_ring[i]);
1724                         break;
1725                 }
1726         }
1727
1728         return err;
1729 }
1730
1731 /**
1732  * e1000_setup_rctl - configure the receive control registers
1733  * @adapter: Board private structure
1734  **/
1735 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1736                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1737 static void
1738 e1000_setup_rctl(struct e1000_adapter *adapter)
1739 {
1740         uint32_t rctl, rfctl;
1741         uint32_t psrctl = 0;
1742 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1743         uint32_t pages = 0;
1744 #endif
1745
1746         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1747
1748         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1749
1750         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1751                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1752                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1753
1754         if (adapter->hw.tbi_compatibility_on == 1)
1755                 rctl |= E1000_RCTL_SBP;
1756         else
1757                 rctl &= ~E1000_RCTL_SBP;
1758
1759         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1760                 rctl &= ~E1000_RCTL_LPE;
1761         else
1762                 rctl |= E1000_RCTL_LPE;
1763
1764         /* Setup buffer sizes */
1765         rctl &= ~E1000_RCTL_SZ_4096;
1766         rctl |= E1000_RCTL_BSEX;
1767         switch (adapter->rx_buffer_len) {
1768                 case E1000_RXBUFFER_256:
1769                         rctl |= E1000_RCTL_SZ_256;
1770                         rctl &= ~E1000_RCTL_BSEX;
1771                         break;
1772                 case E1000_RXBUFFER_512:
1773                         rctl |= E1000_RCTL_SZ_512;
1774                         rctl &= ~E1000_RCTL_BSEX;
1775                         break;
1776                 case E1000_RXBUFFER_1024:
1777                         rctl |= E1000_RCTL_SZ_1024;
1778                         rctl &= ~E1000_RCTL_BSEX;
1779                         break;
1780                 case E1000_RXBUFFER_2048:
1781                 default:
1782                         rctl |= E1000_RCTL_SZ_2048;
1783                         rctl &= ~E1000_RCTL_BSEX;
1784                         break;
1785                 case E1000_RXBUFFER_4096:
1786                         rctl |= E1000_RCTL_SZ_4096;
1787                         break;
1788                 case E1000_RXBUFFER_8192:
1789                         rctl |= E1000_RCTL_SZ_8192;
1790                         break;
1791                 case E1000_RXBUFFER_16384:
1792                         rctl |= E1000_RCTL_SZ_16384;
1793                         break;
1794         }
1795
1796 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1797         /* 82571 and greater support packet-split where the protocol
1798          * header is placed in skb->data and the packet data is
1799          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1800          * In the case of a non-split, skb->data is linearly filled,
1801          * followed by the page buffers.  Therefore, skb->data is
1802          * sized to hold the largest protocol header.
1803          */
1804         /* allocations using alloc_page take too long for regular MTU
1805          * so only enable packet split for jumbo frames */
1806         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1807         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1808             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1809                 adapter->rx_ps_pages = pages;
1810         else
1811                 adapter->rx_ps_pages = 0;
1812 #endif
1813         if (adapter->rx_ps_pages) {
1814                 /* Configure extra packet-split registers */
1815                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1816                 rfctl |= E1000_RFCTL_EXTEN;
1817                 /* disable IPv6 packet split support */
1818                 rfctl |= E1000_RFCTL_IPV6_DIS;
1819                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1820
1821                 rctl |= E1000_RCTL_DTYP_PS;
1822
1823                 psrctl |= adapter->rx_ps_bsize0 >>
1824                         E1000_PSRCTL_BSIZE0_SHIFT;
1825
1826                 switch (adapter->rx_ps_pages) {
1827                 case 3:
1828                         psrctl |= PAGE_SIZE <<
1829                                 E1000_PSRCTL_BSIZE3_SHIFT;
1830                 case 2:
1831                         psrctl |= PAGE_SIZE <<
1832                                 E1000_PSRCTL_BSIZE2_SHIFT;
1833                 case 1:
1834                         psrctl |= PAGE_SIZE >>
1835                                 E1000_PSRCTL_BSIZE1_SHIFT;
1836                         break;
1837                 }
1838
1839                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1840         }
1841
1842         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1843 }
1844
1845 /**
1846  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1847  * @adapter: board private structure
1848  *
1849  * Configure the Rx unit of the MAC after a reset.
1850  **/
1851
1852 static void
1853 e1000_configure_rx(struct e1000_adapter *adapter)
1854 {
1855         uint64_t rdba;
1856         struct e1000_hw *hw = &adapter->hw;
1857         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1858
1859         if (adapter->rx_ps_pages) {
1860                 /* this is a 32 byte descriptor */
1861                 rdlen = adapter->rx_ring[0].count *
1862                         sizeof(union e1000_rx_desc_packet_split);
1863                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1864                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1865         } else {
1866                 rdlen = adapter->rx_ring[0].count *
1867                         sizeof(struct e1000_rx_desc);
1868                 adapter->clean_rx = e1000_clean_rx_irq;
1869                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870         }
1871
1872         /* disable receives while setting up the descriptors */
1873         rctl = E1000_READ_REG(hw, RCTL);
1874         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1875
1876         /* set the Receive Delay Timer Register */
1877         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1878
1879         if (hw->mac_type >= e1000_82540) {
1880                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1881                 if (adapter->itr > 1)
1882                         E1000_WRITE_REG(hw, ITR,
1883                                 1000000000 / (adapter->itr * 256));
1884         }
1885
1886         if (hw->mac_type >= e1000_82571) {
1887                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1888                 /* Reset delay timers after every interrupt */
1889                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1890 #ifdef CONFIG_E1000_NAPI
1891                 /* Auto-Mask interrupts upon ICR read. */
1892                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1893 #endif
1894                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1895                 E1000_WRITE_REG(hw, IAM, ~0);
1896                 E1000_WRITE_FLUSH(hw);
1897         }
1898
1899         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1900          * the Base and Length of the Rx Descriptor Ring */
1901         switch (adapter->num_rx_queues) {
1902         case 1:
1903         default:
1904                 rdba = adapter->rx_ring[0].dma;
1905                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1906                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1907                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1908                 E1000_WRITE_REG(hw, RDT, 0);
1909                 E1000_WRITE_REG(hw, RDH, 0);
1910                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1911                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1912                 break;
1913         }
1914
1915         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1916         if (hw->mac_type >= e1000_82543) {
1917                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1918                 if (adapter->rx_csum == TRUE) {
1919                         rxcsum |= E1000_RXCSUM_TUOFL;
1920
1921                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1922                          * Must be used in conjunction with packet-split. */
1923                         if ((hw->mac_type >= e1000_82571) &&
1924                             (adapter->rx_ps_pages)) {
1925                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1926                         }
1927                 } else {
1928                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1929                         /* don't need to clear IPPCSE as it defaults to 0 */
1930                 }
1931                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1932         }
1933
1934         /* Enable Receives */
1935         E1000_WRITE_REG(hw, RCTL, rctl);
1936 }
1937
1938 /**
1939  * e1000_free_tx_resources - Free Tx Resources per Queue
1940  * @adapter: board private structure
1941  * @tx_ring: Tx descriptor ring for a specific queue
1942  *
1943  * Free all transmit software resources
1944  **/
1945
1946 static void
1947 e1000_free_tx_resources(struct e1000_adapter *adapter,
1948                         struct e1000_tx_ring *tx_ring)
1949 {
1950         struct pci_dev *pdev = adapter->pdev;
1951
1952         e1000_clean_tx_ring(adapter, tx_ring);
1953
1954         vfree(tx_ring->buffer_info);
1955         tx_ring->buffer_info = NULL;
1956
1957         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1958
1959         tx_ring->desc = NULL;
1960 }
1961
1962 /**
1963  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1964  * @adapter: board private structure
1965  *
1966  * Free all transmit software resources
1967  **/
1968
1969 void
1970 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1971 {
1972         int i;
1973
1974         for (i = 0; i < adapter->num_tx_queues; i++)
1975                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1976 }
1977
1978 static void
1979 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1980                         struct e1000_buffer *buffer_info)
1981 {
1982         if (buffer_info->dma) {
1983                 pci_unmap_page(adapter->pdev,
1984                                 buffer_info->dma,
1985                                 buffer_info->length,
1986                                 PCI_DMA_TODEVICE);
1987         }
1988         if (buffer_info->skb)
1989                 dev_kfree_skb_any(buffer_info->skb);
1990         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1991 }
1992
1993 /**
1994  * e1000_clean_tx_ring - Free Tx Buffers
1995  * @adapter: board private structure
1996  * @tx_ring: ring to be cleaned
1997  **/
1998
1999 static void
2000 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2001                     struct e1000_tx_ring *tx_ring)
2002 {
2003         struct e1000_buffer *buffer_info;
2004         unsigned long size;
2005         unsigned int i;
2006
2007         /* Free all the Tx ring sk_buffs */
2008
2009         for (i = 0; i < tx_ring->count; i++) {
2010                 buffer_info = &tx_ring->buffer_info[i];
2011                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2012         }
2013
2014         size = sizeof(struct e1000_buffer) * tx_ring->count;
2015         memset(tx_ring->buffer_info, 0, size);
2016
2017         /* Zero out the descriptor ring */
2018
2019         memset(tx_ring->desc, 0, tx_ring->size);
2020
2021         tx_ring->next_to_use = 0;
2022         tx_ring->next_to_clean = 0;
2023         tx_ring->last_tx_tso = 0;
2024
2025         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2026         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2027 }
2028
2029 /**
2030  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2031  * @adapter: board private structure
2032  **/
2033
2034 static void
2035 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2036 {
2037         int i;
2038
2039         for (i = 0; i < adapter->num_tx_queues; i++)
2040                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2041 }
2042
2043 /**
2044  * e1000_free_rx_resources - Free Rx Resources
2045  * @adapter: board private structure
2046  * @rx_ring: ring to clean the resources from
2047  *
2048  * Free all receive software resources
2049  **/
2050
2051 static void
2052 e1000_free_rx_resources(struct e1000_adapter *adapter,
2053                         struct e1000_rx_ring *rx_ring)
2054 {
2055         struct pci_dev *pdev = adapter->pdev;
2056
2057         e1000_clean_rx_ring(adapter, rx_ring);
2058
2059         vfree(rx_ring->buffer_info);
2060         rx_ring->buffer_info = NULL;
2061         kfree(rx_ring->ps_page);
2062         rx_ring->ps_page = NULL;
2063         kfree(rx_ring->ps_page_dma);
2064         rx_ring->ps_page_dma = NULL;
2065
2066         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2067
2068         rx_ring->desc = NULL;
2069 }
2070
2071 /**
2072  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2073  * @adapter: board private structure
2074  *
2075  * Free all receive software resources
2076  **/
2077
2078 void
2079 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2080 {
2081         int i;
2082
2083         for (i = 0; i < adapter->num_rx_queues; i++)
2084                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2085 }
2086
2087 /**
2088  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2089  * @adapter: board private structure
2090  * @rx_ring: ring to free buffers from
2091  **/
2092
2093 static void
2094 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2095                     struct e1000_rx_ring *rx_ring)
2096 {
2097         struct e1000_buffer *buffer_info;
2098         struct e1000_ps_page *ps_page;
2099         struct e1000_ps_page_dma *ps_page_dma;
2100         struct pci_dev *pdev = adapter->pdev;
2101         unsigned long size;
2102         unsigned int i, j;
2103
2104         /* Free all the Rx ring sk_buffs */
2105         for (i = 0; i < rx_ring->count; i++) {
2106                 buffer_info = &rx_ring->buffer_info[i];
2107                 if (buffer_info->skb) {
2108                         pci_unmap_single(pdev,
2109                                          buffer_info->dma,
2110                                          buffer_info->length,
2111                                          PCI_DMA_FROMDEVICE);
2112
2113                         dev_kfree_skb(buffer_info->skb);
2114                         buffer_info->skb = NULL;
2115                 }
2116                 ps_page = &rx_ring->ps_page[i];
2117                 ps_page_dma = &rx_ring->ps_page_dma[i];
2118                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2119                         if (!ps_page->ps_page[j]) break;
2120                         pci_unmap_page(pdev,
2121                                        ps_page_dma->ps_page_dma[j],
2122                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2123                         ps_page_dma->ps_page_dma[j] = 0;
2124                         put_page(ps_page->ps_page[j]);
2125                         ps_page->ps_page[j] = NULL;
2126                 }
2127         }
2128
2129         size = sizeof(struct e1000_buffer) * rx_ring->count;
2130         memset(rx_ring->buffer_info, 0, size);
2131         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2132         memset(rx_ring->ps_page, 0, size);
2133         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2134         memset(rx_ring->ps_page_dma, 0, size);
2135
2136         /* Zero out the descriptor ring */
2137
2138         memset(rx_ring->desc, 0, rx_ring->size);
2139
2140         rx_ring->next_to_clean = 0;
2141         rx_ring->next_to_use = 0;
2142
2143         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2144         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2145 }
2146
2147 /**
2148  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2149  * @adapter: board private structure
2150  **/
2151
2152 static void
2153 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2154 {
2155         int i;
2156
2157         for (i = 0; i < adapter->num_rx_queues; i++)
2158                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2159 }
2160
2161 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2162  * and memory write and invalidate disabled for certain operations
2163  */
2164 static void
2165 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2166 {
2167         struct net_device *netdev = adapter->netdev;
2168         uint32_t rctl;
2169
2170         e1000_pci_clear_mwi(&adapter->hw);
2171
2172         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2173         rctl |= E1000_RCTL_RST;
2174         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2175         E1000_WRITE_FLUSH(&adapter->hw);
2176         mdelay(5);
2177
2178         if (netif_running(netdev))
2179                 e1000_clean_all_rx_rings(adapter);
2180 }
2181
2182 static void
2183 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2184 {
2185         struct net_device *netdev = adapter->netdev;
2186         uint32_t rctl;
2187
2188         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2189         rctl &= ~E1000_RCTL_RST;
2190         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2191         E1000_WRITE_FLUSH(&adapter->hw);
2192         mdelay(5);
2193
2194         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2195                 e1000_pci_set_mwi(&adapter->hw);
2196
2197         if (netif_running(netdev)) {
2198                 /* No need to loop, because 82542 supports only 1 queue */
2199                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2200                 e1000_configure_rx(adapter);
2201                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2202         }
2203 }
2204
2205 /**
2206  * e1000_set_mac - Change the Ethernet Address of the NIC
2207  * @netdev: network interface device structure
2208  * @p: pointer to an address structure
2209  *
2210  * Returns 0 on success, negative on failure
2211  **/
2212
2213 static int
2214 e1000_set_mac(struct net_device *netdev, void *p)
2215 {
2216         struct e1000_adapter *adapter = netdev_priv(netdev);
2217         struct sockaddr *addr = p;
2218
2219         if (!is_valid_ether_addr(addr->sa_data))
2220                 return -EADDRNOTAVAIL;
2221
2222         /* 82542 2.0 needs to be in reset to write receive address registers */
2223
2224         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2225                 e1000_enter_82542_rst(adapter);
2226
2227         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2228         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2229
2230         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2231
2232         /* With 82571 controllers, LAA may be overwritten (with the default)
2233          * due to controller reset from the other port. */
2234         if (adapter->hw.mac_type == e1000_82571) {
2235                 /* activate the work around */
2236                 adapter->hw.laa_is_present = 1;
2237
2238                 /* Hold a copy of the LAA in RAR[14] This is done so that
2239                  * between the time RAR[0] gets clobbered  and the time it
2240                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2241                  * of the RARs and no incoming packets directed to this port
2242                  * are dropped. Eventaully the LAA will be in RAR[0] and
2243                  * RAR[14] */
2244                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2245                                         E1000_RAR_ENTRIES - 1);
2246         }
2247
2248         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2249                 e1000_leave_82542_rst(adapter);
2250
2251         return 0;
2252 }
2253
2254 /**
2255  * e1000_set_multi - Multicast and Promiscuous mode set
2256  * @netdev: network interface device structure
2257  *
2258  * The set_multi entry point is called whenever the multicast address
2259  * list or the network interface flags are updated.  This routine is
2260  * responsible for configuring the hardware for proper multicast,
2261  * promiscuous mode, and all-multi behavior.
