2 * Intel IXP4xx Ethernet driver for Linux
4 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
10 * Ethernet port config (0x00 is not present on IXP42X):
12 * logical port 0x00 0x10 0x20
13 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
14 * physical PortId 2 0 1
16 * RX-free queue 26 27 28
17 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
21 * bits 0 -> 1 - NPE ID (RX and TX-done)
22 * bits 0 -> 2 - priority (TX, per 802.1D)
23 * bits 3 -> 4 - port ID (user-set?)
24 * bits 5 -> 31 - physical descriptor address
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
32 #include <linux/kernel.h>
33 #include <linux/mii.h>
34 #include <linux/platform_device.h>
36 #include <mach/qmgr.h>
38 #define DEBUG_QUEUES 0
42 #define DEBUG_PKT_BYTES 0
46 #define DRV_NAME "ixp4xx_eth"
50 #define RX_DESCS 64 /* also length of all RX queues */
51 #define TX_DESCS 16 /* also length of all TX queues */
52 #define TXDONE_QUEUE_LEN 64 /* dwords */
54 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
55 #define REGS_SIZE 0x1000
56 #define MAX_MRU 1536 /* 0x600 */
57 #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
59 #define NAPI_WEIGHT 16
60 #define MDIO_INTERVAL (3 * HZ)
61 #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
62 #define MAX_MII_RESET_RETRIES 100 /* mdio_read() cycles, typically 4 */
63 #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
65 #define NPE_ID(port_id) ((port_id) >> 4)
66 #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
67 #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
68 #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
69 #define TXDONE_QUEUE 31
71 /* TX Control Registers */
72 #define TX_CNTRL0_TX_EN 0x01
73 #define TX_CNTRL0_HALFDUPLEX 0x02
74 #define TX_CNTRL0_RETRY 0x04
75 #define TX_CNTRL0_PAD_EN 0x08
76 #define TX_CNTRL0_APPEND_FCS 0x10
77 #define TX_CNTRL0_2DEFER 0x20
78 #define TX_CNTRL0_RMII 0x40 /* reduced MII */
79 #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
81 /* RX Control Registers */
82 #define RX_CNTRL0_RX_EN 0x01
83 #define RX_CNTRL0_PADSTRIP_EN 0x02
84 #define RX_CNTRL0_SEND_FCS 0x04
85 #define RX_CNTRL0_PAUSE_EN 0x08
86 #define RX_CNTRL0_LOOP_EN 0x10
87 #define RX_CNTRL0_ADDR_FLTR_EN 0x20
88 #define RX_CNTRL0_RX_RUNT_EN 0x40
89 #define RX_CNTRL0_BCAST_DIS 0x80
90 #define RX_CNTRL1_DEFER_EN 0x01
92 /* Core Control Register */
93 #define CORE_RESET 0x01
94 #define CORE_RX_FIFO_FLUSH 0x02
95 #define CORE_TX_FIFO_FLUSH 0x04
96 #define CORE_SEND_JAM 0x08
97 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
99 #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
100 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
102 #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
103 #define DEFAULT_CORE_CNTRL CORE_MDC_EN
106 /* NPE message codes */
107 #define NPE_GETSTATUS 0x00
108 #define NPE_EDB_SETPORTADDRESS 0x01
109 #define NPE_EDB_GETMACADDRESSDATABASE 0x02
110 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
111 #define NPE_GETSTATS 0x04
112 #define NPE_RESETSTATS 0x05
113 #define NPE_SETMAXFRAMELENGTHS 0x06
114 #define NPE_VLAN_SETRXTAGMODE 0x07
115 #define NPE_VLAN_SETDEFAULTRXVID 0x08
116 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
117 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
118 #define NPE_VLAN_SETRXQOSENTRY 0x0B
119 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
120 #define NPE_STP_SETBLOCKINGSTATE 0x0D
121 #define NPE_FW_SETFIREWALLMODE 0x0E
122 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
123 #define NPE_PC_SETAPMACTABLE 0x11
124 #define NPE_SETLOOPBACK_MODE 0x12
125 #define NPE_PC_SETBSSIDTABLE 0x13
126 #define NPE_ADDRESS_FILTER_CONFIG 0x14
127 #define NPE_APPENDFCSCONFIG 0x15
128 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
129 #define NPE_MAC_RECOVERY_START 0x17
133 typedef struct sk_buff buffer_t;
134 #define free_buffer dev_kfree_skb
135 #define free_buffer_irq dev_kfree_skb_irq
137 typedef void buffer_t;
138 #define free_buffer kfree
139 #define free_buffer_irq kfree
143 u32 tx_control[2], __res1[2]; /* 000 */
144 u32 rx_control[2], __res2[2]; /* 010 */
