]> err.no Git - linux-2.6/blob - drivers/net/e1000/e1000_ethtool.c
Merge branch 'janitor'
[linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84         { "rx_long_length_errors", E1000_STAT(stats.roc) },
85         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
86         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
87         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
88         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
89         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
90         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
91         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
92         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
93         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
94         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
95         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
96         { "rx_header_split", E1000_STAT(rx_hdr_split) },
97         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
98 };
99
100 #ifdef CONFIG_E1000_MQ
101 #define E1000_QUEUE_STATS_LEN \
102         (((struct e1000_adapter *)netdev->priv)->num_tx_queues + \
103          ((struct e1000_adapter *)netdev->priv)->num_rx_queues) \
104         * (sizeof(struct e1000_queue_stats) / sizeof(uint64_t))
105 #else
106 #define E1000_QUEUE_STATS_LEN 0
107 #endif
108 #define E1000_GLOBAL_STATS_LEN  \
109         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
110 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
111 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
112         "Register test  (offline)", "Eeprom test    (offline)",
113         "Interrupt test (offline)", "Loopback test  (offline)",
114         "Link test   (on/offline)"
115 };
116 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
117
118 static int
119 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
120 {
121         struct e1000_adapter *adapter = netdev_priv(netdev);
122         struct e1000_hw *hw = &adapter->hw;
123
124         if(hw->media_type == e1000_media_type_copper) {
125
126                 ecmd->supported = (SUPPORTED_10baseT_Half |
127                                    SUPPORTED_10baseT_Full |
128                                    SUPPORTED_100baseT_Half |
129                                    SUPPORTED_100baseT_Full |
130                                    SUPPORTED_1000baseT_Full|
131                                    SUPPORTED_Autoneg |
132                                    SUPPORTED_TP);
133
134                 ecmd->advertising = ADVERTISED_TP;
135
136                 if(hw->autoneg == 1) {
137                         ecmd->advertising |= ADVERTISED_Autoneg;
138
139                         /* the e1000 autoneg seems to match ethtool nicely */
140
141                         ecmd->advertising |= hw->autoneg_advertised;
142                 }
143
144                 ecmd->port = PORT_TP;
145                 ecmd->phy_address = hw->phy_addr;
146
147                 if(hw->mac_type == e1000_82543)
148                         ecmd->transceiver = XCVR_EXTERNAL;
149                 else
150                         ecmd->transceiver = XCVR_INTERNAL;
151
152         } else {
153                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
154                                      SUPPORTED_FIBRE |
155                                      SUPPORTED_Autoneg);
156
157                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158                                      ADVERTISED_FIBRE |
159                                      ADVERTISED_Autoneg);
160
161                 ecmd->port = PORT_FIBRE;
162
163                 if(hw->mac_type >= e1000_82545)
164                         ecmd->transceiver = XCVR_INTERNAL;
165                 else
166                         ecmd->transceiver = XCVR_EXTERNAL;
167         }
168
169         if(netif_carrier_ok(adapter->netdev)) {
170
171                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
172                                                    &adapter->link_duplex);
173                 ecmd->speed = adapter->link_speed;
174
175                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
176                  *          and HALF_DUPLEX != DUPLEX_HALF */
177
178                 if(adapter->link_duplex == FULL_DUPLEX)
179                         ecmd->duplex = DUPLEX_FULL;
180                 else
181                         ecmd->duplex = DUPLEX_HALF;
182         } else {
183                 ecmd->speed = -1;
184                 ecmd->duplex = -1;
185         }
186
187         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
188                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189         return 0;
190 }
191
192 static int
193 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
194 {
195         struct e1000_adapter *adapter = netdev_priv(netdev);
196         struct e1000_hw *hw = &adapter->hw;
197
198         /* When SoL/IDER sessions are active, autoneg/speed/duplex
199          * cannot be changed */
200         if (e1000_check_phy_reset_block(hw)) {
201                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
202                         "when SoL/IDER is active.\n");
203                 return -EINVAL;
204         }
205
206         if (ecmd->autoneg == AUTONEG_ENABLE) {
207                 hw->autoneg = 1;
208                 if(hw->media_type == e1000_media_type_fiber)
209                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
210                                      ADVERTISED_FIBRE |
211                                      ADVERTISED_Autoneg;
212                 else 
213                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
214                                                   ADVERTISED_10baseT_Full |
215                                                   ADVERTISED_100baseT_Half |
216                                                   ADVERTISED_100baseT_Full |
217                                                   ADVERTISED_1000baseT_Full|
218                                                   ADVERTISED_Autoneg |
219                                                   ADVERTISED_TP;
220                 ecmd->advertising = hw->autoneg_advertised;
221         } else
222                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
223                         return -EINVAL;
224
225         /* reset the link */
226
227         if(netif_running(adapter->netdev)) {
228                 e1000_down(adapter);
229                 e1000_reset(adapter);
230                 e1000_up(adapter);
231         } else
232                 e1000_reset(adapter);
233
234         return 0;
235 }
236
237 static void
238 e1000_get_pauseparam(struct net_device *netdev,
239                      struct ethtool_pauseparam *pause)
240 {
241         struct e1000_adapter *adapter = netdev_priv(netdev);
242         struct e1000_hw *hw = &adapter->hw;
243
244         pause->autoneg = 
245                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
246         
247         if(hw->fc == e1000_fc_rx_pause)
248                 pause->rx_pause = 1;
249         else if(hw->fc == e1000_fc_tx_pause)
250                 pause->tx_pause = 1;
251         else if(hw->fc == e1000_fc_full) {
252                 pause->rx_pause = 1;
253                 pause->tx_pause = 1;
254         }
255 }
256
257 static int
258 e1000_set_pauseparam(struct net_device *netdev,
259                      struct ethtool_pauseparam *pause)
260 {
261         struct e1000_adapter *adapter = netdev_priv(netdev);
262         struct e1000_hw *hw = &adapter->hw;
263         
264         adapter->fc_autoneg = pause->autoneg;
265
266         if(pause->rx_pause && pause->tx_pause)
267                 hw->fc = e1000_fc_full;
268         else if(pause->rx_pause && !pause->tx_pause)
269                 hw->fc = e1000_fc_rx_pause;
270         else if(!pause->rx_pause && pause->tx_pause)
271                 hw->fc = e1000_fc_tx_pause;
272         else if(!pause->rx_pause && !pause->tx_pause)
273                 hw->fc = e1000_fc_none;
274
275         hw->original_fc = hw->fc;
276
277         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
278                 if(netif_running(adapter->netdev)) {
279                         e1000_down(adapter);
280                         e1000_up(adapter);
281                 } else
282                         e1000_reset(adapter);
283         }
284         else
285                 return ((hw->media_type == e1000_media_type_fiber) ?