2262  **/
2263
2264 static void
2265 e1000_set_multi(struct net_device *netdev)
2266 {
2267         struct e1000_adapter *adapter = netdev_priv(netdev);
2268         struct e1000_hw *hw = &adapter->hw;
2269         struct dev_mc_list *mc_ptr;
2270         uint32_t rctl;
2271         uint32_t hash_value;
2272         int i, rar_entries = E1000_RAR_ENTRIES;
2273         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2274                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2275                                 E1000_NUM_MTA_REGISTERS;
2276
2277         if (adapter->hw.mac_type == e1000_ich8lan)
2278                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2279
2280         /* reserve RAR[14] for LAA over-write work-around */
2281         if (adapter->hw.mac_type == e1000_82571)
2282                 rar_entries--;
2283
2284         /* Check for Promiscuous and All Multicast modes */
2285
2286         rctl = E1000_READ_REG(hw, RCTL);
2287
2288         if (netdev->flags & IFF_PROMISC) {
2289                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2290         } else if (netdev->flags & IFF_ALLMULTI) {
2291                 rctl |= E1000_RCTL_MPE;
2292                 rctl &= ~E1000_RCTL_UPE;
2293         } else {
2294                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2295         }
2296
2297         E1000_WRITE_REG(hw, RCTL, rctl);
2298
2299         /* 82542 2.0 needs to be in reset to write receive address registers */
2300
2301         if (hw->mac_type == e1000_82542_rev2_0)
2302                 e1000_enter_82542_rst(adapter);
2303
2304         /* load the first 14 multicast address into the exact filters 1-14
2305          * RAR 0 is used for the station MAC adddress
2306          * if there are not 14 addresses, go ahead and clear the filters
2307          * -- with 82571 controllers only 0-13 entries are filled here
2308          */
2309         mc_ptr = netdev->mc_list;
2310
2311         for (i = 1; i < rar_entries; i++) {
2312                 if (mc_ptr) {
2313                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2314                         mc_ptr = mc_ptr->next;
2315                 } else {
2316                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2317                         E1000_WRITE_FLUSH(hw);
2318                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2319                         E1000_WRITE_FLUSH(hw);
2320                 }
2321         }
2322
2323         /* clear the old settings from the multicast hash table */
2324
2325         for (i = 0; i < mta_reg_count; i++) {
2326                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2327                 E1000_WRITE_FLUSH(hw);
2328         }
2329
2330         /* load any remaining addresses into the hash table */
2331
2332         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2333                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2334                 e1000_mta_set(hw, hash_value);
2335         }
2336
2337         if (hw->mac_type == e1000_82542_rev2_0)
2338                 e1000_leave_82542_rst(adapter);
2339 }
2340
2341 /* Need to wait a few seconds after link up to get diagnostic information from
2342  * the phy */
2343
2344 static void
2345 e1000_update_phy_info(unsigned long data)
2346 {
2347         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2348         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2349 }
2350
2351 /**
2352  * e1000_82547_tx_fifo_stall - Timer Call-back
2353  * @data: pointer to adapter cast into an unsigned long
2354  **/
2355
2356 static void
2357 e1000_82547_tx_fifo_stall(unsigned long data)
2358 {
2359         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2360         struct net_device *netdev = adapter->netdev;
2361         uint32_t tctl;
2362
2363         if (atomic_read(&adapter->tx_fifo_stall)) {
2364                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2365                     E1000_READ_REG(&adapter->hw, TDH)) &&
2366                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2367                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2368                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2369                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2370                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2371                         E1000_WRITE_REG(&adapter->hw, TCTL,
2372                                         tctl & ~E1000_TCTL_EN);
2373                         E1000_WRITE_REG(&adapter->hw, TDFT,
2374                                         adapter->tx_head_addr);
2375                         E1000_WRITE_REG(&adapter->hw, TDFH,
2376                                         adapter->tx_head_addr);
2377                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2378                                         adapter->tx_head_addr);
2379                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2380                                         adapter->tx_head_addr);
2381                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2382                         E1000_WRITE_FLUSH(&adapter->hw);
2383
2384                         adapter->tx_fifo_head = 0;
2385                         atomic_set(&adapter->tx_fifo_stall, 0);
2386                         netif_wake_queue(netdev);
2387                 } else {
2388                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2389                 }
2390         }
2391 }
2392
2393 /**
2394  * e1000_watchdog - Timer Call-back
2395  * @data: pointer to adapter cast into an unsigned long
2396  **/
2397 static void
2398 e1000_watchdog(unsigned long data)
2399 {
2400         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2401         struct net_device *netdev = adapter->netdev;
2402         struct e1000_tx_ring *txdr = adapter->tx_ring;
2403         uint32_t link, tctl;
2404         int32_t ret_val;
2405
2406         ret_val = e1000_check_for_link(&adapter->hw);
2407         if ((ret_val == E1000_ERR_PHY) &&
2408             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2409             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2410                 /* See e1000_kumeran_lock_loss_workaround() */
2411                 DPRINTK(LINK, INFO,
2412                         "Gigabit has been disabled, downgrading speed\n");
2413         }
2414
2415         if (adapter->hw.mac_type == e1000_82573) {
2416                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2417                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2418                         e1000_update_mng_vlan(adapter);
2419         }
2420
2421         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2422            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2423                 link = !adapter->hw.serdes_link_down;
2424         else
2425                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2426
2427         if (link) {
2428                 if (!netif_carrier_ok(netdev)) {
2429                         boolean_t txb2b = 1;
2430                         e1000_get_speed_and_duplex(&adapter->hw,
2431                                                    &adapter->link_speed,
2432                                                    &adapter->link_duplex);
2433
2434                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2435                                adapter->link_speed,
2436                                adapter->link_duplex == FULL_DUPLEX ?
2437                                "Full Duplex" : "Half Duplex");
2438
2439                         /* tweak tx_queue_len according to speed/duplex
2440                          * and adjust the timeout factor */
2441                         netdev->tx_queue_len = adapter->tx_queue_len;
2442                         adapter->tx_timeout_factor = 1;
2443                         switch (adapter->link_speed) {
2444                         case SPEED_10:
2445                                 txb2b = 0;
2446                                 netdev->tx_queue_len = 10;
2447                                 adapter->tx_timeout_factor = 8;
2448                                 break;
2449                         case SPEED_100:
2450                                 txb2b = 0;
2451                                 netdev->tx_queue_len = 100;
2452                                 /* maybe add some timeout factor ? */
2453                                 break;
2454                         }
2455
2456                         if ((adapter->hw.mac_type == e1000_82571 ||
2457                              adapter->hw.mac_type == e1000_82572) &&
2458                             txb2b == 0) {
2459                                 uint32_t tarc0;
2460                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2461                                 tarc0 &= ~(1 << 21);
2462                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2463                         }
2464
2465 #ifdef NETIF_F_TSO
2466                         /* disable TSO for pcie and 10/100 speeds, to avoid
2467                          * some hardware issues */
2468                         if (!adapter->tso_force &&
2469                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2470                                 switch (adapter->link_speed) {
2471                                 case SPEED_10:
2472                                 case SPEED_100:
2473                                         DPRINTK(PROBE,INFO,
2474                                         "10/100 speed: disabling TSO\n");
2475                                         netdev->features &= ~NETIF_F_TSO;
2476                                         break;
2477                                 case SPEED_1000:
2478                                         netdev->features |= NETIF_F_TSO;
2479                                         break;
2480                                 default:
2481                                         /* oops */
2482                                         break;
2483                                 }
2484                         }
2485 #endif
2486
2487                         /* enable transmits in the hardware, need to do this
2488                          * after setting TARC0 */
2489                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2490                         tctl |= E1000_TCTL_EN;
2491                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2492
2493                         netif_carrier_on(netdev);
2494                         netif_wake_queue(netdev);
2495                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2496                         adapter->smartspeed = 0;
2497                 }
2498         } else {
2499                 if (netif_carrier_ok(netdev)) {
2500                         adapter->link_speed = 0;
2501                         adapter->link_duplex = 0;
2502                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2503                         netif_carrier_off(netdev);
2504                         netif_stop_queue(netdev);
2505                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2506
2507                         /* 80003ES2LAN workaround--
2508                          * For packet buffer work-around on link down event;
2509                          * disable receives in the ISR and
2510                          * reset device here in the watchdog
2511                          */
2512                         if (adapter->hw.mac_type == e1000_80003es2lan)
2513                                 /* reset device */
2514                                 schedule_work(&adapter->reset_task);
2515                 }
2516
2517                 e1000_smartspeed(adapter);
2518         }
2519
2520         e1000_update_stats(adapter);
2521
2522         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2523         adapter->tpt_old = adapter->stats.tpt;
2524         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2525         adapter->colc_old = adapter->stats.colc;
2526
2527         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2528         adapter->gorcl_old = adapter->stats.gorcl;
2529         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2530         adapter->gotcl_old = adapter->stats.gotcl;
2531
2532         e1000_update_adaptive(&adapter->hw);
2533
2534         if (!netif_carrier_ok(netdev)) {
2535                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2536                         /* We've lost link, so the controller stops DMA,
2537                          * but we've got queued Tx work that's never going
2538                          * to get done, so reset controller to flush Tx.