145 u32 random_seed, __res3[3]; /* 020 */
146 u32 partial_empty_threshold, __res4; /* 030 */
147 u32 partial_full_threshold, __res5; /* 038 */
148 u32 tx_start_bytes, __res6[3]; /* 040 */
149 u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
150 u32 tx_2part_deferral[2], __res8[2]; /* 060 */
151 u32 slot_time, __res9[3]; /* 070 */
152 u32 mdio_command[4]; /* 080 */
153 u32 mdio_status[4]; /* 090 */
154 u32 mcast_mask[6], __res10[2]; /* 0A0 */
155 u32 mcast_addr[6], __res11[2]; /* 0C0 */
156 u32 int_clock_threshold, __res12[3]; /* 0E0 */
157 u32 hw_addr[6], __res13[61]; /* 0F0 */
158 u32 core_control; /* 1FC */
162 struct resource *mem_res;
163 struct eth_regs __iomem *regs;
165 struct net_device *netdev;
166 struct napi_struct napi;
167 struct net_device_stats stat;
168 struct mii_if_info mii;
169 struct delayed_work mdio_thread;
170 struct eth_plat_info *plat;
171 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
172 struct desc *desc_tab; /* coherent */
174 int id; /* logical port ID */
178 /* NPE message structure */
181 u8 cmd, eth_id, byte2, byte3;
182 u8 byte4, byte5, byte6, byte7;
184 u8 byte3, byte2, eth_id, cmd;
185 u8 byte7, byte6, byte5, byte4;
189 /* Ethernet packet descriptor */
191 u32 next; /* pointer to next buffer, unused */
194 u16 buf_len; /* buffer length */
195 u16 pkt_len; /* packet length */
196 u32 data; /* pointer to data buffer in RAM */
204 u16 pkt_len; /* packet length */
205 u16 buf_len; /* buffer length */
206 u32 data; /* pointer to data buffer in RAM */
216 u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
217 u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
218 u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
220 u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
221 u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
222 u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
227 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
228 (n) * sizeof(struct desc))
229 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
231 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
232 ((n) + RX_DESCS) * sizeof(struct desc))
233 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
236 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
239 for (i = 0; i < cnt; i++)
240 dest[i] = swab32(src[i]);
244 static spinlock_t mdio_lock;
245 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
246 static int ports_open;
247 static struct port *npe_port_tab[MAX_NPES];
248 static struct dma_pool *dma_pool;
251 static u16 mdio_cmd(struct net_device *dev, int phy_id, int location,
256 if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
257 printk(KERN_ERR "%s: MII not ready to transmit\n", dev->name);
262 __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
263 __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
265 __raw_writel(((phy_id << 5) | location) & 0xFF,
266 &mdio_regs->mdio_command[2]);
267 __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
268 &mdio_regs->mdio_command[3]);
270 while ((cycles < MAX_MDIO_RETRIES) &&
271 (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
276 if (cycles == MAX_MDIO_RETRIES) {
277 printk(KERN_ERR "%s: MII write failed\n", dev->name);
282 printk(KERN_DEBUG "%s: mdio_cmd() took %i cycles\n", dev->name,
289 if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
290 printk(KERN_ERR "%s: MII read failed\n", dev->name);
294 return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
295 (__raw_readl(&mdio_regs->mdio_status[1]) << 8);
298 static int mdio_read(struct net_device *dev, int phy_id, int location)
303 spin_lock_irqsave(&mdio_lock, flags);
304 val = mdio_cmd(dev, phy_id, location, 0, 0);
305 spin_unlock_irqrestore(&mdio_lock, flags);
309 static void mdio_write(struct net_device *dev, int phy_id, int location,
314 spin_lock_irqsave(&mdio_lock, flags);
315 mdio_cmd(dev, phy_id, location, 1, val);
316 spin_unlock_irqrestore(&mdio_lock, flags);
319 static void phy_reset(struct net_device *dev, int phy_id)
321 struct port *port = netdev_priv(dev);
324 mdio_write(dev, phy_id, MII_BMCR, port->mii_bmcr | BMCR_RESET);
326 while (cycles < MAX_MII_RESET_RETRIES) {
