]> err.no Git - linux-2.6/blob - drivers/mtd/ubi/scan.c
UBI: error path bugfix
[linux-2.6] / drivers / mtd / ubi / scan.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20
21 /*
22  * UBI scanning unit.
23  *
24  * This unit is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is represented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  */
42
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include "ubi.h"
46
47 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
48 static int paranoid_check_si(const struct ubi_device *ubi,
49                              struct ubi_scan_info *si);
50 #else
51 #define paranoid_check_si(ubi, si) 0
52 #endif
53
54 /* Temporary variables used during scanning */
55 static struct ubi_ec_hdr *ech;
56 static struct ubi_vid_hdr *vidh;
57
58 /**
59  * add_to_list - add physical eraseblock to a list.
60  * @si: scanning information
61  * @pnum: physical eraseblock number to add
62  * @ec: erase counter of the physical eraseblock
63  * @list: the list to add to
64  *
65  * This function adds physical eraseblock @pnum to free, erase, corrupted or
66  * alien lists. Returns zero in case of success and a negative error code in
67  * case of failure.
68  */
69 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
70                        struct list_head *list)
71 {
72         struct ubi_scan_leb *seb;
73
74         if (list == &si->free)
75                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
76         else if (list == &si->erase)
77                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
78         else if (list == &si->corr)
79                 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
80         else if (list == &si->alien)
81                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
82         else
83                 BUG();
84
85         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
86         if (!seb)
87                 return -ENOMEM;
88
89         seb->pnum = pnum;
90         seb->ec = ec;
91         list_add_tail(&seb->u.list, list);
92         return 0;
93 }
94
95 /**
96  * commit_to_mean_value - commit intermediate results to the final mean erase
97  * counter value.
98  * @si: scanning information
99  *
100  * This is a helper function which calculates partial mean erase counter mean
101  * value and adds it to the resulting mean value. As we can work only in
102  * integer arithmetic and we want to calculate the mean value of erase counter
103  * accurately, we first sum erase counter values in @si->ec_sum variable and
104  * count these components in @si->ec_count. If this temporary @si->ec_sum is
105  * going to overflow, we calculate the partial mean value
106  * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
107  */
108 static void commit_to_mean_value(struct ubi_scan_info *si)
109 {
110         si->ec_sum /= si->ec_count;
111         if (si->ec_sum % si->ec_count >= si->ec_count / 2)
112                 si->mean_ec += 1;
113         si->mean_ec += si->ec_sum;
114 }
115
116 /**
117  * validate_vid_hdr - check that volume identifier header is correct and
118  * consistent.
119  * @vid_hdr: the volume identifier header to check
120  * @sv: information about the volume this logical eraseblock belongs to
121  * @pnum: physical eraseblock number the VID header came from
122  *
123  * This function checks that data stored in @vid_hdr is consistent. Returns
124  * non-zero if an inconsistency was found and zero if not.
125  *
126  * Note, UBI does sanity check of everything it reads from the flash media.
127  * Most of the checks are done in the I/O unit. Here we check that the
128  * information in the VID header is consistent to the information in other VID
129  * headers of the same volume.
130  */
131 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
132                             const struct ubi_scan_volume *sv, int pnum)
133 {
134         int vol_type = vid_hdr->vol_type;
135         int vol_id = ubi32_to_cpu(vid_hdr->vol_id);
136         int used_ebs = ubi32_to_cpu(vid_hdr->used_ebs);
137         int data_pad = ubi32_to_cpu(vid_hdr->data_pad);
138
139         if (sv->leb_count != 0) {
140                 int sv_vol_type;
141
142                 /*
143                  * This is not the first logical eraseblock belonging to this
144                  * volume. Ensure that the data in its VID header is consistent
145                  * to the data in previous logical eraseblock headers.
146                  */
147
148                 if (vol_id != sv->vol_id) {
149                         dbg_err("inconsistent vol_id");
150                         goto bad;
151                 }
152
153                 if (sv->vol_type == UBI_STATIC_VOLUME)
154                         sv_vol_type = UBI_VID_STATIC;
155                 else
156                         sv_vol_type = UBI_VID_DYNAMIC;
157
158                 if (vol_type != sv_vol_type) {
159                         dbg_err("inconsistent vol_type");
160                         goto bad;
161                 }
162
163                 if (used_ebs != sv->used_ebs) {
164                         dbg_err("inconsistent used_ebs");
165                         goto bad;
166                 }
167
168                 if (data_pad != sv->data_pad) {
169                         dbg_err("inconsistent data_pad");
170                         goto bad;
171                 }
172         }
173
174         return 0;
175
176 bad:
177         ubi_err("inconsistent VID header at PEB %d", pnum);
178         ubi_dbg_dump_vid_hdr(vid_hdr);
179         ubi_dbg_dump_sv(sv);
180         return -EINVAL;
181 }
182
183 /**
184  * add_volume - add volume to the scanning information.
185  * @si: scanning information
186  * @vol_id: ID of the volume to add
187  * @pnum: physical eraseblock number
188  * @vid_hdr: volume identifier header
189  *
190  * If the volume corresponding to the @vid_hdr logical eraseblock is already
191  * present in the scanning information, this function does nothing. Otherwise
192  * it adds corresponding volume to the scanning information. Returns a pointer
193  * to the scanning volume object in case of success and a negative error code
194  * in case of failure.