286                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
287         
288         return 0;
289 }
290
291 static uint32_t
292 e1000_get_rx_csum(struct net_device *netdev)
293 {
294         struct e1000_adapter *adapter = netdev_priv(netdev);
295         return adapter->rx_csum;
296 }
297
298 static int
299 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302         adapter->rx_csum = data;
303
304         if(netif_running(netdev)) {
305                 e1000_down(adapter);
306                 e1000_up(adapter);
307         } else
308                 e1000_reset(adapter);
309         return 0;
310 }
311         
312 static uint32_t
313 e1000_get_tx_csum(struct net_device *netdev)
314 {
315         return (netdev->features & NETIF_F_HW_CSUM) != 0;
316 }
317
318 static int
319 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322
323         if(adapter->hw.mac_type < e1000_82543) {
324                 if (!data)
325                         return -EINVAL;
326                 return 0;
327         }
328
329         if (data)
330                 netdev->features |= NETIF_F_HW_CSUM;
331         else
332                 netdev->features &= ~NETIF_F_HW_CSUM;
333
334         return 0;
335 }
336
337 #ifdef NETIF_F_TSO
338 static int
339 e1000_set_tso(struct net_device *netdev, uint32_t data)
340 {
341         struct e1000_adapter *adapter = netdev_priv(netdev);
342         if((adapter->hw.mac_type < e1000_82544) ||
343             (adapter->hw.mac_type == e1000_82547)) 
344                 return data ? -EINVAL : 0;
345
346         if (data)
347                 netdev->features |= NETIF_F_TSO;
348         else
349                 netdev->features &= ~NETIF_F_TSO;
350         return 0;
351
352 #endif /* NETIF_F_TSO */
353
354 static uint32_t
355 e1000_get_msglevel(struct net_device *netdev)
356 {
357         struct e1000_adapter *adapter = netdev_priv(netdev);
358         return adapter->msg_enable;
359 }
360
361 static void
362 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
363 {
364         struct e1000_adapter *adapter = netdev_priv(netdev);
365         adapter->msg_enable = data;
366 }
367
368 static int 
369 e1000_get_regs_len(struct net_device *netdev)
370 {
371 #define E1000_REGS_LEN 32
372         return E1000_REGS_LEN * sizeof(uint32_t);
373 }
374
375 static void
376 e1000_get_regs(struct net_device *netdev,
377                struct ethtool_regs *regs, void *p)
378 {
379         struct e1000_adapter *adapter = netdev_priv(netdev);
380         struct e1000_hw *hw = &adapter->hw;
381         uint32_t *regs_buff = p;
382         uint16_t phy_data;
383
384         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
385
386         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
387
388         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
389         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
390
391         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
392         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
393         regs_buff[4]  = E1000_READ_REG(hw, RDH);
394         regs_buff[5]  = E1000_READ_REG(hw, RDT);
395         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
396
397         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
398         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
399         regs_buff[9]  = E1000_READ_REG(hw, TDH);
400         regs_buff[10] = E1000_READ_REG(hw, TDT);
401         regs_buff[11] = E1000_READ_REG(hw, TIDV);
402
403         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
404         if(hw->phy_type == e1000_phy_igp) {
405                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406                                     IGP01E1000_PHY_AGC_A);
407                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
408                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
410                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411                                     IGP01E1000_PHY_AGC_B);
412                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
413                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
415                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416                                     IGP01E1000_PHY_AGC_C);
417                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
418                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
420                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
421                                     IGP01E1000_PHY_AGC_D);
422                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
423                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
424                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
425                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
426                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
427                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
428                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
429                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
430                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
431                                     IGP01E1000_PHY_PCS_INIT_REG);
432                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
433                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
434                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
435                 regs_buff[20] = 0; /* polarity correction enabled (always) */
436                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
437                 regs_buff[23] = regs_buff[18]; /* mdix mode */
438                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
439         } else {
440                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
441                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
442                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
443                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
444                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
445                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
446                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
447                 regs_buff[18] = regs_buff[13]; /* cable polarity */
448                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
449                 regs_buff[20] = regs_buff[17]; /* polarity correction */
450                 /* phy receive errors */
451                 regs_buff[22] = adapter->phy_stats.receive_errors;
452                 regs_buff[23] = regs_buff[13]; /* mdix mode */
453         }
454         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
455         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
456         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
457         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
458         if(hw->mac_type >= e1000_82540 &&
459            hw->media_type == e1000_media_type_copper) {
460                 regs_buff[26] = E1000_READ_REG(hw, MANC);
461         }
462 }
463
464 static int
465 e1000_get_eeprom_len(struct net_device *netdev)
466 {
467         struct e1000_adapter *adapter = netdev_priv(netdev);
468         return adapter->hw.eeprom.word_size * 2;
469 }
470
471 static int
472 e1000_get_eeprom(struct net_device *netdev,
473                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
474 {
475         struct e1000_adapter *adapter = netdev_priv(netdev);
476         struct e1000_hw *hw = &adapter->hw;
477         uint16_t *eeprom_buff;
478         int first_word, last_word;
479         int ret_val = 0;
480         uint16_t i;
481
482         if(eeprom->len == 0)
483                 return -EINVAL;
484
485         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
486
487         first_word = eeprom->offset >> 1;
488         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
489
490         eeprom_buff = kmalloc(sizeof(uint16_t) *
491                         (last_word - first_word + 1), GFP_KERNEL);
492         if(!eeprom_buff)
493                 return -ENOMEM;
494
495         if(hw->eeprom.type == e1000_eeprom_spi)
496                 ret_val = e1000_read_eeprom(hw, first_word,
497                                             last_word - first_word + 1,
498                                             eeprom_buff);
499         else {
500                 for (i = 0; i < last_word - first_word + 1; i++)
501                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
502                                                         &eeprom_buff[i])))
503                                 break;
504         }
505
506         /* Device's eeprom is always little-endian, word addressable */
507         for (i = 0; i < last_word - first_word + 1; i++)
508                 le16_to_cpus(&eeprom_buff[i]);
509
510         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
511                         eeprom->len);
512         kfree(eeprom_buff);
513
514         return ret_val;
515 }
516
517 static int
518 e1000_set_eeprom(struct net_device *netdev,
519                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
520 {
521         struct e1000_adapter *adapter = netdev_priv(netdev);
522         struct e1000_hw *hw = &adapter->hw;
523         uint16_t *eeprom_buff;
524         void *ptr;
525         int max_len, first_word, last_word, ret_val = 0;
526         uint16_t i;
527
528         if(eeprom->len == 0)
529                 return -EOPNOTSUPP;
530
531         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
532                 return -EFAULT;
533
534         max_len = hw->eeprom.word_size * 2;
535
536         first_word = eeprom->offset >> 1;
537         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
538         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
539         if(!eeprom_buff)
540                 return -ENOMEM;
541
542         ptr = (void *)eeprom_buff;