327 if (!(mdio_read(dev, phy_id, MII_BMCR) & BMCR_RESET)) {
329 printk(KERN_DEBUG "%s: phy_reset() took %i cycles\n",
338 printk(KERN_ERR "%s: MII reset failed\n", dev->name);
341 static void eth_set_duplex(struct port *port)
343 if (port->mii.full_duplex)
344 __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
345 &port->regs->tx_control[0]);
347 __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
348 &port->regs->tx_control[0]);
352 static void phy_check_media(struct port *port, int init)
354 if (mii_check_media(&port->mii, 1, init))
355 eth_set_duplex(port);
356 if (port->mii.force_media) { /* mii_check_media() doesn't work */
357 struct net_device *dev = port->netdev;
358 int cur_link = mii_link_ok(&port->mii);
359 int prev_link = netif_carrier_ok(dev);
361 if (!prev_link && cur_link) {
362 printk(KERN_INFO "%s: link up\n", dev->name);
363 netif_carrier_on(dev);
364 } else if (prev_link && !cur_link) {
365 printk(KERN_INFO "%s: link down\n", dev->name);
366 netif_carrier_off(dev);
372 static void mdio_thread(struct work_struct *work)
374 struct port *port = container_of(work, struct port, mdio_thread.work);
376 phy_check_media(port, 0);
377 schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL);
381 static inline void debug_pkt(struct net_device *dev, const char *func,
387 printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
388 for (i = 0; i < len; i++) {
389 if (i >= DEBUG_PKT_BYTES)
392 ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
400 static inline void debug_desc(u32 phys, struct desc *desc)
403 printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
404 " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
405 phys, desc->next, desc->buf_len, desc->pkt_len,
406 desc->data, desc->dest_id, desc->src_id, desc->flags,
407 desc->qos, desc->padlen, desc->vlan_tci,
408 desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
409 desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
410 desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
411 desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
415 static inline void debug_queue(unsigned int queue, int is_get, u32 phys)
422 { TX_QUEUE(0x10), "TX#0 " },
423 { TX_QUEUE(0x20), "TX#1 " },
424 { TX_QUEUE(0x00), "TX#2 " },
425 { RXFREE_QUEUE(0x10), "RX-free#0 " },
426 { RXFREE_QUEUE(0x20), "RX-free#1 " },
427 { RXFREE_QUEUE(0x00), "RX-free#2 " },
428 { TXDONE_QUEUE, "TX-done " },
432 for (i = 0; i < ARRAY_SIZE(names); i++)
433 if (names[i].queue == queue)
436 printk(KERN_DEBUG "Queue %i %s%s %X\n", queue,
437 i < ARRAY_SIZE(names) ? names[i].name : "",
438 is_get ? "->" : "<-", phys);
442 static inline u32 queue_get_entry(unsigned int queue)
444 u32 phys = qmgr_get_entry(queue);
445 debug_queue(queue, 1, phys);
449 static inline int queue_get_desc(unsigned int queue, struct port *port,
452 u32 phys, tab_phys, n_desc;
455 if (!(phys = queue_get_entry(queue)))
458 phys &= ~0x1F; /* mask out non-address bits */
459 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
460 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
461 n_desc = (phys - tab_phys) / sizeof(struct desc);
462 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
463 debug_desc(phys, &tab[n_desc]);
464 BUG_ON(tab[n_desc].next);
468 static inline void queue_put_desc(unsigned int queue, u32 phys,
471 debug_queue(queue, 0, phys);
472 debug_desc(phys, desc);
474 qmgr_put_entry(queue, phys);
475 BUG_ON(qmgr_stat_overflow(queue));
479 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
482 dma_unmap_single(&port->netdev->dev, desc->data,
483 desc->buf_len, DMA_TO_DEVICE);
485 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
486 ALIGN((desc->data & 3) + desc->buf_len, 4),
492 static void eth_rx_irq(void *pdev)
494 struct net_device *dev = pdev;
495 struct port *port = netdev_priv(dev);
498 printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
500 qmgr_disable_irq(port->plat->rxq);
501 netif_rx_schedule(dev, &port->napi);
504 static int eth_poll(struct napi_struct *napi, int budget)
506 struct port *port = container_of(napi, struct port, napi);