195  */
196 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
197                                           int pnum,
198                                           const struct ubi_vid_hdr *vid_hdr)
199 {
200         struct ubi_scan_volume *sv;
201         struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
202
203         ubi_assert(vol_id == ubi32_to_cpu(vid_hdr->vol_id));
204
205         /* Walk the volume RB-tree to look if this volume is already present */
206         while (*p) {
207                 parent = *p;
208                 sv = rb_entry(parent, struct ubi_scan_volume, rb);
209
210                 if (vol_id == sv->vol_id)
211                         return sv;
212
213                 if (vol_id > sv->vol_id)
214                         p = &(*p)->rb_left;
215                 else
216                         p = &(*p)->rb_right;
217         }
218
219         /* The volume is absent - add it */
220         sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
221         if (!sv)
222                 return ERR_PTR(-ENOMEM);
223
224         sv->highest_lnum = sv->leb_count = 0;
225         si->max_sqnum = 0;
226         sv->vol_id = vol_id;
227         sv->root = RB_ROOT;
228         sv->used_ebs = ubi32_to_cpu(vid_hdr->used_ebs);
229         sv->data_pad = ubi32_to_cpu(vid_hdr->data_pad);
230         sv->compat = vid_hdr->compat;
231         sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
232                                                             : UBI_STATIC_VOLUME;
233         if (vol_id > si->highest_vol_id)
234                 si->highest_vol_id = vol_id;
235
236         rb_link_node(&sv->rb, parent, p);
237         rb_insert_color(&sv->rb, &si->volumes);
238         si->vols_found += 1;
239         dbg_bld("added volume %d", vol_id);
240         return sv;
241 }
242
243 /**
244  * compare_lebs - find out which logical eraseblock is newer.
245  * @ubi: UBI device description object
246  * @seb: first logical eraseblock to compare
247  * @pnum: physical eraseblock number of the second logical eraseblock to
248  * compare
249  * @vid_hdr: volume identifier header of the second logical eraseblock
250  *
251  * This function compares 2 copies of a LEB and informs which one is newer. In
252  * case of success this function returns a positive value, in case of failure, a
253  * negative error code is returned. The success return codes use the following
254  * bits:
255  *     o bit 0 is cleared: the first PEB (described by @seb) is newer then the
256  *       second PEB (described by @pnum and @vid_hdr);
257  *     o bit 0 is set: the second PEB is newer;
258  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
259  *     o bit 1 is set: bit-flips were detected in the newer LEB;
260  *     o bit 2 is cleared: the older LEB is not corrupted;
261  *     o bit 2 is set: the older LEB is corrupted.
262  */
263 static int compare_lebs(const struct ubi_device *ubi,
264                         const struct ubi_scan_leb *seb, int pnum,
265                         const struct ubi_vid_hdr *vid_hdr)
266 {
267         void *buf;
268         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
269         uint32_t data_crc, crc;
270         struct ubi_vid_hdr *vidh = NULL;
271         unsigned long long sqnum2 = ubi64_to_cpu(vid_hdr->sqnum);
272
273         if (seb->sqnum == 0 && sqnum2 == 0) {
274                 long long abs, v1 = seb->leb_ver, v2 = ubi32_to_cpu(vid_hdr->leb_ver);
275
276                 /*
277                  * UBI constantly increases the logical eraseblock version
278                  * number and it can overflow. Thus, we have to bear in mind
279                  * that versions that are close to %0xFFFFFFFF are less then
280                  * versions that are close to %0.
281                  *
282                  * The UBI WL unit guarantees that the number of pending tasks
283                  * is not greater then %0x7FFFFFFF. So, if the difference
284                  * between any two versions is greater or equivalent to
285                  * %0x7FFFFFFF, there was an overflow and the logical
286                  * eraseblock with lower version is actually newer then the one
287                  * with higher version.
288                  *
289                  * FIXME: but this is anyway obsolete and will be removed at
290                  * some point.
291                  */
292
293                 dbg_bld("using old crappy leb_ver stuff");
294
295                 abs = v1 - v2;
296                 if (abs < 0)
297                         abs = -abs;
298
299                 if (abs < 0x7FFFFFFF)
300                         /* Non-overflow situation */
301                         second_is_newer = (v2 > v1);
302                 else
303                         second_is_newer = (v2 < v1);
304         } else
305                 /* Obviously the LEB with lower sequence counter is older */
306                 second_is_newer = sqnum2 > seb->sqnum;
307
308         /*
309          * Now we know which copy is newer. If the copy flag of the PEB with
310          * newer version is not set, then we just return, otherwise we have to
311          * check data CRC. For the second PEB we already have the VID header,
312          * for the first one - we'll need to re-read it from flash.
313          *
314          * FIXME: this may be optimized so that we wouldn't read twice.