2539                          * (Do the reset outside of interrupt context). */
2540                         adapter->tx_timeout_count++;
2541                         schedule_work(&adapter->reset_task);
2542                 }
2543         }
2544
2545         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2546         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2547                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2548                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2549                  * else is between 2000-8000. */
2550                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2551                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2552                         adapter->gotcl - adapter->gorcl :
2553                         adapter->gorcl - adapter->gotcl) / 10000;
2554                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2555                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2556         }
2557
2558         /* Cause software interrupt to ensure rx ring is cleaned */
2559         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2560
2561         /* Force detection of hung controller every watchdog period */
2562         adapter->detect_tx_hung = TRUE;
2563
2564         /* With 82571 controllers, LAA may be overwritten due to controller
2565          * reset from the other port. Set the appropriate LAA in RAR[0] */
2566         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2567                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2568
2569         /* Reset the timer */
2570         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2571 }
2572
2573 #define E1000_TX_FLAGS_CSUM             0x00000001
2574 #define E1000_TX_FLAGS_VLAN             0x00000002
2575 #define E1000_TX_FLAGS_TSO              0x00000004
2576 #define E1000_TX_FLAGS_IPV4             0x00000008
2577 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2578 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2579
2580 static int
2581 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2582           struct sk_buff *skb)
2583 {
2584 #ifdef NETIF_F_TSO
2585         struct e1000_context_desc *context_desc;
2586         struct e1000_buffer *buffer_info;
2587         unsigned int i;
2588         uint32_t cmd_length = 0;
2589         uint16_t ipcse = 0, tucse, mss;
2590         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2591         int err;
2592
2593         if (skb_is_gso(skb)) {
2594                 if (skb_header_cloned(skb)) {
2595                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2596                         if (err)
2597                                 return err;
2598                 }
2599
2600                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2601                 mss = skb_shinfo(skb)->gso_size;
2602                 if (skb->protocol == htons(ETH_P_IP)) {
2603                         skb->nh.iph->tot_len = 0;
2604                         skb->nh.iph->check = 0;
2605                         skb->h.th->check =
2606                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2607                                                    skb->nh.iph->daddr,
2608                                                    0,
2609                                                    IPPROTO_TCP,
2610                                                    0);
2611                         cmd_length = E1000_TXD_CMD_IP;
2612                         ipcse = skb->h.raw - skb->data - 1;
2613 #ifdef NETIF_F_TSO_IPV6
2614                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2615                         skb->nh.ipv6h->payload_len = 0;
2616                         skb->h.th->check =
2617                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2618                                                  &skb->nh.ipv6h->daddr,
2619                                                  0,
2620                                                  IPPROTO_TCP,
2621                                                  0);
2622                         ipcse = 0;
2623 #endif
2624                 }
2625                 ipcss = skb->nh.raw - skb->data;
2626                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2627                 tucss = skb->h.raw - skb->data;
2628                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2629                 tucse = 0;
2630
2631                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2632                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2633
2634                 i = tx_ring->next_to_use;
2635                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2636                 buffer_info = &tx_ring->buffer_info[i];
2637
2638                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2639                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2640                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2641                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2642                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2643                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2644                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2645                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2646                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2647
2648                 buffer_info->time_stamp = jiffies;
2649
2650                 if (++i == tx_ring->count) i = 0;
2651                 tx_ring->next_to_use = i;
2652
2653                 return TRUE;
2654         }
2655 #endif
2656
2657         return FALSE;
2658 }
2659
2660 static boolean_t
2661 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2662               struct sk_buff *skb)
2663 {
2664         struct e1000_context_desc *context_desc;
2665         struct e1000_buffer *buffer_info;
2666         unsigned int i;
2667         uint8_t css;
2668
2669         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2670                 css = skb->h.raw - skb->data;
2671
2672                 i = tx_ring->next_to_use;
2673                 buffer_info = &tx_ring->buffer_info[i];
2674                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2675
2676                 context_desc->upper_setup.tcp_fields.tucss = css;
2677                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2678                 context_desc->upper_setup.tcp_fields.tucse = 0;
2679                 context_desc->tcp_seg_setup.data = 0;
2680                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2681
2682                 buffer_info->time_stamp = jiffies;
2683
2684                 if (unlikely(++i == tx_ring->count)) i = 0;
2685                 tx_ring->next_to_use = i;
2686
2687                 return TRUE;
2688         }
2689
2690         return FALSE;
2691 }
2692
2693 #define E1000_MAX_TXD_PWR       12
2694 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2695
2696 static int
2697 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2698              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2699              unsigned int nr_frags, unsigned int mss)
2700 {
2701         struct e1000_buffer *buffer_info;
2702         unsigned int len = skb->len;
2703         unsigned int offset = 0, size, count = 0, i;
2704         unsigned int f;
2705         len -= skb->data_len;
2706
2707         i = tx_ring->next_to_use;
2708
2709         while (len) {
2710                 buffer_info = &tx_ring->buffer_info[i];
2711                 size = min(len, max_per_txd);
2712 #ifdef NETIF_F_TSO
2713                 /* Workaround for Controller erratum --
2714                  * descriptor for non-tso packet in a linear SKB that follows a
2715                  * tso gets written back prematurely before the data is fully
2716                  * DMA'd to the controller */
2717                 if (!skb->data_len && tx_ring->last_tx_tso &&
2718                     !skb_is_gso(skb)) {
2719                         tx_ring->last_tx_tso = 0;
2720                         size -= 4;
2721                 }
2722
2723                 /* Workaround for premature desc write-backs
2724                  * in TSO mode.  Append 4-byte sentinel desc */
2725                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2726                         size -= 4;
2727 #endif
2728                 /* work-around for errata 10 and it applies
2729                  * to all controllers in PCI-X mode
2730                  * The fix is to make sure that the first descriptor of a
2731                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2732                  */
2733                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2734                                 (size > 2015) && count == 0))
2735                         size = 2015;
2736
2737                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2738                  * terminating buffers within evenly-aligned dwords. */
2739                 if (unlikely(adapter->pcix_82544 &&
2740                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2741                    size > 4))
2742                         size -= 4;
2743
2744                 buffer_info->length = size;
2745                 buffer_info->dma =
2746                         pci_map_single(adapter->pdev,
2747                                 skb->data + offset,
2748                                 size,
2749                                 PCI_DMA_TODEVICE);
2750                 buffer_info->time_stamp = jiffies;
2751
2752                 len -= size;
2753                 offset += size;
2754                 count++;
2755                 if (unlikely(++i == tx_ring->count)) i = 0;
2756         }
2757
2758         for (f = 0; f < nr_frags; f++) {
2759                 struct skb_frag_struct *frag;
2760
2761                 frag = &skb_shinfo(skb)->frags[f];
2762                 len = frag->size;
2763                 offset = frag->page_offset;
2764
2765                 while (len) {
2766                         buffer_info = &tx_ring->buffer_info[i];
2767                         size = min(len, max_per_txd);
2768 #ifdef NETIF_F_TSO
2769                         /* Workaround for premature desc write-backs
2770                          * in TSO mode.  Append 4-byte sentinel desc */
2771                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2772                                 size -= 4;
2773 #endif
2774                         /* Workaround for potential 82544 hang in PCI-X.
2775                          * Avoid terminating buffers within evenly-aligned
2776                          * dwords. */
2777                         if (unlikely(adapter->pcix_82544 &&
2778                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2779                            size > 4))
2780                                 size -= 4;
2781
2782                         buffer_info->length = size;
2783                         buffer_info->dma =
2784                                 pci_map_page(adapter->pdev,
2785                                         frag->page,
2786                                         offset,
2787                                         size,
2788                                         PCI_DMA_TODEVICE);
2789                         buffer_info->time_stamp = jiffies;
2790
2791                         len -= size;
2792                         offset += size;
2793                         count++;
2794                         if (unlikely(++i == tx_ring->count)) i = 0;
2795                 }
2796         }
2797
2798         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2799         tx_ring->buffer_info[i].skb = skb;
2800         tx_ring->buffer_info[first].next_to_watch = i;
2801
2802         return count;
2803 }
2804
2805 static void
2806 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2807                int tx_flags, int count)
2808 {
2809         struct e1000_tx_desc *tx_desc = NULL;
2810         struct e1000_buffer *buffer_info;
2811         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2812         unsigned int i;
2813
2814         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2815                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2816                              E1000_TXD_CMD_TSE;
2817                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2818
2819                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2820                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2821         }
2822
2823         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2824                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2825                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2826         }
2827
2828         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2829                 txd_lower |= E1000_TXD_CMD_VLE;
2830                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2831         }
2832
2833         i = tx_ring->next_to_use;
2834
2835         while (count--) {
2836                 buffer_info = &tx_ring->buffer_info[i];
2837                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2838                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2839                 tx_desc->lower.data =
2840                         cpu_to_le32(txd_lower | buffer_info->length);
2841                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2842                 if (unlikely(++i == tx_ring->count)) i = 0;
2843         }
2844
2845         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2846
2847         /* Force memory writes to complete before letting h/w
2848          * know there are new descriptors to fetch.  (Only
2849          * applicable for weak-ordered memory model archs,
2850          * such as IA-64). */
2851         wmb();
2852
2853         tx_ring->next_to_use = i;
2854         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2855 }
2856
2857 /**
2858  * 82547 workaround to avoid controller hang in half-duplex environment.
2859  * The workaround is to avoid queuing a large packet that would span
2860  * the internal Tx FIFO ring boundary by notifying the stack to resend
2861  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2862  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2863  * to the beginning of the Tx FIFO.