507 struct net_device *dev = port->netdev;
508 unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
512 printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
515 while (received < budget) {
520 struct sk_buff *temp;
524 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
526 printk(KERN_DEBUG "%s: eth_poll netif_rx_complete\n",
529 netif_rx_complete(dev, napi);
530 qmgr_enable_irq(rxq);
531 if (!qmgr_stat_empty(rxq) &&
532 netif_rx_reschedule(dev, napi)) {
534 printk(KERN_DEBUG "%s: eth_poll"
535 " netif_rx_reschedule successed\n",
538 qmgr_disable_irq(rxq);
542 printk(KERN_DEBUG "%s: eth_poll all done\n",
545 return received; /* all work done */
548 desc = rx_desc_ptr(port, n);
551 if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
552 phys = dma_map_single(&dev->dev, skb->data,
553 RX_BUFF_SIZE, DMA_FROM_DEVICE);
554 if (dma_mapping_error(&dev->dev, phys)) {
560 skb = netdev_alloc_skb(dev,
561 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
565 port->stat.rx_dropped++;
566 /* put the desc back on RX-ready queue */
567 desc->buf_len = MAX_MRU;
569 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
573 /* process received frame */
576 skb = port->rx_buff_tab[n];
577 dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
578 RX_BUFF_SIZE, DMA_FROM_DEVICE);
580 dma_sync_single(&dev->dev, desc->data - NET_IP_ALIGN,
581 RX_BUFF_SIZE, DMA_FROM_DEVICE);
582 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
583 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
585 skb_reserve(skb, NET_IP_ALIGN);
586 skb_put(skb, desc->pkt_len);
588 debug_pkt(dev, "eth_poll", skb->data, skb->len);
590 skb->protocol = eth_type_trans(skb, dev);
591 dev->last_rx = jiffies;
592 port->stat.rx_packets++;
593 port->stat.rx_bytes += skb->len;
594 netif_receive_skb(skb);
596 /* put the new buffer on RX-free queue */
598 port->rx_buff_tab[n] = temp;
599 desc->data = phys + NET_IP_ALIGN;
601 desc->buf_len = MAX_MRU;
603 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
608 printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
610 return received; /* not all work done */
614 static void eth_txdone_irq(void *unused)
619 printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
621 while ((phys = queue_get_entry(TXDONE_QUEUE)) != 0) {
628 BUG_ON(npe_id >= MAX_NPES);
629 port = npe_port_tab[npe_id];
631 phys &= ~0x1F; /* mask out non-address bits */
632 n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
633 BUG_ON(n_desc >= TX_DESCS);
634 desc = tx_desc_ptr(port, n_desc);
635 debug_desc(phys, desc);
637 if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
638 port->stat.tx_packets++;
639 port->stat.tx_bytes += desc->pkt_len;
641 dma_unmap_tx(port, desc);
643 printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
644 port->netdev->name, port->tx_buff_tab[n_desc]);
646 free_buffer_irq(port->tx_buff_tab[n_desc]);
647 port->tx_buff_tab[n_desc] = NULL;
650 start = qmgr_stat_empty(port->plat->txreadyq);
651 queue_put_desc(port->plat->txreadyq, phys, desc);
654 printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
657 netif_wake_queue(port->netdev);
662 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
664 struct port *port = netdev_priv(dev);
665 unsigned int txreadyq = port->plat->txreadyq;
666 int len, offset, bytes, n;
672 printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
675 if (unlikely(skb->len > MAX_MRU)) {
677 port->stat.tx_errors++;
681 debug_pkt(dev, "eth_xmit", skb->data, skb->len);
685 offset = 0; /* no need to keep alignment */
689 offset = (int)skb->data & 3; /* keep 32-bit alignment */
690 bytes = ALIGN(offset + len, 4);
691 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
693 port->stat.tx_dropped++;
696 memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
700 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
701 if (dma_mapping_error(&dev->dev, phys)) {
707 port->stat.tx_dropped++;
711 n = queue_get_desc(txreadyq, port, 1);
713 desc = tx_desc_ptr(port, n);
716 port->tx_buff_tab[n] = skb;
718 port->tx_buff_tab[n] = mem;
720 desc->data = phys + offset;
721 desc->buf_len = desc->pkt_len = len;