315          */
316
317         if (second_is_newer) {
318                 if (!vid_hdr->copy_flag) {
319                         /* It is not a copy, so it is newer */
320                         dbg_bld("second PEB %d is newer, copy_flag is unset",
321                                 pnum);
322                         return 1;
323                 }
324         } else {
325                 pnum = seb->pnum;
326
327                 vidh = ubi_zalloc_vid_hdr(ubi);
328                 if (!vidh)
329                         return -ENOMEM;
330
331                 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
332                 if (err) {
333                         if (err == UBI_IO_BITFLIPS)
334                                 bitflips = 1;
335                         else {
336                                 dbg_err("VID of PEB %d header is bad, but it "
337                                         "was OK earlier", pnum);
338                                 if (err > 0)
339                                         err = -EIO;
340
341                                 goto out_free_vidh;
342                         }
343                 }
344
345                 if (!vidh->copy_flag) {
346                         /* It is not a copy, so it is newer */
347                         dbg_bld("first PEB %d is newer, copy_flag is unset",
348                                 pnum);
349                         err = bitflips << 1;
350                         goto out_free_vidh;
351                 }
352
353                 vid_hdr = vidh;
354         }
355
356         /* Read the data of the copy and check the CRC */
357
358         len = ubi32_to_cpu(vid_hdr->data_size);
359         buf = vmalloc(len);
360         if (!buf) {
361                 err = -ENOMEM;
362                 goto out_free_vidh;
363         }
364
365         err = ubi_io_read_data(ubi, buf, pnum, 0, len);
366         if (err && err != UBI_IO_BITFLIPS)
367                 goto out_free_buf;
368
369         data_crc = ubi32_to_cpu(vid_hdr->data_crc);
370         crc = crc32(UBI_CRC32_INIT, buf, len);
371         if (crc != data_crc) {
372                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
373                         pnum, crc, data_crc);
374                 corrupted = 1;
375                 bitflips = 0;
376                 second_is_newer = !second_is_newer;
377         } else {
378                 dbg_bld("PEB %d CRC is OK", pnum);
379                 bitflips = !!err;
380         }
381
382         vfree(buf);
383         ubi_free_vid_hdr(ubi, vidh);
384
385         if (second_is_newer)
386                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
387         else
388                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
389
390         return second_is_newer | (bitflips << 1) | (corrupted << 2);
391
392 out_free_buf:
393         vfree(buf);
394 out_free_vidh:
395         ubi_free_vid_hdr(ubi, vidh);
396         ubi_assert(err < 0);
397         return err;
398 }
399
400 /**
401  * ubi_scan_add_used - add information about a physical eraseblock to the
402  * scanning information.
403  * @ubi: UBI device description object
404  * @si: scanning information
405  * @pnum: the physical eraseblock number
406  * @ec: erase counter
407  * @vid_hdr: the volume identifier header
408  * @bitflips: if bit-flips were detected when this physical eraseblock was read
409  *
410  * This function adds information about a used physical eraseblock to the
411  * 'used' tree of the corresponding volume. The function is rather complex
412  * because it has to handle cases when this is not the first physical
413  * eraseblock belonging to the same logical eraseblock, and the newer one has
414  * to be picked, while the older one has to be dropped. This function returns
415  * zero in case of success and a negative error code in case of failure.
416  */
417 int ubi_scan_add_used(const struct ubi_device *ubi, struct ubi_scan_info *si,
418                       int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
419                       int bitflips)
420 {
421         int err, vol_id, lnum;
422         uint32_t leb_ver;
423         unsigned long long sqnum;
424         struct ubi_scan_volume *sv;
425         struct ubi_scan_leb *seb;
426         struct rb_node **p, *parent = NULL;
427
428         vol_id = ubi32_to_cpu(vid_hdr->vol_id);
429         lnum = ubi32_to_cpu(vid_hdr->lnum);
430         sqnum = ubi64_to_cpu(vid_hdr->sqnum);
431         leb_ver = ubi32_to_cpu(vid_hdr->leb_ver);
432
433         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
434                 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
435
436         sv = add_volume(si, vol_id, pnum, vid_hdr);
437         if (IS_ERR(sv) < 0)
438                 return PTR_ERR(sv);
439
440         /*
441          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
442          * if this is the first instance of this logical eraseblock or not.
443          */
444         p = &sv->root.rb_node;
445         while (*p) {
446                 int cmp_res;
447
448                 parent = *p;
449                 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
450                 if (lnum != seb->lnum) {
451                         if (lnum < seb->lnum)
452                                 p = &(*p)->rb_left;
453                         else
454                                 p = &(*p)->rb_right;
455                         continue;
456                 }
457
458                 /*
459                  * There is already a physical eraseblock describing the same
460                  * logical eraseblock present.
461                  */
462
463                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
464                         "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
465                         seb->leb_ver, seb->ec);
466
467                 /*
468                  * Make sure that the logical eraseblocks have different
469                  * versions. Otherwise the image is bad.
470                  */
471                 if (seb->leb_ver == leb_ver && leb_ver != 0) {
472                         ubi_err("two LEBs with same version %u", leb_ver);
473                         ubi_dbg_dump_seb(seb, 0);
474                         ubi_dbg_dump_vid_hdr(vid_hdr);
475                         return -EINVAL;
476                 }
477
478                 /*
479                  * Make sure that the logical eraseblocks have different
480                  * sequence numbers. Otherwise the image is bad.
481                  *
482                  * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
483                  */
484                 if (seb->sqnum == sqnum && sqnum != 0) {
485                         ubi_err("two LEBs with same sequence number %llu",
486                                 sqnum);
487                         ubi_dbg_dump_seb(seb, 0);
488                         ubi_dbg_dump_vid_hdr(vid_hdr);
489                         return -EINVAL;
490                 }
491
492                 /*
493                  * Now we have to drop the older one and preserve the newer
494                  * one.
495                  */
496                 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
497                 if (cmp_res < 0)
498                         return cmp_res;
499
500                 if (cmp_res & 1) {
501                         /*
502                          * This logical eraseblock is newer then the one
503                          * found earlier.