543
544         if(eeprom->offset & 1) {
545                 /* need read/modify/write of first changed EEPROM word */
546                 /* only the second byte of the word is being modified */
547                 ret_val = e1000_read_eeprom(hw, first_word, 1,
548                                             &eeprom_buff[0]);
549                 ptr++;
550         }
551         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
552                 /* need read/modify/write of last changed EEPROM word */
553                 /* only the first byte of the word is being modified */
554                 ret_val = e1000_read_eeprom(hw, last_word, 1,
555                                   &eeprom_buff[last_word - first_word]);
556         }
557
558         /* Device's eeprom is always little-endian, word addressable */
559         for (i = 0; i < last_word - first_word + 1; i++)
560                 le16_to_cpus(&eeprom_buff[i]);
561
562         memcpy(ptr, bytes, eeprom->len);
563
564         for (i = 0; i < last_word - first_word + 1; i++)
565                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
566
567         ret_val = e1000_write_eeprom(hw, first_word,
568                                      last_word - first_word + 1, eeprom_buff);
569
570         /* Update the checksum over the first part of the EEPROM if needed 
571          * and flush shadow RAM for 82573 conrollers */
572         if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || 
573                                 (hw->mac_type == e1000_82573)))
574                 e1000_update_eeprom_checksum(hw);
575
576         kfree(eeprom_buff);
577         return ret_val;
578 }
579
580 static void
581 e1000_get_drvinfo(struct net_device *netdev,
582                        struct ethtool_drvinfo *drvinfo)
583 {
584         struct e1000_adapter *adapter = netdev_priv(netdev);
585         char firmware_version[32];
586         uint16_t eeprom_data;
587
588         strncpy(drvinfo->driver,  e1000_driver_name, 32);
589         strncpy(drvinfo->version, e1000_driver_version, 32);
590
591         /* EEPROM image version # is reported as firmware version # for
592          * 8257{1|2|3} controllers */
593         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
594         switch (adapter->hw.mac_type) {
595         case e1000_82571:
596         case e1000_82572:
597         case e1000_82573:
598                 sprintf(firmware_version, "%d.%d-%d",
599                         (eeprom_data & 0xF000) >> 12,
600                         (eeprom_data & 0x0FF0) >> 4,
601                         eeprom_data & 0x000F);
602                 break;
603         default:
604                 sprintf(firmware_version, "N/A");
605         }
606
607         strncpy(drvinfo->fw_version, firmware_version, 32);
608         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
609         drvinfo->n_stats = E1000_STATS_LEN;
610         drvinfo->testinfo_len = E1000_TEST_LEN;
611         drvinfo->regdump_len = e1000_get_regs_len(netdev);
612         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
613 }
614
615 static void
616 e1000_get_ringparam(struct net_device *netdev,
617                     struct ethtool_ringparam *ring)
618 {
619         struct e1000_adapter *adapter = netdev_priv(netdev);
620         e1000_mac_type mac_type = adapter->hw.mac_type;
621         struct e1000_tx_ring *txdr = adapter->tx_ring;
622         struct e1000_rx_ring *rxdr = adapter->rx_ring;
623
624         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
625                 E1000_MAX_82544_RXD;
626         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
627                 E1000_MAX_82544_TXD;
628         ring->rx_mini_max_pending = 0;
629         ring->rx_jumbo_max_pending = 0;
630         ring->rx_pending = rxdr->count;
631         ring->tx_pending = txdr->count;
632         ring->rx_mini_pending = 0;
633         ring->rx_jumbo_pending = 0;
634 }
635
636 static int 
637 e1000_set_ringparam(struct net_device *netdev,
638                     struct ethtool_ringparam *ring)
639 {
640         struct e1000_adapter *adapter = netdev_priv(netdev);
641         e1000_mac_type mac_type = adapter->hw.mac_type;
642         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
643         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
644         int i, err, tx_ring_size, rx_ring_size;
645
646         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
647         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
648
649         if (netif_running(adapter->netdev))
650                 e1000_down(adapter);
651
652         tx_old = adapter->tx_ring;
653         rx_old = adapter->rx_ring;
654
655         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
656         if (!adapter->tx_ring) {
657                 err = -ENOMEM;
658                 goto err_setup_rx;
659         }
660         memset(adapter->tx_ring, 0, tx_ring_size);
661
662         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
663         if (!adapter->rx_ring) {
664                 kfree(adapter->tx_ring);
665                 err = -ENOMEM;
666                 goto err_setup_rx;
667         }
668         memset(adapter->rx_ring, 0, rx_ring_size);
669
670         txdr = adapter->tx_ring;
671         rxdr = adapter->rx_ring;
672
673         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
674                 return -EINVAL;
675
676         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
677         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
678                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
679         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
680
681         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
682         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
683                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
684         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
685
686         for (i = 0; i < adapter->num_tx_queues; i++)
687                 txdr[i].count = txdr->count;
688         for (i = 0; i < adapter->num_rx_queues; i++)
689                 rxdr[i].count = rxdr->count;
690
691         if(netif_running(adapter->netdev)) {
692                 /* Try to get new resources before deleting old */
693                 if ((err = e1000_setup_all_rx_resources(adapter)))
694                         goto err_setup_rx;
695                 if ((err = e1000_setup_all_tx_resources(adapter)))
696                         goto err_setup_tx;
697
698                 /* save the new, restore the old in order to free it,
699                  * then restore the new back again */
700
701                 rx_new = adapter->rx_ring;
702                 tx_new = adapter->tx_ring;
703                 adapter->rx_ring = rx_old;
704                 adapter->tx_ring = tx_old;
705                 e1000_free_all_rx_resources(adapter);
706                 e1000_free_all_tx_resources(adapter);
707                 kfree(tx_old);
708                 kfree(rx_old);
709                 adapter->rx_ring = rx_new;
710                 adapter->tx_ring = tx_new;
711                 if((err = e1000_up(adapter)))
712                         return err;
713         }
714
715         return 0;
716 err_setup_tx:
717         e1000_free_all_rx_resources(adapter);
718 err_setup_rx:
719         adapter->rx_ring = rx_old;
720         adapter->tx_ring = tx_old;
721         e1000_up(adapter);
722         return err;
723 }
724
725 #define REG_PATTERN_TEST(R, M, W)                                              \
726 {                                                                              \
727         uint32_t pat, value;                                                   \
728         uint32_t test[] =                                                      \
729                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
730         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
731                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
732                 value = E1000_READ_REG(&adapter->hw, R);                       \
733                 if(value != (test[pat] & W & M)) {                             \
734                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
735                                 "0x%08X expected 0x%08X\n",                    \
736                                 E1000_##R, value, (test[pat] & W & M));        \
737                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
738                                 E1000_82542_##R : E1000_##R;                   \
739                         return 1;                                              \
740                 }                                                              \
741         }                                                                      \
742 }
743
744 #define REG_SET_AND_CHECK(R, M, W)                                             \
745 {                                                                              \
746         uint32_t value;                                                        \
747         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
748         value = E1000_READ_REG(&adapter->hw, R);                               \
749         if((W & M) != (value & M)) {                                          \
750                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
751                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
752                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
753                         E1000_82542_##R : E1000_##R;                           \
754                 return 1;                                                      \
755         }                                                                      \
756 }
757
758 static int
759 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
760 {
761         uint32_t value, before, after;
762         uint32_t i, toggle;
763
764         /* The status register is Read Only, so a write should fail.