2864  **/
2865
2866 #define E1000_FIFO_HDR                  0x10
2867 #define E1000_82547_PAD_LEN             0x3E0
2868
2869 static int
2870 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2871 {
2872         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2873         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2874
2875         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2876
2877         if (adapter->link_duplex != HALF_DUPLEX)
2878                 goto no_fifo_stall_required;
2879
2880         if (atomic_read(&adapter->tx_fifo_stall))
2881                 return 1;
2882
2883         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2884                 atomic_set(&adapter->tx_fifo_stall, 1);
2885                 return 1;
2886         }
2887
2888 no_fifo_stall_required:
2889         adapter->tx_fifo_head += skb_fifo_len;
2890         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2891                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2892         return 0;
2893 }
2894
2895 #define MINIMUM_DHCP_PACKET_SIZE 282
2896 static int
2897 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2898 {
2899         struct e1000_hw *hw =  &adapter->hw;
2900         uint16_t length, offset;
2901         if (vlan_tx_tag_present(skb)) {
2902                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2903                         ( adapter->hw.mng_cookie.status &
2904                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2905                         return 0;
2906         }
2907         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2908                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2909                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2910                         const struct iphdr *ip =
2911                                 (struct iphdr *)((uint8_t *)skb->data+14);
2912                         if (IPPROTO_UDP == ip->protocol) {
2913                                 struct udphdr *udp =
2914                                         (struct udphdr *)((uint8_t *)ip +
2915                                                 (ip->ihl << 2));
2916                                 if (ntohs(udp->dest) == 67) {
2917                                         offset = (uint8_t *)udp + 8 - skb->data;
2918                                         length = skb->len - offset;
2919
2920                                         return e1000_mng_write_dhcp_info(hw,
2921                                                         (uint8_t *)udp + 8,
2922                                                         length);
2923                                 }
2924                         }
2925                 }
2926         }
2927         return 0;
2928 }
2929
2930 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2931 {
2932         struct e1000_adapter *adapter = netdev_priv(netdev);
2933         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2934
2935         netif_stop_queue(netdev);
2936         /* Herbert's original patch had:
2937          *  smp_mb__after_netif_stop_queue();
2938          * but since that doesn't exist yet, just open code it. */
2939         smp_mb();
2940
2941         /* We need to check again in a case another CPU has just
2942          * made room available. */
2943         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2944                 return -EBUSY;
2945
2946         /* A reprieve! */
2947         netif_start_queue(netdev);
2948         return 0;
2949 }
2950
2951 static int e1000_maybe_stop_tx(struct net_device *netdev,
2952                                struct e1000_tx_ring *tx_ring, int size)
2953 {
2954         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2955                 return 0;
2956         return __e1000_maybe_stop_tx(netdev, size);
2957 }
2958
2959 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2960 static int
2961 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2962 {
2963         struct e1000_adapter *adapter = netdev_priv(netdev);
2964         struct e1000_tx_ring *tx_ring;
2965         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2966         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2967         unsigned int tx_flags = 0;
2968         unsigned int len = skb->len;
2969         unsigned long flags;
2970         unsigned int nr_frags = 0;
2971         unsigned int mss = 0;
2972         int count = 0;
2973         int tso;
2974         unsigned int f;
2975         len -= skb->data_len;
2976
2977         /* This goes back to the question of how to logically map a tx queue
2978          * to a flow.  Right now, performance is impacted slightly negatively
2979          * if using multiple tx queues.  If the stack breaks away from a
2980          * single qdisc implementation, we can look at this again. */
2981         tx_ring = adapter->tx_ring;
2982
2983         if (unlikely(skb->len <= 0)) {
2984                 dev_kfree_skb_any(skb);
2985                 return NETDEV_TX_OK;
2986         }
2987
2988         /* 82571 and newer doesn't need the workaround that limited descriptor
2989          * length to 4kB */
2990         if (adapter->hw.mac_type >= e1000_82571)
2991                 max_per_txd = 8192;
2992
2993 #ifdef NETIF_F_TSO
2994         mss = skb_shinfo(skb)->gso_size;
2995         /* The controller does a simple calculation to
2996          * make sure there is enough room in the FIFO before
2997          * initiating the DMA for each buffer.  The calc is:
2998          * 4 = ceil(buffer len/mss).  To make sure we don't
2999          * overrun the FIFO, adjust the max buffer len if mss
3000          * drops. */
3001         if (mss) {
3002                 uint8_t hdr_len;
3003                 max_per_txd = min(mss << 2, max_per_txd);
3004                 max_txd_pwr = fls(max_per_txd) - 1;
3005
3006                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3007                 * points to just header, pull a few bytes of payload from
3008                 * frags into skb->data */
3009                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3010                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3011                         switch (adapter->hw.mac_type) {
3012                                 unsigned int pull_size;
3013                         case e1000_82571:
3014                         case e1000_82572:
3015                         case e1000_82573:
3016                         case e1000_ich8lan:
3017                                 pull_size = min((unsigned int)4, skb->data_len);
3018                                 if (!__pskb_pull_tail(skb, pull_size)) {
3019                                         DPRINTK(DRV, ERR,
3020                                                 "__pskb_pull_tail failed.\n");
3021                                         dev_kfree_skb_any(skb);
3022                                         return NETDEV_TX_OK;
3023                                 }
3024                                 len = skb->len - skb->data_len;
3025                                 break;
3026                         default:
3027                                 /* do nothing */
3028                                 break;
3029                         }
3030                 }
3031         }
3032
3033         /* reserve a descriptor for the offload context */
3034         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3035                 count++;
3036         count++;
3037 #else
3038         if (skb->ip_summed == CHECKSUM_PARTIAL)
3039                 count++;
3040 #endif
3041
3042 #ifdef NETIF_F_TSO
3043         /* Controller Erratum workaround */
3044         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3045                 count++;
3046 #endif
3047
3048         count += TXD_USE_COUNT(len, max_txd_pwr);
3049
3050         if (adapter->pcix_82544)
3051                 count++;
3052
3053         /* work-around for errata 10 and it applies to all controllers
3054          * in PCI-X mode, so add one more descriptor to the count
3055          */
3056         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3057                         (len > 2015)))
3058                 count++;
3059
3060         nr_frags = skb_shinfo(skb)->nr_frags;
3061         for (f = 0; f < nr_frags; f++)
3062                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3063                                        max_txd_pwr);
3064         if (adapter->pcix_82544)
3065                 count += nr_frags;
3066
3067
3068         if (adapter->hw.tx_pkt_filtering &&
3069             (adapter->hw.mac_type == e1000_82573))
3070                 e1000_transfer_dhcp_info(adapter, skb);
3071
3072         local_irq_save(flags);
3073         if (!spin_trylock(&tx_ring->tx_lock)) {
3074                 /* Collision - tell upper layer to requeue */
3075                 local_irq_restore(flags);
3076                 return NETDEV_TX_LOCKED;
3077         }
3078
3079         /* need: count + 2 desc gap to keep tail from touching
3080          * head, otherwise try next time */
3081         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3082                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3083                 return NETDEV_TX_BUSY;
3084         }
3085
3086         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3087                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3088                         netif_stop_queue(netdev);
3089                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3090                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3091                         return NETDEV_TX_BUSY;
3092                 }
3093         }
3094
3095         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3096                 tx_flags |= E1000_TX_FLAGS_VLAN;
3097                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3098         }
3099
3100         first = tx_ring->next_to_use;
3101
3102         tso = e1000_tso(adapter, tx_ring, skb);
3103         if (tso < 0) {
3104                 dev_kfree_skb_any(skb);
3105                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3106                 return NETDEV_TX_OK;
3107         }
3108
3109         if (likely(tso)) {
3110                 tx_ring->last_tx_tso = 1;
3111                 tx_flags |= E1000_TX_FLAGS_TSO;
3112         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3113                 tx_flags |= E1000_TX_FLAGS_CSUM;
3114
3115         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3116          * 82571 hardware supports TSO capabilities for IPv6 as well...
3117          * no longer assume, we must. */
3118         if (likely(skb->protocol == htons(ETH_P_IP)))
3119                 tx_flags |= E1000_TX_FLAGS_IPV4;
3120
3121         e1000_tx_queue(adapter, tx_ring, tx_flags,
3122                        e1000_tx_map(adapter, tx_ring, skb, first,
3123                                     max_per_txd, nr_frags, mss));
3124
3125         netdev->trans_start = jiffies;
3126
3127         /* Make sure there is space in the ring for the next send. */
3128         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3129
3130         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3131         return NETDEV_TX_OK;
3132 }
3133
3134 /**
3135  * e1000_tx_timeout - Respond to a Tx Hang
3136  * @netdev: network interface device structure
3137  **/
3138
3139 static void
3140 e1000_tx_timeout(struct net_device *netdev)
3141 {
3142         struct e1000_adapter *adapter = netdev_priv(netdev);
3143
3144         /* Do the reset outside of interrupt context */
3145         adapter->tx_timeout_count++;
3146         schedule_work(&adapter->reset_task);
3147 }
3148
3149 static void
3150 e1000_reset_task(struct net_device *netdev)
3151 {
3152         struct e1000_adapter *adapter = netdev_priv(netdev);
3153
3154         e1000_reinit_locked(adapter);
3155 }
3156
3157 /**
3158  * e1000_get_stats - Get System Network Statistics
3159  * @netdev: network interface device structure
3160  *
3161  * Returns the address of the device statistics structure.
3162  * The statistics are actually updated from the timer callback.
3163  **/
3164
3165 static struct net_device_stats *
3166 e1000_get_stats(struct net_device *netdev)
3167 {
3168         struct e1000_adapter *adapter = netdev_priv(netdev);
3169
3170         /* only return the current stats */
3171         return &adapter->net_stats;
3172 }
3173
3174 /**
3175  * e1000_change_mtu - Change the Maximum Transfer Unit
3176  * @netdev: network interface device structure
3177  * @new_mtu: new value for maximum frame size
3178  *
3179  * Returns 0 on success, negative on failure
3180  **/
3181
3182 static int
3183 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3184 {
3185         struct e1000_adapter *adapter = netdev_priv(netdev);
3186         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3187         uint16_t eeprom_data = 0;
3188
3189         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3190             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3191                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3192                 return -EINVAL;
3193         }
3194
3195         /* Adapter-specific max frame size limits. */
3196         switch (adapter->hw.mac_type) {
3197         case e1000_undefined ... e1000_82542_rev2_1:
3198         case e1000_ich8lan:
3199                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3200                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3201                         return -EINVAL;
3202                 }
3203                 break;
3204         case e1000_82573:
3205                 /* Jumbo Frames not supported if:
3206                  * - this is not an 82573L device
3207                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3208                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3209                                   &eeprom_data);
3210                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3211                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3212                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3213                                 DPRINTK(PROBE, ERR,
3214                                         "Jumbo Frames not supported.\n");
3215                                 return -EINVAL;
3216                         }
3217                         break;
3218                 }
3219                 /* ERT will be enabled later to enable wire speed receives */
3220
3221                 /* fall through to get support */
3222         case e1000_82571:
3223         case e1000_82572:
3224         case e1000_80003es2lan:
3225 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3226                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3227                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3228                         return -EINVAL;
3229                 }
3230                 break;
3231         default:
3232                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3233                 break;
3234         }
3235
3236         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3237          * means we reserve 2 more, this pushes us to allocate from the next
3238          * larger slab size
3239          * i.e. RXBUFFER_2048 --> size-4096 slab */
3240
3241         if (max_frame <= E1000_RXBUFFER_256)
3242                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3243         else if (max_frame <= E1000_RXBUFFER_512)
3244                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3245         else if (max_frame <= E1000_RXBUFFER_1024)
3246                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3247         else if (max_frame <= E1000_RXBUFFER_2048)
3248                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3249         else if (max_frame <= E1000_RXBUFFER_4096)
3250                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3251         else if (max_frame <= E1000_RXBUFFER_8192)
3252                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3253         else if (max_frame <= E1000_RXBUFFER_16384)
3254                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3255
3256         /* adjust allocation if LPE protects us, and we aren't using SBP */
3257         if (!adapter->hw.tbi_compatibility_on &&
3258             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3259              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3260                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3261
3262         netdev->mtu = new_mtu;
3263
3264         if (netif_running(netdev))
3265                 e1000_reinit_locked(adapter);
3266
3267         adapter->hw.max_frame_size = max_frame;
3268
3269         return 0;
3270 }
3271
3272 /**
3273  * e1000_update_stats - Update the board statistics counters
3274  * @adapter: board private structure
3275  **/
3276
3277 void
3278 e1000_update_stats(struct e1000_adapter *adapter)
3279 {
3280         struct e1000_hw *hw = &adapter->hw;
3281         struct pci_dev *pdev = adapter->pdev;
3282         unsigned long flags;
3283         uint16_t phy_tmp;
3284
3285 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3286
3287         /*
3288          * Prevent stats update while adapter is being reset, or if the pci
3289          * connection is down.
3290          */
3291         if (adapter->link_speed == 0)
3292                 return;
3293         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3294                 return;
3295
3296         spin_lock_irqsave(&adapter->stats_lock, flags);
3297
3298         /* these counters are modified from e1000_adjust_tbi_stats,
3299          * called from the interrupt context, so they must only
3300          * be written while holding adapter->stats_lock
3301          */
3302
3303         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3304         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3305         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3306         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3307         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3308         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3309         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3310
3311         if (adapter->hw.mac_type != e1000_ich8lan) {
3312                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3313                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3314                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3315                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3316                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3317                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3318         }
3319
3320         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3321         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3322         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3323         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3324         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3325         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3326         adapter->stats.dc += E1000_READ_REG(hw, DC);
3327         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3328         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3329         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3330         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3331         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3332         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3333         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3334         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3335         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3336         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3337         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3338         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3339         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3340         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3341         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3342         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3343         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3344         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3345         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3346
3347         if (adapter->hw.mac_type != e1000_ich8lan) {
3348                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3349                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3350                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3351                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3352                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3353                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3354         }
3355
3356         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3357         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3358
3359         /* used for adaptive IFS */
3360
3361         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3362         adapter->stats.tpt += hw->tx_packet_delta;
3363         hw->collision_delta = E1000_READ_REG(hw, COLC);
3364         adapter->stats.colc += hw->collision_delta;
3365
3366         if (hw->mac_type >= e1000_82543) {
3367                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3368                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3369                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3370                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3371                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3372                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3373         }
3374         if (hw->mac_type > e1000_82547_rev_2) {
3375                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3376                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3377
3378                 if (adapter->hw.mac_type != e1000_ich8lan) {
3379                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3380                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3381                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3382                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3383                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3384                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3385                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3386                 }
3387         }
3388
3389         /* Fill out the OS statistics structure */
3390         adapter->net_stats.rx_packets = adapter->stats.gprc;
3391         adapter->net_stats.tx_packets = adapter->stats.gptc;
3392         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3393         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3394         adapter->net_stats.multicast = adapter->stats.mprc;
3395         adapter->net_stats.collisions = adapter->stats.colc;
3396
3397         /* Rx Errors */
3398
3399         /* RLEC on some newer hardware can be incorrect so build
3400         * our own version based on RUC and ROC */
3401         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3402                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3403                 adapter->stats.ruc + adapter->stats.roc +
3404                 adapter->stats.cexterr;
3405         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3406         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3407         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3408         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3409         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3410
3411         /* Tx Errors */
3412         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3413         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3414         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3415         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3416         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3417
3418         /* Tx Dropped needs to be maintained elsewhere */
3419
3420         /* Phy Stats */
3421         if (hw->media_type == e1000_media_type_copper) {
3422                 if ((adapter->link_speed == SPEED_1000) &&
3423                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3424                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3425                         adapter->phy_stats.idle_errors += phy_tmp;
3426                 }
3427
3428                 if ((hw->mac_type <= e1000_82546) &&
3429                    (hw->phy_type == e1000_phy_m88) &&
3430                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3431                         adapter->phy_stats.receive_errors += phy_tmp;
3432         }
3433
3434         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3435 }
3436
3437 /**
3438  * e1000_intr - Interrupt Handler
3439  * @irq: interrupt number
3440  * @data: pointer to a network interface device structure
3441  **/
3442
3443 static irqreturn_t
3444 e1000_intr(int irq, void *data)
3445 {
3446         struct net_device *netdev = data;
3447         struct e1000_adapter *adapter = netdev_priv(netdev);
3448         struct e1000_hw *hw = &adapter->hw;
3449         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3450 #ifndef CONFIG_E1000_NAPI
3451         int i;
3452 #else
3453         /* Interrupt Auto-Mask...upon reading ICR,
3454          * interrupts are masked.  No need for the
3455          * IMC write, but it does mean we should
3456          * account for it ASAP. */
3457         if (likely(hw->mac_type >= e1000_82571))
3458                 atomic_inc(&adapter->irq_sem);
3459 #endif
3460
3461         if (unlikely(!icr)) {
3462 #ifdef CONFIG_E1000_NAPI
3463                 if (hw->mac_type >= e1000_82571)
3464                         e1000_irq_enable(adapter);
3465 #endif
3466                 return IRQ_NONE;  /* Not our interrupt */
3467         }
3468
3469         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3470                 hw->get_link_status = 1;
3471                 /* 80003ES2LAN workaround--
3472                  * For packet buffer work-around on link down event;
3473                  * disable receives here in the ISR and
3474                  * reset adapter in watchdog
3475                  */
3476                 if (netif_carrier_ok(netdev) &&
3477                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3478                         /* disable receives */
3479                         rctl = E1000_READ_REG(hw, RCTL);
3480                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3481                 }
3482                 /* guard against interrupt when we're going down */
3483                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3484                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3485         }
3486
3487 #ifdef CONFIG_E1000_NAPI
3488         if (unlikely(hw->mac_type < e1000_82571)) {
3489                 atomic_inc(&adapter->irq_sem);
3490                 E1000_WRITE_REG(hw, IMC, ~0);
3491                 E1000_WRITE_FLUSH(hw);
3492         }
3493         if (likely(netif_rx_schedule_prep(netdev)))
3494                 __netif_rx_schedule(netdev);
3495         else
3496                 /* this really should not happen! if it does it is basically a
3497                  * bug, but not a hard error, so enable ints and continue */
3498                 e1000_irq_enable(adapter);
3499 #else
3500         /* Writing IMC and IMS is needed for 82547.