504                          */
505                         err = validate_vid_hdr(vid_hdr, sv, pnum);
506                         if (err)
507                                 return err;
508
509                         if (cmp_res & 4)
510                                 err = add_to_list(si, seb->pnum, seb->ec,
511                                                   &si->corr);
512                         else
513                                 err = add_to_list(si, seb->pnum, seb->ec,
514                                                   &si->erase);
515                         if (err)
516                                 return err;
517
518                         seb->ec = ec;
519                         seb->pnum = pnum;
520                         seb->scrub = ((cmp_res & 2) || bitflips);
521                         seb->sqnum = sqnum;
522                         seb->leb_ver = leb_ver;
523
524                         if (sv->highest_lnum == lnum)
525                                 sv->last_data_size =
526                                         ubi32_to_cpu(vid_hdr->data_size);
527
528                         return 0;
529                 } else {
530                         /*
531                          * This logical eraseblock is older then the one found
532                          * previously.
533                          */
534                         if (cmp_res & 4)
535                                 return add_to_list(si, pnum, ec, &si->corr);
536                         else
537                                 return add_to_list(si, pnum, ec, &si->erase);
538                 }
539         }
540
541         /*
542          * We've met this logical eraseblock for the first time, add it to the
543          * scanning information.
544          */
545
546         err = validate_vid_hdr(vid_hdr, sv, pnum);
547         if (err)
548                 return err;
549
550         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
551         if (!seb)
552                 return -ENOMEM;
553
554         seb->ec = ec;
555         seb->pnum = pnum;
556         seb->lnum = lnum;
557         seb->sqnum = sqnum;
558         seb->scrub = bitflips;
559         seb->leb_ver = leb_ver;
560
561         if (sv->highest_lnum <= lnum) {
562                 sv->highest_lnum = lnum;
563                 sv->last_data_size = ubi32_to_cpu(vid_hdr->data_size);
564         }
565
566         if (si->max_sqnum < sqnum)
567                 si->max_sqnum = sqnum;
568
569         sv->leb_count += 1;
570         rb_link_node(&seb->u.rb, parent, p);
571         rb_insert_color(&seb->u.rb, &sv->root);
572         return 0;
573 }
574
575 /**
576  * ubi_scan_find_sv - find information about a particular volume in the
577  * scanning information.
578  * @si: scanning information
579  * @vol_id: the requested volume ID
580  *
581  * This function returns a pointer to the volume description or %NULL if there
582  * are no data about this volume in the scanning information.
583  */
584 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
585                                          int vol_id)
586 {
587         struct ubi_scan_volume *sv;
588         struct rb_node *p = si->volumes.rb_node;
589
590         while (p) {
591                 sv = rb_entry(p, struct ubi_scan_volume, rb);
592
593                 if (vol_id == sv->vol_id)
594                         return sv;
595
596                 if (vol_id > sv->vol_id)
597                         p = p->rb_left;
598                 else
599                         p = p->rb_right;
600         }
601
602         return NULL;
603 }
604
605 /**
606  * ubi_scan_find_seb - find information about a particular logical
607  * eraseblock in the volume scanning information.
608  * @sv: a pointer to the volume scanning information
609  * @lnum: the requested logical eraseblock
610  *
611  * This function returns a pointer to the scanning logical eraseblock or %NULL
612  * if there are no data about it in the scanning volume information.
613  */
614 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
615                                        int lnum)
616 {
617         struct ubi_scan_leb *seb;
618         struct rb_node *p = sv->root.rb_node;
619
620         while (p) {
621                 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
622
623                 if (lnum == seb->lnum)
624                         return seb;
625
626                 if (lnum > seb->lnum)
627                         p = p->rb_left;
628                 else
629                         p = p->rb_right;
630         }
631
632         return NULL;
633 }
634
635 /**
636  * ubi_scan_rm_volume - delete scanning information about a volume.
637  * @si: scanning information
638  * @sv: the volume scanning information to delete
639  */
640 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
641 {
642         struct rb_node *rb;
643         struct ubi_scan_leb *seb;
644
645         dbg_bld("remove scanning information about volume %d", sv->vol_id);
646
647         while ((rb = rb_first(&sv->root))) {
648                 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
649                 rb_erase(&seb->u.rb, &sv->root);
650                 list_add_tail(&seb->u.list, &si->erase);
651         }
652
653         rb_erase(&sv->rb, &si->volumes);
654         kfree(sv);
655         si->vols_found -= 1;
656 }
657
658 /**
659  * ubi_scan_erase_peb - erase a physical eraseblock.
660  * @ubi: UBI device description object
661  * @si: scanning information
662  * @pnum: physical eraseblock number to erase;
663  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
664  *
665  * This function erases physical eraseblock 'pnum', and writes the erase
666  * counter header to it. This function should only be used on UBI device
667  * initialization stages, when the EBA unit had not been yet initialized. This
668  * function returns zero in case of success and a negative error code in case
669  * of failure.
670  */
671 int ubi_scan_erase_peb(const struct ubi_device *ubi,
672                        const struct ubi_scan_info *si, int pnum, int ec)
673 {
674         int err;
675         struct ubi_ec_hdr *ec_hdr;
676
677         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
678         if (!ec_hdr)
679                 return -ENOMEM;
680
681         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
682                 /*
683                  * Erase counter overflow. Upgrade UBI and use 64-bit
684                  * erase counters internally.