765          * Some bits that get toggled are ignored.
766          */
767         switch (adapter->hw.mac_type) {
768         /* there are several bits on newer hardware that are r/w */
769         case e1000_82571:
770         case e1000_82572:
771                 toggle = 0x7FFFF3FF;
772                 break;
773         case e1000_82573:
774                 toggle = 0x7FFFF033;
775                 break;
776         default:
777                 toggle = 0xFFFFF833;
778                 break;
779         }
780
781         before = E1000_READ_REG(&adapter->hw, STATUS);
782         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
783         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
784         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
785         if(value != after) {
786                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
787                         "0x%08X expected: 0x%08X\n", after, value);
788                 *data = 1;
789                 return 1;
790         }
791         /* restore previous status */
792         E1000_WRITE_REG(&adapter->hw, STATUS, before);
793
794         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
795         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
796         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
797         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
798         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
799         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
800         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
801         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
802         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
803         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
804         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
805         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
806         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
807         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
808
809         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
810         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
811         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
812
813         if(adapter->hw.mac_type >= e1000_82543) {
814
815                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
816                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
817                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
818                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
819                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
820
821                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
822                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
823                                          0xFFFFFFFF);
824                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
825                                          0xFFFFFFFF);
826                 }
827
828         } else {
829
830                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
831                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
832                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
833                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
834
835         }
836
837         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
838                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
839
840         *data = 0;
841         return 0;
842 }
843
844 static int
845 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
846 {
847         uint16_t temp;
848         uint16_t checksum = 0;
849         uint16_t i;
850
851         *data = 0;
852         /* Read and add up the contents of the EEPROM */
853         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
854                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
855                         *data = 1;
856                         break;
857                 }
858                 checksum += temp;
859         }
860
861         /* If Checksum is not Correct return error else test passed */
862         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
863                 *data = 2;
864
865         return *data;
866 }
867
868 static irqreturn_t
869 e1000_test_intr(int irq,
870                 void *data,
871                 struct pt_regs *regs)
872 {
873         struct net_device *netdev = (struct net_device *) data;
874         struct e1000_adapter *adapter = netdev_priv(netdev);
875
876         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
877
878         return IRQ_HANDLED;
879 }
880
881 static int
882 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
883 {
884         struct net_device *netdev = adapter->netdev;
885         uint32_t mask, i=0, shared_int = TRUE;
886         uint32_t irq = adapter->pdev->irq;
887
888         *data = 0;
889
890         /* Hook up test interrupt handler just for this test */
891         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
892                 shared_int = FALSE;
893         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
894                               netdev->name, netdev)){
895                 *data = 1;
896                 return -1;
897         }
898
899         /* Disable all the interrupts */
900         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
901         msec_delay(10);
902
903         /* Test each interrupt */
904         for(; i < 10; i++) {
905
906                 /* Interrupt to test */
907                 mask = 1 << i;
908
909                 if(!shared_int) {
910                         /* Disable the interrupt to be reported in
911                          * the cause register and then force the same
912                          * interrupt and see if one gets posted.  If
913                          * an interrupt was posted to the bus, the
914                          * test failed.
915                          */
916                         adapter->test_icr = 0;
917                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
918                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
919                         msec_delay(10);
920  
921                         if(adapter->test_icr & mask) {
922                                 *data = 3;
923                                 break;
924                         }
925                 }
926
927                 /* Enable the interrupt to be reported in
928                  * the cause register and then force the same
929                  * interrupt and see if one gets posted.  If
930                  * an interrupt was not posted to the bus, the
931                  * test failed.
932                  */
933                 adapter->test_icr = 0;
934                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
935                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
936                 msec_delay(10);
937
938                 if(!(adapter->test_icr & mask)) {
939                         *data = 4;
940                         break;
941                 }
942
943                 if(!shared_int) {
944                         /* Disable the other interrupts to be reported in
945                          * the cause register and then force the other
946                          * interrupts and see if any get posted.  If
947                          * an interrupt was posted to the bus, the
948                          * test failed.
949                          */
950                         adapter->test_icr = 0;
951                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
952                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
953                         msec_delay(10);
954
955                         if(adapter->test_icr) {
956                                 *data = 5;
957                                 break;
958                         }
959                 }
960         }
961
962         /* Disable all the interrupts */
963         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
964         msec_delay(10);
965
966         /* Unhook test interrupt handler */
967         free_irq(irq, netdev);
968
969         return *data;
970 }
971
972 static void
973 e1000_free_desc_rings(struct e1000_adapter *adapter)
974 {
975         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
976         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
977         struct pci_dev *pdev = adapter->pdev;
978         int i;
979
980         if(txdr->desc && txdr->buffer_info) {
981                 for(i = 0; i < txdr->count; i++) {
982                         if(txdr->buffer_info[i].dma)
983                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
984                                                  txdr->buffer_info[i].length,
985                                                  PCI_DMA_TODEVICE);
986                         if(txdr->buffer_info[i].skb)
987                                 dev_kfree_skb(txdr->buffer_info[i].skb);
988                 }
989         }
990
991         if(rxdr->desc && rxdr->buffer_info) {
992                 for(i = 0; i < rxdr->count; i++) {
993                         if(rxdr->buffer_info[i].dma)
994                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
995                                                  rxdr->buffer_info[i].length,
996                                                  PCI_DMA_FROMDEVICE);
997                         if(rxdr->buffer_info[i].skb)
998                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
999                 }
1000         }
1001
1002         if (txdr->desc) {
1003                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1004                 txdr->desc = NULL;
1005         }
1006         if (rxdr->desc) {
1007                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1008                 rxdr->desc = NULL;
1009         }
1010
1011         kfree(txdr->buffer_info);
1012         txdr->buffer_info = NULL;
1013         kfree(rxdr->buffer_info);
1014         rxdr->buffer_info = NULL;
1015
1016         return;
1017 }
1018
1019 static int
1020 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1021 {
1022         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1023         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1024         struct pci_dev *pdev = adapter->pdev;
1025         uint32_t rctl;
1026         int size, i, ret_val;
1027
1028         /* Setup Tx descriptor ring and Tx buffers */
1029
1030         if(!txdr->count)
1031                 txdr->count = E1000_DEFAULT_TXD;   
1032
1033         size = txdr->count * sizeof(struct e1000_buffer);
1034         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1035                 ret_val = 1;
1036                 goto err_nomem;
1037         }
1038         memset(txdr->buffer_info, 0, size);
1039
1040         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1041         E1000_ROUNDUP(txdr->size, 4096);
1042         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1043                 ret_val = 2;
1044                 goto err_nomem;
1045         }
1046         memset(txdr->desc, 0, txdr->size);
1047         txdr->next_to_use = txdr->next_to_clean = 0;