3501          * Due to Hub Link bus being occupied, an interrupt
3502          * de-assertion message is not able to be sent.
3503          * When an interrupt assertion message is generated later,
3504          * two messages are re-ordered and sent out.
3505          * That causes APIC to think 82547 is in de-assertion
3506          * state, while 82547 is in assertion state, resulting
3507          * in dead lock. Writing IMC forces 82547 into
3508          * de-assertion state.
3509          */
3510         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3511                 atomic_inc(&adapter->irq_sem);
3512                 E1000_WRITE_REG(hw, IMC, ~0);
3513         }
3514
3515         for (i = 0; i < E1000_MAX_INTR; i++)
3516                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3517                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3518                         break;
3519
3520         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3521                 e1000_irq_enable(adapter);
3522
3523 #endif
3524         return IRQ_HANDLED;
3525 }
3526
3527 #ifdef CONFIG_E1000_NAPI
3528 /**
3529  * e1000_clean - NAPI Rx polling callback
3530  * @adapter: board private structure
3531  **/
3532
3533 static int
3534 e1000_clean(struct net_device *poll_dev, int *budget)
3535 {
3536         struct e1000_adapter *adapter;
3537         int work_to_do = min(*budget, poll_dev->quota);
3538         int tx_cleaned = 0, work_done = 0;
3539
3540         /* Must NOT use netdev_priv macro here. */
3541         adapter = poll_dev->priv;
3542
3543         /* Keep link state information with original netdev */
3544         if (!netif_carrier_ok(poll_dev))
3545                 goto quit_polling;
3546
3547         /* e1000_clean is called per-cpu.  This lock protects
3548          * tx_ring[0] from being cleaned by multiple cpus
3549          * simultaneously.  A failure obtaining the lock means
3550          * tx_ring[0] is currently being cleaned anyway. */
3551         if (spin_trylock(&adapter->tx_queue_lock)) {
3552                 tx_cleaned = e1000_clean_tx_irq(adapter,
3553                                                 &adapter->tx_ring[0]);
3554                 spin_unlock(&adapter->tx_queue_lock);
3555         }
3556
3557         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3558                           &work_done, work_to_do);
3559
3560         *budget -= work_done;
3561         poll_dev->quota -= work_done;
3562
3563         /* If no Tx and not enough Rx work done, exit the polling mode */
3564         if ((!tx_cleaned && (work_done == 0)) ||
3565            !netif_running(poll_dev)) {
3566 quit_polling:
3567                 netif_rx_complete(poll_dev);
3568                 e1000_irq_enable(adapter);
3569                 return 0;
3570         }
3571
3572         return 1;
3573 }
3574
3575 #endif
3576 /**
3577  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3578  * @adapter: board private structure
3579  **/
3580
3581 static boolean_t
3582 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3583                    struct e1000_tx_ring *tx_ring)
3584 {
3585         struct net_device *netdev = adapter->netdev;
3586         struct e1000_tx_desc *tx_desc, *eop_desc;
3587         struct e1000_buffer *buffer_info;
3588         unsigned int i, eop;
3589 #ifdef CONFIG_E1000_NAPI
3590         unsigned int count = 0;
3591 #endif
3592         boolean_t cleaned = FALSE;
3593
3594         i = tx_ring->next_to_clean;
3595         eop = tx_ring->buffer_info[i].next_to_watch;
3596         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3597
3598         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3599                 for (cleaned = FALSE; !cleaned; ) {
3600                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3601                         buffer_info = &tx_ring->buffer_info[i];
3602                         cleaned = (i == eop);
3603
3604                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3605                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3606
3607                         if (unlikely(++i == tx_ring->count)) i = 0;
3608                 }
3609
3610                 eop = tx_ring->buffer_info[i].next_to_watch;
3611                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3612 #ifdef CONFIG_E1000_NAPI
3613 #define E1000_TX_WEIGHT 64
3614                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3615                 if (count++ == E1000_TX_WEIGHT) break;
3616 #endif
3617         }
3618
3619         tx_ring->next_to_clean = i;
3620
3621 #define TX_WAKE_THRESHOLD 32
3622         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3623                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3624                 /* Make sure that anybody stopping the queue after this
3625                  * sees the new next_to_clean.
3626                  */
3627                 smp_mb();
3628                 if (netif_queue_stopped(netdev))
3629                         netif_wake_queue(netdev);
3630         }
3631
3632         if (adapter->detect_tx_hung) {
3633                 /* Detect a transmit hang in hardware, this serializes the
3634                  * check with the clearing of time_stamp and movement of i */
3635                 adapter->detect_tx_hung = FALSE;
3636                 if (tx_ring->buffer_info[eop].dma &&
3637                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3638                                (adapter->tx_timeout_factor * HZ))
3639                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3640                          E1000_STATUS_TXOFF)) {
3641
3642                         /* detected Tx unit hang */
3643                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3644                                         "  Tx Queue             <%lu>\n"
3645                                         "  TDH                  <%x>\n"
3646                                         "  TDT                  <%x>\n"
3647                                         "  next_to_use          <%x>\n"
3648                                         "  next_to_clean        <%x>\n"
3649                                         "buffer_info[next_to_clean]\n"
3650                                         "  time_stamp           <%lx>\n"
3651                                         "  next_to_watch        <%x>\n"
3652                                         "  jiffies              <%lx>\n"
3653                                         "  next_to_watch.status <%x>\n",
3654                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3655                                         sizeof(struct e1000_tx_ring)),
3656                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3657                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3658                                 tx_ring->next_to_use,
3659                                 tx_ring->next_to_clean,
3660                                 tx_ring->buffer_info[eop].time_stamp,
3661                                 eop,
3662                                 jiffies,
3663                                 eop_desc->upper.fields.status);
3664                         netif_stop_queue(netdev);
3665                 }
3666         }
3667         return cleaned;
3668 }
3669
3670 /**
3671  * e1000_rx_checksum - Receive Checksum Offload for 82543
3672  * @adapter:     board private structure
3673  * @status_err:  receive descriptor status and error fields
3674  * @csum:        receive descriptor csum field
3675  * @sk_buff:     socket buffer with received data
3676  **/
3677
3678 static void
3679 e1000_rx_checksum(struct e1000_adapter *adapter,
3680                   uint32_t status_err, uint32_t csum,
3681                   struct sk_buff *skb)
3682 {
3683         uint16_t status = (uint16_t)status_err;
3684         uint8_t errors = (uint8_t)(status_err >> 24);
3685         skb->ip_summed = CHECKSUM_NONE;
3686
3687         /* 82543 or newer only */
3688         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3689         /* Ignore Checksum bit is set */
3690         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3691         /* TCP/UDP checksum error bit is set */
3692         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3693                 /* let the stack verify checksum errors */
3694                 adapter->hw_csum_err++;
3695                 return;
3696         }
3697         /* TCP/UDP Checksum has not been calculated */
3698         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3699                 if (!(status & E1000_RXD_STAT_TCPCS))
3700                         return;
3701         } else {
3702                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3703                         return;
3704         }
3705         /* It must be a TCP or UDP packet with a valid checksum */
3706         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3707                 /* TCP checksum is good */
3708                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3709         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3710                 /* IP fragment with UDP payload */
3711                 /* Hardware complements the payload checksum, so we undo it
3712                  * and then put the value in host order for further stack use.