685                  */
686                 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
687                 return -EINVAL;
688         }
689
690         ec_hdr->ec = cpu_to_ubi64(ec);
691
692         err = ubi_io_sync_erase(ubi, pnum, 0);
693         if (err < 0)
694                 goto out_free;
695
696         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
697
698 out_free:
699         kfree(ec_hdr);
700         return err;
701 }
702
703 /**
704  * ubi_scan_get_free_peb - get a free physical eraseblock.
705  * @ubi: UBI device description object
706  * @si: scanning information
707  *
708  * This function returns a free physical eraseblock. It is supposed to be
709  * called on the UBI initialization stages when the wear-leveling unit is not
710  * initialized yet. This function picks a physical eraseblocks from one of the
711  * lists, writes the EC header if it is needed, and removes it from the list.
712  *
713  * This function returns scanning physical eraseblock information in case of
714  * success and an error code in case of failure.
715  */
716 struct ubi_scan_leb *ubi_scan_get_free_peb(const struct ubi_device *ubi,
717                                            struct ubi_scan_info *si)
718 {
719         int err = 0, i;
720         struct ubi_scan_leb *seb;
721
722         if (!list_empty(&si->free)) {
723                 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
724                 list_del(&seb->u.list);
725                 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
726                 return seb;
727         }
728
729         for (i = 0; i < 2; i++) {
730                 struct list_head *head;
731                 struct ubi_scan_leb *tmp_seb;
732
733                 if (i == 0)
734                         head = &si->erase;
735                 else
736                         head = &si->corr;
737
738                 /*
739                  * We try to erase the first physical eraseblock from the @head
740                  * list and pick it if we succeed, or try to erase the
741                  * next one if not. And so forth. We don't want to take care
742                  * about bad eraseblocks here - they'll be handled later.
743                  */
744                 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
745                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
746                                 seb->ec = si->mean_ec;
747
748                         err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
749                         if (err)
750                                 continue;
751
752                         seb->ec += 1;
753                         list_del(&seb->u.list);
754                         dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
755                         return seb;
756                 }
757         }
758
759         ubi_err("no eraseblocks found");
760         return ERR_PTR(-ENOSPC);
761 }
762
763 /**
764  * process_eb - read UBI headers, check them and add corresponding data
765  * to the scanning information.
766  * @ubi: UBI device description object
767  * @si: scanning information
768  * @pnum: the physical eraseblock number
769  *
770  * This function returns a zero if the physical eraseblock was successfully
771  * handled and a negative error code in case of failure.
772  */
773 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
774 {
775         long long ec;
776         int err, bitflips = 0, vol_id, ec_corr = 0;
777
778         dbg_bld("scan PEB %d", pnum);
779
780         /* Skip bad physical eraseblocks */
781         err = ubi_io_is_bad(ubi, pnum);
782         if (err < 0)
783                 return err;
784         else if (err) {
785                 /*
786                  * FIXME: this is actually duty of the I/O unit to initialize
787                  * this, but MTD does not provide enough information.
788                  */
789                 si->bad_peb_count += 1;
790                 return 0;
791         }
792
793         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
794         if (err < 0)
795                 return err;
796         else if (err == UBI_IO_BITFLIPS)
797                 bitflips = 1;
798         else if (err == UBI_IO_PEB_EMPTY)
799                 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
800         else if (err == UBI_IO_BAD_EC_HDR) {
801                 /*
802                  * We have to also look at the VID header, possibly it is not
803                  * corrupted. Set %bitflips flag in order to make this PEB be
804                  * moved and EC be re-created.
805                  */
806                 ec_corr = 1;
807                 ec = UBI_SCAN_UNKNOWN_EC;
808                 bitflips = 1;
809         }
810
811         si->is_empty = 0;
812
813         if (!ec_corr) {
814                 /* Make sure UBI version is OK */
815                 if (ech->version != UBI_VERSION) {
816                         ubi_err("this UBI version is %d, image version is %d",
817                                 UBI_VERSION, (int)ech->version);
818                         return -EINVAL;
819                 }
820
821                 ec = ubi64_to_cpu(ech->ec);
822                 if (ec > UBI_MAX_ERASECOUNTER) {
823                         /*
824                          * Erase counter overflow. The EC headers have 64 bits
825                          * reserved, but we anyway make use of only 31 bit
826                          * values, as this seems to be enough for any existing
827                          * flash. Upgrade UBI and use 64-bit erase counters
828                          * internally.