1048
1049         E1000_WRITE_REG(&adapter->hw, TDBAL,
1050                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1051         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1052         E1000_WRITE_REG(&adapter->hw, TDLEN,
1053                         txdr->count * sizeof(struct e1000_tx_desc));
1054         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1055         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1056         E1000_WRITE_REG(&adapter->hw, TCTL,
1057                         E1000_TCTL_PSP | E1000_TCTL_EN |
1058                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1059                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1060
1061         for(i = 0; i < txdr->count; i++) {
1062                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1063                 struct sk_buff *skb;
1064                 unsigned int size = 1024;
1065
1066                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
1067                         ret_val = 3;
1068                         goto err_nomem;
1069                 }
1070                 skb_put(skb, size);
1071                 txdr->buffer_info[i].skb = skb;
1072                 txdr->buffer_info[i].length = skb->len;
1073                 txdr->buffer_info[i].dma =
1074                         pci_map_single(pdev, skb->data, skb->len,
1075                                        PCI_DMA_TODEVICE);
1076                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1077                 tx_desc->lower.data = cpu_to_le32(skb->len);
1078                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1079                                                    E1000_TXD_CMD_IFCS |
1080                                                    E1000_TXD_CMD_RPS);
1081                 tx_desc->upper.data = 0;
1082         }
1083
1084         /* Setup Rx descriptor ring and Rx buffers */
1085
1086         if(!rxdr->count)
1087                 rxdr->count = E1000_DEFAULT_RXD;   
1088
1089         size = rxdr->count * sizeof(struct e1000_buffer);
1090         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1091                 ret_val = 4;
1092                 goto err_nomem;
1093         }
1094         memset(rxdr->buffer_info, 0, size);
1095
1096         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1097         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1098                 ret_val = 5;
1099                 goto err_nomem;
1100         }
1101         memset(rxdr->desc, 0, rxdr->size);
1102         rxdr->next_to_use = rxdr->next_to_clean = 0;
1103
1104         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1105         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1106         E1000_WRITE_REG(&adapter->hw, RDBAL,
1107                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1108         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1109         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1110         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1111         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1112         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1113                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1114                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1115         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1116
1117         for(i = 0; i < rxdr->count; i++) {
1118                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1119                 struct sk_buff *skb;
1120
1121                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1122                                 GFP_KERNEL))) {
1123                         ret_val = 6;
1124                         goto err_nomem;
1125                 }
1126                 skb_reserve(skb, NET_IP_ALIGN);
1127                 rxdr->buffer_info[i].skb = skb;
1128                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1129                 rxdr->buffer_info[i].dma =
1130                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1131                                        PCI_DMA_FROMDEVICE);
1132                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1133                 memset(skb->data, 0x00, skb->len);
1134         }
1135
1136         return 0;
1137
1138 err_nomem:
1139         e1000_free_desc_rings(adapter);
1140         return ret_val;
1141 }
1142
1143 static void
1144 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1145 {
1146         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1147         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1148         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1149         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1150         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1151 }
1152
1153 static void
1154 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1155 {
1156         uint16_t phy_reg;
1157
1158         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1159          * Extended PHY Specific Control Register to 25MHz clock.  This
1160          * value defaults back to a 2.5MHz clock when the PHY is reset.
1161          */
1162         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1163         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1164         e1000_write_phy_reg(&adapter->hw,
1165                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1166
1167         /* In addition, because of the s/w reset above, we need to enable
1168          * CRS on TX.  This must be set for both full and half duplex
1169          * operation.
1170          */
1171         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1172         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1173         e1000_write_phy_reg(&adapter->hw,
1174                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1175 }
1176
1177 static int
1178 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1179 {
1180         uint32_t ctrl_reg;
1181         uint16_t phy_reg;
1182
1183         /* Setup the Device Control Register for PHY loopback test. */
1184
1185         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1186         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1187                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1188                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1189                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1190                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1191
1192         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1193
1194         /* Read the PHY Specific Control Register (0x10) */
1195         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1196
1197         /* Clear Auto-Crossover bits in PHY Specific Control Register
1198          * (bits 6:5).
1199          */
1200         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1201         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1202
1203         /* Perform software reset on the PHY */
1204         e1000_phy_reset(&adapter->hw);
1205
1206         /* Have to setup TX_CLK and TX_CRS after software reset */
1207         e1000_phy_reset_clk_and_crs(adapter);
1208
1209         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1210
1211         /* Wait for reset to complete. */
1212         udelay(500);
1213
1214         /* Have to setup TX_CLK and TX_CRS after software reset */
1215         e1000_phy_reset_clk_and_crs(adapter);
1216
1217         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1218         e1000_phy_disable_receiver(adapter);
1219
1220         /* Set the loopback bit in the PHY control register. */
1221         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1222         phy_reg |= MII_CR_LOOPBACK;
1223         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1224
1225         /* Setup TX_CLK and TX_CRS one more time. */
1226         e1000_phy_reset_clk_and_crs(adapter);
1227
1228         /* Check Phy Configuration */
1229         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1230         if(phy_reg != 0x4100)
1231                  return 9;
1232
1233         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1234         if(phy_reg != 0x0070)
1235                 return 10;
1236
1237         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1238         if(phy_reg != 0x001A)
1239                 return 11;
1240
1241         return 0;
1242 }
1243
1244 static int
1245 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1246 {
1247         uint32_t ctrl_reg = 0;
1248         uint32_t stat_reg = 0;
1249
1250         adapter->hw.autoneg = FALSE;
1251
1252         if(adapter->hw.phy_type == e1000_phy_m88) {
1253                 /* Auto-MDI/MDIX Off */
1254                 e1000_write_phy_reg(&adapter->hw,
1255                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1256                 /* reset to update Auto-MDI/MDIX */
1257                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1258                 /* autoneg off */
1259                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1260         }
1261         /* force 1000, set loopback */
1262         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1263
1264         /* Now set up the MAC to the same speed/duplex as the PHY. */
1265         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1266         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1267         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1268                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1269                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1270                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1271
1272         if(adapter->hw.media_type == e1000_media_type_copper &&
1273            adapter->hw.phy_type == e1000_phy_m88) {
1274                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1275         } else {
1276                 /* Set the ILOS bit on the fiber Nic is half
1277                  * duplex link is detected. */
1278                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1279                 if((stat_reg & E1000_STATUS_FD) == 0)
1280                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1281         }
1282
1283         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1284
1285         /* Disable the receiver on the PHY so when a cable is plugged in, the
1286          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1287          */
1288         if(adapter->hw.phy_type == e1000_phy_m88)
1289                 e1000_phy_disable_receiver(adapter);
1290
1291         udelay(500);
1292
1293         return 0;
1294 }
1295
1296 static int
1297 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1298 {
1299         uint16_t phy_reg = 0;
1300         uint16_t count = 0;
1301
1302         switch (adapter->hw.mac_type) {
1303         case e1000_82543:
1304                 if(adapter->hw.media_type == e1000_media_type_copper) {
1305                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1306                          * Some PHY registers get corrupted at random, so
1307                          * attempt this 10 times.