3713                  */
3714                 csum = ntohl(csum ^ 0xFFFF);
3715                 skb->csum = csum;
3716                 skb->ip_summed = CHECKSUM_COMPLETE;
3717         }
3718         adapter->hw_csum_good++;
3719 }
3720
3721 /**
3722  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3723  * @adapter: board private structure
3724  **/
3725
3726 static boolean_t
3727 #ifdef CONFIG_E1000_NAPI
3728 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3729                    struct e1000_rx_ring *rx_ring,
3730                    int *work_done, int work_to_do)
3731 #else
3732 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3733                    struct e1000_rx_ring *rx_ring)
3734 #endif
3735 {
3736         struct net_device *netdev = adapter->netdev;
3737         struct pci_dev *pdev = adapter->pdev;
3738         struct e1000_rx_desc *rx_desc, *next_rxd;
3739         struct e1000_buffer *buffer_info, *next_buffer;
3740         unsigned long flags;
3741         uint32_t length;
3742         uint8_t last_byte;
3743         unsigned int i;
3744         int cleaned_count = 0;
3745         boolean_t cleaned = FALSE;
3746
3747         i = rx_ring->next_to_clean;
3748         rx_desc = E1000_RX_DESC(*rx_ring, i);
3749         buffer_info = &rx_ring->buffer_info[i];
3750
3751         while (rx_desc->status & E1000_RXD_STAT_DD) {
3752                 struct sk_buff *skb;
3753                 u8 status;
3754
3755 #ifdef CONFIG_E1000_NAPI
3756                 if (*work_done >= work_to_do)
3757                         break;
3758                 (*work_done)++;
3759 #endif
3760                 status = rx_desc->status;
3761                 skb = buffer_info->skb;
3762                 buffer_info->skb = NULL;
3763
3764                 prefetch(skb->data - NET_IP_ALIGN);
3765
3766                 if (++i == rx_ring->count) i = 0;
3767                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3768                 prefetch(next_rxd);
3769
3770                 next_buffer = &rx_ring->buffer_info[i];
3771
3772                 cleaned = TRUE;
3773                 cleaned_count++;
3774                 pci_unmap_single(pdev,
3775                                  buffer_info->dma,
3776                                  buffer_info->length,
3777                                  PCI_DMA_FROMDEVICE);
3778
3779                 length = le16_to_cpu(rx_desc->length);
3780
3781                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3782                         /* All receives must fit into a single buffer */
3783                         E1000_DBG("%s: Receive packet consumed multiple"
3784                                   " buffers\n", netdev->name);
3785                         /* recycle */
3786                         buffer_info->skb = skb;
3787                         goto next_desc;
3788                 }
3789
3790                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3791                         last_byte = *(skb->data + length - 1);
3792                         if (TBI_ACCEPT(&adapter->hw, status,
3793                                       rx_desc->errors, length, last_byte)) {
3794                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3795                                 e1000_tbi_adjust_stats(&adapter->hw,
3796                                                        &adapter->stats,
3797                                                        length, skb->data);
3798                                 spin_unlock_irqrestore(&adapter->stats_lock,
3799                                                        flags);
3800                                 length--;
3801                         } else {
3802                                 /* recycle */
3803                                 buffer_info->skb = skb;
3804                                 goto next_desc;
3805                         }
3806                 }
3807
3808                 /* adjust length to remove Ethernet CRC, this must be
3809                  * done after the TBI_ACCEPT workaround above */
3810                 length -= 4;
3811
3812                 /* code added for copybreak, this should improve
3813                  * performance for small packets with large amounts
3814                  * of reassembly being done in the stack */
3815 #define E1000_CB_LENGTH 256
3816                 if (length < E1000_CB_LENGTH) {
3817                         struct sk_buff *new_skb =
3818                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3819                         if (new_skb) {
3820                                 skb_reserve(new_skb, NET_IP_ALIGN);
3821                                 memcpy(new_skb->data - NET_IP_ALIGN,
3822                                        skb->data - NET_IP_ALIGN,
3823                                        length + NET_IP_ALIGN);
3824                                 /* save the skb in buffer_info as good */
3825                                 buffer_info->skb = skb;
3826                                 skb = new_skb;
3827                                 skb_put(skb, length);
3828                         }
3829                 } else
3830                         skb_put(skb, length);
3831
3832                 /* end copybreak code */
3833
3834                 /* Receive Checksum Offload */
3835                 e1000_rx_checksum(adapter,
3836                                   (uint32_t)(status) |
3837                                   ((uint32_t)(rx_desc->errors) << 24),
3838                                   le16_to_cpu(rx_desc->csum), skb);
3839
3840                 skb->protocol = eth_type_trans(skb, netdev);
3841 #ifdef CONFIG_E1000_NAPI
3842                 if (unlikely(adapter->vlgrp &&
3843                             (status & E1000_RXD_STAT_VP))) {
3844                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3845                                                  le16_to_cpu(rx_desc->special) &
3846                                                  E1000_RXD_SPC_VLAN_MASK);
3847                 } else {
3848                         netif_receive_skb(skb);
3849                 }
3850 #else /* CONFIG_E1000_NAPI */
3851                 if (unlikely(adapter->vlgrp &&
3852                             (status & E1000_RXD_STAT_VP))) {
3853                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3854                                         le16_to_cpu(rx_desc->special) &
3855                                         E1000_RXD_SPC_VLAN_MASK);
3856                 } else {
3857                         netif_rx(skb);
3858                 }
3859 #endif /* CONFIG_E1000_NAPI */
3860                 netdev->last_rx = jiffies;
3861
3862 next_desc:
3863                 rx_desc->status = 0;
3864
3865                 /* return some buffers to hardware, one at a time is too slow */
3866                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3867                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3868                         cleaned_count = 0;
3869                 }
3870
3871                 /* use prefetched values */
3872                 rx_desc = next_rxd;
3873                 buffer_info = next_buffer;
3874         }
3875         rx_ring->next_to_clean = i;
3876
3877         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3878         if (cleaned_count)
3879                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3880
3881         return cleaned;
3882 }
3883
3884 /**
3885  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3886  * @adapter: board private structure
3887  **/
3888
3889 static boolean_t
3890 #ifdef CONFIG_E1000_NAPI
3891 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3892                       struct e1000_rx_ring *rx_ring,
3893                       int *work_done, int work_to_do)
3894 #else
3895 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3896                       struct e1000_rx_ring *rx_ring)
3897 #endif
3898 {
3899         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3900         struct net_device *netdev = adapter->netdev;
3901         struct pci_dev *pdev = adapter->pdev;
3902         struct e1000_buffer *buffer_info, *next_buffer;
3903         struct e1000_ps_page *ps_page;
3904         struct e1000_ps_page_dma *ps_page_dma;
3905         struct sk_buff *skb;
3906         unsigned int i, j;
3907         uint32_t length, staterr;
3908         int cleaned_count = 0;
3909         boolean_t cleaned = FALSE;
3910
3911         i = rx_ring->next_to_clean;
3912         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3913         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3914         buffer_info = &rx_ring->buffer_info[i];
3915
3916         while (staterr & E1000_RXD_STAT_DD) {
3917                 ps_page = &rx_ring->ps_page[i];
3918                 ps_page_dma = &rx_ring->ps_page_dma[i];
3919 #ifdef CONFIG_E1000_NAPI
3920                 if (unlikely(*work_done >= work_to_do))
3921                         break;
3922                 (*work_done)++;
3923 #endif
3924                 skb = buffer_info->skb;
3925
3926                 /* in the packet split case this is header only */
3927                 prefetch(skb->data - NET_IP_ALIGN);
3928
3929                 if (++i == rx_ring->count) i = 0;
3930                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3931                 prefetch(next_rxd);
3932
3933                 next_buffer = &rx_ring->buffer_info[i];
3934
3935                 cleaned = TRUE;
3936                 cleaned_count++;
3937                 pci_unmap_single(pdev, buffer_info->dma,
3938                                  buffer_info->length,
3939                                  PCI_DMA_FROMDEVICE);
3940
3941                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3942                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3943                                   " the full packet\n", netdev->name);
3944                         dev_kfree_skb_irq(skb);
3945                         goto next_desc;
3946                 }
3947
3948                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3949                         dev_kfree_skb_irq(skb);
3950                         goto next_desc;
3951                 }
3952
3953                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3954
3955                 if (unlikely(!length)) {
3956                         E1000_DBG("%s: Last part of the packet spanning"
3957                                   " multiple descriptors\n", netdev->name);
3958                         dev_kfree_skb_irq(skb);
3959                         goto next_desc;
3960                 }
3961
3962                 /* Good Receive */
3963                 skb_put(skb, length);
3964
3965                 {
3966                 /* this looks ugly, but it seems compiler issues make it
3967                    more efficient than reusing j */
3968                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3969
3970                 /* page alloc/put takes too long and effects small packet
3971                  * throughput, so unsplit small packets and save the alloc/put*/
3972                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3973                         u8 *vaddr;
3974                         /* there is no documentation about how to call
3975                          * kmap_atomic, so we can't hold the mapping
3976                          * very long */
3977                         pci_dma_sync_single_for_cpu(pdev,
3978                                 ps_page_dma->ps_page_dma[0],
3979                                 PAGE_SIZE,
3980                                 PCI_DMA_FROMDEVICE);
3981                         vaddr = kmap_atomic(ps_page->ps_page[0],
3982                                             KM_SKB_DATA_SOFTIRQ);
3983                         memcpy(skb->tail, vaddr, l1);
3984                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3985                         pci_dma_sync_single_for_device(pdev,
3986                                 ps_page_dma->ps_page_dma[0],
3987                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3988                         /* remove the CRC */
3989                         l1 -= 4;
3990                         skb_put(skb, l1);
3991                         goto copydone;
3992                 } /* if */
3993                 }
3994
3995                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3996                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3997                                 break;
3998                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3999                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4000                         ps_page_dma->ps_page_dma[j] = 0;
4001                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4002                                            length);
4003                         ps_page->ps_page[j] = NULL;
4004                         skb->len += length;
4005                         skb->data_len += length;
4006                         skb->truesize += length;
4007                 }
4008
4009                 /* strip the ethernet crc, problem is we're using pages now so
4010                  * this whole operation can get a little cpu intensive */
4011                 pskb_trim(skb, skb->len - 4);
4012
4013 copydone:
4014                 e1000_rx_checksum(adapter, staterr,
4015                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4016                 skb->protocol = eth_type_trans(skb, netdev);
4017
4018                 if (likely(rx_desc->wb.upper.header_status &
4019                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4020                         adapter->rx_hdr_split++;
4021 #ifdef CONFIG_E1000_NAPI
4022                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4023                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4024                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4025                                 E1000_RXD_SPC_VLAN_MASK);
4026                 } else {
4027                         netif_receive_skb(skb);
4028                 }
4029 #else /* CONFIG_E1000_NAPI */
4030                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4031                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4032                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4033                                 E1000_RXD_SPC_VLAN_MASK);
4034                 } else {
4035                         netif_rx(skb);
4036                 }
4037 #endif /* CONFIG_E1000_NAPI */
4038                 netdev->last_rx = jiffies;
4039
4040 next_desc:
4041                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4042                 buffer_info->skb = NULL;
4043
4044                 /* return some buffers to hardware, one at a time is too slow */
4045                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4046                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4047                         cleaned_count = 0;
4048                 }
4049
4050                 /* use prefetched values */
4051                 rx_desc = next_rxd;
4052                 buffer_info = next_buffer;
4053
4054                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4055         }
4056         rx_ring->next_to_clean = i;
4057
4058         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4059         if (cleaned_count)
4060                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4061
4062         return cleaned;
4063 }
4064
4065 /**
4066  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4067  * @adapter: address of board private structure
4068  **/
4069
4070 static void
4071 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4072                        struct e1000_rx_ring *rx_ring,
4073                        int cleaned_count)
4074 {
4075         struct net_device *netdev = adapter->netdev;
4076         struct pci_dev *pdev = adapter->pdev;
4077         struct e1000_rx_desc *rx_desc;
4078         struct e1000_buffer *buffer_info;
4079         struct sk_buff *skb;
4080         unsigned int i;
4081         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4082
4083         i = rx_ring->next_to_use;
4084         buffer_info = &rx_ring->buffer_info[i];
4085
4086         while (cleaned_count--) {
4087                 skb = buffer_info->skb;
4088                 if (skb) {
4089                         skb_trim(skb, 0);
4090                         goto map_skb;
4091                 }
4092
4093                 skb = netdev_alloc_skb(netdev, bufsz);
4094                 if (unlikely(!skb)) {
4095                         /* Better luck next round */
4096                         adapter->alloc_rx_buff_failed++;
4097                         break;
4098                 }
4099
4100                 /* Fix for errata 23, can't cross 64kB boundary */
4101                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4102                         struct sk_buff *oldskb = skb;
4103                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4104                                              "at %p\n", bufsz, skb->data);
4105                         /* Try again, without freeing the previous */
4106                         skb = netdev_alloc_skb(netdev, bufsz);
4107                         /* Failed allocation, critical failure */
4108                         if (!skb) {
4109                                 dev_kfree_skb(oldskb);
4110                                 break;
4111                         }
4112
4113                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4114                                 /* give up */
4115                                 dev_kfree_skb(skb);
4116                                 dev_kfree_skb(oldskb);
4117                                 break; /* while !buffer_info->skb */
4118                         }
4119
4120                         /* Use new allocation */
4121                         dev_kfree_skb(oldskb);
4122                 }
4123                 /* Make buffer alignment 2 beyond a 16 byte boundary
4124                  * this will result in a 16 byte aligned IP header after
4125                  * the 14 byte MAC header is removed
4126                  */
4127                 skb_reserve(skb, NET_IP_ALIGN);
4128
4129                 buffer_info->skb = skb;
4130                 buffer_info->length = adapter->rx_buffer_len;
4131 map_skb:
4132                 buffer_info->dma = pci_map_single(pdev,
4133                                                   skb->data,
4134                                                   adapter->rx_buffer_len,
4135                                                   PCI_DMA_FROMDEVICE);
4136
4137                 /* Fix for errata 23, can't cross 64kB boundary */
4138                 if (!e1000_check_64k_bound(adapter,
4139                                         (void *)(unsigned long)buffer_info->dma,
4140                                         adapter->rx_buffer_len)) {
4141                         DPRINTK(RX_ERR, ERR,
4142                                 "dma align check failed: %u bytes at %p\n",
4143                                 adapter->rx_buffer_len,
4144                                 (void *)(unsigned long)buffer_info->dma);
4145                         dev_kfree_skb(skb);
4146                         buffer_info->skb = NULL;
4147
4148                         pci_unmap_single(pdev, buffer_info->dma,
4149                                          adapter->rx_buffer_len,
4150                                          PCI_DMA_FROMDEVICE);
4151
4152                         break; /* while !buffer_info->skb */
4153                 }
4154                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4155                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4156
4157                 if (unlikely(++i == rx_ring->count))
4158                         i = 0;
4159                 buffer_info = &rx_ring->buffer_info[i];
4160         }
4161
4162         if (likely(rx_ring->next_to_use != i)) {
4163                 rx_ring->next_to_use = i;
4164                 if (unlikely(i-- == 0))
4165                         i = (rx_ring->count - 1);
4166
4167                 /* Force memory writes to complete before letting h/w
4168                  * know there are new descriptors to fetch.  (Only
4169                  * applicable for weak-ordered memory model archs,
4170                  * such as IA-64). */
4171                 wmb();
4172                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4173         }
4174 }
4175
4176 /**
4177  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4178  * @adapter: address of board private structure
4179  **/
4180
4181 static void
4182 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4183                           struct e1000_rx_ring *rx_ring,
4184                           int cleaned_count)
4185 {
4186         struct net_device *netdev = adapter->netdev;
4187         struct pci_dev *pdev = adapter->pdev;
4188         union e1000_rx_desc_packet_split *rx_desc;
4189         struct e1000_buffer *buffer_info;
4190         struct e1000_ps_page *ps_page;
4191         struct e1000_ps_page_dma *ps_page_dma;
4192         struct sk_buff *skb;
4193         unsigned int i, j;
4194
4195         i = rx_ring->next_to_use;
4196         buffer_info = &rx_ring->buffer_info[i];
4197         ps_page = &rx_ring->ps_page[i];
4198         ps_page_dma = &rx_ring->ps_page_dma[i];
4199
4200         while (cleaned_count--) {
4201                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4202
4203                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4204                         if (j < adapter->rx_ps_pages) {
4205                                 if (likely(!ps_page->ps_page[j])) {
4206                                         ps_page->ps_page[j] =
4207                                                 alloc_page(GFP_ATOMIC);
4208                                         if (unlikely(!ps_page->ps_page[j])) {
4209                                                 adapter->alloc_rx_buff_failed++;
4210                                                 goto no_buffers;
4211                                         }
4212                                         ps_page_dma->ps_page_dma[j] =
4213                                                 pci_map_page(pdev,
4214                                                             ps_page->ps_page[j],
4215                                                             0, PAGE_SIZE,
4216                                                             PCI_DMA_FROMDEVICE);
4217                                 }
4218                                 /* Refresh the desc even if buffer_addrs didn't
4219                                  * change because each write-back erases
4220                                  * this info.
4221                                  */
4222                                 rx_desc->read.buffer_addr[j+1] =
4223                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4224                         } else
4225                                 rx_desc->read.buffer_addr[j+1] = ~0;
4226                 }
4227
4228                 skb = netdev_alloc_skb(netdev,
4229                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4230
4231                 if (unlikely(!skb)) {
4232                         adapter->alloc_rx_buff_failed++;
4233                         break;
4234                 }
4235
4236                 /* Make buffer alignment 2 beyond a 16 byte boundary
4237                  * this will result in a 16 byte aligned IP header after
4238                  * the 14 byte MAC header is removed
4239                  */
4240                 skb_reserve(skb, NET_IP_ALIGN);
4241
4242                 buffer_info->skb = skb;
4243                 buffer_info->length = adapter->rx_ps_bsize0;
4244                 buffer_info->dma = pci_map_single(pdev, skb->data,
4245                                                   adapter->rx_ps_bsize0,
4246                                                   PCI_DMA_FROMDEVICE);
4247
4248                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4249
4250                 if (unlikely(++i == rx_ring->count)) i = 0;
4251                 buffer_info = &rx_ring->buffer_info[i];
4252                 ps_page = &rx_ring->ps_page[i];
4253                 ps_page_dma = &rx_ring->ps_page_dma[i];
4254         }
4255
4256 no_buffers:
4257         if (likely(rx_ring->next_to_use != i)) {
4258                 rx_ring->next_to_use = i;
4259                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4260
4261                 /* Force memory writes to complete before letting h/w
4262                  * know there are new descriptors to fetch.  (Only
4263                  * applicable for weak-ordered memory model archs,
4264                  * such as IA-64). */
4265                 wmb();
4266                 /* Hardware increments by 16 bytes, but packet split
4267                  * descriptors are 32 bytes...so we increment tail
4268                  * twice as much.
4269                  */
4270                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4271         }
4272 }
4273
4274 /**
4275  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4276  * @adapter:
4277  **/
4278
4279 static void
4280 e1000_smartspeed(struct e1000_adapter *adapter)
4281 {
4282         uint16_t phy_status;
4283         uint16_t phy_ctrl;
4284
4285         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4286            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4287                 return;
4288
4289         if (adapter->smartspeed == 0) {
4290                 /* If Master/Slave config fault is asserted twice,
4291                  * we assume back-to-back */
4292                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4293                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4294                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4295                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4296                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4297                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4298                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4299                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4300                                             phy_ctrl);
4301                         adapter->smartspeed++;
4302                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4303                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4304                                                &phy_ctrl)) {
4305                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4306                                              MII_CR_RESTART_AUTO_NEG);
4307                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4308                                                     phy_ctrl);
4309                         }
4310                 }
4311                 return;
4312         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4313                 /* If still no link, perhaps using 2/3 pair cable */
4314                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4315                 phy_ctrl |= CR_1000T_MS_ENABLE;
4316                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4317                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4318                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4319                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4320                                      MII_CR_RESTART_AUTO_NEG);
4321                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4322                 }
4323         }
4324         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4325         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4326                 adapter->smartspeed = 0;
4327 }
4328
4329 /**
4330  * e1000_ioctl -
4331  * @netdev:
4332  * @ifreq:
4333  * @cmd:
4334  **/
4335
4336 static int
4337 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4338 {
4339         switch (cmd) {
4340         case SIOCGMIIPHY:
4341         case SIOCGMIIREG:
4342         case SIOCSMIIREG:
4343                 return e1000_mii_ioctl(netdev, ifr, cmd);
4344         default:
4345                 return -EOPNOTSUPP;
4346         }
4347 }
4348
4349 /**
4350  * e1000_mii_ioctl -
4351  * @netdev:
4352  * @ifreq:
4353  * @cmd:
4354  **/
4355
4356 static int
4357 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4358 {
4359         struct e1000_adapter *adapter = netdev_priv(netdev);
4360         struct mii_ioctl_data *data = if_mii(ifr);
4361         int retval;
4362         uint16_t mii_reg;
4363         uint16_t spddplx;
4364         unsigned long flags;
4365
4366         if (adapter->hw.media_type != e1000_media_type_copper)
4367                 return -EOPNOTSUPP;
4368
4369         switch (cmd) {
4370         case SIOCGMIIPHY:
4371                 data->phy_id = adapter->hw.phy_addr;
4372                 break;
4373         case SIOCGMIIREG:
4374                 if (!capable(CAP_NET_ADMIN))
4375                         return -EPERM;
4376                 spin_lock_irqsave(&adapter->stats_lock, flags);
4377                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4378                                    &data->val_out)) {
4379                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4380                         return -EIO;
4381                 }
4382                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4383                 break;
4384         case SIOCSMIIREG:
4385                 if (!capable(CAP_NET_ADMIN))
4386                         return -EPERM;
4387                 if (data->reg_num & ~(0x1F))
4388                         return -EFAULT;
4389                 mii_reg = data->val_in;
4390                 spin_lock_irqsave(&adapter->stats_lock, flags);
4391                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4392                                         mii_reg)) {
4393                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4394                         return -EIO;
4395                 }
4396                 if (adapter->hw.media_type == e1000_media_type_copper) {
4397                         switch (data->reg_num) {
4398                         case PHY_CTRL:
4399                                 if (mii_reg & MII_CR_POWER_DOWN)
4400                                         break;
4401                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4402                                         adapter->hw.autoneg = 1;
4403                                         adapter->hw.autoneg_advertised = 0x2F;
4404                                 } else {
4405                                         if (mii_reg & 0x40)
4406                                                 spddplx = SPEED_1000;
4407                                         else if (mii_reg & 0x2000)
4408                                                 spddplx = SPEED_100;
4409                                         else
4410                                                 spddplx = SPEED_10;
4411                                         spddplx += (mii_reg & 0x100)
4412                                                    ? DUPLEX_FULL :
4413                                                    DUPLEX_HALF;
4414                                         retval = e1000_set_spd_dplx(adapter,
4415                                                                     spddplx);
4416                                         if (retval) {
4417                                                 spin_unlock_irqrestore(
4418                                                         &adapter->stats_lock,
4419                                                         flags);
4420                                                 return retval;
4421                                         }
4422                                 }
4423                                 if (netif_running(adapter->netdev))
4424                                         e1000_reinit_locked(adapter);
4425                                 else
4426                                         e1000_reset(adapter);
4427                                 break;
4428                         case M88E1000_PHY_SPEC_CTRL:
4429                         case M88E1000_EXT_PHY_SPEC_CTRL:
4430                                 if (e1000_phy_reset(&adapter->hw)) {
4431                                         spin_unlock_irqrestore(
4432                                                 &adapter->stats_lock, flags);
4433                                         return -EIO;
4434                                 }
4435                                 break;
4436                         }
4437                 } else {
4438                         switch (data->reg_num) {
4439                         case PHY_CTRL:
4440                                 if (mii_reg & MII_CR_POWER_DOWN)
4441                                         break;
4442                                 if (netif_running(adapter->netdev))
4443                                         e1000_reinit_locked(adapter);
4444                                 else
4445                                         e1000_reset(adapter);
4446                                 break;
4447                         }
4448                 }
4449                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4450                 break;
4451         default:
4452                 return -EOPNOTSUPP;
4453         }
4454         return E1000_SUCCESS;
4455 }
4456
4457 void
4458 e1000_pci_set_mwi(struct e1000_hw *hw)
4459 {
4460         struct e1000_adapter *adapter = hw->back;
4461         int ret_val = pci_set_mwi(adapter->pdev);
4462
4463         if (ret_val)
4464                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4465 }
4466
4467 void
4468 e1000_pci_clear_mwi(struct e1000_hw *hw)
4469 {
4470         struct e1000_adapter *adapter = hw->back;
4471
4472         pci_clear_mwi(adapter->pdev);
4473 }
4474
4475 void
4476 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4477 {
4478         struct e1000_adapter *adapter = hw->back;
4479
4480         pci_read_config_word(adapter->pdev, reg, value);
4481 }
4482
4483 void
4484 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4485 {
4486         struct e1000_adapter *adapter = hw->back;
4487
4488         pci_write_config_word(adapter->pdev, reg, *value);
4489 }
4490
4491 int32_t
4492 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4493 {
4494     struct e1000_adapter *adapter = hw->back;
4495     uint16_t cap_offset;
4496
4497     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4498     if (!cap_offset)
4499         return -E1000_ERR_CONFIG;
4500
4501     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4502
4503     return E1000_SUCCESS;
4504 }
4505
4506 void
4507 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4508 {
4509         outl(value, port);
4510 }
4511
4512 static void
4513 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4514 {
4515         struct e1000_adapter *adapter = netdev_priv(netdev);
4516         uint32_t ctrl, rctl;
4517
4518         e1000_irq_disable(adapter);
4519         adapter->vlgrp = grp;
4520
4521         if (grp) {
4522                 /* enable VLAN tag insert/strip */
4523                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4524                 ctrl |= E1000_CTRL_VME;
4525                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4526
4527                 if (adapter->hw.mac_type != e1000_ich8lan) {
4528                         /* enable VLAN receive filtering */
4529                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4530                         rctl |= E1000_RCTL_VFE;
4531                         rctl &= ~E1000_RCTL_CFIEN;
4532                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4533                         e1000_update_mng_vlan(adapter);
4534                 }
4535         } else {
4536                 /* disable VLAN tag insert/strip */
4537                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4538                 ctrl &= ~E1000_CTRL_VME;
4539                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4540
4541                 if (adapter->hw.mac_type != e1000_ich8lan) {
4542                         /* disable VLAN filtering */
4543                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4544                         rctl &= ~E1000_RCTL_VFE;
4545                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4546                         if (adapter->mng_vlan_id !=
4547                             (uint16_t)E1000_MNG_VLAN_NONE) {
4548                                 e1000_vlan_rx_kill_vid(netdev,
4549                                                        adapter->mng_vlan_id);
4550                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4551                         }
4552                 }
4553         }
4554
4555         e1000_irq_enable(adapter);
4556 }
4557
4558 static void
4559 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4560 {
4561         struct e1000_adapter *adapter = netdev_priv(netdev);
4562         uint32_t vfta, index;
4563
4564         if ((adapter->hw.mng_cookie.status &
4565              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4566             (vid == adapter->mng_vlan_id))
4567                 return;
4568         /* add VID to filter table */
4569         index = (vid >> 5) & 0x7F;
4570         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4571         vfta |= (1 << (vid & 0x1F));
4572         e1000_write_vfta(&adapter->hw, index, vfta);
4573 }
4574
4575 static void
4576 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4577 {
4578         struct e1000_adapter *adapter = netdev_priv(netdev);
4579         uint32_t vfta, index;