723 /* NPE firmware pads short frames with zeros internally */
725 queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
726 dev->trans_start = jiffies;
728 if (qmgr_stat_empty(txreadyq)) {
730 printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
732 netif_stop_queue(dev);
733 /* we could miss TX ready interrupt */
734 if (!qmgr_stat_empty(txreadyq)) {
736 printk(KERN_DEBUG "%s: eth_xmit ready again\n",
739 netif_wake_queue(dev);
744 printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
750 static struct net_device_stats *eth_stats(struct net_device *dev)
752 struct port *port = netdev_priv(dev);
756 static void eth_set_mcast_list(struct net_device *dev)
758 struct port *port = netdev_priv(dev);
759 struct dev_mc_list *mclist = dev->mc_list;
760 u8 diffs[ETH_ALEN], *addr;
761 int cnt = dev->mc_count, i;
763 if ((dev->flags & IFF_PROMISC) || !mclist || !cnt) {
764 __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
765 &port->regs->rx_control[0]);
769 memset(diffs, 0, ETH_ALEN);
770 addr = mclist->dmi_addr; /* first MAC address */
772 while (--cnt && (mclist = mclist->next))
773 for (i = 0; i < ETH_ALEN; i++)
774 diffs[i] |= addr[i] ^ mclist->dmi_addr[i];
776 for (i = 0; i < ETH_ALEN; i++) {
777 __raw_writel(addr[i], &port->regs->mcast_addr[i]);
778 __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
781 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
782 &port->regs->rx_control[0]);
786 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
788 struct port *port = netdev_priv(dev);
789 unsigned int duplex_chg;
792 if (!netif_running(dev))
794 err = generic_mii_ioctl(&port->mii, if_mii(req), cmd, &duplex_chg);
796 eth_set_duplex(port);
801 static int request_queues(struct port *port)
805 err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0);
809 err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0);
813 err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0);
817 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0);
821 /* TX-done queue handles skbs sent out by the NPEs */
823 err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0);
830 qmgr_release_queue(port->plat->txreadyq);
832 qmgr_release_queue(TX_QUEUE(port->id));
834 qmgr_release_queue(port->plat->rxq);
836 qmgr_release_queue(RXFREE_QUEUE(port->id));
837 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
842 static void release_queues(struct port *port)
844 qmgr_release_queue(RXFREE_QUEUE(port->id));
845 qmgr_release_queue(port->plat->rxq);
846 qmgr_release_queue(TX_QUEUE(port->id));
847 qmgr_release_queue(port->plat->txreadyq);
850 qmgr_release_queue(TXDONE_QUEUE);
853 static int init_queues(struct port *port)
858 if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
859 POOL_ALLOC_SIZE, 32, 0)))
862 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
863 &port->desc_tab_phys)))
865 memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
866 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
867 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
869 /* Setup RX buffers */
870 for (i = 0; i < RX_DESCS; i++) {
871 struct desc *desc = rx_desc_ptr(port, i);
872 buffer_t *buff; /* skb or kmalloc()ated memory */
875 if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
879 if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
883 desc->buf_len = MAX_MRU;
884 desc->data = dma_map_single(&port->netdev->dev, data,
885 RX_BUFF_SIZE, DMA_FROM_DEVICE);
886 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
890 desc->data += NET_IP_ALIGN;
891 port->rx_buff_tab[i] = buff;
897 static void destroy_queues(struct port *port)
901 if (port->desc_tab) {
902 for (i = 0; i < RX_DESCS; i++) {
903 struct desc *desc = rx_desc_ptr(port, i);
904 buffer_t *buff = port->rx_buff_tab[i];
906 dma_unmap_single(&port->netdev->dev,
907 desc->data - NET_IP_ALIGN,
908 RX_BUFF_SIZE, DMA_FROM_DEVICE);
912 for (i = 0; i < TX_DESCS; i++) {
913 struct desc *desc = tx_desc_ptr(port, i);
914 buffer_t *buff = port->tx_buff_tab[i];
916 dma_unmap_tx(port, desc);
920 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
921 port->desc_tab = NULL;