1308                          */
1309                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1310                               count++ < 10);
1311                         if(count < 11)
1312                                 return 0;
1313                 }
1314                 break;
1315
1316         case e1000_82544:
1317         case e1000_82540:
1318         case e1000_82545:
1319         case e1000_82545_rev_3:
1320         case e1000_82546:
1321         case e1000_82546_rev_3:
1322         case e1000_82541:
1323         case e1000_82541_rev_2:
1324         case e1000_82547:
1325         case e1000_82547_rev_2:
1326         case e1000_82571:
1327         case e1000_82572:
1328         case e1000_82573:
1329                 return e1000_integrated_phy_loopback(adapter);
1330                 break;
1331
1332         default:
1333                 /* Default PHY loopback work is to read the MII
1334                  * control register and assert bit 14 (loopback mode).
1335                  */
1336                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1337                 phy_reg |= MII_CR_LOOPBACK;
1338                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1339                 return 0;
1340                 break;
1341         }
1342
1343         return 8;
1344 }
1345
1346 static int
1347 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1348 {
1349         struct e1000_hw *hw = &adapter->hw;
1350         uint32_t rctl;
1351
1352         if (hw->media_type == e1000_media_type_fiber ||
1353             hw->media_type == e1000_media_type_internal_serdes) {
1354                 switch (hw->mac_type) {
1355                 case e1000_82545:
1356                 case e1000_82546:
1357                 case e1000_82545_rev_3:
1358                 case e1000_82546_rev_3:
1359                         return e1000_set_phy_loopback(adapter);
1360                         break;
1361                 case e1000_82571:
1362                 case e1000_82572:
1363 #define E1000_SERDES_LB_ON 0x410
1364                         e1000_set_phy_loopback(adapter);
1365                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1366                         msec_delay(10);
1367                         return 0;
1368                         break;
1369                 default:
1370                         rctl = E1000_READ_REG(hw, RCTL);
1371                         rctl |= E1000_RCTL_LBM_TCVR;
1372                         E1000_WRITE_REG(hw, RCTL, rctl);
1373                         return 0;
1374                 }
1375         } else if (hw->media_type == e1000_media_type_copper)
1376                 return e1000_set_phy_loopback(adapter);
1377
1378         return 7;
1379 }
1380
1381 static void
1382 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1383 {
1384         struct e1000_hw *hw = &adapter->hw;
1385         uint32_t rctl;
1386         uint16_t phy_reg;
1387
1388         rctl = E1000_READ_REG(hw, RCTL);
1389         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1390         E1000_WRITE_REG(hw, RCTL, rctl);
1391
1392         switch (hw->mac_type) {
1393         case e1000_82571:
1394         case e1000_82572:
1395                 if (hw->media_type == e1000_media_type_fiber ||
1396                     hw->media_type == e1000_media_type_internal_serdes) {
1397 #define E1000_SERDES_LB_OFF 0x400
1398                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1399                         msec_delay(10);
1400                         break;
1401                 }
1402                 /* Fall Through */
1403         case e1000_82545:
1404         case e1000_82546:
1405         case e1000_82545_rev_3:
1406         case e1000_82546_rev_3:
1407         default:
1408                 hw->autoneg = TRUE;
1409                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1410                 if (phy_reg & MII_CR_LOOPBACK) {
1411                         phy_reg &= ~MII_CR_LOOPBACK;
1412                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1413                         e1000_phy_reset(hw);
1414                 }
1415                 break;
1416         }
1417 }
1418
1419 static void
1420 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1421 {
1422         memset(skb->data, 0xFF, frame_size);
1423         frame_size &= ~1;
1424         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1425         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1426         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1427 }
1428
1429 static int
1430 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1431 {
1432         frame_size &= ~1;
1433         if(*(skb->data + 3) == 0xFF) {
1434                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1435                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1436                         return 0;
1437                 }
1438         }
1439         return 13;
1440 }
1441
1442 static int
1443 e1000_run_loopback_test(struct e1000_adapter *adapter)
1444 {
1445         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1446         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1447         struct pci_dev *pdev = adapter->pdev;
1448         int i, j, k, l, lc, good_cnt, ret_val=0;
1449         unsigned long time;
1450
1451         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1452
1453         /* Calculate the loop count based on the largest descriptor ring 
1454          * The idea is to wrap the largest ring a number of times using 64
1455          * send/receive pairs during each loop
1456          */
1457
1458         if(rxdr->count <= txdr->count)
1459                 lc = ((txdr->count / 64) * 2) + 1;
1460         else
1461                 lc = ((rxdr->count / 64) * 2) + 1;
1462
1463         k = l = 0;
1464         for(j = 0; j <= lc; j++) { /* loop count loop */
1465                 for(i = 0; i < 64; i++) { /* send the packets */
1466                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1467                                         1024);
1468                         pci_dma_sync_single_for_device(pdev, 
1469                                         txdr->buffer_info[k].dma,
1470                                         txdr->buffer_info[k].length,
1471                                         PCI_DMA_TODEVICE);
1472                         if(unlikely(++k == txdr->count)) k = 0;
1473                 }
1474                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1475                 msec_delay(200);
1476                 time = jiffies; /* set the start time for the receive */
1477                 good_cnt = 0;
1478                 do { /* receive the sent packets */
1479                         pci_dma_sync_single_for_cpu(pdev, 
1480                                         rxdr->buffer_info[l].dma,
1481                                         rxdr->buffer_info[l].length,
1482                                         PCI_DMA_FROMDEVICE);
1483         
1484                         ret_val = e1000_check_lbtest_frame(
1485                                         rxdr->buffer_info[l].skb,
1486                                         1024);
1487                         if(!ret_val)
1488                                 good_cnt++;
1489                         if(unlikely(++l == rxdr->count)) l = 0;
1490                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1491                          * enough time to complete the receives, if it's 
1492                          * exceeded, break and error off
1493                          */
1494                 } while (good_cnt < 64 && jiffies < (time + 20));
1495                 if(good_cnt != 64) {
1496                         ret_val = 13; /* ret_val is the same as mis-compare */
1497                         break; 
1498                 }
1499                 if(jiffies >= (time + 2)) {
1500                         ret_val = 14; /* error code for time out error */
1501                         break;
1502                 }
1503         } /* end loop count loop */
1504         return ret_val;
1505 }
1506
1507 static int
1508 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1509 {
1510         /* PHY loopback cannot be performed if SoL/IDER