829                          */
830                         ubi_err("erase counter overflow, max is %d",
831                                 UBI_MAX_ERASECOUNTER);
832                         ubi_dbg_dump_ec_hdr(ech);
833                         return -EINVAL;
834                 }
835         }
836
837         /* OK, we've done with the EC header, let's look at the VID header */
838
839         err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
840         if (err < 0)
841                 return err;
842         else if (err == UBI_IO_BITFLIPS)
843                 bitflips = 1;
844         else if (err == UBI_IO_BAD_VID_HDR ||
845                  (err == UBI_IO_PEB_FREE && ec_corr)) {
846                 /* VID header is corrupted */
847                 err = add_to_list(si, pnum, ec, &si->corr);
848                 if (err)
849                         return err;
850                 goto adjust_mean_ec;
851         } else if (err == UBI_IO_PEB_FREE) {
852                 /* No VID header - the physical eraseblock is free */
853                 err = add_to_list(si, pnum, ec, &si->free);
854                 if (err)
855                         return err;
856                 goto adjust_mean_ec;
857         }
858
859         vol_id = ubi32_to_cpu(vidh->vol_id);
860         if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOL_ID) {
861                 int lnum = ubi32_to_cpu(vidh->lnum);
862
863                 /* Unsupported internal volume */
864                 switch (vidh->compat) {
865                 case UBI_COMPAT_DELETE:
866                         ubi_msg("\"delete\" compatible internal volume %d:%d"
867                                 " found, remove it", vol_id, lnum);
868                         err = add_to_list(si, pnum, ec, &si->corr);
869                         if (err)
870                                 return err;
871                         break;
872
873                 case UBI_COMPAT_RO:
874                         ubi_msg("read-only compatible internal volume %d:%d"
875                                 " found, switch to read-only mode",
876                                 vol_id, lnum);
877                         ubi->ro_mode = 1;
878                         break;
879
880                 case UBI_COMPAT_PRESERVE:
881                         ubi_msg("\"preserve\" compatible internal volume %d:%d"
882                                 " found", vol_id, lnum);
883                         err = add_to_list(si, pnum, ec, &si->alien);
884                         if (err)
885                                 return err;
886                         si->alien_peb_count += 1;
887                         return 0;
888
889                 case UBI_COMPAT_REJECT:
890                         ubi_err("incompatible internal volume %d:%d found",
891                                 vol_id, lnum);
892                         return -EINVAL;
893                 }
894         }
895
896         /* Both UBI headers seem to be fine */
897         err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
898         if (err)
899                 return err;
900
901 adjust_mean_ec:
902         if (!ec_corr) {
903                 if (si->ec_sum + ec < ec) {
904                         commit_to_mean_value(si);
905                         si->ec_sum = 0;
906                         si->ec_count = 0;
907                 } else {
908                         si->ec_sum += ec;
909                         si->ec_count += 1;
910                 }
911
912                 if (ec > si->max_ec)
913                         si->max_ec = ec;
914                 if (ec < si->min_ec)
915                         si->min_ec = ec;
916         }
917
918         return 0;
919 }
920
921 /**
922  * ubi_scan - scan an MTD device.
923  * @ubi: UBI device description object
924  *
925  * This function does full scanning of an MTD device and returns complete
926  * information about it. In case of failure, an error code is returned.
927  */
928 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
929 {
930         int err, pnum;
931         struct rb_node *rb1, *rb2;
932         struct ubi_scan_volume *sv;
933         struct ubi_scan_leb *seb;
934         struct ubi_scan_info *si;
935
936         si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
937         if (!si)
938                 return ERR_PTR(-ENOMEM);
939
940         INIT_LIST_HEAD(&si->corr);
941         INIT_LIST_HEAD(&si->free);
942         INIT_LIST_HEAD(&si->erase);
943         INIT_LIST_HEAD(&si->alien);
944         si->volumes = RB_ROOT;
945         si->is_empty = 1;
946
947         err = -ENOMEM;
948         ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
949         if (!ech)
950                 goto out_si;
951
952         vidh = ubi_zalloc_vid_hdr(ubi);
953         if (!vidh)
954                 goto out_ech;
955
956         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
957                 cond_resched();
958
959                 dbg_msg("process PEB %d", pnum);
960                 err = process_eb(ubi, si, pnum);
961                 if (err < 0)
962                         goto out_vidh;
963         }
964
965         dbg_msg("scanning is finished");
966
967         /* Finish mean erase counter calculations */
968         if (si->ec_count)
969                 commit_to_mean_value(si);
970
971         if (si->is_empty)
972                 ubi_msg("empty MTD device detected");
973
974         /*
975          * In case of unknown erase counter we use the mean erase counter
976          * value.
977          */
978         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
979                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
980                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
981                                 seb->ec = si->mean_ec;
982         }
983
984         list_for_each_entry(seb, &si->free, u.list) {
985                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
986                         seb->ec = si->mean_ec;
987         }
988
989         list_for_each_entry(seb, &si->corr, u.list)
990                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
991                         seb->ec = si->mean_ec;
992
993         list_for_each_entry(seb, &si->erase, u.list)
994                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
995                         seb->ec = si->mean_ec;
996
997         err = paranoid_check_si(ubi, si);
998         if (err) {
999                 if (err > 0)
1000                         err = -EINVAL;
1001                 goto out_vidh;
1002         }
1003
1004         ubi_free_vid_hdr(ubi, vidh);
1005         kfree(ech);
1006
1007         return si;
1008
1009 out_vidh:
1010         ubi_free_vid_hdr(ubi, vidh);
1011 out_ech:
1012         kfree(ech);
1013 out_si:
1014         ubi_scan_destroy_si(si);
1015         return ERR_PTR(err);
1016 }
1017
1018 /**
1019  * destroy_sv - free the scanning volume information
1020  * @sv: scanning volume information
1021  *
1022  * This function destroys the volume RB-tree (@sv->root) and the scanning
1023  * volume information.
1024  */
1025 static void destroy_sv(struct ubi_scan_volume *sv)
1026 {
1027         struct ubi_scan_leb *seb;
1028         struct rb_node *this = sv->root.rb_node;
1029
1030         while (this) {
1031                 if (this->rb_left)
1032                         this = this->rb_left;
1033                 else if (this->rb_right)
1034                         this = this->rb_right;
1035                 else {
1036                         seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1037                         this = rb_parent(this);
1038                         if (this) {
1039                                 if (this->rb_left == &seb->u.rb)
1040                                         this->rb_left = NULL;
1041                                 else
1042                                         this->rb_right = NULL;
1043                         }
1044
1045                         kfree(seb);
1046                 }
1047         }
1048         kfree(sv);
1049 }
1050
1051 /**
1052  * ubi_scan_destroy_si - destroy scanning information.