4580
4581         e1000_irq_disable(adapter);
4582
4583         if (adapter->vlgrp)
4584                 adapter->vlgrp->vlan_devices[vid] = NULL;
4585
4586         e1000_irq_enable(adapter);
4587
4588         if ((adapter->hw.mng_cookie.status &
4589              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4590             (vid == adapter->mng_vlan_id)) {
4591                 /* release control to f/w */
4592                 e1000_release_hw_control(adapter);
4593                 return;
4594         }
4595
4596         /* remove VID from filter table */
4597         index = (vid >> 5) & 0x7F;
4598         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4599         vfta &= ~(1 << (vid & 0x1F));
4600         e1000_write_vfta(&adapter->hw, index, vfta);
4601 }
4602
4603 static void
4604 e1000_restore_vlan(struct e1000_adapter *adapter)
4605 {
4606         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4607
4608         if (adapter->vlgrp) {
4609                 uint16_t vid;
4610                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4611                         if (!adapter->vlgrp->vlan_devices[vid])
4612                                 continue;
4613                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4614                 }
4615         }
4616 }
4617
4618 int
4619 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4620 {
4621         adapter->hw.autoneg = 0;
4622
4623         /* Fiber NICs only allow 1000 gbps Full duplex */
4624         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4625                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4626                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4627                 return -EINVAL;
4628         }
4629
4630         switch (spddplx) {
4631         case SPEED_10 + DUPLEX_HALF:
4632                 adapter->hw.forced_speed_duplex = e1000_10_half;
4633                 break;
4634         case SPEED_10 + DUPLEX_FULL:
4635                 adapter->hw.forced_speed_duplex = e1000_10_full;
4636                 break;
4637         case SPEED_100 + DUPLEX_HALF:
4638                 adapter->hw.forced_speed_duplex = e1000_100_half;
4639                 break;
4640         case SPEED_100 + DUPLEX_FULL:
4641                 adapter->hw.forced_speed_duplex = e1000_100_full;
4642                 break;
4643         case SPEED_1000 + DUPLEX_FULL:
4644                 adapter->hw.autoneg = 1;
4645                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4646                 break;
4647         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4648         default:
4649                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4650                 return -EINVAL;
4651         }
4652         return 0;
4653 }
4654
4655 #ifdef CONFIG_PM
4656 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4657  * bus we're on (PCI(X) vs. PCI-E)
4658  */
4659 #define PCIE_CONFIG_SPACE_LEN 256
4660 #define PCI_CONFIG_SPACE_LEN 64
4661 static int
4662 e1000_pci_save_state(struct e1000_adapter *adapter)
4663 {
4664         struct pci_dev *dev = adapter->pdev;
4665         int size;
4666         int i;
4667
4668         if (adapter->hw.mac_type >= e1000_82571)
4669                 size = PCIE_CONFIG_SPACE_LEN;
4670         else
4671                 size = PCI_CONFIG_SPACE_LEN;
4672
4673         WARN_ON(adapter->config_space != NULL);
4674
4675         adapter->config_space = kmalloc(size, GFP_KERNEL);
4676         if (!adapter->config_space) {
4677                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4678                 return -ENOMEM;
4679         }
4680         for (i = 0; i < (size / 4); i++)
4681                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4682         return 0;
4683 }
4684
4685 static void
4686 e1000_pci_restore_state(struct e1000_adapter *adapter)
4687 {
4688         struct pci_dev *dev = adapter->pdev;
4689         int size;
4690         int i;
4691
4692         if (adapter->config_space == NULL)
4693                 return;
4694
4695         if (adapter->hw.mac_type >= e1000_82571)
4696                 size = PCIE_CONFIG_SPACE_LEN;
4697         else
4698                 size = PCI_CONFIG_SPACE_LEN;
4699         for (i = 0; i < (size / 4); i++)
4700                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4701         kfree(adapter->config_space);
4702         adapter->config_space = NULL;
4703         return;
4704 }
4705 #endif /* CONFIG_PM */
4706
4707 static int
4708 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4709 {
4710         struct net_device *netdev = pci_get_drvdata(pdev);
4711         struct e1000_adapter *adapter = netdev_priv(netdev);
4712         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4713         uint32_t wufc = adapter->wol;
4714 #ifdef CONFIG_PM
4715         int retval = 0;
4716 #endif
4717
4718         netif_device_detach(netdev);
4719
4720         if (netif_running(netdev)) {
4721                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4722                 e1000_down(adapter);
4723         }
4724
4725 #ifdef CONFIG_PM
4726         /* Implement our own version of pci_save_state(pdev) because pci-
4727          * express adapters have 256-byte config spaces. */
4728         retval = e1000_pci_save_state(adapter);
4729         if (retval)
4730                 return retval;
4731 #endif
4732
4733         status = E1000_READ_REG(&adapter->hw, STATUS);
4734         if (status & E1000_STATUS_LU)
4735                 wufc &= ~E1000_WUFC_LNKC;
4736
4737         if (wufc) {
4738                 e1000_setup_rctl(adapter);
4739                 e1000_set_multi(netdev);
4740
4741                 /* turn on all-multi mode if wake on multicast is enabled */
4742                 if (wufc & E1000_WUFC_MC) {
4743                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4744                         rctl |= E1000_RCTL_MPE;
4745                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4746                 }
4747
4748                 if (adapter->hw.mac_type >= e1000_82540) {
4749                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4750                         /* advertise wake from D3Cold */
4751                         #define E1000_CTRL_ADVD3WUC 0x00100000
4752                         /* phy power management enable */
4753                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4754                         ctrl |= E1000_CTRL_ADVD3WUC |
4755                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4756                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4757                 }
4758
4759                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4760                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4761                         /* keep the laser running in D3 */
4762                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4763                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4764                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4765                 }
4766
4767                 /* Allow time for pending master requests to run */
4768                 e1000_disable_pciex_master(&adapter->hw);
4769
4770                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4771                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4772                 pci_enable_wake(pdev, PCI_D3hot, 1);
4773                 pci_enable_wake(pdev, PCI_D3cold, 1);
4774         } else {
4775                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4776                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4777                 pci_enable_wake(pdev, PCI_D3hot, 0);
4778                 pci_enable_wake(pdev, PCI_D3cold, 0);
4779         }
4780
4781         if (adapter->hw.mac_type >= e1000_82540 &&
4782             adapter->hw.mac_type < e1000_82571 &&
4783             adapter->hw.media_type == e1000_media_type_copper) {
4784                 manc = E1000_READ_REG(&adapter->hw, MANC);
4785                 if (manc & E1000_MANC_SMBUS_EN) {
4786                         manc |= E1000_MANC_ARP_EN;
4787                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4788                         pci_enable_wake(pdev, PCI_D3hot, 1);
4789                         pci_enable_wake(pdev, PCI_D3cold, 1);
4790                 }
4791         }
4792
4793         if (adapter->hw.phy_type == e1000_phy_igp_3)
4794                 e1000_phy_powerdown_workaround(&adapter->hw);
4795
4796         if (netif_running(netdev))
4797                 e1000_free_irq(adapter);
4798
4799         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4800          * would have already happened in close and is redundant. */
4801         e1000_release_hw_control(adapter);
4802
4803         pci_disable_device(pdev);
4804
4805         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4806
4807         return 0;
4808 }
4809
4810 #ifdef CONFIG_PM
4811 static int
4812 e1000_resume(struct pci_dev *pdev)
4813 {
4814         struct net_device *netdev = pci_get_drvdata(pdev);
4815         struct e1000_adapter *adapter = netdev_priv(netdev);
4816         uint32_t manc, err;
4817
4818         pci_set_power_state(pdev, PCI_D0);
4819         e1000_pci_restore_state(adapter);
4820         if ((err = pci_enable_device(pdev))) {
4821                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4822                 return err;
4823         }
4824         pci_set_master(pdev);
4825
4826         pci_enable_wake(pdev, PCI_D3hot, 0);
4827         pci_enable_wake(pdev, PCI_D3cold, 0);
4828
4829         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4830                 return err;
4831
4832         e1000_power_up_phy(adapter);
4833         e1000_reset(adapter);
4834         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4835
4836         if (netif_running(netdev))
4837                 e1000_up(adapter);
4838
4839         netif_device_attach(netdev);
4840
4841         if (adapter->hw.mac_type >= e1000_82540 &&
4842             adapter->hw.mac_type < e1000_82571 &&
4843             adapter->hw.media_type == e1000_media_type_copper) {
4844                 manc = E1000_READ_REG(&adapter->hw, MANC);
4845                 manc &= ~(E1000_MANC_ARP_EN);
4846                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4847         }
4848
4849         /* If the controller is 82573 and f/w is AMT, do not set
4850          * DRV_LOAD until the interface is up.  For all other cases,
4851          * let the f/w know that the h/w is now under the control
4852          * of the driver. */
4853         if (adapter->hw.mac_type != e1000_82573 ||
4854             !e1000_check_mng_mode(&adapter->hw))
4855                 e1000_get_hw_control(adapter);
4856
4857         return 0;
4858 }
4859 #endif
4860
4861 static void e1000_shutdown(struct pci_dev *pdev)
4862 {
4863         e1000_suspend(pdev, PMSG_SUSPEND);
4864 }
4865
4866 #ifdef CONFIG_NET_POLL_CONTROLLER
4867 /*
4868  * Polling 'interrupt' - used by things like netconsole to send skbs
4869  * without having to re-enable interrupts. It's not called while
4870  * the interrupt routine is executing.
4871  */
4872 static void
4873 e1000_netpoll(struct net_device *netdev)
4874 {
4875         struct e1000_adapter *adapter = netdev_priv(netdev);
4876
4877         disable_irq(adapter->pdev->irq);
4878         e1000_intr(adapter->pdev->irq, netdev);
4879         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4880 #ifndef CONFIG_E1000_NAPI
4881         adapter->clean_rx(adapter, adapter->rx_ring);
4882 #endif
4883         enable_irq(adapter->pdev->irq);
4884 }
4885 #endif
4886
4887 /**
4888  * e1000_io_error_detected - called when PCI error is detected
4889  * @pdev: Pointer to PCI device
4890  * @state: The current pci conneection state
4891  *
4892  * This function is called after a PCI bus error affecting
4893  * this device has been detected.
4894  */
4895 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4896 {
4897         struct net_device *netdev = pci_get_drvdata(pdev);
4898         struct e1000_adapter *adapter = netdev->priv;
4899
4900         netif_device_detach(netdev);
4901
4902         if (netif_running(netdev))
4903                 e1000_down(adapter);
4904         pci_disable_device(pdev);
4905
4906         /* Request a slot slot reset. */
4907         return PCI_ERS_RESULT_NEED_RESET;
4908 }
4909
4910 /**
4911  * e1000_io_slot_reset - called after the pci bus has been reset.
4912  * @pdev: Pointer to PCI device
4913  *
4914  * Restart the card from scratch, as if from a cold-boot. Implementation
4915  * resembles the first-half of the e1000_resume routine.
4916  */
4917 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4918 {
4919         struct net_device *netdev = pci_get_drvdata(pdev);
4920         struct e1000_adapter *adapter = netdev->priv;
4921
4922         if (pci_enable_device(pdev)) {
4923                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4924                 return PCI_ERS_RESULT_DISCONNECT;
4925         }
4926         pci_set_master(pdev);
4927
4928         pci_enable_wake(pdev, PCI_D3hot, 0);
4929         pci_enable_wake(pdev, PCI_D3cold, 0);
4930
4931         e1000_reset(adapter);
4932         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4933
4934         return PCI_ERS_RESULT_RECOVERED;
4935 }
4936
4937 /**
4938  * e1000_io_resume - called when traffic can start flowing again.
4939  * @pdev: Pointer to PCI device
4940  *
4941  * This callback is called when the error recovery driver tells us that
4942  * its OK to resume normal operation. Implementation resembles the
4943  * second-half of the e1000_resume routine.
4944  */
4945 static void e1000_io_resume(struct pci_dev *pdev)
4946 {
4947         struct net_device *netdev = pci_get_drvdata(pdev);
4948         struct e1000_adapter *adapter = netdev->priv;
4949         uint32_t manc, swsm;
4950
4951         if (netif_running(netdev)) {
4952                 if (e1000_up(adapter)) {
4953                         printk("e1000: can't bring device back up after reset\n");
4954                         return;
4955                 }
4956         }
4957
4958         netif_device_attach(netdev);
4959
4960         if (adapter->hw.mac_type >= e1000_82540 &&
4961             adapter->hw.mac_type < e1000_82571 &&
4962             adapter->hw.media_type == e1000_media_type_copper) {
4963                 manc = E1000_READ_REG(&adapter->hw, MANC);
4964                 manc &= ~(E1000_MANC_ARP_EN);
4965                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4966         }
4967
4968         switch (adapter->hw.mac_type) {
4969         case e1000_82573:
4970                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4971                 E1000_WRITE_REG(&adapter->hw, SWSM,
4972                                 swsm | E1000_SWSM_DRV_LOAD);
4973                 break;
4974         default:
4975                 break;
4976         }
4977
4978         if (netif_running(netdev))
4979                 mod_timer(&adapter->watchdog_timer, jiffies);
4980 }
4981
4982 /* e1000_main.c */