924 if (!ports_open && dma_pool) {
925 dma_pool_destroy(dma_pool);
930 static int eth_open(struct net_device *dev)
932 struct port *port = netdev_priv(dev);
933 struct npe *npe = port->npe;
937 if (!npe_running(npe)) {
938 err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
942 if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
943 printk(KERN_ERR "%s: %s not responding\n", dev->name,
949 mdio_write(dev, port->plat->phy, MII_BMCR, port->mii_bmcr);
951 memset(&msg, 0, sizeof(msg));
952 msg.cmd = NPE_VLAN_SETRXQOSENTRY;
953 msg.eth_id = port->id;
954 msg.byte5 = port->plat->rxq | 0x80;
955 msg.byte7 = port->plat->rxq << 4;
956 for (i = 0; i < 8; i++) {
958 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
962 msg.cmd = NPE_EDB_SETPORTADDRESS;
963 msg.eth_id = PHYSICAL_ID(port->id);
964 msg.byte2 = dev->dev_addr[0];
965 msg.byte3 = dev->dev_addr[1];
966 msg.byte4 = dev->dev_addr[2];
967 msg.byte5 = dev->dev_addr[3];
968 msg.byte6 = dev->dev_addr[4];
969 msg.byte7 = dev->dev_addr[5];
970 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
973 memset(&msg, 0, sizeof(msg));
974 msg.cmd = NPE_FW_SETFIREWALLMODE;
975 msg.eth_id = port->id;
976 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
979 if ((err = request_queues(port)) != 0)
982 if ((err = init_queues(port)) != 0) {
983 destroy_queues(port);
984 release_queues(port);
988 for (i = 0; i < ETH_ALEN; i++)
989 __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
990 __raw_writel(0x08, &port->regs->random_seed);
991 __raw_writel(0x12, &port->regs->partial_empty_threshold);
992 __raw_writel(0x30, &port->regs->partial_full_threshold);
993 __raw_writel(0x08, &port->regs->tx_start_bytes);
994 __raw_writel(0x15, &port->regs->tx_deferral);
995 __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
996 __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
997 __raw_writel(0x80, &port->regs->slot_time);
998 __raw_writel(0x01, &port->regs->int_clock_threshold);
1000 /* Populate queues with buffers, no failure after this point */
1001 for (i = 0; i < TX_DESCS; i++)
1002 queue_put_desc(port->plat->txreadyq,
1003 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1005 for (i = 0; i < RX_DESCS; i++)
1006 queue_put_desc(RXFREE_QUEUE(port->id),
1007 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1009 __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1010 __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1011 __raw_writel(0, &port->regs->rx_control[1]);
1012 __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1014 napi_enable(&port->napi);
1015 phy_check_media(port, 1);
1016 eth_set_mcast_list(dev);
1017 netif_start_queue(dev);
1018 schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL);
1020 qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1023 qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1024 eth_txdone_irq, NULL);
1025 qmgr_enable_irq(TXDONE_QUEUE);
1028 /* we may already have RX data, enables IRQ */
1029 netif_rx_schedule(dev, &port->napi);
1033 static int eth_close(struct net_device *dev)
1035 struct port *port = netdev_priv(dev);
1037 int buffs = RX_DESCS; /* allocated RX buffers */
1041 qmgr_disable_irq(port->plat->rxq);
1042 napi_disable(&port->napi);
1043 netif_stop_queue(dev);
1045 while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1048 memset(&msg, 0, sizeof(msg));
1049 msg.cmd = NPE_SETLOOPBACK_MODE;
1050 msg.eth_id = port->id;
1052 if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1053 printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1056 do { /* drain RX buffers */
1057 while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1061 if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1062 /* we have to inject some packet */
1065 int n = queue_get_desc(port->plat->txreadyq, port, 1);
1067 desc = tx_desc_ptr(port, n);
1068 phys = tx_desc_phys(port, n);
1069 desc->buf_len = desc->pkt_len = 1;
1071 queue_put_desc(TX_QUEUE(port->id), phys, desc);
1074 } while (++i < MAX_CLOSE_WAIT);
1077 printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1078 " left in NPE\n", dev->name, buffs);