1053  * @si: scanning information
1054  */
1055 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1056 {
1057         struct ubi_scan_leb *seb, *seb_tmp;
1058         struct ubi_scan_volume *sv;
1059         struct rb_node *rb;
1060
1061         list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1062                 list_del(&seb->u.list);
1063                 kfree(seb);
1064         }
1065         list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1066                 list_del(&seb->u.list);
1067                 kfree(seb);
1068         }
1069         list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1070                 list_del(&seb->u.list);
1071                 kfree(seb);
1072         }
1073         list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1074                 list_del(&seb->u.list);
1075                 kfree(seb);
1076         }
1077
1078         /* Destroy the volume RB-tree */
1079         rb = si->volumes.rb_node;
1080         while (rb) {
1081                 if (rb->rb_left)
1082                         rb = rb->rb_left;
1083                 else if (rb->rb_right)
1084                         rb = rb->rb_right;
1085                 else {
1086                         sv = rb_entry(rb, struct ubi_scan_volume, rb);
1087
1088                         rb = rb_parent(rb);
1089                         if (rb) {
1090                                 if (rb->rb_left == &sv->rb)
1091                                         rb->rb_left = NULL;
1092                                 else
1093                                         rb->rb_right = NULL;
1094                         }
1095
1096                         destroy_sv(sv);
1097                 }
1098         }
1099
1100         kfree(si);
1101 }
1102
1103 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1104
1105 /**
1106  * paranoid_check_si - check if the scanning information is correct and
1107  * consistent.
1108  * @ubi: UBI device description object
1109  * @si: scanning information
1110  *
1111  * This function returns zero if the scanning information is all right, %1 if
1112  * not and a negative error code if an error occurred.
1113  */
1114 static int paranoid_check_si(const struct ubi_device *ubi,
1115                              struct ubi_scan_info *si)
1116 {
1117         int pnum, err, vols_found = 0;
1118         struct rb_node *rb1, *rb2;
1119         struct ubi_scan_volume *sv;
1120         struct ubi_scan_leb *seb, *last_seb;
1121         uint8_t *buf;
1122
1123         /*
1124          * At first, check that scanning information is OK.
1125          */
1126         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1127                 int leb_count = 0;
1128
1129                 cond_resched();
1130
1131                 vols_found += 1;
1132
1133                 if (si->is_empty) {
1134                         ubi_err("bad is_empty flag");
1135                         goto bad_sv;
1136                 }
1137
1138                 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1139                     sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1140                     sv->data_pad < 0 || sv->last_data_size < 0) {
1141                         ubi_err("negative values");
1142                         goto bad_sv;
1143                 }
1144
1145                 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1146                     sv->vol_id < UBI_INTERNAL_VOL_START) {
1147                         ubi_err("bad vol_id");
1148                         goto bad_sv;
1149                 }
1150
1151                 if (sv->vol_id > si->highest_vol_id) {
1152                         ubi_err("highest_vol_id is %d, but vol_id %d is there",
1153                                 si->highest_vol_id, sv->vol_id);
1154                         goto out;
1155                 }
1156
1157                 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1158                     sv->vol_type != UBI_STATIC_VOLUME) {
1159                         ubi_err("bad vol_type");
1160                         goto bad_sv;
1161                 }
1162
1163                 if (sv->data_pad > ubi->leb_size / 2) {
1164                         ubi_err("bad data_pad");
1165                         goto bad_sv;
1166                 }
1167
1168                 last_seb = NULL;
1169                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1170                         cond_resched();
1171
1172                         last_seb = seb;
1173                         leb_count += 1;
1174
1175                         if (seb->pnum < 0 || seb->ec < 0) {
1176                                 ubi_err("negative values");
1177                                 goto bad_seb;
1178                         }
1179
1180                         if (seb->ec < si->min_ec) {
1181                                 ubi_err("bad si->min_ec (%d), %d found",
1182                                         si->min_ec, seb->ec);
1183                                 goto bad_seb;
1184                         }
1185
1186                         if (seb->ec > si->max_ec) {
1187                                 ubi_err("bad si->max_ec (%d), %d found",
1188                                         si->max_ec, seb->ec);
1189                                 goto bad_seb;
1190                         }
1191
1192                         if (seb->pnum >= ubi->peb_count) {
1193                                 ubi_err("too high PEB number %d, total PEBs %d",
1194                                         seb->pnum, ubi->peb_count);
1195                                 goto bad_seb;
1196                         }
1197
1198                         if (sv->vol_type == UBI_STATIC_VOLUME) {
1199                                 if (seb->lnum >= sv->used_ebs) {
1200                                         ubi_err("bad lnum or used_ebs");
1201                                         goto bad_seb;
1202                                 }
1203                         } else {
1204                                 if (sv->used_ebs != 0) {
1205                                         ubi_err("non-zero used_ebs");
1206                                         goto bad_seb;
1207                                 }
1208                         }
1209
1210                         if (seb->lnum > sv->highest_lnum) {
1211                                 ubi_err("incorrect highest_lnum or lnum");
1212                                 goto bad_seb;
1213                         }
1214                 }
1215