1511          * sessions are active */
1512         if (e1000_check_phy_reset_block(&adapter->hw)) {
1513                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1514                         "when SoL/IDER is active.\n");
1515                 *data = 0;
1516                 goto out;
1517         }
1518
1519         if ((*data = e1000_setup_desc_rings(adapter)))
1520                 goto out;
1521         if ((*data = e1000_setup_loopback_test(adapter)))
1522                 goto err_loopback;
1523         *data = e1000_run_loopback_test(adapter);
1524         e1000_loopback_cleanup(adapter);
1525
1526 err_loopback:
1527         e1000_free_desc_rings(adapter);
1528 out:
1529         return *data;
1530 }
1531
1532 static int
1533 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1534 {
1535         *data = 0;
1536         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1537                 int i = 0;
1538                 adapter->hw.serdes_link_down = TRUE;
1539
1540                 /* On some blade server designs, link establishment
1541                  * could take as long as 2-3 minutes */
1542                 do {
1543                         e1000_check_for_link(&adapter->hw);
1544                         if (adapter->hw.serdes_link_down == FALSE)
1545                                 return *data;
1546                         msec_delay(20);
1547                 } while (i++ < 3750);
1548
1549                 *data = 1;
1550         } else {
1551                 e1000_check_for_link(&adapter->hw);
1552                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1553                         msec_delay(4000);
1554
1555                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1556                         *data = 1;
1557                 }
1558         }
1559         return *data;
1560 }
1561
1562 static int 
1563 e1000_diag_test_count(struct net_device *netdev)
1564 {
1565         return E1000_TEST_LEN;
1566 }
1567
1568 static void
1569 e1000_diag_test(struct net_device *netdev,
1570                    struct ethtool_test *eth_test, uint64_t *data)
1571 {
1572         struct e1000_adapter *adapter = netdev_priv(netdev);
1573         boolean_t if_running = netif_running(netdev);
1574
1575         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1576                 /* Offline tests */
1577
1578                 /* save speed, duplex, autoneg settings */
1579                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1580                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1581                 uint8_t autoneg = adapter->hw.autoneg;
1582
1583                 /* Link test performed before hardware reset so autoneg doesn't
1584                  * interfere with test result */
1585                 if(e1000_link_test(adapter, &data[4]))
1586                         eth_test->flags |= ETH_TEST_FL_FAILED;
1587
1588                 if(if_running)
1589                         e1000_down(adapter);
1590                 else
1591                         e1000_reset(adapter);
1592
1593                 if(e1000_reg_test(adapter, &data[0]))
1594                         eth_test->flags |= ETH_TEST_FL_FAILED;
1595
1596                 e1000_reset(adapter);
1597                 if(e1000_eeprom_test(adapter, &data[1]))
1598                         eth_test->flags |= ETH_TEST_FL_FAILED;
1599
1600                 e1000_reset(adapter);
1601                 if(e1000_intr_test(adapter, &data[2]))
1602                         eth_test->flags |= ETH_TEST_FL_FAILED;
1603
1604                 e1000_reset(adapter);
1605                 if(e1000_loopback_test(adapter, &data[3]))
1606                         eth_test->flags |= ETH_TEST_FL_FAILED;
1607
1608                 /* restore speed, duplex, autoneg settings */
1609                 adapter->hw.autoneg_advertised = autoneg_advertised;
1610                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1611                 adapter->hw.autoneg = autoneg;
1612
1613                 e1000_reset(adapter);
1614                 if(if_running)
1615                         e1000_up(adapter);
1616         } else {
1617                 /* Online tests */
1618                 if(e1000_link_test(adapter, &data[4]))
1619                         eth_test->flags |= ETH_TEST_FL_FAILED;
1620
1621                 /* Offline tests aren't run; pass by default */
1622                 data[0] = 0;
1623                 data[1] = 0;
1624                 data[2] = 0;
1625                 data[3] = 0;
1626         }
1627         msleep_interruptible(4 * 1000);
1628 }
1629
1630 static void
1631 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1632 {
1633         struct e1000_adapter *adapter = netdev_priv(netdev);
1634         struct e1000_hw *hw = &adapter->hw;
1635
1636         switch(adapter->hw.device_id) {
1637         case E1000_DEV_ID_82542:
1638         case E1000_DEV_ID_82543GC_FIBER:
1639         case E1000_DEV_ID_82543GC_COPPER:
1640         case E1000_DEV_ID_82544EI_FIBER:
1641         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1642         case E1000_DEV_ID_82545EM_FIBER:
1643         case E1000_DEV_ID_82545EM_COPPER:
1644                 wol->supported = 0;
1645                 wol->wolopts   = 0;
1646                 return;
1647
1648         case E1000_DEV_ID_82546EB_FIBER:
1649         case E1000_DEV_ID_82546GB_FIBER:
1650         case E1000_DEV_ID_82571EB_FIBER:
1651                 /* Wake events only supported on port A for dual fiber */
1652                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1653                         wol->supported = 0;
1654                         wol->wolopts   = 0;
1655                         return;
1656                 }
1657                 /* Fall Through */
1658
1659         default:
1660                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1661                                  WAKE_BCAST | WAKE_MAGIC;
1662
1663                 wol->wolopts = 0;
1664                 if(adapter->wol & E1000_WUFC_EX)
1665                         wol->wolopts |= WAKE_UCAST;
1666                 if(adapter->wol & E1000_WUFC_MC)
1667                         wol->wolopts |= WAKE_MCAST;
1668                 if(adapter->wol & E1000_WUFC_BC)
1669                         wol->wolopts |= WAKE_BCAST;
1670                 if(adapter->wol & E1000_WUFC_MAG)
1671                         wol->wolopts |= WAKE_MAGIC;
1672                 return;
1673         }
1674 }
1675
1676 static int
1677 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1678 {
1679         struct e1000_adapter *adapter = netdev_priv(netdev);
1680         struct e1000_hw *hw = &adapter->hw;
1681
1682         switch(adapter->hw.device_id) {
1683         case E1000_DEV_ID_82542:
1684         case E1000_DEV_ID_82543GC_FIBER:
1685         case E1000_DEV_ID_82543GC_COPPER:
1686         case E1000_DEV_ID_82544EI_FIBER:
1687         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1688         case E1000_DEV_ID_82545EM_FIBER:
1689         case E1000_DEV_ID_82545EM_COPPER:
1690                 return wol->wolopts ? -EOPNOTSUPP : 0;
1691
1692         case E1000_DEV_ID_82546EB_FIBER:
1693         case E1000_DEV_ID_82546GB_FIBER:
1694         case E1000_DEV_ID_82571EB_FIBER:
1695                 /* Wake events only supported on port A for dual fiber */
1696                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1697                         return wol->wolopts ? -EOPNOTSUPP : 0;
1698                 /* Fall Through */
1699
1700         default:
1701                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1702                         return -EOPNOTSUPP;
1703
1704                 adapter->wol = 0;
1705
1706                 if(wol->wolopts & WAKE_UCAST)
1707                         adapter->wol |= E1000_WUFC_EX;
1708                 if(wol->wolopts & WAKE_MCAST)
1709                         adapter->wol |= E1000_WUFC_MC;
1710                 if(wol->wolopts & WAKE_BCAST)
1711                         adapter->wol |= E1000_WUFC_BC;
1712                 if(wol->wolopts & WAKE_MAGIC)
1713                         adapter->wol |= E1000_WUFC_MAG;
1714         }
1715
1716         return 0;
1717 }
1718
1719 /* toggle LED 4 times per second = 2 "blinks" per second */
1720 #define E1000_ID_INTERVAL       (HZ/4)
1721
1722 /* bit defines for adapter->led_status */
1723 #define E1000_LED_ON            0
1724
1725 static void
1726 e1000_led_blink_callback(unsigned long data)
1727 {
1728         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1729
1730         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1731                 e1000_led_off(&adapter->hw);
1732         else
1733                 e1000_led_on(&adapter->hw);
1734
1735         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1736 }
1737
1738 static int
1739 e1000_phys_id(struct net_device *netdev, uint32_t data)
1740 {
1741         struct e1000_adapter *adapter = netdev_priv(netdev);
1742
1743         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1744                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1745
1746         if(adapter->hw.mac_type < e1000_82571) {
1747                 if(!adapter->blink_timer.function) {
1748                         init_timer(&adapter->blink_timer);
1749                         adapter->blink_timer.function = e1000_led_blink_callback;
1750                         adapter->blink_timer.data = (unsigned long) adapter;
1751                 }
1752                 e1000_setup_led(&adapter->hw);
1753                 mod_timer(&adapter->blink_timer, jiffies);
1754                 msleep_interruptible(data * 1000);
1755                 del_timer_sync(&adapter->blink_timer);
1756         } else if (adapter->hw.mac_type < e1000_82573) {
1757                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1758                         (E1000_LEDCTL_LED2_BLINK_RATE |
1759                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1760                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1761                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1762                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1763                 msleep_interruptible(data * 1000);
1764         } else {
1765                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1766                         (E1000_LEDCTL_LED2_BLINK_RATE |
1767                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1768                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1769                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1770                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1771                 msleep_interruptible(data * 1000);
1772         }
1773
1774         e1000_led_off(&adapter->hw);
1775         clear_bit(E1000_LED_ON, &adapter->led_status);
1776         e1000_cleanup_led(&adapter->hw);
1777
1778         return 0;
1779 }
1780
1781 static int
1782 e1000_nway_reset(struct net_device *netdev)
1783 {
1784         struct e1000_adapter *adapter = netdev_priv(netdev);
1785         if(netif_running(netdev)) {
1786                 e1000_down(adapter);
1787                 e1000_up(adapter);
1788         }
1789         return 0;
1790 }
1791
1792 static int 
1793 e1000_get_stats_count(struct net_device *netdev)
1794 {
1795         return E1000_STATS_LEN;
1796 }
1797
1798 static void 
1799 e1000_get_ethtool_stats(struct net_device *netdev, 
1800                 struct ethtool_stats *stats, uint64_t *data)
1801 {
1802         struct e1000_adapter *adapter = netdev_priv(netdev);
1803 #ifdef CONFIG_E1000_MQ
1804         uint64_t *queue_stat;
1805         int stat_count = sizeof(struct e1000_queue_stats) / sizeof(uint64_t);
1806         int j, k;
1807 #endif
1808         int i;
1809
1810         e1000_update_stats(adapter);
1811         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1812                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1813                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1814                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1815         }
1816 #ifdef CONFIG_E1000_MQ
1817         for (j = 0; j < adapter->num_tx_queues; j++) {
1818                 queue_stat = (uint64_t *)&adapter->tx_ring[j].tx_stats;
1819                 for (k = 0; k < stat_count; k++)
1820                         data[i + k] = queue_stat[k];
1821                 i += k;
1822         }
1823         for (j = 0; j < adapter->num_rx_queues; j++) {
1824                 queue_stat = (uint64_t *)&adapter->rx_ring[j].rx_stats;
1825                 for (k = 0; k < stat_count; k++)
1826                         data[i + k] = queue_stat[k];
1827                 i += k;
1828         }
1829 #endif
1830 /*      BUG_ON(i != E1000_STATS_LEN); */
1831 }
1832
1833 static void 
1834 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1835 {
1836 #ifdef CONFIG_E1000_MQ
1837         struct e1000_adapter *adapter = netdev_priv(netdev);
1838 #endif
1839         uint8_t *p = data;
1840         int i;
1841
1842         switch(stringset) {
1843         case ETH_SS_TEST:
1844                 memcpy(data, *e1000_gstrings_test, 
1845                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1846                 break;
1847         case ETH_SS_STATS:
1848                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1849                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1850                                ETH_GSTRING_LEN);
1851                         p += ETH_GSTRING_LEN;
1852                 }
1853 #ifdef CONFIG_E1000_MQ
1854                 for (i = 0; i < adapter->num_tx_queues; i++) {
1855                         sprintf(p, "tx_queue_%u_packets", i);
1856                         p += ETH_GSTRING_LEN;
1857                         sprintf(p, "tx_queue_%u_bytes", i);
1858                         p += ETH_GSTRING_LEN;
1859                 }
1860                 for (i = 0; i < adapter->num_rx_queues; i++) {
1861                         sprintf(p, "rx_queue_%u_packets", i);
1862                         p += ETH_GSTRING_LEN;
1863                         sprintf(p, "rx_queue_%u_bytes", i);
1864                         p += ETH_GSTRING_LEN;
1865                 }
1866 #endif
1867 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1868                 break;
1869         }
1870 }
1871
1872 static struct ethtool_ops e1000_ethtool_ops = {
1873         .get_settings           = e1000_get_settings,
1874         .set_settings           = e1000_set_settings,
1875         .get_drvinfo            = e1000_get_drvinfo,
1876         .get_regs_len           = e1000_get_regs_len,
1877         .get_regs               = e1000_get_regs,
1878         .get_wol                = e1000_get_wol,
1879         .set_wol                = e1000_set_wol,
1880         .get_msglevel           = e1000_get_msglevel,
1881         .set_msglevel           = e1000_set_msglevel,
1882         .nway_reset             = e1000_nway_reset,
1883         .get_link               = ethtool_op_get_link,
1884         .get_eeprom_len         = e1000_get_eeprom_len,
1885         .get_eeprom             = e1000_get_eeprom,
1886         .set_eeprom             = e1000_set_eeprom,
1887         .get_ringparam          = e1000_get_ringparam,
1888         .set_ringparam          = e1000_set_ringparam,
1889         .get_pauseparam         = e1000_get_pauseparam,
1890         .set_pauseparam         = e1000_set_pauseparam,
1891         .get_rx_csum            = e1000_get_rx_csum,
1892         .set_rx_csum            = e1000_set_rx_csum,
1893         .get_tx_csum            = e1000_get_tx_csum,
1894         .set_tx_csum            = e1000_set_tx_csum,
1895         .get_sg                 = ethtool_op_get_sg,
1896         .set_sg                 = ethtool_op_set_sg,
1897 #ifdef NETIF_F_TSO
1898         .get_tso                = ethtool_op_get_tso,
1899         .set_tso                = e1000_set_tso,
1900 #endif
1901         .self_test_count        = e1000_diag_test_count,
1902         .self_test              = e1000_diag_test,
1903         .get_strings            = e1000_get_strings,
1904         .phys_id                = e1000_phys_id,
1905         .get_stats_count        = e1000_get_stats_count,
1906         .get_ethtool_stats      = e1000_get_ethtool_stats,
1907         .get_perm_addr          = ethtool_op_get_perm_addr,
1908 };
1909
1910 void e1000_set_ethtool_ops(struct net_device *netdev)
1911 {
1912         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1913 }