1081 printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1085 while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1086 buffs--; /* cancel TX */
1090 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1094 } while (++i < MAX_CLOSE_WAIT);
1097 printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1098 "left in NPE\n", dev->name, buffs);
1101 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1105 if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1106 printk(KERN_CRIT "%s: unable to disable loopback\n",
1109 port->mii_bmcr = mdio_read(dev, port->plat->phy, MII_BMCR) &
1110 ~(BMCR_RESET | BMCR_PDOWN); /* may have been altered */
1111 mdio_write(dev, port->plat->phy, MII_BMCR,
1112 port->mii_bmcr | BMCR_PDOWN);
1115 qmgr_disable_irq(TXDONE_QUEUE);
1116 cancel_rearming_delayed_work(&port->mdio_thread);
1117 destroy_queues(port);
1118 release_queues(port);
1122 static int __devinit eth_init_one(struct platform_device *pdev)
1125 struct net_device *dev;
1126 struct eth_plat_info *plat = pdev->dev.platform_data;
1130 if (!(dev = alloc_etherdev(sizeof(struct port))))
1133 SET_NETDEV_DEV(dev, &pdev->dev);
1134 port = netdev_priv(dev);
1136 port->id = pdev->id;
1139 case IXP4XX_ETH_NPEA:
1140 port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1141 regs_phys = IXP4XX_EthA_BASE_PHYS;
1143 case IXP4XX_ETH_NPEB:
1144 port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1145 regs_phys = IXP4XX_EthB_BASE_PHYS;
1147 case IXP4XX_ETH_NPEC:
1148 port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1149 regs_phys = IXP4XX_EthC_BASE_PHYS;
1156 dev->open = eth_open;
1157 dev->hard_start_xmit = eth_xmit;
1158 dev->stop = eth_close;
1159 dev->get_stats = eth_stats;
1160 dev->do_ioctl = eth_ioctl;
1161 dev->set_multicast_list = eth_set_mcast_list;
1162 dev->tx_queue_len = 100;
1164 netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1166 if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1171 if (register_netdev(dev)) {
1176 port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1177 if (!port->mem_res) {
1183 npe_port_tab[NPE_ID(port->id)] = port;
1184 memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1186 platform_set_drvdata(pdev, dev);
1188 __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1189 &port->regs->core_control);
1191 __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1194 port->mii.dev = dev;
1195 port->mii.mdio_read = mdio_read;
1196 port->mii.mdio_write = mdio_write;
1197 port->mii.phy_id = plat->phy;
1198 port->mii.phy_id_mask = 0x1F;
1199 port->mii.reg_num_mask = 0x1F;
1201 printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1202 npe_name(port->npe));
1204 phy_reset(dev, plat->phy);
1205 port->mii_bmcr = mdio_read(dev, plat->phy, MII_BMCR) &
1206 ~(BMCR_RESET | BMCR_PDOWN);
1207 mdio_write(dev, plat->phy, MII_BMCR, port->mii_bmcr | BMCR_PDOWN);
1209 INIT_DELAYED_WORK(&port->mdio_thread, mdio_thread);
1213 unregister_netdev(dev);
1215 npe_release(port->npe);
1221 static int __devexit eth_remove_one(struct platform_device *pdev)
1223 struct net_device *dev = platform_get_drvdata(pdev);
1224 struct port *port = netdev_priv(dev);
1226 unregister_netdev(dev);
1227 npe_port_tab[NPE_ID(port->id)] = NULL;
1228 platform_set_drvdata(pdev, NULL);
1229 npe_release(port->npe);
1230 release_resource(port->mem_res);
1235 static struct platform_driver drv = {
1236 .driver.name = DRV_NAME,
1237 .probe = eth_init_one,
1238 .remove = eth_remove_one,
1241 static int __init eth_init_module(void)
1243 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
1246 /* All MII PHY accesses use NPE-B Ethernet registers */
1247 spin_lock_init(&mdio_lock);
1248 mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1249 __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
1251 return platform_driver_register(&drv);
1254 static void __exit eth_cleanup_module(void)
1256 platform_driver_unregister(&drv);
1259 MODULE_AUTHOR("Krzysztof Halasa");
1260 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1261 MODULE_LICENSE("GPL v2");
1262 MODULE_ALIAS("platform:ixp4xx_eth");
1263 module_init(eth_init_module);
1264 module_exit(eth_cleanup_module);