1216                 if (sv->leb_count != leb_count) {
1217                         ubi_err("bad leb_count, %d objects in the tree",
1218                                 leb_count);
1219                         goto bad_sv;
1220                 }
1221
1222                 if (!last_seb)
1223                         continue;
1224
1225                 seb = last_seb;
1226
1227                 if (seb->lnum != sv->highest_lnum) {
1228                         ubi_err("bad highest_lnum");
1229                         goto bad_seb;
1230                 }
1231         }
1232
1233         if (vols_found != si->vols_found) {
1234                 ubi_err("bad si->vols_found %d, should be %d",
1235                         si->vols_found, vols_found);
1236                 goto out;
1237         }
1238
1239         /* Check that scanning information is correct */
1240         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1241                 last_seb = NULL;
1242                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1243                         int vol_type;
1244
1245                         cond_resched();
1246
1247                         last_seb = seb;
1248
1249                         err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1250                         if (err && err != UBI_IO_BITFLIPS) {
1251                                 ubi_err("VID header is not OK (%d)", err);
1252                                 if (err > 0)
1253                                         err = -EIO;
1254                                 return err;
1255                         }
1256
1257                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1258                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1259                         if (sv->vol_type != vol_type) {
1260                                 ubi_err("bad vol_type");
1261                                 goto bad_vid_hdr;
1262                         }
1263
1264                         if (seb->sqnum != ubi64_to_cpu(vidh->sqnum)) {
1265                                 ubi_err("bad sqnum %llu", seb->sqnum);
1266                                 goto bad_vid_hdr;
1267                         }
1268
1269                         if (sv->vol_id != ubi32_to_cpu(vidh->vol_id)) {
1270                                 ubi_err("bad vol_id %d", sv->vol_id);
1271                                 goto bad_vid_hdr;
1272                         }
1273
1274                         if (sv->compat != vidh->compat) {
1275                                 ubi_err("bad compat %d", vidh->compat);
1276                                 goto bad_vid_hdr;
1277                         }
1278
1279                         if (seb->lnum != ubi32_to_cpu(vidh->lnum)) {
1280                                 ubi_err("bad lnum %d", seb->lnum);
1281                                 goto bad_vid_hdr;
1282                         }
1283
1284                         if (sv->used_ebs != ubi32_to_cpu(vidh->used_ebs)) {
1285                                 ubi_err("bad used_ebs %d", sv->used_ebs);
1286                                 goto bad_vid_hdr;
1287                         }
1288
1289                         if (sv->data_pad != ubi32_to_cpu(vidh->data_pad)) {
1290                                 ubi_err("bad data_pad %d", sv->data_pad);
1291                                 goto bad_vid_hdr;
1292                         }
1293
1294                         if (seb->leb_ver != ubi32_to_cpu(vidh->leb_ver)) {
1295                                 ubi_err("bad leb_ver %u", seb->leb_ver);
1296                                 goto bad_vid_hdr;
1297                         }
1298                 }
1299
1300                 if (!last_seb)
1301                         continue;
1302
1303                 if (sv->highest_lnum != ubi32_to_cpu(vidh->lnum)) {
1304                         ubi_err("bad highest_lnum %d", sv->highest_lnum);
1305                         goto bad_vid_hdr;
1306                 }
1307
1308                 if (sv->last_data_size != ubi32_to_cpu(vidh->data_size)) {
1309                         ubi_err("bad last_data_size %d", sv->last_data_size);
1310                         goto bad_vid_hdr;
1311                 }
1312         }
1313
1314         /*
1315          * Make sure that all the physical eraseblocks are in one of the lists
1316          * or trees.
1317          */
1318         buf = kmalloc(ubi->peb_count, GFP_KERNEL);
1319         if (!buf)
1320                 return -ENOMEM;
1321
1322         memset(buf, 1, ubi->peb_count);
1323         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1324                 err = ubi_io_is_bad(ubi, pnum);
1325                 if (err < 0) {
1326                         kfree(buf);
1327                         return err;
1328                 }
1329                 else if (err)
1330                         buf[pnum] = 0;
1331         }
1332
1333         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1334                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1335                         buf[seb->pnum] = 0;
1336
1337         list_for_each_entry(seb, &si->free, u.list)
1338                 buf[seb->pnum] = 0;
1339
1340         list_for_each_entry(seb, &si->corr, u.list)
1341                 buf[seb->pnum] = 0;
1342
1343         list_for_each_entry(seb, &si->erase, u.list)
1344                 buf[seb->pnum] = 0;
1345
1346         list_for_each_entry(seb, &si->alien, u.list)
1347                 buf[seb->pnum] = 0;
1348
1349         err = 0;
1350         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1351                 if (buf[pnum]) {
1352                         ubi_err("PEB %d is not referred", pnum);
1353                         err = 1;
1354                 }
1355
1356         kfree(buf);
1357         if (err)
1358                 goto out;
1359         return 0;
1360
1361 bad_seb:
1362         ubi_err("bad scanning information about LEB %d", seb->lnum);
1363         ubi_dbg_dump_seb(seb, 0);
1364         ubi_dbg_dump_sv(sv);
1365         goto out;
1366
1367 bad_sv:
1368         ubi_err("bad scanning information about volume %d", sv->vol_id);
1369         ubi_dbg_dump_sv(sv);
1370         goto out;
1371
1372 bad_vid_hdr:
1373         ubi_err("bad scanning information about volume %d", sv->vol_id);
1374         ubi_dbg_dump_sv(sv);
1375         ubi_dbg_dump_vid_hdr(vidh);
1376
1377 out:
1378         ubi_dbg_dump_stack();
1379         return 1;
1380 }
1381
1382 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */